Annual Groundwater Monitoring Report

Public Service Company of Oklahoma Northeastern 3&4 Power Station

Landfill CCR Management Unit

7300 E HWY 88 Oologah, Oklahoma

January 2020

Prepared by:
American Electric Power Service Corporation
1 Riverside Plaza
Columbus, Ohio 43215

Page

Table of Contents

I.	Summary	. 2
II.	Groundwater Monitoring Well Locations and Identification Numbers	.3
III.	Monitoring Wells Installed or Decommissioned	.4
IV.	Groundwater Quality Data and Static Water Elevation Data, With Flow Rate and Direction and Discussion	
V.	Statistical Evaluation completed in 2019	.4
VI.	Alternate Source Demonstrations completed in 2019	. 5
VII.	Discussion About Transition Between Monitoring Requirements or Alternate Monitoring Frequency	. 5
VIII.	Other Information Required	. 5
IX.	Description of Any Problems Encountered in 2019 and Actions Taken	. 5
X.	A Projection of Key Activities for the Upcoming Year	.6

Appendix I

Appendix II

Appendix III

Appendix IV

I. Summary

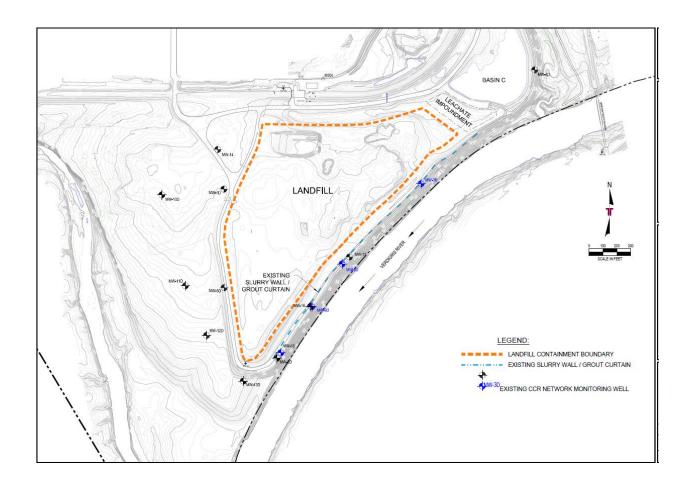
This Annual Groundwater Monitoring Report (Report) has been prepared to report the status of activities for the preceding year for an existing CCR unit at Public Service Company of Oklahoma's (PSO's), a wholly-owned subsidiary of American Electric Power Company (AEP), Northeastern 3&4 Power Station (NPS). The Oklahoma Department of Environmental Quality (ODEQ) CCR rules require that the Annual Groundwater Monitoring Report be posted to the operating record for the preceding year no later than January 31, 2020.

In general, the following activities were completed:

- Semi-annual groundwater samples were collected and analyzed for detection monitoring Appendix A constituents, as specified in OAC 255:517-9-5 and AEP's Groundwater Sampling and Analysis Plan;
- NPS continues to evaluate the site for appropriate upgradient/background well placement;
- Eight background groundwater sampling events were completed for 4D, 5D, and 12D. Background and Upper Prediction Limits (UPLs) were established for these wells;
- A statistically significant increase (SSI) for Fluoride in MW-15 was determined for the 1st semi-annual 2018 sampling event;
- A successful alternate source demonstration (ASD) was conducted for a Fluoride SSI in MW-15;
- Groundwater data underwent various validation tests, including tests for completeness, valid values, transcription errors, and consistent units;
- Groundwater Monitoring Statistical Evaluation Reports to evaluate groundwater data were prepared in accordance with 252:517-9-4 and certified. The statistical process was guided by USEPA's *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance* ("Unified Guidance", USEPA, 2009).
- This CCR Unit remained in detection monitoring during 2019.

The major components of this annual report, to the extent applicable at this time, are presented in sections that follow:

- A map, aerial photograph or a drawing showing the CCR management unit(s), all groundwater monitoring wells and monitoring well identification numbers;
- Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a statement as to why that happened;
- All of the monitoring data collected, including the rate and direction of groundwater flow, plus a summary showing the number of samples collected per monitoring well, the dates the samples were collected are included in Appendix I;


- Statistically reports are located in Appendix II;
- The ASDs are located in Appendix III.
- Field Sheets and Laboratory Reports are located in Appendix IV.

In addition, this report summarizes key actions completed, and where applicable, describes any problems encountered and actions taken to resolve those problems. The report includes a projection of key activities for the upcoming year.

II. Groundwater Monitoring Well Locations and Identification Numbers

The figure that follows depicts the PE-certified groundwater monitoring network, the monitoring well locations and their corresponding identification numbers.

I	andfill Monitoring Wells
Up Gradient	Down Gradient
Pending	MW-1D through MW-6D,
	MW-9D through MW-13D
	MW-14 through MW-17

III. <u>Monitoring Wells Installed or Decommissioned</u>

No monitoring wells were installed or decommissioned.

IV. Groundwater Quality Data and Static Water Elevation Data, With Flow Rate and Direction and Discussion

Appendix I contains tables showing the applicable groundwater data results obtained under OAC 252:517-9-1 through 252:517-9-5. Static water elevation data from each monitoring event are in Appendix I, along with the groundwater velocity, groundwater flow direction and potentiometric maps developed after each sampling event. Appendix IV contains the field sheets and laboratory reports for data relevant to this reporting period.

V. Statistical Evaluation completed in 2019

A SSI for Fluoride in MW-15 was determined for the 1st semi-annual 2018 sampling event.

No SSIs were determined for the 2nd semi-annual 2018 groundwater monitoring event.

No SSIs were determined for the 1st semi-annual 2019 or 2nd semi-annual 2019 groundwater monitoring events.

Background concentrations and UPLs were developed for Appendix A and B constituents, respectively for monitoring wells 4D, 5D, and 12D.

The statistical reports completed in 2019 are found in Appendix II.

VI. Alternate Source Demonstrations completed in 2019

ODEQ issued a Notice Of Deficiency (NOD) January 30, 2019 for the boron ASD submitted October 2018, which presented revised statistical results through intrawell analysis. ODEQ agreed that a statistical error had occurred related to inappropriate background wells MWs 7D and 8D and background concentrations could not be established; therefore prior to instituting an assessment monitoring program, a background well or wells representative of the aquifer must be established. Until the background concentrations can be established, statistical analysis will be completed on intra-well comparison.

An ASD was conducted for the Fluoride SSI detected in MW-15 during May 2018 and confirmed in October 2018. The ASD was submitted to ODEQ in January 2019 and approved by ODEQ March 18, 2019. Appendix III contains the ASD.

VII. <u>Discussion About Transition Between Monitoring Requirements or Alternate</u> <u>Monitoring Frequency</u>

This CCR Unit remained in detection monitoring during 2019.

The sampling frequency of twice per year will be maintained for the current monitoring program.

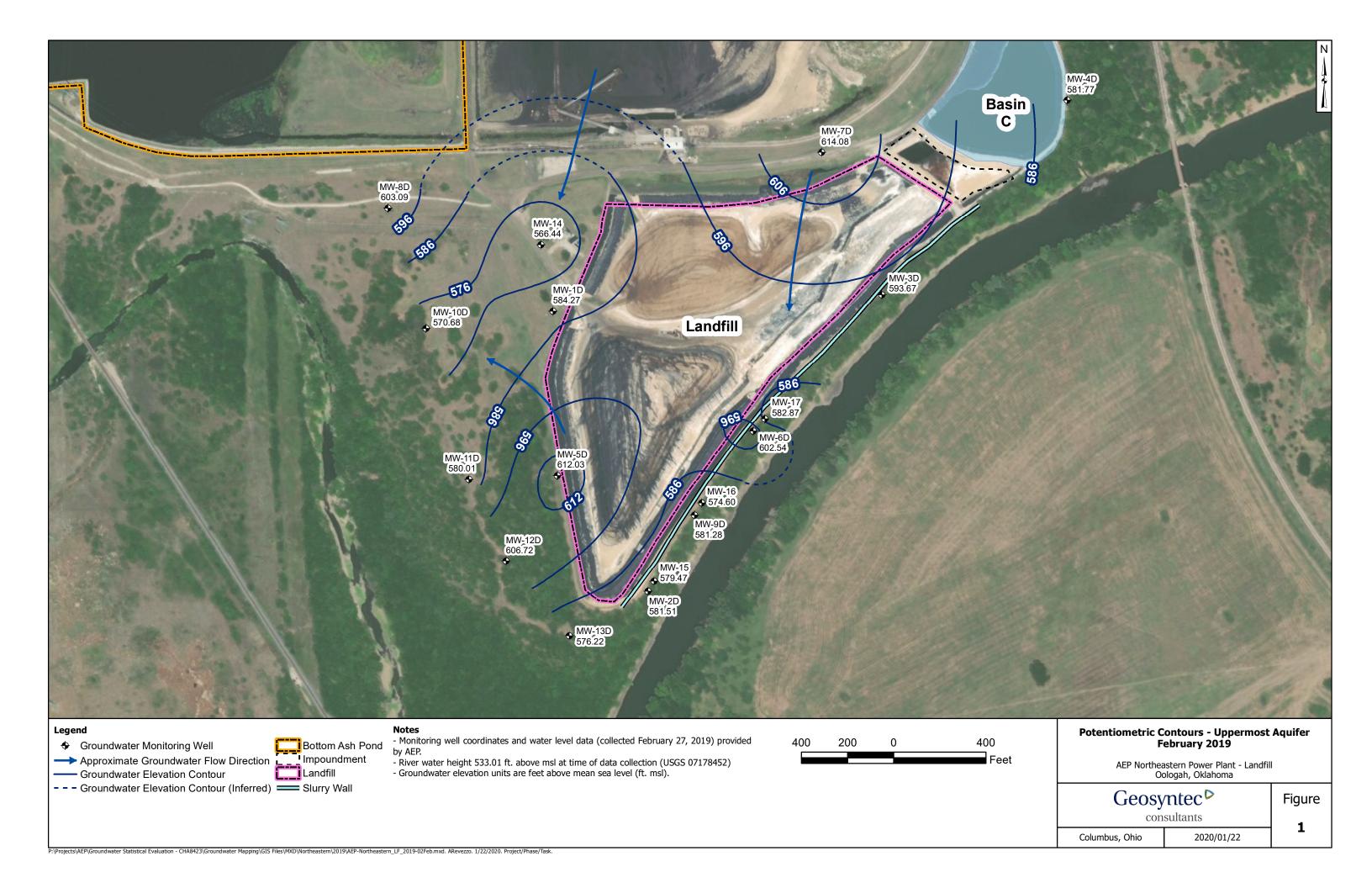
VIII. Other Information Required

Financial Assurance – Corporate Financial Test was accepted by ODEQ in correspondence dated April, 5, 2019.

IX. <u>Description of Any Problems Encountered in 2019 and Actions Taken</u>

As required by OAC 252:517-9-1(b)(1)(c), the collection of a minimum of eight independent samples for each downgradient well within the monitoring well network was not possible as wells 1D, 2D, 10D, 11D, 13D, 14, 16, and 17 continue to lack sufficient water volume for sample collection after allowing 24 hours of recharge.

NPS conducted sampling of SP-6 and SP-7 to determine their suitability as background monitoring wells for inter-well statistical analyses, which was approved by ODEQ Jan 11, 2019. However, the water quality of these wells was determined to be the same as MWs 7D and 8D, which were previously determined inappropriate background wells. On June 25, 2019, ODEQ agreed that SP-6 was not a suitable upgradient background monitoring well for the landfill. On September 12, 2019, ODEQ agreed that SP-7 was not a suitable upgradient background monitoring well for the landfill.


X. A Projection of Key Activities for the Upcoming Year

Key activities for 2020 include:

- Detection monitoring on a twice per year schedule;
- Submit Financial Assurance;
- Evaluation of the detection monitoring results from a statistical analysis viewpoint, looking for SSIs;
- Submit a drilling plan outlining the fieldwork that will assist in identifying appropriate background well(s) location(s), representative of the Landfill aquifer.
- Preparation of the next annual groundwater report.

APPENDIX I

Tables follow, showing the groundwater monitoring data collected, the rate and direction of groundwater flow, and a summary showing the number of samples collected per monitoring well. The dates that the samples were collected also is shown.

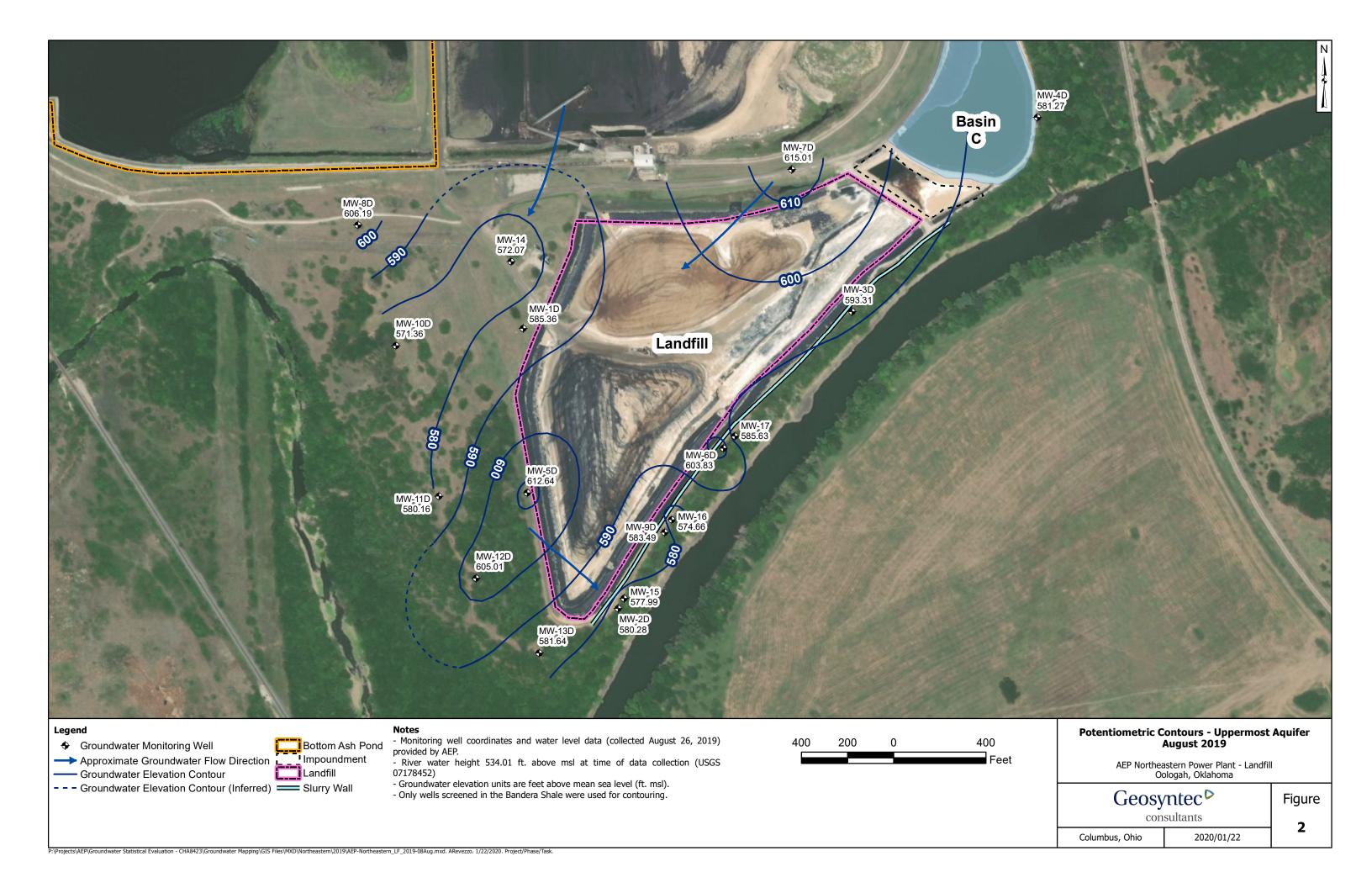


Table 1: Residence Time Calculation Summary
Northeastern Landfill

			2019	9-02	201	9-08
CCR Management Unit	Monitoring Well	Well Diameter (inches)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)
	MW-3D ^[2]	2.0	0.6	101	0.7	82
	MW-4D ^[2]	2.0	0.7	81	0.8	79
	MW-5D ^[2]	2.0	2.1	29	1.8	34
	MW-6D ^[2]	2.0	6.5	9.3	6.7	9.1
Landfill	MW-7D [3]	2.0	0.9	65	1.1	56
	MW-8D [3]	2.0	1.4	45	2.2	27
	MW-9D ^[2]	2.0	0.9	66	0.8	78
	MW-12D ^[2]	2.0	1.8	34	1.9	32
	MW-15 ^[2]	2.0	1.3	46	1.7	37

Notes:

- [1] Background Well
- [2] Downgradient Well
- [3] Observation Well

Table 1 - Groundwater Data Summary: MW-3D Northeastern - Landfill Appendix A Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
1/25/2017	Background	0.919	111	16	<1 U	7.5	658	174
3/14/2017	Background	0.913	120	14	1.0		648	175
4/27/2017	Background	0.972	110	14	0.77 J	7.9	662	181
5/18/2017	Background	0.789	163	12	<0.083 U		598	192
6/16/2017	Background	0.873	137	12	0.8472 J	7.3	742	225
6/28/2017	Background	0.840	194	13	0.7591 J	7.3	766	232
7/12/2017	Background	0.864	129	13	<0.083 U	6.9	728	210
8/4/2017	Background	0.856	135	12	0.7381 J	6.7	710	227
8/17/2017	Background	0.841	138	23	<0.083 U	6.8	728	213
8/30/2017	Background	0.840	136	12	0.7144 J	6.9	696	216
9/13/2017	Background	0.877	152	11	<0.083 U	6.8	848	212
9/20/2017	Background	0.853	139	11	<0.083 U	6.9	724	214
10/11/2017	Detection	0.878	134	13	<0.083 U	6.9	722	218
5/2/2018	Detection	1.08	127	13	0.757 J	7.3	736	196
5/30/2018	Detection	0.952	129	13	0.896 J	7.5	724	214
10/22/2018	Detection	1.02	142	14.89	1.09	7.2	702	210.57
11/28/2018	Detection	0.964			0.648 J	8.0		
2/27/2019	Detection	0.973	127	13.2	0.710	7.8	700	223
5/7/2019	Detection	1.56						
8/26/2019	Detection	0.979	130	12	0.608 J	8.5	686	181
12/3/2019	Detection					7.4		

Notes:

mg/L: milligrams per liter

SU: standard unit

Due to limited groundwater volume, pH values for several sampling events were collected the day prior to collection of analytical samples for other parameters.

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

^{- -:} Not analyzed

Table 1 - Groundwater Data Summary: MW-3D Northeastern - Landfill Appendix B Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
1/25/2017	Background	<5 U	<5 U	111	<1 U	<1 U	2.0	<5 U	2.153	<1 U	<5 U	0.0170	<0.025 U	<5 U	<5 U	<2 U
3/14/2017	Background	<5 U	<5 U	100	<1 U	<1 U	<1 U	<5 U	1.456	1.0	<5 U	0.0160	<0.025 U	<5 U	<5 U	<2 U
4/27/2017	Background	<0.93 U	3.3 J	89.64	<0.02 U	0.26 J	0.35 J	1.3 J	0.419	0.77 J	<0.68 U	0.01508	<0.005 U	1.97 J	<0.99 U	<0.86 U
5/18/2017	Background	<0.93 U	10.64	1040	0.92 J	0.61 J	18.06	5.32	2.443	<0.083 U	3.24 J	0.01943	0.01 J	4.15 J	<0.99 U	<0.86 U
6/16/2017	Background	1.44 J	1.48 J	150	0.08 J	0.22 J	1.23	1.09 J	1.706	0.8472 J	0.83 J	0.01451	<0.005 U	3.04 J	<0.99 U	<0.86 U
6/28/2017	Background	<0.93 U	<1.05 U	97.64	0.09 J	0.45 J	4.8	2.69 J	2.431	0.7591 J	2.99 J	0.01836	0.007 J	79.28	<0.99 U	<0.86 U
7/12/2017	Background	<0.93 U	<1.05 U	118	0.05 J	0.08 J	0.41 J	0.82 J	14.283	<0.083 U	<0.68 U	0.01435	<0.005 U	3.22 J	<0.99 U	<0.86 U
8/4/2017	Background	<0.93 U	<1.05 U	124	0.07 J	0.21 J	0.82 J	0.84 J	2.242	0.7381 J	0.8 J	0.01344	0.013 J	3.08 J	<0.99 U	<0.86 U
8/17/2017	Background	<0.93 U	<1.05 U	274	0.17 J	0.24 J	3.11	1.83 J	2.328	<0.083 U	<0.68 U	0.01495	<0.005 U	2.91 J	1 J	<0.86 U
8/30/2017	Background	<0.93 U	2.6 J	244	0.16 J	0.33 J	2.36	1.54 J	2.215	0.7144 J	<0.68 U	0.01465	<0.005 U	2.68 J	<0.99 U	<0.86 U
9/13/2017	Background	<0.93 U	4.52 J	430	0.35 J	0.49 J	6.32	2.97 J	1.566	<0.083 U	1.55 J	0.01639	<0.005 U	2.74 J	<0.99 U	1.02 J
9/20/2017	Background	1.63 J	1.14 J	267	0.17 J	0.21 J	2.74	1.41 J	2.162	<0.083 U	<0.68 U	0.01508	<0.005 U	3.33 J	<0.99 U	<0.86 U

Notes:

μg/L: micrograms per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Due to limited groundwater volume, radium samples for several sampling events were collected the day prior to collection of analytical samples for other parameters.

Table 1 - Groundwater Data Summary: MW-4D Northeastern - Landfill Appendix A Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/2/2018	Background	1.21	192	22	<0.083 U	7.1	984	328
5/30/2018	Background	1.27	164	20	0.4188 J	7.0	910	279
6/27/2018	Background	1.16	177	20	<0.083 U	7.9	882	258
7/31/2018	Background	1.04	196	31	<0.083 U	7.8	856	294
8/30/2018	Background	1.26	183			8.1	886	
9/19/2018	Background	1.13	174	31	<0.083 U	7.8	884	260
10/15/2018	Background	0.656	195	37.9	<0.083 U	7.6	846	289.3
10/22/2018	Background			39.8	<0.083 U	7.9		306
11/28/2018	Background	1.24	193	27.0	0.3357 J	7.9	972	295
1/15/2019	Detection	1.16	183	24.6	0.37 J	7.5		417.6
2/27/2019	Detection	1.42	187	31.2	0.30	7.7	696	463
5/7/2019	Detection							419
8/26/2019	Detection	0.987	184	23	0.171 J	8.1	830	274

Notes:

mg/L: milligrams per liter

SU: standard unit

- -: Not analyzed

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-4D Northeastern - Landfill Appendix B Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/2/2018	Background	4.05 J	2.3 J	171	<0.02 U	0.14 J	1.37	2.36 J	1.625	<0.083 U	1.47 J	0.00533	<0.005 U	6.74	<0.99 U	1.19 J
5/30/2018	Background	<0.93 U	<1.05 U	173	<0.02 U	<0.07 U	<0.23 U	1.28 J	1.991	0.4188 J	<0.68 U	0.00330	<0.005 U	4.91 J	<0.99 U	2.94
6/27/2018	Background	<0.93 U	<1.05 U	167	<0.02 U	<0.07 U	1.93	1.82 J	1.244	<0.083 U	<0.68 U	0.00491	<0.005 U	4.64 J	<0.99 U	2.94
7/31/2018	Background	0.05	1.25	173	0.01 J	0.04	<7 U	0.521	1.506	<0.083 U	0.130	0.00315	<0.005 U	4.59	0.2	0.02 J
8/30/2018	Background	0.10	1.60	163	0.049	0.11	0.551	0.807	0.912		0.804	0.00296	0.007 J	4.48	0.3	0.02 J
9/19/2018	Background	0.04 J	1.20	177	0.02 J	0.03 J	0.273	0.551	3.91	<0.083 U	0.595	0.00289	<0.005 U	3.71	0.2	<0.1 U
10/15/2018	Background	0.15	2.28	166	0.06 J	0.16	0.872	0.873	3.056	<0.083 U	1.41	0.00336	<0.005 U	4.58	0.3	<0.1 U
10/22/2018	Background									<0.083 U						
11/28/2018	Background	<0.1 U	1.31	171	<0.1 U	0.06 J	0.3 J	0.677	1.629	0.3357 J	0.3 J	0.00378	<0.005 U	8 J	0.2 J	<0.5 U

Notes:

μg/L: micrograms per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Table 1 - Groundwater Data Summary: MW-5D Northeastern - Landfill Appendix A Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	pН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/2/2018	Background	0.476	132	25	0.703 J	7.3	636	126
5/30/2018	Background	0.468	136	24	0.711 J	7.2	628	113
6/27/2018	Background	0.478	134	26	0.7487 J	8.2	658	122
7/31/2018	Background	0.491	142	30	0.8769 J	8.3	628	662
8/30/2018	Background	0.520	158			8.1	648	
9/19/2018	Background	0.444	156	30	0.7519 J	7.7	662	134
10/15/2018	Background	0.439	141	30.2	0.845 J	7.8	636	138.7
10/22/2018	Background			30.3	0.806 J	8.0		138
11/28/2018	Background	0.612	143	24.0	0.371 J	8.1	614	143
1/15/2019	Detection	0.540	157	24.0	0.316 J	7.8		127.6
2/27/2019	Detection	0.531	130	26.7	0.50	8.5	616	153
5/7/2019	Detection							158
8/26/2019	Detection	0.568	146	24	0.412 J	9.8	670	134
12/3/2019	Detection					7.2		

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

^{- -:} Not analyzed

Table 1 - Groundwater Data Summary: MW-5D Northeastern - Landfill Appendix B Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/2/2018	Background	2.91 J	1.24 J	127	<0.02 U	0.36 J	0.59 J	1.14 J	2.449	0.703 J	1.01 J	0.01243	<0.005 U	1.33 J	1.35 J	1.25 J
5/30/2018	Background	<0.93 U	<1.05 U	139	<0.02 U	<0.07 U	1.53	1.31 J	3.06	0.711 J	1.09 J	0.01199	<0.005 U	<0.29 U	<0.99 U	<0.86 U
6/27/2018	Background	2.5 J	<1.05 U	126	<0.02 U	<0.07 U	0.8 J	0.63 J	2.512	0.7487 J	<0.68 U	0.01208	<0.005 U	0.96 J	<0.99 U	2
7/31/2018	Background	0.16	1.27	143	0.103	0.21	0.355	0.482	2.876	0.8769 J	1.43	0.01100	<0.005 U	1.21	0.4	0.02 J
8/30/2018	Background	0.10	0.98	111	0.076	0.1	0.518	0.300	2.906		0.706	0.01120	0.006 J	1.24	0.3	0.04 J
9/19/2018	Background	0.13	1.18	118	0.08 J	0.09	0.745	0.336	5.163	0.7519 J	0.720	0.01070	<0.005 U	2 J	0.4	<0.1 U
10/15/2018	Background	0.07 J	0.99	103	0.07 J	0.08	0.423	0.289	5.319	0.845 J	0.379	0.00977	<0.005 U	1 J	0.3	<0.1 U
11/28/2018	Background	<0.1 U	1.15	113	<0.1 U	0.06 J	0.5 J	0.324	2.393	0.371 J	0.4 J	0.01210	<0.005 U	0.2 J	0.3 J	<0.5 U

Notes:

μg/L: micrograms per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Table 1 - Groundwater Data Summary: MW-6D Northeastern - Landfill Appendix A Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
6/16/2017	Background	3.51	201	28	0.8054 J	7.5	1054	508
6/28/2017	Background	0.877	133	29	0.7596 J	7.9	1024	524
7/13/2017	Background	3.49	218	30	<0.083 U	7.3	1044	504
8/4/2017	Background	3.64	222	31	0.7656 J	6.4	1022	532
8/17/2017	Background	3.55	211	30	0.729 J	6.9	1016	509
8/30/2017	Background	3.41	210	30	0.7158 J	7.2	986	522
9/13/2017	Background	2.96	237	32	0.5406 J	7.1	1140	521
9/20/2017	Background	3.81	196	32	<0.083 U	7.1	1008	505
10/11/2017	Detection	3.74	165	29	0.9597 J	6.9	1032	545
1/22/2018	Detection	4.24			0.76 J	6.9		494
5/2/2018	Detection	3.52	173	31	0.806 J	7.3	1062	406
5/30/2018	Detection	3.35	269	32	0.9218 J	7.4	1090	401
10/22/2018	Detection	4.34	237	31.68	1.28	7.3	1152	471.81
11/28/2018	Detection				0.844 J	7.7		
2/27/2019	Detection	3.63	360	26.9	0.890	7.6	1144	496
5/7/2019	Detection		185				1038	
8/26/2019	Detection	2.88	181	13	0.634 J	8.6	1044	401
12/3/2019	Detection					7.5		

Notes:

mg/L: milligrams per liter

SU: standard unit

- J: Estimated value. Parameter was detected at concentration below the reporting limit
- -: Not analyzed

Due to limited groundwater volume, pH values for several sampling events were collected the day prior to collection of analytical samples for other parameters.

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

Table 1 - Groundwater Data Summary: MW-6D Northeastern - Landfill Appendix B Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
6/16/2017	Background	<0.93 U	1.99 J	113	0.18 J	0.8 J	5.99	3.73 J	1.822	0.8054 J	3.48 J	0.02203	0.012 J	85.01	<0.99 U	<0.86 U
6/28/2017	Background	1.28 J	<1.05 U	170	0.06 J	0.37 J	0.86 J	1.09 J	1.917	0.7596 J	0.76 J	0.01356	<0.005 U	2.79 J	<0.99 U	<0.86 U
7/13/2017	Background	<0.93 U	<1.05 U	107	0.22 J	0.56 J	6.82	3.82 J	1.784	<0.083 U	5	0.02244	0.007 J	61.81	<0.99 U	<0.86 U
8/4/2017	Background	<0.93 U	<1.05 U	128	0.22 J	0.93 J	6.62	3.39 J	1.115	0.7656 J	4.96 J	0.01921	0.016 J	82.11	<0.99 U	<0.86 U
8/17/2017	Background	1.26 J	1.18 J	99.54	0.19 J	0.44 J	6.77	3.07 J	1.155	0.729 J	3.25 J	0.01925	0.011 J	81.32	<0.99 U	<0.86 U
8/30/2017	Background	<0.93 U	2.06 J	103	0.22 J	0.36 J	6.68	3.03 J	1.057	0.7158 J	2.5 J	0.01829	<0.005 U	85.75	<0.99 U	<0.86 U
9/13/2017	Background	<0.93 U	1.19 J	109	0.31 J	0.49 J	8.15	3.71 J	1.377	0.5406 J	3.28 J	0.02105	<0.005 U	58.00	<0.99 U	<0.86 U
9/20/2017	Background	1.18 J	1.93 J	75.04	0.14 J	0.22 J	3.86	2.27 J	1.43	<0.083 U	2.33 J	0.01701	<0.005 U	81.00	<0.99 U	<0.86 U

Notes:

μg/L: micrograms per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Due to limited groundwater volume, radium samples for several sampling events were collected the day prior to collection of analytical samples for other parameters.

Table 1 - Groundwater Data Summary: MW-9D Northeastern - Landfill Appendix A Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
6/16/2017	Background	7.09	229	100	0.9857 J	7.1	1458	781
6/28/2017	Background	7.01	191	232	0.8986 J	7.7	1114	876
7/12/2017	Background	7.63	244	98	2.191	7.4	2146	1048
8/4/2017	Background	7.59	337	60	0.6947 J	7.0	2256	1217
8/17/2017	Background	7.46	328	216	0.681 J	7.1	2486	1193
8/30/2017	Background	6.93	354	64	<0.083 U	7.3	2392	1192
9/13/2017	Background	6.78	366	293	0.37 J	7.2	2826	1244
10/4/2017	Background	6.68	304	180	<0.083 U	7.3	2296	1079
10/11/2017	Detection	7.07	288	314	1.5191	7.1	2188	1075
1/22/2018	Detection	7.43				7.1		
10/22/2018	Detection	7.19	199	106	0.6 J	7.1	1258	519.42
2/27/2019	Detection	6.49	155	28.9	0.890	7.6	1174	555
8/26/2019	Detection	6.95	136	24	0.758 J	8.8	1084	526
12/3/2019	Detection					7.6		

Notes:

mg/L: milligrams per liter

SU: standard unit

Due to limited groundwater volume, pH values for several sampling events were collected the day prior to collection of analytical samples

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

^{- -:} Not analyzed

Table 1 - Groundwater Data Summary: MW-9D Northeastern - Landfill Appendix B Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
6/16/2017	Background	<0.93 U	<1.05 U	188	0.32 J	0.81 J	12.34	6.18	0.931	0.9857 J	7.02	0.02386	0.009 J	173	5.0	<0.86 U
6/28/2017	Background	<0.93 U	<1.05 U	58.15	<0.02 U	0.26 J	0.89 J	7.14		0.8986 J	1.24 J	0.01647	<0.005 U	166	<0.99 U	<0.86 U
7/12/2017	Background	<0.93 U	<1.05 U	69.89	0.05 J	<0.07 U	4.09	5.69		2.191	2.36 J	0.02221	<0.005 U	151	1.32 J	<0.86 U
8/4/2017	Background	<0.93 U	<1.05 U	132	0.17 J	0.54 J	7.15	7.34		0.6947 J	4.26 J	0.02155	0.017 J	117	3.57 J	<0.86 U
8/17/2017	Background	<0.93 U	<1.05 U	196	0.22 J	0.25 J	9.52	8.17		0.681 J	5.33	0.02401	0.011 J	98.19	3.53 J	<0.86 U
8/30/2017	Background	<0.93 U	<1.05 U	323	0.37 J	0.91 J	20.06	15.08		<0.083 U	9.27	0.02964	0.016 J	93.84	2.94 J	<0.86 U
9/13/2017	Background	<0.93 U	<1.05 U	399	0.4 J	0.68 J	13.34	12.88		0.37 J	8.28	0.03257	0.016 J	78.39	2.8 J	<0.86 U
10/4/2017	Background	<0.93 U	<1.05 U	410	0.43 J	2.40	14.79	8.38		<0.083 U	9.69	0.03222	0.015 J	73.77	3.83 J	<0.86 U

Notes:

μg/L: micrograms per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Table 1 - Groundwater Data Summary: MW-12D Northeastern - Landfill Appendix A Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
3/15/2017	Background		76.9	16	2.0		1142	613
5/2/2018	Background	8.63	184	17	2.199	7.4	1044	541
5/30/2018	Background	8.35	89.9	91	2.379	7.7	1088	542
6/27/2018	Background	8.45	74.9	17	1.988	8.2	1070	586
7/31/2018	Background	8.72	108	22	2.6173	8.7	1034	662
8/30/2018	Background	9.71	141		= =	9.2	1050	
9/19/2018	Background	9.02	110	21	2.8416	8.1	1052	582
10/15/2018	Background	8.68	70	21	2.99	9.4	1060	561.2
10/22/2018	Background		= =	19.44	2.80	9.0		504.3
11/28/2018	Background	9.69	103	16.0	2.2238	8.9	1068	570
1/15/2019	Detection	9.08	68.0	14.6	2.028	8.1		437.4
2/27/2019	Detection	8.88	64.7	16.8	2.11	8.5	1014	564
8/26/2019	Detection	8.90	96.3	14	1.6	8.7	1018	540

Notes:

mg/L: milligrams per liter

SU: standard unit

- -: Not analyzed

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-12D Northeastern - Landfill Appendix B Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
3/15/2017	Background	<5 U	<5 U	31.0	<1 U	<1 U	<1 U	<5 U		2.0	<5 U		<0.025 U		<5 U	<2 U
5/2/2018	Background	<0.93 U	1.56 J	121	0.13 J	0.8 J	7.95	3.52 J	1.625	2.199	7.03	0.00841	0.013 J	693	4.5 J	<0.86 U
5/30/2018	Background	<0.93 U	1.24 J	77.75	<0.02 U	0.25 J	2.74	1.49 J	1.213	2.379	3.04 J	0.00608	<0.005 U	667	3.88 J	2.20
6/27/2018	Background	<0.93 U	<1.05 U	36.18	<0.02 U	<0.07 U	<0.23 U	0.39 J	1.331	1.988	<0.68 U	0.00541	<0.005 U	666	1.55 J	1.99 J
7/31/2018	Background	0.11	3.00	42.0	0.053	0.07	0.414	0.674	0.721	2.6173	2.32	0.00600	<0.005 U	818	1.7	0.106
8/30/2018	Background	0.20	3.39	65.8	0.097	0.31	1.82	2.17	3.137		5.43	0.00396	<0.005 U	872	3.1	0.241
9/19/2018	Background	0.36	4.67	82.6	0.1 J	0.33	2.03	1.57	4.417	2.8416	5.18	0.0041	0.012 J	828	2.9	0.2 J
10/15/2018	Background	0.43	6.46	50.2	0.06 J	0.20	1.6	1.31	3.541	2.99	3.51	0.00308	0.007 J	774	4.6	0.3 J
11/28/2018	Background	0.3 J	3.99	71.7	0.1 J	0.33	1.7	0.989	1.486	2.2238	4.12	0.00483	0.007 J	744	1.9	<0.5 U

Notes:

μg/L: micrograms per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Table 1 - Groundwater Data Summary: MW-15 Northeastern - Landfill Appendix A Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
1/25/2017	Background	9.45	87.0	19	2.0	8.0	1112	530
3/13/2017	Background	8.23	104	28	2.0		1110	551
4/27/2017	Background	9.44	73.1	78	1.83	7.6	1128	558
5/18/2017	Background	10.2	52.2	111	2.0		1092	596
6/16/2017	Background	9.74	126	24	1.96	7.9	1060	559
6/28/2017	Background	9.75	79.2	22	1.8739	8.5	1072	616
7/13/2017	Background	9.87	110	19	1.894	8.2	1076	632
8/4/2017	Background	9.66	86.3	19	1.759	7.6	1032	612
8/17/2017	Background	9.53	93.1	18	1.691	7.8	1110	572
8/30/2017	Background	9.59	64.9	17	2.0289	6.7	1038	590
9/13/2017	Background	9.13	68.0	17	1.671	8.6	1080	584
9/20/2017	Background	9.65	67.6	15	0.642 J	7.5	1036	543
10/11/2017	Detection	9.62	80.1	46	1.9468	7.6	1124	593
1/22/2018	Detection	9.16				7.2		
5/30/2018	Detection	8.76	105	33	2.331	7.7	1128	549
10/15/2018	Detection				2.27			
10/22/2018	Detection	8.90	250	46.81	2.17	7.8	1082	549.46
11/28/2018	Detection		119			8.3		
2/27/2019	Detection	8.34	96.9	24.3	1.45	8.6	1046	574
8/26/2019	Detection	8.28	119	20	1.252	10.5	1072	587
12/3/2019	Detection					7.7		

Notes:

mg/L: milligrams per liter

SU: standard unit

Due to limited groundwater volume, pH values for several sampling events were collected the day prior to collection of analytical samples for other parameters.

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

^{- -:} Not analyzed

Table 1 - Groundwater Data Summary: MW-15 Northeastern - Landfill Appendix B Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
1/25/2017	Background	<5 U	<5 U	107	<1 U	<1 U	3.00	<5 U	0.505	2.0	<5 U	0.0120	<0.025 U	643	<5 U	<2 U
3/13/2017	Background	<5 U	<5 U	100	<1 U	<1 U	3.00	<5 U	1.241	2.0	<5 U	0.0100	<0.025 U	550	<5 U	<2 U
4/27/2017	Background	1.31 J	2.85 J	55.73	<0.02 U	<0.07 U	0.23 J	0.64 J	0.203	1.83	<0.68 U	0.00786	<0.005 U	614	1.83 J	1.05 J
5/18/2017	Background	1.38 J	13.61	52.06	<0.02 U	0.26 J	0.96 J	0.62 J	1.097	2.0	1.7 J	0.00834	0.022 J	605	22.28	<0.86 U
6/16/2017	Background	<0.93 U	7.56	212	0.25 J	0.64 J	8.57	3.96 J	1.215	1.96	5.25	0.01148	0.02 J	662	12.46	<0.86 U
6/28/2017	Background	<0.93 U	4.4 J	98.67	0.02 J	<0.07 U	1.79	1.29 J	1.652	1.8739	2.42 J	0.00722	0.022 J	644	5.76	<0.86 U
7/13/2017	Background	1.63 J	3.77 J	150	0.12 J	0.09 J	4.03	2.64 J	0.287	1.894	2.87 J	0.00910	0.009 J	668	9.0	<0.86 U
8/4/2017	Background	1.56 J	3.73 J	94.19	0.08 J	0.09 J	1.51	1.4 J	0.914	1.759	1.36 J	0.00752	0.021 J	647	6.0	<0.86 U
8/17/2017	Background	0.99 J	4.44 J	133	0.09 J	<0.07 U	3.30	1.69 J	0.649	1.691	1.44 J	0.00823	0.015 J	642	5.95	<0.86 U
8/30/2017	Background	<0.93 U	6.32	64.87	0.04 J	<0.07 U	0.86 J	0.78 J	0.393	2.0289	<0.68 U	0.00629	0.01 J	656	9.24	<0.86 U
9/13/2017	Background	<0.93 U	4.18 J	54.34	0.03 J	<0.07 U	<0.23 U	0.66 J	1.070	1.671	<0.68 U	0.00635	0.008 J	638	1.45 J	<0.86 U
9/20/2017	Background	<0.93 U	3.87 J	49.23	<0.02 U	<0.07 U	0.23 J	0.77 J	0.887	0.642 J	<0.68 U	0.00621	<0.005 U	652	3.77 J	<0.86 U

Notes:

μg/L: micrograms per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Due to limited groundwater volume, radium samples for several sampling events were collected the day prior to collection of analytical samples for other parameters.

APPENDIX II

Where applicable, show in this appendix the results from statistical analyses, and a description of the statistical analysis method chosen. These statistical analyses are to be conducted separately for each constituent in each monitoring well.

941 Chatham Lane, Suite 103 Columbus, Ohio 43212 FEE 614.468.0415 FEE 614.468.0416

Memorandum

Date:

January 11, 2019

To:

David Miller (AEP)

Copies to:

Jill Parker-Witt (AEP)

From:

Allison Kreinberg and Bruce Sass, Ph.D. (Geosyntec)

Subject:

Evaluation of Detection Monitoring Data at

Northeastern Plant's Landfill (LF)

In accordance with Oklahoma Department of Environmental Quality rules regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (OAC 252.517) detection monitoring events were completed on May 30, 2018 and October 15, 2018 at the Landfill (LF), an existing CCR unit at the Northeastern Power Plant located in Oologah, Oklahoma.

Eight background monitoring events were conducted at the Northeastern LF prior to these detection monitoring events, and upper prediction limits (UPLs) were calculated for each Appendix III parameter to represent background values. Lower prediction limits (LPLs) were also calculated for pH. Details on the calculation of these background values are described in Geosyntec's *Statistical Analysis Summary* report, dated January 15, 2018. An alternative source demonstration (ASD) was certified on April 13, 2018 which resulted in a revision to the calculated prediction limits for boron and pH.

To achieve an acceptably high statistical power while maintaining a site-wide false-positive rate (SWFPR) of 10% per year or less, prediction limits were calculated based on a one-of-two retesting procedure. With this procedure, a statistically significant increase (SSI) is only concluded if both samples in a series of two exceeds the UPL. In practice, if the initial result did not exceed the UPL, a second sample was not collected or analyzed.

Detection monitoring results and the relevant background values are compared in Table 1 and the noted exceedance is described below.

Evaluation of Detection Monitoring Data – Northeastern LF January 11, 2019 Page 2

• Fluoride concentrations exceeded the intrawell UPL of 2.24 mg/L in both the initial (2.33 mg/L) and second (2.27 mg/L) samples collected at MW-15. Therefore, an SSI over background is concluded for fluoride at MW-15.

In response to the exceedance noted above the Northeastern LF CCR unit will either transition to assessment monitoring or an alternate source demonstration for fluoride will be conducted.

No other exceedances of UPLs were observed during these detection monitoring events.

The statistical analysis was conducted within 90 days of completion of sampling and analysis in accordance with OAC 252:517-9-4(h)(6). A certification of these statistics by a qualified professional engineer is provided in Attachment A.

Table 1: Detection Monitoring Data Evaluation Northeastern Plant - Landfill

Geosyntec Consultants, Inc.

Parameter	Units	Description	MW-3D	MW-6D	MW-9D	MV	V-15
1 di difficici	Ollits	Description	5/30/2018	5/30/2018		5/30/2018	10/15/2018
Boron	mg/L	Intrawell Background Value (UPL)	0.975	4.35	8.11	10	0.6
Bolon	mg/L	Detection Monitoring Result	0.952	3.35		8.76	
Calcium	mg/L	Intrawell Background Value (UPL)	190	285	463	1	32
Calcium	mg/L	Detection Monitoring Result	129	269		105	
Chloride	mg/L	Intrawell Background Value (UPL)	16.2	33.9	383	la minori E (s	78
Cinoriue	mg/L	Detection Monitoring Result	13	32		33	
Fluoride	mg/L	Intrawell Background Value (UPL)	1.00	0.941	2.28	2.	24
ridoride	mg/L	Detection Monitoring Result	0.896	0.922		2.33	2.27
	SU	Intrawell Background Value (UPL)	8.03	8.32	7.77	9.	14
pН	SU	Intrawell Background Value (LPL)	6.17	5.98	6.74	6.56	
	SU	Detection Monitoring Result	7.46	7.39		7.713	
Total Dissolved Solids	mg/L	Intrawell Background Value (UPL)	853	1159	3591	1	152
Total Dissolved Solids	mg/L	Detection Monitoring Result	724	1090		1128	
Sulfate	mg/L	Intrawell Background Value (UPL)	251	543	1524	6	49
Suriate	mg/L	Detection Monitoring Result	214	401		549	

Notes:

UPL: Upper prediction limit LPL: Lower prediction limit

-: Not Sampled

Bold values exceed the background value.

Background values are shaded gray.

ATTACHMENT A Certification by Qualified Professional Engineer

CERTIFICATION BY QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected statistical method, described above and in the January 15, 2018 *Statistical Analysis Summary* report, is appropriate for evaluating the groundwater monitoring data for the Northeastern LF CCR management area and that the requirements of 40 CFR 257.93(f) have been met.

DAVID ANTHONY	MILLER	PROFESSION AND ANTIQUE OF THE PROPERTY OF THE
Printed Name of Licens	sed Professional Engineer	DAVID ANTHONY CHARLES MILLER 26057
David Anth	ony Milles	AHOM
Signature		
26057	OKLAHOMA	01.17.19
License Number	Licensing State	Date

Memorandum

Date: February 16, 2019

To: David Miller (AEP)

Copies to: Jill Parker-Witt (AEP)

From: Allison Kreinberg and Bruce Sass, Ph.D. (Geosyntec)

Subject: Evaluation of Detection Monitoring Data at

Northeastern Plant's Landfill (LF)

In accordance with Oklahoma Department of Environmental Quality rules regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (OAC 252.517) detection monitoring events were completed on October 22, 2018 and November 29, 2018 at the Landfill (LF), an existing CCR unit at the Northeastern Power Plant located in Oologah, Oklahoma.

Eight to twelve background monitoring events were conducted at the Northeastern LF prior to these detection monitoring events, and upper prediction limits (UPLs) were calculated for each Appendix A parameter to represent background values. Lower prediction limits (LPLs) were also calculated for pH. Details on the calculation of these background values are described in Geosyntec's *Statistical Analysis Summary* report, dated January 15, 2018. An alternative source demonstration (ASD) was certified on April 13, 2018 which resulted in a revision to the calculated prediction limits for boron and pH.

To achieve an acceptably high statistical power while maintaining a site-wide false-positive rate (SWFPR) of 10% per year or less, prediction limits were calculated based on a one-of-two retesting procedure. With this procedure, a statistically significant increase (SSI) is only concluded if both samples in a series of two exceeds the UPL. In practice, if the initial result did not exceed the UPL, a second sample was not collected or analyzed.

Detection monitoring results and the relevant background values are compared in Table 1. No SSIs were observed at the Northeastern LF CCR unit, and as a result the Northeastern LF will remain in detection monitoring.

Evaluation of Detection Monitoring Data – Northeastern LF February 15, 2019 Page 2

The statistical analysis was conducted within 90 days of completion of sampling and analysis in accordance with OAC 252:517-9-4(h)(6). A certification of these statistics by a qualified professional engineer is provided in Attachment A.

Table 1: Detection Monitoring Data Evaluation Northeastern Plant - Landfill

Parameter	Units	Description	MW	7-3D	MW	7-6D	MW-9D	MV	V-15
Parameter	Omis	Description	10/22/2018	11/29/2018	10/22/2018	11/29/2018	10/22/2018	10/22/2018	11/28/2018
Boron	ma/I	Intrawell Background Value (UPL)	0.975		4.35		8.11	10).6
Dolon	mg/L	Detection Monitoring Result	1.02	0.964	4.34	-	7.19	8.90	-
Calcium	mg/L	Intrawell Background Value (UPL)	19	90	28	285		1:	32
Calcium	mg/L	Detection Monitoring Result	142	-	237	-	199	141	119
Chloride	mg/L	Intrawell Background Value (UPL)	16.2		33.9		383	7	8
Cinoriac	mg/L	Detection Monitoring Result	14.89	-	31.7	-	106	46.8	-
Fluoride	mg/L	Intrawell Background Value (UPL)		1	0.9	941	2.28	2.24	
Tuonac	mg/L	Detection Monitoring Result	1.09	0.648	1.28	0.844	0.600	2.17	1
		Intrawell Background Value (UPL)	8.03		8.32		7.77	9.14	
pН	SU	Intrawell Background Value (LPL)	6.17		5.98		6.74	6.56	
		Detection Monitoring Result	7.20	-	7.25	-	7.13	7.79	1
Total Dissolved Solids	mg/L	Intrawell Background Value (UPL)	8:	53	11	1159		1152	
Total Dissolved Solids	mg/L	Detection Monitoring Result	702	-	1152	-	1258	1082	1
Sulfate	mg/L	Intrawell Background Value (UPL)	251		543		1524	649	
Sullate	mg/L	Detection Monitoring Result	211	-	472	-	519	549	-

Notes:

UPL: Upper prediction limit LPL: Lower prediction limit

Bold values exceed the background value.

Background values are shaded gray.

Based on a 1-of-2 resampling, a statistically significant increase (SSI) is only identified when both samples in the detection monitoring period are above the calculated

ATTACHMENT A Statistical Analysis Output

CERTIFICATION BY QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected statistical method, described above and in the January 15, 2018 *Statistical Analysis Summary* report, is appropriate for evaluating the groundwater monitoring data for the Northeastern LF CCR management area and that the requirements of OAC 252:517-9-4(g) have been met.

DAVID ANTHO	NY MILLER	PROFESSIONAL CONTRACTOR OF THE PROPERTY OF THE
Printed Name of Licen	sed Professional Engineer	DAVID ANTHONY OF MILLER MILLER 26057
David Am	thony Milles	AHOMA
Signature	O	
26057	OKLAHOMA	03.15.19
License Number	Licensing State	Date

Memorandum

Date: July 19, 2019

To: David Miller (AEP)

Copies to: Jill Parker-Witt (AEP)

From: Allison Kreinberg and Bruce Sass, Ph.D. (Geosyntec)

Subject: Evaluation of Detection Monitoring Data at

Northeastern Plant's Landfill (LF)

In accordance with Oklahoma Department of Environmental Quality rules regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (OAC 252.517) detection monitoring events were completed on February 27, 2019 and May 7, 2019 at the Landfill (LF), an existing CCR unit at the Northeastern Power Plant located in Oologah, Oklahoma.

Eight to twelve background monitoring events were conducted at the Northeastern LF prior to these detection monitoring events, and upper prediction limits (UPLs) were calculated for each Appendix A parameter to represent background values. Lower prediction limits (LPLs) were also calculated for pH. Details on the calculation of these background values are described in Geosyntec's *Statistical Analysis Summary* report, dated January 15, 2018. An alternative source demonstration (ASD) was certified on April 13, 2018 which resulted in a revision to the calculated prediction limits for boron and pH. A subsequent *Statistical Analysis* Summary report was prepared on July 19, 2019 to document the calculation of background values for MW-4D, MW-5D, and MW-12D.

To achieve an acceptably high statistical power while maintaining a site-wide false-positive rate (SWFPR) of 10% per year or less, prediction limits were calculated based on a one-of-two retesting procedure. With this procedure, a statistically significant increase (SSI) is only concluded if both samples in a series of two exceeds the UPL. In practice, if the initial result did not exceed the UPL, a second sample was not collected or analyzed.

Detection monitoring results and the relevant background values are compared in Table 1. No SSIs were observed at the Northeastern LF CCR unit, and as a result the Northeastern LF will remain in detection monitoring.

Evaluation of Detection Monitoring Data – Northeastern LF July 19, 2019 Page 2

The statistical analysis was conducted within 90 days of completion of sampling and analysis in accordance with OAC 252:517-9-4(h)(6). A certification of these statistics by a qualified professional engineer is provided in Attachment A.

Table 1: Detection Monitoring Data Evaluation Northeastern Plant - Landfill

Parameter U	TI *4	Democratica	MW-3D	MW	-4D	MW-5D	MW-6D		MW-9D	MW-12D	MW-15
Parameter	Units	Description	2/27/2019	2/27/2019	5/7/2019	2/27/2019	2/27/2019	5/7/2019	2/27/2019	2/27/2019 10.30 8.88 198 64.7 25.6 16.8 3.40 2.11 10.2 6.7 8.5 693 564 1158	2/27/2019
Boron	ma/I	Intrawell Background Value (UPL)	0.985	1.5	52	0.647	4.4	44	8.22	10.30	10.70
DOIOII	mg/L	Detection Monitoring Data	0.973	1.42	-	0.531	3.63	1	6.49	8.88	8.34
Calcium	ma/I	Intrawell Background Value (UPL)	195	22	.1	172	29)5	483	198	136
Calcium	mg/L	Detection Monitoring Data	127	187	-	130	360	185	155	2/27/2019 2/27/2019 8.22 10.30 6.49 8.88 483 198 155 64.7 409 25.6 28.9 16.8 2.44 3.40 0.89 2.11 7.8 10.2 6.7 6.7 7.6 8.5 1576 693 555 564 3763 1158	96.9
Chloride	mg/L	Intrawell Background Value (UPL)	16.5	46.2		35.3	34.3		409	25.6	78.0
Cilioride	mg/L	Detection Monitoring Data	13.2	31.2	-	26.7	26.9	ı	28.9	6.49 8.88 8.34 483 198 136 155 64.7 96.9 409 25.6 78.0 28.9 16.8 24.3 2.44 3.40 2.21 0.89 2.11 1.45 7.8 10.2 9.3 6.7 6.7 6.4 7.6 8.5 8.6	24.3
Fluoride	ma/I	Intrawell Background Value (UPL)	1.00	1.0	00	1.24	0.9	97	2.44	3.40	2.21
Pluoride	mg/L	Detection Monitoring Data	0.71	0.30	-	0.50	0.89	1	0.89	2.11	1.45
		Intrawell Background Value (UPL)	8.1	8.	6	8.8	8.	.5	7.8	10.2	9.3
pН	SU	Intrawell Background Value (LPL)	6.1	6.	7	6.9	5.	.8	6.7	6.7	6.4
		Detection Monitoring Data	7.8	7.7	-	8.5	7.6	ı	7.6	8.5	8.6
Sulfate	mg/L	Intrawell Background Value (UPL)	256	428		160	546		1576	693	656
Suitate	mg/L	Detection Monitoring Data	223	463	419	153	496	ı	555	8.88 8.3 198 13 64.7 96 25.6 78 16.8 24 3.40 2.3 2.11 1.4 10.2 9. 6.7 6. 8.5 8. 693 65 564 57 1158 11	574
TDS	mg/L	Intrawell Background Value (UPL)	867	10	37	686	11	73	3763	1158	1159
1103	mg/L	Detection Monitoring Data	700	696	-	616	1144	-	1174	1014	1046

Notes

UPL: Upper prediction limit LPL: Lower prediction limit TDS: Total dissolved solids

Bold values exceed the background value.

Background values are shaded gray.

ATTACHMENT A Certification by Qualified Professional Engineer

CERTIFICATION BY QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected statistical method, described above and in the January 15, 2018 *Statistical Analysis Summary* report, is appropriate for evaluating the groundwater monitoring data for the Northeastern LF CCR management area and that the requirements of OAC 252:517-9-4(g) have been met.

DAVID ANTHON Printed Name of Licen	sed Professional Engineer	DAVIÐ ANTHONY ON MILLER 26057
David Ant	thony Miller	A HOMP
Signature		
26057	OKLAHOMA	07.19.19
License Number	Licensing State	Date

STATISTICAL ANALYSIS SUMMARY STATIONS 3 AND 4 LANDFILL Northeastern Power Station Oologah, Oklahoma

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

engineers | scientists | innovators

941 Chatham Lane Suite 103 Columbus, Ohio 43214

July 2019

CHA8474

TABLE OF CONTENTS

SECTION 1	Executi	ve Summary	
		l Evaluation	
2.1	Data V	alidation & QA/QC	2-1
2.2	Statistic	cal Analysis	2-1
	2.2.1	Background Outlier Evaluation	2-1
	2.2.2	Establishment of Background Levels	2-2
2.3	Conclu	sions	2-3
SECTION 3	Referen	nces	3-1

LIST OF TABLES

Table 1 Groundwater Data Summary
Table 2 Background Level Summary

LIST OF ATTACHMENTS

Attachment A Certification by Qualified Professional Engineer
Attachment B Statistical Analysis Output

LIST OF ACRONYMS AND ABBREVIATIONS

AEP American Electric Power

ANOVA Analysis of Variance

CCR Coal Combustion Residuals

CCV Continuing Calibration Value

CFR Code of Federal Regulations

EPA Environmental Protection Agency

LFB Laboratory Fortified Blanks

LPL Lower Prediction Limit

LRB Laboratory Reagent Blanks

NELAP National Environmental Laboratory Accreditation Program

ODEQ Oklahoma Department of Environmental Quality

PQL Practical Quantitation Limit

QA Quality Assurance

QC Quality Control

SSI Statistically Significant Increase

SWFPR Site-Wide False-Positive Rate

TDS Total Dissolved Solids

UPL Upper Prediction Limit

USEPA United States Environmental Protection Agency

SECTION 1

EXECUTIVE SUMMARY

In accordance with Oklahoma Department of Environmental Quality (ODEQ) rules regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (OAC 252.517, "CCR rule"), groundwater monitoring has been conducted at the Stations 3 and 4 Landfill, an existing CCR unit at the Northeastern Power Station located in Oologah, Oklahoma.

In January 2018, background concentrations were established for Appendix A and Appendix B parameters at the CCR unit. AEP had previously established a background dataset for MW-3D, -6D, -9D, and -15. At the request of ODEQ, the Landfill's groundwater monitoring network was expanded to include all 15 deep wells surrounding the unit (MW-1D through MW-6D, MW-9D through MW-17). At this time, adequate groundwater data has been collected for MW-4D, MW-5D, and MW-12D. To establish background concentrations for the expanded network, eight monitoring events were conducted under the CCR rule at the new locations. Groundwater data underwent several validation tests, including those for completeness, sample tracking accuracy, transcription errors, and consistent use of measurement units. No data quality issues were identified which would impact the usability of the data.

The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. The background data were reviewed for outliers, which were removed (when appropriate) prior to calculating upper prediction limits (UPLs) for each Appendix A parameter to represent background values. Oversight on the use of statistical calculations was provided by Dr. Kirk Cameron of MacStat Consulting, Ltd.

This report provides a summary of the statistical approach used to establish background concentrations for the three additional downgradient wells. A summary of the statistical evaluation to establish background concentrations for the initial groundwater monitoring network was previously documented (Geosyntec, 2018a). Certification of these statistics by a certified professional engineer is provided in **Attachment A**.

SECTION 2

LANDFILL EVALUATION

2.1 Data Validation & QA/QC

During the background monitoring program, eight sets of samples were collected for analysis from the three new compliance monitoring wells. A summary of data collected during background may be found in **Table 1**.

Chemical analysis was completed by an analytical laboratory certified by the National Environmental Laboratory Accreditation Program (NELAP). Quality assurance and quality control (QA/QC) samples completed by the analytical laboratory included the use of laboratory reagent blanks (LRBs), continuing calibration verification (CCV) samples, and laboratory fortified blanks (LFBs).

The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.9.5.32 statistics software. The export was checked against the analytical data for transcription errors and completeness. No QA/QC issues were noted which would impact data usability.

2.2 Statistical Analysis

The groundwater analytical data (background data) used to establish background groundwater quality for each constituent required in detection monitoring are summarized in **Table 1**. Statistical analyses for the landfill were conducted in accordance with the June 2018 *Statistical Analysis Plan* (Geosyntec, 2018b), except where noted below. Results for all completed statistical tests are provided in **Attachment B**.

Time series plots of Appendix A and B parameters are included in **Attachment B**. Mann-Kendall analyses ($\alpha = 0.01$) were conducted to evaluate trends in the background data. No significant increasing or decreasing trends were observed for Appendix A parameters at the three monitoring wells added to the groundwater monitoring network.

2.2.1 Background Outlier Evaluation

Potential outliers were identified using Tukey's outlier test; i.e., data points were considered potential outliers if they met one of the following criteria:

$$x_i < \tilde{x}_{0.25} - 3 \times IQR \quad (1)$$

$$x_i > \tilde{x}_{0.75} + 3 \times IQR \quad (2)$$

where:

 $x_i =$ individual data point

 $\widetilde{x}_{0.25} =$ first quartile $\widetilde{x}_{0.75} =$ third quartile

IQR = the interquartile range = $\tilde{x}_{0.75} - \tilde{x}_{0.25}$

Data that were evaluated as potential outliers are summarized in **Attachment B**. Tukey's outlier test indicated one potential outlier for Appendix A parameters in the new wells. Next, the data were reviewed to identify possible sources of errors or discrepancies, including data recording errors, unusual sampling conditions, laboratory quality, or inconsistent sample turbidity. The reported sulfate value of 662 milligrams per liter (mg/L) for the July 31, 2018 sampling event at downgradient well MW-5D was removed as an outlier. Because this value is associated with a downgradient well, its removal will not affect calculated interwell background values. Because this value was anomalously high, its removal would result in the generation of more conservative (i.e., lower) background values should intrawell tests be used. Removing such outliers is recommended by USEPA's *Unified Guidance* (USEPA, 2009).

2.2.2 Establishment of Background Levels

Analysis of variance (ANOVA) was conducted to determine whether spatial variation was present between the two background wells (**Attachment B**). ANOVA indicated significant variation for all Appendix A parameters except pH. Therefore, the appropriateness of using intrawell tests was evaluated for these parameters at the Northeastern Landfill.

Intrawell tests presume that the groundwater quality in the compliance wells was not initially impacted by the CCR unit. To test this presumption, the data from the background wells were pooled, and the data from each compliance well were compared to a pooled background value. Tolerance limits were calculated using the pooled background data for each Appendix A parameter. Parametric tolerance limits with 99% confidence and 95% coverage were calculated for boron and calcium; non-parametric tolerance limits were calculated for chloride, fluoride, pH, sulfate, and TDS, given the non-normal distribution of data observed for these five parameters. Confidence intervals were calculated for each of these seven parameters at each compliance monitoring well. If the lower confidence limit from a compliance well exceeded the upper tolerance limit for the pooled background data, it was concluded that groundwater concentrations at compliance wells were above background concentrations. In these instances, intrawell tests would not be appropriate. Elevated concentrations of boron were observed. No significant exceedances were noted for calcium, chloride, fluoride, pH, sulfate, and TDS.

Based on the statistical evaluation, interwell statistics would be selected for boron and pH. However, Geosyntec previously prepared an alternative source demonstration arguing that existing upgradient wells MW-7D and MW-8D are not appropriate for intrawell statistics at the Landfill

based on their elevated sodium and chloride concentrations (Geosyntec, 2018c). ODEQ has since documented their agreement that interwell statistics are not viable using the existing upgradient wells (ODEQ, 2019). Therefore, intrawell tests were used to evaluate potential statistically significant increases (SSIs) for all seven Appendix A parameters.

After equality of variance was tested and identified outliers were removed (where appropriate), a parametric or non-parametric analysis was selected based on the distribution of the data and the frequency of non-detect data. Estimated results less than the practical quantitation limit (PQL) – i.e., "J-flagged" data – were considered detections and the estimated results were used in the statistical analyses. Non-parametric analyses were selected for datasets with at least 50% non-detect data or datasets that could not be normalized. Parametric analyses were selected for datasets (either transformed or untransformed) that passed the Shapiro-Wilk / Shapiro-Franca test for normality. The Kaplan-Meier non-detect adjustment was applied to datasets with between 15% and 50% non-detect data. For datasets with fewer than 15% non-detect data, non-detect data were replaced with one half of the PQL. The selected analysis (i.e., parametric or non-parametric) and transformation (where applicable) for each background dataset are shown in **Attachment B**.

Upper prediction limits (UPLs) were calculated for each Appendix Aparameter to represent background values. A lower prediction limit (LPL) was also calculated for pH. To conduct the intrawell tests for boron, calcium, chloride, fluoride, pH, sulfate, and TDS, a separate UPL was calculated for each compliance well for each of these parameters. The background data used for the UPL calculations are summarized in **Table 1**; the calculated UPLs are summarized in **Table 2**.

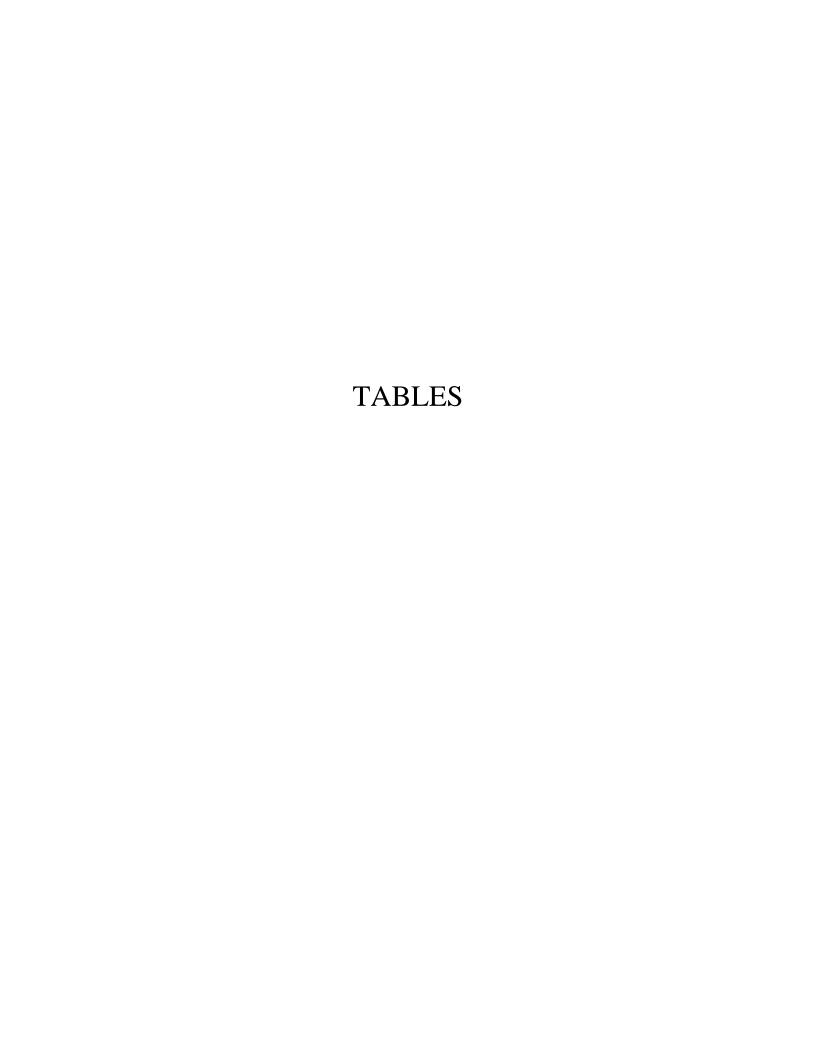
UPLs were calculated for a one-of-two retesting procedure; i.e., if at least one sample in a series of two does not exceed the UPL, then it can be concluded that an SSI has not occurred. In practice, where a collected result did not exceed the UPL, a subsequent sample was not collected. The one-of-two retesting procedure allowed achieving an acceptably high statistical power while maintaining a site-wide false-positive rate (SWFPR) of 10% per year or less. Power curves were constructed for the intrawell parametric tests and are compared with the EPA Reference Power Curve in **Attachment B**. The power curves associated with the statistical tests for the Landfill exceed the EPA Reference Power Curve at 3 and 4 standard deviations; this is considered a "good" level of statistical power according to USEPA's *Unified Guidance* (USEPA, 2009).

2.3 Conclusions

Eight background monitoring events were completed in accordance with the CCR Rule at new compliance monitoring wells MW-4D, MW-5D, and MW-12D. The laboratory and field data were reviewed prior to statistical analysis, with no QA/QC issues identified that impacted data usability. A review of outliers identified one potential outliers, which was removed from the dataset without replacement. Prediction intervals were constructed based on the remaining background data and a one-of-two retesting procedure. Intrawell tests were selected for all seven Appendix A parameters.

SECTION 3

REFERENCES


Geosyntec Consultants, Inc. (Geosyntec). 2018a. Statistical Analysis Summary – Stations 3 and 4 Landfill. Northeastern Power Station. January.

Geosyntec. 2018b. Statistical Analysis Plan – Northeastern Power Station. June 2018.

Geosyntec. 2018c. Alternative Source Demonstration Report – State and Federal CCR Rule. Northeastern Power Station. April 2018.

Oklahoma Department of Environmental Quality (ODEQ). 2019. Response to Notice of Deficiency – Alternate Source Demonstration (ASD) – Coal Combustion Residuals (CCR) Landfill. January 30, 2019.

United States Environmental Protection Agency (USEPA). 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance. EPA 530/R-09-007. March 2009.

Table 1 – Groundwater Data Summary Northeastern - Landfill

		MW-4D												
Parameter	Unit	5/2/2018	5/30/2018	6/27/2018	7/31/2018	8/30/2018	9/19/2018	10/15/2018	10/22/2018	11/28/2018	1/15/2019	2/27/2019		
		BG	BG	BG	BG	BG	BG	BG	BG	BG	BG	2019-D1		
Antimony	mg/L	0.00405 J	0.00500 U	0.00500 U	0.0000500	0.000100	0.0000400 J	0.000150	-	0.000500 U	-	-		
Arsenic	mg/L	0.00230 J	0.00500 U	0.00500 U	0.00125	0.00160	0.00120	0.00228	-	0.00131	-	-		
Barium	mg/L	0.171	0.173	0.167	0.173	0.163	0.177	0.166	-	0.171	-	-		
Beryllium	mg/L	0.00100 U	0.00100 U	0.00100 U	0.0000100 J	0.0000490	0.0000200 J	0.0000600 J	-	0.000500 U	-	-		
Boron	mg/L	1.21	1.27	1.16	1.04	1.26	1.13	0.656	-	1.24	1.16	1.42		
Cadmium	mg/L	0.000140 J	0.00100 U	0.00100 U	0.0000400	0.000110	0.0000300 J	0.000160	-	0.0000600 J	-	-		
Calcium	mg/L	192	164	177	196	183	174	195	-	193	183	187		
Chloride	mg/L	22.0	20.0	20.0	31.0	-	31.0	37.9	39.8	27.0	24.6	31.2		
Chromium	mg/L	0.00137	0.00100 U	0.00193	0.0500 U	0.000551	0.000273	0.000872	-	0.000300 J	-	-		
Cobalt	mg/L	0.00236 J	0.00128 J	0.00182 J	0.000521	0.000807	0.000551	0.000873	-	0.000677	-	-		
Combined Radium	pCi/L	1.63	1.99	1.24	1.51	0.912	3.91	3.06	-	1.63	-	-		
Fluoride	mg/L	1.00 U	0.419 J	1.00 U	1.00 U	-	1.00 U	1.00 U	1.00 U	0.336 J	0.370 J	0.300		
Lead	mg/L	0.00147 J	0.00500 U	0.00500 U	0.000130	0.000804	0.000595	0.00141	-	0.000300 J	-	-		
Lithium	mg/L	0.00533	0.00330	0.00491	0.00315	0.00296	0.00289	0.00336	-	0.00378	-	-		
Mercury	mg/L	0.0000250 U	0.0000250 U	0.0000250 U	0.0000250 U	0.00000700 J	0.0000250 U	0.0000250 U	-	0.0000250 U	-	0.0000250 U		
Molybdenum	mg/L	0.00674	0.00491 J	0.00464 J	0.00459	0.00448	0.00371	0.00458	-	0.00800 J	-	-		
Selenium	mg/L	0.00500 U	0.00500 U	0.00500 U	0.000200	0.000300	0.000200	0.000300	-	0.000200 J	-	-		
Total Dissolved Solids	mg/L	984	910	882	856	886	884	846	-	972	-	696		
Sulfate	mg/L	328	279	258	294	-	260	289	306	295	418	463		
Thallium	mg/L	0.00119 J	0.00294	0.00294	0.0000200 J	0.0000200 J	0.000500 U	0.000500 U	-	0.00200 U	-	-		
рН	SU	7.14	7.00	7.94	7.82	8.11	7.84	7.59	7.91	7.89	7.51	7.66		

Notes:

mg/L: milligrams per liter pCi/L: picocuries per liter SU: standard unit

U: Non-detect value. For statistical analysis, parameters which were not detected were replaced with the reporting limit.

J: Estimated value. Parameter was detected in concentrations below the reporting limit.

-: Not sampled

BG: Background monitoring event

2019-D1: First detection monitoring event of 2019

Table 1 – Groundwater Data Summary Northeastern - Landfill

		MW-5D											
Parameter	Unit	5/2/2018	5/30/2018	6/27/2018	7/31/2018	8/30/2018	9/19/2018	10/15/2018	10/22/2018	11/28/2018	1/15/2019	2/27/2019	
		BG	BG	BG	BG	BG	BG	BG	BG	BG	BG	2019-D1	
Antimony	mg/L	0.00291 J	0.00500 U	0.00250 J	0.000160	0.000100	0.000130	0.0000700 J	-	0.000500 U	-	-	
Arsenic	mg/L	0.00124 J	0.00500 U	0.00500 U	0.00127	0.000980	0.00118	0.000990	-	0.00115	-	-	
Barium	mg/L	0.127	0.139	0.126	0.143	0.111	0.118	0.103	-	0.113	-	-	
Beryllium	mg/L	0.00100 U	0.00100 U	0.00100 U	0.000103	0.0000760	0.0000800 J	0.0000700 J	-	0.000500 U	1	-	
Boron	mg/L	0.476	0.468	0.478	0.491	0.520	0.444	0.439	-	0.612	0.540	0.531	
Cadmium	mg/L	0.000360 J	0.00100 U	0.00100 U	0.000210	0.000100	0.0000900	0.0000800	-	0.0000600 J	-	-	
Calcium	mg/L	132	136	134	142	158	156	141	-	143	157	130	
Chloride	mg/L	25.0	24.0	26.0	30.0	-	30.0	30.2	30.3	24.0	24.0	26.7	
Chromium	mg/L	0.000590 J	0.00153	0.000800 J	0.000355	0.000518	0.000745	0.000423	-	0.000500 J	-	-	
Cobalt	mg/L	0.00114 J	0.00131 J	0.000630 J	0.000482	0.000300	0.000336	0.000289	-	0.000324	-	-	
Combined Radium	pCi/L	2.45	3.06	2.51	2.88	2.91	5.16	5.32	-	2.39	-	-	
Fluoride	mg/L	0.703 J	0.711 J	0.749 J	0.877 J	-	0.752 J	0.845 J	0.806 J	0.371 J	0.316 J	0.500	
Lead	mg/L	0.00101 J	0.00109 J	0.00500 U	0.00143	0.000706	0.000720	0.000379	-	0.000400 J	-	-	
Lithium	mg/L	0.0124	0.0120	0.0121	0.0110	0.0112	0.0107	0.00977	-	0.0121	-	-	
Mercury	mg/L	0.0000250 U	0.0000250 U	0.0000250 U	0.0000250 U	0.00000600 J	0.0000250 U	0.0000250 U	-	0.0000250 U	-	0.0000250 U	
Molybdenum	mg/L	0.00133 J	0.00500 U	0.000960 J	0.00121	0.00124	0.00200 J	0.00100 J	-	0.000200 J	-	-	
Selenium	mg/L	0.00135 J	0.00500 U	0.00500 U	0.000400	0.000300	0.000400	0.000300	-	0.000300 J	-	-	
Total Dissolved Solids	mg/L	636	628	658	628	648	662	636	-	614	-	616	
Sulfate	mg/L	126	113	122	662	-	134	139	138	143	128	153	
Thallium	mg/L	0.00125 J	0.00200 U	0.00200	0.0000200 J	0.0000400 J	0.000500 U	0.000500 U	-	0.00200 U	-	-	
рН	SU	7.32	7.23	8.23	8.28	8.06	7.72	7.84	7.98	8.06	7.81	8.45	

Notes:

mg/L: milligrams per liter pCi/L: picocuries per liter SU: standard unit

U: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL).

J: Estimated value. Parameter was detected in concentrations below the reporting limit.

-: Not sampled

BG: Background monitoring event

2019-D1: First detection monitoring event of 2019

Table 1 – Groundwater Data Summary Northeastern - Landfill

		MW-12D												
Parameter	Unit	5/2/2018	5/30/2018	6/27/2018	7/31/2018	8/30/2018	9/19/2018	10/15/2018	10/22/2018	11/28/2018	1/15/2019	2/27/2019		
		BG	BG	BG	BG	2019-D1								
Antimony	mg/L	0.00500 U	0.00500 U	0.00500 U	0.000110	0.000200	0.000360	0.000430	-	0.000300 J	-	-		
Arsenic	mg/L	0.00156 J	0.00124 J	0.00500 U	0.00300	0.00339	0.00467	0.00646	-	0.00399	-	-		
Barium	mg/L	0.121	0.0778	0.0362	0.0420	0.0658	0.0826	0.0502	-	0.0717	-	-		
Beryllium	mg/L	0.000130 J	0.00100 U	0.00100 U	0.0000530	0.0000970	0.000100 J	0.0000600 J	-	0.000100 J	-	-		
Boron	mg/L	8.63	8.35	8.45	8.72	9.71	9.02	8.68	-	9.69	9.08	8.88		
Cadmium	mg/L	0.000800 J	0.000250 J	0.00100 U	0.0000700	0.000310	0.000330	0.000200	-	0.000330	-	-		
Calcium	mg/L	184	89.9	74.9	108	141	110	70.0	-	103	68.0	64.7		
Chloride	mg/L	17.0	91.0	17.0	22.0	-	21.0	21.0	19.4	16.0	14.6	16.8		
Chromium	mg/L	0.00795	0.00274	0.00100 U	0.000414	0.00182	0.00203	0.00160	-	0.00170	-	-		
Cobalt	mg/L	0.00352 J	0.00149 J	0.000390 J	0.000674	0.00217	0.00157	0.00131	-	0.000989	-	-		
Combined Radium	pCi/L	1.63	1.21	1.33	0.721	3.14	4.42	3.54	-	1.49	-	-		
Fluoride	mg/L	2.20	2.38	1.99	2.62	-	2.84	2.99	2.80	2.22	2.03	2.11		
Lead	mg/L	0.00703	0.00304 J	0.00500 U	0.00232	0.00543	0.00518	0.00351	-	0.00412	-	-		
Lithium	mg/L	0.00841	0.00608	0.00541	0.00600	0.00396	0.00410	0.00308	-	0.00483	-	-		
Mercury	mg/L	0.0000130 J	0.0000250 U	0.0000250 U	0.0000250 U	0.0000250 U	0.0000120 J	0.00000700 J	-	0.00000700 J	-	0.0000250 U		
Molybdenum	mg/L	0.693	0.667	0.666	0.818	0.872	0.828	0.774	-	0.744	-	-		
Selenium	mg/L	0.00450 J	0.00388 J	0.00155 J	0.00170	0.00310	0.00290	0.00460	-	0.00190	-	-		
Total Dissolved Solids	mg/L	1040	1090	1070	1030	1050	1050	1060	-	1070	-	1010		
Sulfate	mg/L	541	542	586	662	-	582	561	504	570	437	564		
Thallium	mg/L	0.00200 U	0.00220	0.00199 J	0.000106	0.000241	0.000200 J	0.000300 J	-	0.00200 U	-	-		
рН	SU	7.39	7.68	8.23	8.65	9.17	8.13	9.37	8.97	8.94	8.06	8.45		

Notes:

mg/L: milligrams per liter pCi/L: picocuries per liter SU: standard unit

U: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL).

J: Estimated value. Parameter was detected in concentrations below the reporting limit.

-: Not sampled

BG: Background monitoring event

2019-D1: First detection monitoring event of 2019

Table 2: Background Level Summary Northeastern Plant - Landfill

Parameter	Units	MW-3D	MW-4D	MW-5D	MW-6D	MW-9D	MW-12D	MW-15
Boron	mg/L	0.985	1.521	0.647	4.44	8.22	10.3	10.7
Calcium	mg/L	195	221	172	295	483	198	136
Chloride	mg/L	16.5	46.2	35.3	34.3	409	25.6	78.0
Fluoride	mg/L	1.00	1.00	1.24	0.967	2.44	3.40	2.21
υΠ	SU	8.1	8.6	8.8	8.5	7.8	10.2	9.3
рН	30	6.1	6.7	6.9	5.8	6.7	6.7	6.4
Sulfate	mg/L	256	428	160	546	1576	693	656
Total Dissolved Solids	mg/L	867	1037	686	1173	3763	1158	1159

Notes:

UPL: Upper prediction limit LPL: Lower prediction limit

Intrawell background values (UPLs) were calculated for all parameters

mg/L: milligram per liter

SU: specific unit

ATTACHMENT A Certification by Qualified Professional Engineer

CERTIFICATION OF QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Northeastern Stations 3 & 4 Landfill CCR management area and that the requirements of OAC 252:517-9-4(e) have been met.

DAVID ANTHONY MILLER

Printed Name of Licensed Professional Engineer

avid Anthony Milly

Signature

26057 OKLAHOMA

License Number Licensing State 07.19.19

MILLER

Date

ATTACHMENT B Statistical Analysis Output

GROUNDWATER STATS CONSULTING

SWFPR= 1 - (1 - alpha)PEPL = X +k × .
As Hg $\stackrel{C}{\sim}$ (n-2))/ (x (n)
Zn Vn Co.

July 19, 2019

Geosyntec Consultants Attn: Ms. Allison Kreinberg 941 Chatham Lane, #103 Worthington, OH 43221

Dear Ms. Kreinberg,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the screening and statistical analysis of background groundwater data for American Electric Power's Northeastern Landfill. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) as well as with the USEPA Unified Guidance (2009).

Sampling began at the Northeastern Landfill for the CCR program in 2016, and at least 8 background samples have been collected at each of the groundwater monitoring wells. The monitoring well network, as provided by Geosyntec Consultants, consists of the following: background wells MW-7D and MW-8D; and compliance wells MW-3D, MW-4D, MW-5D, MW-6D, MW-9D, MW-12D and MW-15. Downgradient wells MW-4D, MW-5D and MW-12D were added at a later date to the monitoring well network and are included in the attached screening.

Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was reviewed by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to Groundwater Stats Consulting.

The following constituents were evaluated: Appendix A parameters – boron, calcium, chloride, fluoride, pH, sulfate, and TDS; and Appendix B parameters - antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 & 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium.

Time series plots for Appendix A and B parameters at all wells are provided for the purpose of screening data at these wells (Figure A). Additionally, box plots are included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells.

Data at all wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix A parameters based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves are provided to demonstrate that the selected statistical methods for Appendix A parameters comply with the USEPA Unified Guidance recommendations as discussed below.

Summary of Statistical Method:

1) Intrawell prediction limits, combined with a 1-of-2 resample plan for boron, calcium, chloride, fluoride, pH, sulfate, and TDS.

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are nondetects, a nonparametric test is utilized. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. While the false positive rate associated with the parametric limits is based on an annual 10% as recommended by the EPA Unified Guidance (2009), the false positive rate associated with the nonparametric limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits.

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% nondetects in background, simple substitution of onehalf the reporting limit is utilized in the statistical analysis. The reporting limit utilized for nondetects is the practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% nondetects, the Kaplan-Meier nondetect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.

 Nonparametric prediction limits are used on data containing greater than 50% nondetects.

Background Screening

Outlier Evaluation

Time series plots are used to identify suspected outliers, or extreme values that would result in limits that are not conservative from a regulatory perspective, in proposed background data. Suspected outliers at all wells for Appendix A and Appendix B parameters were formally tested using Tukey's box plot method and, when identified, flagged in the computer database with "o" and deselected prior to construction of statistical limits (Figure C).

Tukey's outlier test noted a few outliers that were flagged in the database, and may be seen on the Outlier Data Summary Table. Well MW-7D had observations reported during the 9/20/17 sample event that appeared different from other measurements within the same well; however, these values were not identified as outliers when tested with Tukey's test. These values were flagged as may be seen on the outlier summary table (i.e. beryllium, chromium and cobalt).

Additionally, Tukey's test did not identify the reported measurement of 0.642 mg/L for fluoride in well MW-15; however, this value was significantly lower than the other measurements in this well and was flagged as an outlier in the database. Some low values exist in the data sets and appear on the graphs as possible low outliers relative to the Practical Quantitation Limit. However, these values are observed trace values (i.e. measurements reported by the laboratory between the Method Detection Limit and the Practical Quantitation Limit) and, therefore, were not flagged as outliers. A substitution of the most recent reporting limit was applied when varying detection limits existed in data.

No true seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made to the data. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will correctly account for the seasonality as a predictable pattern rather than random variation or a release. It was noted that for each constituent evaluated, the highest concentrations are reported in the upgradient wells.

While trends may be visual, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test was used to evaluate all data at each well to identify statistically significant increasing or decreasing trends (Figure D). In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, earlier data are evaluated to determine whether earlier concentration levels are significantly different than current reported concentrations and will be deselected as necessary. When the historical records of data are truncated for the reasons above, a summary report will be provided to show the date ranges used in construction of the statistical limits.

The results of the trend analyses showed several statistically significant increasing trends, primarily in background wells; and a few statistically significant decreasing trends, as may be seen on the Trend Test Summary table. No adjustments were made to the datasets at this time, since the majority of trends were noted in background wells and limited data are available at this time. Trends noted in background wells are generally an indication that concentrations are changing due to natural variation. However, as more data are collected, if it is determined that earlier measurements are no longer representative of present-day water quality, the records will be re-evaluated for possible truncation of earlier concentrations.

<u>Appendix A – Determination of Spatial Variation</u>

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells, which assists in identifying the most appropriate statistical approach (Figure E). Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells would not be conservative from a regulatory perspective; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

The ANOVA identified variation for the majority of Appendix A parameters. Therefore, all parameters were further evaluated as described below for the appropriateness of intrawell prediction limits to accommodate the groundwater quality. A summary table of the ANOVA results is included with the reports.

Appendix A - Statistical Limits

Intrawell limits constructed from carefully screened background data from within each well serve to provide statistical limits that will rapidly identify a change in more recent compliance data from within a given well. This statistical method removes the element of variation across wells and eliminates the chance of mistaking natural spatial variation for a release from the facility. Prior to performing intrawell prediction limits, several steps are required to reasonably demonstrate downgradient water quality does not have existing impacts from the practices of the facility.

Exploratory data analysis was used as a general comparison of concentrations in downgradient wells for all Appendix A parameters recommended for intrawell analyses to concentrations reported in upgradient wells. Upper tolerance limits are used in conjunction with confidence intervals to determine whether the estimated averages in downgradient wells are higher than observed levels upgradient of the facility. The upper tolerance limits were constructed to represent the extreme upper range of possible background levels at the site.

In cases where downgradient average concentrations are higher than observed concentrations upgradient for a given constituent, an independent study and hydrogeological investigation are required to identify local geochemical conditions and expected groundwater quality for the region to justify an intrawell approach. Such an assessment is beyond the scope of services provided by Groundwater Stats Consulting. However, further discussion is included below regarding the use of intrawell prediction limits.

Parametric tolerance limits were constructed with a target of 99% confidence and 95% coverage using pooled upgradient well data for each of the Appendix A parameters (Figure F). The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. As more data are collected, the background population is better represented and the confidence and coverage levels increase.

Confidence intervals were constructed on downgradient wells for each of the Appendix A parameters, using the tolerance limits discussed above, to determine intrawell eligibility (Figure G). When the entire confidence interval is above a background standard for a given parameter, interwell methods are initially recommended as the statistical method.

Therefore, only parameters with confidence intervals which did not exceed background standards are eligible for intrawell prediction limits.

Confidence intervals for the above parameters were found to be within their respective background limits for all parameters except for boron. However, previous correspondence between Oklahoma Department of Environmental Quality and AEP demonstrates that due to natural variation in groundwater as well as changes in direction of groundwater flow, the background wells are not representative of upgradient groundwater quality in which case interwell statistical limits are not recommended. Therefore, all Appendix A parameters are evaluated using intrawell methods.

All available data through November 2017 at each of the existing wells and through January 2019 through the new wells were used to establish intrawell background limits based on a 1-of-2 resample plan that will be used for future comparisons of compliance measurements during each subsequent semi-annual sampling event (Figure H).

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping an ash pond, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits will be necessary to accommodate these types of changes. In the intrawell case, data for all wells and constituents are re-evaluated when a minimum of 4 new data points are available to determine whether earlier concentrations are representative of present-day groundwater quality. In some cases, the earlier portion of data are deselected prior to construction of limits in order to provide sensitive limits that will rapidly detect changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of up to two additional samples to determine whether the initial exceedance is confirmed. If either of the resamples fall within the statistical limit, the initial exceedance is considered to be a false positive result and, therefore, no further action is necessary. A summary table of the background prediction limits follows this letter.

<u>Appendix IV – Assessment Monitoring Program</u>

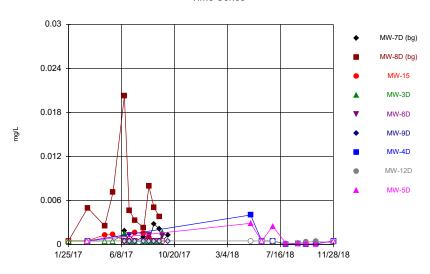
During an Assessment Monitoring program confidence intervals are constructed at all wells for detected Appendix IV parameters. A minimum of 4 samples is required to construct confidence intervals; however, 8 samples are generally recommended for better representation of the true average population. Established Maximum Contaminant Levels (MCLs) are used as the GWPS comparisons or Regional Screening Levels (RSLs) for

parameters without MCLs, unless background limits are higher as discussed below. Parametric confidence intervals are constructed with 99% confidence when data follow a normal or transformed-normal distribution. For all other cases, nonparametric confidence intervals are constructed, with the confidence level based on the number of samples available. The GWPS is exceeded only when the entire confidence interval exceeds its respective GWPS.

Background limits are established for the Appendix IV parameters using upper tolerance limits constructed with 95% confidence/95% coverage using pooled upgradient well data, for comparison against established MCLs or RSLs (for lead, cobalt, lithium and molybdenum). When background limits, or Alternate Contaminant Levels (ACLs), are higher than established MCLs or RSLs, the CCR Rule recommends using these ACLs as the GWPS for the confidence interval comparisons. Since the scope of this project included screening and development of background limits for Appendix A Detection Monitoring statistics, comparison of the Appendix IV parameters with confidence intervals was not included in this report.

Recommendations

In summary, as a result of the background screening described in this letter, intrawell prediction limits combined with a 1-of-2 resample plan are recommended for all Appendix A parameters. The statistical analyses will be constructed according to the USEPA Unified Guidance, based on 7 Appendix A parameters and 7 downgradient wells.

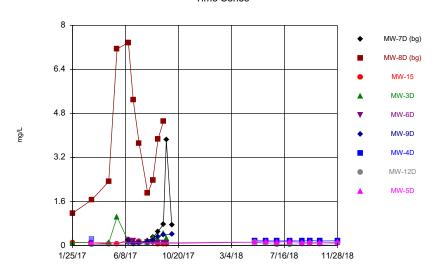

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Northeastern Landfill. If you have any questions or comments, please feel free to contact me.

For Groundwater Stats Consulting,

stima Rayner

Kristina L. Rayner

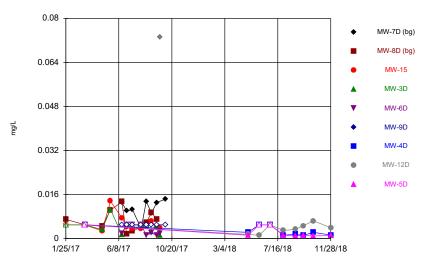
Groundwater Statistician



Constituent: Antimony Analysis Run 3/21/2019 9:27 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

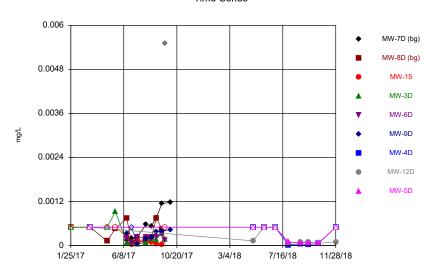
Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG


Time Series

Constituent: Barium Analysis Run 3/21/2019 9:27 AM View: Time Series

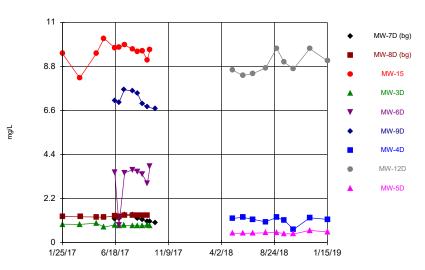
Northeastern LF Client: Geosyntec Data: Northeastern LF

Time Series



Constituent: Arsenic Analysis Run 3/21/2019 9:27 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

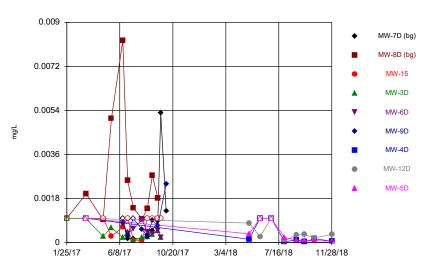

Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

Constituent: Beryllium Analysis Run 3/21/2019 9:27 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Boron Analysis Run 3/21/2019 9:27 AM View: Time Series


Northeastern LF Client: Geosyntec Data: Northeastern LF

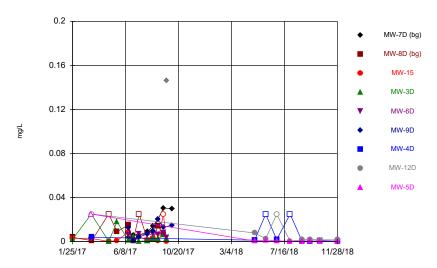
Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

Time Series 1000 MW-7D (bg) MW-8D (bg) 800 MW-15 MW-3D 600 MW-6D MW-9D MW-4D 400 MW-12D MW-5D 200 1/25/17 6/18/17 11/9/17 4/2/18 8/24/18 1/15/19

Constituent: Calcium Analysis Run 3/21/2019 9:27 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF

Time Series

Constituent: Cadmium Analysis Run 3/21/2019 9:27 AM View: Time Series


Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

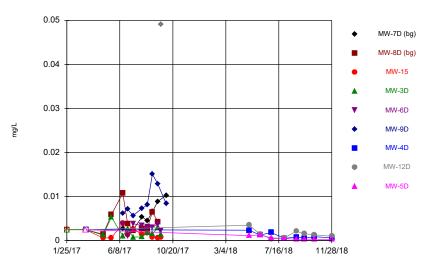
Time Series 20000 MW-7D (bg) MW-8D (bg) 16000 MW-15 MW-3D 12000 MW-6D mg/L MW-9D MW-4D 8000 MW-12D MW-5D 4000 1/25/17 6/18/17 11/9/17 4/2/18 8/24/18 1/15/19

Constituent: Chloride Analysis Run 3/21/2019 9:27 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Chromium Analysis Run 3/21/2019 9:27 AM View: Time Series

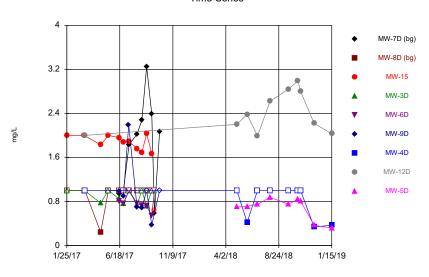
Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

Time Series 20 MW-7D (bg) MW-8D (bg) 16 MW-15 MW-3D MW-6D MW-9D MW-4D MW-12D MW-5D 1/25/17 6/8/17 10/20/17 3/4/18 7/16/18 11/28/18

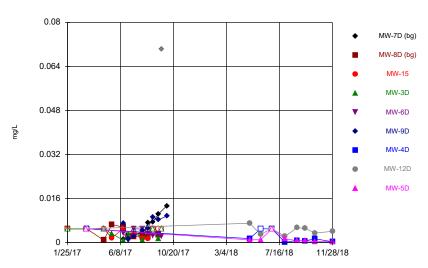
Constituent: Combined Radium 226 + 228 Analysis Run 3/21/2019 9:27 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF


Time Series

Constituent: Cobalt Analysis Run 3/21/2019 9:27 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF

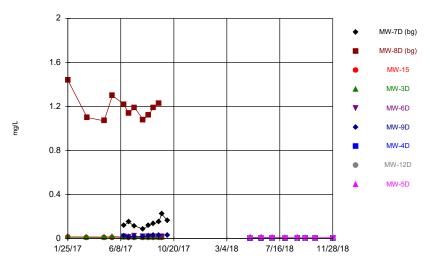
Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Time Series

Constituent: Fluoride Analysis Run 3/21/2019 9:27 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Lead Analysis Run 3/21/2019 9:27 AM View: Time Series


Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series 0.00006 MW-7D (bg) MW-8D (bg) 0.000048 MW-15 MW-3D 0.000036 MW-6D MW-9D MW-4D 0.000024 MW-12D MW-5D 0.000012 1/25/17 6/8/17 10/20/17 3/4/18 7/16/18 11/28/18

Constituent: Mercury Analysis Run 3/21/2019 9:27 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF

Time Series

Constituent: Lithium Analysis Run 3/21/2019 9:27 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

Time Series

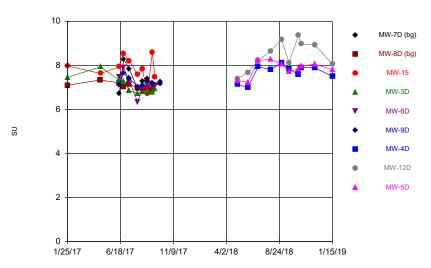
Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

1/25/17

6/8/17

0.9 0.72 0.72 0.72 0.54 0.54 0.54 0.36 0.36 0.36 0.36 0.36 0.38

Constituent: Molybdenum Analysis Run 3/21/2019 9:27 AM View: Time Series


Northeastern LF Client: Geosyntec Data: Northeastern LF

3/4/18

7/16/18

11/28/18

10/20/17

Constituent: pH, field Analysis Run 3/21/2019 9:27 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

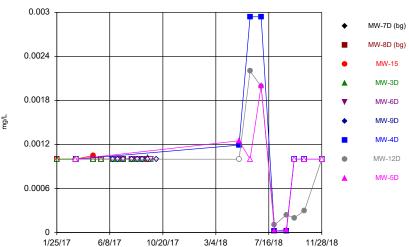
Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

Time Series 2000 MW-7D (bg) MW-8D (bg) 1600 MW-15 MW-3D 1200 MW-6D MW-9D MW-4D 800 MW-12D MW-5D 400 1/25/17 6/18/17 11/9/17 4/2/18 8/24/18 1/15/19

Constituent: Sulfate Analysis Run 3/21/2019 9:27 AM View: Time Series

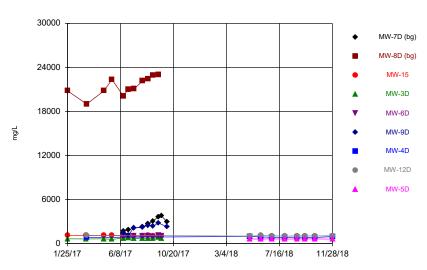
Northeastern LF Client: Geosyntec Data: Northeastern LF

Time Series



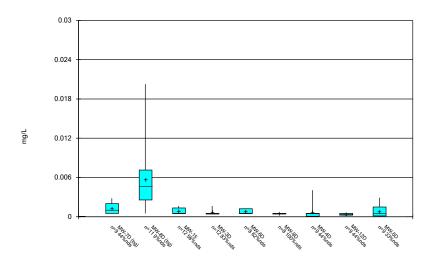
Constituent: Selenium Analysis Run 3/21/2019 9:27 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

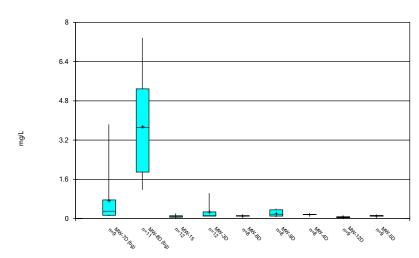
Constituent: Thallium Analysis Run 3/21/2019 9:27 AM View: Time Series


Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Total Dissolved Solids [TDS] Analysis Run 3/21/2019 9:27 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

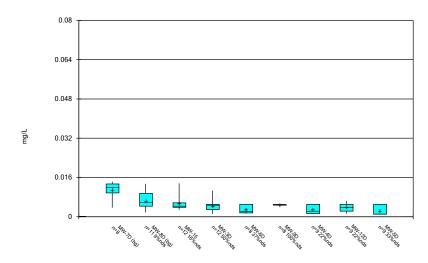
Box & Whiskers Plot



Constituent: Antimony Analysis Run 3/21/2019 9:29 AM View: Time Series

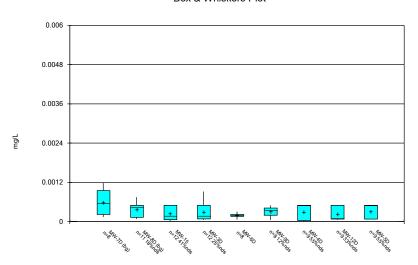
Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG


Box & Whiskers Plot

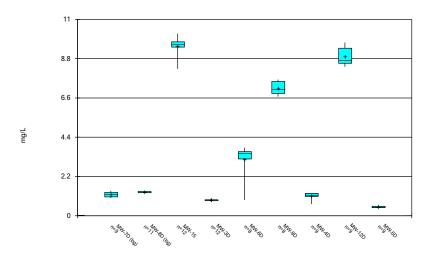
Constituent: Barium Analysis Run 3/21/2019 9:29 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF


Box & Whiskers Plot

Constituent: Arsenic Analysis Run 3/21/2019 9:29 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF

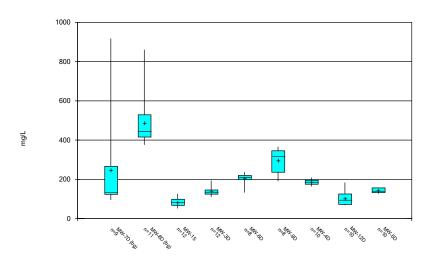
Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Beryllium Analysis Run 3/21/2019 9:29 AM View: Time Series

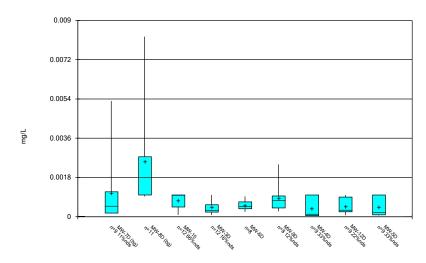
Northeastern LF Client: Geosyntec Data: Northeastern LF

Box & Whiskers Plot



Constituent: Boron Analysis Run 3/21/2019 9:29 AM View: Time Series

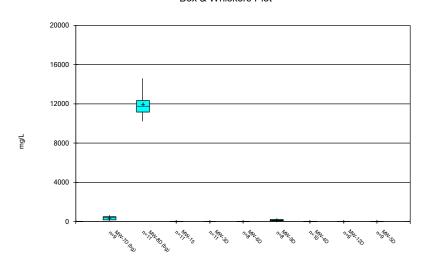
Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

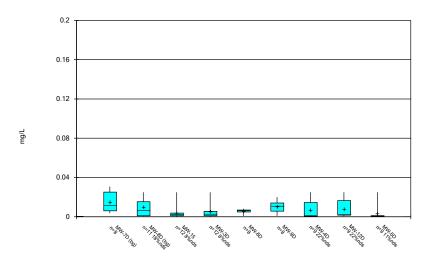
Constituent: Calcium Analysis Run 3/21/2019 9:29 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF

Box & Whiskers Plot



Constituent: Cadmium Analysis Run 3/21/2019 9:29 AM View: Time Series

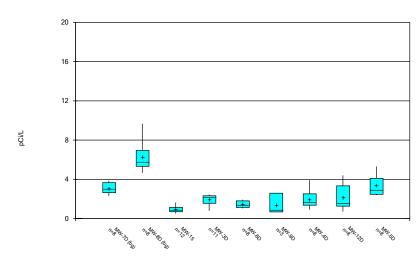
Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Chloride Analysis Run 3/21/2019 9:29 AM View: Time Series

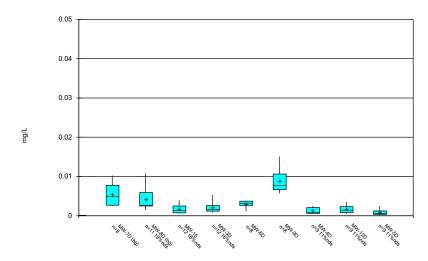
Northeastern LF Client: Geosyntec Data: Northeastern LF



Constituent: Chromium Analysis Run 3/21/2019 9:29 AM View: Time Series

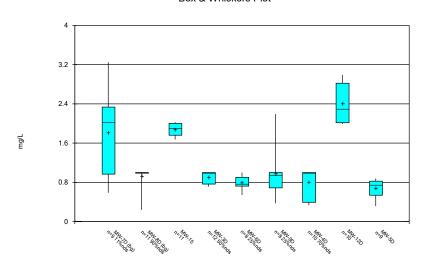
Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

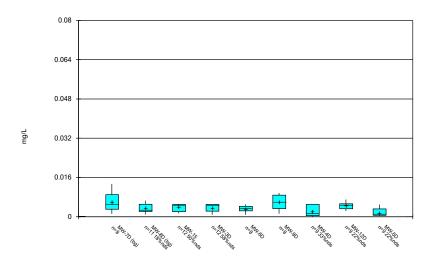

Box & Whiskers Plot

Constituent: Combined Radium 226 + 228 Analysis Run 3/21/2019 9:29 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF


Box & Whiskers Plot

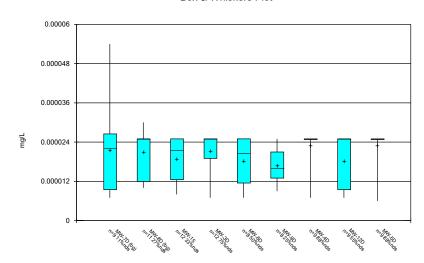
Constituent: Cobalt Analysis Run 3/21/2019 9:29 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Fluoride Analysis Run 3/21/2019 9:29 AM View: Time Series

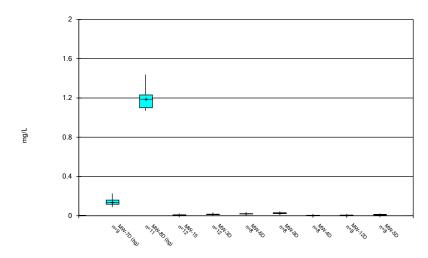
Northeastern LF Client: Geosyntec Data: Northeastern LF



Constituent: Lead Analysis Run 3/21/2019 9:30 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

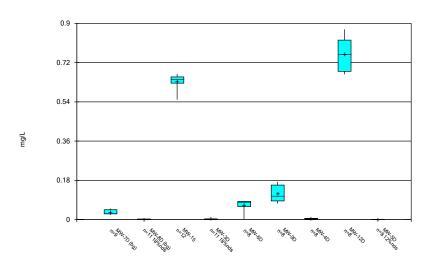
Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Mercury Analysis Run 3/21/2019 9:30 AM View: Time Series

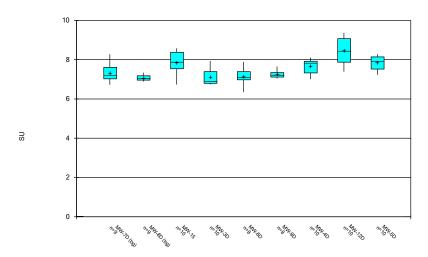
Northeastern LF Client: Geosyntec Data: Northeastern LF

Box & Whiskers Plot



Constituent: Lithium Analysis Run 3/21/2019 9:30 AM View: Time Series

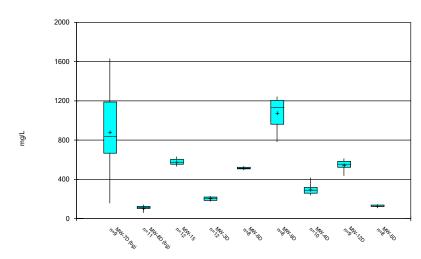
Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Molybdenum Analysis Run 3/21/2019 9:30 AM View: Time Series

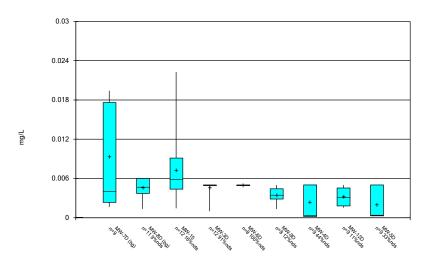
Northeastern LF Client: Geosyntec Data: Northeastern LF



Constituent: pH, field Analysis Run 3/21/2019 9:30 AM View: Time Series

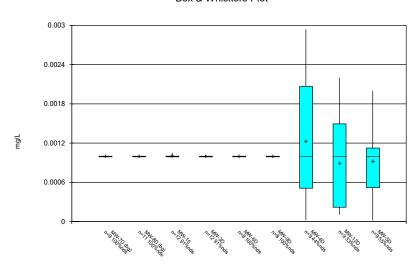
Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

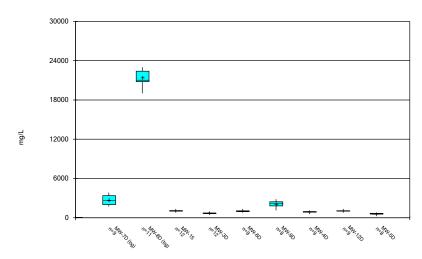

Box & Whiskers Plot

Constituent: Sulfate Analysis Run 3/21/2019 9:30 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF


Box & Whiskers Plot

Constituent: Selenium Analysis Run 3/21/2019 9:30 AM View: Time Series


Northeastern LF Client: Geosyntec Data: Northeastern LF

Box & Whiskers Plot

Constituent: Thallium Analysis Run 3/21/2019 9:30 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Total Dissolved Solids [TDS] Analysis Run 3/21/2019 9:30 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF

Outlier Summary

Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 7/16/2019, 10:59 AM

3/15/2017 5/18/2017 6/28/2017		0.225 (o)					-	101.	MA	Mina .
										_{id} Radium 226 + 228 (pCi/L) _{MW-} 15 Fluoride (mg/L)
6/28/2017				111 (o)						
7/12/2017									14.283 (o)	
8/17/2017					23 (o)					
9/20/2017 0	0.07314 (o)		0.0055 (o)				0.146 (o)	0.04905 (o)		0.642 (o)
5/30/2018						91 (o)				
7/31/2018										

MW-7D Lead (mg/L)
MW-3D Molybdenum (mg/L)
MW-5D Sulfate (mg/L)
MW-5D Sulfate (mg/L)

3/15/2017

5/18/2017 6/28/2017 0.07928 (o)

7/12/2017 8/17/2017

5/30/2018

9/20/2017 0.07031 (o)

7/31/2018 662 (o) 662 (o)

Outlier Analysis - Significant Results

Constituent	Well	<u>Outlier</u>	<u>Value(s)</u>	Method	<u>N</u>	<u>Mean</u>	Std. Dev.	Distribution	nNormality Test
Arsenic (mg/L)	MW-7D (bg)	Yes	0.07314	NP	9	0.01788	0.02098	In(x)	ShapiroWilk
Barium (mg/L)	MW-4D	Yes	0.225	NP	9	0.1762	0.01877	ln(x)	ShapiroWilk
Chloride (mg/L)	MW-15	Yes	111	NP	12	32.25	30.12	ln(x)	ShapiroWilk
Chloride (mg/L)	MW-3D	Yes	23	NP	12	13.58	3.288	ln(x)	ShapiroWilk
Chloride (mg/L)	MW-12D	Yes	91	NP	10	25.5	23.15	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-3D	Yes	14.28	NP	12	2.982	3.592	In(x)	ShapiroWilk
Molybdenum (mg/L)	MW-3D	Yes	0.07928	NP	12	0.009283	0.02205	In(x)	ShapiroWilk
Sulfate (mg/L)	MW-5D	Yes	662	NP	9	189.4	177.5	ln(x)	ShapiroWilk

Constituent	Well	Outlier	Value(s)	Method	N	Mean	Std. Dev.	Distributio	onNormality Test
Antimony (mg/L)	MW-7D (bg)	No	n/a	NP	9	0.003241	0.001742	ln(x)	ShapiroWilk
Antimony (mg/L)	MW-8D (bg)	No	n/a	NP	11	0.006095	0.005012	ln(x)	ShapiroWilk
Antimony (mg/L)	MW-15	No	n/a	NP	12	0.003489	0.001873	ln(x)	ShapiroWilk
Antimony (mg/L)	MW-3D	n/a	n/a	NP	12	0.004422	0.001349	unknown	ShapiroWilk
Antimony (mg/L)	MW-6D	No	n/a	NP	8	0.00359	0.001946	ln(x)	ShapiroWilk
Antimony (mg/L)	MW-9D	n/a	n/a	NP	8	0.005	0	unknown	ShapiroWilk
Antimony (mg/L)	MW-4D	No	n/a	NP	9	0.00221	0.002443	ln(x)	ShapiroWilk
Antimony (mg/L)	MW-12D	No	n/a	NP	9	0.002378	0.002489	ln(x)	ShapiroWilk
Antimony (mg/L)	MW-5D	No	n/a	NP	9	0.001819	0.002099	ln(x)	ShapiroWilk
Arsenic (mg/L)	MW-7D (bg)	Yes	0.07314	NP	9	0.01788	0.02098	ln(x)	ShapiroWilk
Arsenic (mg/L)	MW-8D (bg)	No	n/a	NP	11	0.006484	0.003466	x^(1/3)	ShapiroWilk
Arsenic (mg/L)	MW-15	No	n/a	NP	12	0.005394	0.002875	ln(x)	ShapiroWilk
Arsenic (mg/L)	MW-3D	No	n/a	NP	12	0.004473	0.002424	x^(1/3)	ShapiroWilk
Arsenic (mg/L)	MW-6D	No	n/a	NP	8	0.002919	0.001756	ln(x)	ShapiroWilk
Arsenic (mg/L)	MW-9D	n/a	n/a	NP	8	0.005	0	unknown	ShapiroWilk
Arsenic (mg/L)	MW-4D	No	n/a	NP	9	0.002771	0.00172	ln(x)	ShapiroWilk
Arsenic (mg/L)	MW-12D	No	n/a	NP	9	0.003812	0.0017	normal	ShapiroWilk
Arsenic (mg/L)	MW-5D	No	n/a	NP	9	0.002423	0.001935	ln(x)	ShapiroWilk
Barium (mg/L)	MW-7D (bg)	No	n/a	NP	9	0.7454	1.19	ln(x)	ShapiroWilk
Barium (mg/L)	MW-8D (bg)	No	n/a	NP		3.756	2.143	ln(x)	ShapiroWilk
Barium (mg/L)	MW-15	No	n/a	NP	12	0.09759	0.0489	ln(x)	ShapiroWilk
Barium (mg/L)	MW-3D	No	n/a	NP	12	0.2538	0.2682	ln(x)	ShapiroWilk
Barium (mg/L)	MW-6D	No	n/a	NP	8	0.1131	0.02738	ln(x)	ShapiroWilk
Barium (mg/L)	MW-9D	No	n/a	NP	8	0.222	0.1398	x^(1/3)	ShapiroWilk
Barium (mg/L)	MW-4D	Yes	0.225	NP	9	0.1762	0.01877	In(x)	ShapiroWilk
Barium (mg/L)	MW-12D	No	n/a	NP	9	0.06426	0.02825	ln(x)	ShapiroWilk
Barium (mg/L)	MW-5D	No	n/a	NP	9	0.1199	0.01516	ln(x)	ShapiroWilk
Beryllium (mg/L)	MW-7D (bg)	No	n/a	NP	9	0.00114	0.001679	ln(x)	ShapiroWilk
Beryllium (mg/L)	MW-8D (bg)	No	n/a	NP	11	0.0004655	0.0003544	ln(x)	ShapiroWilk
Beryllium (mg/L)	MW-15	No	n/a	NP	12	0.0004692	0.0004722	ln(x)	ShapiroWilk
Beryllium (mg/L)	MW-3D	No	n/a	NP	12	0.0004217	0.00042	ln(x)	ShapiroWilk
Beryllium (mg/L)	MW-6D	No	n/a	NP	8	0.0001925	0.00007226		ShapiroWilk
Beryllium (mg/L)	MW-9D	No	n/a	NP	8	0.00037	0.0002851	x^(1/3)	ShapiroWilk
Beryllium (mg/L)	MW-4D	No	n/a	NP	9	0.0005154	0.0004829	ln(x)	ShapiroWilk
Beryllium (mg/L)	MW-12D	No	n/a	NP	9	0.0003933	0.0004556	ln(x)	ShapiroWilk
Beryllium (mg/L)	MW-5D	No	n/a	NP	9	0.0005366	0.0004592	ln(x)	ShapiroWilk
Boron (mg/L)	MW-7D (bg)	No	n/a	NP	9	1.183	0.1416	ln(x)	ShapiroWilk
Boron (mg/L)	MW-8D (bg)	No	n/a	NP		1.324	0.03585	x^3	ShapiroWilk
Boron (mg/L)	MW-15	No	n/a	NP		9.52	0.482	x^6	ShapiroWilk
Boron (mg/L)	MW-3D	No	n/a	NP		0.8698	0.04713	ln(x)	ShapiroWilk
Boron (mg/L)	MW-6D	No	n/a	NP	8	3.156	0.9525	x^6	ShapiroWilk
Boron (mg/L)	MW-9D	No	n/a	NP	8	7.146	0.3683	ln(x)	ShapiroWilk
Boron (mg/L)	MW-4D	No	n/a	NP	9	1.125	0.1902	x^6	ShapiroWilk
Boron (mg/L)	MW-12D	No	n/a	NP	9	8.926	0.4975	ln(x)	ShapiroWilk
Boron (mg/L)	MW-5D	No	n/a	NP	9	0.4964	0.05414	ln(x)	ShapiroWilk
Cadmium (mg/L)	MW-7D (bg)	No	n/a	NP	9	0.001086	0.001634	ln(x)	ShapiroWilk
Cadmium (mg/L)	MW-8D (bg)	No	n/a	NP		0.002558	0.002236	ln(x)	ShapiroWilk
Cadmium (mg/L)	MW-15	No	n/a	NP		0.0007567	0.0003841	normal	ShapiroWilk
Cadmium (mg/L)	MW-3D	No	n/a	NP		0.000425	0.0003052	ln(x)	ShapiroWilk
Cadmium (mg/L)	MW-6D	No	n/a	NP	8	0.0005213	0.0002371	ln(x)	ShapiroWilk
Cadmium (mg/L)	MW-9D	No	n/a	NP	8	0.0008563	0.0006827	ln(x)	ShapiroWilk
Cadmium (mg/L)	MW-4D	No	n/a	NP	9	0.0003933	0.000457	ln(x)	ShapiroWilk
Cadmium (mg/L)	MW-12D	No	n/a	NP	9	0.0004767	0.0003564	ln(x)	ShapiroWilk
Cadmium (mg/L)	MW-5D	No	n/a	NP	9	0.0004333	0.0004347	ln(x)	ShapiroWilk
Calcium (mg/L)	MW-7D (bg)	No	n/a	NP		248.5	259.2	ln(x)	ShapiroWilk
((-8)			•	-			()	

Constituent	Well	Outlier	Value(s)	Method	N	<u>Mean</u>	Std. Dev.	Distribution	onNormality Test
Calcium (mg/L)	MW-8D (bg)	No	n/a	NP		487	139	ln(x)	ShapiroWilk
Calcium (mg/L)	MW-15	No	n/a	NP		84.28	21.28	ln(x)	ShapiroWilk
Calcium (mg/L)	MW-3D	No	n/a	NP		138.7	23.13	ln(x)	ShapiroWilk
Calcium (mg/L)	MW-6D	No	n/a	NP	8	203.5	31.18	x^6	ShapiroWilk
Calcium (mg/L)	MW-9D	No	n/a	NP	8	294.1	64.61	x^4	ShapiroWilk
Calcium (mg/L)	MW-4D	No	n/a	NP	10		12.99	normal	ShapiroWilk
Calcium (mg/L)	MW-12D	No	n/a	NP	10		36.57	ln(x)	ShapiroWilk
Calcium (mg/L)	MW-5D	No	n/a	NP	10		11.06	ln(x)	ShapiroWilk
Chloride (mg/L)	MW-7D (bg)	No	n/a	NP	9	355.4	192.9	normal	ShapiroWilk
Chloride (mg/L)	MW-8D (bg)	No	n/a	NP		11986	1166	ln(x)	ShapiroWilk
Chloride (mg/L)	MW-15	Yes	111	NP		32.25	30.12	ln(x)	ShapiroWilk
Chloride (mg/L)	MW-3D	Yes	23	NP		13.58	3.288	ln(x)	ShapiroWilk
Chloride (mg/L)	MW-6D	No	n/a	NP	8	30.25	1.389	sqrt(x)	ShapiroWilk
Chloride (mg/L)	MW-9D	No	n/a	NP	8	155.4	86.93	sqrt(x)	ShapiroWilk
Chloride (mg/L)	MW-4D	No	n/a	NP		27.83	6.996	ln(x)	ShapiroWilk
Chloride (mg/L)	MW-12D	Yes	91	NP		25.5	23.15	ln(x)	ShapiroWilk
Chloride (mg/L)	MW-5D	No	n/a	NP	9	27.06	2.981	ln(x)	ShapiroWilk
Chromium (mg/L)	MW-7D (bg)	No	n/a	NP	9	0.02955	0.04483	ln(x)	ShapiroWilk
Chromium (mg/L)	MW-8D (bg)	No	n/a	NP		0.004962	0.005615	ln(x)	ShapiroWilk
Chromium (mg/L)	MW-15	No	n/a	NP		0.004902	0.003013	x^(1/3)	ShapiroWilk
Chromium (mg/L)	MW-3D	No	n/a	NP		0.002552	0.002332	ln(x)	ShapiroWilk
Chromium (mg/L)	MW-6D	No	n/a	NP	8	0.005550	0.002302	x^3	ShapiroWilk
Chromium (mg/L)	MW-9D	No	n/a	NP	8	0.01027	0.002302	normal	ShapiroWilk
Chromium (mg/L)	MW-4D	No	n/a	NP	9	0.003866	0.008012	ln(x)	ShapiroWilk
Chromium (mg/L)	MW-12D	No	n/a	NP	9	0.003000	0.00232	ln(x)	ShapiroWilk
Chromium (mg/L)	MW-5D	No	n/a	NP	9	0.002133	0.00232	ln(x)	ShapiroWilk
Cobalt (mg/L)	MW-7D (bg)	No	n/a	NP	9	0.01029	0.0148	ln(x)	ShapiroWilk
Cobalt (mg/L)	MW-8D (bg)	No	n/a	NP		0.004142	0.002704	ln(x)	ShapiroWilk
Cobalt (mg/L)	MW-15	No	n/a	NP		0.004142	0.002704	ln(x)	ShapiroWilk
Cobalt (mg/L)	MW-3D	No	n/a	NP		0.001021	0.001060	ln(x)	ShapiroWilk
Cobalt (mg/L)	MW-6D	No	n/a	NP	8	0.003014	0.0009294	x^4	ShapiroWilk
Cobalt (mg/L)	MW-9D	No	n/a	NP	8	0.003014	0.0009294	ln(x)	ShapiroWilk
Cobalt (mg/L)	MW-4D	No	n/a	NP	9	0.001265	0.0003339	ln(x)	ShapiroWilk
Cobalt (mg/L)	MW-12D	No	n/a	NP	9	0.001203	0.000775	x^(1/3)	ShapiroWilk
Cobalt (mg/L)	MW-5D	No	n/a	NP	9	0.001024	0.0003732	In(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-7D (bg)	No	n/a	NP	8	3.108	0.5949	normal	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-8D (bg)	No	n/a	NP	8	6.303	1.601		ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-15	No	n/a	NP		0.9451	0.3271	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-3D	Yes	14.28	NP		2.982	3.592	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-6D	No	n/a	NP	8	1.457	0.3437	In(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-4D	No	n/a	NP	8	1.985	1.003	ln(x) ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-12D	No	n/a	NP	8	2.185	1.329	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-5D	No	n/a	NP	8	3.335	1.201	ln(x)	ShapiroWilk
Fluoride (mg/L)	MW-7D (bg)	No	n/a	NP	9	1.818	0.8399	normal	ShapiroWilk
Fluoride (mg/L)	MW-8D (bg)	n/a	n/a	NP		0.9309	0.2291	unknown	•
Fluoride (mg/L)	MW-15	No	n/a	NP		1.779	0.3789	x^6	ShapiroWilk
Fluoride (mg/L)	MW-3D	No	n/a	NP		0.9024	0.1244	ln(x)	ShapiroWilk
Fluoride (mg/L)	MW-6D	No	n/a	NP		0.7895	0.1244	x^(1/3)	ShapiroWilk
Fluoride (mg/L)	MW-9D	No	n/a	NP		0.7695	0.5368	ln(x)	ShapiroWilk
Fluoride (mg/L)	MW-4D	No	n/a	NP		0.9776	0.3025	ln(x)	ShapiroWilk
Fluoride (mg/L)	MW-12D	No	n/a	NP		2.407	0.3025	ln(x)	ShapiroWilk
Fluoride (mg/L)	MW-5D	No	n/a	NP		0.6811	0.2004	x^5	ShapiroWilk
Lead (mg/L)	MW-7D (bg)	No	n/a	NP	9		0.2004	ln(x)	ShapiroWilk
Lead (mg/L) Lead (mg/L)	MW-8D (bg)	No	n/a	NP		0.01325	0.02176	sqrt(x)	ShapiroWilk
Lead (mg/L)	MW-15	No	n/a	NP		0.003663	0.001625	ln(x)	ShapiroWilk
Loau (IIIg/L)	14144 - 19	INO	II/a	INF	12	. 0.003/33	0.001035	111(X)	SHAPII OVVIIK

Constituent	<u>Well</u>	Outlier	Value(s)	Method	N	<u>Mean</u>	Std. Dev.	Distributio	onNormality Test
Lead (mg/L)	MW-3D	No	n/a	NP		0.003701	0.001753	normal	ShapiroWilk
Lead (mg/L)	MW-6D	No	n/a	NP	8	0.003195	0.001395	normal	ShapiroWilk
Lead (mg/L)	MW-9D	No	n/a	NP	8	0.005931	0.00316	normal	ShapiroWilk
Lead (mg/L)	MW-4D	No	n/a	NP	9	0.00219	0.002153	ln(x)	ShapiroWilk
Lead (mg/L)	MW-12D	No	n/a	NP	9	0.004514	0.001425	normal	ShapiroWilk
Lead (mg/L)	MW-5D	No	n/a	NP	9	0.001748	0.001420	ln(x)	ShapiroWilk
Lithium (mg/L)	MW-7D (bg)	No	n/a	NP	9	0.1411	0.03981	ln(x)	ShapiroWilk
		No	n/a	NP		1.189	0.1091		ShapiroWilk
Lithium (mg/L)	MW-8D (bg)			NP		0.008383		ln(x)	•
Lithium (mg/L)	MW-15	No	n/a ,				0.001941	ln(x)	ShapiroWilk
Lithium (mg/L)	MW-3D	No	n/a	NP		0.01577	0.001757	ln(x)	ShapiroWilk
Lithium (mg/L)	MW-6D	No	n/a	NP	8	0.01911	0.00291	x^3	ShapiroWilk
Lithium (mg/L)	MW-9D	No	n/a	NP	8	0.02532	0.005668	sqrt(x)	ShapiroWilk
Lithium (mg/L)	MW-4D	No	n/a	NP	8	0.00371	0.0009187	ln(x)	ShapiroWilk
Lithium (mg/L)	MW-12D	No	n/a	NP	8	0.005234	0.001653	ln(x)	ShapiroWilk
Lithium (mg/L)	MW-5D	No	n/a	NP	8	0.01141	0.0009013	x^6	ShapiroWilk
Mercury (mg/L)	MW-7D (bg)	No	n/a	NP	9	0.00002167	0.00001428		ShapiroWilk
Mercury (mg/L)	MW-8D (bg)	n/a	n/a	NP	11	0.00002091	0.000007273	3 unknown	ShapiroWilk
Mercury (mg/L)	MW-15	n/a	n/a	NP	12	0.00001892	0.00000664	unknown	ShapiroWilk
Mercury (mg/L)	MW-3D	No	n/a	NP	12	0.00002125	0.000006904	1 ln(x)	ShapiroWilk
Mercury (mg/L)	MW-6D	No	n/a	NP	8	0.00001825	0.00000761	1 ln(x)	ShapiroWilk
Mercury (mg/L)	MW-9D	No	n/a	NP	8	0.00001675	0.000005776	6 ln(x)	ShapiroWilk
Mercury (mg/L)	MW-4D	n/a	n/a	NP	9	0.000023	0.000006	unknown	ShapiroWilk
Mercury (mg/L)	MW-12D	No	n/a	NP	9	0.00001822	0.000008273	3 ln(x)	ShapiroWilk
Mercury (mg/L)	MW-5D	n/a	n/a	NP	9	0.00002289	0.000006333	3 unknown	ShapiroWilk
Molybdenum (mg/L)	MW-7D (bg)	No	n/a	NP	9	0.03396	0.01079	ln(x)	ShapiroWilk
Molybdenum (mg/L)	MW-8D (bg)	No	n/a	NP	11	0.002343	0.001018	x^(1/3)	ShapiroWilk
Molybdenum (mg/L)	MW-15	No	n/a	NP	12	0.6351	0.03228	x^6	ShapiroWilk
Molybdenum (mg/L)	MW-3D	Yes	0.07928	NP	12	0.009283	0.02205	In(x)	ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L)	MW-3D MW-6D	Yes No	0.07928 n/a	NP NP	12 8	0.009283 0.06722	0.02205 0.02812	In(x) x^6	ShapiroWilk ShapiroWilk
									-
Molybdenum (mg/L)	MW-6D	No	n/a	NP	8	0.06722	0.02812	x^6	ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L)	MW-6D MW-9D	No No	n/a n/a	NP NP	8	0.06722 0.1189	0.02812 0.03949	x^6 In(x)	ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L)	MW-6D MW-9D MW-4D	No No No	n/a n/a n/a	NP NP NP	8 8 8	0.06722 0.1189 0.005206	0.02812 0.03949 0.001419	x^6 ln(x) ln(x)	ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L)	MW-6D MW-9D MW-4D MW-12D	No No No	n/a n/a n/a n/a	NP NP NP	8 8 8	0.06722 0.1189 0.005206 0.7578	0.02812 0.03949 0.001419 0.0783	x^6 ln(x) ln(x) x^2	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L)	MW-6D MW-9D MW-4D MW-12D MW-5D	No No No No	n/a n/a n/a n/a n/a	NP NP NP NP	8 8 8 8	0.06722 0.1189 0.005206 0.7578 0.001305	0.02812 0.03949 0.001419 0.0783 0.0006926	x^6 In(x) In(x) x^2 normal	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg)	No No No No No	n/a n/a n/a n/a n/a	NP NP NP NP NP	8 8 8 8 9	0.06722 0.1189 0.005206 0.7578 0.001305 7.324	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731	x^6 In(x) In(x) x^2 normal In(x)	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) pH, field (SU)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg)	No No No No No No	n/a n/a n/a n/a n/a n/a	NP NP NP NP NP NP	8 8 8 8 9 9	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434	x^6 ln(x) ln(x) x^2 normal ln(x) ln(x)	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) pH, field (SU) pH, field (SU)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg) MW-15	No	n/a	NP NP NP NP NP NP NP	8 8 8 8 9 9 10	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446	x^6 ln(x) ln(x) x^2 normal ln(x) ln(x)	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) pH, field (SU) pH, field (SU) pH, field (SU)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-3D	No	n/a	NP NP NP NP NP NP NP NP	8 8 8 8 8 9 9 10 10 8	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915	x^6	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-3D MW-6D	No N	n/a	NP NP NP NP NP NP NP NP NP	8 8 8 8 9 9 10 10 8 8	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915	x^6	ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-9D	No N	n/a	NP	8 8 8 8 9 9 10 10 8 8	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475	x^6 ln(x) ln(x) x^2 normal ln(x) ln(x) x^4 ln(x) x^2 ln(x)	ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-9D MW-4D	No N	n/a	NP	8 8 8 8 9 10 10 8 8 10	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972	x^6	ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-9D MW-4D MW-12D MW-5D	No N	n/a	NP	8 8 8 8 8 9 10 10 8 8 10 10	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611	x^6 ln(x)	ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg)	No N	n/a	NP N	8 8 8 8 9 10 10 8 8 10 10 9	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525	x^6 ln(x) x^2 normal ln(x) ln(x) x^4 ln(x) x^2 ln(x) x^6 x^2 x^6 ln(x)	ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-9D MW-4D MW-4D MW-12D MW-5D MW-7D (bg) MW-7D (bg)	No N	n/a	NP N	8 8 8 8 9 10 10 8 8 10 10 10 9	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326 0.004629	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525 0.008021 0.001428	x^6 ln(x) ln(x) x^2 normal ln(x) ln(x) x^4 ln(x) x^2 ln(x) x^6 x^2 x^6 ln(x) x^6	ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) Selenium (mg/L) Selenium (mg/L)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-9D MW-4D MW-12D MW-5D MW-5D MW-7D (bg) MW-8D (bg) MW-8D (bg) MW-8D (bg)	No N	n/a	NP N	8 8 8 8 9 10 10 8 8 10 10 10 9 11 12	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326 0.004629 0.007312	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525 0.008021	x^6 In(x) In(x) x^2 normal In(x) In(x) x^4 In(x) x^2 In(x) x^6 x^2 x^6 In(x) x^2 In(x)	ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-5D MW-7D (bg) MW-8D (bg) MW-8D (bg) MW-3D	No N	n/a	NP N	8 8 8 8 9 10 10 8 8 10 10 9 11 12	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326 0.004629 0.007312 0.004667	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525 0.008021 0.001428 0.005647 0.001155	x^6 ln(x) x^2 normal ln(x) x^4 ln(x) x^2 ln(x) x^6 x^2 x^6 ln(x) x^2 unknown	ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-7D (bg) MW-7D (bg) MW-8D (bg) MW-3D MW-3D MW-3D MW-6D	No N	n/a	NP N	8 8 8 8 8 9 10 10 8 8 10 10 10 9 11 12 12 8	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326 0.004629 0.004667 0.005	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525 0.008021 0.001428 0.005647 0.001155	x^6 ln(x) ln(x) x^2 normal ln(x) ln(x) x^4 ln(x) x^2 ln(x) x^6 x^2 x^6 ln(x) x^2 unknown	ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-7D (bg) MW-8D (bg) MW-8D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-9D	No N	n/a	NP N	8 8 8 8 8 9 10 10 8 8 10 10 9 11 12 12 8 8	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326 0.004629 0.007312 0.004667 0.005 0.003499	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525 0.008021 0.001428 0.005647 0.001155 0	x^6 In(x) In(x) x^2 normal In(x) In(x) x^4 In(x) x^6 x^6 In(x) x^6 In(x) x^2 In(x) unknown normal	ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-9D MW-4D MW-7D (bg) MW-7D (bg) MW-7D (bg) MW-7D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-9D MW-4D MW-9D MW-4D	No N	n/a	NP N	8 8 8 8 9 10 10 8 8 10 10 10 9 11 12 12 8 8	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326 0.004629 0.007312 0.004667 0.005 0.003499 0.002356	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525 0.008021 0.001428 0.005647 0.001155 0	x^6 ln(x) x^2 normal ln(x) ln(x) x^4 ln(x) x^2 ln(x) x^6 x^2 x^6 ln(x) x^2 ln(x) unknown unknown normal ln(x)	ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) Selenium (mg/L)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-9D MW-4D MW-7D (bg) MW-5D MW-7D (bg) MW-7D (bg) MW-8D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-9D MW-4D MW-4D MW-4D MW-4D MW-4D MW-4D	No N	n/a	NP N	8 8 8 8 9 10 10 8 8 10 10 9 11 12 12 8 8 9	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326 0.004629 0.007312 0.004667 0.005 0.003499 0.002356 0.003237	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525 0.008021 0.001428 0.005647 0.001155 0 0.001205 0.002509 0.001328	x^6 In(x) In(x) x^2 normal In(x) In(x) x^4 In(x) x^2 In(x) x^6 x^2 x^6 In(x) x^2 In(x) unknown unknown normal In(x) normal	ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) Selenium (mg/L)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-8D (bg) MW-15 MW-3D MW-6D MW-9D MW-4D MW-12D MW-6D MW-9D MW-4D MW-4D MW-4D MW-4D MW-4D	No N	n/a	NP N	8 8 8 8 9 10 10 8 8 10 10 11 12 12 8 8 9 9	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326 0.004629 0.007312 0.004667 0.005 0.003499 0.002356 0.003237 0.002006	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525 0.008021 0.001428 0.005647 0.001155 0 0.001205 0.002509 0.001328 0.00227	x^6 In(x) In(x) x^2 normal In(x) In(x) x^4 In(x) x^6 x^2 In(x) x^6 In(x) x^2 In(x) In(x) x^1 In(x) x^2 In(x) x^1 In(x)	ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) Selenium (mg/L)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-8D (bg) MW-15 MW-9D MW-10	No N	n/a	NP N	8 8 8 8 9 9 10 10 8 8 10 10 9 11 12 12 8 8 9 9 9	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326 0.004629 0.007312 0.004667 0.005 0.003499 0.002356 0.003237 0.002006 881.6	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525 0.008021 0.001428 0.005647 0.001155 0 0.001205 0.002509 0.001227 419.4	x^6 In(x) In(x) x^2 normal In(x) In(x) x^4 In(x) x^6 x^2 In(x) x^6 In(x) x^2 In(x) unknown unknown normal In(x) normal	ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) Selenium (mg/L)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-9D MW-15 MW-7D (bg) MW-8D (bg) MW-15 MW-7D (bg) MW-8D MW-15 MW-7D (bg) MW-8D (bg)	No N	n/a	NP N	8 8 8 8 9 9 10 10 8 8 10 10 11 12 12 8 8 9 9 9	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326 0.004629 0.007312 0.004667 0.005 0.003499 0.002356 0.003237 0.002006 881.6 109.6	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525 0.008021 0.001428 0.005647 0.001155 0 0.001205 0.002509 0.001328 0.00227 419.4 24.76	x^6 In(x) In(x) x^2 normal In(x) In(x) x^4 In(x) x^6 x^2 x^6 In(x) x^2 In(x) unknown unknown normal In(x) normal x^3	ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) Selenium (mg/L)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-8D (bg) MW-15 MW-9D MW-10	No N	n/a	NP N	8 8 8 8 8 9 9 10 10 8 8 10 10 9 11 12 8 8 9 9 9 11 12 12 13 14 15 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326 0.004629 0.007312 0.004667 0.005 0.003499 0.002356 0.003237 0.002006 881.6	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525 0.008021 0.001428 0.005647 0.001155 0 0.001205 0.002509 0.001227 419.4	x^6 In(x) In(x) x^2 normal In(x) In(x) x^4 In(x) x^6 x^2 In(x) x^6 In(x) x^2 In(x) unknown unknown normal In(x) normal	ShapiroWilk

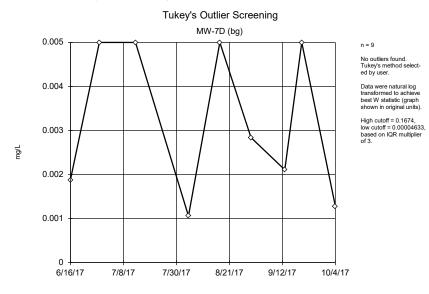
Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 7/16/2019, 10:57 AM Constituent Well Outlier Value(s) Method N Mean Std. Dev. DistributionNormality Test MW-6D Sulfate (mg/L) No n/a NP 8 515.6 10.41 ln(x) ShapiroWilk 8 1079 Sulfate (mg/L) MW-9D No n/a NP 170.3 x^6 ShapiroWilk Sulfate (mg/L) MW-4D NP 10 296.4 50.08 ShapiroWilk No n/a In(x) Sulfate (mg/L) MW-12D No NP 10 559.8 60.94 x^2 ShapiroWilk Sulfate (mg/L) MW-5D 662 NP 9 189.4 177.5 ShapiroWilk Yes In(x) Thallium (mg/L) MW-7D (bg) n/a n/a NΡ 9 0.001 0 unknown ShapiroWilk MW-8D (bg) NP Thallium (mg/L) 11 0.001 0 unknown ShapiroWilk n/a n/a Thallium (mg/L) MW-15 NΡ 12 0.001004 0.00001443 unknown MW-3D 12 0.001002 0.000005773 unknown Thallium (mg/L) n/a n/a NP ShapiroWilk Thallium (mg/L) MW-6D n/a NP 0.001 ShapiroWilk Thallium (mg/L) MW-9D NP 8 0.001 ShapiroWilk n/a n/a unknown Thallium (mg/L) MW-4D No NP 0.001234 0.00106 ShapiroWilk MW-12D Thallium (mg/L) 0.000893 0.0007764 ShapiroWilk No NP 9 n/a In(x) Thallium (mg/L) MW-5D No NP 0.0009233 0.0006012 ShapiroWilk Total Dissolved Solids [TDS] (mg/L) 9 2690 MW-7D (bg) No n/a NP 764 7 In(x) ShapiroWilk Total Dissolved Solids [TDS] (mg/L) MW-8D (bg) No NP 11 21432 x^4 ShapiroWilk n/a Total Dissolved Solids [TDS] (mg/L) 12 1079 ShapiroWilk MW-15 No n/a NP 32.67 x^6 Total Dissolved Solids [TDS] (mg/L) NP 12 709 MW-3D No 64.4 ShapiroWilk n/a In(x) Total Dissolved Solids [TDS] (mg/L) MW-6D No n/a NP 8 1037 46.63 In(x) ShapiroWilk Total Dissolved Solids [TDS] (mg/L) MW-9D No n/a NP 8 2122 561.5 x^3 ShapiroWilk Total Dissolved Solids [TDS] (mg/L) MW-4D No n/a NP 896.4 50.69 In(x) ShapiroWilk Total Dissolved Solids [TDS] (mg/L) MW-12D No NP 1067 32.79 ln(x) ShapiroWilk n/a

NP

8 638.8

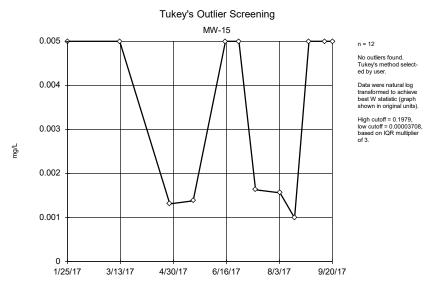
16.28

In(x)

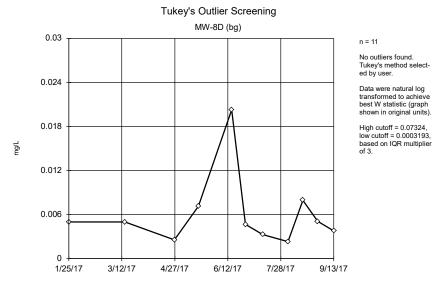

ShapiroWilk

Total Dissolved Solids [TDS] (mg/L)

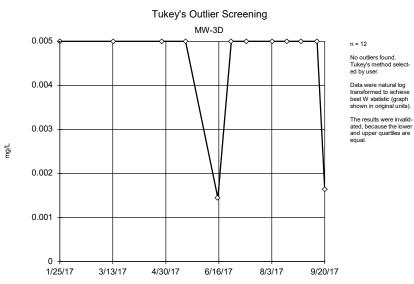
MW-5D


No

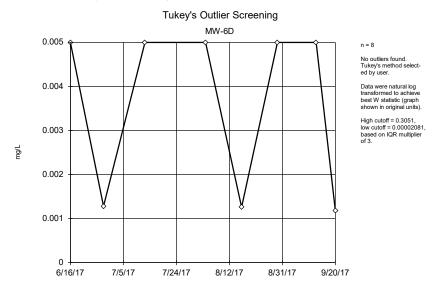
n/a


Constituent: Antimony Analysis Run 7/16/2019 9:43 AM View: Time Series

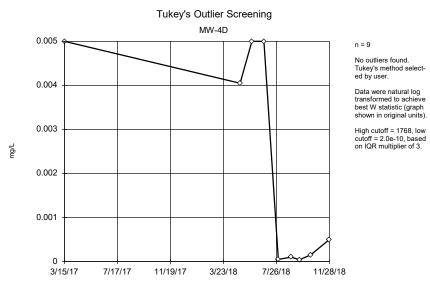
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Antimony Analysis Run 7/16/2019 9:43 AM View: Time Series

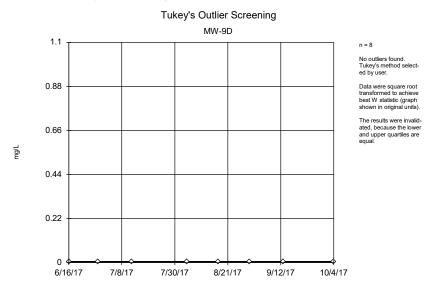
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Antimony Analysis Run 7/16/2019 9:43 AM View: Time Series

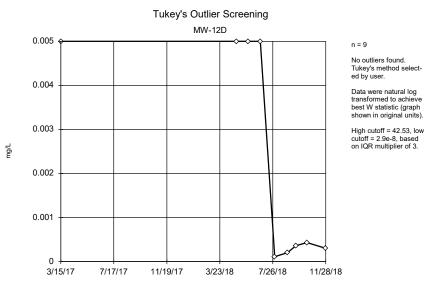
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Antimony Analysis Run 7/16/2019 9:43 AM View: Time Series

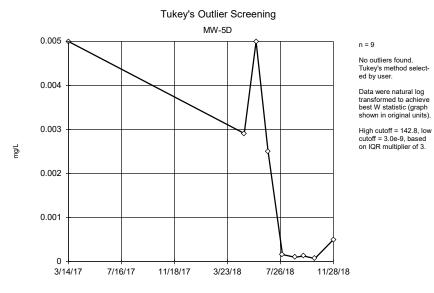
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Antimony Analysis Run 7/16/2019 9:43 AM View: Time Series

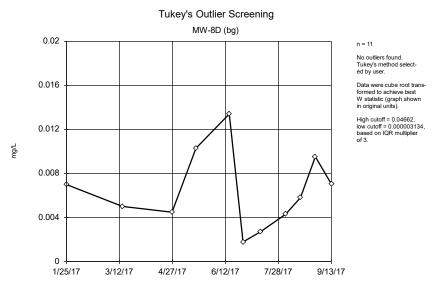
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Antimony Analysis Run 7/16/2019 9:43 AM View: Time Series

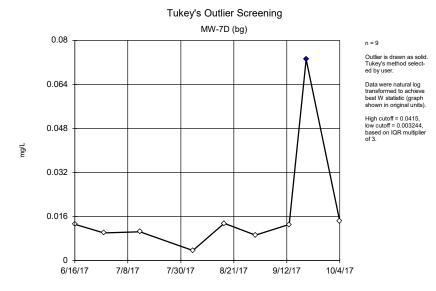
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Antimony Analysis Run 7/16/2019 9:43 AM View: Time Series

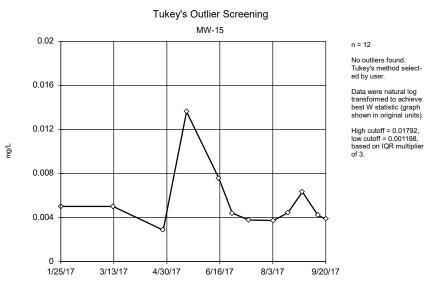
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Antimony Analysis Run 7/16/2019 9:43 AM View: Time Series

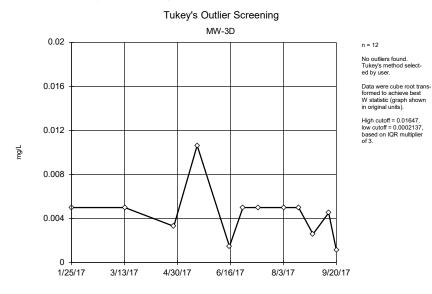
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Antimony Analysis Run 7/16/2019 9:43 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

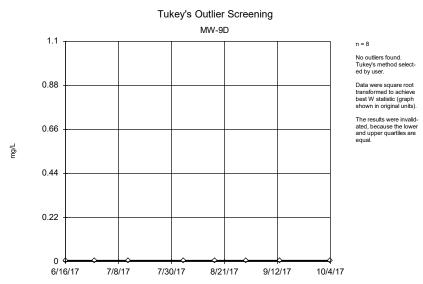
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: Arsenic Analysis Run 7/16/2019 9:43 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

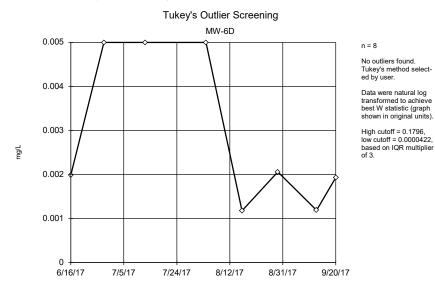

Constituent: Arsenic Analysis Run 7/16/2019 9:43 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

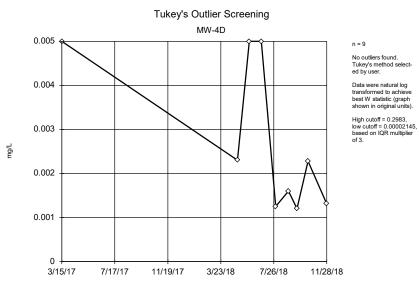


Constituent: Arsenic Analysis Run 7/16/2019 9:43 AM View: Time Series

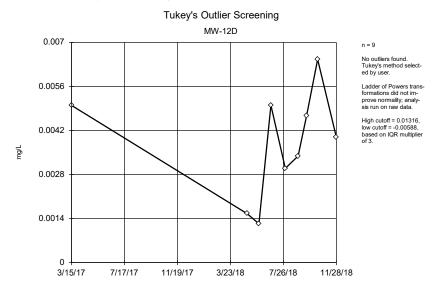
Northeastern LF Client: Geosyntec Data: Northeastern LF



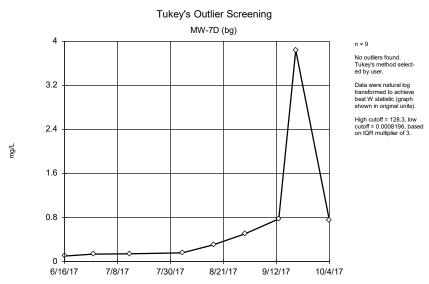
Constituent: Arsenic Analysis Run 7/16/2019 9:44 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Arsenic Analysis Run 7/16/2019 9:44 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

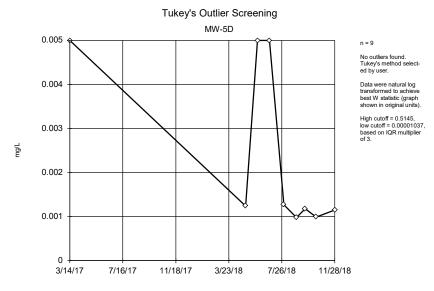

Constituent: Arsenic Analysis Run 7/16/2019 9:44 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

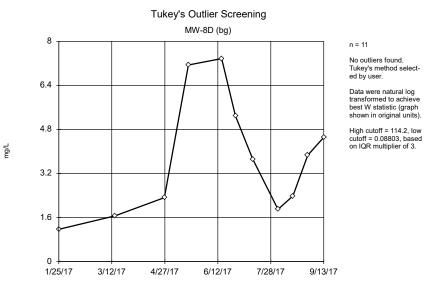


Constituent: Arsenic Analysis Run 7/16/2019 9:44 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

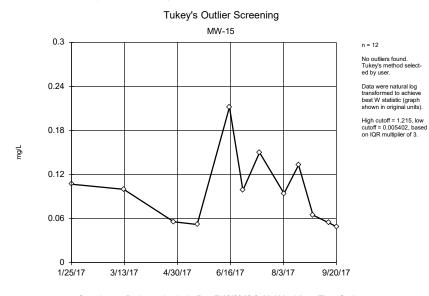


Constituent: Arsenic Analysis Run 7/16/2019 9:44 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF



Constituent: Barium Analysis Run 7/16/2019 9:44 AM View: Time Series

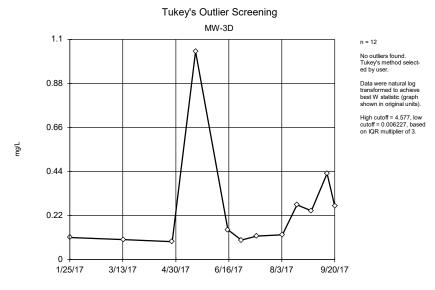
Northeastern LF Client: Geosyntec Data: Northeastern LF



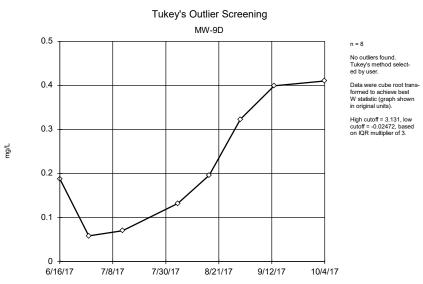
Constituent: Arsenic Analysis Run 7/16/2019 9:44 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Barium Analysis Run 7/16/2019 9:44 AM View: Time Series

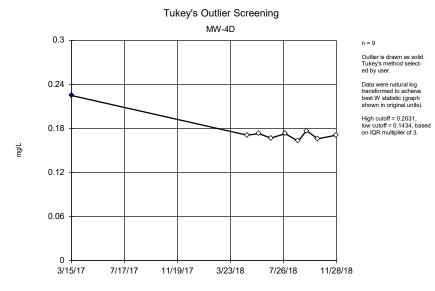
Northeastern LF Client: Geosyntec Data: Northeastern LF

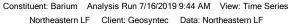

Constituent: Barium Analysis Run 7/16/2019 9:44 AM View: Time Series

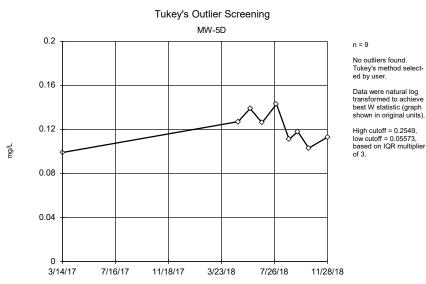
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Barium Analysis Run 7/16/2019 9:44 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

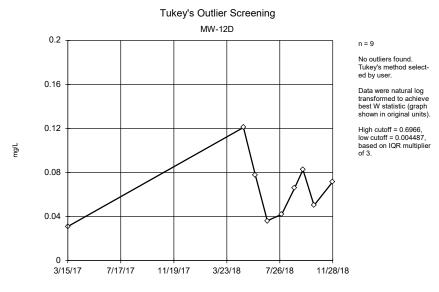

Constituent: Barium Analysis Run 7/16/2019 9:44 AM View: Time Series

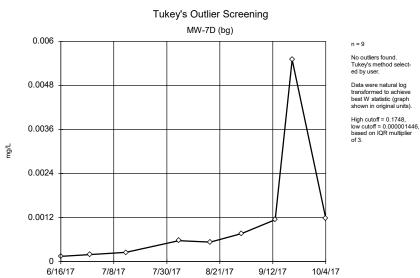

Northeastern LF Client: Geosyntec Data: Northeastern LF



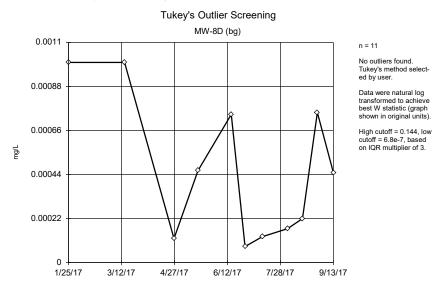
Constituent: Barium Analysis Run 7/16/2019 9:44 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

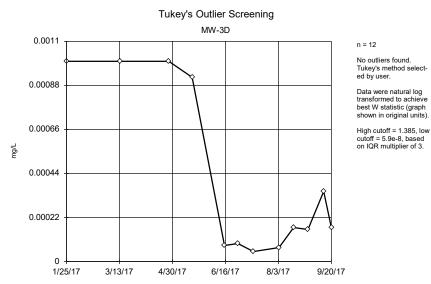



Constituent: Barium Analysis Run 7/16/2019 9:44 AM View: Time Series

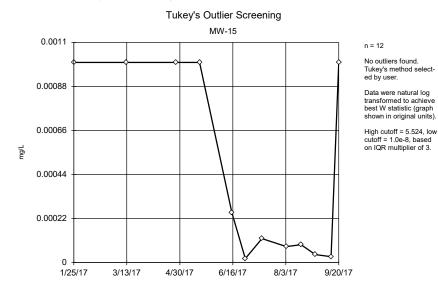
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Barium Analysis Run 7/16/2019 9:44 AM View: Time Series

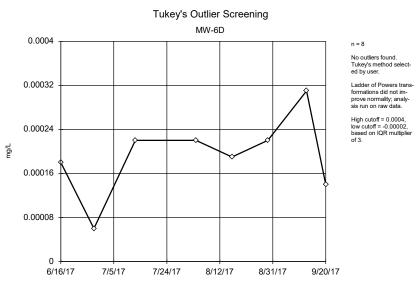
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Beryllium Analysis Run 7/16/2019 9:44 AM View: Time Series

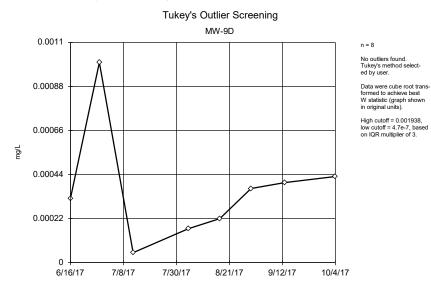
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Beryllium Analysis Run 7/16/2019 9:44 AM View: Time Series

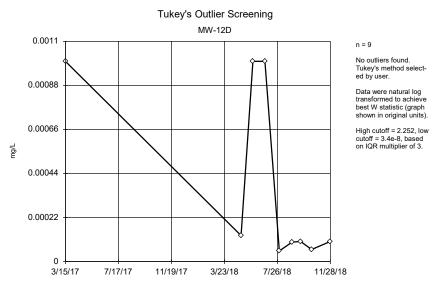
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Beryllium Analysis Run 7/16/2019 9:44 AM View: Time Series

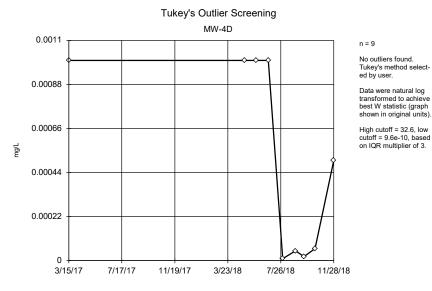
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Beryllium Analysis Run 7/16/2019 9:44 AM View: Time Series

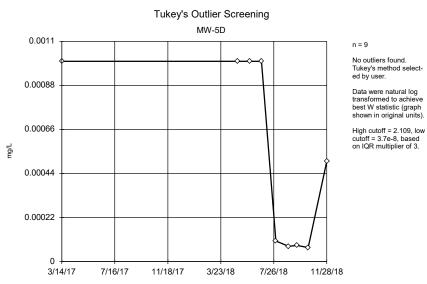
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Beryllium Analysis Run 7/16/2019 9:44 AM View: Time Series

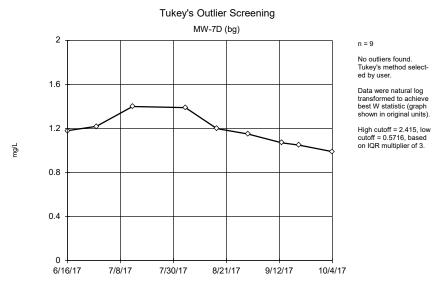
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Beryllium Analysis Run 7/16/2019 9:44 AM View: Time Series

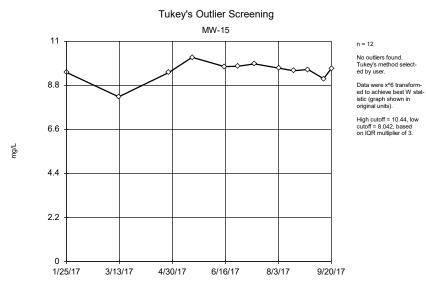
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Beryllium Analysis Run 7/16/2019 9:44 AM View: Time Series

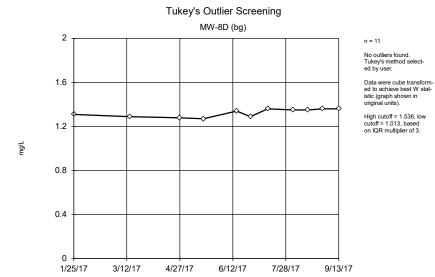
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Beryllium Analysis Run 7/16/2019 9:44 AM View: Time Series

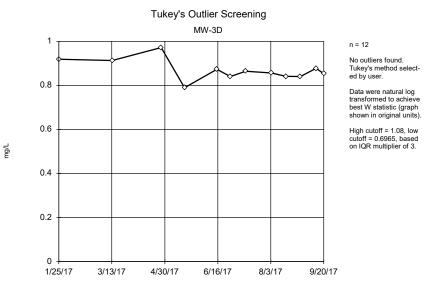
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Beryllium Analysis Run 7/16/2019 9:44 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

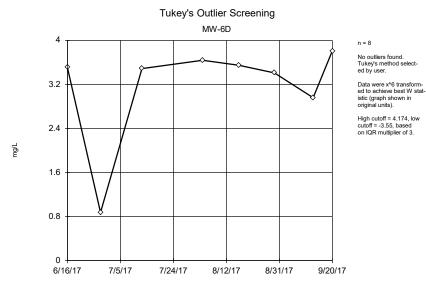

Constituent: Boron Analysis Run 7/16/2019 9:44 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

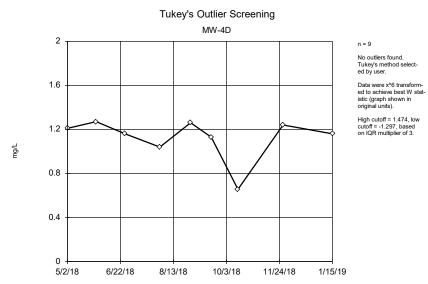


Constituent: Boron Analysis Run 7/16/2019 9:44 AM View: Time Series

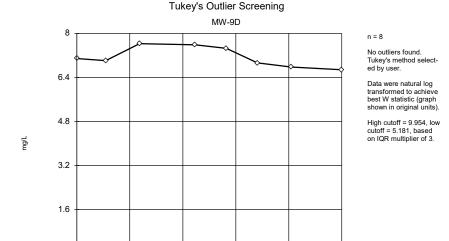
Northeastern LF Client: Geosyntec Data: Northeastern LF



Constituent: Boron Analysis Run 7/16/2019 9:44 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Boron Analysis Run 7/16/2019 9:44 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Boron Analysis Run 7/16/2019 9:44 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Boron Analysis Run 7/16/2019 9:44 AM View: Time Series

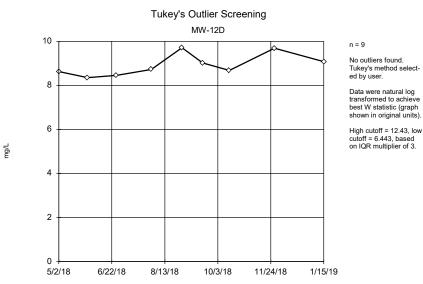
Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Boron Analysis Run 7/16/2019 9:44 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

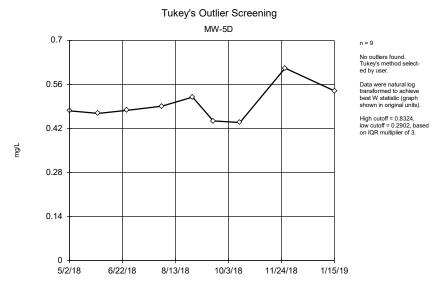
8/21/17

7/30/17

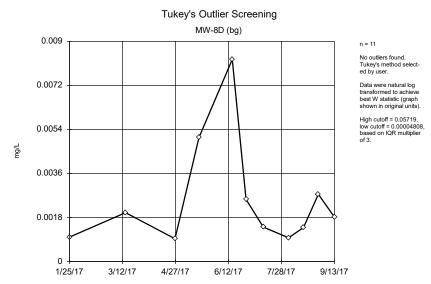

9/12/17

10/4/17

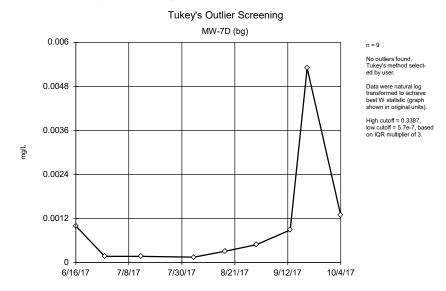
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


6/16/17

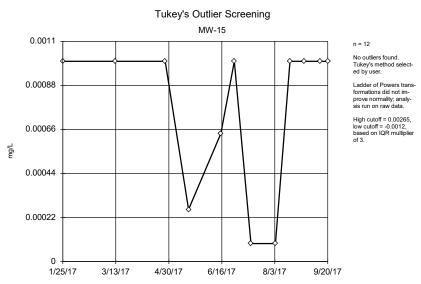
7/8/17


Constituent: Boron Analysis Run 7/16/2019 9:44 AM View: Time Series

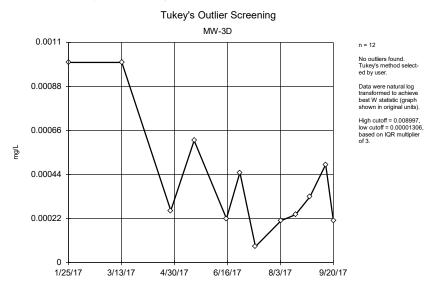
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Boron Analysis Run 7/16/2019 9:44 AM View: Time Series

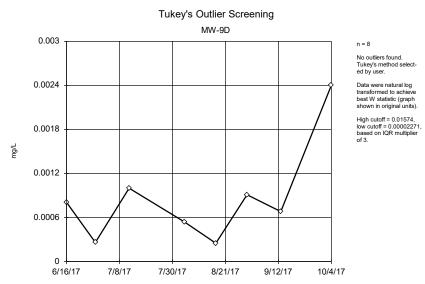
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Cadmium Analysis Run 7/16/2019 9:44 AM View: Time Series

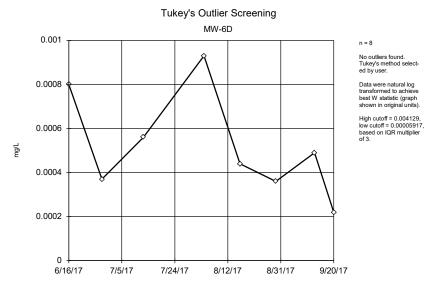
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Cadmium Analysis Run 7/16/2019 9:44 AM View: Time Series

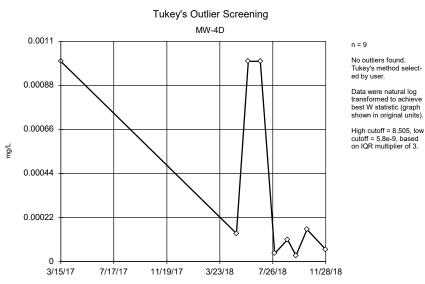
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Cadmium Analysis Run 7/16/2019 9:44 AM View: Time Series

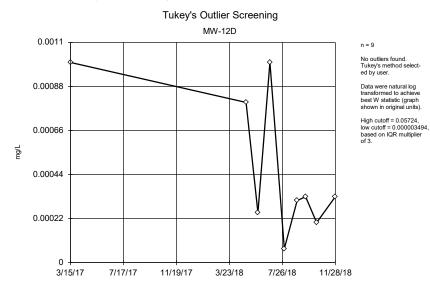
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Cadmium Analysis Run 7/16/2019 9:44 AM View: Time Series

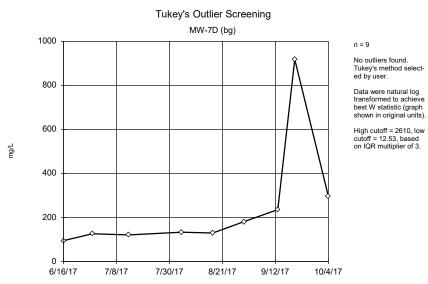
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Cadmium Analysis Run 7/16/2019 9:44 AM View: Time Series

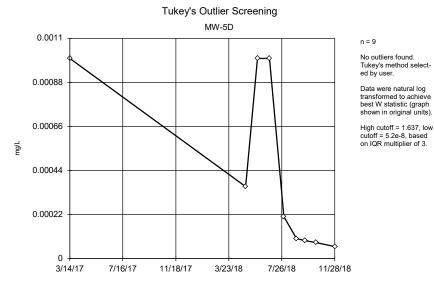
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Cadmium Analysis Run 7/16/2019 9:44 AM View: Time Series

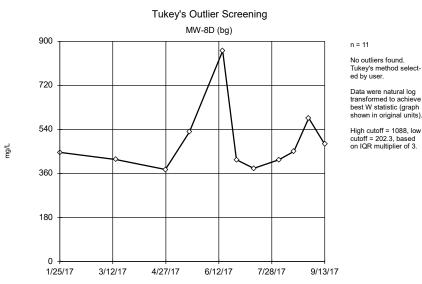
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Cadmium Analysis Run 7/16/2019 9:44 AM View: Time Series

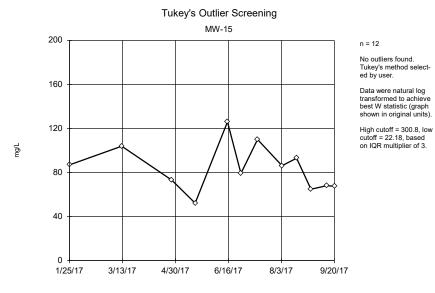
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Cadmium Analysis Run 7/16/2019 9:44 AM View: Time Series

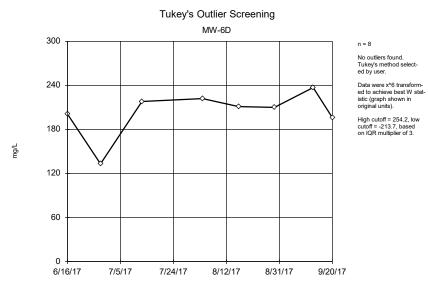
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Calcium Analysis Run 7/16/2019 9:44 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

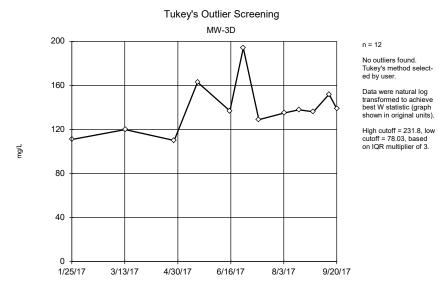

Constituent: Cadmium Analysis Run 7/16/2019 9:44 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

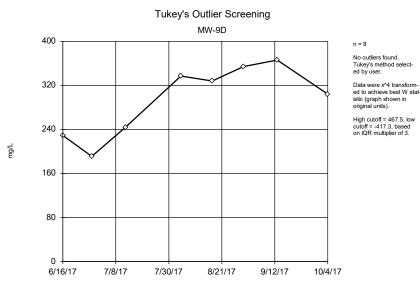


Constituent: Calcium Analysis Run 7/16/2019 9:44 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

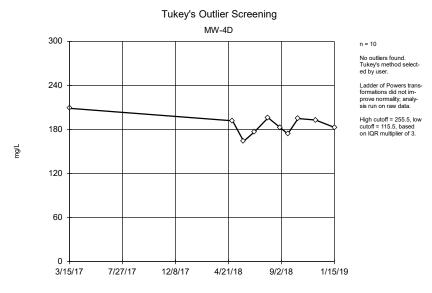


Constituent: Calcium Analysis Run 7/16/2019 9:44 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF

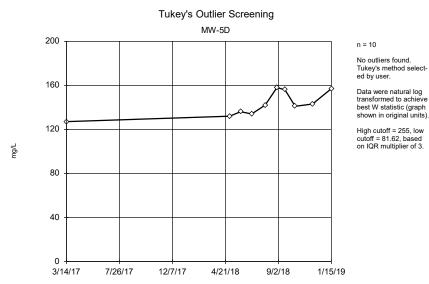


Constituent: Calcium Analysis Run 7/16/2019 9:44 AM View: Time Series

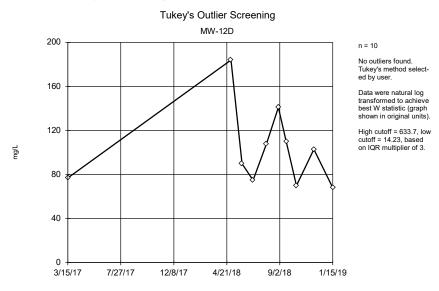
Northeastern LF Client: Geosyntec Data: Northeastern LF

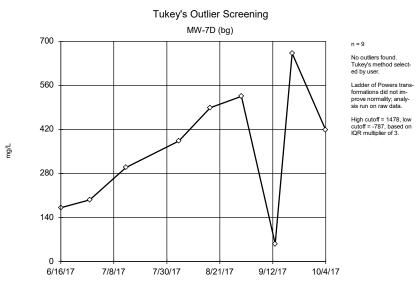


Constituent: Calcium Analysis Run 7/16/2019 9:44 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF

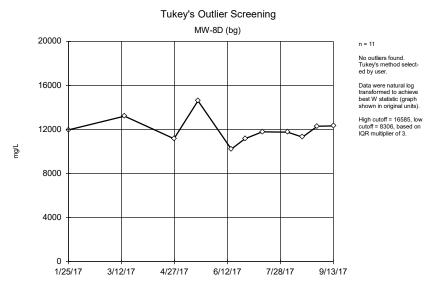


Constituent: Calcium Analysis Run 7/16/2019 9:44 AM View: Time Series

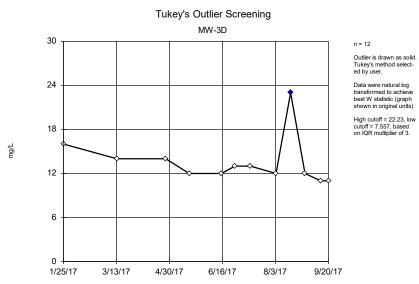

Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Calcium Analysis Run 7/16/2019 9:44 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF

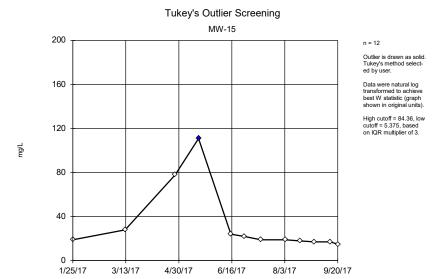
Constituent: Calcium Analysis Run 7/16/2019 9:44 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF



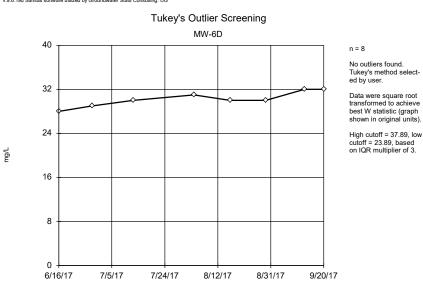
Constituent: Calcium Analysis Run 7/16/2019 9:44 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Chloride Analysis Run 7/16/2019 9:44 AM View: Time Series

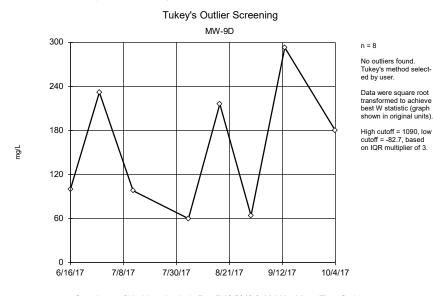
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Chloride Analysis Run 7/16/2019 9:44 AM View: Time Series

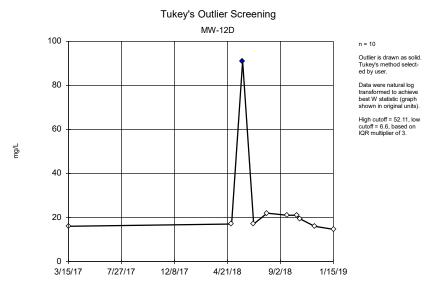
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Chloride Analysis Run 7/16/2019 9:44 AM View: Time Series

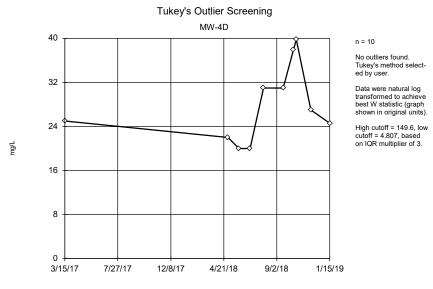
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Chloride Analysis Run 7/16/2019 9:44 AM View: Time Series

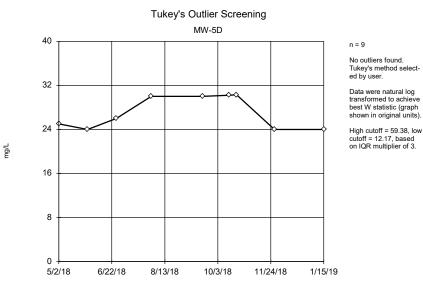
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: Chloride Analysis Run 7/16/2019 9:44 AM View: Time Series

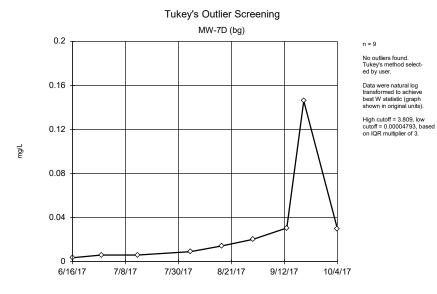
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Chloride Analysis Run 7/16/2019 9:44 AM View: Time Series

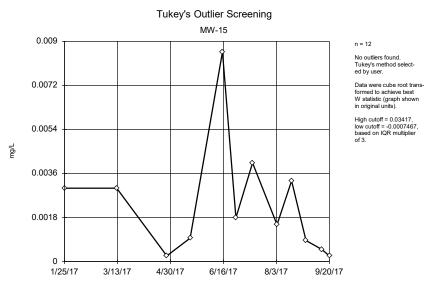
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Chloride Analysis Run 7/16/2019 9:44 AM View: Time Series

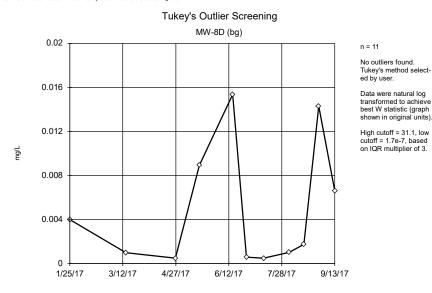
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Chloride Analysis Run 7/16/2019 9:44 AM View: Time Series

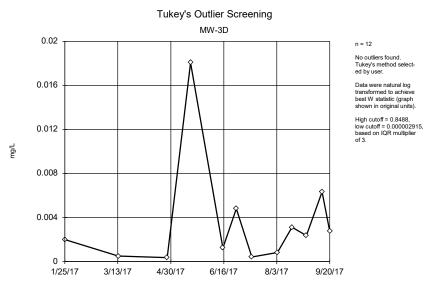
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Chloride Analysis Run 7/16/2019 9:44 AM View: Time Series

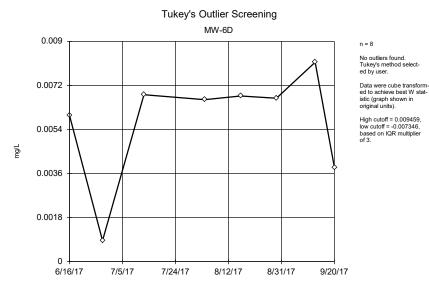
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Chromium Analysis Run 7/16/2019 9:44 AM View: Time Series

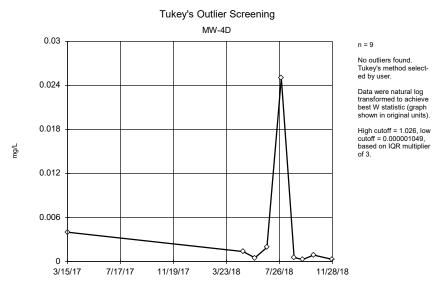
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Chromium Analysis Run 7/16/2019 9:44 AM View: Time Series

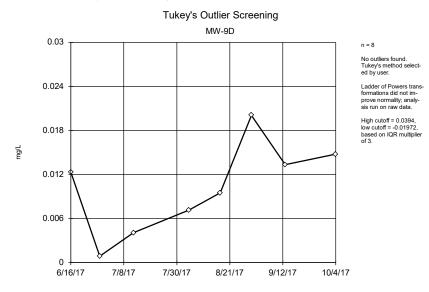
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Chromium Analysis Run 7/16/2019 9:44 AM View: Time Series

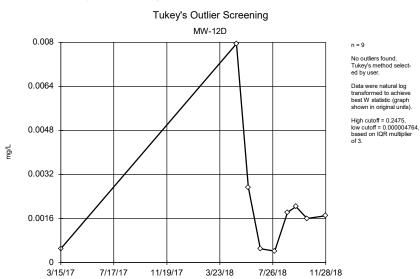
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Chromium Analysis Run 7/16/2019 9:44 AM View: Time Series

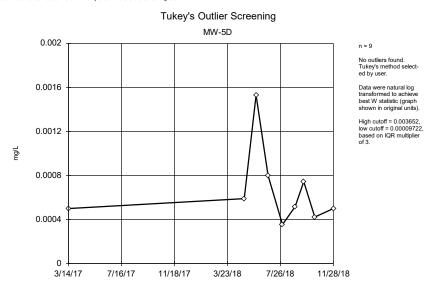
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Chromium Analysis Run 7/16/2019 9:44 AM View: Time Series

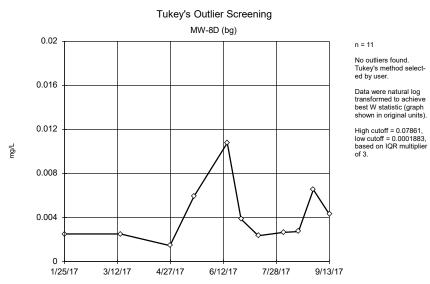
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Chromium Analysis Run 7/16/2019 9:44 AM View: Time Series

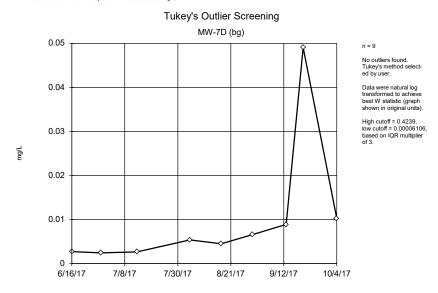
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Chromium Analysis Run 7/16/2019 9:44 AM View: Time Series

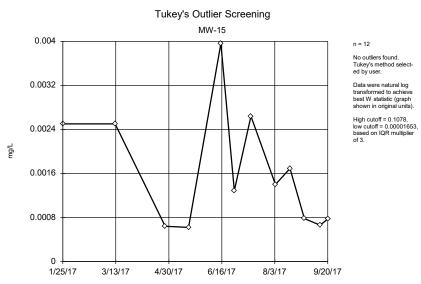
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Chromium Analysis Run 7/16/2019 9:44 AM View: Time Series

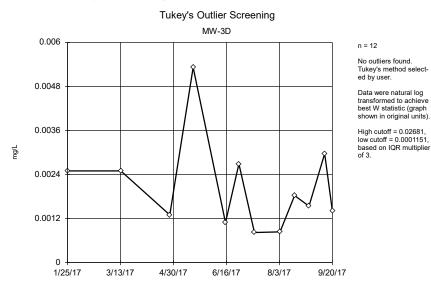
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Chromium Analysis Run 7/16/2019 9:44 AM View: Time Series

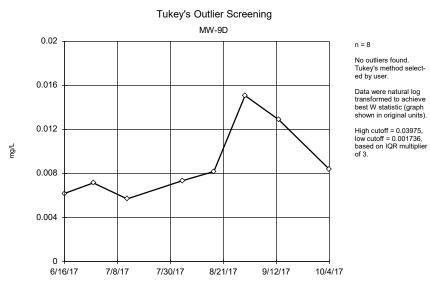
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Cobalt Analysis Run 7/16/2019 9:44 AM View: Time Series

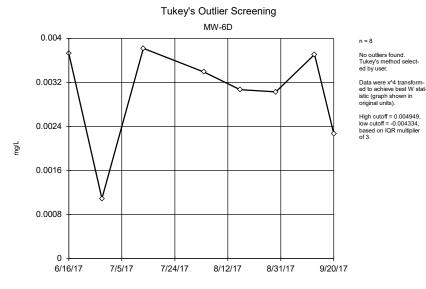
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Cobalt Analysis Run 7/16/2019 9:44 AM View: Time Series

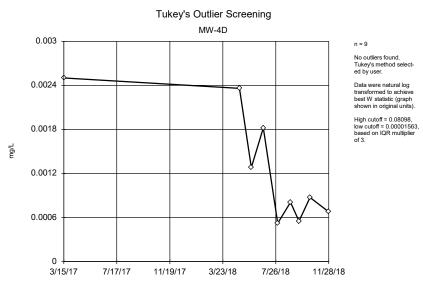
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Cobalt Analysis Run 7/16/2019 9:44 AM View: Time Series

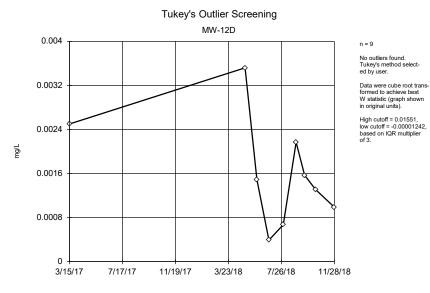
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Cobalt Analysis Run 7/16/2019 9:45 AM View: Time Series

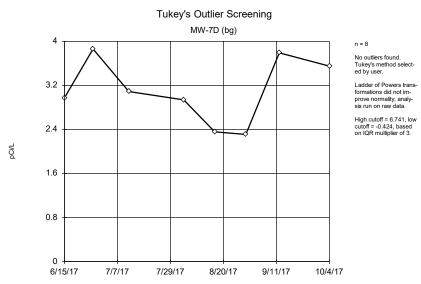
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Cobalt Analysis Run 7/16/2019 9:45 AM View: Time Series

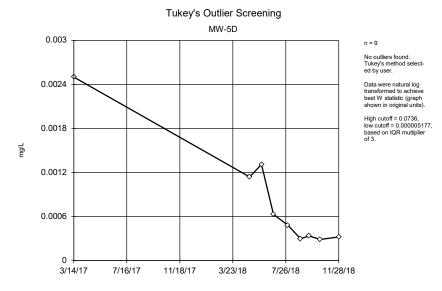
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Cobalt Analysis Run 7/16/2019 9:45 AM View: Time Series

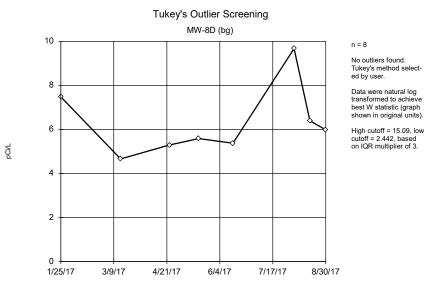
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Cobalt Analysis Run 7/16/2019 9:45 AM View: Time Series

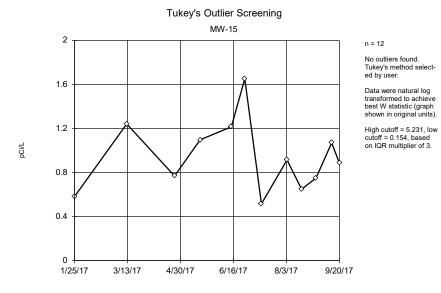
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Cobalt Analysis Run 7/16/2019 9:45 AM View: Time Series

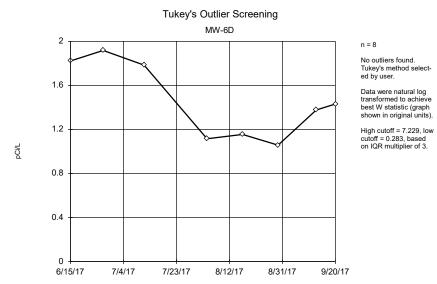
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Combined Radium 226 + 228 Analysis Run 7/16/2019 9:45 AM View: Time Series

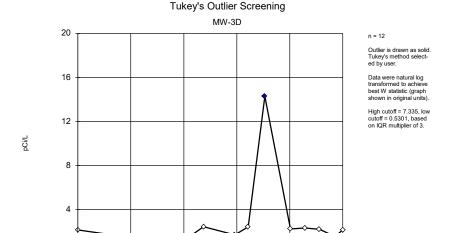
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Cobalt Analysis Run 7/16/2019 9:45 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Combined Radium 226 + 228 Analysis Run 7/16/2019 9:45 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Combined Radium 226 + 228 Analysis Run 7/16/2019 9:45 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Combined Radium 226 + 228 Analysis Run 7/16/2019 9:45 AM View: Time Series

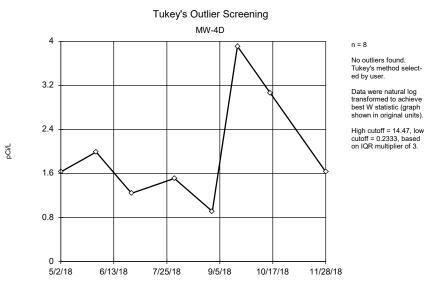
Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Combined Radium 226 + 228 Analysis Run 7/16/2019 9:45 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

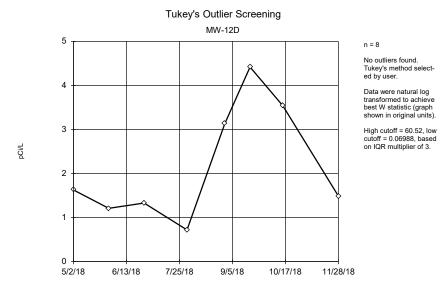
6/16/17

8/3/17

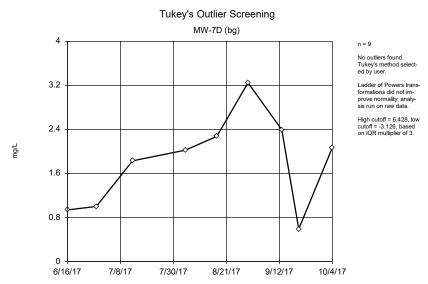

9/20/17

4/30/17

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


1/25/17

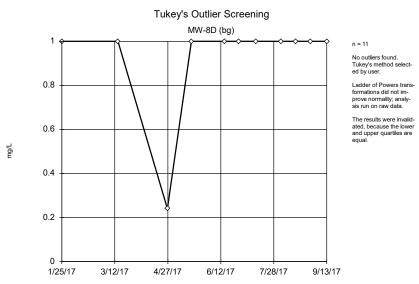
3/13/17


Constituent: Combined Radium 226 + 228 Analysis Run 7/16/2019 9:45 AM View: Time Series

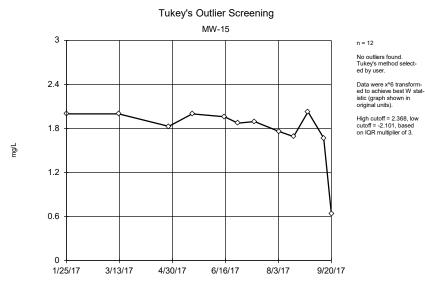
Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Combined Radium 226 + 228 Analysis Run 7/16/2019 9:45 AM View: Time Series

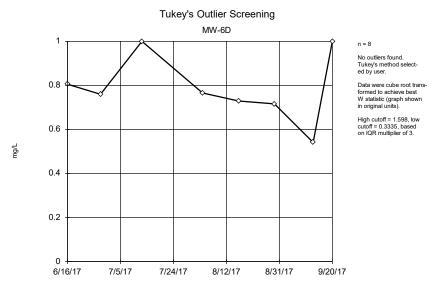
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Fluoride Analysis Run 7/16/2019 9:45 AM View: Time Series

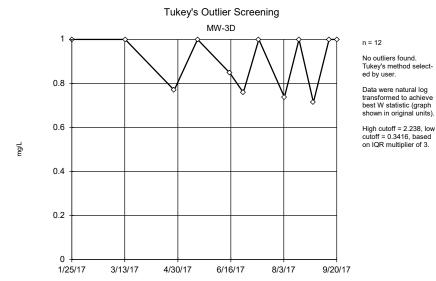
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Combined Radium 226 + 228 Analysis Run 7/16/2019 9:45 AM View: Time Series

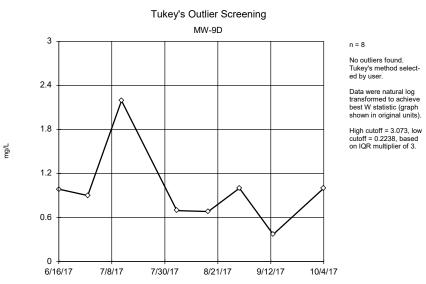
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Fluoride Analysis Run 7/16/2019 9:45 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

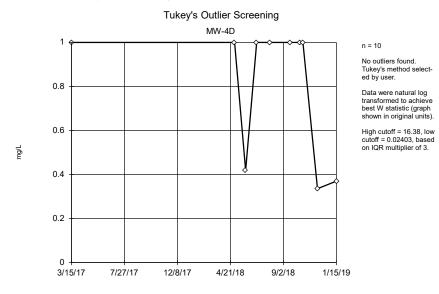

Constituent: Fluoride Analysis Run 7/16/2019 9:45 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

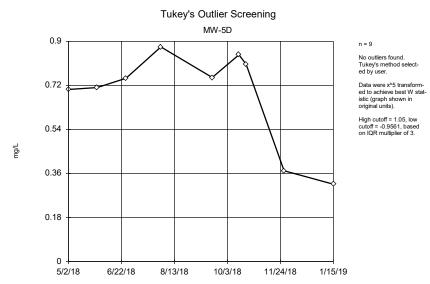


Constituent: Fluoride Analysis Run 7/16/2019 9:45 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

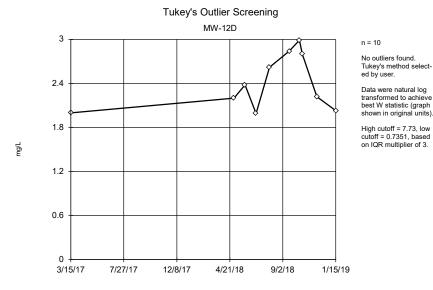


Constituent: Fluoride Analysis Run 7/16/2019 9:45 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF

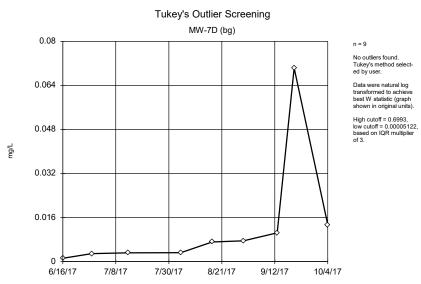


Constituent: Fluoride Analysis Run 7/16/2019 9:45 AM View: Time Series

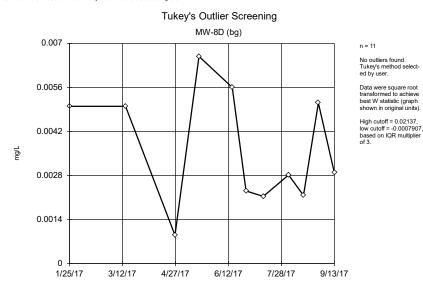
Northeastern LF Client: Geosyntec Data: Northeastern LF



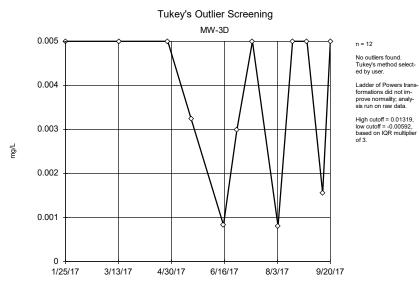
Constituent: Fluoride Analysis Run 7/16/2019 9:45 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Fluoride Analysis Run 7/16/2019 9:45 AM View: Time Series

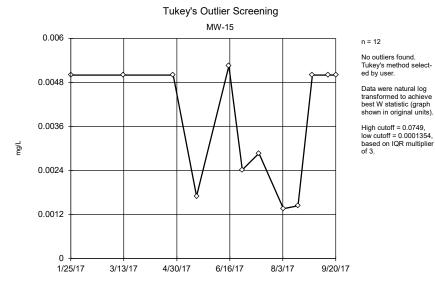
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Fluoride Analysis Run 7/16/2019 9:45 AM View: Time Series

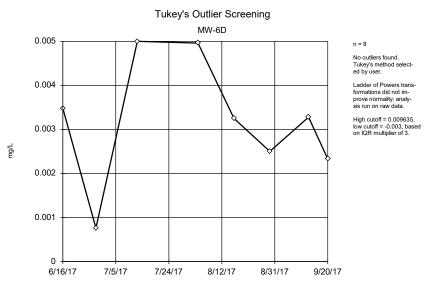
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Lead Analysis Run 7/16/2019 9:45 AM View: Time Series

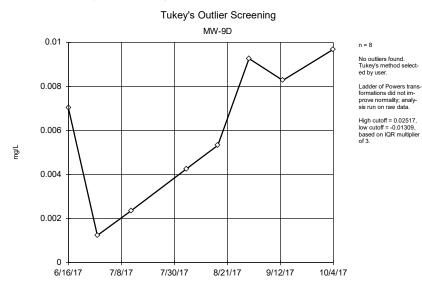
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Lead Analysis Run 7/16/2019 9:45 AM View: Time Series

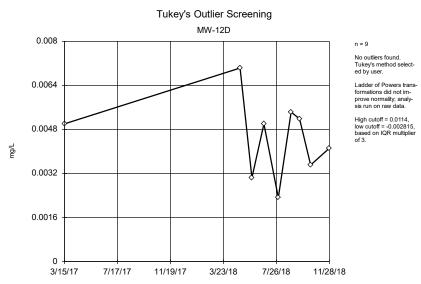
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Lead Analysis Run 7/16/2019 9:45 AM View: Time Series

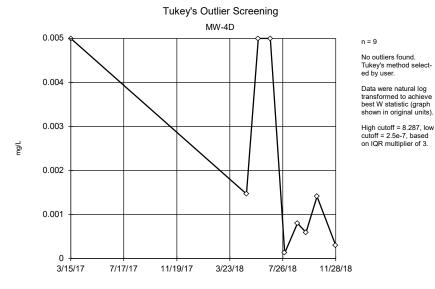
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Lead Analysis Run 7/16/2019 9:45 AM View: Time Series

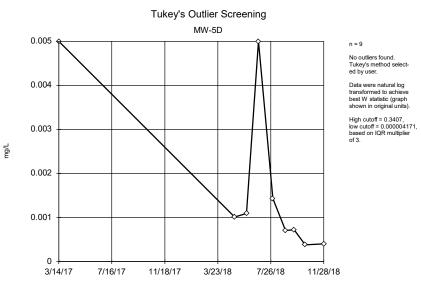
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Lead Analysis Run 7/16/2019 9:45 AM View: Time Series

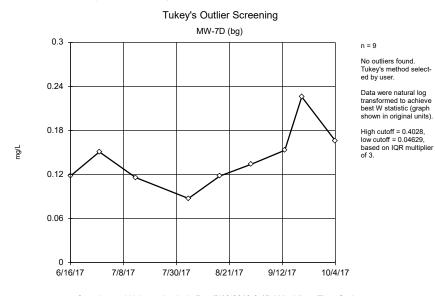
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Lead Analysis Run 7/16/2019 9:45 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Lead Analysis Run 7/16/2019 9:45 AM View: Time Series

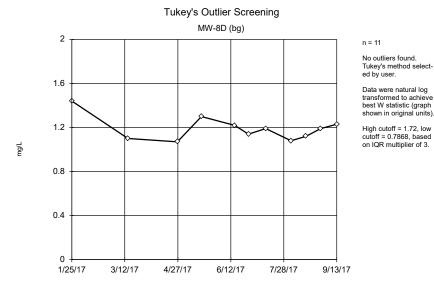
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Lead Analysis Run 7/16/2019 9:45 AM View: Time Series

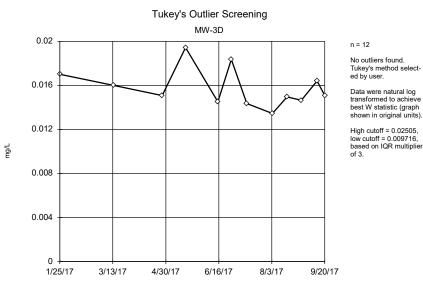
Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Lead Analysis Run 7/16/2019 9:45 AM View: Time Series

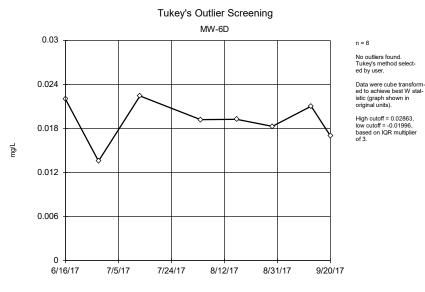
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Lithium Analysis Run 7/16/2019 9:45 AM View: Time Series

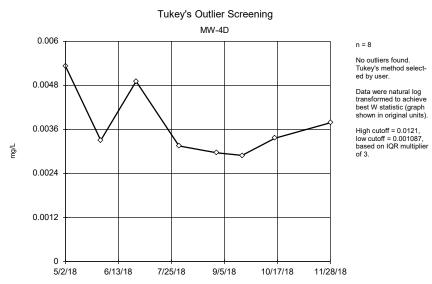
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Lithium Analysis Run 7/16/2019 9:45 AM View: Time Series

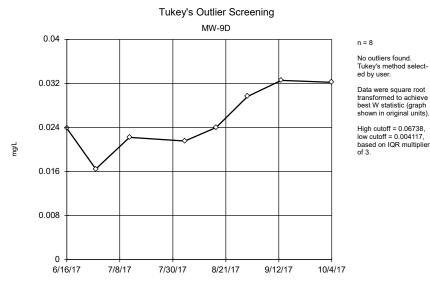
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Lithium Analysis Run 7/16/2019 9:45 AM View: Time Series

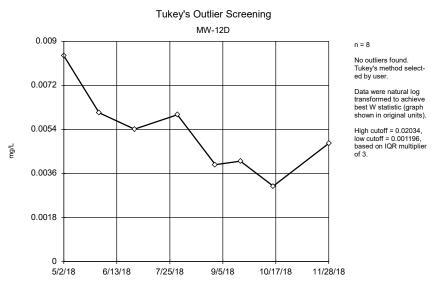
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Lithium Analysis Run 7/16/2019 9:45 AM View: Time Series

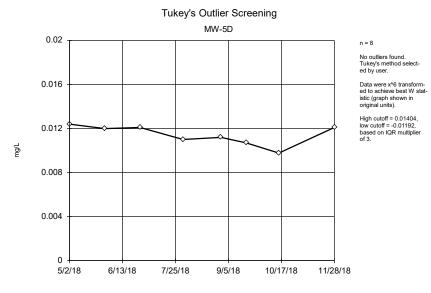
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Lithium Analysis Run 7/16/2019 9:45 AM View: Time Series

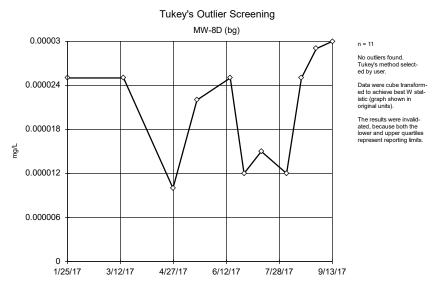
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Lithium Analysis Run 7/16/2019 9:45 AM View: Time Series

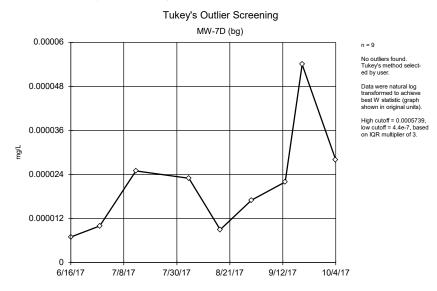
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Lithium Analysis Run 7/16/2019 9:45 AM View: Time Series

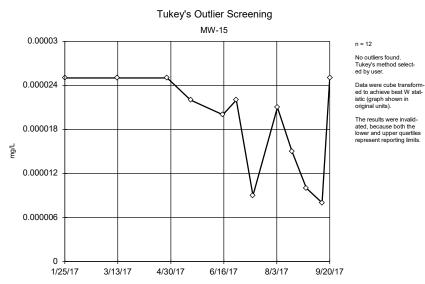
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Lithium Analysis Run 7/16/2019 9:45 AM View: Time Series

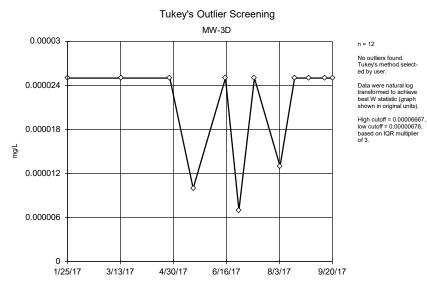
Northeastern LF Client: Geosyntec Data: Northeastern LF



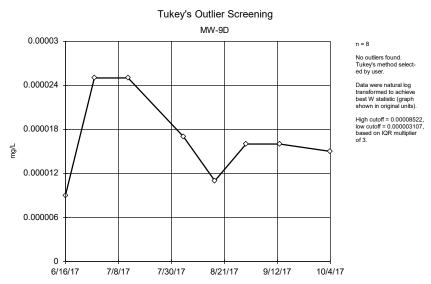
Constituent: Lithium Analysis Run 7/16/2019 9:45 AM View: Time Series


Northeastern LF Client: Geosyntec Data: Northeastern LF

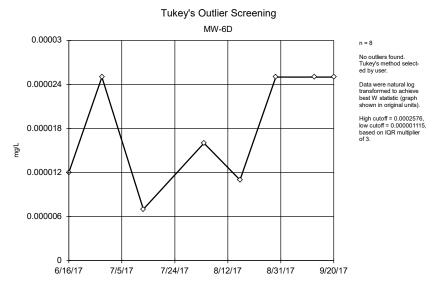
Constituent: Mercury Analysis Run 7/16/2019 9:45 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF

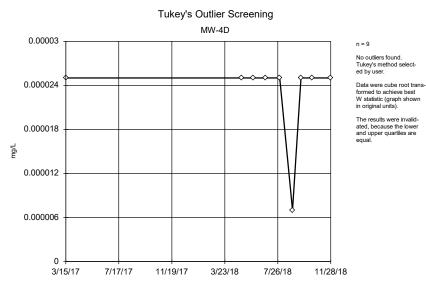


Constituent: Mercury Analysis Run 7/16/2019 9:45 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF

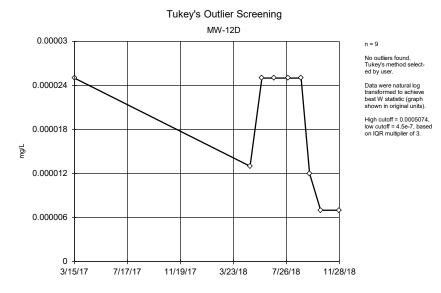


Constituent: Mercury Analysis Run 7/16/2019 9:45 AM View: Time Series

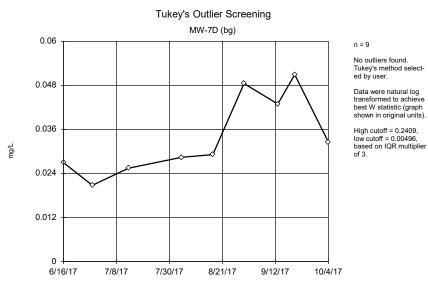

Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Mercury Analysis Run 7/16/2019 9:45 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Mercury Analysis Run 7/16/2019 9:45 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF

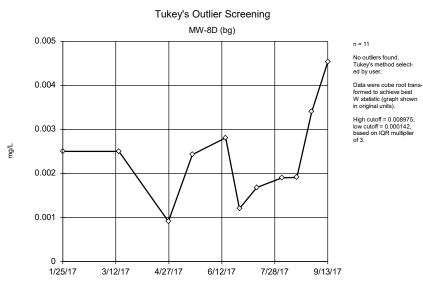


Constituent: Mercury Analysis Run 7/16/2019 9:45 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF

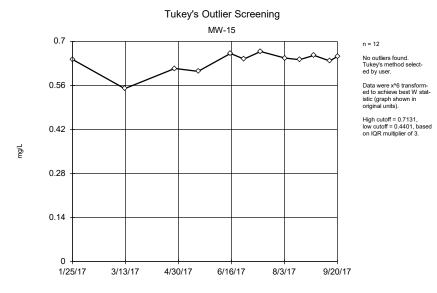


Constituent: Mercury Analysis Run 7/16/2019 9:45 AM View: Time Series

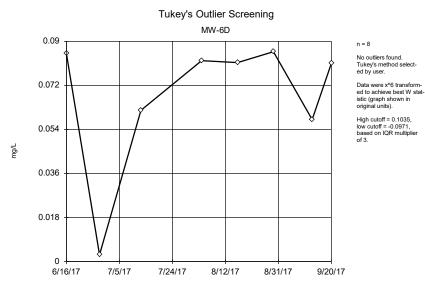

Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Mercury Analysis Run 7/16/2019 9:45 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF

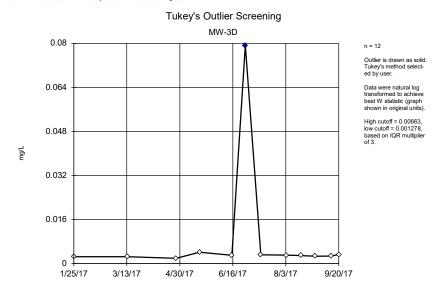
Constituent: Molybdenum Analysis Run 7/16/2019 9:45 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF



Constituent: Mercury Analysis Run 7/16/2019 9:45 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF

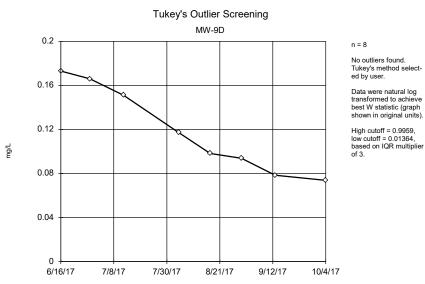

Constituent: Molybdenum Analysis Run 7/16/2019 9:45 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

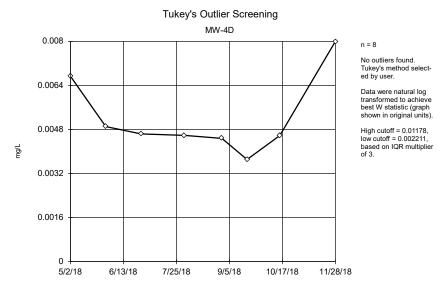


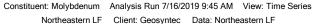
Constituent: Molybdenum Analysis Run 7/16/2019 9:45 AM View: Time Series

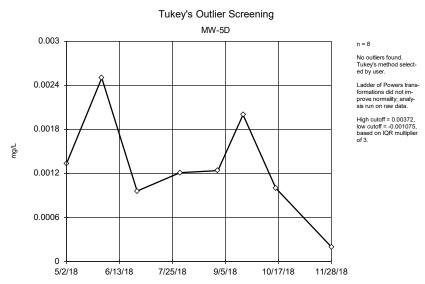
Northeastern LF Client: Geosyntec Data: Northeastern LF



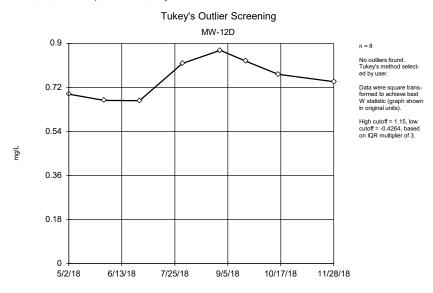
Constituent: Molybdenum Analysis Run 7/16/2019 9:45 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF

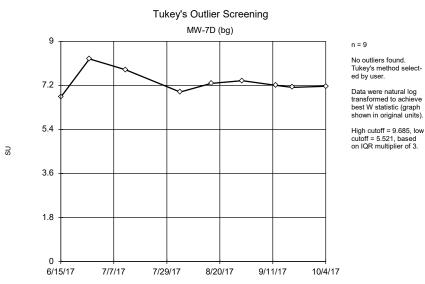

Constituent: Molybdenum Analysis Run 7/16/2019 9:45 AM View: Time Series


Northeastern LF Client: Geosyntec Data: Northeastern LF

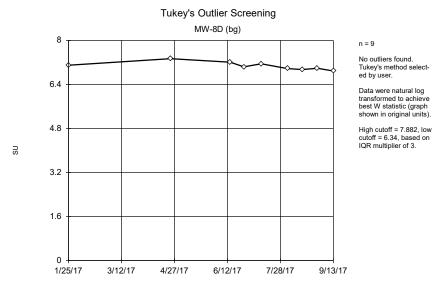


Constituent: Molybdenum Analysis Run 7/16/2019 9:45 AM View: Time Series

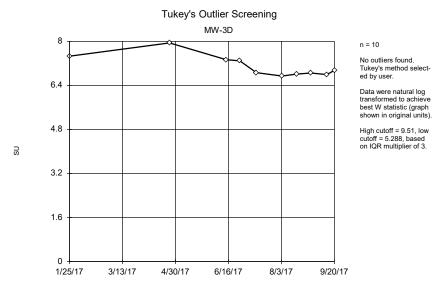

Northeastern LF Client: Geosyntec Data: Northeastern LF



Constituent: Molybdenum Analysis Run 7/16/2019 9:45 AM View: Time Series
Northeastern LF Client: Geosyntec Data: Northeastern LF

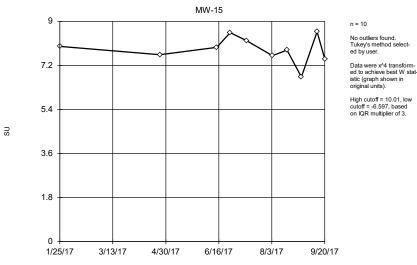

Constituent: Molybdenum Analysis Run 7/16/2019 9:45 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

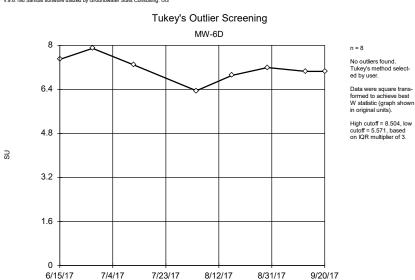

Constituent: pH, field Analysis Run 7/16/2019 9:45 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

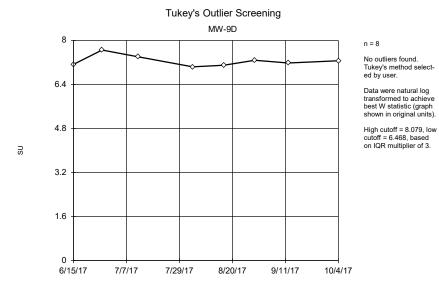
Constituent: pH, field Analysis Run 7/16/2019 9:45 AM View: Time Series


Northeastern LF Client: Geosyntec Data: Northeastern LF

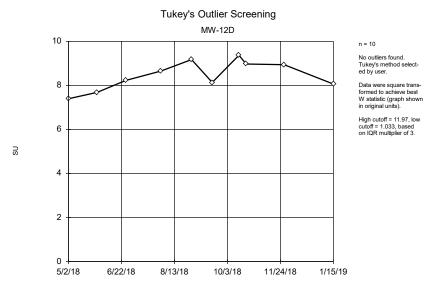
Constituent: pH, field Analysis Run 7/16/2019 9:45 AM View: Time Series


Northeastern LF Client: Geosyntec Data: Northeastern LF

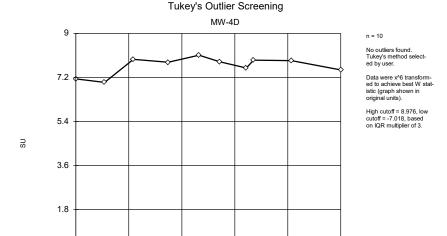
Tukey's Outlier Screening


Constituent: pH, field Analysis Run 7/16/2019 9:45 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: pH, field Analysis Run 7/16/2019 9:45 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: pH, field Analysis Run 7/16/2019 9:45 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: pH, field Analysis Run 7/16/2019 9:45 AM View: Time Series

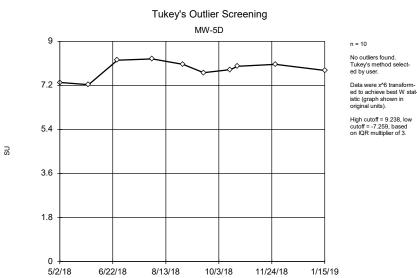
Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: pH, field Analysis Run 7/16/2019 9:45 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

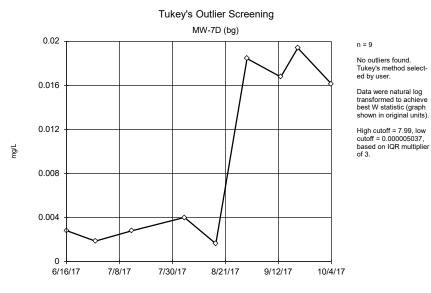
10/3/18

11/24/18

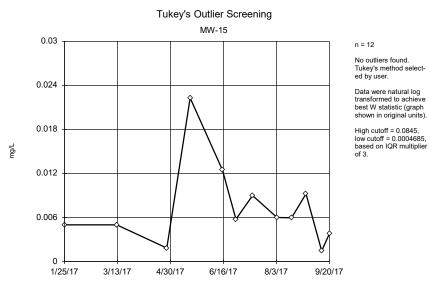

1/15/19

8/13/18

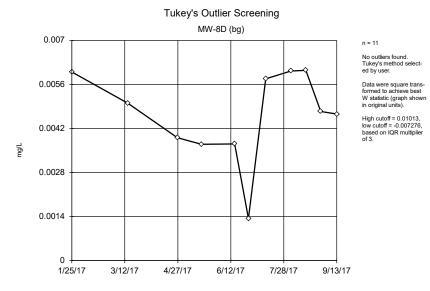
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


5/2/18

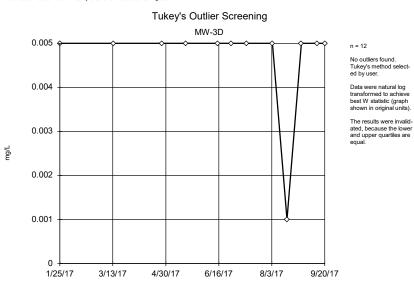
6/22/18


Constituent: pH, field Analysis Run 7/16/2019 9:45 AM View: Time Series

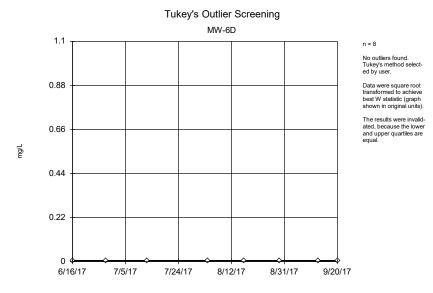
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Selenium Analysis Run 7/16/2019 9:45 AM View: Time Series

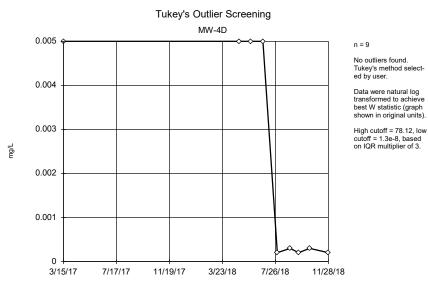
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Selenium Analysis Run 7/16/2019 9:45 AM View: Time Series

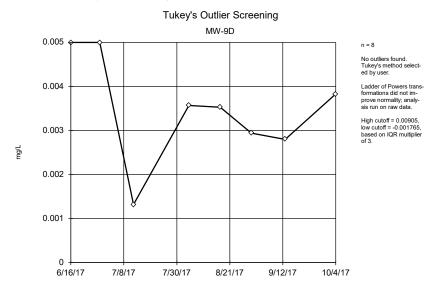
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Selenium Analysis Run 7/16/2019 9:45 AM View: Time Series

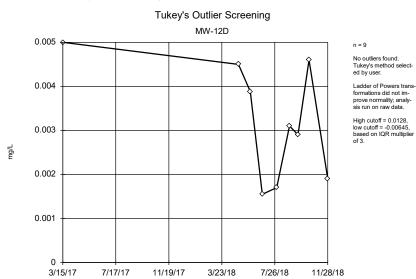
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Selenium Analysis Run 7/16/2019 9:45 AM View: Time Series

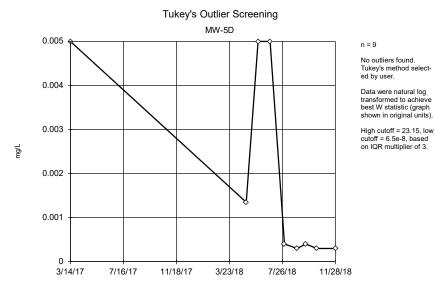
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Selenium Analysis Run 7/16/2019 9:46 AM View: Time Series

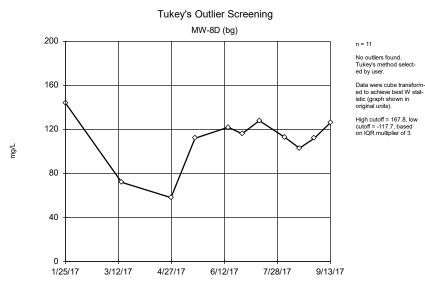
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Selenium Analysis Run 7/16/2019 9:46 AM View: Time Series

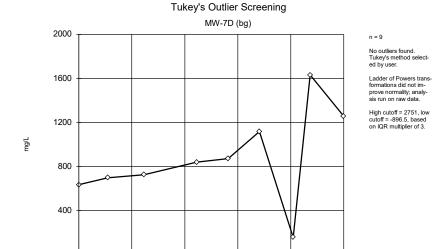
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Selenium Analysis Run 7/16/2019 9:46 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Selenium Analysis Run 7/16/2019 9:46 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Selenium Analysis Run 7/16/2019 9:46 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Sulfate Analysis Run 7/16/2019 9:46 AM View: Time Series

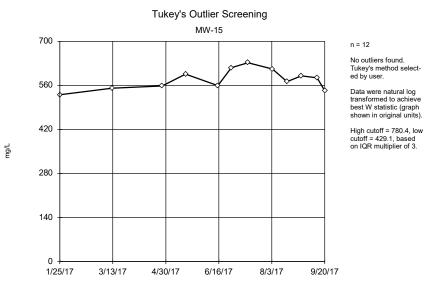
Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Sulfate Analysis Run 7/16/2019 9:46 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

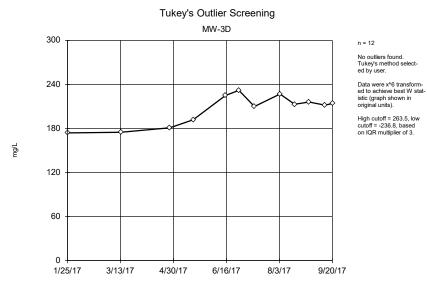
8/21/17

9/12/17

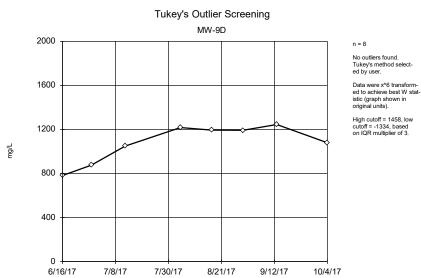

7/30/17

10/4/17

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


6/16/17

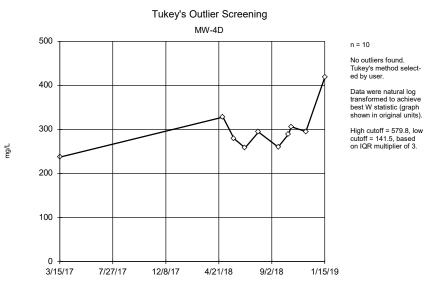
7/8/17


Constituent: Sulfate Analysis Run 7/16/2019 9:46 AM View: Time Series

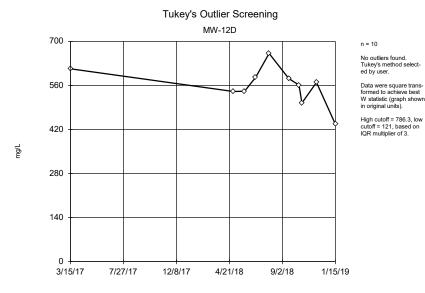
Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Sulfate Analysis Run 7/16/2019 9:46 AM View: Time Series

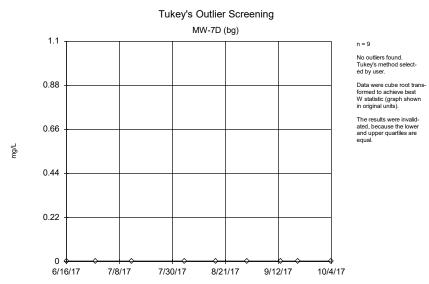
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Sulfate Analysis Run 7/16/2019 9:46 AM View: Time Series

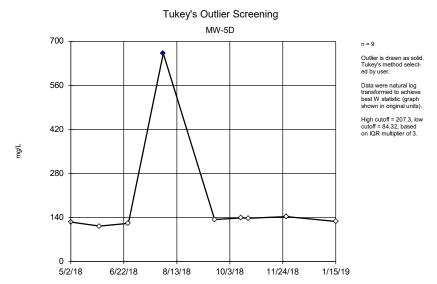
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Sulfate Analysis Run 7/16/2019 9:46 AM View: Time Series

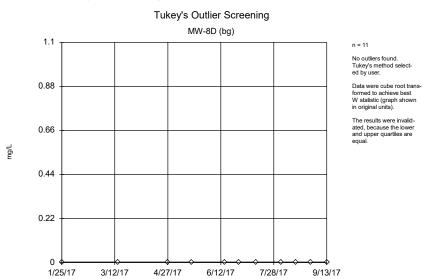
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Sulfate Analysis Run 7/16/2019 9:46 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Sulfate Analysis Run 7/16/2019 9:46 AM View: Time Series

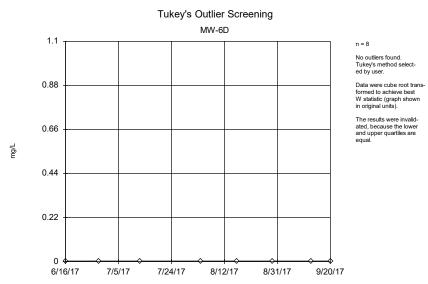
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Thallium Analysis Run 7/16/2019 9:46 AM View: Time Series

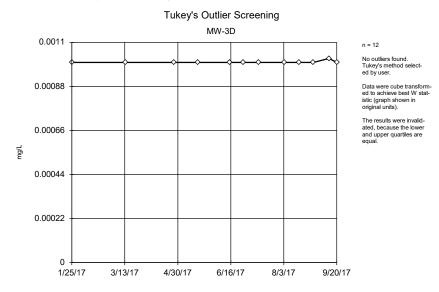
Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Sulfate Analysis Run 7/16/2019 9:46 AM View: Time Series

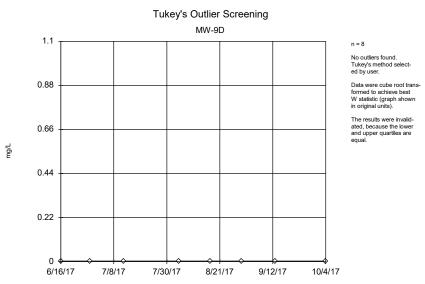
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Thallium Analysis Run 7/16/2019 9:46 AM View: Time Series

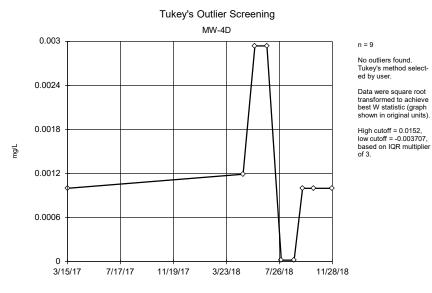
Northeastern LF Client: Geosyntec Data: Northeastern LF

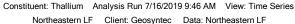

Constituent: Thallium Analysis Run 7/16/2019 9:46 AM View: Time Series

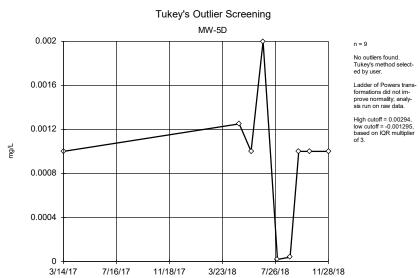
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Thallium Analysis Run 7/16/2019 9:46 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

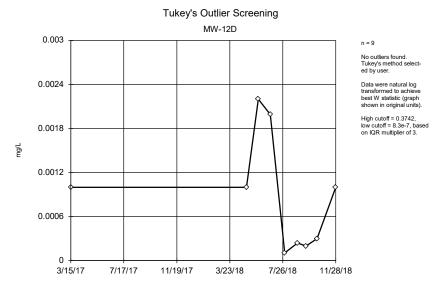

Constituent: Thallium Analysis Run 7/16/2019 9:46 AM View: Time Series

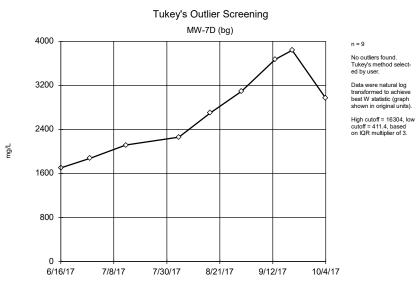

Northeastern LF Client: Geosyntec Data: Northeastern LF



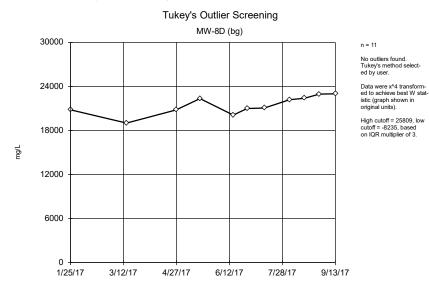
Constituent: Thallium Analysis Run 7/16/2019 9:46 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

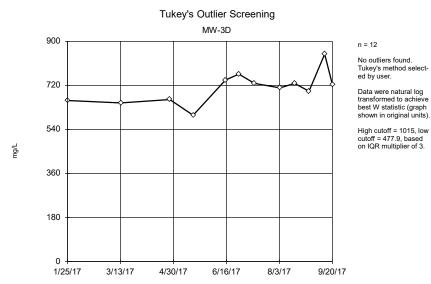



Constituent: Thallium Analysis Run 7/16/2019 9:46 AM View: Time Series

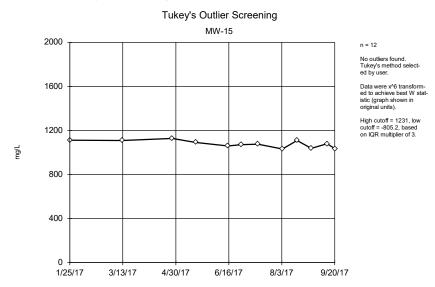
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Thallium Analysis Run 7/16/2019 9:46 AM View: Time Series

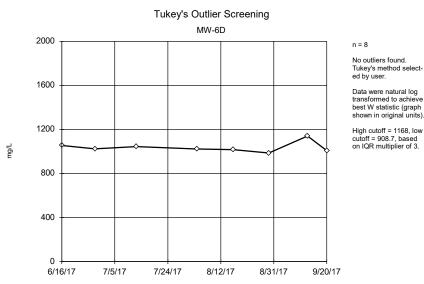
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Total Dissolved Solids [TDS] Analysis Run 7/16/2019 9:46 AM View: Time Series

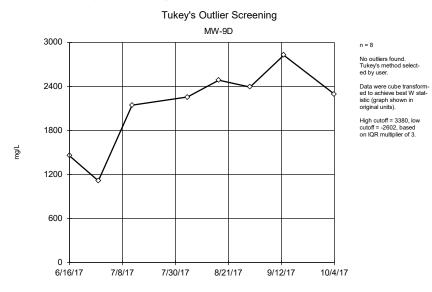
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Total Dissolved Solids [TDS] Analysis Run 7/16/2019 9:46 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

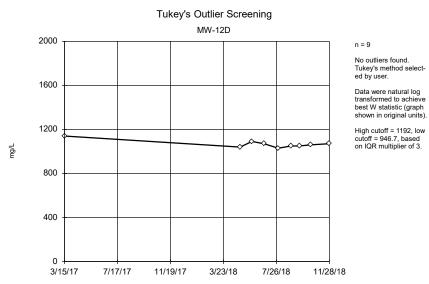

Constituent: Total Dissolved Solids [TDS] Analysis Run 7/16/2019 9:46 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

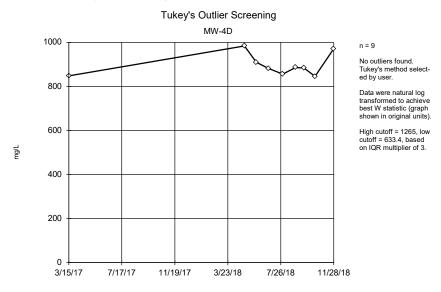

Constituent: Total Dissolved Solids [TDS] Analysis Run 7/16/2019 9:46 AM View: Time Series

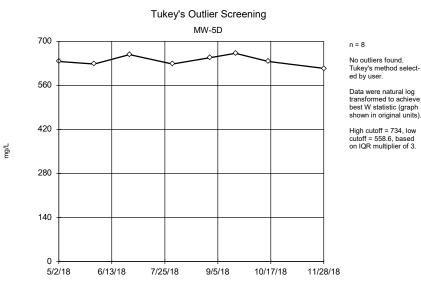
Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Total Dissolved Solids [TDS] Analysis Run 7/16/2019 9:46 AM View: Time Series


Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Total Dissolved Solids [TDS] Analysis Run 7/16/2019 9:46 AM View: Time Series


Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Total Dissolved Solids [TDS] Analysis Run 7/16/2019 9:46 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Total Dissolved Solids [TDS] Analysis Run 7/16/2019 9:46 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Total Dissolved Solids [TDS] Analysis Run 7/16/2019 9:46 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

Trend Tests Summary Table - Significant Results Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 1/2/2018, 10:28 PM

	Northeastern LF Client: Geosyr	ntec Data: No	ortheaster	n LF Printed 1/	2/2018	, 10:28	PM				
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Barium (mg/L)	MW-7D (bg)	2.758	32	25	Yes	9	0	n/a	n/a	0.01	NP
Barium (mg/L)	MW-9D	1.295	22	21	Yes	8	0	n/a	n/a	0.01	NP
Beryllium (mg/L)	MW-7D (bg)	0.003984	32	25	Yes	9	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-7D (bg)	675.4	30	25	Yes	9	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-15	-26.93	-41	-34	Yes	11	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-3D	-6.518	-38	-34	Yes	11	0	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-7D (bg)	0.1097	30	25	Yes	9	0	n/a	n/a	0.01	NP
Cobalt (mg/L)	MW-7D (bg)	0.02943	28	25	Yes	9	0	n/a	n/a	0.01	NP
Lead (mg/L)	MW-7D (bg)	0.04368	34	25	Yes	9	0	n/a	n/a	0.01	NP
Lithium (mg/L)	MW-15	-0.007242	-42	-38	Yes	12	0	n/a	n/a	0.01	NP
Molybdenum (mg/L)	MW-9D	-0.3866	-28	-21	Yes	8	0	n/a	n/a	0.01	NP
Total Dissolve Solids [TDS] (mg/L)	MW-7D (bg)	6905	30	25	Yes	9	0	n/a	n/a	0.01	NP
Total Dissolve Solids [TDS] (mg/L)	MW-8D (bg)	6248	39	34	Yes	11	0	n/a	n/a	0.01	NP

Trend Tests Summary Table - All Results

Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 1/2/2018, 10:28 PM

	Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 1/2/2016, 10:26 PM										
Constituent	Well	Slope	Calc.	Critical	Sig.	N	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	MW-7D (bg)	0	-4	-25	No	9	44.44	n/a	n/a	0.01	NP
Antimony (mg/L)	MW-8D (bg)	-0.0008848	-4	-34	No	11	9.091	n/a	n/a	0.01	NP
Antimony (mg/L)	MW-15	0	3	38	No	12	58.33	n/a	n/a	0.01	NP
Antimony (mg/L)	MW-3D	0	-7	-38	No	12	83.33	n/a	n/a	0.01	NP
Antimony (mg/L)	MW-6D	0	-6	-21	No	8	62.5	n/a	n/a	0.01	NP
Antimony (mg/L)	MW-9D	0	0	21	No	8	100	n/a	n/a	0.01	NP
Arsenic (mg/L)	MW-7D (bg)	0.01562	12	25	No	9	0	n/a	n/a	0.01	NP
Arsenic (mg/L)	MW-8D (bg)	0.001884	3	34	No	11	9.091	n/a	n/a	0.01	NP
Arsenic (mg/L)	MW-15	-0.001524	-13	-38	No	12	16.67	n/a	n/a	0.01	NP
Arsenic (mg/L)	MW-3D	-0.001668	-21	-38	No	12	50	n/a	n/a	0.01	NP
Arsenic (mg/L)	MW-6D	-0.004025	-9	-21	No	8	37.5	n/a	n/a	0.01	NP
Arsenic (mg/L)	MW-9D	0	0	21	No	8	100	n/a	n/a	0.01	NP
Barium (mg/L)	MW-7D (bg)	2.758	32	25	Yes	9	0	n/a	n/a	0.01	NP
Barium (mg/L)	MW-8D (bg)	3.65	15	34	No	11	0	n/a	n/a	0.01	NP
Barium (mg/L)	MW-15	-0.07315	-22	-38	No	12	0	n/a	n/a	0.01	NP
Barium (mg/L)	MW-3D	0.3013	28	38	No	12	0	n/a	n/a	0.01	NP
Barium (mg/L)	MW-6D	-0.1567	-14	-21	No	8	0	n/a	n/a	0.01	NP
Barium (mg/L)	MW-9D	1.295	22	21	Yes	8	0	n/a	n/a	0.01	NP
Beryllium (mg/L)	MW-7D (bg)	0.003984	32	25	Yes	9	0	n/a	n/a	0.01	NP
Beryllium (mg/L)	MW-8D (bg)	-0.0004205	-6	-34	No	11	18.18	n/a	n/a	0.01	NP
Beryllium (mg/L)	MW-15	-0.000982	-30	-38	No	12	41.67	n/a	n/a	0.01	NP
Beryllium (mg/L)	MW-3D	-0.001158	-20	-38	No	12	25	n/a	n/a	0.01	NP
Beryllium (mg/L)	MW-6D	0.0002463	7	21	No	8	0	n/a	n/a	0.01	NP
Beryllium (mg/L)	MW-9D	0.0007039	10	21	No	8	12.5	n/a	n/a	0.01	NP
Boron (mg/L)	MW-7D (bg)	-1.397	-24	-25	No	9	0	n/a	n/a	0.01	NP
Boron (mg/L)	MW-8D (bg)	0.1352	30	34	No	11	0	n/a	n/a	0.01	NP
Boron (mg/L)	MW-15	0.05173	0	38	No	12	0	n/a	n/a	0.01	NP
Boron (mg/L)	MW-3D	-0.1204	-23	-34	No	11	0	n/a	n/a	0.01	NP
Boron (mg/L)	MW-6D	0.797	4	21	No	8	0	n/a	n/a	0.01	NP
Boron (mg/L)	MW-9D	-1.731	-16	-21	No	8	0	n/a	n/a	0.01	NP
Cadmium (mg/L)	MW-7D (bg)	0.004366	17	25	No	9	11.11	n/a	n/a	0.01	NP
Cadmium (mg/L)	MW-8D (bg)	0.0006978	3	34	No	11	0	n/a	n/a	0.01	NP
Cadmium (mg/L)	MW-15	0	1	38	No	12	66.67	n/a	n/a	0.01	NP
Cadmium (mg/L)	MW-3D	-0.0009236	-24	-38	No	12	16.67	n/a	n/a	0.01	NP
Cadmium (mg/L)	MW-6D	-0.00166	-12	-21	No	8	0	n/a	n/a	0.01	NP
Cadmium (mg/L)	MW-9D	0.002329	6	21	No	8	12.5	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-7D (bg)	675.4	30	25	Yes	9	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-8D (bg)	124.3	10	34	No	11	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-15	-29.89	-16	-38	No	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-3D	44.4	26	38	No	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-6D	62.62	4	21	No	8	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-9D	537.8	16	21	No	8	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-7D (bg)	1721	18	25	No	9	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-8D (bg)	568.5	5	34	No	11	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-15	-26.93	-41	-34	Yes	11	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-3D	-6.518	-38	-34	Yes	11	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-6D	12.4	20	21	No	8	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-9D	160.8	2	21	No	8	0	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-7D (bg)	0.1097	30	25	Yes	9	0	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-8D (bg)	0.002444	12	34	No	11	18.18	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-15	-0.003672	-16	-38	No	12	8.333	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-3D	0.00314	14	38	No	12	8.333	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-6D	0.004402	6	21	No	8	0	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-9D	0.0501	16	21	No	8	0	n/a	n/a	0.01	NP
Cobalt (mg/L)	MW-7D (bg)	0.02943	28	25	Yes	9	0	n/a	n/a	0.01	NP

Trend Tests Summary Table - All Results

Printed 1/2/2018, 10:28 PM Northeastern LF Client: Geosyntec Data: Northeastern LF Constituent Well Slope Calc. Critica Sig. Ν %NDs Normality Xform Alpha Method Cobalt (mg/L) MW-8D (bg) 0 34 No 11 0.01 NP Cobalt (mg/L) MW-15 -0.006205 -23 -38 Nο 12 16 67 n/a n/a 0.01 NP Cobalt (mg/L) MW-3D -0.00392 -15 -38 No 12 16.67 0.01 NP n/a n/a Cobalt (mg/L) MW-6D -0.00297 -8 -21 No 8 Ω n/a n/a 0.01 NP Cobalt (mg/L) MW-9D 0.01751 18 21 No n/a n/a 0.01 ΝP Combined Radium 226 + 228 (pCi/L) MW-7D (bg) -0.7352-4 -21 No 8 0 n/a n/a 0.01 NP Combined Radium 226 + 228 (pCi/L) MW-8D (bg) 2.841 8 21 No 0 0.01 NP n/a n/a Combined Radium 226 + 228 (pCi/L) MW-15 -0.09224 -38 No 12 0 n/a n/a 0.01 NP Combined Radium 226 + 228 (pCi/L) MW-3D 0.1043 0 NP 3 34 No 11 0.01 n/a n/a NP Combined Radium 226 + 228 (pCi/L) MW-6D -1.969 -10 -21 No 8 0 n/a 0.01 Combined Radium 226 + 228 (pCi/L) 3 0 NΡ MW-9D 4.147 NaN NaN No n/a n/a NaN Fluoride (mg/L) MW-7D (bg) 3.568 14 25 No 9 11.11 n/a n/a 0.01 NP Fluoride (mg/L) MW-8D (ba) 0 6 34 No 11 90.91 0.01 NP n/a n/a Fluoride (mg/L) MW-15 -0.6635 -35 -38 No 12 0 0.01 NΡ MW-3D -7 12 NΡ Fluoride (mg/L) -38 No 50 n/a n/a 0.01 Fluoride (mg/L) MW-6D -0.4033 -9 -21 No 8 25 n/a 0.01 ΝP Fluoride (mg/L) MW-9D -1.691 -5 -21 No 8 25 NP n/a n/a 0.01 Lead (mg/L) MW-7D (ba) 0.04368 n/a MW-8D (ba) -4 Lead (mg/L) -0.002385 -34 Nο 11 18 18 n/a n/a 0.01 NP Lead (mg/L) MW-15 -5 -38 No 12 50 n/a n/a 0.01 NΡ Lead (mg/L) MW-3D -7 -38 Nο 12 58.33 n/a n/a 0.01 NP Lead (mg/L) MW-6D -0.003664 -8 -21 No 0 0.01 n/a n/a Lead (mg/L) MW-9D 0.03008 18 21 No 8 0 n/a n/a 0.01 NP Lithium (mg/L) MW-7D (bg) 0.2229 19 25 No 0 n/a n/a 0.01 NΡ Lithium (mg/L) MW-8D (bg) -0.05141 -2 -34 No 11 0 n/a n/a 0.01 NP MW-15 0 ΝP Lithium (mg/L) -0.007242 -42 -38 Yes 12 n/a n/a 0.01 Lithium (mg/L) MW-3D -0.00293 -15 -38 No 12 Λ n/a n/a 0.01 NP Lithium (mg/L) MW-6D -0.01464 -6 -21 No 0.01 NΡ n/a n/a Lithium (mg/L) MW-9D 0.05519 18 21 No 8 0 n/a 0.01 NP Mercury (ma/L) MW-7D (bg) 0.00008047 18 25 No 11.11 0.01 NP n/a n/a Mercury (mg/L) MW-8D (bg) 0.00000869 14 34 No 11 27 27 n/a n/a 0.01 NP NP Mercury (ma/L) MW-15 -0.00001855 -33 -38 No 12 33.33 n/a 0.01 n/a MW-3D 4 38 No 12 75 NP Mercury (mg/L) 0.01 MW-6D 0.00004557 No 8 NΡ Mercury (mg/L) 10 50 n/a 0.01 21 n/a Mercury (mg/L) MW-9D -0.0000112 -6 -21 No 8 25 n/a 0.01 NΡ 0.06326 9 0 NP Molybdenum (mg/L) MW-7D (ba) 24 25 Nο 0.01 n/a n/a Molybdenum (mg/L) MW-8D (bg) 2 34 No 11 NP 0.0002808 MW-15 0.05851 12 0 Molybdenum (mg/L) 18 38 Nο n/a n/a 0.01 NP NP Molybdenum (mg/L) MW-3D -0.003103 -20 -34 No 11 18.18 n/a n/a 0.01 Molybdenum (mg/L) MW-6D 0.00008302 0 21 No 8 0 n/a n/a 0.01 NP Molybdenum (mg/L) MW-9D -0.3866 -28 -21 Yes 0 n/a n/a 0.01 NΡ 9 n pH, field (SU) MW-7D (ba) -14 -6 -25 Nο n/a n/a 0.01 NP NP pH, field (SU) MW-8D (bg) -0.8495 -24 -25 No n/a n/a 0.01 pH, field (SU) MW-15 -0.6373 -9 -30 No 10 0 n/a n/a 0.01 NP pH, field (SU) MW-3D -1.376 -25 -30 10 0 0.01 No n/a n/a pH, field (SU) MW-6D -1.72 -11 -21 No 8 0 n/a n/a 0.01 NP pH, field (SU) MW-9D -0.1912 -2 -21 No 8 0 n/a 0.01 NP n/a Selenium (mg/L) MW-7D (bg) 0.05794 16 25 No 9 0 n/a 0.01 NP Selenium (mg/L) MW-8D (bg) 0.00008946 3 34 No 11 9.091 n/a n/a 0.01 NP Selenium (mg/L) MW-15 -0.001645 -5 -38 No 12 16.67 n/a n/a 0.01 NP NP Selenium (mg/L) MW-3D 0 -5 -38 91.67 No 12 n/a n/a 0.01 Selenium (mg/L) MW-6D 0 21 No 8 0.01 ΝP 100 Selenium (mg/L) -0.005692 MW-9D -9 -21 Nο 8 12.5 n/a n/a 0.01 NP Sulfate (mg/L) MW-7D (bg) 1994 22 25 No 9 0 n/a n/a 0.01 NP Sulfate (mg/L) MW-8D (ba) 16.4 4 34 11 0 0.01 NP

No

n/a

n/a

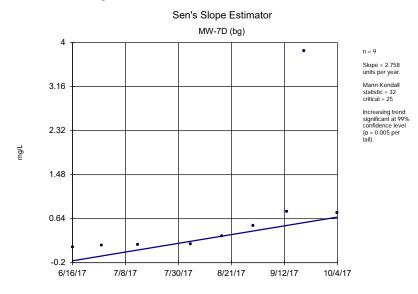
Trend Tests Summary Table - All Results

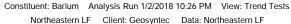
		Northeastern LF	Client: Geosyntec	Data: No	rtheastern	LF Printed 1/	2/2018	, 10:28	PM				
Constituent		<u>Well</u>	Sk	ope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Sulfate (mg/L)		MW-15	66	.87	14	38	No	12	0	n/a	n/a	0.01	NP
Sulfate (mg/L)		MW-3D	70	.21	30	38	No	12	0	n/a	n/a	0.01	NP
Sulfate (mg/L)		MW-6D	-1	1.5	-2	-21	No	8	0	n/a	n/a	0.01	NP
Sulfate (mg/L)		MW-9D	12	46	14	21	No	8	0	n/a	n/a	0.01	NP
Thallium (mg/L)		MW-7D (bg)	0		0	25	No	9	100	n/a	n/a	0.01	NP
Thallium (mg/L)		MW-8D (bg)	0		0	34	No	11	100	n/a	n/a	0.01	NP
Thallium (mg/L)		MW-15	0		7	38	No	12	91.67	n/a	n/a	0.01	NP
Thallium (mg/L)		MW-3D	0		-9	-38	No	12	91.67	n/a	n/a	0.01	NP
Thallium (mg/L)		MW-6D	0		0	21	No	8	100	n/a	n/a	0.01	NP
Thallium (mg/L)		MW-9D	0		0	21	No	8	100	n/a	n/a	0.01	NP
Total Dissolve S	olids [TDS] (mg/L)	MW-7D (bg)	69	05	30	25	Yes	9	0	n/a	n/a	0.01	NP
Total Dissolve S	olids [TDS] (mg/L)	MW-8D (bg)	62	48	39	34	Yes	11	0	n/a	n/a	0.01	NP
Total Dissolve So	lids [TDS] (mg/L)	MW-15	-11	11.8	-31	-38	No	12	0	n/a	n/a	0.01	NP
Total Dissolve So	lids [TDS] (mg/L)	MW-3D	15	3.5	23	38	No	12	0	n/a	n/a	0.01	NP
Total Dissolve So	lids [TDS] (mg/L)	MW-6D	-13	35.2	-7	-18	No	7	0	n/a	n/a	0.01	NP
Total Dissolve So	lids [TDS] (mg/L)	MW-9D	44	74	18	21	No	8	0	n/a	n/a	0.01	NP

Trend Test Summary Table - New Wells Significant Results Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 3/6/2019, 10:05 AM

	Northea	astern Lr Chert. G	eosymec	Data. North	casiciii	LF	Fillited 3/	0/2019, 10.0	J AIVI		
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Cadmium (mg/L)	MW-5D	-0.0006039	-29	-25	Yes	9	33.33	n/a	n/a	0.01	NP
Cobalt (mg/L)	MW-5D	-0.001422	-28	-25	Yes	9	11.11	n/a	n/a	0.01	NP

Trend Test Summary Table - New Wells All Results

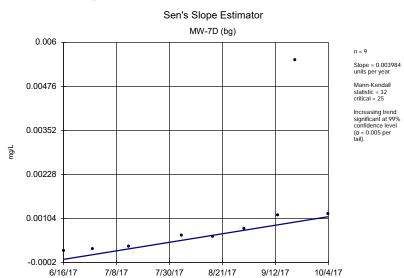

	ı	Northeastern LF (Client: Geosynteo	Data: N	Data: Northeastern LF		Printed	d 3/6/2019, 1	0:05 AM		
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	MW-4D	-0.0002888	-12	-25	No	9	44.44	n/a	n/a	0.01	NP
Antimony (mg/L)	MW-12D	-0.002972	-14	-25	No	9	44.44	n/a	n/a	0.01	NP
Antimony (mg/L)	MW-5D	-0.0005811	-17	-25	No	9	33.33	n/a	n/a	0.01	NP
Arsenic (mg/L)	MW-4D	-0.002245	-17	-25	No	9	22.22	n/a	n/a	0.01	NP
Arsenic (mg/L)	MW-12D	0.004484	9	25	No	9	22.22	n/a	n/a	0.01	NP
Arsenic (mg/L)	MW-5D	-0.001798	-19	-25	No	9	33.33	n/a	n/a	0.01	NP
Barium (mg/L)	MW-4D	-0.001659	-2	-21	No	8	0	n/a	n/a	0.01	NP
Barium (mg/L)	MW-12D	0.01387	6	25	No	9	0	n/a	n/a	0.01	NP
Barium (mg/L)	MW-5D	-0.0252	-6	-25	No	9	0	n/a	n/a	0.01	NP
Beryllium (mg/L)	MW-4D	0	-8	-25	No	9	55.56	n/a	n/a	0.01	NP
Beryllium (mg/L)	MW-12D	-0.0003029	-14	-25	No	9	33.33	n/a	n/a	0.01	NP
Beryllium (mg/L)	MW-5D	-0.0001632	-16	-25	No	9	55.56	n/a	n/a	0.01	NP
Boron (mg/L)	MW-4D	-0.1057	-9	-25	No	9	0	n/a	n/a	0.01	NP
Boron (mg/L)	MW-12D	1.148	18	25	No	9	0	n/a	n/a	0.01	NP
Boron (mg/L)	MW-5D	0.1092	10	25	No	9	0	n/a	n/a	0.01	NP
Cadmium (mg/L)	MW-4D	-0.0004675	-15	-25	No	9	33.33	n/a	n/a	0.01	NP
Cadmium (mg/L)	MW-12D	-0.0004574	-10	-25	No	9	22.22	n/a	n/a	0.01	NP
Cadmium (mg/L)	MW-5D	-0.0006039	-29	-25	Yes	9	33.33	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-4D	-8.826	-4	-30	No	10	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-12D	-15.21	-11	-30	No	10	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-5D	19.12	29	30	No	10	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-4D	8.132	13	30		10	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-12D	-1.25	-5	-25		9	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-5D	1.14	6	25		9	0	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-4D	-0.002411	-17	-25		9	22.22	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-12D	-0.0004559	-3	-25		9	22.22	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-5D	-0.0003455	-16	-25		9	11.11	n/a	n/a	0.01	NP
Cobalt (mg/L)	MW-4D	-0.001361	-20	-25		9	11.11	n/a	n/a	0.01	NP
Cobalt (mg/L)	MW-12D	-0.000945	-12	-25		9	11.11	n/a	n/a	0.01	NP
Cobalt (mg/L)	MW-5D	-0.001422	-28	-25		9	11.11	n/a	n/a	0.01	NP
Combined Radium 226 + 228 (pCi/L)	MW-4D	0.6447	3	21		8	0	n/a	n/a	0.01	NP
Combined Radium 226 + 228 (pCi/L)	MW-12D	2.756	8	21		8	0	n/a	n/a	0.01	NP
Combined Radium 226 + 228 (pCi/L)	MW-5D	1.995	8	21		8	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	MW-4D	0	-12	-30		10	70	n/a	n/a	0.01	NP
Fluoride (mg/L)	MW-12D	0.3145	11	30		10	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	MW-5D	-0.233	-2	-25		9	0	n/a	n/a	0.01	NP
Lead (mg/L)	MW-4D	-0.002517	-17	-25		9	33.33	n/a	n/a	0.01	NP
Lead (mg/L)	MW-12D	-0.001281	-5	-25		9	22.22	n/a	n/a	0.01	NP
Lead (mg/L)	MW-5D	-0.002233	-21	-25		9	22.22	n/a	n/a	0.01	NP
Lithium (mg/L)	MW-4D	-0.001623	-8	-21		8	0	n/a	n/a	0.01	NP
Lithium (mg/L)	MW-12D	-0.007833	-18	-21		8	0	n/a	n/a	0.01	NP
Lithium (mg/L)	MW-5D	-0.004334	-13	-21		8	0	n/a	n/a	0.01	NP
Mercury (mg/L)	MW-4D	0.004004	-2	-25		9	88.89	n/a	n/a	0.01	NP
Mercury (mg/L)	MW-12D	-0.00001049	-17	-25		9	55.56	n/a	n/a	0.01	NP
Mercury (mg/L)	MW-5D	0.00001040	-2	-25		9	88.89	n/a	n/a	0.01	NP
Molybdenum (mg/L)	MW-4D	-0.001125	-10	-21		8	0	n/a	n/a	0.01	NP
Molybdenum (mg/L)	MW-12D	0.1663	6	21		8	0	n/a	n/a	0.01	NP
Molybdenum (mg/L)	MW-5D	-0.001715	-10	-21		8	12.5	n/a	n/a	0.01	NP
pH, field (SU)	MW-4D	0.2607	5	30		10	0	n/a	n/a	0.01	NP
	MW-12D	1.929	5 15	30		10	0			0.01	NP NP
pH, field (SU)		0.5368	4	30		10	0	n/a	n/a		NP NP
pH, field (SU)	MW-5D MW-4D	-0.003066	-20	-25				n/a	n/a	0.01	NP NP
Selenium (mg/L)						9	44.44	n/a	n/a	0.01	
Selenium (mg/L)	MW-12D	-0.001601	-10 -23	-25 -25		9	11.11	n/a	n/a n/a	0.01	NP NP
Selenium (mg/L)	MW-5D	-0.002613	-23 21	-25			33.33	n/a		0.01	
Sulfate (mg/L)	MW-4D	42.98	21	30	No	10	0	n/a	n/a	0.01	NP


Trend Test Summary Table - New Wells All Results Page 2

			Northeas	tern LF	Client:	Geosynt	tec Da	ta: Northeas	tern LF		
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Sulfate (mg/L)	MW-12D	-60.67	-14	-25	No	9	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	MW-5D	29.07	12	25	No	9	0	n/a	n/a	0.01	NP
Thallium (mg/L)	MW-4D	0	-2	-25	No	9	44.44	n/a	n/a	0.01	NP
Thallium (mg/L)	MW-12D	-0.0005747	-9	-25	No	9	33.33	n/a	n/a	0.01	NP
Thallium (mg/L)	MW-5D	0	3	25	No	9	55.56	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-4D	-11.06	-2	-25	No	9	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-12D	-36.65	-4	-25	No	9	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-5D	-14.04	-2	-21	No	8	0	n/a	n/a	0.01	NP

Sanitas™ v.9.6.00 Groundwater Stats Consulting. UG

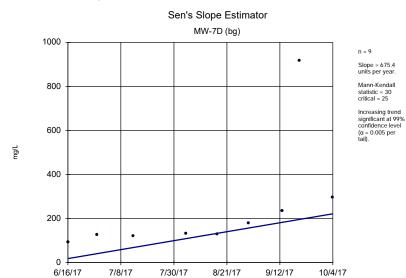
Sanitas™ v.9.6.00 Groundwater Stats Consulting. UG


MW-9D 0.5 n = 8 Slope = 1.295 units per year. 0.3992 Mann-Kendall statistic = 22 critical = 21 Increasing trend significant at 99% confidence level 0.2984 (α = 0.005 per tail). mg/L 0.1976 0.0968 -0.004 6/16/17 7/8/17 7/30/17 8/21/17 9/12/17 10/4/17

Sen's Slope Estimator

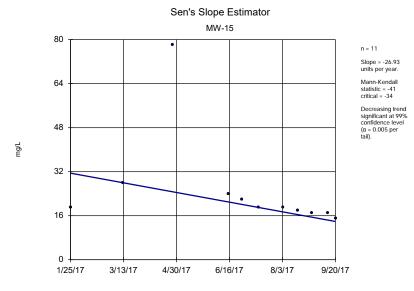
Constituent: Barium Analysis Run 1/2/2018 10:26 PM View: Trend Tests

Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.00 Groundwater Stats Consulting. UG

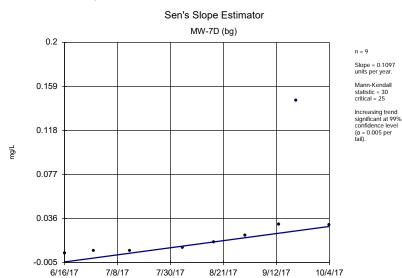
Constituent: Beryllium Analysis Run 1/2/2018 10:26 PM View: Trend Tests

Northeastern LF Client: Geosyntec Data: Northeastern LF

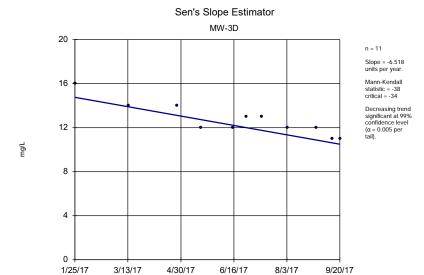

Sanitas™ v.9.6.00 Groundwater Stats Consulting. UG

Constituent: Calcium Analysis Run 1/2/2018 10:26 PM View: Trend Tests
Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.00 Groundwater Stats Consulting. UG

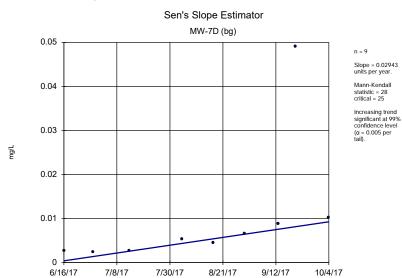

Sanitas™ v.9.6.00 Groundwater Stats Consulting. UG

Constituent: Chloride Analysis Run 1/2/2018 10:26 PM View: Trend Tests


Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.00 Groundwater Stats Consulting. UG

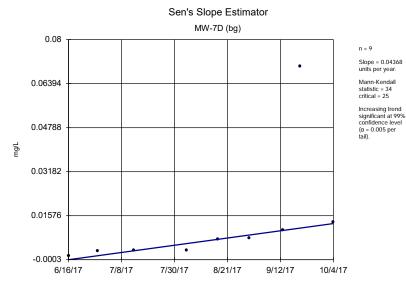
Constituent: Chromium Analysis Run 1/2/2018 10:26 PM View: Trend Tests


Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Chloride Analysis Run 1/2/2018 10:26 PM View: Trend Tests

Northeastern LF Client: Geosyntec Data: Northeastern LF

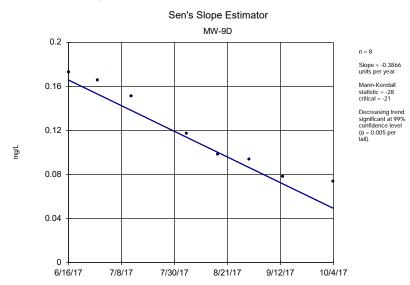
Sanitas™ v.9.6.00 Groundwater Stats Consulting. UG

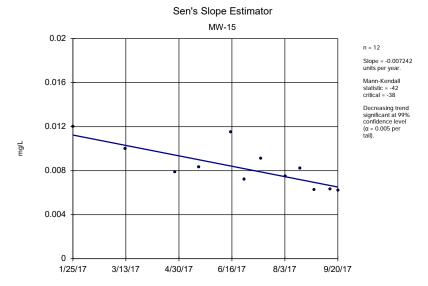


Constituent: Cobalt Analysis Run 1/2/2018 10:26 PM View: Trend Tests

Northeastern LF Client: Geosyntec Data: Northeastern LF

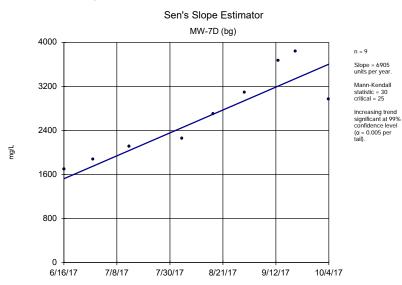
Sanitas™ v.9.6.00 Groundwater Stats Consulting. UG


Sanitas™ v.9.6.00 Groundwater Stats Consulting. UG

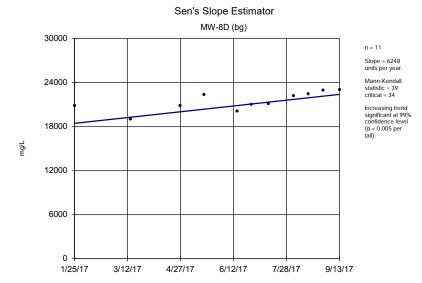

Constituent: Lead Analysis Run 1/2/2018 10:26 PM View: Trend Tests

Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.00 Groundwater Stats Consulting. UG


Constituent: Molybdenum Analysis Run 1/2/2018 10:27 PM View: Trend Tests
Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Lithium Analysis Run 1/2/2018 10:26 PM View: Trend Tests


Northeastern LF Client: Geosyntec Data: Northeastern LF

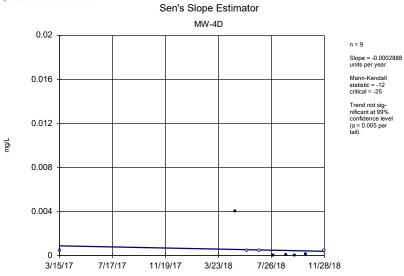
Sanitas™ v.9.6.00 Groundwater Stats Consulting. UG

Constituent: Total Dissolve Solids [TDS] Analysis Run 1/2/2018 10:27 PM View: Trend Tests

Northeastern LF Client: Geosyntec Data: Northeastern LF

Trend Test Summary Table - New Wells Significant Results Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 3/6/2019, 10:05 AM

	IN	ortneastern LF Clie	nt: Geosynt	iec Data: r	vortnea	stern LF	Printe	3/6/2019,	IU:US AIVI		
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Cadmium (mg/L)	MW-5D	-0.0006039	-29	-25	Yes	9	33.33	n/a	n/a	0.01	NP
Cobalt (mg/L)	MW-5D	-0.001422	-28	-25	Yes	9	11.11	n/a	n/a	0.01	NP


Trend Test Summary Table - New Wells All Results

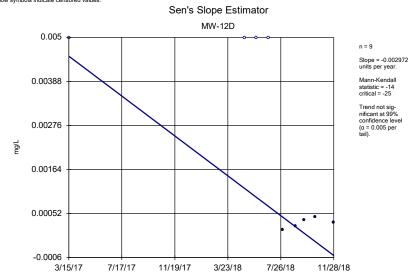
ContamentMind Martinany (right)Mind Martinany (right)Mind Martinan		Northe	Northeastern LF Client: Geosyntec		Data: Northeastern LF			Printed 3	/6/2019, 10:0			
Amount prophy of the control of the contro	Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Δεκενετικρό	Antimony (mg/L)	MW-4D	-0.0002888	-12	-25	No !	9	44.44	n/a	n/a	0.01	NP
Personnering Mir-40 0.002245 17	Antimony (mg/L)	MW-12D	-0.002972	-14	-25	No s	9	44.44	n/a	n/a	0.01	NP
Persistangle Pe	Antimony (mg/L)	MW-5D	-0.0005811	-17	-25	No !	9	33.33	n/a	n/a	0.01	NP
Δυευπορού Δυνευπορού Δυν	Arsenic (mg/L)	MW-4D	-0.002245	-17	-25	No !	9	22.22	n/a	n/a	0.01	NP
Description of Desc	Arsenic (mg/L)	MW-12D	0.004484	9	25	No !	9	22.22	n/a	n/a	0.01	NP
DescriptionInvestigationInvestig	Arsenic (mg/L)	MW-5D	-0.001798	-19	-25	No !	9	33.33	n/a	n/a	0.01	NP
Designation March	Barium (mg/L)	MW-4D	-0.001659	-2	-21	No 8	8	0	n/a	n/a	0.01	NP
Inspiration (might)Inspiration (Barium (mg/L)	MW-12D	0.01387	6	25	No !	9	0	n/a	n/a	0.01	NP
Regular implication of the Service of	Barium (mg/L)	MW-5D	-0.0252	-6	-25	No !	9	0	n/a	n/a	0.01	NP
between the problems of the problems o	Beryllium (mg/L)	MW-4D	0	-8	-25	No !	9	55.56	n/a	n/a	0.01	NP
Bosn (region of the section of th	Beryllium (mg/L)	MW-12D	-0.0003029	-14	-25	No !	9	33.33	n/a	n/a	0.01	NP
Boson (mgL) May-R2D 1.48	Beryllium (mg/L)	MW-5D	-0.0001632	-16	-25	No !	9	55.56	n/a	n/a	0.01	NP
Book inqui_1 May-Nation M	Boron (mg/L)	MW-4D	-0.1057	-9	-25	No !	9	0	n/a	n/a	0.01	NP
Communiment Marcian	Boron (mg/L)	MW-12D	1.148	18	25	No !	9	0	n/a	n/a	0.01	NP
Caminamingningningningningningningningningning	Boron (mg/L)	MW-5D	0.1092	10	25	No !	9	0	n/a	n/a	0.01	NP
Caciming	Cadmium (mg/L)	MW-4D	-0.0004675	-15	-25	No !	9	33.33	n/a	n/a	0.01	NP
Contain magnit	Cadmium (mg/L)	MW-12D	-0.0004574	-10	-25	No !	9	22.22	n/a	n/a	0.01	NP
Calcium mgr)	Cadmium (mg/L)	MW-5D	-0.0006039	-29	-25	Yes	9	33.33	n/a	n/a	0.01	NP
Calibrating MW-4D	Calcium (mg/L)	MW-4D	-8.826	-4	-30	No	10	0	n/a	n/a	0.01	NP
Chloride (mg/L)	Calcium (mg/L)	MW-12D	-15.21	-11	-30	No	10	0	n/a	n/a	0.01	NP
Chioride (mg/L)	Calcium (mg/L)	MW-5D	19.12	29	30	No	10	0	n/a	n/a	0.01	NP
Chichide (mgl.)	Chloride (mg/L)	MW-4D	8.132	13	30	No	10	0	n/a	n/a	0.01	NP
Chromium (mgL)	Chloride (mg/L)	MW-12D	-1.25	-5	-25	No !	9	0	n/a	n/a	0.01	NP
Chromium (mg)	Chloride (mg/L)	MW-5D	1.14	6	25	No !	9	0	n/a	n/a	0.01	NP
Chromium (mg/L)	Chromium (mg/L)	MW-4D	-0.002411	-17	-25	No !	9	22.22	n/a	n/a	0.01	NP
Cobalt (mg)L) MW-4D -0.01361 -20 -25 No 9 11.1 r/a n/a 0.01 NP Cobalt (mg/L) MW-12D -0.000945 1.2 -25 No 9 11.1 r/a n/a 0.01 NP Cobalt (mg/L) MW-5D -0.001422 -28 -25 Yes 11.1 r/a n/a 0.01 NP Cobalt (mg/L) MW-5D -0.00142 28 21 No 8 0 n/a n/a 0.01 NP Combined Radium 226 + 228 (pCilL) MW-12D 2.756 8 21 No 8 0 n/a n/a 0.01 NP Combined Radium 226 + 228 (pCilL) MW-12D 0.395 8 21 No 8 0	Chromium (mg/L)	MW-12D	-0.0004559	-3	-25	No !	9	22.22	n/a	n/a	0.01	NP
Cobalt (mg)L) MW-12D -0.0094S -12 b -25 b -80 b -11 b -10 b -0.001 b -0.0014Z -28 b -25 b -80 b -11 b -10 b -0.001 b -0.0014Z -0.0014Z -28 b -25 b -90 b -11 b -10 b -0.001 b -0.0014Z -0.0014Z -28 b -25 b -90 b -11 b -10 b -0.0014Z	Chromium (mg/L)	MW-5D	-0.0003455	-16	-25	No !	9	11.11	n/a	n/a	0.01	NP
Cobalt (mg/L) MW-5D -0.001422 -2.8 -2.5 Ves -9 1.11 na na 0.01 NP Combined Radium 226 + 228 (pC/L) MW-4D 0.6447 3 21 No 8 0 na 0.0 0.0 N Combined Radium 226 + 228 (pC/L) MW-1D 2.756 8 21 No 8 0 na na 0.01 N Combined Radium 226 + 228 (pC/L) MW-4D 1.995 8 21 No 8 0 na na 0.01 na 0.0 na	Cobalt (mg/L)	MW-4D	-0.001361	-20	-25	No !	9	11.11	n/a	n/a	0.01	NP
Combined Radium 226 + 228 (pCl/L) MW-4D 0.6447 3. 21 No 8. 0. na na 0.01 NP Combined Radium 226 + 228 (pCl/L) MW-12D 2.7568 8 21 No 8 0 na na 0.01 NP Combined Radium 226 + 228 (pCl/L) MW-5D 1.995 8 21 No 8 0 na na 0.01 NP Fluoride (mg/L) MW-12D 0.3145 11 3.0 No 9 0 na na 0.01 NP Eludide (mg/L) MW-4D -0.233 -2 -25 No 9 3.33 na na 0.01 NP Lead (mg/L) MW-4D -0.00231 -1 -25 No 9 2.22 na na 0.01 NP Lead (mg/L) MW-4D -0.00233 -21 -25 No 9 2.22 na na 0.01 NP Lead (Cobalt (mg/L)	MW-12D	-0.000945	-12	-25	No !	9	11.11	n/a	n/a	0.01	NP
Combined Radium 226 + 228 (pCi/L) MW-12D 2.756 8 21 No 8 0 n/a n/a 0.01 NP Combined Radium 226 + 228 (pCi/L) MW-5D 1.995 8 21 No 8 0 n/a n/a 0.01 NP Fluoride (mg/L) MW-4D 0 -12 30 No 10 70 n/a n/a 0.01 NP Fluoride (mg/L) MW-12D 0.3145 11 30 No 10 0 n/a n/a 0.01 NP Fluoride (mg/L) MW-4D -0.0231 -17 -25 No 9 0 n/a n/a 0.01 NP Lead (mg/L) MW-4D -0.02213 -17 -25 No 9 22.22 n/a n/a 0.01 NP Lead (mg/L) MW-4D -0.002233 -21 No 8 0 n/a n/a 0.0 N N 10 N <td< td=""><td>Cobalt (mg/L)</td><td>MW-5D</td><td>-0.001422</td><td>-28</td><td>-25</td><td>Yes</td><td>9</td><td>11.11</td><td>n/a</td><td>n/a</td><td>0.01</td><td>NP</td></td<>	Cobalt (mg/L)	MW-5D	-0.001422	-28	-25	Yes	9	11.11	n/a	n/a	0.01	NP
Combined Radium 226 + 228 (pC/IL) MW-5D 1.995 8 21 No 8 0 nia nia nia 0.0 N Fluoride (mg/L) MW-4D 0 -12 -30 No 10 70 nia nia 0.01 NP Fluoride (mg/L) MW-12D 0.3145 11 30 No 10 0 nia nia 0.01 NP Lead (mg/L) MW-4D -0.002517 -25 No 9 0 nia nia 0.01 NP Lead (mg/L) MW-12D -0.00231 -21 -25 No 9 22.22 nia 0.01 NP Lead (mg/L) MW-12D -0.00233 -21 -25 No 9 22.22 nia 0.01 NP Lead (mg/L) MW-12D -0.00233 -21 -25 No 9 8.22 nia nia 0.01 NP Lithium (mg/L) MW-12D -0.001633 <td>Combined Radium 226 + 228 (pCi/L)</td> <td>MW-4D</td> <td>0.6447</td> <td>3</td> <td>21</td> <td>No 8</td> <td>8</td> <td>0</td> <td>n/a</td> <td>n/a</td> <td>0.01</td> <td>NP</td>	Combined Radium 226 + 228 (pCi/L)	MW-4D	0.6447	3	21	No 8	8	0	n/a	n/a	0.01	NP
Fluoride (mg/L) MW-4D 0 -12 -30 No 10 70 r/a r/a 0.01 NP Fluoride (mg/L) MW-12D 0.3145 11 30 No 10 0 r/a r/a 0.01 NP Fluoride (mg/L) MW-5D -0.233 -2 -25 No 9 3.33 r/a r/a 0.01 NP Lead (mg/L) MW-4D -0.002171 -17 -25 No 9 3.33 r/a n/a 0.01 NP Lead (mg/L) MW-4D -0.002233 -21 -25 No 9 22.22 r/a n/a 0.01 NP Lead (mg/L) MW-4D -0.002233 -21 -25 No 9 22.22 r/a n/a 0.01 NP Lead (mg/L) MW-4D -0.00233 -21 -25 No 8 0 r/a n/a 0.01 NP Lead (mg/L) MW-4D <td>Combined Radium 226 + 228 (pCi/L)</td> <td>MW-12D</td> <td>2.756</td> <td>8</td> <td>21</td> <td>No 8</td> <td>8</td> <td>0</td> <td>n/a</td> <td>n/a</td> <td>0.01</td> <td>NP</td>	Combined Radium 226 + 228 (pCi/L)	MW-12D	2.756	8	21	No 8	8	0	n/a	n/a	0.01	NP
Fluoride (mg/L) MW-12D 0.3145 11 30 No 10 0 n/a n/a 0.01 NP Fluoride (mg/L) MW-5D 0.233 -2 -25 No 9 0 n/a n/a 0.01 NP Lead (mg/L) MW-4D -0.002517 -17 -25 No 9 2.22 n/a n/a 0.01 NP Lead (mg/L) MW-4D -0.001281 -5 -25 No 9 2.22 n/a n/a 0.01 NP Lead (mg/L) MW-4D -0.00233 -21 -25 No 9 2.22 n/a n/a 0.01 NP Lead (mg/L) MW-4D -0.00233 -21 -25 No 9 2.22 n/a n/a 0.01 NP Lithium (mg/L) MW-12D -0.007833 -18 -21 No 8 0 n/a n/a 0.01 NP Lithium (mg/L) MW-4	Combined Radium 226 + 228 (pCi/L)	MW-5D	1.995	8	21	No 8	8	0	n/a	n/a	0.01	NP
Fluoride (mg/L) MW-5D -0.233 -2 -25 No 9 0 n/a n/a 0.01 NP Lead (mg/L) MW-4D -0.002517 -17 -25 No 9 3.33 n/a n/a 0.01 NP Lead (mg/L) MW-12D -0.001281 -5 -25 No 9 2.22 n/a n/a 0.01 NP Lead (mg/L) MW-5D -0.002233 -21 -25 No 9 2.22 n/a n/a 0.01 NP Lithium (mg/L) MW-4D -0.001623 -8 -21 No 8 0 n/a n/a 0.01 NP Lithium (mg/L) MW-4D -0.007833 -18 -21 No 8 0 n/a n/a 0.01 NP Mercury (mg/L) MW-4D -0.004334 -13 -21 No 8 9 n/a n/a 0.01 NP Mercury (mg/L)	Fluoride (mg/L)	MW-4D	0	-12	-30	No	10	70	n/a	n/a	0.01	NP
Lead (mg/L) MW-4D -0.002517 -17 -25 No 9 33.33 r/a r/a 0.01 NP Lead (mg/L) MW-12D -0.001281 -5 -25 No 9 22.22 r/a n/a 0.01 NP Lead (mg/L) MW-5D -0.002233 -21 -25 No 9 22.22 r/a n/a 0.01 NP Lithium (mg/L) MW-4D -0.001623 -8 -21 No 8 0 n/a n/a 0.01 NP Lithium (mg/L) MW-12D -0.007833 -18 -21 No 8 0 n/a n/a 0.01 NP Lithium (mg/L) MW-4D 0 -2 -25 No 8 0 n/a 0.01 NP Mercury (mg/L) MW-4D 0 -0.001125 -17 -25 No 9 8.89 n/a n/a 0.01 NP Molybdenum (mg/L) <t< td=""><td>Fluoride (mg/L)</td><td>MW-12D</td><td>0.3145</td><td>11</td><td>30</td><td>No</td><td>10</td><td>0</td><td>n/a</td><td>n/a</td><td>0.01</td><td>NP</td></t<>	Fluoride (mg/L)	MW-12D	0.3145	11	30	No	10	0	n/a	n/a	0.01	NP
Lead (mg/L)	Fluoride (mg/L)	MW-5D	-0.233	-2	-25	No !	9	0	n/a	n/a	0.01	NP
Lead (mg/L) MW-5D -0.002233 -21 -25 No 9 22.22 r/a n/a 0.01 NP Lithium (mg/L) MW-4D -0.001623 -8 -21 No 8 0 n/a n/a 0.01 NP Lithium (mg/L) MW-12D -0.007833 -18 -21 No 8 0 n/a n/a 0.01 NP Lithium (mg/L) MW-5D -0.004334 -13 -21 No 8 0 n/a n/a 0.01 NP Mercury (mg/L) MW-4D -0.0001049 -17 -25 No 9 88.89 n/a n/a 0.01 NP Mercury (mg/L) MW-5D -0.001125 -10 -21 No 9 88.89 n/a n/a 0.01 NP Molybdenum (mg/L) MW-4D -0.001715 -10 -21 No 8 0 n/a n/a 0.01 NP Molybdenum (mg/	Lead (mg/L)	MW-4D	-0.002517	-17	-25	No !	9	33.33	n/a	n/a	0.01	NP
Lithium (mg/L) MW-4D -0.001623 -8 -21 No 8 0 n/a n/a 0.01 NP Lithium (mg/L) MW-12D -0.007833 -18 -21 No 8 0 n/a n/a 0.01 NP Lithium (mg/L) MW-5D -0.004334 -13 -21 No 8 0 n/a n/a 0.01 NP Mercury (mg/L) MW-4D 0 -2 -25 No 9 88.89 n/a n/a 0.01 NP Mercury (mg/L) MW-12D -0.0001049 -17 -25 No 9 88.89 n/a n/a 0.01 NP Mercury (mg/L) MW-2D -0.001125 -10 -21 No 8 0 n/a n/a 0.01 NP Molybdenum (mg/L) MW-4D -0.001125 -10 -21 No 8 0 n/a n/a n/a 0.01 NP Mol	Lead (mg/L)	MW-12D	-0.001281	-5	-25	No !	9	22.22	n/a	n/a	0.01	NP
Lithium (mg/L)	Lead (mg/L)	MW-5D	-0.002233	-21	-25	No s	9	22.22	n/a	n/a	0.01	NP
Lithium (mg/L)	Lithium (mg/L)	MW-4D	-0.001623	-8	-21	No 8	8	0	n/a	n/a	0.01	NP
Mercury (mg/L) Mercur	Lithium (mg/L)	MW-12D	-0.007833	-18	-21	No 8	8	0	n/a	n/a	0.01	NP
Mercury (mg/L) MW-12D -0.00001049 -17 -25 No 9 55.56 n/a n/a 0.01 NP Mercury (mg/L) MW-5D 0 -2 -25 No 9 88.89 n/a n/a 0.01 NP Molybdenum (mg/L) MW-4D -0.001125 -10 -21 No 8 0 n/a n/a 0.01 NP Molybdenum (mg/L) MW-12D 0.1663 6 21 No 8 0 n/a n/a 0.01 NP Molybdenum (mg/L) MW-5D -0.001715 -10 -21 No 8 0 n/a n/a 0.01 NP Mpl, field (SU) MW-4D 0.2607 5 30 No 10 0 n/a n/a 0.01 NP pH, field (SU) MW-12D 0.5368 4 30 No 10 0 n/a n/a n/a 0.01 NP Selenium	Lithium (mg/L)	MW-5D	-0.004334	-13	-21	No 8	8	0	n/a	n/a	0.01	NP
Mercury (mg/L) MW-5D 0 -2 -25 No 9 88.89 n/a n/a 0.01 NP Molybdenum (mg/L) MW-4D -0.001125 -10 -21 No 8 0 n/a n/a 0.01 NP Molybdenum (mg/L) MW-12D 0.1663 6 21 No 8 0 n/a n/a 0.01 NP Molybdenum (mg/L) MW-5D -0.001715 -10 -21 No 8 12.5 n/a n/a 0.01 NP pH, field (SU) MW-4D 0.2607 5 30 No 10 0 n/a n/a 0.01 NP pH, field (SU) MW-12D 1.929 15 30 No 10 0 n/a n/a 0.01 NP pH, field (SU) MW-5D 0.5368 4 30 No 10 0 n/a n/a 0.01 NP Selenium (mg/L) MW-12D<	Mercury (mg/L)	MW-4D	0	-2	-25	No !	9	88.89	n/a	n/a	0.01	NP
Molybdenum (mg/L) MW-4D -0.001125 -10 -21 No 8 0 N/A N/A 0.01 NP Molybdenum (mg/L) MW-12D 0.1663 6 21 No 8 0 N/A N/A 0.01 NP Molybdenum (mg/L) MW-5D -0.001715 -10 -21 No 8 12.5 N/A N/A 0.01 NP PH, field (SU) MW-4D 0.2607 5 30 No 10 0 N/A N/A 0.01 NP PH, field (SU) MW-12D 1.929 15 30 No 10 0 N/A N/A 0.01 NP PH, field (SU) MW-5D 0.5368 4 30 No 10 0 N/A N/A 0.01 NP PH, field (SU) MW-5D 0.5368 4 30 No 10 0 N/A N/A N/A 0.01 NP PH, field (SU) MW-4D 0.03066 2-20 2-25 No 9 11.11 N/A N/A 0.01 NP Selenium (mg/L) MW-12D 0.001601 -10 2-5 No 9 11.11 N/A N/A 0.01 NP Selenium (mg/L) MW-5D 0.002613 2-3 2-5 No 9 33.33 N/A N/A 0.01 NP	Mercury (mg/L)	MW-12D	-0.00001049	-17	-25	No !	9	55.56	n/a	n/a	0.01	NP
Molybdenum (mg/L) MW-12D 0.1663 6 21 No 8 0 N/A NA 0.01 NP Molybdenum (mg/L) MW-5D -0.001715 -10 -21 No 8 12.5 N/A N/A 0.01 NP pH, field (SU) MW-4D 0.2607 5 30 No 10 0 N/A N/A 0.01 NP pH, field (SU) MW-12D 1.929 15 30 No 10 0 N/A N/A 0.01 NP pH, field (SU) MW-5D 0.5368 4 30 No 10 0 NA N/A N/A 0.01 NP pH, field (SU) MW-5D 0.5368 4 30 No 10 0 NA N/A N/A 0.01 NP Selenium (mg/L) MW-4D -0.00366 -20 -25 No 9 11.11 N/A N/A 0.01 NP Selenium (mg/L) MW-12D -0.001601 -10 -25 No 9 11.11 N/A N/A 0.01 NP NP Selenium (mg/L) MW-5D 0.002613 -23 -25 No 9 33.33 N/A N/A 0.01 NP	Mercury (mg/L)	MW-5D	0	-2	-25	No s	9	88.89	n/a	n/a	0.01	NP
Molybdenum (mg/L) MW-5D -0.001715 -10 -21 No 8 12.5 n/a n/a 0.01 NP pH, field (SU) MW-4D 0.2607 5 30 No 10 0 n/a n/a 0.01 NP pH, field (SU) MW-12D 1.929 15 30 No 10 0 n/a n/a 0.01 NP pH, field (SU) MW-5D 0.5368 4 30 No 10 0 n/a n/a 0.01 NP Selenium (mg/L) MW-4D -0.003066 -20 -25 No 9 44.44 n/a n/a 0.01 NP Selenium (mg/L) MW-12D -0.001601 -10 -25 No 9 11.11 n/a n/a 0.01 NP Selenium (mg/L) MW-5D -0.002613 -23 -25 No 9 33.33 n/a n/a 0.01 NP	Molybdenum (mg/L)	MW-4D	-0.001125	-10	-21	No 8	8	0	n/a	n/a	0.01	NP
pH, field (SU) MW-4D 0.2607 5 30 No 10 0 n/a n/a 0.01 NP pH, field (SU) MW-12D 1.929 15 30 No 10 0 n/a n/a 0.01 NP pH, field (SU) MW-5D 0.5368 4 30 No 10 0 n/a n/a 0.01 NP Selenium (mg/L) MW-4D -0.003066 -20 -25 No 9 44.44 n/a n/a 0.01 NP Selenium (mg/L) MW-12D -0.001601 -10 -25 No 9 11.11 n/a n/a 0.01 NP Selenium (mg/L) MW-5D -0.002613 -23 -25 No 9 33.33 n/a n/a 0.01 NP	Molybdenum (mg/L)	MW-12D	0.1663	6	21	No 8	8	0	n/a	n/a	0.01	NP
pH, field (SU) MW-12D 1.929 15 30 No 10 0 n/a n/a 0.01 NP pH, field (SU) MW-5D 0.5368 4 30 No 10 0 n/a n/a 0.01 NP Selenium (mg/L) MW-4D -0.003066 -20 -25 No 9 44.44 n/a n/a 0.01 NP Selenium (mg/L) MW-12D -0.001601 -10 -25 No 9 11.11 n/a n/a 0.01 NP Selenium (mg/L) MW-5D -0.002613 -23 -25 No 9 11.11 n/a n/a 0.01 NP	Molybdenum (mg/L)	MW-5D	-0.001715	-10	-21	No 8	8	12.5	n/a	n/a	0.01	NP
pH, field (SU) MW-5D 0.5368 4 30 No 10 0 n/a n/a 0.01 NP Selenium (mg/L) MW-4D -0.003066 -20 -25 No 9 44.44 n/a n/a 0.01 NP Selenium (mg/L) MW-12D -0.001601 -10 -25 No 9 11.11 n/a n/a 0.01 NP Selenium (mg/L) MW-5D -0.002613 -23 -25 No 9 33.33 n/a n/a 0.01 NP	pH, field (SU)	MW-4D	0.2607	5	30	No	10	0	n/a	n/a	0.01	NP
Selenium (mg/L) MW-4D -0.003066 -20 -25 No 9 44.44 n/a n/a 0.01 NP Selenium (mg/L) MW-12D -0.001601 -10 -25 No 9 11.11 n/a n/a 0.01 NP Selenium (mg/L) MW-5D -0.002613 -23 -25 No 9 33.33 n/a n/a 0.01 NP	pH, field (SU)	MW-12D	1.929	15	30	No	10	0	n/a	n/a	0.01	NP
Selenium (mg/L) MW-12D -0.001601 -10 -25 No 9 11.11 n/a n/a 0.01 NP Selenium (mg/L) MW-5D -0.002613 -23 -25 No 9 33.33 n/a n/a 0.01 NP	pH, field (SU)	MW-5D	0.5368	4	30	No	10	0	n/a	n/a	0.01	NP
Selenium (mg/L) MW-5D -0.002613 -23 -25 No 9 33.33 n/a n/a 0.01 NP	Selenium (mg/L)	MW-4D	-0.003066	-20	-25	No s	9	44.44	n/a	n/a	0.01	NP
Selenium (mg/L) MW-5D -0.002613 -23 -25 No 9 33.33 n/a n/a 0.01 NP	Selenium (mg/L)	MW-12D	-0.001601	-10	-25	No s	9	11.11	n/a	n/a	0.01	NP
Sulfate (mg/L) MW-4D 42.98 21 30 No 10 0 n/a n/a 0.01 NP	Selenium (mg/L)	MW-5D	-0.002613	-23	-25	No !	9	33.33	n/a	n/a	0.01	NP
	Sulfate (mg/L)	MW-4D	42.98	21	30	No	10	0	n/a	n/a	0.01	NP

Trend Test Summary Table - New Wells All Results Page 2

	Northea	stern LF Client: Ge	osyntec	Data: Northeastern LF			Printed 3/6/2019, 10:05 AM				
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Sulfate (mg/L)	MW-12D	-60.67	-14	-25	No	9	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	MW-5D	29.07	12	25	No	9	0	n/a	n/a	0.01	NP
Thallium (mg/L)	MW-4D	0	-2	-25	No	9	44.44	n/a	n/a	0.01	NP
Thallium (mg/L)	MW-12D	-0.0005747	-9	-25	No	9	33.33	n/a	n/a	0.01	NP
Thallium (mg/L)	MW-5D	0	3	25	No	9	55.56	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-4D	-11.06	-2	-25	No	9	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-12D	-36.65	-4	-25	No	9	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-5D	-14.04	-2	-21	No	8	0	n/a	n/a	0.01	NP

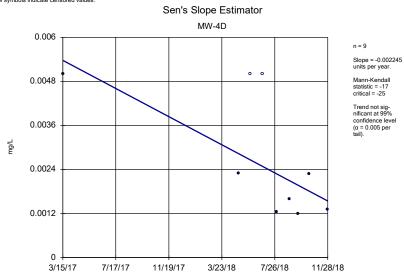
Hollow symbols indicate censored values.

Constituent: Antimony Analysis Run 3/6/2019 10:03 AM View: New Wells Screening


Northeastern LF Client: Geosyntec Data: Northeastern LF

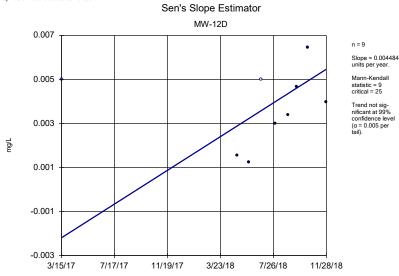
Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Sen's Slope Estimator MW-5D 0.02 Slope = -0.0005811 units per year. Mann-Kendall 0.016 critical = -25 Trend not sig-nificant at 99% confidence level 0.012 (α = 0.005 per tail). 0.008 0.004 3/14/17 7/16/17 11/18/17 3/23/18 7/26/18 11/28/18

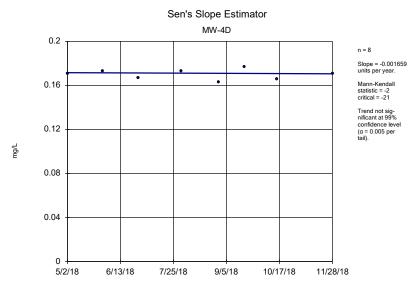

Constituent: Antimony Analysis Run 3/6/2019 10:03 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

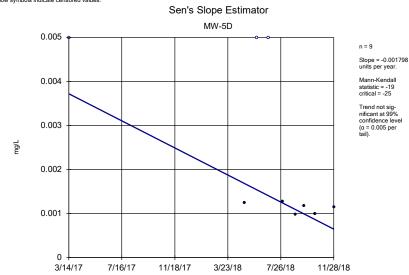
Constituent: Antimony Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

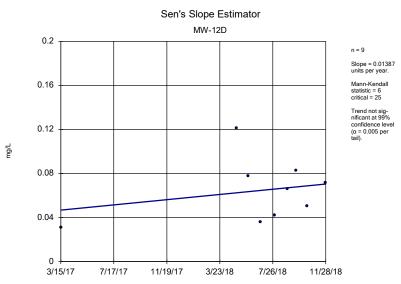
Constituent: Arsenic Analysis Run 3/6/2019 10:03 AM View: New Wells Screening


Northeastern LF Client: Geosyntec Data: Northeastern LF

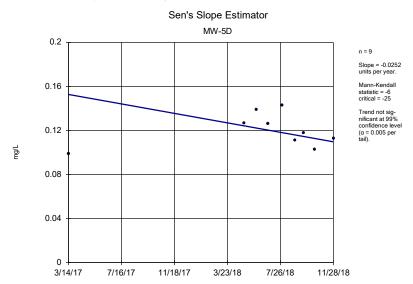
Hollow symbols indicate censored values.

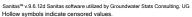

Constituent: Arsenic Analysis Run 3/6/2019 10:03 AM View: New Wells Screening

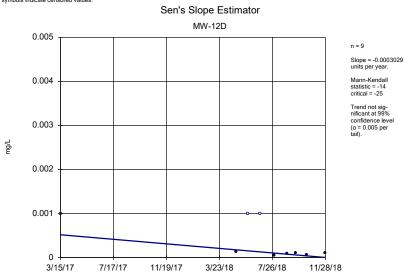
Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG



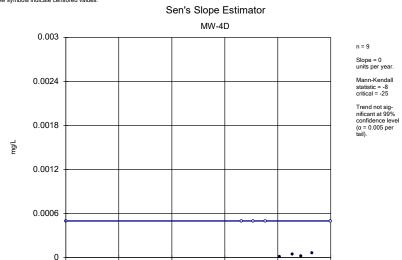
Constituent: Barium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening


Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Arsenic Analysis Run 3/6/2019 10:03 AM View: New Wells Screening



Constituent: Barium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening



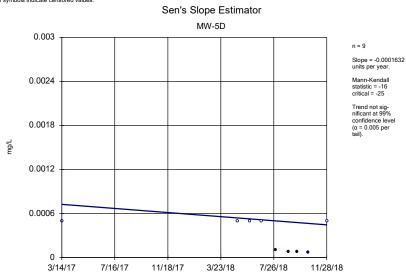
Constituent: Barium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Beryllium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF

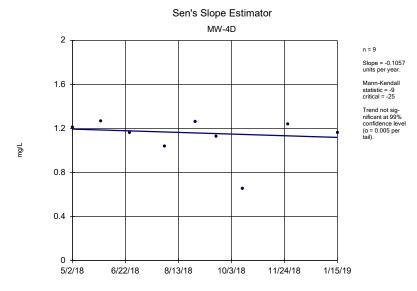
Constituent: Beryllium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF

3/23/18

7/26/18

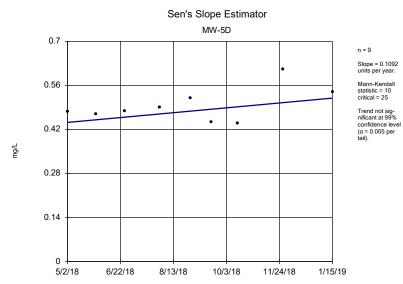

11/28/18

11/19/17

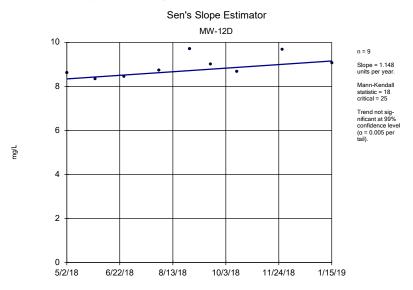

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

3/15/17

7/17/17



Constituent: Beryllium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF

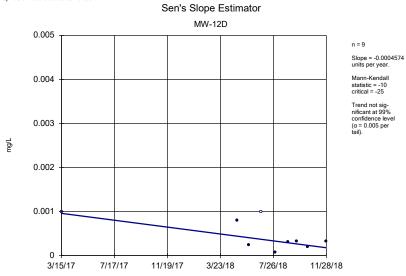

Constituent: Boron Analysis Run 3/6/2019 10:03 AM View: New Wells Screening

Northeastern LF Client: Geosyntec Data: Northeastern LF

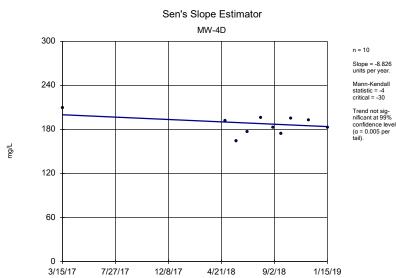
Constituent: Boron Analysis Run 3/6/2019 10:03 AM View: New Wells Screening

Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Boron Analysis Run 3/6/2019 10:03 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF

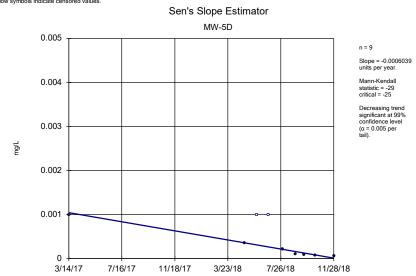

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Cadmium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening

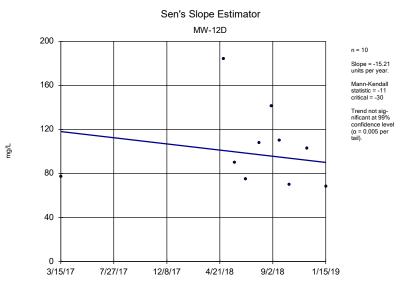

Northeastern LF Client: Geosyntec Data: Northeastern LF

Hollow symbols indicate censored values.

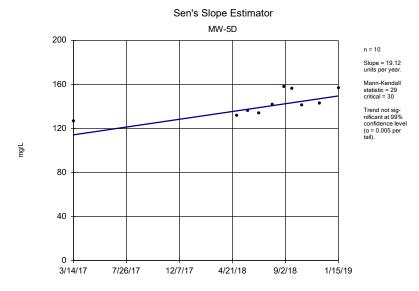
Constituent: Cadmium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

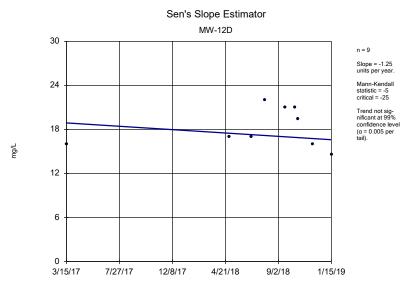
Constituent: Calcium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening


Northeastern LF Client: Geosyntec Data: Northeastern LF

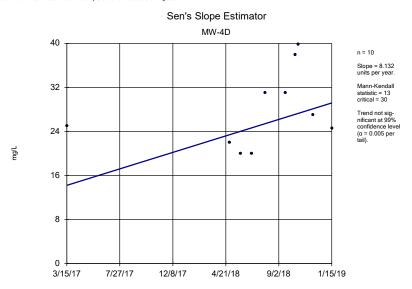
Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Cadmium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening

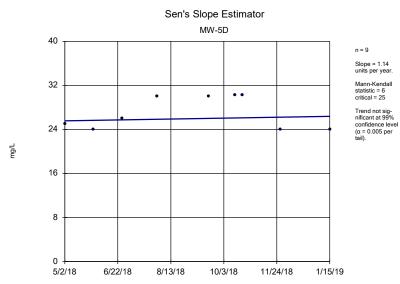
Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Calcium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening

Northeastern LF Client: Geosyntec Data: Northeastern LF

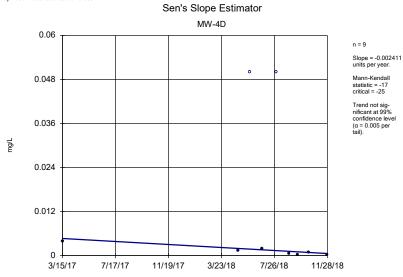


Constituent: Calcium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF



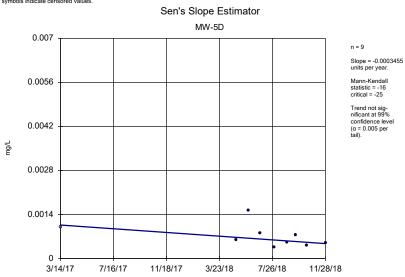
Constituent: Chloride Analysis Run 3/6/2019 10:03 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Chloride Analysis Run 3/6/2019 10:03 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF

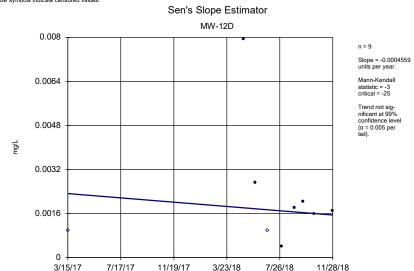


Constituent: Chloride Analysis Run 3/6/2019 10:03 AM View: New Wells Screening

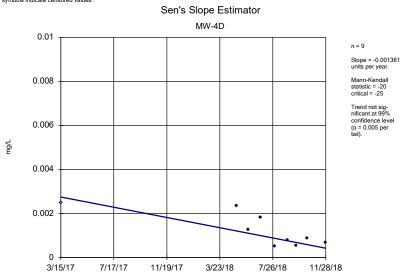
Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.


Constituent: Chromium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

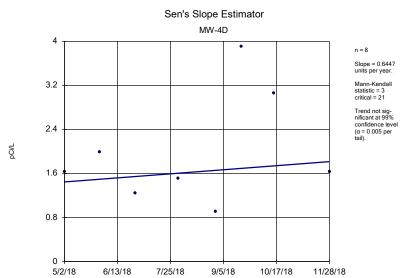

Constituent: Chromium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Chromium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

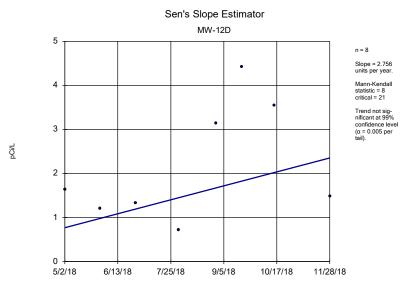
Constituent: Cobalt Analysis Run 3/6/2019 10:03 AM View: New Wells Screening


Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

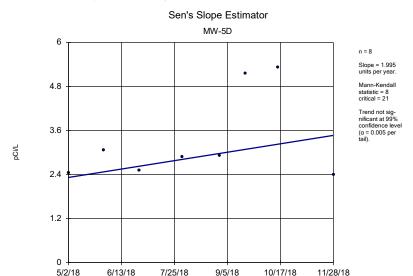
Hollow symbols indicate censored values.

Constituent: Cobalt Analysis Run 3/6/2019 10:03 AM View: New Wells Screening

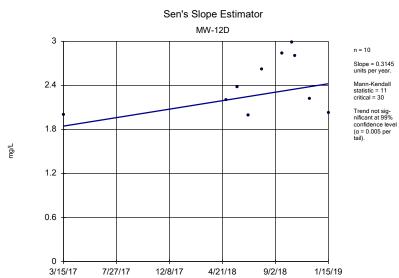
Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG



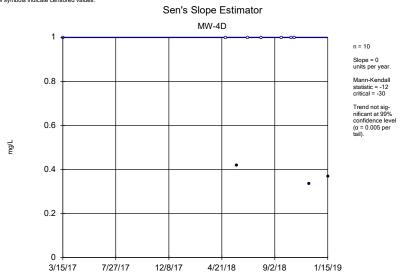
Constituent: Combined Radium 226 + 228 Analysis Run 3/6/2019 10:03 AM View: New Wells Screening


Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

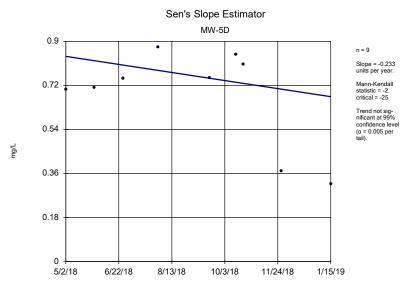
Constituent: Cobalt Analysis Run 3/6/2019 10:03 AM View: New Wells Screening



Constituent: Combined Radium 226 + 228 Analysis Run 3/6/2019 10:03 AM View: New Wells Screening



Constituent: Combined Radium 226 + 228 Analysis Run 3/6/2019 10:03 AM View: New Wells Screening


Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Fluoride Analysis Run 3/6/2019 10:03 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF

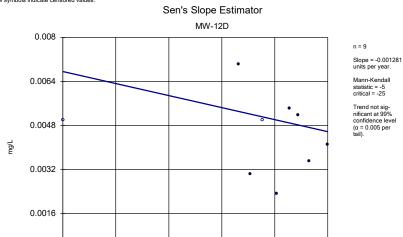
Constituent: Fluoride Analysis Run 3/6/2019 10:03 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Fluoride Analysis Run 3/6/2019 10:03 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

Constituent: Lead Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

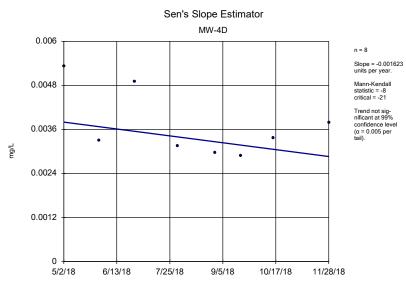
Constituent: Lead Analysis Run 3/6/2019 10:04 AM View: New Wells Screening

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

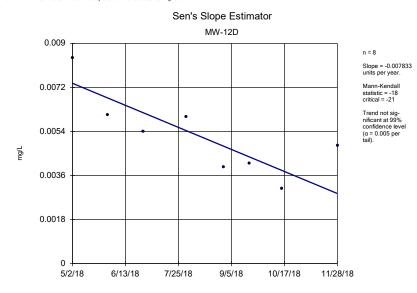
Constituent: Lead Analysis Run 3/6/2019 10:04 AM View: New Wells Screening

3/23/18

7/26/18

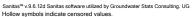

11/28/18

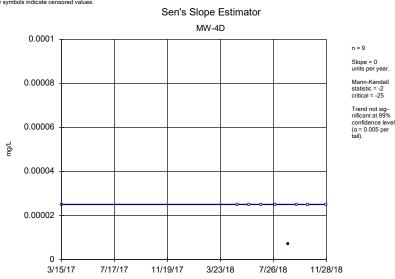
11/19/17


Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

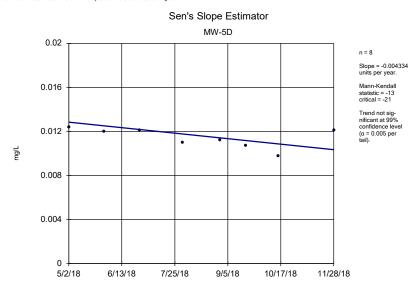
3/15/17

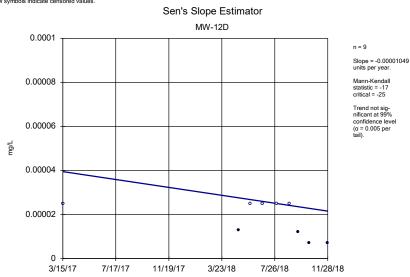
7/17/17




Constituent: Lithium Analysis Run 3/6/2019 10:04 AM View: New Wells Screening

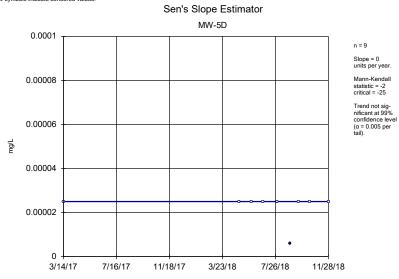
Constituent: Lithium Analysis Run 3/6/2019 10:04 AM View: New Wells Screening


Northeastern LF Client: Geosyntec Data: Northeastern LF

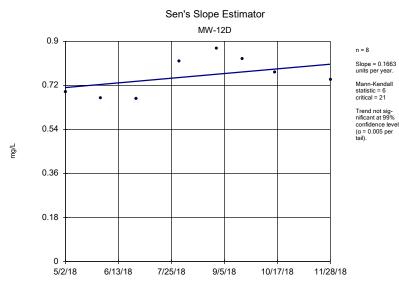

Constituent: Mercury Analysis Run 3/6/2019 10:04 AM View: New Wells Screening

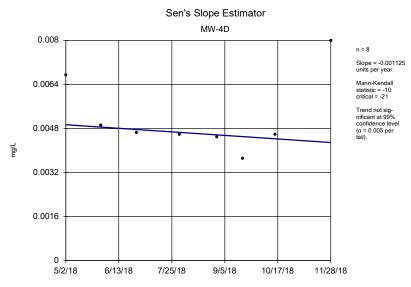
Northeastern LF Client: Geosyntec Data: Northeastern LF



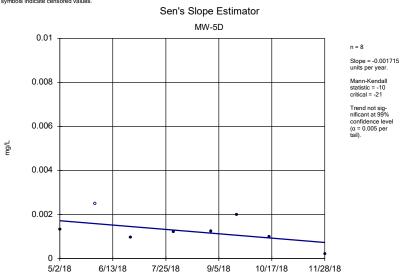

Constituent: Lithium Analysis Run 3/6/2019 10:04 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

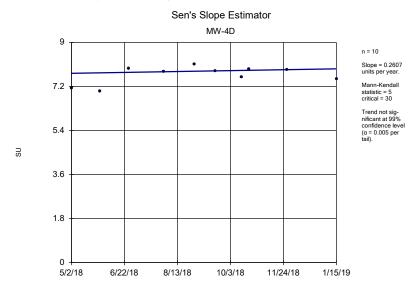

Constituent: Mercury Analysis Run 3/6/2019 10:04 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF



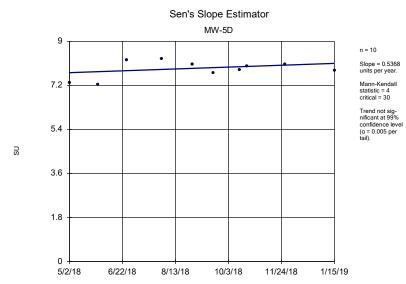
Constituent: Mercury Analysis Run 3/6/2019 10:04 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF



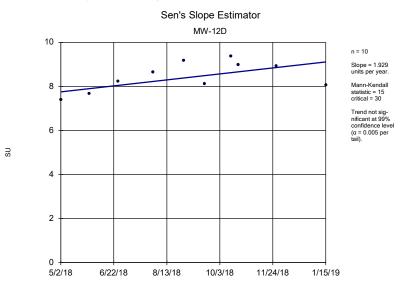
Constituent: Molybdenum Analysis Run 3/6/2019 10:04 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF



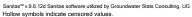
Constituent: Molybdenum Analysis Run 3/6/2019 10:04 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Molybdenum Analysis Run 3/6/2019 10:04 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF



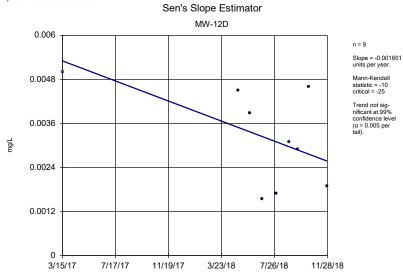
Constituent: pH, field Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF



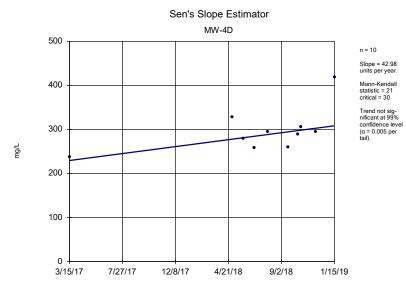
Constituent: pH, field Analysis Run 3/6/2019 10:04 AM View: New Wells Screening

Northeastern LF Client: Geosyntec Data: Northeastern LF

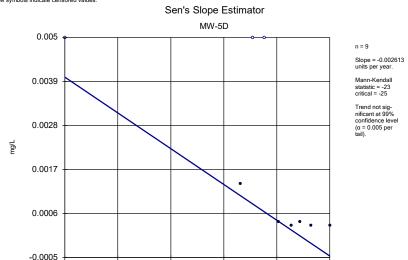
Constituent: pH, field Analysis Run 3/6/2019 10:04 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF



Constituent: Selenium Analysis Run 3/6/2019 10:04 AM View: New Wells Screening


Northeastern LF Client: Geosyntec Data: Northeastern LF

Hollow symbols indicate censored values.


Constituent: Selenium Analysis Run 3/6/2019 10:04 AM View: New Wells Screening

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

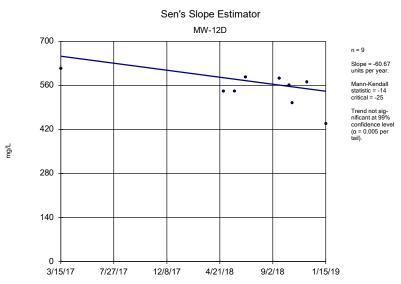
Constituent: Sulfate Analysis Run 3/6/2019 10:04 AM View: New Wells Screening

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

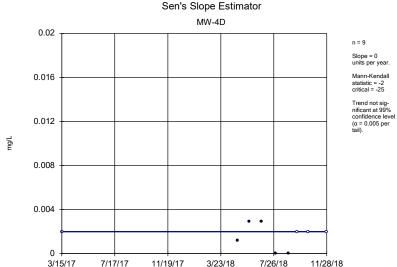
Constituent: Selenium Analysis Run 3/6/2019 10:04 AM View: New Wells Screening

3/23/18

7/26/18


11/28/18

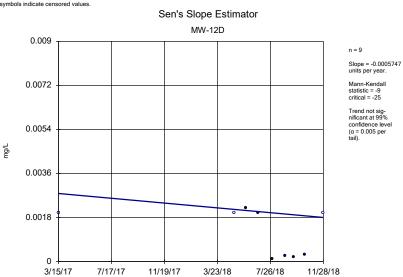
11/18/17


7/16/17

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

3/14/17

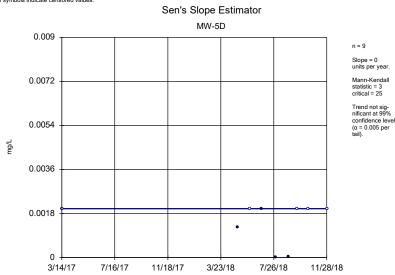
Constituent: Sulfate Analysis Run 3/6/2019 10:04 AM View: New Wells Screening

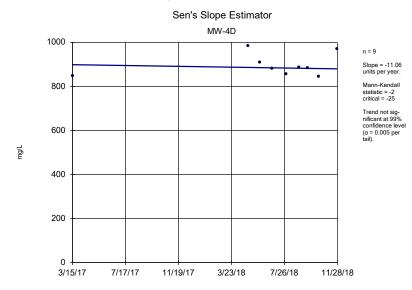


Constituent: Thallium Analysis Run 3/6/2019 10:04 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF

Sen's Slope Estimator MW-5D 700 Slope = 29.07 units per year 560 Mann-Kendall statistic = 12 critical = 25 Trend not sig-nificant at 99% confidence level 420 (α = 0.005 per tail). mg/L 280 140 5/2/18 6/22/18 8/13/18 10/3/18 11/24/18 1/15/19

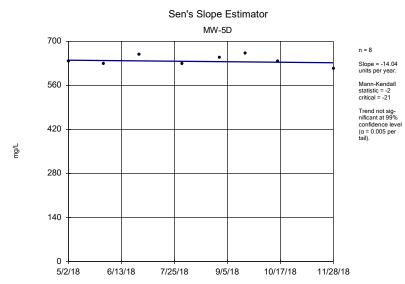
Constituent: Sulfate Analysis Run 3/6/2019 10:04 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

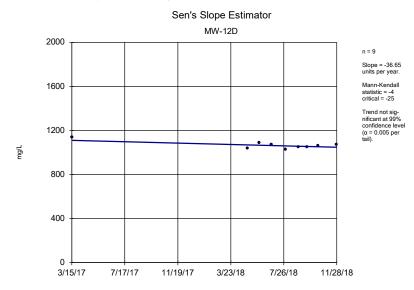

Constituent: Thallium Analysis Run 3/6/2019 10:04 AM View: New Wells Screening

Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Thallium Analysis Run 3/6/2019 10:04 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF



Constituent: Total Dissolved Solids [TDS] Analysis Run 3/6/2019 10:04 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Total Dissolved Solids [TDS] Analysis Run 3/6/2019 10:04 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Total Dissolved Solids [TDS] Analysis Run 3/6/2019 10:04 AM View: New Wells Screening
Northeastern LF Client: Geosyntec Data: Northeastern LF

Analysis of Variance

	Northeastern LF	Northeastern LF Client: Geosyntec Data: Northeastern LF					F Printed 1/2/2018, 10:36 PM			
Constituent	Crit.	Sig.	<u>Alpha</u>	Transform	ANOVA Sig.	Calc.	<u>Alpha</u>	Method		
Boron (mg/L)	n/a	n/a	n/a	No	Yes	4.385	0.05	NP (eq. var.)		
Calcium (mg/L)	n/a	n/a	n/a	No	Yes	8.562	0.05	NP (eq. var.)		
Chloride (mg/L)	n/a	n/a	n/a	sqrt(x)	Yes	1387	0.05	Param.		
Fluoride (mg/L)	n/a	n/a	n/a	No	Yes	4.151	0.05	NP (normality)		
pH, field (SU)	n/a	n/a	n/a	ln(x)	No	2.314	0.05	Param.		
Sulfate (mg/L)	n/a	n/a	n/a	No	Yes	14.15	0.05	NP (normality)		
Total Dissolve Solids [TDS] (mg/L)	n/a	n/a	n/a	No	Yes	1525	0.05	Param.		

Non-Parametric ANOVA

Constituent: Boron Analysis Run 1/2/2018 10:36 PM View: ANOVA Northeastern LF Client: Geosyntec Data: Northeastern LF

For observations made between 1/25/2017 and 10/4/2017, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 4.385

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 3 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 4.365

Adjusted Kruskal-Wallis statistic (H') = 4.385

Non-Parametric ANOVA

Constituent: Calcium Analysis Run 1/2/2018 10:36 PM View: ANOVA Northeastern LF Client: Geosyntec Data: Northeastern LF

For observations made between 1/25/2017 and 10/4/2017, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 8.562

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 8.556

Adjusted Kruskal-Wallis statistic (H') = 8.562

Parametric ANOVA

Constituent: Chloride Analysis Run 1/2/2018 10:36 PM View: ANOVA Northeastern LF Client: Geosyntec Data: Northeastern LF

For observations made between 1/25/2017 and 10/4/2017 the parametric analysis of variance test (after square root transformation) indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 1387

Tabulated F statistic = 4.41 with 1 and 18 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	1.7e9	1	1.7e9	1525
Error Within Groups	2.1e7	18	1140393	
Total	1.8e9	19		

The Shapiro Wilk normality test on the residuals passed after square root transformation. Alpha = 0.01, calculated = 0.9895, critical = 0.868. Levene's Equality of Variance test passed. Calculated = 0.3135, tabulated = 4.41.

Non-Parametric ANOVA

Constituent: Fluoride Analysis Run 1/2/2018 10:36 PM View: ANOVA Northeastern LF Client: Geosyntec Data: Northeastern LF

For observations made between 1/25/2017 and 10/4/2017, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 4.151

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 3.465

Adjusted Kruskal-Wallis statistic (H') = 4.151

Parametric ANOVA

Constituent: pH, field Analysis Run 1/2/2018 10:36 PM View: ANOVA Northeastern LF Client: Geosyntec Data: Northeastern LF

For observations made between 1/25/2017 and 10/4/2017 the parametric analysis of variance test (after natural log transformation) indicates NO VARIATION at the 5% significance level. Because the calculated F statistic is less than or equal to the tabulated F statistic, the hypothesis of a single homogeneous population is accepted.

Calculated F statistic = 2.314

Tabulated F statistic = 4.49 with 1 and 16 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	1.7e9	1	1.7e9	1525
Error Within Groups	2.1e7	18	1140393	
Total	1.8e9	19		

The Shapiro Wilk normality test on the residuals passed after natural log transformation. Alpha = 0.05, calculated = 0.9074, critical = 0.897. Levene's Equality of Variance test passed. Calculated = 4.417, tabulated = 4.49.

Non-Parametric ANOVA

Constituent: Sulfate Analysis Run 1/2/2018 10:36 PM View: ANOVA Northeastern LF Client: Geosyntec Data: Northeastern LF

For observations made between 1/25/2017 and 10/4/2017, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 14.15

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 14.14

Adjusted Kruskal-Wallis statistic (H') = 14.15

Parametric ANOVA

Constituent: Total Dissolve Solids [TDS] Analysis Run 1/2/2018 10:36 PM View: ANOVA Northeastern LF Client: Geosyntec Data: Northeastern LF

For observations made between 1/25/2017 and 10/4/2017 the parametric analysis of variance test indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 1525

Tabulated F statistic = 4.41 with 1 and 18 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	1.7e9	1	1.7e9	1525
Error Within Groups	2.1e7	18	1140393	
Total	1.8e9	19		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9568, critical = 0.868. Levene's Equality of Variance test passed. Calculated = 3.197, tabulated = 4.41.

Tolerance Limits - Appendix A

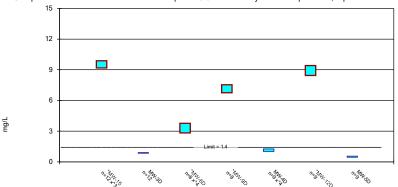
Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 1/2/2018, 10:38 PM Transform Upper Lim. Lower Lim. Bg N %NDs ND Adj. Constituent Bg Mean Std. Dev. <u>Alpha</u> Method Boron (mg/L) 1.596 20 1.261 0.1194 0 No 0.01 Inter Calcium (mg/L) 1028 n/a 20 379.7 230.8 0 None 0.01 Inter No Chloride (mg/L) 14606 20 n/a n/a 0 n/a n/a 0.3585 NP Inter(normality) Fluoride (mg/L) 3.248 n/a 20 0.3585 NP Inter(normality) n/a n/a 55 n/a pH, field (SU) 8.28 18 n/a 0.7735 NP Inter(normality) n/a NP Inter(normality) Sulfate (mg/L) 1632 n/a 20 n/a n/a 0 n/a 0.3585 Total Dissolve Solids [TDS] (mg/L) 23012 n/a 20 n/a 0 n/a 0.3585 NP Inter(normality)

Confidence Interval Summary Table - Significant Results Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 3/6/2019, 11:06 AM

	Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 3/6/2019, 11:06 AM											
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	e Sig.	<u>N</u>	%NDs	Transform	<u>Alpha</u>	Method		
Boron (mg/L)	MW-15	9.88	9.177	1.4	Yes	12	0	x^3	0.01	Param.		
Boron (mg/L)	MW-6D	3.767	2.818	1.4	Yes	8	0	x^4	0.01	Param.		
Boron (mg/L)	MW-9D	7.537	6.756	1.4	Yes	8	0	No	0.01	Param.		
Boron (mg/L)	MW-12D	9.406	8.445	1.4	Yes	9	0	No	0.01	Param.		

Confidence Interval Summary Table - All Results

Data: Northeastern LF

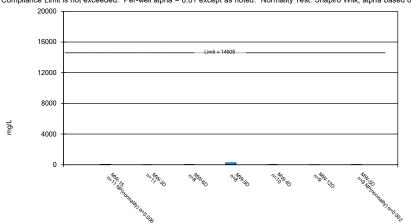

Printed 3/6/2019, 11:06 AM

Northeastern LF Client: Geosyntec

Constituent Well Lower Lim. Compliance Sig. N %NDs Transform <u>Alpha</u> Method Boron (mg/L) MW-15 9.88 9.177 12 0 x^3 0.01 1.4 Yes Param. Boron (mg/L) MW-3D 0.9067 0.8328 1.4 No 12 0 No 0.01 Param. MW-6D 3.767 2.818 0.01 Boron (ma/L) 1.4 Yes 8 0 x^4 Param Boron (mg/L) MW-9D 7.537 6.756 1.4 8 0 No 0.01 Param. Boron (mg/L) MW-4D 1.262 1.017 No 9 0 0.01 Param 1.4 MW-12D 9.406 8.445 9 0.01 Boron (mg/L) No Param. Boron (mg/L) MW-5D 0.5487 0.4442 No 9 0 0.01 Param. 1.4 No Calcium (mg/L) MW-15 101 67.59 918 No 12 0 No 0.01 Param. MW-3D No 12 0 Calcium (mg/L) 156.8 120.5 918 No 0.01 Param Calcium (mg/L) MW-6D 233 173.9 918 No 8 x^2 0.01 Param Calcium (mg/L) MW-9D 225.6 918 Nο 8 0 0.01 Param 362.6 No Calcium (mg/L) MW-4D 198.2 175 918 No 10 0 0.01 No MW-12D 10 0 Calcium (mg/L) 135.2 69.95 918 No 0.01 Param. No Calcium (mg/L) MW-5D 152.5 132.7 918 10 0 No 0.01 Chloride (ma/L) MW-15 28 15 14606 Nο 11 0 Nο 0.006 NP (normality) Chloride (mg/L) MW-3D 14606 No 11 No 0.01 Param. 0 Chloride (mg/L) MW-6D 31.72 28 78 14606 No 8 No 0.01 Param. Chloride (mg/L) MW-9D 247.5 63.23 14606 No 8 0.01 Param. No Chloride (mg/L) MW-4D 34.07 21.59 14606 No 10 0 No 0.01 Param. Chloride (ma/L) MW-12D 20.8 15.64 14606 No 9 0 No 0.01 Param. Chloride (mg/L) MW-5D 30.3 24 14606 Nο 9 0 No 0.002 NP (normality) Fluoride (mg/L) MW-15 1.991 1.774 No 11 0 0.01 Param. No Fluoride (mg/L) MW-3D 0.7381 4 No 12 50 No 0.01 NP (normality) 0.6152 MW-6D No 8 25 Fluoride (mg/L) 1.013 No 0.01 Param. Fluoride (mg/L) MW-9D 2.191 0.37 No 8 25 No 0.004 NP (Cohens/xfrm) Fluoride (mg/L) MW-4D 0.336 No 10 70 0.011 NP (normality) No Fluoride (mg/L) MW-12D 2.744 2.07 No 10 0 No 0.01 Param. MW-5D 0.5226 9 Fluoride (mg/L) 0.8521 0 0.01 No x^2 Param pH, field (SU) MW-15 8.412 7.292 8.28 No 10 0 0.005 No Param. MW-3D 7.499 0 pH, field (SU) 6.705 8.28 No 10 sart(x) 0.005 Param. pH, field (SU) MW-6D 7.706 6.599 No 0 No 0.005 pH, field (SU) MW-9D 7 012 Nο 8 0 0.005 7.5 8 28 Nο Param pH, field (SU) MW-4D 8.048 7.302 No 10 No 0.005 Param. MW-12D 0.005 pH, field (SU) 9.138 7.78 Nο 10 0 8.28 No Param. 10 pH, field (SU) MW-5D 8.215 7.491 8.28 No No 0.005 Param. Sulfate (mg/L) MW-15 603.5 553.7 1632 No 12 0 No 0.01 Param. Sulfate (mg/L) MW-3D 221.9 190 1632 No 12 0 No 0.01 Param. Sulfate (mg/L) MW-6D 526.7 504.6 1632 No 8 0 No 0.01 Param Sulfate (mg/L) MW-9D 898.2 No 8 0 0.01 1259 1632 Param. No Sulfate (mg/L) MW-4D 341.1 251.7 1632 No 10 0 No 0.01 Param. Sulfate (mg/L) MW-12D 598.9 498 1632 No 9 No 0.01 Param. Sulfate (mg/L) MW-5D 662 113 1632 No 9 0 No 0.002 NP (normality) Total Dissolved Solids [TDS] (mg/L) MW-15 1104 1053 23012 No 12 0 0.01 Param. No Total Dissolved Solids [TDS] (mg/L) MW-3D 759.5 658.5 23012 No 12 0 No 0.01 Param. Total Dissolved Solids [TDS] (mg/L) NP (normality) MW-6D 1140 986 23012 No 8 0 0.004 No Total Dissolved Solids [TDS] (mg/L) MW-9D 2717 1527 23012 No 8 0 No 0.01 Total Dissolved Solids [TDS] (mg/L) MW-4D 944.8 848.2 23012 No 9 0 x^(1/3) 0.01 Param. Total Dissolved Solids [TDS] (mg/L) MW-12D 1098 1035 23012 No 9 0 No 0.01 Param. Total Dissolved Solids [TDS] (mg/L) MW-5D 656 621.5 23012 No 8 0 Nο 0.01 Param

Parametric Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

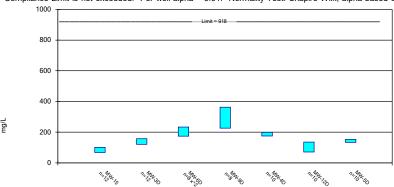

Constituent: Boron Analysis Run 3/6/2019 11:00 AM View: Confidence Intervals - App III

Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

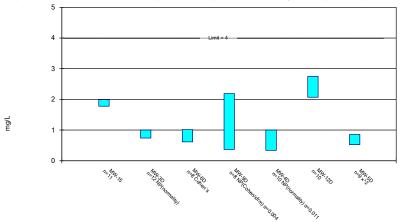


Constituent: Chloride Analysis Run 3/6/2019 11:00 AM View: Confidence Intervals - App III

Northeastern LF Client: Geosyntec Data: Northeastern LF

Parametric Confidence Interval

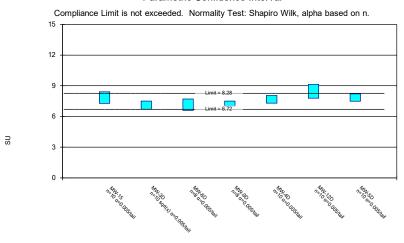
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Calcium Analysis Run 3/6/2019 11:00 AM View: Confidence Intervals - App III

Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

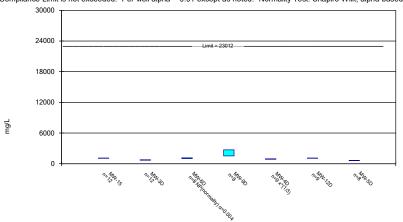
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Fluoride Analysis Run 3/6/2019 11:00 AM View: Confidence Intervals - App III

Northeastern LF Client: Geosyntec Data: Northeastern LF

Parametric Confidence Interval

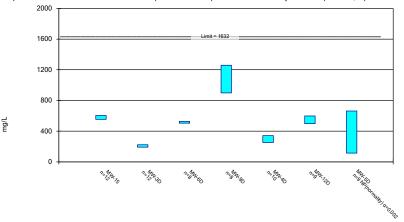

Constituent: pH, field Analysis Run 3/6/2019 11:00 AM View: Confidence Intervals - App III

Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Total Dissolved Solids [TDS] Analysis Run 3/6/2019 11:00 AM View: Confidence Intervals - A

Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Sulfate Analysis Run 3/6/2019 11:00 AM View: Confidence Intervals - App III

Northeastern LF Client: Geosyntec Data: Northeastern LF

Intrawell Prediction Limit Summary

Data: Northeastern LF Printed 7/18/2019, 3:45 PM Client: Geosyntec Constituent <u>Well</u> Lower Lim. <u>Bg N</u> Bg Mean Std. Dev. <u>%NDs</u> ND Adj. $\underline{\mathsf{Transform}}$ <u>Alpha</u> Method Boron (mg/L) MW-7D 1.576 n/a 9 1.183 0.1416 0 None Nο 0.001075 Param Intra 1 of 2 0.001075 Boron (mg/L) MW-8D 1 4 1 5 n/a 11 1 324 0.03585 n None Nο Param Intra 1 of 2 0.001075 Boron (mg/L) MW-15 10.7 n/a 12 9.52 0.482 0 None No Param Intra 1 of 2 n 0.001075 Boron (ma/L) MW-3D 0.9852 n/a 12 0.8698 0.04713 None Nο Param Intra 1 of 2 0 0.001075 Param Intra 1 of 2 Boron (mg/L) MW-6D 4.438 n/a 8 37.54 17.06 None x^3 Boron (mg/L) MW-9D 8.223 n/a 8 7.146 0.3683 0 None No 0.001075 Param Intra 1 of 2 MW-4D 1.298 0 0.001075 Param Intra 1 of 2 Boron (mg/L) 1.521 n/a 9 0.3662 None x^2 0 Boron (mg/L) MW-12D 10.3 9 8.926 0.4975 No 0.001075 Param Intra 1 of 2 n/a None 0.001075 MW-5D 0.6465 9 0.4964 0.05414 0 Nο Param Intra 1 of 2 Boron (mg/L) n/a None MW-7D 1288 9 5.235 0.6946 0 0.001075 Param Intra 1 of 2 Calcium (mg/L) In(x) n/a None MW-8D 11 7.815 0.6602 x^(1/3) 0.001075 Param Intra 1 of 2 Calcium (mg/L) 854.2 n/a 0 None MW-15 136.4 12 84.28 21.28 0 0.001075 Param Intra 1 of 2 Calcium (mg/L) None No n/a 12 138.7 0 0.001075 Param Intra 1 of 2 Calcium (mg/L) MW-3D 195.3 n/a 23.13 None No Calcium (mg/L) MW-6D 294.6 8 203.5 31.18 0 No 0.001075 Param Intra 1 of 2 n/a None MW-9D 0.001075 Param Intra 1 of 2 Calcium (mg/L) 483 8 294.1 64.61 0 No n/a None MW-4D 220.6 10 186.6 12.99 0 0.001075 Param Intra 1 of 2 Calcium (mg/L) None No n/a MW-12D 198.4 10 102.6 0 No 0.001075 Param Intra 1 of 2 Calcium (mg/L) 36.57 None n/a Calcium (mg/L) MW-5D 171.6 10 142.6 11.06 0 No 0.001075 Param Intra 1 of 2 n/a None Chloride (mg/L) MW-7D 890 9 355.4 192.9 0 None No 0.001075 Param Intra 1 of 2 n/a Chloride (mg/L) MW-8D 14942 n/a 11 11986 1166 0 None No 0.001075 Param Intra 1 of 2 Chloride (mg/L) 78 11 n/a n/a 0 n/a 0.01276 NP Intra (normality) 1 of 2 n/a n/a Chloride (mg/L) MW-3D 16.5 n/a 11 12.73 0 None No 0.001075 Param Intra 1 of 2 0.001075 Param Intra 1 of 2 Chloride (mg/L) MW-6D 8 30.25 0 None No n/a MW-9D 155.4 0 0.001075 Param Intra 1 of 2 Chloride (mg/L) 409.4 n/a 8 86.93 None No 10 27.83 0 0.001075 Param Intra 1 of 2 Chloride (mg/L) MW-4D 46.16 n/a 6.996 No MW-12D 25.63 9 18.22 2.671 0 0.001075 Param Intra 1 of 2 Chloride (mg/L) n/a None No Chloride (mg/L) MW-5D 35.32 9 27.06 2.981 0 None No 0.001075 Param Intra 1 of 2 Fluoride (mg/L) MW-7D 4.146 n/a 9 1.818 0.8399 11.11 None No 0.001075 Param Intra 1 of 2 MW-8D 1 11 n/a 90.91 n/a n/a 0.01276 NP Intra (NDs) 1 of 2 Fluoride (mg/L) n/a Fluoride (mg/L) MW-15 2.212 n/a 11 1.883 0.1298 0 None No 0.001075 Param Intra 1 of 2 Fluoride (mg/L) MW-3D 12 n/a n/a 50 n/a 0.01077 NP Intra (normality) 1 of 2 Kaplan-Meier Param Intra 1 of 2 Fluoride (mg/L) MW-6D 0.9674 n/a 8 0.7193 0.08487 25 No 0.001075 Fluoride (mg/L) MW-9D 2.44 n/a 8 0.9091 0.5239 25 Kaplan-Meier Nο 0.001075 Param Intra 1 of 2 Fluoride (mg/L) MW-4D 1 n/a 10 n/a n/a 70 n/a n/a 0.01476 NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-12D 3.398 n/a 10 2.407 0.3782 0 None Nο 0.001075 Param Intra 1 of 2 Fluoride (mg/L) MW-5D 1.237 n/a 9 0.6811 0.2004 n None Nο 0.001075 Param Intra 1 of 2 pH, field (SU) 0 MW-7D 8.636 6.013 9 7.324 0.4731 0.0005373 Param Intra 1 of 2 None No pH, field (SU) MW-8D 7.469 6.674 9 7.071 0 0.0005373 Param Intra 1 of 2 0.1434 None No pH, field (SU) MW-15 9.279 6.425 10 7.852 0.5446 0 None Nο 0.0005373 Param Intra 1 of 2 pH. field (SU) MW-3D 8.127 6.075 10 7.101 0.3915 0 Nο 0.0005373 Param Intra 1 of 2 None MW-6D 7.153 0 pH, field (SU) 8.46 5.845 8 0.4475 No 0.0005373 Param Intra 1 of 2 None pH, field (SU) MW-9D 8 7.256 0 0.0005373 Param Intra 1 of 2 7.833 6.68 0.1972 None No MW-4D 7.675 0 pH. field (SU) 8.626 6.724 10 0.3629 No 0.0005373 Param Intra 1 of 2 None pH, field (SU) MW-12D 8.459 0.6611 0 0.0005373 Param Intra 1 of 2 10.19 6.726 10 No None MW-5D 8.777 6.929 7.853 0.3525 0 0.0005373 Param Intra 1 of 2 pH, field (SU) 10 None No Sulfate (mg/L) MW-7D 2044 9 881.6 419.4 0 No 0.001075 Param Intra 1 of 2 n/a None

Sulfate (mg/L)

Sulfate (mg/L)

Sulfate (mg/L)

Sulfate (mg/L)

MW-8D

MW-15

MW-3D

MW-6D

172.4

656.3

255.7

546

n/a

n/a

n/a

n/a

11 109.6

12 578.6

12 205.9

8

515.6

24.76

31.72

20.34

10.41

0

0

0

0

None

None

None

None

0.001075

0.001075

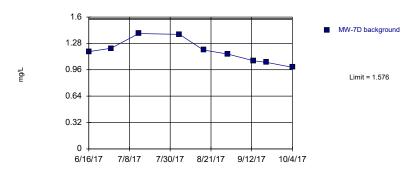
0.001075

0.001075

No

No

No

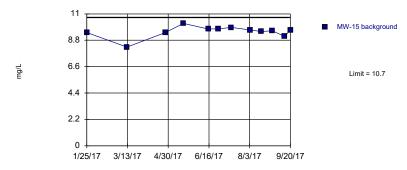

No

Param Intra 1 of 2

Intrawell Prediction Limit Summary

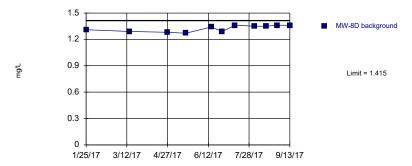
Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 7/18/2019, 3:45 PM Constituent <u>Well</u> Upper Lim. Lower Lim. Bg N Bg Mean Std. Dev. %NDs ND Adj. Transform <u>Alpha</u> Method n/a 170.3 Sulfate (mg/L) MW-9D 1576 8 1079 0 None No 0.001075 Param Intra 1 of 2 Sulfate (mg/L) MW-4D 427.6 10 296.4 50.08 0 No 0.001075 Param Intra 1 of 2 n/a None Sulfate (mg/L) MW-12D 0.001075 Param Intra 1 of 2 693.2 9 548.4 52.22 0 n/a None No Sulfate (mg/L) MW-5D 159.6 8 130.4 10.01 0 None No 0.001075 Param Intra 1 of 2 n/a Total Dissolved Solids [TDS] (mg/L) 0.001075 Param Intra 1 of 2 MW-7D 4809 9 2690 764.7 0 No n/a None Total Dissolved Solids [TDS] (mg/L) MW-8D 24623 21432 0 0.001075 Param Intra 1 of 2 n/a 11 1259 None No Total Dissolved Solids [TDS] (mg/L) 0.001075 Param Intra 1 of 2 MW-15 1159 1079 0 12 32.67 None Nο n/a Total Dissolved Solids [TDS] (mg/L) MW-3D 866.7 12 709 64.4 0 0.001075 Param Intra 1 of 2 None No n/a Total Dissolved Solids [TDS] (mg/L) MW-6D 1173 1037 46.63 0 0.001075 Param Intra 1 of 2 n/a 8 None Nο Total Dissolved Solids [TDS] (mg/L) MW-9D 3763 2122 561.5 0 No 0.001075 Param Intra 1 of 2 n/a 8 None Total Dissolved Solids [TDS] (mg/L) MW-4D 896.4 0.001075 Param Intra 1 of 2 1037 9 50.69 0 No n/a None Total Dissolved Solids [TDS] (mg/L) MW-12D 1158 9 1067 32.79 0 None No 0.001075 Param Intra 1 of 2 n/a Total Dissolved Solids [TDS] (mg/L) MW-5D 686.3 8 638.8 16.28 0 No 0.001075 Param Intra 1 of 2 n/a None

Prediction Limit Intrawell Parametric, MW-7D (bg)


Background Data Summary: Mean=1.183, Std. Dev.=0.1416, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9293, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: Boron Analysis Run 7/18/2019 3:40 PM View: PL's - Intrawell

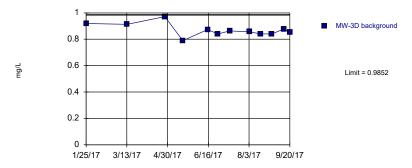
Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-15

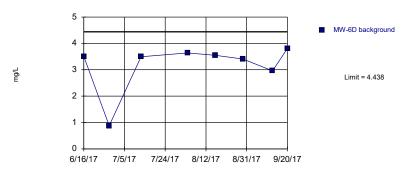
Background Data Summary: Mean=9.52, Std. Dev.=0.482, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.831, critical = 0.805. Kappa = 2.449 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-8D (bg)


Background Data Summary: Mean=1.324, Std. Dev.=0.03585, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8431, critical = 0.792. Kappa = 2.535 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: Boron Analysis Run 7/18/2019 3:40 PM View: PL's - Intrawell

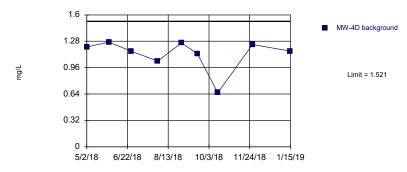
Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-3D

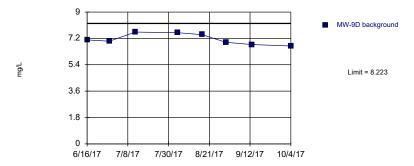
Background Data Summary: Mean=0.8698, Std. Dev.=0.04713, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.938, critical = 0.805. Kappa = 2.449 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-6D


Background Data Summary (based on cube transformation): Mean=37.54, Std. Dev.=17.06, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.827, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: Boron Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell

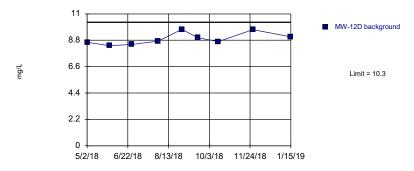
Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-4D

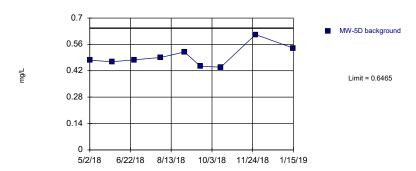
Background Data Summary (based on square transformation): Mean=1.298, Std. Dev.=0.3662, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7945, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-9D


Background Data Summary: Mean=7.146, Std. Dev.=0.3683, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9073, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: Boron Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell

Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-12D

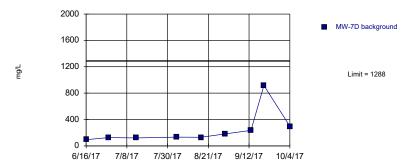
Background Data Summary: Mean=8.926, Std. Dev.=0.4975, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8856, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-5D

Background Data Summary: Mean=0.4964, Std. Dev.=0.05414, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8928, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: Boron Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell

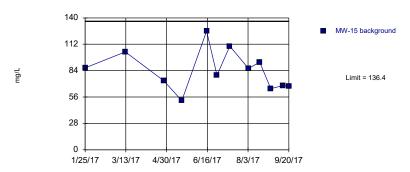
Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-8D (bg)

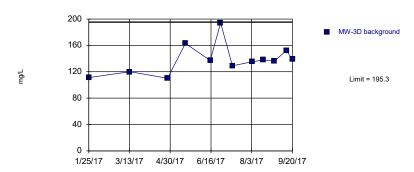
Background Data Summary (based on cube root transformation): Mean=7.815, Std. Dev.=0.6602, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7955, critical = 0.792. Kappa = 2.535 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-7D (bg)



Background Data Summary (based on natural log transformation): Mean=5.235, Std. Dev.=0.6946, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8257, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: Calcium Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-15

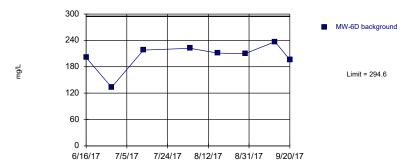
Background Data Summary: Mean=84.28, Std. Dev.=21.28, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9679, critical = 0.805. Kappa = 2.449 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-3D



Background Data Summary: Mean=138.7, Std. Dev.=23.13, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8977, critical = 0.805. Kappa = 2.449 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

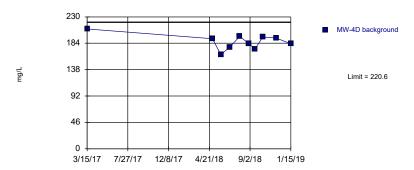
Constituent: Calcium Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-9D

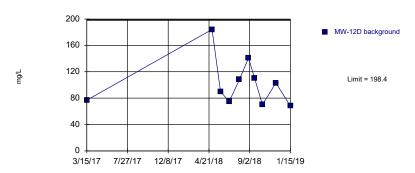
Background Data Summary: Mean=294.1, Std. Dev.=64.61, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9094, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-6D



Background Data Summary: Mean=203.5, Std. Dev.=31.18, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8086, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

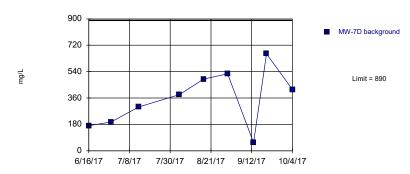
Constituent: Calcium Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-4D

Background Data Summary: Mean=186.6, Std. Dev.=12.99, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9763, critical = 0.781. Kappa = 2.621 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-12D



Background Data Summary: Mean=102.6, Std. Dev.=36.57, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8609, critical = 0.781. Kappa = 2.621 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

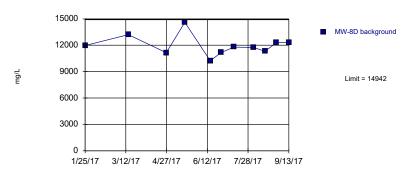
Constituent: Calcium Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-7D (bg)

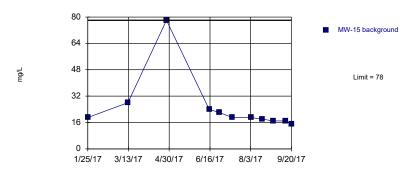
Background Data Summary: Mean=355.4, Std. Dev.=192.9, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.983, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-5D



Background Data Summary: Mean=142.6, Std. Dev.=11.06, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9089, critical = 0.781. Kappa = 2.621 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

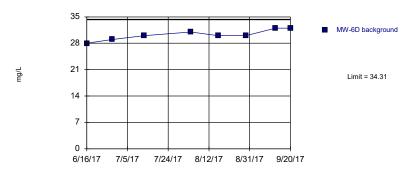
Constituent: Calcium Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-8D (bg)

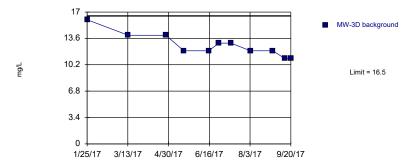
Background Data Summary: Mean=11986, Std. Dev.=1166, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9298, critical = 0.792. Kappa = 2.535 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Non-parametric, MW-15



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 11 background values. Well-constituent pair annual alpha = 0.02537. Individual comparison alpha = 0.01276 (1 of 2). Assumes 1 future value.

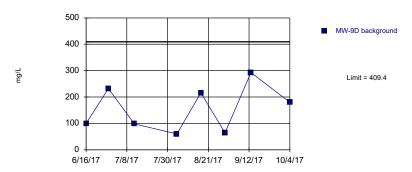
Constituent: Chloride Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-6D

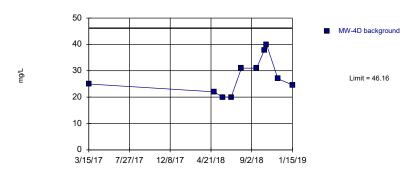
Background Data Summary: Mean=30.25, Std. Dev.=1.389, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9305, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-3D



Background Data Summary: Mean=12.73, Std. Dev.=1.489, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8965, critical = 0.792. Kappa = 2.535 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

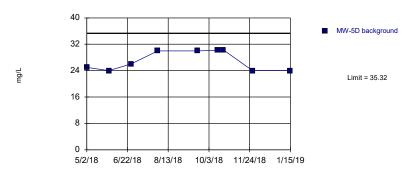
Constituent: Chloride Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-9D

Background Data Summary: Mean=155.4, Std. Dev.=86.93, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9085, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-4D



Background Data Summary: Mean=27.83, Std. Dev.=6.996, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.912, critical = 0.781. Kappa = 2.621 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

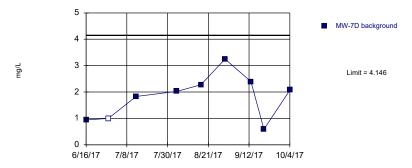
Constituent: Chloride Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-5D

Background Data Summary: Mean=27.06, Std. Dev.=2.981, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.766, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-12D

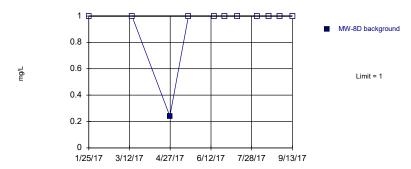


Background Data Summary: Mean=18.22, Std. Dev.=2.671, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9069, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: Chloride Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit Intrawell Parametric, MW-7D (bg)

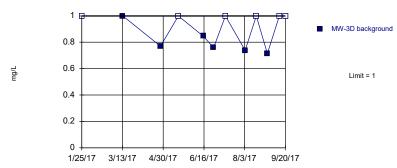


Background Data Summary: Mean=1.818, Std. Dev.=0.8399, n=9, 11.11% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9474, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Hollow symbols indicate censored values.

Prediction Limit

Intrawell Non-parametric, MW-8D (bg)

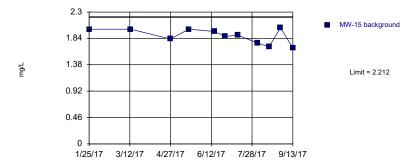

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 11 background values. 90.91% NDs. Well-constituent pair annual alpha = 0.02537. Individual comparison alpha = 0.01276 (1 of 2). Assumes 1 future value.

> Constituent: Fluoride Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit

Intrawell Non-parametric, MW-3D

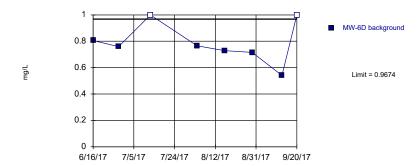


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. 50% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2). Assumes 1 future value.

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit

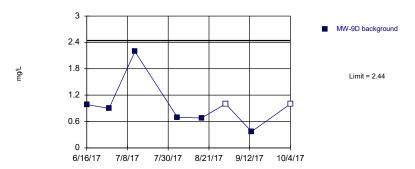
Intrawell Parametric, MW-15


Background Data Summary: Mean=1.883, Std. Dev.=0.1298, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8919, critical = 0.792. Kappa = 2.535 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

> Constituent: Fluoride Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit


Intrawell Parametric, MW-6D

Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.7193, Std. Dev.=0.08487, n=8, 25% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9023, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Hollow symbols indicate censored values.

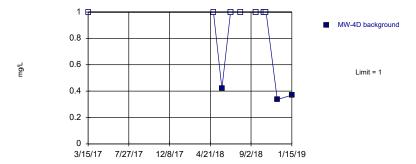
Prediction Limit Intrawell Parametric, MW-9D

Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.9091, Std. Dev.=0.5239, n=8, 25% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7886, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

> Constituent: Fluoride Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-12D

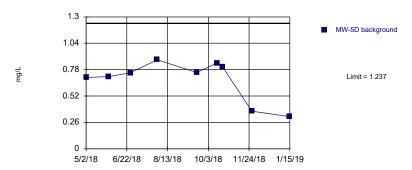


Background Data Summary: Mean=2.407, Std. Dev.=0.3782, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8943, critical = 0.781. Kappa = 2.621 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

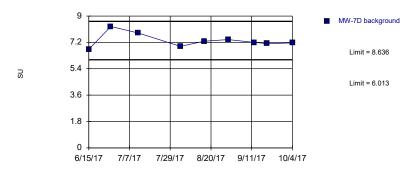
Prediction Limit

Intrawell Non-parametric, MW-4D



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 10 background values. 70% NDs. Well-constituent pair annual alpha = 0.0293. Individual comparison alpha = 0.01476 (1 of 2). Assumes 1 future value.

> Constituent: Fluoride Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

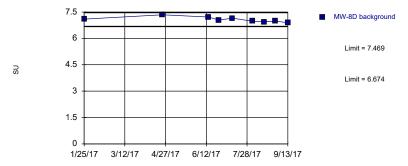
Prediction Limit Intrawell Parametric, MW-5D

Background Data Summary: Mean=0.6811, Std. Dev.=0.2004, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8042, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-7D (bg)

Background Data Summary: Mean=7.324, Std. Dev.=0.4731, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9129, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

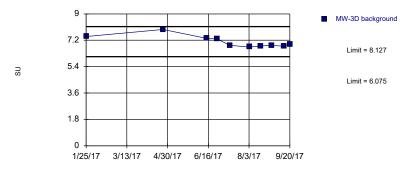
Constituent: pH, field Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-15

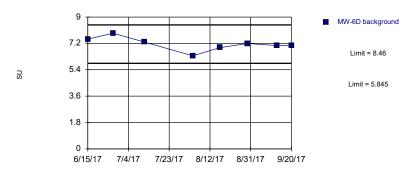
Background Data Summary: Mean=7.852, Std. Dev.=0.5446, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9476, critical = 0.781. Kappa = 2.621 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-8D (bg)


Background Data Summary: Mean=7.071, Std. Dev.=0.1434, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.956, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: pH, field Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell

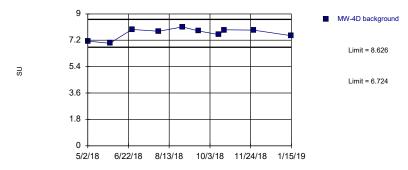
Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-3D

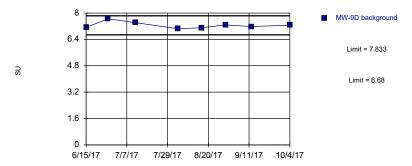
Background Data Summary: Mean=7.101, Std. Dev.=0.3915, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8416, critical = 0.781. Kappa = 2.621 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-6D



Background Data Summary: Mean=7.153, Std. Dev =0.4475, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9684, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

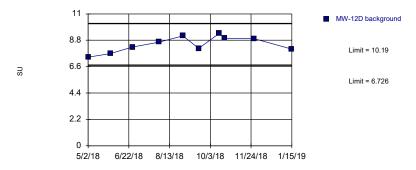
Constituent: pH, field Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-4D

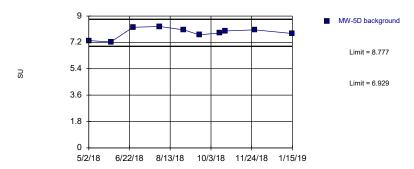
Background Data Summary: Mean=7.675, Std. Dev.=0.3629, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8836, critical = 0.781. Kappa = 2.621 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-9D



Background Data Summary: Mean=7.256, Std. Dev.=0.1972, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9107, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: pH, field Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

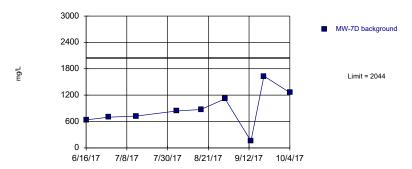
Prediction Limit Intrawell Parametric, MW-12D

Background Data Summary: Mean=8.459, Std. Dev.=0.6611, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9542, critical = 0.781. Kappa = 2.621 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-5D

Background Data Summary: Mean=7.853, Std. Dev.=0.3525, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9142, critical = 0.781. Kappa = 2.621 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

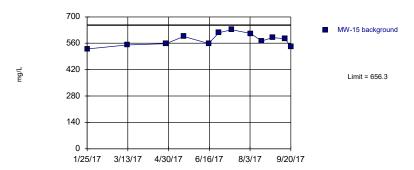
Constituent: pH, field Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-8D (bg)

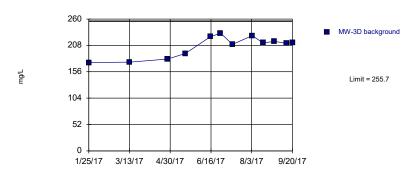
Background Data Summary: Mean=109.6, Std. Dev.=24.76, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8848, critical = 0.792. Kappa = 2.535 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-7D (bg)


Background Data Summary: Mean=881.6, Std. Dev.=419.4, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9691, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: Sulfate Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell

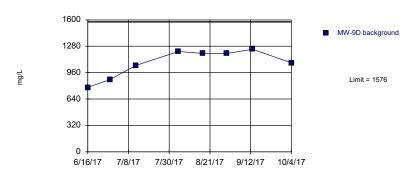
Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-15

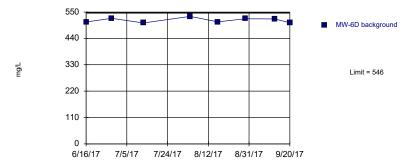
Background Data Summary: Mean=578.6, Std. Dev.=31.72, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.971, critical = 0.805. Kappa = 2.449 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-3D


Background Data Summary: Mean=205.9, Std. Dev.=20.34, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8886, critical = 0.805. Kappa = 2.449 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: Sulfate Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell

Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-9D

Background Data Summary: Mean=1079, Std. Dev.=170.3, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8677, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-6D

Background Data Summary: Mean=515.6, Std. Dev.=10.41, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8968, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: Sulfate Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell

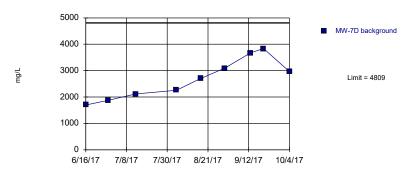
Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-4D

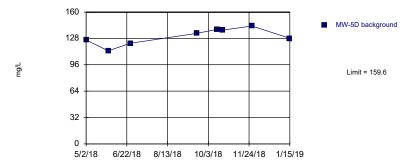
Background Data Summary: Mean=296.4, Std. Dev.=50.08, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.855, critical = 0.781. Kappa = 2.621 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-12D


Background Data Summary: Mean=548.4, Std. Dev.=52.22, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.911, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: Sulfate Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell

Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-7D (bg)

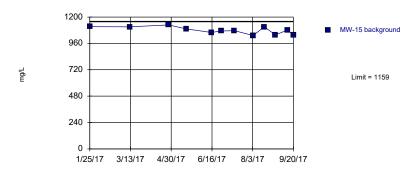
Background Data Summary: Mean=2690, Std. Dev.=764.7, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9436, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-5D

Background Data Summary: Mean=130.4, Std. Dev.=10.01, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9604, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: Sulfate Analysis Run 7/18/2019 3:43 PM View: PL's - Intrawell

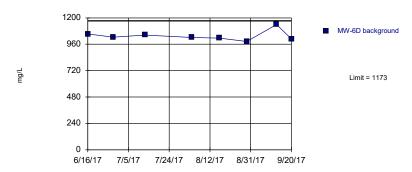
Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-8D (bg)

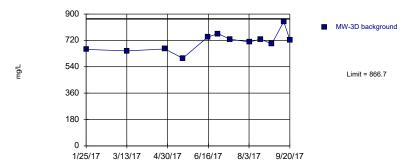
Background Data Summary: Mean=21432, Std. Dev.=1259, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9319, critical = 0.792. Kappa = 2.535 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-15



Background Data Summary: Mean=1079, Std. Dev.=32.67, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9324, critical = 0.805. Kappa = 2.449 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

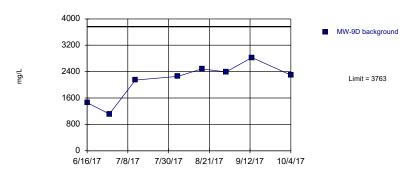
Constituent: Total Dissolved Solids [TDS] Analysis Run 7/18/2019 3:43 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-6D

Background Data Summary: Mean=1037, Std. Dev.=46.63, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.835, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-3D



Background Data Summary: Mean=709, Std. Dev.=64.4, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9634, critical = 0.805. Kappa = 2.449 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: Total Dissolved Solids [TDS] Analysis Run 7/18/2019 3:43 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

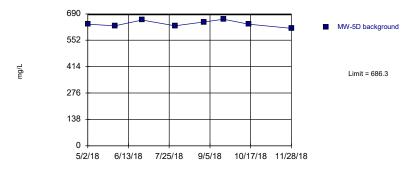
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Prediction Limit Intrawell Parametric, MW-9D

Background Data Summary: Mean=2122, Std. Dev.=561.5, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8964, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-4D



Background Data Summary: Mean=896.4, Std. Dev.=50.69, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8544, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: Total Dissolved Solids [TDS] Analysis Run 7/18/2019 3:43 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

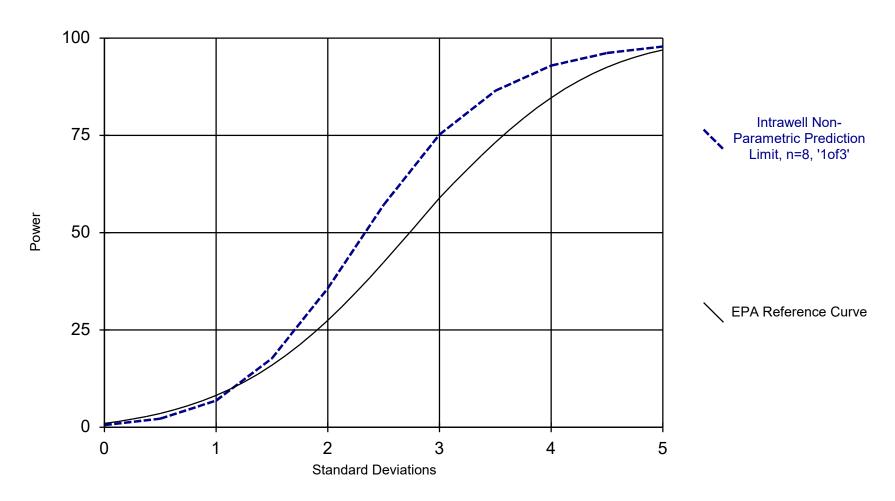
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-5D

Background Data Summary: Mean=638.8, Std. Dev.=16.28, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9519, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

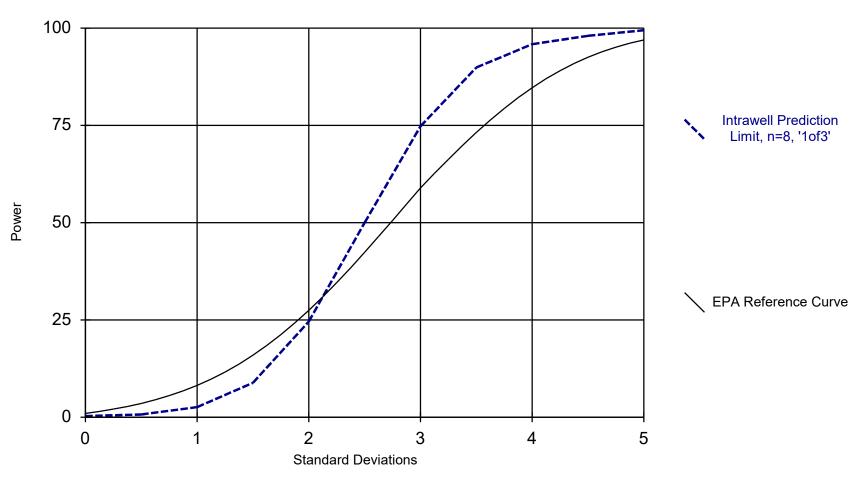
Constituent: Total Dissolved Solids [TDS] Analysis Run 7/18/2019 3:43 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG



Background Data Summary: Mean=1067, Std. Dev.=32.79, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8768, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: Total Dissolved Solids [TDS] Analysis Run 7/18/2019 3:43 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF


Power Curve

Analysis Run 3/20/2019 8:46 PM

Northeastern LF Client: Geosyntec Data: Northeastern LF

Power Curve

Kappa = 2.049, based on 7 compliance wells and 7 constituents, evaluated semi-annually (this report reflects annual total).

Analysis Run 3/20/2019 8:46 PM

Northeastern LF Client: Geosyntec Data: Northeastern LF

Memorandum

Date: January 8, 2020

To: David Miller (AEP)

Copies to: Jill Parker-Witt (AEP)

From: Allison Kreinberg and Bruce Sass, Ph.D. (Geosyntec)

Subject: Evaluation of Detection Monitoring Data at

Northeastern Plant's Landfill (LF)

In accordance with Oklahoma Department of Environmental Quality rules regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (OAC 252.517) detection monitoring events were completed on August 26, 2019 and December 3, 2019 at the Landfill (LF), an existing CCR unit at the Northeastern Power Plant located in Oologah, Oklahoma.

Background values for the LF were previously calculated for wells MW-3D, MW-6D, MW-9D, MW-12D, and MW-15 in January 2018. After a minimum of four detection monitoring events, the results of those events were compared to the existing background dataset, and the background dataset was updated as appropriate. Revised upper prediction limits (UPLs) were calculated for each Appendix A parameter to represent background values. Lower prediction limits (LPLs) were also calculated for pH. Details on the calculation of these revised background values are described in Geosyntec's *Statistical Analysis Summary* report, dated January 8, 2020. After a revision to the well network, background values for MW-4D, and MW-5D, and MW-12D were calculated in July 2019.

To achieve an acceptably high statistical power while maintaining a site-wide false-positive rate (SWFPR) of 10% per year or less, prediction limits were calculated based on a one-of-two retesting procedure. With this procedure, a statistically significant increase (SSI) is only concluded if both samples in a series of two exceeds the UPL. In practice, if the initial result did not exceed the UPL, a second sample was not collected or analyzed.

Evaluation of Detection Monitoring Data – Northeastern LF January 8, 2020 Page 2

Detection monitoring results and the relevant background values are compared in Table 1. No SSIs were observed at the Northeastern LF CCR unit, and as a result the Northeastern LF will remain in detection monitoring.

The statistical analysis was conducted within 90 days of completion of sampling and analysis in accordance with OAC 252:517-9-4(h)(6). A certification of these statistics by a qualified professional engineer is provided in Attachment A.

Table 1: Detection Monitoring Data Evaluation Northeastern Plant - Landfill

Damamatan	TI*4a	Description	MW	/-3D	MW-4D	MW	7-5D	MW	7-6D	MV	V-9D	MW-12D	MW	V-15
Parameter	Units	Description	8/26/2019	12/3/2019	8/26/2019	8/26/2019	12/3/2019	8/26/2019	12/3/2019	8/26/2019	12/3/2019	8/26/2019	8/26/2019	12/3/2019
Boron		Intrawell Background Value (UPL)	1.	07	1.52	0.647		4.	73	8.	00	10.3	10	.6
Boron	mg/L	Detection Monitoring Data	0.979	-	0.987	0.568	1	2.88	1	6.95	-	8.9	8.28	-
Calcium	ma/I	Intrawell Background Value (UPL)	1	81	221	172		34	12	4	56	198	19	96
Calcium	mg/L	Detection Monitoring Data	130	-	184	146	1	181	1	136	-	96.3	119	-
Chloride	mg/L	Intrawell Background Value (UPL)	16	5.0	46.2	35.3		34	l.1	4	03	25.6	10)4
Cinoride	mg/L	Detection Monitoring Data	12.0	-	23.0	24.0	ı	13.0	1	24.0	-	14.0	20.0	-
Fluoride	mg/L	Intrawell Background Value (UPL)	1.	09	1.00	1.24		1.3	24	2.	18	3.40	2.4	49
Tuonac	mg/L	Detection Monitoring Data	0.608	-	0.171	0.412	-	0.634	-	0.758	-	1.60	1.25	-
		Intrawell Background Value (UPL)	8	.2	8.6	8.8		8.	.1	7	7.7	10.2	9.	0
pН	SU	Intrawell Background Value (LPL)	6	.3	6.7	6.9		6.	.3	6	.8	6.7	6.	7
		Detection Monitoring Data	8.5	7.4	8.1	9.8	7.2	8.6	7.5	8.8	7.6	8.7	10.5	7.7
Sulfate	mg/L	Intrawell Background Value (UPL)	2	48	428	160		58	35	16	540	720	64	12
Sullate	mg/L	Detection Monitoring Data	181	-	274	134	-	401	-	526	-	540	587	-
TDS	mg/L	Intrawell Background Value (UPL)	8.	32	1040	686		11	80	34	180	1160	11	60
1103	mg/L	Detection Monitoring Data	686	-	830	670	-	1040	-	1080	-	1020	1070	-

Notes
UPL: Upper prediction limit LPL: Lower prediction limit TDS: Total dissolved solids

Bold values exceed the background value.

Background values are shaded gray.

ATTACHMENT A Certification by Qualified Professional Engineer

CERTIFICATION BY QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected statistical method, described above and in the January 8, 2020 *Statistical Analysis Summary* report, is appropriate for evaluating the groundwater monitoring data for the Northeastern LF CCR management area and that the requirements of OAC 252:517-9-4(g) have been met.

DAVID	ANTHONY	MILLER

Printed Name of Licensed Professional Engineer

David Lothony Miller

Signature

26057 OKLAHOMA

License Number Licensing State

01.23.2020

Date

APPENDIX III

Alternate source demonstrations are included in this appendix. Alternate sources are sources or reasons that explain that statistically significant increases over background or statistically significant levels above the groundwater protection standard are not attributable to the CCR unit.

ALTERNATIVE SOURCE DEMONSTRATION REPORT STATE CCR RULE

Northeastern Plant Landfill Oologah, Oklahoma

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

engineers | scientists | innovators

941 Chatham Lane Suite 103 Columbus, OH 43221

January 31, 2019

CHA8462

TABLE OF CONTENTS

SECTION 1	Introduction and Summary	1-1
	CCR Rule Requirements	
1.2	Demonstration of Alternative Sources	.1-2
SECTION 2	Alternative Source Demonstration	.2-1
2.1	Proposed Alternative Source	.2-1
2.2	Sampling Requirements	.2-1
SECTION 3	Conclusions and Recommendations	.3-1
SECTION 4	References	.4-1

LIST OF TABLES

Table 1 Detection Monitoring Data Evaluation

LIST OF FIGURES

Figure 1 Fluoride Time Series Graph at MW-15

LIST OF ACRONYMS AND ABBREVIATIONS

AEP American Electric Power

ASD Alternative Source Demonstration

CCR Coal Combustion Residuals

EPRI Electric Power Research Institute

LPL Lower Prediction Limit

OAC Oklahoma Administrative Code

ODEQ Oklahoma Department of Environmental Quality

QA Quality Assurance

QC Quality Control

SSI Statistically Significant Increase

UPL Upper Prediction Limit

USEPA United States Environmental Protection Agency

INTRODUCTION AND SUMMARY

Eight to twelve background monitoring events were previously conducted at the Northeastern Landfill. Upper prediction limits (UPLs) were calculated for each Appendix A parameter to represent background values using the results of these eight to twelve events. In addition, a lower prediction limit (LPL) was also calculated for pH. A one-of-two retesting procedure was employed for all wells at the Northeastern Landfill. Using this procedure, a statistically significant increase (SSI) is concluded only if both samples in a series of two exceed the UPL and, for pH, are lower than the LPL. If the initial result did not exceed a prediction limit, a second sample was not collected. These prediction limits were recalculated using intrawell statistics to reflect natural variability between wells, as described in the Alternate Source Demonstration (ASD) report prepared on April 13, 2018 (Geosyntec, 2018).

The first semi-annual detection monitoring event was performed in May 2018 (initial sampling event) and October 2018 (verification sampling event), and the results were compared to the calculated prediction limits. An SSI was identified for fluoride at MW-15 using intrawell comparisons following the procedure indicated in the April 2018 ASD report. A summary of the detection monitoring analytical results and the calculated prediction limits to which they were compared is presented in Table 1.

1.1 CCR Rule Requirements

Oklahoma Department of Environmental Quality (ODEQ) regulations regarding detection monitoring programs for coal combustion residuals (CCR) landfills and surface impoundments allow the following evaluation process when an SSI has been identified (OAC 252:517-9-5(e)(2)):

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report.

The first semi-annual sampling event was conducted on May 30, 2018 at the Northeastern Landfill to evaluate for SSIs over background limits. As part of the one-of-two retesting scheme, well MW-15 was resampled for fluoride on October 15, 2018 and an SSI was identified. Pursuant to OAC 252:517-9-5(e)(2), Geosyntec Consultants, Inc. (Geosyntec) has prepared this Alternative Source Demonstration (ASD) report, which documents that the SSI should not be attributed to the Northeastern Landfill.

1.2 <u>Demonstration of Alternative Sources</u>

An evaluation was completed to assess possible alternative sources to which the identified SSI could be attributed. Alternative sources were identified amongst five types, based on methodology provided by EPRI (2017):

- ASD Type I: Sampling Causes;
- ASD Type II: Laboratory Causes;
- ASD Type III: Statistical Evaluation Causes;
- ASD Type IV: Natural Variation; and
- ASD Type V: Alternative Sources.

A demonstration was conducted to show that the increases in constituent concentrations were based on a Type II cause at MW-15 and not by a release from the Northeastern Landfill.

ALTERNATIVE SOURCE DEMONSTRATION

The State CCR Rule allows the owner or operator 90 days from the determination of an SSI to demonstrate that a source other than the CCR unit caused the SSI. Identified SSIs, evaluation methodology, and the proposed alternative source are described below.

2.1 Proposed Alternative Source

Initial review of site geochemistry, site historical data, and laboratory QA/QC did not identify ASDs due to a Type I issue (sampling causes). As described below, the SSI was attributed to variation in the laboratory results, which is a Type II issue.

Following the revision to intrawell statistical techniques, the calculated UPL for fluoride at MW-15 is 2.24 milligrams per liter (mg/L). Both the initial and verification sampling results for the first semi-annual detection monitoring event in 2018 were above the UPL, with reported concentrations of 2.33 mg/L and 2.27 mg/L, respectively. The samples were analyzed using USEPA Method 300.0, which prescribes $\pm 10\%$ variation as the daily calibration verification standard acceptance criteria (USEPA, 1993). Because both reported concentrations are within 10% (4% and 1.3% respectively) of the calculated UPL, the variations observed, although above the UPL, are likely due to the acceptable variation in the analytical procedure.

The second semi-annual sampling event was conducted on October 22, 2018. The reported fluoride concentration for the sample from well MW-15 was 2.17 mg/L, which is below the calculated UPL. Based on the three results for MW-15 during the 2018 groundwater monitoring events, a positive trend is not demonstrated for fluoride. Additionally, no other Appendix A exceedances were observed for MW-15 during the first semi-annual event. Thus, the observed fluoride concentrations during the first semi-annual event are not considered indicative of a release from the Landfill and are instead likely due to acceptable variation in the laboratory procedure and reporting results.

2.2 Sampling Requirements

As the ASD described above supports the position that the identified SSI is not due to a release from the Northeastern Landfill, the unit will remain in the detection monitoring program. Groundwater at the unit will continue to be sampled for Appendix A parameters on a semi-annual basis.

CONCLUSIONS AND RECOMMENDATIONS

The preceding information serves as the ASD prepared in accordance with OAC 252:517-9-4(e)(2) and supports the position that the SSI in fluoride for MW-15 observed during the first semi-annual sampling event in 2018 was not due to a release from the Northeastern Landfill. The observed SSI was, instead, attributed to allowable variation in the laboratory calibration standard. Therefore, no further action is warranted, and the Northeastern Landfill will remain in the detection monitoring program. Certification of this ASD by a qualified professional engineer is provided in Attachment A.

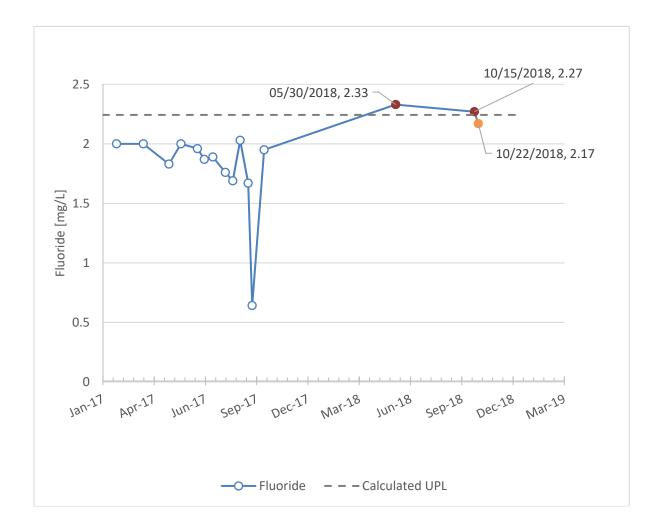
REFERENCES

- AEP, 2017. Statistical Analysis Plan Northeastern Power Station. Oologah, Oklahoma. January 2017.
- EPRI, 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Site. 3002010920. October 2017.
- Geosyntec Consultants, 2018. Alternative Source Demonstration Report Federal CCR Rule. Northeastern Plant Landfill. April.
- USEPA, 1993. Method 300.0 Determination of Inorganic Anions by Ion Chromatography. Revision 2.1.

Table 1: Detection Monitoring Data Evaluation Northeastern Plant - Landfill

Parameter	Units	Description	MW-3D	MW-6D	MW-9D	MW	V-15
rarameter	Omis	Description	5/30/2018	5/30/2018		5/30/2018	10/15/2018
Boron	mg/L	Intrawell Background Value (UPL)	0.975	4.35	8.11	10	0.6
DOIOII	mg/L	Detection Monitoring Result	0.952	3.35		8.76	
Calcium	mg/L	Intrawell Background Value (UPL)	190	285	463	13	32
Calcium	mg/L	Detection Monitoring Result	129	269		105	
Chloride	mg/L	Intrawell Background Value (UPL)	16.2	33.9	383	78	
Cinoriae	mg/L	Detection Monitoring Result	13	32		33	
Fluoride	mg/L	Intrawell Background Value (UPL)	1	0.941	2.28	2.243	
Fluoride	mg/L	Detection Monitoring Result	0.896	0.922	-	2.33	2.27
	SU	Intrawell Background Value (UPL)	8.03	8.32	7.77	9.	14
рН	SU	Intrawell Background Value (LPL)	6.17	5.98	6.74	6.	56
	SU	Detection Monitoring Result	7.46	7.39	-	7.713	
Total Dissolved Solids	mg/L	Intrawell Background Value (UPL)	853	1159	3591	11	52
Total Dissolved Solids	mg/L	Detection Monitoring Result	724	1090		1128	
Sulfate	mg/L	Intrawell Background Value (UPL)	251	543	1524	64	19
Suitale	mg/L	Detection Monitoring Result	214	401		549	

Notes:


UPL: Upper prediction limit LPL: Lower prediction limit

-: Not Sampled

Bold values exceed the background value.

Background values are shaded gray.

MW-9D was purged dry during the May 2018 event and a sample could not be collected.

Notes: Initial sampling for the first semi-annual detection monitoring event occurred on 5/30/2018. Verification sampling for the first semi-annual event occurred on 10/15/2018. Initial sampling for the second semi-annual event occurred on 10/22/2018. The upper prediction limit (UPL) was calculated using intrawell analyses.

Fluoride Time Series Graph at MW-15

Northeastern Landfill

Figure 1

CERTIFICATION BY A QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected and above described alternative source demonstration is appropriate for evaluating the groundwater monitoring data for the Northeastern Landfill CCR management area and that the requirements of OAC 252:517-9-4(e)(2) have been met.

Beth Ann Gross Printed Name of License	ed Professional Engineer M. Hoss	BETH A. GROSS 18167 OF LAHOMP
Signature	n How	Geosyntec Consultants 8217 Shoal Creek Blvd., Suite 200 Austin, TX 78757
		Oklahoma Firm Certificate of Authorization No. 1996 Exp. 6/30/2020
18167	Oklahoma	January 31, 2019
License Number	Licensing State	Date

SCOTT A THOMPSON Executive Director

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

March 18, 2019

RECEIVED and 2 2 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re:

Alternate Source Demonstration - Coal Combustion Residuals Landfill

Public Service Company of Oklahoma-Northeastern Power Station Ash Landfill

Rogers County

Solid Waste Permit No. 3566010

Dear Ms. Parker-Witt:

The Department of Environmental Quality (DEQ) received the Alternate Source Demonstration (ASD) for the Coal Combustion Residuals (CCR) Landfill, by email, on January 31, 2019. A statistically significant increase (SSI) over background was indicated for fluoride at groundwater monitoring well MW-15. Oklahoma Administrative Code (OAC) 252:517-9-5(e)(2) allows NPS to demonstrate, within ninety (90) days of detecting an SSI, that a source other than the CCR landfill caused the SSI over background levels.

The first sampling event was May 30, 2018. MW-15 was resampled for fluoride on October 15, 2018. The second semi-annual sampling event was October 22, 2018. The concentrations of fluoride were 2.24 mg/L, 2.27 mg/L and 2.17 mg/L respectively. The sample and resample concentrations are within ten (10) percent of the intrawell upper prediction limit (UPL) of 2.24 mg/L (4% and 1.3% respectively) which is the acceptable variation for the analytical procedure used in the analyses. Additionally, the result for the second semi-annual detection monitoring event was below the UPL and an increasing trend was not indicated. The SSI is attributed to a laboratory cause and the ASD is accepted as submitted.

If you have any questions, please contact Ms. Cynthia Hailes, P.E. at (405) 702-5114.

Sincerely,

Hillary Young, P.E

Chief Engineer

Land Protection Division

HY/ckh

APPENDIX IV

Groundwater monitoring field and laboratory reports.

SAMPLED BY: KENNETH MCDONALL . DATE: 01/22/18

Well Identification Number	MW-1D	MW-2D	MW-3D	MW-4D	MW-5D	MW-6D
Sample Identification			SAMPLE			SAMPLE
Elevation of Top of Casing (ft. NGVD)	638.07	638.19	630.65	625.00	636.84	636.8
Depth to Water (ft)						33,97
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.25	61.80	62.95	53.95	58.42	58.51
Height of Water Column (ft.)						
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)					200 2714	
Water Removed From Well (gallons)						
Method of Removal						
Was Well Purged Dry?						
pH (standard units)						6.85
Temperature (°C)						17,24
Conductivity (µmhos/cc)						1910
Turbidity (NTU)						108
Dissolved Oxygen (mg/L)						3,61
ORP (mV)						137
Purge Time - Begin						
Purge Time - End						
Sample Time						504/F/B
Sample Date						

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: Ktn NETH McDONALL . DATE: 01/22/18

Well Identification Number	MW-7D	MW-8D	MW-9D	MW-10D	MW-11D	MW-12D
Sample Identification	SAMPLE	SAMPLE	SAMPLE			
Elevation of Top of Casing (ft. NGVD)	626.45	629.32				
Depth to Water (ft)			59.72			
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.70	64.50	64.02	71.20	50.17	44.80
Height of Water Column (ft.)						
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)						
Water Removed From Well (gallons)						
Method of Removal						
Was Well Purged Dry?						
pH (standard units)			7.14			
Temperature (°C)			18.23			
Conductivity (µmhos/cc)			1720			
Turbidity (NTU)		 	306			
Dissolved Oxygen (mg/L)			1.84			
ORP (mV)			157			
Purge Time - Begin						
Purge Time - End						
Sample Time			B/RA			
Sample Date			2 RA			

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNETH McDONALD . DATE: 01/27/18

Well Identification Number	MW-13D	MW-14	MW-15	MW-16	MW-17	SP-1
Sample Identification			SAMPLE			SAMPLE
Elevation of Top of Casing (ft. NGVD)						621.26
Depth to Water (ft)			61,71			16.70
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	47.39	78.96	74.21	64.15	58.41	37.99
Height of Water Column (ft.)						
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)						
Water Removed From Well (gallons)						
Method of Removal						
Was Well Purged Dry?						
pH (standard units)			7,24			6,90
Temperature (°C)			17,91			18.09
Conductivity (µmhos/cc)			1850			849
Turbidity (NTU)			208			54,2
Dissolved Oxygen (mg/L)			5,31			3,14
ORP (mV)		4 3 .	136			131
Purge Time - Begin						
Purge Time - End						
Sample Time			В			Ca
Sample Date						

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KMMY MIDIANI DATE: 05/01-02/18

Well Identification Number	MW-1D	MW-1S	MW-2D	MW-2S	MW-3D	MW-3S
Sample Identification	CCR III & IV	Gauge	CCR III & IV	Metals IV	CCR III & IV	Metals IV
Elevation of Top of Casing (ft. NGVD)	638.07	638.89	638.19	637.37	630.65	630.19
Depth to Water (ft)	54,04	22,41	55.13	32,22	37.07	21.31
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.25	37.76	61.80	36.75	62.95	27.21
Height of Water Column (ft.)	4,21	15.35	6.67	4.53	25.88	5.90
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.68	2,50	1.08	0,74	4,72	0.96
Water Removed From Well (gallons)	0.50		3,25	1,0	13.0	1,25
Method of Removal	BAILER	-	Pimp	Pump	Fuma	RME
Was Well Purged Dry?	YES	-	No	Yts	No	415
pH (standard units)			10,60	9,16	7,27	7.36
Temperature (°C)			20.32	19.98	20,30	20,25
Conductivity (µmhos/cc)		-	1770	2750	1020	2260
Turbidity (NTU)		The state of the s	183	285	78.3	108
Appearance			SUIGHTLY	tunsip	CUAN	5LIGHTLY TURBIP
Odor			NONE	Nont	Nont	SULPHUR
Purge Time - Begin	DTW 57.04 049@ 1455	-				
Purge Time - End	Ptw 56.18 059 1300 65/02	-				
Sample Time	1WSVFFICHWT	-	1035	1045	940	0955
Sample Date	WATIN	-	05/02/18	05/02/18	05/02/18	05/02/18

For 2" well multiply by 0.163
For 4" well multiply by 0.653

Pup Dup-111

SAMPLED BY: KENNY M. (Denned . DATE: 05/01-02/18

Well Identification Number	MW-4D	MW-4S	MW-5D	MW-5S	MW-6D	MW-6S
Sample Identification	CCR III & IV	Gauge	CCR III & IV	Metals IV	CCR III & IV	Metals IV
Elevation of Top of Casing (ft. NGVD)	625.00	624.54	636.84	636.72	636.80	636.66
Depth to Water (ft)	43,15	Dny	22,20	20,91	33,95	pny
Water Level Elevation (ft. NGVD)		_				
Measured Depth Total Depth of Well (ft.)	53.86	32.94	58.42	33.15	58.51	28.20
Height of Water Column (ft.)	10171	***************************************	36,22	12,24	24.56	
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1,75	1	5,90	2.00	4.00	
Water Removed From Well (gallons)	610	(11.25	6,0	10,50	_
Method of Removal	Pump		Pump	Pump	RMP	
Was Well Purged Dry?	No	1	445	No	445	
pH (standard units)	7.14		7.32	7,03	7.28	
Temperature (°C)	20.66		19,22	19.27	20,40	
Conductivity (µmhos/cc)	1240		931	1240	1370	
Turbidity (NTU)	136		94,6	117	206)
Appearance	SLIGHTLY TURBIP	_	CLIAN	Clian	SUIGHTLY TUABLO	
Odor	Nont		Nort	SULPHIA	Nunt	
Purge Time - Begin		~				
Purge Time - End						
Sample Time	920	******	1105	1055	1010	
Sample Date	05/02/18		05/02/18	05/02/18	05/02/18	_

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: Ktnny Milonnil . DATE: 05/01-02/18

Well Identification Number	MW-7D	MW-7S	MW-8D	MW-8S	MW-9D	MW-9S
Sample Identification	Gauge	Gauge	Gauge	Gauge	CCR III & IV	Metals IV
Elevation of Top of Casing (ft. NGVD)	626.45	626.46	629.32	628.71	637,04	636,94
Depth to Water (ft)	13,93	11.46	22,36	7,51	57.03	26,47
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.70	33.54	64.50	43.30	64.02	36.71
Height of Water Column (ft.)	44.77	22,08	42,14	35.79	6,07	10,24
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	7.30	3,60	6,87	5,83	0,99	1.67
Water Removed From Well (gallons)			-		0,75	2,0
Method of Removal		_	_	-	Pump	PUMP
Was Well Purged Dry?	-		-	~	YES	405
pH (standard units)						11,83
Temperature (°C)		~	-			20.45
Conductivity (µmhos/cc)		_				3690
Turbidity (NTU)			,			289
Appearance	_	_	_	~		BAUNN
Odor		_				Nont
Purge Time - Begin				~	05/01@ 1530	
Purge Time - End			(07W 61.94 05/028 1305	
Sample Time	_	~			ONGO FICIENT	1025
Sample Date)		_		WATTEN	05/02/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNY Mc DONALD . DATE: 05/01-02/18

Well Identification Number	MW-10D	MW-10S	MW-11D	MW-11S	MW-12D	MW-12S
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Metals IV	CCR III & IV	Metals IV
Elevation of Top of Casing (ft. NGVD)	639,32	639,58	628,77	628.75	623,67	623,50
Depth to Water (ft)	68.32	22,77	47.68	12,51	15,62	11,78
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	71.33 71.20	36.22	50.34 50.17	31.02	44.80	21.99 -22.76
Height of Water Column (ft.)	3.01	13.45	2,66	18:51	29.30	11.16
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0,49	2,19	0,43	3.02	4,78	1.82
Water Removed From Well (gallons)	0.25	7,0	0.25	10.0	11,0	610
Method of Removal	BAILER	Pump	BALLA	Pump	rump	Pump
Was Well Purged Dry?	415	No	465	NO	445	NO
pH (standard units)		8,17		7.87	7.39	7.17
Temperature (°C)		19,68		19.06	18.00	18,20
Conductivity (µmhos/cc)		904		799	1330	948
Turbidity (NTU)		53.2		41.6	422	108
Appearance		Clean		CLIAN	tungio	Clim
Odor		port		wont-	NONE	wort
Purge Time - Begin	05/01@ 1600		DTW 48.67 05/01 @ 1610			
Purge Time - End	DTW 69.88 05/02@1210		0 +W 48,62 05/02@1200			
Sample Time	0.236AL INSUFFICIENT	1205	0:286AL WSVFFICHE	1155	1140	1145
Sample Date	WATT	05/02/18	WATTA	05/02/18	05/02/18	05/02/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNY M. (DONAL d. DATE: 05/01-02/18

Well Identification Number	MW-13D	MW-13S	MW-14	MW-15	MW-16	MW-17
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Gauge	CCR III & IV	CCR III & IV
Elevation of Top of Casing (ft. NGVD)	619.06	619,15	640.89	637.71		636,52
Depth to Water (ft)	34.78	15.66	72,21	55,85	61,29	52,11
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	47.39	18.05	78.96	74.21	64.15	58.41
Height of Water Column (ft.)	12,78	1811	6,75	18.36	2.86	6,30
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	2,08	0,40	1.10	2,99	0,47	1.03
Water Removed From Well (gallons)	6,50	0,25	0.75		6,25	0.50
Method of Removal	Pempo	DAILM	Prmp		Pump	Pump
Was Well Purged Dry?	No	YKS	415		445	415
pH (standard units)	7,08	7,19		_		
Temperature (°C)	19.06	17,25		-		
Conductivity (µmhos/cc)	13,80	908		_		
Turbidity (NTU)	101	124				
Appearance	Cum	Clyan		~		
Odor	Nort	Nort		_		
Purge Time - Begin			05/01@ 1440	-	PTW 63,01 05/01@ 1540	05/010 1550
Purge Time - End			0+W 76.82 05/02@1310		DTW 62,21 05/0201315	Dtn 56,03
Sample Time	1130	1125	1NSUFFICET		1 NSVFFICHM	0,39641
Sample Date	05/02/18	05/02/18	WATTE	/	WATIN	WATTA

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNY Millonard . DATE: 05/29-30/18

Well Identification Number	MW-1D	MW-1S	MW-2D	MW-2S	MW-3D	MW-3S
Sample Identification	CCR III & IV	NA	CCR III & IV	Metals IV	CCR III & IV (No Radium)	Metals
Elevation of Top of Casing (ft. NGVD)	638.07	638.89	638.19	637.37	630.65	630.19
Depth to Water (ft)	53.76		58.41	34,23	37.11	21.89
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.25	37.76	61.80	36.75	62.95	27.21
Height of Water Column (ft.)	4,49		3,39	2,52	25,84	5,32
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.73		0,55	0.41	4.21	0,87
Water Removed From Well (gallons)	0.50		1,25	0,50	13.0	1,0
Method of Removal	BAILER		Pump	Pump	Pamp	Pump
Was Well Purged Dry?	41-5		445	YES	NO	YES
pH (standard units)	7,38		10.43	7,81	7.46	6,97
Temperature (°C)	22,92		21.86	20,94	22,34	22,88
Conductivity (µmhos/cc)	4060		1840	1320	1120	2260
Turbidity (NTU)	21.8		122	127	64.8	21,4
Appearance	clan		SCIENTLY TURBID	TURBIO	CUM	Cliran
Odor	NONE		NONE	NONE	NONF	NONE
Purge Time - Begin						
Purge Time - End						
Sample Time	1312		1342	1039	1422	1/11
Sample Date	05/30/18		05/30/18	05/30/18	05/30/18	05/30/18

For 2" well multiply by

For 4" well multiply by

0.163

0.653

PUPLICATE SHAUGW

SAMPLED BY: Kinn MiDonald . DATE: 05/29-30/18

Well Identification Number	MW-4D	MW-4S	MW-5D	MW-5S	MW-6D	MW-6S
Sample Identification	CCR III & IV	NA	CCR III & IV	Metals IV	CCR III & IV (No Radium)	Metals
Elevation of Top of Casing (ft. NGVD)	625.00	624.54	636.84	636.72	636.80	636.66
Depth to Water (ft)	43,54		29.73	22.61	33.66	DRY
Water Level Elevation (ft. NGVD)						0.00
Measured Depth Total Depth of Well (ft.)	53.86	32.94	58.42	33.15	58.51	28.20
Height of Water Column (ft.)	10,32		28,69	10,54	24,85	-
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1.68		4,68	1.72	4,05	
Water Removed From Well (gallons)	5,5		9.75	6,0	9.75	-
Method of Removal	Pump		Pump	PUMP	Pump	
Was Well Purged Dry?	No		YES	No	YES	
pH (standard units)	7.00		7,23	6,78	7.39	
Temperature (°C)	22,71		22.16	20,90	22,41	_
Conductivity (µmhos/cc)	1150		1520	1430	1290	
Turbidity (NTU)	60,2		125	72.3	128	
Appearance	CLAA		SUIGHTLY TURBID	CLEAR BROWN TINT	+ URBIO	-
Odor	Nort		Nont	SUIGHT SULPHUR	Nort	
Purge Time - Begin						
Purge Time - End						
Sample Time	1437		1326	1022	1409	
Sample Date	05/30/18		05/30/18	05/30/18	05/30/18	

LANDFILL DUP

DITITUDI TEC DOT	
For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNY McDonned. DATE: 05/29-30/18

Well Identification Number	MW-7D	MW-7S	MW-8D	MW-8S	MW-9D	MW-9S
Sample Identification	CCR III & IV (No Radium)	NA	CCR III & IV (No Radium)	NA	CCR III & IV	Metals IV
Elevation of Top of Casing (ft. NGVD)	626.45	626.46	629.32	628.71	637.04	636.94
Depth to Water (ft)	13,12		21,71		56.66	26.75
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.70	33.54	64.50	43.30	63.10	36.71
Height of Water Column (ft.)	45,58		42.79		6,44	9.96
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	7.43		6,97		1.05	1.62
Water Removed From Well (gallons)	18,25		16.0		0.75	1,75
Method of Removal	Pump		Pump		Pump	Pump
Was Well Purged Dry?	YES		YES		YES	4+5
pH (standard units)	7.05		6,95			11.25
Temperature (°C)	27,25		21,72			22,91
Conductivity (µmhos/cc)	6230		29700		-	3280
Turbidity (NTU)	21.8		17,0			88,3
Appearance	CLEAR		CHAR			BROWN
Odor	NONE		Nort			NONE
Purge Time - Begin						
Purge Time - End						
Sample Time	1451		1512		INSUFFICIA	1053
Sample Date	05/30/18		05/30/18		WATER	05/30/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNY M(DONAL) . DATE: 05/29-30/18

Well Identification Number	MW-10D	MW-10S	MW-11D	MW-11S	MW-12D	MW-12S
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Metals IV	CCR III & IV	Metals IV
Elevation of Top of Casing (ft. NGVD)	639.32	639.58	628.27	628.75	623.67	623.50
Depth to Water (ft)	68,15	24,29	47,57	1437	18.75	13.38
Water Level Elevation (ft. NGVD)				1007		- 100
Measured Depth Total Depth of Well (ft.)	71.33	36.22	50.34	31.02	44.92	22.94
Height of Water Column (ft.)	3,18	11,93	2,77	16,65	26,17	9.56
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.52	1,94	0,45	2,71	4.27	1.56
Water Removed From Well (gallons)	0,29	6,0	0.75	9.5	9,75	5.0
Method of Removal	BAIUR	PUMP	BAILER	fump	Pump	Pump
Was Well Purged Dry?	YES	Nd	Yrs	NO	YES	No
pH (standard units)	7.46	7,26	7,34	7,32	7,68	6,77
Temperature (°C)	19.69	19,02	19,46	18:61	18,20	18,17
Conductivity (µmhos/cc)	9560	1390	1450	832	1330	899
Turbidity (NTU)	44.6	128	62,5	36,2	158	81,4
Appearance	Lican	SUIGHT T YUNBID	CiGAN	Clapn	SLIGHTLY TURBID	Clann
Odor	NONE	Nort	NONE	NON-	NONE	NONE-
Purge Time - Begin						
Purge Time - End						
Sample Time	1137	1131	1200	1158	1223	1217
Sample Date	05/30/18	05/30/18	05/30/18	05/30/18	05/30/18	05/30/18

For 2" well multiply by

For 4" well multiply by

0.163

For 4" well multiply by

0.653

SAMPLED BY: KIMM MI DONALD . DATE: 05/29-30/18

Well Identification Number	MW-13D	MW-13S	MW-14	MW-15	MW-16	MW-17
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	CCR III & IV (No Radium)	CCR III & IV	CCR
Elevation of Top of Casing (ft. NGVD)	619.06	619.15	640.89	637.71	637.26	636.52
Depth to Water (ft)	40,69	14,60	71.65	60.04	61,18	51.54
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	47.56	18.12	78.96	74.21	64.15	58.41
Height of Water Column (ft.)	6.87	1.52	7.31	14,17	2,97	6.87
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1.12	0,25	1.19	2.31	0.48	1,/2
Water Removed From Well (gallons)	4,0	0.1	0.75	4,5	0,25	1.5
Method of Removal	Pump	BAILOR	PUMP	fump	PUMP	Pump
Was Well Purged Dry?	No	YES	YES	4+5	YES	YES
pH (standard units)	6.89		6172	7.71)	7.98
Temperature (°C)	20.61		25.27	23.64	_	22.64
Conductivity (µmhos/cc)	1370		9080	1620	-	1560
Turbidity (NTU)	283		59.1	152		22.3
Appearance	TURBID		Chan	TURBID	_	CUM
Odor	NONE		Nont	NONE	_	Nort
Purge Time - Begin						
Purge Time - End						
Sample Time	1242	INSUFFICENT	1258	1357	INSUFFICIAL WATER	
Sample Date	05/30/18	WATER	05/30/18	05/30/18	WITTO	

For 2" well multiply by

For 4" well multiply by

0.163

For 4" well multiply by

0.653

METALS

SAMPLED BY: Kinny M. Dorald . DATE: 06/26-27/18

Well Identification Number	MW-1D	MW-1S	MW-2D	MW-2S	MW-3D	MW-3S
Sample Identification	CCR III & IV	Gauge	CCR III & IV	Metals IV	NA	Metals IV
Elevation of Top of Casing (ft. NGVD)	638.07	638.89	638.19	637.37	630.65	630.19
Depth to Water (ft)	54.96	24.62	59,67	35.23		24,49
Water Level Elevation (ft. NGVD)					-	
Measured Depth Total Depth of Well (ft.)	58.25	37.76	61.80	36.75	62.95	27.21
Height of Water Column (ft.)	3,29	13,14	2.13	1,52		2.72
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.54	2,14	0.35	0.25		0.44
Water Removed From Well (gallons)	0,25	_	0.25	0.1		0.25
Method of Removal	BAILM		BAILLA	BAILER	-	BAILM
Was Well Purged Dry?	465		465	465		YES
pH (standard units)	·		_			
Temperature (°C)	_)			
Conductivity (µmhos/cc)		-				
Turbidity (NTU)		-				
Appearance	_)	_
Odor	-	•				
Purge Time - Begin						
Purge Time - End	_					
Sample Time	_		\sim		-	
Sample Date	~	_		_		

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: Kray M. (Denac) . DATE: 06/26-27/18/

Well Identification Number	MW-4D	MW-4S	MW-5D	MW-5S	MW-6D	MW-6S
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Metals IV	NA	Metals IV
Elevation of Top of Casing (ft. NGVD)	625.00	624.54	636.84	636.72	636.80	636.66
Depth to Water (ft)	43.81	Pay	30.87	23.48	:-	DRY
Water Level Elevation (ft. NGVD)						-
Measured Depth Total Depth of Well (ft.)	53.86	32.94	58.42	33.15	58.51	28.20
Height of Water Column (ft.)	10.05		27,55	9.67		
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1,64	(4,49	1.58	_	
Water Removed From Well (gallons)	6.0	l	8.25	5.0		
Method of Removal	Pump		Pimp	Pump		
Was Well Purged Dry?	No		YES	No		
pH (standard units)	7.94	-	8,23	7,89		(
Temperature (°C)	20.13	-	20,04	22,41	-	
Conductivity (µmhos/cc)	1520	-	938	1400	-	
Turbidity (NTU)	113	-	76.4	51,2		
Appearance	Com	4 manufactures	5 LIGHTIM	SCICATION TUNBIO		
Odor	Noine		NINE	Nont		
Purge Time - Begin		-		-		
Purge Time - End		_		~		
Sample Time	1105		0930	0915		
Sample Date	06/27/18	~	06/27/18	06/27/18		-

PUPLICATI

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KINNY M DONALD . DATE: 06/26-27/18

Well Identification Number	MW-7D	MW-7S	MW-8D	MW-8S	MW-9D	MW-9S
Sample Identification	NA	GAUGE	NA	GAUGE	NA	Metals IV
Elevation of Top of Casing (ft. NGVD)	626.45	626.46	629.32	628.71	637.04	636.94
Depth to Water (ft)	~	12.85	_	9.66		27,18
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.70	33.54	64.50	43.30	63.10	36.71
Height of Water Column (ft.)		20,69		33,64	J	9,53
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)		3137		5,48		1.55
Water Removed From Well (gallons)		j			•	1,5
Method of Removal			_	-		PUMP
Was Well Purged Dry?	_				_	465
pH (standard units)					•	11.79
Temperature (°C)						22,48
Conductivity (µmhos/cc)		_	_			3380
Turbidity (NTU)	_	-			-	55.5
Appearance				_	1	BROWN
Odor			-		-	nont
Purge Time - Begin		_	-	<u> </u>	Compa	
Purge Time - End	-					_
Sample Time	(~		-	-	1000
Sample Date	4	/	_		_	66/27/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: Kinny Milanach . DATE: 06/26-27/18

Well Identification Number	MW-10D	MW-10S	MW-11D	MW-11S	MW-12D	MW-12S
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Metals IV	CCR III & IV	Metals IV
Elevation of Top of Casing (ft. NGVD)	639.32	639.58	628.27	628.75	623.67	623.50
Depth to Water (ft)	68.96	25,29	48,29	15.26	19.79	19.40
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	71.33	36.22	50.34	31.02	44.92	22.94
Height of Water Column (ft.)	2.37	10,93	2.05	15.76	25,13	3.54
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0,39	1.78	0.33	2.57	4,10	0,58
Water Removed From Well (gallons)	6,25	6,5	0,25	8.0	8.0	1.25
Method of Removal	BAILIA	Pump	Digilta	Pump	Pump	Pump
Was Well Purged Dry?	YES	No	Yts	NO	465	YES
pH (standard units)	7.72	8.29		8.23	8,23	7,49
Temperature (°C)	20,84	20,64	Name of the last o	19,60	18,33	19.03
Conductivity (µmhos/cc)	8760	826		860	1390	972
Turbidity (NTU)	52,1	46,2		43.3	124	27,2
Appearance	Clian	Cum		Citan	CHAN	Cifan
Odor	Nont	Non-		NONF	Nont	SULPHIA
Purge Time - Begin		apart of the second	_	_	_	_
Purge Time - End	_			~	٠	_
Sample Time	1210	1150		1240	1315	1255
Sample Date	06/27/18	06/27/18	_	06/27/18	06/27/18	06/27/18

METALSONLY

For 2" well multiply by	0.163
For 4" well multiply by	0.653

PUP SHALLOW

SAMPLED BY: KENNY McDonard . DATE: 06/26-27/18

Well Identification Number	MW-13D	MW-13S	MW-14	MW-15	MW-16	MW-17
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	NA	CCR III & IV	CCR III & IV
Elevation of Top of Casing (ft. NGVD)	619.06	619.15	640.89	637.71	637.26	636.52
Depth to Water (ft)	44,88	17.05	73.06	-	61.61	53,07
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	47.56	18.12	78.96	74.21	64.15	58.41
Height of Water Column (ft.)	2.68	1.07	5.90		2.54	5.34
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0,44	0,17	0,96	_	0,41	0.87
Water Removed From Well (gallons)	0.75	0.1	0,75	Augustine.	0,25	1.0
Method of Removal	Pump	BAILM	Pimp	_	Pump	Pimp
Was Well Purged Dry?	YES	41-5	YES	_	YES	YES
pH (standard units)	7.29	_	7,27	_	-	8,54
Temperature (°C)	19.82		23,27			23.21
Conductivity (µmhos/cc)	1400		9050			1640
Turbidity (NTU)	170	_	50,1	-		15,4
Appearance	SLIGHTLY TURBID	_	Clan	***************************************		Clian
Odor	Nort-		Nort	_		Nont
Purge Time - Begin	-	elligation.	_			
Purge Time - End		-			_	-
Sample Time	1335	patricular.	1410		_	1020
Sample Date	06/27/18	1	06/27/18	/	_	06/77/18

For 2" well multiply by

For 4" well multiply by

0.163

0.653

METALSONY

SAMPLED BY: KINNY MI DONALD

Well Identification Number	MW-1D	MW-1S	MW-2D	MW-2S	MW-3D	MW-3S
Sample Identification	COM UM COS	(Санцуус	CCP ERE EV	iMicitalis TRVA	NA	Motals IW
Elevation of Top of Casing (ft. NGVD)	638.07	638.89	638.19	637.37	630.65	630.19
Depth to Water (ft)	54.77	24.86	60,31	35.18		25,85
Water Level Elevation (ft NGVD)					•	
Measured Depth Total Depth of Well (ft.)	58.25	37.76	61.80	36.75	62.95	27.21
Height of Water Column (ft.)	3,48	12,90	1,49	1.57		1.36
Well Size (I.D.) (inches)	2	2	2	2	_ 2	2
Volume of Water in Well (gallons)	0,57	2.10	0.24	0.26	-	0.22
Water Removed From Well (gallons)	0,25	•	0.10	0.10		
Method of Removal	BALLON	,	BAUM	BALLA	***************************************	
Was Well Purged Dry?	415	and the second second	Yes	465	a March of Marchan	
pH (standard units)	-	Andrew Control of the	A TOTAL MARIE MARI	**************************************		Contracting of the Contraction o
Femperature (°C)	-	and processive designation of		harmon	Section 1	" Anjanggene Color Est grand
Conductivity (µmhos/cc)	**************************************	,			and the same of th	***************************************
Turbidity (NTU)	~	**************************************	***************************************	*Construence*	i, galatinate	-
Appearance		7	<u> </u>			the state of the s
Odor see	428мдаруу с ээн	(Marine September 2011)		~		-
Purge Time - Begin	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN		CHARLES THE STREET			S Biddheathri Mirrian
Purge Time - End	And the second second		-	·	p. marganic California,	
Sample Time	№ 0		~ 0	NO		K0
Sample Date	SAMPLE.		SAMPLE	5AMP16		SAMPLE

For 2" well multiply by 0.163
For 4" well multiply by 0.653

SAMPLED BY: KAMA Achand . DATE: 07/3073/18

Well Identification Number	MW-4D	MW-48	MW-5D	MW-5S	MW-6D	MW-6S.
Sample Identification	e cur: Elizios unei	Metals iv	i (yeir). Funtaka f≪	Maals IV	NA	Metals IV
Elevation of Top of Casing (ft: NGVD)	625.00	624,54	636.84	636.72	636.80	636.66
Depth to Water (ft)	43.42	Day	79,38	23.92	Signimal Valverna.	Day
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	53.86	32.94	58.42	33.15	58.51	28.20
Height of Water Column (ft.)	10.44		29,04	9,23		
Well Size (LD.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1,70	- Market Market State Confession	4,73	1,50	(
Water Removed From Well (gallons)	8.0	-	8:75	6.0		
Method of Removal	Pump	p-projection and the second	Punp	pomp	gampa anama)
Was Well Purged Dry?	NO	Section of the second second	415	No		
pH (standard units)	7.82		8,28	7,81))
Temperature (°C)	18,96	4200	19,06	20,01		
Conductivity (µmhos/cc)	1140		920	1490		
Turbidity (NTU)	30,4		67.1	1814	pure and a second	
Appearance	Coffee	***************************************	SUBHTLY TURBID	SLIGHTUM TURBIO		No special designation of the special
Odor	Nont		NONE	Nort		
Purge Time - Begin		garage account.				amonth and the second
Purge Time - End						No.
Sample Time	0910	NO	0830	0942		NO
Sample Date	07/31/18	SAMPLE	67/31/18	67/30/18	parameter	JOO SAMPU

LANDFILL

For 2" well multiply by 0.163 For 4" well multiply by 0.653 DUP SHALLOW

SAMPLED BY: Kinn M. Denned . DATE: 07/30-31/18

Well Identification Number	MW-7D	MW-78	MW-8D	MW-8S	MW-9D	MW-98
Sample Identification	NA	GAUGE	NA	GAUCE	NA	Monts ny
Elevation of Top of Casing (ft. NGVD)	626.45	626.46	629.32	628.71	637.04	636.94
Depth to Water (ft)	· annual managements	12,80		10,51		27,68
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft)	58.70	33.54	64.50	43.30	63.10	36.71
Height of Water Column (ft.)		20,74		32,79	Waterpara	9,03
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)		3,38	* Parameters	5,34	•	1.47
Water Removed From Well (gallons)	-	,			om parent	1,50
Method of Removal	ham	g.yan.yan.	•		_	pump
Was Well Purged Dry?	Same state of the same state of		**Company on the contract of t	((485
pH (standard units)				Cabroniani,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11,52
Temperature (°G)	Name and Association of the Control	Sept. And State Association			The same of the sa	21,05
Conductivity (µmhos/ce)	The state of the s	gapetración	and the same of th			3500
Turbidity (NTU)	generalism	Supposessable form,				57,8
Appearance #		Career Conference.	3 a statement of the same		-	PROWN
Odor	Canal and the same of the same	-				NUN
Punge Time - Begin		-				
Purge Time - End	The same and a same an	Canada		and the second	•	Tancara
Sample Time	,	•				1016
Sample Date					**Signate*	07/30/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY:___

Konny M. Denned . DATE: 07/30-71/18

Well Identification Number	MW-10D	. MW-10S	MW-11D	MW-118	MW-12D	MW-128
Sample Identification	r gruskja k	Micials IV	nation Hills nation	Metals IV	i s ynthoda ass	Medals IV
Elevation of Top of Casing (ft. NGVD)	639.32	639.58	628.27	628.75	623.67	623.50
Depth to Water (ft)	69.30	25,84	48.27	15.61	20.09	20,79
Water/Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ff.)	71.33	36.22	50.34	31.02	44.92	22.94
Height of Water Column (ft;)	2,03	10,38	2,07	15,41	24.83	2,15
Well Size (LD.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0:33	1,69	0,34	2.51	4.05	0,35
Water Removed From Well (gallons)	6.1	6,0	0,25	900	7.75	\$10
Method of Removal	BAUCA	Pump	byion	Pump	Pimp	PUND
Was Well Purged Dry?	41-5	√ 0	YHS	pv o	YES	YES
pH (standard units)		8.43		8,75	8,65	7,24
Temperature (°C) ?		21,70	o parameter and the same of th	20,73	19,37	19,68
Conductivity (µmhos/cc)		751	A. Berry Co.	788	1280	1006
Furbidity (NTU)	and the second	55,8	© Henriquistan,	23.1	97.4	42,7
Appearance:		CIMA	Company	Cum	SUGHTLY TURBID	SUIGHTLY TURBIR
Odor		NONF		Nort	None	NUMF
Purge Time - Bégin	die sonoren.		_			
Purge Time - End	C		******		-	_
Sample Time	NO	1155	Wo	1225	0940	1300
Sample Date	SAMPLE	07/30/18	Sample	07/30/18	07/31/18	07/30/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY:__

Kinny McPenard . DATE: 07/30-31/18

Well Identification Number	MW-13D	MW-138	MW-14	MW-15	MW-16	MW-17.
Sample Identification	OCR III & TV	Monds IIV	CCR UFAIV	NA	E MIN SENAT	CCR. THE & TV
Elevation of Top of Casing (ft. NGVD)	619.06	619.15	640.89	637.71	637.26	636.52
Depth to Water (ft)	45.95	17,28	73.43	Managan and the comment of the comme	61.96	53.45
Water Level Elevation (ft: NGVD)						
Measured Depth Total Depth of Well (ft.)	47.56	18.12	78.96	74.21	64.15	58.41
Height of Water Column (ft.)	1.61	0.84	5,53		219	4,96
Well Size (I.D.) (inches)	2	. 2	2	2	2	2
Volume of Water in Well (gallons)	0.76	0,14	0.90		0.36	0,81
Water Removed From Well (gallons)	16,25 Both	- American and the Control of the Co	0,75		0,25	0.75
Method of Removal	BAILM		BAILER		BALLIA	PUMP
Was Well Purged Dry?	465	-715	465	Annual Company of the	415	445
pH (standard units)	Carlo and the Ca	(Married Company)	7,39			8.64
Temperature (°C)		AMPRICATOR	20.21		- Comments of the Comments of	21.02
Conductivity (µmhos/ec)	- Company	L	9610		1-months of	1790
Turbidity (NTU)	and the same of th	Manage Commission	87.1		-	40.7
Appearance	Name of the Owner, where the Parket of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, wh		ELGAN	too and a second		(CFAN
Odor -	Service and the service of	Seems settle light commun.	NONT	***	Cillin-in-property departments.	NONE
Purge Time - Begin	-	<u> </u>	MH ALS		- Section of the Sect	premes
Purge Time - End		-	omy		e application of the same	omy
Sample Time	Mo	NO	10 810	A CONTRACTOR OF THE PARTY OF TH	NO	8850
Sample Date	GAMPIG	SAMPLA	67/31/18	/	Samet	67/31/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KANNY MCDENALD . DATE: 08/29-30/18

Well Identification Number	MW-1D	MW-1S	MW-2D	MW-2S	MW-3D	MW-38
Sample Identification		(Changge	la de la companya de	Meals iv	NA	Menk Ny
Elevation of Top of Casing (ft. NGVD)	638.07	638.89	638.19	637.37	630.65	630.19
Depth to Water (ft).	54.56	24,49	60,26	35,12	***************************************	2593
Water Level Elevation (ft. NGVD)						1
Measured Depth Total Depth of Well (ft.)	58.25	37.76	61.80	36.75	62.95	27.21
Height of Water Column (ft.)	3,69	13,27	1.54	1.63	* Military	1,28
Well Size (I:D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.60	2.16	0,25	0.27	**************************************	0,21
Water Removed From Well (gallons)	0,4	Contraction attendancy	0.1	0,1		0.(
Method of Removal	BAHER	T-Street Street	BAILIN	Barn	*Tacurouser************************************	BAKEN
Was Well Purged Dry?	46.5	· ·	YES	Yes	Section 19 march	Yes
pH (standard units)		ST STATE OF THE PARTY OF THE PA	***************************************	***************************************		Manual Control
Temperature (°C)	n M. Shirr Tables Syram.	•	*Nonecommunity		Establishment.	and the second s
Conductivity (µmhos/cc)		4	A Brigg Str. Company	J		and the same of th
Turbidity (NTU)	a College of College o	***************************************	5,	-		4
Appearance	appendix the same	The same of the sa	harm	-	« in the state of	Memory
Odor ^{ti}	-	17	· · · · · · · · · · · · · · · · · · ·	Samuel Standard Standard	~	
Purge Time - Begin	a management		e constitution of the cons		-	
Purge Time - End	The state of the s		Egrangian sparra		***************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sample Time	NO		No	NO	Sales Control of the	Nð
Sample Date	Symply		sample	SAMPLE		SAMPLE

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY:_

Kenny Mc Denned

DATE: 08/29-30/18

Well Identification Number	MW-4D	MW-4S	MW-5D	MW-5S	MW-6D	MW-68
Sample Identification	\$ 900° 53	Medalks INV	tan in the second of the secon	iMerik VII	NA	Méals ÌV
Elevation of Top of Casing (ft. NGVD)	625.00	624.54	636.84	636.72	636.80	636.66
Depth to Water (ft)	43.67	Dny	31.05	23,47	 	Pay
Water Level Elevation (ft. NGVD)			_		,	
Measured Depth Total Depth of Well (ft.)	53.86	32.94	58.42	33.15	58.51	28.20
Height of Water Column (ft.)	10,19	, ale	27,37	9.68	Charles and a second	-
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1.66	-	4.46	1,58	GPF-XX-reg_lapacture_name	yAccreditude
Water Removed From Well (gallons)	8.0		9,25	6.0	DOS-LANDON,	
Method of Removal	Pump	- Company of the Control	· Pump	Pump		•
Was Well Purged Dry?	~ ₀	6	465	~0	Commence	, and the second
pĤ (standard units) 🤭	811	Company of the Compan	8,06	7,87	-	14000000
Temperature (°C)	21,87	Charles and the same	20,53	19.74	d _e	A STATE OF THE STA
Conductivity (µmhos/cc)	1200		959	1280	120-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
Turbidity (NTU)	159	And the second	149	V34	-	
Appearance	CLAM		Clean	Clan		-
Odor	NONO		NONE	NONE	-	
Purge Time - Begin	•	Sample of the State of the Stat			, T.	3
Purge Time - End		Care and Car	-			
Sample Time	8830	N 9	0815	89 80	1.Etagoria.	MO
Sample Date	08/30/18	sample	08/30/18	08/29/18		SAMPLE
and the control of th	CCADIP					<u> </u>

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: Kinny Milanged . DATE: 08/79/30/18

Well Identification Number	MW-7D	MW-78	MW-8D	MW-8S	MW-9D	MW-9S
Sample Identification	NA	(GRANU(CNE	NA	Glanurger	NA	Mentels IV
Elevation of Top of Casing (ft. NGVD)	626.45	626.46	629,32	628.71	637.04	636.94
Depth to Water (ft)	· ·	11.99		9,94		27,89
Water Level Elevation (ft, NGVD)						
Measured Depth Total Depth of Well (ft.)	58.70	33.54	64.50	43.30	63.10	36.71
Height of Water Column (ft.)	Section Sectio	21.55	(MANAGEMAN AND AND AND AND AND AND AND AND AND A	33.36	gridadischen zur der Greg	8.82
Well Size (LD.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)		3.51	opposition and	5,44	6-45-60 ₁₋₁₋₁ -1-1	1,44
Water Removed From Well (gallons)	**************************************	f dagment of texts to the	y gyptodylate ^{plane}	Phi-co-consistency	pylanesses to the see	1,25
Method of Removal	· · · · · · · · · · · · · · · · · · ·		Sept Million Control	constant of the same of the sa		Pump
Was Well Purged Dry?	West Control of the C		que contraction of	William Control of the Control of th	and the second s	405
рН (standard units)		disconnections	9	- Company	-	12,56
Temperature (°C)	-	le constant	distribution of the second	E married to the land		20.95
Conductivity (µmhos/cc)		Co rrelation page to Proper	and the same of th	****Emrengrottenship		3470
Turbidity (NTU)		-	Assets reserved	A COLUMN TO THE PARTY OF THE PA	enterior de la constante de la	21,2
Appearance	- Annual Control of the Control of t	C. Salara	anger transfer of the second	DEACH-STANCE.	d	Brown
Odor		i i i i i i i i i i i i i i i i i i i	On the same of the	,	-	Nant
Purge Time - Begin	-مغورهین	ALCONOMIC STATES	of the state of th	Control of the Contro	400	
Purge Time - End		-	Managarahing		Anderson	
Sample Time	a	· Newmonth	~	Callegeran		1040
Sample Date		レ		· Marine de la company	le-	08/79/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KMM MI DENALL

DATE: 08/29-30/18

Well Identification Number	MW-10D	MW-10S	MW-11D	· MW-11S	MW-12D	MW-12S
Sample Identification	。 1. 用的成点对	Meals IV	() () () () () () () () () ()	Ments IV	dank Luda da	Metals Ni
Elevation of Top of Casing (ft. NGVD)	639,32	639.58	628.27	628.75	623.67	623.50
Depth to Water (ft)	69.21	25,98	48,25	15.24	19,96	21,53
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	71.33	36.22	50.34	31.02	44.92	22.94
Height of Water Column (ft.)	2,12	10.24	2,09	15,78	24.96	1,4/
Well Size (L.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0,35	1.67	0,34	2,57	4.07	0.23
Water Removed From Well (gallons)	6,25	7.0	0,25	10.0	7.50	0, 1
Method of Removal	BAIM	fump	BAIM	Pump	find	BAILER
Was Well Purged Dry?	YES	No	415	N 0	Yrs	465
pH (standard units)		8.80	-	8165	9,17	Controller
Temperature (°C)	***COLORISMANON	21,43		20,30	19.63	-
Conductivity (µmhos/cc)	9375355	870	-	899	1380	-
Turbidity (NTU)	8	440		12,9	245	
Appearance	(3)	1000°	-	Cym	SCIBILLY	
Odor		NONG		NONE	NONT	A Marting Comments
Purge Time - Begin	_				Section 1	
Purge Time - End	b marcon .			_	Atmospheric	e distribution of the second o
Sample Time	NO	1230	NO	1300	0845	No
Sample Date	sample	08/29/18	SAMPY	08/29/18	08/30/18	SAMPY
The second secon		DUPSHALLOW				

For 2" well multiply by 0.163
For 4" well multiply by 0.653

KINMY M (DONAL) . DATE: 08/29-30/18 SAMPLED BY:____

Well Identification Number	MW-13D	MW-13S	MW-14	MW-15	-MW-16	MW-17
Sample Identification	s v	Meals TV	(17-17) 。 田順 & 197	NA	4, 7, 5. 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1000 1000 to 100
Elevation of Top of Casing (ft. NGVD)	619.06	619.15	640.89	637.71	637.26	636.52
Depth to Water (ft)	45.79	17,38	74,64	**************************************	61.50	55.06
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	47.56	18.12	78.96	74.21	64.15	58.41
Height of Water Column (ft.)	1,77	6,74	4,32	t safetti time and de marine	2,65	3,35
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0,29	0.12	0.70	Contraction,	0.43	0,55
Water Removed From Well (gallons)	0,25	0.1	0.5	Management	0.75	0,25
Method of Removal	BAILA	BALLA	BAILIN	American	BAULA	BAILM
Was Well Purged Dry?	YHS	465	YES		465	485
pH (standard units)		******	7,79	The state of the s		The second sequences of the second sequences of the second
Temperature (°C)	-		21,73	- management of the	Amprove	? Membrane
Conductivity (µmhos/cc)			9380	# Sample Color	Carriero Carriero	100000000000000000000000000000000000000
Turbidity (NTU)			101	, <u></u>	*	
Appearance			Cim	The state of the s		1
Odor	Canada Marian	il and the second	Nont	N. Sperioder, All S. Charter,	Vagorina	Azzes
Purge Time - Begin			MAMIS	None and the second		
Purge Time - End			only		44-	OF The State of th
Sample Time	NO CAMON I	NO	0800	***************************************	No	No
Sample Date	Sample	SAMPLE	08/0/18	Name and American	SAMPU	3 Ample

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY:

Krany M. Danaed . DATE: 09/18-19/18

Well Identification Number	MW-1D	MW-1S	MW-2D	MW-2S	MW-3D	MW-3S
Sample Identification	CCR III & IV	Gauge	CCR III & IV	Metals IV	NA	Metals IV
Elevation of Top of Casing (ft. NGVD)	638.07	638.89	638.19	637.37	630.65	630.19
Depth to Water (ft)	54,52	24.39	60,28	35,19		76,03
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.25	37.76	61.80	36.75	62.95	27.21
Height of Water Column (ft.)	3,73	13,37	1,52	1,56		1118
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0,61	2118	0,25	0.25		0.19
Water Removed From Well (gallons)	0,50		0,1	0.		0.1
Method of Removal	BAILER		BAILM	BAUGA		BAILM
Was Well Purged Dry?	YHS	4	765	465	_	465
pH (standard units)	_	-	-	-		
Temperature (°C)	~				-	_
Conductivity (µmhos/cc)			_	-	_	
Turbidity (NTU)	-			_		
Appearance			-		_	<u> </u>
Odor			-			
Purge Time - Begin	Charge				~	_
Purge Time - End	_	_			_	
Sample Time	NO	_	NO	~0		NO
Sample Date	SAMPLE		SAMPIG	sample	~	SAMPU

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KARY M. DONALD . DATE: 09/18-19/18

Well Identification Number	MW-4D	MW-4S	MW-5D	MW-5S	MW-6D	MW-6S
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Metals IV	NA	Metals IV
Elevation of Top of Casing (ft. NGVD)	625.00	624.54	636.84	636.72	636.80	636.66
Depth to Water (ft)	43.85	DNY	31,92	23.65		Day
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	53.86	32.94	58.42	33.15	58.51	28.20
Height of Water Column (ft.)	10.01	-	26,50	9,50	-	
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1.63	-	4.32	1,55		No.
Water Removed From Well (gallons)	10.0		8,75	7.0	_	
Method of Removal	Pump		Pump	Pump		Person
Was Well Purged Dry?	No		YFS	No		
pH (standard units)	7.84		7,72	8.02		
Геmperature (°С)	20,52		22,41	20,84	_	_
Conductivity (µmhos/cc)	1160		905	1/80	_	
Γurbidity (NTU)	18,2		325	24,6	~	
Appearance	Clian		Clem	CLEAN	1)
Odor	NONE		NONE	NONT)	•
Purge Time - Begin	^	_	_	~	_	-
Purge Time - End		_				_
Sample Time	1336	NO	1232	1254	-	NO
Sample Date	09/19/18	5 AMPLG	09/19/18	09/19/18	~	Sportle

For 2" well multiply by 0.163
For 4" well multiply by 0.653

SHALLOW

SAMPLED BY: KENNY M. (DORAC) . DATE: 09/18-19/18

Well Identification Number	MW-7D	MW-7S	MW-8D	MW-8S	MW-9D	MW-9S
Sample Identification	NA	GAUGE	NA	GAUGE	NA	Metals IV
Elevation of Top of Casing (ft. NGVD)	626.45	626.46	629.32	628.71	637.04	636.94
Depth to Water (ft)		11.97	<i>d</i>	10,14		28,00
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.70	33.54	64.50	43.30	63.10	36.71
Height of Water Column (ft.)		21,57		33.16		8.71
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	-	3,52		5,41	- Carle Service Assessment	1.42
Water Removed From Well (gallons)		_			_	2,25
Method of Removal				~	_	Pump
Was Well Purged Dry?						465
pH (standard units)	<i>,</i> —		-)		11146
Temperature (°C)	4					21,6
Conductivity (µmhos/cc)	_		_	~		3280
Turbidity (NTU)			~			88,2
Appearance				_	_	Brown Frat
Odor			1		~	NONE
Purge Time - Begin	-	_				
Purge Time - End	_)	~	_)	_
Sample Time	_		_	***************************************	~	1154
Sample Date	_		~			09/19/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNY M. (DONAL) DATE: 09/18-19/18

Well Identification Number	MW-10D	MW-10S	MW-11D	MW-11S	MW-12D	MW-12S
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Metals IV	CCR III & IV	Metals IV
Elevation of Top of Casing (ft. NGVD)	639.32	639.58	628.27	628.75	623.67	623.50
Depth to Water (ft)	69113	26.11	48.26	15,27	19,91	21,27
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	71.33	36.22	50.34	31.02	44.92	22.94
Height of Water Column (ft.)	2,20	10:17	2.08	15.75	25,01	1,67
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.36	1.65	0,34	2,57	4,08	0,27
Water Removed From Well (gallons)	0,25	610	0,25	10.0	8,25	0.20
Method of Removal	BAILM	Pump	BAILER	Pump	Pump	BAILIN
Was Well Purged Dry?	TES	No	YES	N 0	465	465
pH (standard units)		8,60		2	8.13	
Temperature (°C)		21.12	(21,24	20.42	-
Conductivity (µmhos/cc)		737	_ /	802	39240	_
Turbidity (NTU)		25.8		18,6	304	-
Appearance		CLGAN		Chan	+ UNBIN	_
Odor	_	went		NONT	runt	-
Purge Time - Begin	~	_	_)	
Purge Time - End	-		_			
Sample Time	N 0	0948	NO	1017	1107	NO
Sample Date	Sample	09/19/18	SAMPLE	09/19/18	09/19/18	SAMPLY

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: Ktory MIDEARID . DATE: 09/18-19/18

Well Identification Number	MW-13D	MW-13S	MW-14	MW-15	MW-16	MW-17
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	NA	CCR III & IV	CCR III & IV
Elevation of Top of Casing (ft. NGVD)	619.06	619.15	640.89	637.71	637.26	636.52
Depth to Water (ft)	45.76	17.44	76,03		61.34	54,71
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	47.56	18.12	78.96	74.21	64.15	58.41
Height of Water Column (ft.)	1.86	0,68	2,93	-	2181	3,70
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0,30	0,11	6.48	-	0,46	0.60
Water Removed From Well (gallons)	0,25	discourage of the same of the	0.25		0,25	0,50
Method of Removal	BAICH	-	BAILM	~	BAILIA	BAILIN
Was Well Purged Dry?	465	-	YFS		YES	465
pH (standard units)		_	-	•		7.94
Temperature (°C)		-	-		_	21,28
Conductivity (µmhos/cc)						1630
Turbidity (NTU)		<u></u>		_		24,2
Appearance						CLONG
Odor	_		-	-	~	Nort
Purge Time - Begin	_					
Purge Time - End		_	_	~		
Sample Time	\sim 0	NO	No		No	1402
Sample Date	SAMILE	SAMPLY	SAMPLE	~	SAMPLY	09/19/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KINNY MI DINACT . DATE: 10/15/18

Well Identification Number	MW-1D	MW-1S	MW-2D	MW-2S	MW-3D	MW-3S
Sample Identification	CCR III & IV	Gauge	CCR III & IV	Metals IV	NA	Metals IV
Elevation of Top of Casing (ft. NGVD)	638.07	638.89	638.19	637.37	630.65	630.19
Depth to Water (ft)	54.45	23,93	60.59	35.55		26,14
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.25	37.76	61.80	36.75	62.95	27.21
Height of Water Column (ft.)	3.80	13.83	1.21	1.50		0.80
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.62	1.80	0,20	0,24	_	0,13
Water Removed From Well (gallons)	0.5)	0,1	0.1	_	-
Method of Removal	BAILER		BAILM	BAILTA	_	-
Was Well Purged Dry?	YES		YES	YES	_	40
pH (standard units)	_				-	
Temperature (°C)	_	_		-	_	
Conductivity (µmhos/cc)				~	_	-
Turbidity (NTU)			_	_	*****	<u> </u>
Appearance		_)		_
Odor		~	Normalousement)	_	<u> </u>
Purge Time - Begin)	_	_		_
Purge Time - End	~		_)
Sample Time	$\sim v$	_	Nυ	NO	_	NO
Sample Date	Sample		SAMPY	Sample	~	SAMPLE

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: Ktory M. DonAcl DATE: 10/15/18

Well Identification Number	MW-4D	MW-4S	MW-5D	MW-5S	MW-6D	MW-6S
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Metals IV	NA	Metals IV
Elevation of Top of Casing (ft. NGVD)	625.00	624.54	636.84	636.72	636.80	636.66
Depth to Water (ft)	43.49	Dny	37.01	23,51	_	Dry
Water Level Elevation (ft. NGVD)	P					
Measured Depth Total Depth of Well (ft.)	53.86	32.94	58.42	33.15	58.51	28.20
Height of Water Column (ft.)	9,96		26,41	9,64	_	
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1,62		4,30	1,57	_	_
Water Removed From Well (gallons)	8.0	-	9.0	610	_	
Method of Removal	Pump		Pump	fund	_	
Was Well Purged Dry?	No		YFS	No	-	
pH (standard units)	7.59		7,84	7.74	,)
Temperature (°C)	21,28		20,74	20,/0	_	
Conductivity (µmhos/cc)	1270		979	1310		
Turbidity (NTU)	97,4		42.8	21.8	_	_
Appearance	CIFAR		cima	CUTAN	1	_
Odor	Nont)	NUNT	Nont	-	
Purge Time - Begin		_		_	_	
Purge Time - End			-	-		_
Sample Time	1310	NU	1335	0950	~	No
Sample Date	10/15/18	SAMPLE	10/15/18	10/15/18		SAMPH

For 2" well multiply by 0.163
For 4" well multiply by 0.653

SHALLOV

SAMPLED BY: KENNY MIDERALL DATE: 10/15/18

Well Identification Number	MW-7D	MW-7S	MW-8D	MW-8S	MW-9D	MW-9S
Sample Identification	NA	GAUGE	NA	GAUGE	NA	Metals IV
Elevation of Top of Casing (ft. NGVD)	626.45	626.46	629.32	628.71	637.04	636.94
Depth to Water (ft)	-	11.78		10.35	_	28.47
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.70	33.54	64.50	43.30	63.10	36.71
Height of Water Column (ft.)		21,76	-	32,95		8,24
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	_	3,55	_	5,37		1.34
Water Removed From Well (gallons)					_	1.0
Method of Removal		_			_	Pump
Was Well Purged Dry?	-)	_	-	_	YES
pH (standard units)		_	_	_	-	11.42 2
Temperature (°C)		-	_			20,76
Conductivity (µmhos/cc)		_		-	_	3490
Turbidity (NTU)		_		-		102
Appearance			~ .		_	Brown
Odor		_	_	-		ront
Purge Time - Begin	_	~		_	-	
Purge Time - End			_		~	
Sample Time	~	~	_	~	~	1020
Sample Date	\sim	~	/		~	10/15/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENRY MIDERALD . DATE: 10/15/18

Well Identification Number	MW-10D	MW-10S	MW-11D	MW-11S	MW-12D	MW-12S
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Metals IV	CCR III & IV	Metals IV
Elevation of Top of Casing (ft. NGVD)	639.32	639.58	628.27	628.75	623.67	623.50
Depth to Water (ft)	69,11	26.11	48.31	14.94	19,97	21,02
Water Level Elevation (ft. NGVD)	,					
Measured Depth Total Depth of Well (ft.)	71.33	36.22	50.34	31.02	44.92	22.94
Height of Water Column (ft.)	7,22	10.11	2.03	16,08	24,95	1.92
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.36	1.65	0,33	2,62	4,07	6.31
Water Removed From Well (gallons)	0.25	10.0	0.29	10,0	8,25	0,25
Method of Removal	BAILM	pump	BAICM	pump	pump	BAILA
Was Well Purged Dry?	YES	No	YES	N 0	YES	ĭH
pH (standard units)	1	9.03	_	8.55	9,37	_
Temperature (°C)	_	21,28	-application	22,31	22,08	
Conductivity (µmhos/cc)		740	_	854	1340	
Turbidity (NTU)	j	30,4	-	20,4	154	
Appearance	_	CLAM		CHAN	SCICHTLY TURBIN	_
Odor	VIII CONTRACTOR OF THE CONTRAC	NONT	Magazadone	NONF	Nont	
Purge Time - Begin		_				_
Purge Time - End		~	-		4	<u> </u>
Sample Time	NO	1120	N D	1150	1350	NO
Sample Date	SAMPLE	10/15/18	SAMPLA	10/15/18	10/15/18	SAMPLA

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KAMMI DOME! 10/15/18

Well Identification Number	MW-13D	MW-13S	MW-14	MW-15	MW-16	MW-17
Sample Identification	CCR III & IV	Metals IV	CCR HI & IV	CCR III	CCR III & IV	CCR III & IV
Elevation of Top of Casing (ft. NGVD)	619.06	619.15	640.89	637.71	637.26	636.52
Depth to Water (ft)	45,62	17,58	75.58	61,94	61.66	56,02
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	47.56	18.12	78.96	74.21	64.15	58.41
Height of Water Column (ft.)	1,92	0.54	3,38	12,27	2,49	2,39
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.32	0.09	0.55	2,00	0,41	0.39
Water Removed From Well (gallons)	0.25		0.25	3,50	6,25	6.25
Method of Removal	Pump		BAULK	Pump	BAIM	BAILTA
Was Well Purged Dry?	THS		4+5	YES	415	Yrs
pH (standard units)		_		8.04	ĺ	_
Temperature (°C)	1		-	22,46	\	_
Conductivity (µmhos/cc)	_			1490	_	
Turbidity (NTU)	_	_		164	_	_
Appearance	_	_		SLIGHTLY TIRBIP)	_
Odor	Add grant and the second and the sec)		NONF)	
Purge Time - Begin				_	_	
Purge Time - End	_	_	~			_
Sample Time	~ 6	NO	N 0	12 40	Nυ	NO
Sample Date	SAMPLE	SAMPU	SAMPLE	10/15/18	Sample	SAMPLE

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNY McDenard . DATE: 10/22/18

Well Identification Number	MW-1D	MW-1S	MW-2D	MW-2S	MW-3D	MW-3S
Sample Identification	NA	NA	NA	NA	Appendix III	NA
Elevation of Top of Casing (ft. NGVD)	638.07	638.89	638.19	637.37	630.65	630.19
Depth to Water (ft)				3	37.09	
Water Level Elevation (ft. NGVD)	4					
Measured Depth Total Depth of Well (ft.)	58.25	37.76	61.80	36.75	62.95	27.21
Height of Water Column (ft.)					25.86	
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)					4.22	
Water Removed From Well (gallons)					13,0	
Method of Removal					Pump	
Was Well Purged Dry?					NO	
pH (standard units)					7,20	
Temperature (°C)					21,82	
Conductivity (µmhos/cc)					890	
Turbidity (NTU)					52,6	
Appearance					Clean	
Odor					NONE	
Purge Time - Begin						
Purge Time - End					_	
Sample Time					0840	
Sample Date					0840	

For 2" well multiply by	0.163
For 4" well multiply by	0.653

DUP

SAMPLED BY: Ktnry M. Dorand . DATE: 10/27/18

Well Identification Number	MW-4D	MW-4S	MW-5D	MW-5S	MW-6D	MW-6S
Sample Identification	Resample	NA	Resample	NA	Appendix III	NA
Elevation of Top of Casing (ft. NGVD)	625.00	624.54	636.84	636.72	636.80	636.66
Depth to Water (ft)	43,41		41.92		34,34	
Water Level Elevation (ft. NGVD)			,			
Measured Depth Total Depth of Well (ft.)	53.86	32.94	58.42	33.15	58.51	28.20
Height of Water Column (ft.)	10.45		16,50		24,17	
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1.70		2.69		3,94	
Water Removed From Well (gallons)	10,0		6.0		8,25	
Method of Removal	PUMP		Pump		Pump	
Was Well Purged Dry?	N 0		YHS		YES	
pH (standard units)	7,91		7,98		7,25	
Temperature (°C)	21,24		20,94		20,42	
Conductivity (µmhos/cc)	1150		982		1310	
Turbidity (NTU)	42.8		31,6		206	
Appearance	CUTAR		CitAn		TUABIA	
Odor	Nont		Nont		KONF	
Purge Time - Begin			_		_	
Purge Time - End	-	0	_		-	
Sample Time	0840		1000		0906	
Sample Date	10/22/18		10/22/18		10/22/18	7

DUP

NVI	
For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENPY Mc Penaid DATE: 10/22/18

Well Identification Number	MW-7D	MW-7S	MW-8D	MW-8S	MW-9D	MW-9S
Sample Identification	Appendix III	NA	Appendix III	NA	Appendix III	NA
Elevation of Top of Casing (ft. NGVD)	626.45	626.46	629.32	628.71	637.04	636.94
Depth to Water (ft)	13,08		32,72		56,60	
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.70	33.54	64.50	43.30	63.10	36.71
Height of Water Column (ft.)	45.62		31.78		6,50	
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	7.44		5.18		1.06	
Water Removed From Well (gallons)	19,0		10.5		1.0	
Method of Removal	fump		Pimp		Pump	
Was Well Purged Dry?	Yes		4+5		YES	
pH (standard units)	7,42		7.12		7,13	
Temperature (°C)	22.39		22.59		20,97	
Conductivity (µmhos/cc)	5820		28400		1820	
Turbidity (NTU)	52,3		28.3		428	
Appearance	CLIAN		Clian		TURSIO	
Odor	NONE		nont		NONF	
Purge Time - Begin			_			
Purge Time - End	_		_		_	
Sample Time	1100		1040		0920	
Sample Date	10/22/18		10/22/18		10/22/18	

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNY MCDONALD . DATE: 10/22/18

Well Identification Number	MW-10D	MW-10S	MW-11D	MW-11S	MW-12D	MW-128
Sample Identification	NA	NA	NA	NA	Resample	NA
Elevation of Top of Casing (ft. NGVD)	639.32	639.58	628.27	628.75	623.67	623.50
Depth to Water (ft)					19.85	
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	71.33	36.22	50.34	31.02	44.92	22.94
Height of Water Column (ft.)					25.07	
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)					4,09	
Water Removed From Well (gallons)					9.5	
Method of Removal					PUMP	
Was Well Purged Dry?					YES	
pH (standard units)					8,97	
Temperature (°C)					21,37	
Conductivity (µmhos/cc)					1380	
Turbidity (NTU)					187	
Appearance					TURDIP	
Odor	.1				NUNT	
Purge Time - Begin					_	
Purge Time - End					~	
Sample Time					1020	
Sample Date			NATION - 1		10/27/18	

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KINNY MI PONALD . DATE: 10/22/18

Well Identification Number	MW-13D	MW-13S	MW-14	MW-15	MW-16	MW-17
Sample Identification	NA	NA	NA	Appendix III	NA	NA
Elevation of Top of Casing (ft. NGVD)	619.06	619.15	640.89	637.71	637.26	636.52
Depth to Water (ft)				60.80		
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	47.56	18.12	78.96	74.21	64.15	58.41
Height of Water Column (ft.)	×			13.41		
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)		3		2,19		
Water Removed From Well (gallons)				4,25		
Method of Removal				Pimp		
Was Well Purged Dry?				4+5		
pH (standard units)				7,79		
Temperature (°C)				22,08		
Conductivity (µmhos/cc)				1420		
Turbidity (NTU)			19	188		
Appearance				TURBIP		
Odor				NON		
Purge Time - Begin				_		
Purge Time - End				_		
Sample Time				6941		
Sample Date				10/27/18		

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KINNY MCDENARD . DATE: 11/28/18

Well Identification Number	MW-1D	MW-1S	MW-2D	MW-2S	MW-3D	MW-3S
Sample Identification	CCR III & IV	Gauge	CCR III & IV	Metals IV	BNAF	Metals IV
Elevation of Top of Casing (ft. NGVD)	638.07	638.89	638.19	637.37	630.65	630.19
Depth to Water (ft)	54,27	24.67	60,19	35.31	36,85	24,55
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.25	37.76	61.80	36.75	62.95	27.21
Height of Water Column (ft.)	3.98	13,09	1.61	1,44	26.10	2,66
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.65	2,13	0,26	0.23	4.25	0.43
Water Removed From Well (gallons)	0.5		-	0, 1	13.0	0,25
Method of Removal	BAILER			BAILM	Pump	BAILLA
Was Well Purged Dry?	YFS			465	N 0	4+5
pH (standard units)				_	8.01	
Temperature (°C)			35	_	21.38	
Conductivity (µmhos/cc)			-		1200	
Turbidity (NTU)		<u> </u>	-		48.3	
Appearance				-	CHAN	-
Odor	_	_)	2	rort	
Purge Time - Begin		- North Control of the Control of th	_			_
Purge Time - End				_		
Sample Time	№ 0	_	N 0	No	0930	~0
Sample Date	Siample		SAMPIL	SAMPL F	11/28/18	SAMPIA

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KINNY MI DENALL . DATE: 11/28/18

Well Identification Number	MW-4D	MW-4S	MW-5D	MW-5S	MW-6D	MW-6S
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Metals IV	FNA	Metals IV
Elevation of Top of Casing (ft. NGVD)	625.00	624.54	636.84	636.72	636.80	636.66
Depth to Water (ft)	43.19	Pny	78.84	23,79	33.94	Dry
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	53.86	32.94	58.42	33.15	58.51	28.20
Height of Water Column (ft.)	10.67	-	29.58	9136	24.57	-
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1.74		4.82	1,53	4.00	
Water Removed From Well (gallons)	10.0		10.0	8,0	8.25	
Method of Removal	Pump	_	Pump	pump	Pomo)
Was Well Purged Dry?	~0		YHS	W 0	Yts	_
pH (standard units)	7,89		8.06	8:13	7.71	TO SERVICE THE PARTY OF THE PAR
Temperature (°C)	17.21	-	20,71	18,24	20.94)
Conductivity (µmhos/cc)	1150		1010	1220	1330	
Turbidity (NTU)	26,8	_	52,6	-18,4	114	_
Appearance	(WAR	-	Clian	Clena	SLIGHTLY TURBIO	_
Odor	NONE	_	rort	Now-	NONE	
Purge Time - Begin)	-		_	_	
Purge Time - End	-	1	_	_		
Sample Time	0850	•	1135	1125	0950	1
Sample Date	11/28/18	_	11/28/18	11/28/18	11/28/18	<u>-</u>

DUP

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KITH MIDERALL DATE: 11/78/18

Well Identification Number	MW-7D	MW-7S	MW-8D	MW-8S	MW-9D	MW-9S
Sample Identification	NA	GAUGE	NA	GAUGE	NA	Metals IV
Elevation of Top of Casing (ft. NGVD)	626.45	626.46	629.32	628.71	637.04	636.94
Depth to Water (ft)	_	11,81	-	8.48	_	28,30
Water Level Elevation (ft. NGVD)		,				120
Measured Depth Total Depth of Well (ft.)	58.70	33.54	64.50	43.30	63.10	36.71
Height of Water Column (ft.)		21.73		34.82	_	8.41
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)		3.54	_	5,68	_	1.37
Water Removed From Well (gallons)						2.0
Method of Removal	_	-	_	_		Pmr
Was Well Purged Dry?	,	_	-	-	_	YFS
pH (standard units)	_	_	_	-		11.31
Temperature (°C)		_	_	_	_	18,04
Conductivity (µmhos/cc)	_		_	_	philosophic .	3360
Turbidity (NTU)	_	T-MERCHANIA -	-	_		127
Appearance	_	_	_	-	_	BROWNTIFT
Odor	_	_	-	_	_	_
Purge Time - Begin	_	_		-	_	_
Purge Time - End	_	_	_	_		_
Sample Time		_	_	~	-	1020
Sample Date	_		_	/	_	11/28/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

Kimpy mobinard SAMPLED BY:____

Well Identification Number	MW-10D	MW-10S	MW-11D	MW-11S	MW-12D	MW-12S
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Metals IV	CCR III & IV	Metals IV
Elevation of Top of Casing (ft. NGVD)	639.32	639.58	628.27	628.75	623.67	623.50
Depth to Water (ft)	68,91	26.18	48.28	15.42	19,73	20.68
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	71.33	36.22	50.34	31.02	44.92	22.94
Height of Water Column (ft.)	2,42	10.04	2,06	15.60	25.19	2,26
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0,39	1,64	0.34	2,54	4,11	0.34
Water Removed From Well (gallons)	0,25	8.0	0.25	10.0	9.0	0,25
Method of Removal	BAILM	Pomr	BALLM	Pump	Pump	Pump
Was Well Purged Dry?	YES	NO	415	NO	7+5	YHS
pH (standard units)		8.92		8,61	8.94	7.25
Temperature (°C)	ſ	19.07)	26,00	21.62	19,28
Conductivity (µmhos/cc)	•	756	-	906	1290	920
Turbidity (NTU)		21.4		17.6	216	64.3
Appearance)	CLAN)	CLEAR	TIRBIP	CLEAR
Odor	1	NOW(-)	NUMF	NONE	pert
Purge Time - Begin	_	_	_			
Purge Time - End	4	_	_	_	_	-
Sample Time	NO	1446	~ 0	1425	1325	1340
Sample Date	SAMPLA	11/28/18	SAMPLE	11/28/18	11/28/18	11/28/18

For 2" well multiply by 0.163 For 4" well multiply by 0.653

SHAMEN

SAMPLED BY: Ktmpy Mi Dornid . DATE: 11/78/18

Well Identification Number	MW-13D	MW-13S	MW-14	MW-15	MW-16	MW-17
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Ca NA	CCR III & IV	CCR III & IV
Elevation of Top of Casing (ft. NGVD)	619.06	619.15	640.89	637.71	637.26	636.52
Depth to Water (ft)	45,35	17.65	76.19	61.62	62,36	55,23
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	47.56	18.12	78.96	74.21	64.15	58.41
Height of Water Column (ft.)	2,21	0.47	2.77	17,59	1.79	3.18
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.36	0.08	0,45	2.05	0,29	0,52
Water Removed From Well (gallons)	0.75		0.25	4,0		0,25
Method of Removal	BALLA	_	BAILM	pump		BALLAN
Was Well Purged Dry?	YtS	-	415	YFS	_	413
pH (standard units))	~	8.26		
Temperature (°C)			(21,49	_	
Conductivity (µmhos/cc)	1			1380	1	
Turbidity (NTU)	j	-	_	182	1	
Appearance		_		SUICHTLY	_	
Odor	_		_	Nont	<u> </u>	Ì
Purge Time - Begin	-	_	_	-	_	_
Purge Time - End		_)			_
Sample Time	\sim_0	No	NO	1100	№ 0	NO
Sample Date	SAMPLE	SAMPLE	SAMPLE	11/28/18	SAMPIA	SAMPLE

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNY Mc DONALD . DATE: 01/15-16/19

Well Identification Number	MW-1D	MW-1S	MW-2D	MW-2S	MW-3D	MW-3S
Sample Identification	Gauge	Gauge	Gauge	Metals	Gauge	Metals
Elevation of Top of Casing (ft. NGVD)	638.07	638.89	638.19	637.37	630.65	630.19
Depth to Water (ft)	54.06	14,31	49.60	31,12	36,69	21,84
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.25	37.76	61.80	36.75	62.95	27.21
Height of Water Column (ft.)				5.63		5,37
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)				0,92		0.88
Water Removed From Well (gallons)				0,75		0.5
Method of Removal		, 91		DAILM		BANTA
Was Well Purged Dry?				YES		YFS
pH (standard units)				9,52		7.93
Temperature (°C)				19,83		20.04
Conductivity (µmhos/cc)	<u> </u>			2180		2240
Turbidity (NTU)				102		122
Appearance				SUGHTLY		SUGARA
Odor				NONT		nont
Purge Time - Begin				_		<u> </u>
Purge Time - End				_		_
Sample Time				1715		1620
Sample Date				01/15/19	-	01/15/19

For 2" well multiply by 0.163
For 4" well multiply by 0.653

SHALLON

SAMPLED BY: KINNY M. DONALD . DATE: 01/15-16/19

Well Identification Number	MW-4D	MW-4S	MW-5D	MW-5S	MW-6D	MW-6S
Sample Identification	CCR III	Metals	CCR III	Metals	Gauge	Metals
Elevation of Top of Casing (ft. NGVD)	625.00	624.54	636.84	636.72	636.80	636.66
Depth to Water (ft)	42,90	Day	25,38	16.01	34.05	ong
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	53.86	32.94	58.42	33.15	58.51	28.20
Height of Water Column (ft.)	10,96		33,04	17.14		
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1.79		5,39	2,79		
Water Removed From Well (gallons)	10.0		10.0	10.0		
Method of Removal	Pump		Pump	Pump		
Was Well Purged Dry?	No		YES	~0		
pH (standard units)	7.51		7.81	8,24		
Temperature (°C)	19,22		20,08	19.87		
Conductivity (µmhos/cc)	1080		1010	1420		
Turbidity (NTU)	41.6		29.8	51.0		
Appearance	CHAM		CHAN	SLIGHTLY		
Odor	Nont		Now(NONE		
Purge Time - Begin			_	j		
Purge Time - End				_		
Sample Time	1600		1805	1750		
Sample Date	01/15/19		01/15/19	01/15/19		<u> </u>

OVPLICATE

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNY Mc Penard DATE: 01/15-16/19

Well Identification Number	MW-7D	MW-7S	MW-8D	MW-8S	MW-9D	MW-9S
Sample Identification	Gauge	Gauge	Gauge	Gauge	Gauge	Metals
Elevation of Top of Casing (ft. NGVD)	626.45	626.46	629.32	628.71	637.04	636.94
Depth to Water (ft)	13.66	9,98	31.73	7.14	56,52	26,45
Water Level Elevation (ft. NGVD)	- · · · · · · · · · · · · · · · · · · ·	.,		,		
Measured Depth Total Depth of Well (ft.)	58.70	33.54	64.50	43.30	63.10	36.71
Height of Water Column (ft.)						10,26
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)						1,67
Water Removed From Well (gallons)						2,0
Method of Removal						Punp
Was Well Purged Dry?						Y1-5
pH (standard units)						11,16
Temperature (°C)						20,19
Conductivity (µmhos/cc)						3720
Turbidity (NTU)						121
Appearance						BAINT
Odor						NONF
Purge Time - Begin						_
Purge Time - End						
Sample Time						1645
Sample Date	territoria			~	~	01/15/19

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: Kenny McDenAct . DATE: 01/15-16/19

Well Identification Number	MW-10D	MW-10S	MW-11D	MW-11S	MW-12D	MW-12S
Sample Identification	Gauge	Metals	Gauge	Metals	CCR III	Metals
Elevation of Top of Casing (ft. NGVD)	639.32	639.58	628.27	628.75	623.67	623.50
Depth to Water (ft)	68.77	14.54	48,26	10.98	13:14	9,24
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	71.33	36.22	50.34	31.02	44.92	22.94
Height of Water Column (ft.)		21.68		20.04	31,78	13.70
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)		3,53		3,27	5.18	2,23
Water Removed From Well (gallons)		14.0		12,0	10,25	4.0
Method of Removal		PUMP		Pump	Pump	Pump
Was Well Purged Dry?		No		No	Yes	YES
pH (standard units)		8.41		8,37	8,06	7,28
Temperature (°C)		21.01		21,19	20,71	19,21
Conductivity (µmhos/cc)		806		1000	1310	884
Turbidity (NTU)		17,6		15,8	184	41.6
Appearance		CUFAN		Coppa	+02810	Clean
Odor		wort		work	NONE	MONE
Purge Time - Begin					_	
Purge Time - End				1	-	_
Sample Time		1550		1535	1520	1510
Sample Date	-	01/15/19	Communication :	01/15/19	01/15/19	61/15/19

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNY Mc PORALD . DATE: 01/15-16/19

Well Identification Number	MW-13D	MW-13S	MW-14	MW-15	MW-16	MW-17
Sample Identification	Gauge	Metals	Gauge	Gauge	Gauge	Gauge
Elevation of Top of Casing (ft. NGVD)	619.06	619.15	640.89	637.71	637.26	636.52
Depth to Water (ft)	45,41	17,32	75,30	50,42	60,02	54.38
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	47.56	18.12	78.96	74.21	64.15	58.41
Height of Water Column (ft.)		0.80				
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)		0.13				
Water Removed From Well (gallons)						
Method of Removal						
Was Well Purged Dry?						
pH (standard units)		-				
Temperature (°C)						
Conductivity (µmhos/cc)						
Turbidity (NTU)		-				
Appearance						
Odor		1				
Purge Time - Begin		-				
Purge Time - End		-				
Sample Time		N 0				
Sample Date		SAMPLA	_		_	-

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENRY M (DONAL) DATE: 02/27/19

Well Identification Number	MW-1D	MW-1S	MW-2D	MW-2S	MW-3D	MW-3S
Activities	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Sample	Appendix III	NA	Appendix III	Appendix IV	Appendix III	Appendix IV
Depth to Water (ft)	53.80	21,94	56.68	32,86	36,98	21,29
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.25	37.76	61.80	36.75	62.95	27.21
Height of Water Column (ft.)	4.45		5,12	3,89	25,97	5.92
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.73		0.83	0.63	4,23	0,96
Water Removed From Well (gallons)	0.5		3,0	1,25	13.0	1,0
Method of Removal	BAILM		PVMP	PUMP	Pump	Pump
Was Well Purged Dry?	Y+5		No	Yts	No	Yes
pH (standard units)	_		11.03	8.90	7.80	7,38
Temperature (°C)			17.91	18,24	18,04	17,42
Conductivity (µmhos/cc)			1570	2920	934	2780
Turbidity (NTU)			134	116	38.9	134
Appearance			Scientey TURBIO	SLIGHTLY TURBIR	CuGAN	56164764 + 66010
Odor	_	,	NONT	NONE	NONT	nont
Ohio Containers	250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3	-
Shreveport Containers	250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3	500 mL HNO3	250 mL Unpres 250mL HNO3	500 mL HNO3
Sample Time		_	1200	1140	900	920
Sample Date		- Samuel	02/27/19	07/27/19	02/27/19	02/27/19

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNY ME DUNALD . DATE: 02/27/19

Well Identification Number	MW-4D	MW-4S	MW-5D	MW-5S	MW-6D	MW-6S
Activities	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Samples	Appendix III	NA	Appendix III	NA	Appendix III	Appendix IV
Depth to Water (ft)	43.23	pry	24.81	20,87	34,12	DRY
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	53.86	32.94	58.42	33.15	58.51	28.20
Height of Water Column (ft.)	10,63		37.61		24,39	
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1,73		5.48		3,98	
Water Removed From Well (gallons)	10.0		10,25		8,0	
Method of Removal	PUMP		PUMP		Pump	
Was Well Purged Dry?	NO		YES		Yts	
pH (standard units)	7.66		8.45		7.62	
Temperature (°C)	16.80		17.41		18124	
Conductivity (µmhos/cc)	1243		773		1420	
Turbidity (NTU)	21,6		52,1		108	
Appearance	Cuhan		Chan		TURBIO	
Odor	WONT		NONE		NONF	
Ohio Containers	250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3	
Shreveport Containers	250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3	500 mL HNO3
Sample Time	0835		1225		1000	
Sample Date	02/27/19		02/27/19		02/27/19	

PUPLICATE

For 2" well multiply by	0.163
For 4" well multiply by	0.653

LAMPFILL

SAMPLED BY: Ktory Mc Ponard . DATE: 12/27/19

Well Identification Number	MW-7D	MW-7S	MW-8D	MW-8S	MW-9D	MW-9S
Sample Identification	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Elevation of Top of Casing (ft. NGVD)	Appendix III	NA	Appendix III	NA	Appendix III	Appendix IV
Depth to Water (ft)	12,38	11.55	26.23	7,17	55.76	26.64
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.70	33.54	64.50	43.30	63.10	36.71
Height of Water Column (ft.)	46,32		38,27		7,34	10.07
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	7.55		6,24		1,20	1,64
Water Removed From Well (gallons)	18.0		10,75		1.0	2,25
Method of Removal	Pump		Pump		Pomp	Pump
Was Well Purged Dry?	YES		YFS		YES	YHS
pH (standard units)	8.28		8,03		7,58	12,34
Temperature (°C)	19,12		18,49		17.81	18138
Conductivity (µmhos/cc)	6240		72400		1930	4240
Turbidity (NTU)	38,7		58.6		342	147
Appearance	Clian		CLIAN		TURBIO	BROWN
Odor	MONT		wort		NON-	NONE
Ohio Containers	250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3	_
Shreveport Containers	250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3	500 mL HNO3
Sample Time	0810		1350		1022	1045
Sample Date	02/27/19		02/27/19		02/27/19	02/27/19

For 2" well multiply by 0.163
For 4" well multiply by 0.653

SHALLOW PUPLILATE

SAMPLED BY: KENNY Mc DONALD . DATE: 02/27/19

Well Identification Number	MW-10D	MW-10S	MW-11D	MW-11S	MW-12D	MW-12S
Sample Identification	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Elevation of Top of Casing (ft. NGVD)	Appendix III	NA	Appendix III	NA	Appendix III	Appendix IV
Depth to Water (ft)	68,64	20,58	48,76	12,20	16,95	12.01
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	71.33	36.22	50.34	31.02	44.92	22.94
Height of Water Column (ft.)	2,69		2.08		27,97	10.93
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.44		0.34		4.56	1.78
Water Removed From Well (gallons)	0.25		0.25		10,25	4,0
Method of Removal	BAILLA		BAILM		Pomp	Pump
Was Well Purged Dry?	465		YFS		Yts	YES
pH (standard units)	-				8,45	7.57
Temperature (°C)	-		_		18.04	18,71
Conductivity (µmhos/cc)	_		_		1730	983
Turbidity (NTU))				158	44.6
Appearance					TURBIO	CLIAN
Odor	~		1		Nort	NONE
Ohio Containers	250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3	_
Shreveport Containers	250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3	500 mL HNO3
Sample Time		_		_	1325	300
Sample Date	_		-		02/27/19	02/27/19

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: Ktnny McDenard . DATE: 02/27/19

Well Identification Number	MW-13D	MW-13S	MW-14	MW-15	MW-16	MW-17
Activities	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Samples	Appendix III	Appendix IV	Appendix III	Appendix III	Appendix III	Appendix III
Depth to Water (ft)	42,84	15,29	74,45	58,24	62,66	53.65
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	47.56	18.12	78.96	74.21	64.15	58.41
Height of Water Column (ft.)	4.72	2,83	4,51	15,97	1,49	4.76
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	6.77	0,46	0.74	2.60	0,24	0.78
Water Removed From Well (gallons)	0.50	0.25	0.50	4,25	_	0,50
Method of Removal	frme	BALLM	BALLM	prmp		BAILA
Was Well Purged Dry?	Yts	465	415	YES	-	7 65
pH (standard units)		J	_	8,60	_	J
Temperature (°C)	-	-	_	19,25	_)
Conductivity (µmhos/cc)		_	_	1245	_	ſ
Turbidity (NTU)	_	-		142	_	
Appearance		_		tuksip	_	
Odor			_	Nont	_	_
Ohio Containers	250 mL Unpres 250mL HNO3	_	250 mL Unpres 250mL HNO3			
Shreveport Containers	250 mL Unpres 250mL HNO3	500 mL HNO3	250 mL Unpres 250mL HNO3	250 mL Unpres 250mL HNO3	250 mL Unpres 250mL HNO3	250 mL Unpres 250mL HNO3
Sample Time			Chambin	1120		
Sample Date	_	/	_	02/27/19		~

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: Kinny Me Denord / MATT HAMILTON DATE: 08/26/19

Well Identification Number	MW-1D	MW-1S	MW-2D	MW-2S	MW-3D	MW-3S
Activities	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Samples	Appendix III	NA	Appendix III	Appendix IV Metals	Appendix III	Appendix IV Metals
Depth to Water (ft)	52,71	23,95	57,91	32,54	37,34	22,94
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.25	37.76	61.80	36.75	62.95	27.21
Height of Water Column (ft.)	SISY	13,81	3,89	4,21	25.61	4,27
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.90	2,25	0.63	0.69	4.17	0.70
Water Removed From Well (gallons)	0.75		3,0	1.75	13,0	1.0
Method of Removal	BAILIN	_	RMP	Pump	PMP	Pump
Was Well Purged Dry?	YHS		NO	Yts	No	4+5
pH (standard units)		,	12,79	12,90	8,46	8,23
Temperature (°C)	-		23.28	22,91	22,41	2283
Conductivity (µmhos/cc)			1900	2370	1060	3060
Turbidity (NTU)	Ţ		93.0	118	246	217
Appearance			TURBO	Drown TINT	SLIC HILY TURNID	SUOHIET TURBLE
Odor	_		NONE	NONE	None	None
Ohio Containers	250mL HNO3		250mL HNO3		250mL HNO3	
Shreveport Containers	1L Unpres		1L Unpres	500 mL HNO3	1L Unpres	500 mL HNO3
Sample Time		1	15 30	1835	1444	1450
Sample Date			08/26/19	08/26/19	08/26/19	1450

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KINNY MI DONALD/MATT HAMILIUM DATE: 08/26/19

Well Identification Number	MW-4D	MW-4S	MW-5D	MW-5S	MW-6D	MW-6S
Activities	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Samples	Appendix III	NA	Appendix III	Appendix IV Metals	Appendix III	Appendix IV Metals
Depth to Water (ft)	43,73	Dry	24,20	22,88	32,83	DRY
Water Level Elevation (ft. NGVD)		~			,	
Measured Depth Total Depth of Well (ft.)	53.86	32.94	58.42	33.15	58.51	28.20
Height of Water Column (ft.)	10,13		34.22	5,40	25.68	_
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1.65	_	5,58	0.88	4.19	Character
Water Removed From Well (gallons)	10.0		13,25	3.0	9,5	
Method of Removal	Pump		Pump	Pump	Pump	
Was Well Purged Dry?	NO	/	YHS	NO	YHS	
pH (standard units)	8.13)	9,81	8,45	8.58	
Temperature (°C)	23,98	_	27,44	21.39	23.16	
Conductivity (µmhos/cc)	1230		1040	1160	1500	
Turbidity (NTU)	88,2		198	158	303	
Appearance	CLEAN		CLGAN	Cionn	SCIEHTLY	
Odor	NORF		Nont	Nort	Nont	
Ohio Containers	250mL HNO3		250mL HNO3	-	250mL HNO3	
Shreveport Containers	1L Unpres		1L Unpres	500 mL HNO3	1L Unpres	500 mL HNO3
Sample Time	1433		1540	1550	1500	
Sample Date	08/26/19		08/26/19	08/26/19	08/26/19	0

1-BNDFILL

0.163
0.653

SAMPLED BY: KINNY M. DONALD MATT HAMILTON DATE: 08/26/19

Well Identification Number	MW-7D	MW-7S	MW-8D	MW-8S	MW-9D	MW-9S
Activities	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Samples	NA	NA	NA	NA	Appendix III	Appendix IV Metals
Depth to Water (ft)	11.45	11.48	27,13	9.30	53,55	26,26
Water Level Elevation (ft. NGVD)		,				
Measured Depth Total Depth of Well (ft.)	58.70	33.54	64.50	43.30	63.10	36.71
Height of Water Column (ft.)	47.25	22,06	41.37	34.00	9.55	10,45
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	7.70	3.60	6.74	5,54	1,56	1.70
Water Removed From Well (gallons)			-	7	2,25	2,5
Method of Removal		_		_	Pump	pomp
Was Well Purged Dry?	_	_	_	_	YHS	YHS
pH (standard units)		_		_	8.82	12,41
Temperature (°C))	_	_		23,25	21,39
Conductivity (µmhos/cc)			_	-	1550	4180
Turbidity (NTU)		_		_	128	130
Appearance)	-	-	_	SUCHTY	Brown
Odor	_	_	_	_	Nont	NONE
Ohio Containers	_		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	250mL HNO3	-
Shreveport Containers	_	_	-		1L Unpres	500 mL HNO3
Sample Time		-	_		1510	1515
Sample Date		_	_	Equipment.	08/26/19	1515

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: Kinny Mi Donal / MATT HAMILTON DATE: 08/26/19

Well Identification Number	MW-10D	MW-10S	MW-11D	MW-11S	MW-12D	MW-12S
Activities	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Samples	Appendix III	Appendix IV Metals	Appendix III	Appendix IV Metals	Appendix III	Appendix IV Metals
Depth to Water (ft)	67,96	25,19	48.11	LARGE	18,66	15.71
Water Level Elevation (ft. NGVD)				WASP NEST		
Measured Depth Total Depth of Well (ft.)	71.33	36.22	50.34	31.02 OF PAOTE	44.92	22.94
Height of Water Column (ft.)	3137	11.03	2,23	OFTE	26:26	7.23
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.55	1.80	0.36		4.28	1.18
Water Removed From Well (gallons)	0,50	6,0	0		10,0	3,0
Method of Removal	BAIM	Pump	_		Pump	pump
Was Well Purged Dry?	Yts	No	_		YES	YH
pH (standard units)		7,60			8,68	7,31
Temperature (°C))	21,44			20,29	24.72
Conductivity (µmhos/cc)	-	915	~		14/0	1(50
Turbidity (NTU)		30.0			469	523
Appearance		Clom	~		SLIGHT19 TVDJD	Clean
Odor		NON	-		Nont	work
Ohio Containers	250mL HNO3	() de la companya de	250mL HNO3		250mL HNO3	
Shreveport Containers	1L Unpres	500 mL HNO3	1L Unpres	500 mL HNO3	1L Unpres	500 mL HNO3
Sample Time		320	_	4	1405	1355
Sample Date		08/26/19	~		08/26/19	1355

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: Konny Mc Denort /MATT HAMILTON DATE: 08/26/19

Well Identification Number	MW-13D	MW-13S	MW-14	MW-15	MW-16	MW-17
Activities	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Samples	Appendix III	Appendix IV Metals	Appendix III	Appendix III	Appendix III	Appendix III
Depth to Water (ft)	37.42	17,16	68.82	Topica.	6260	50,89
Water Level Elevation (ft. NGVD)				59,72	_	
Measured Depth Total Depth of Well (ft.)	47.56	18.12	78.96	74.21	64.15	58.41
Height of Water Column (ft.)	10.14	6,96	10,14	14.49		7,52
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1.65	0.16	1.65	2.36		1,23
Water Removed From Well (gallons)	1,50	-	1,75	5,0	_	1.0
Method of Removal	Pump	-	Bonne	Pump	_	Pump
Was Well Purged Dry?	YES	_	Yes	10:5 JVP	_	YFS
pH (standard units)			8.57			
Temperature (°C)		-	27,75	23.13	_	
Conductivity (µmhos/cc)			10200	1560		
Turbidity (NTU)	J	~	20,3	178		_
Appearance		•	CUM	SUIGHTIM		
Odor			wort	NONT	_	-
Ohio Containers	250mL HNO3	<u></u>	250mL HNO3	250mL HNO3	250mL HNO3	250mL HNO3
Shreveport Containers	1L Unpres	500 mL HNO3	1L Unpres	1L Unpres	1L Unpres	1L Unpres
Sample Time	Company of the Compan	_	1600	1525		
Sample Date	1		08/26/19	08/26/19	-	~

For 2" well multiply by	0.163
For 4" well multiply by	0.653

ATTACHMENT B Laboratory Analytical Reports

AEP ANALYTICAL CHEMISTRY SERVICES Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 36899 Report ID Address: 502 N. Allen Avenue **Date Received:** 01/24/2018

Contact: Jill Parker-Witt

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 212939 **Collected Date:** 01/22/2018 Matrix: Water Cust Sample ID: MW-6D **Location:** Northeastern Power Plant

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (212939)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Boron	4.24	mg/L	0.014	1:50	EPA 6010B 1996	01/31/2018 17:04		JDB
Water (212939)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Fluoride	0.76	mg/L	0.083	1	EPA 300.0	02/07/2018 0:00	Q18,J	Q18
Sulfate	494	mg/L	0.140	1	EPA 300.0	02/07/2018 0:00	Q18	Q18

AEP Sample ID: 212940 **Collected Date: 01/22/2018** By: KM Cust Sample ID: MW-9D Location: Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (212940)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Boron	7.43	mg/L	0.014	1:50	EPA 6010B 1996	01/31/2018 17:10		JDB

Bv: KM **Collected Date: 01/22/2018** AEP Sample ID: 212941 Cust Sample ID: MW-15 Location: Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (212941)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Boron	9.16	mg/L	0.014	1:50	EPA 6010B 1996	01/31/2018 17:15		JDB

Bv: KM **Collected Date:** 01/22/2018 AEP Sample ID: 212942 Cust Sample ID: SP-1 Location: Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (212942)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes Te	ch
Calcium	119	mg/L	0.48	1:50	EPA 6010B 1996	01/31/2018 17:21	JD)B

AEP ANALYTICAL CHEMISTRY SERVICES Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 36899 Address: 502 N. Allen Avenue Report ID Contact: Jill Parker-Witt **Date Received:** 01/24/2018

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 212943 Collected Date: 01/22/2018 Matrix: Water Cust Sample ID: SP-2 **Location:** Northeastern Power Plant

Sample Desc.: Coal Combustion Residuals (CCR)

Water (212943)

11415. (212515)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	975	mg/L	0.219	1	EPA 300.0	02/07/2018 0:00	Q18	Q18
Solids, Total Dissolved (TDS)	1910	mg/L	2	1	SM 2540 C-2011	01/26/2018 17:00		LBH

AEP Sample ID: 212944 **Collected Date: 01/22/2018** Bv: KM Cust Sample ID: SP-10 **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (212944)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Boron	1.08	mg/L	0.00028	1	EPA 6010B 1996	01/31/2018 18:30		JDB
Water (212944)						·		
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	1630	mg/L	0.219	1	EPA 300.0	02/07/2018 0:00	Q18	Q18
Fluoride	5.71	mg/L	0.083	1	EPA 300.0	02/07/2018 0:00	Q18	Q18
Solids, Total Dissolved (TDS)	3236	mg/L	2	1	SM 2540 C-2011	01/26/2018 17:00		LBH
Sulfate	63.1	mg/L	0.140	1	EPA 300.0	02/07/2018 0:00	Q18	Q18

AEP Sample ID: 212945 Collected Date: 01/22/2018 By: KM Cust Sample ID: SP-11 Location: Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Mata: (24204E)

water (212945)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	470	mg/L	0.219	1	EPA 300.0	02/07/2018 0:00	Q18	Q18
Fluoride	2.96	mg/L	0.083	1	EPA 300.0	02/07/2018 0:00	Q18	Q18
Solids, Total Dissolved (TDS)	1544	mg/L	2	1	SM 2540 C-2011	01/26/2018 17:00		LBH
Sulfate	222	mg/L	0.140	1	EPA 300.0	02/07/2018 0:00	Q18	Q18

Date Received: 01/24/2018

AEP ANALYTICAL CHEMISTRY SERVICES Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report Date

Report ID : 36899 Company: SEP - Environmental (JP-W) Ad

Contact: Jill Parker-Witt

Address: 502 N. Allen Avenue Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

Quality Control Data

* Quality control units are the same as reported analytical results

	Daniel ID		Blank Standard					Spike	Surrogate	Duplicate %		
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
1/31/2018	Boron	212939.2	<0.014	0.3	0.30296	101.0	0.3	0.2841	94.7		0.5	JDB
1/26/2018	Solids, Total Dissolved (TDS)	212943.1									2.2	LBH
1/26/2018	Solids, Total Dissolved (TDS)		<2									LBH
1/26/2018	Solids, Total Dissolved (TDS)			196	184	93.9						LBH
1/26/2018	Solids, Total Dissolved (TDS)						3120	2914	93.4			LBH

Code Code Description

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

Q18 Analysis was performed by a contracted Laboratory. See attached report.

Laboratory Manager

Laboratory Manager

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Relinquished by: Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shrayapart, Rev. 1, 3/19/17 Relinquished by: Relinquished by: Special Instructions/QC Requirements & Comments: Contact Phone: Project Name: Northeastern PP CCR Preservation Used: 1= ice, 2= HCi; 3= H2SO4; 4=HNO3; 5=NeOH; 6= Other Sampler(s): Kenneth McDonald Contact Name: Jill Parker-Witt Contacts: John Davis (318-673-3811) Shreveport, LA 71101 Sample Identification Jonathan Barnhill (318-673-3803) 318-673-3816 MW-9D MW-6D MW-15 SP-11 SP-10 SP-2 SP-1 2 Company: Company: Company: ACLC 1/22/2018 Sample Date 1/22/2018 1/22/2018 1/22/2018 1/22/2018 1/22/2018 1/22/2018 Analysis Turnaround Time (in Calendar Days) Routine (28 days for Monitoring Wells) Sample Time 1440 1420 1500 1520 1320 1400 1340 Sample Type (C=Comp, G=Grab) ០ ଉ ଉ G G G ଜ Matrix Date/Time: 01/2 4/18 11/6 Date/Time: GW GW GW GW GW. GW GW Program: Coal Combustion Residuals (CCR) Site Contact: F= filter in field # of Cont. N N Sampler(s) Initials Received by: Received by: Réceived in Laboratory/by: < 1 L bottle, Cool, 0-6C Fluoride, Sulfate × 1 L bottle, Cool, 0-6C TDS, Chloride \times 1 L bottle, Cool, 0-6C TDS, Chloride, × × Fluoride, Sulfate 500 mL bottle, pH<2, HNO3 Boron × × × × Date: 500 mL bottle, pH<2, HNO3 × Calcium Date/Time: Date/Time: Date/Time: COC/Order #: Shalk 212944.1-212943 217942 21794, 212740 212939.1-212939.2 Sample Specific Notes: For Lab Use Only:

Shravaport Chemical Laboratory (SCL)

Chain of Custody Record

Sw. 200

502 N. Allen Ave.

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type	Delivery Type							
Ice Chaer Bag Action Pak PCB Mailer Bottle	UPS	FEDEX	US Mail	Walk in	Shuttle			
Other	Othe	r						
	Tracking #		-					
Client Jill Panker Received By BH	DGA	PCB Oil	water Water	X Oil	Soil			
Open Date	Solid	Liquid	Other					
Container Temp Read	_	Project I.D.	3489	9	_			
Corrected Temp 2.5°C	_ Were sa	imples receive	d on ice?	YES)	NO			
Did container arrive in good condition?	YES	NO						
Was sample documentation received?	(ES)	NO						
Was documentation filled out properly?	ES	NO						
Were samples labeled properly?	VES	NO						
Were correct containers used?	ES	NO						
Were the pH's of samples appropriately checked?	YES	NO						
Total number of sample containers	_							
Was any corrective action taken?	(NO)	Person Con	-					
Comments			-					
				77.				

Sample ID MW-6D MW-9D MW-15 SP-10	Analysis Boron Boron Calcium Boron	pH	Preservative Added / Lot #
			/

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location. Sine	veport Chem	ical Lal	borato	ry				Report D	ate: 2/8/2018
MW-6D									Northeastern Plant
Sample Number:	180447-001			Date Col	lected:	01/22/2	2018 14:00	Da	ate Received: 2/7/2018
Parameter		Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Fluoride, F		0.76	mg/L		0.2	0.05	TEA	02/07/2018	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4		494	mg/L		1	0.5	TEA	02/07/2018	EPA 300.1-1997, Rev. 1.0
Northeastern Plant									
SP-2									Northeastern Plant
Sample Number:	180447-002			Date Col	lected:	01/22/2	2018 15:00	Da	ate Received: 2/7/2018
Parameter		Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl		975	mg/L		8	2	TEA	02/07/2018	EPA 300.1-1997, Rev. 1.0
Northeastern Plant									
SP-10									Northeastern Plant
Sample Number:	180447-003			Date Col	lected:	01/22/2	2018 14:20	Da	ate Received: 2/7/2018
Parameter		Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl		1630	mg/L		8	2	TEA	02/07/2018	EPA 300.1-1997, Rev. 1.0
Chloride, Cl Fluoride, F			mg/L mg/L		8 0.8	2 0.2	TEA TEA	02/07/2018 02/07/2018	EPA 300.1-1997, Rev. 1.0 EPA 300.1-1997, Rev. 1.0
•		5.71	-						•
Fluoride, F		5.71	mg/L		0.8	0.2	TEA	02/07/2018	EPA 300.1-1997, Rev. 1.0
Fluoride, F Sulfate, SO4		5.71	mg/L		0.8	0.2	TEA	02/07/2018	EPA 300.1-1997, Rev. 1.0
Fluoride, F Sulfate, SO4 Northeastern Plant	180447-004	5.71	mg/L	Date Col	0.8	0.2 0.5	TEA	02/07/2018 02/07/2018	EPA 300.1-1997, Rev. 1.0 EPA 300.1-1997, Rev. 1.0
Fluoride, F Sulfate, SO4 Northeastern Plant SP-11	180447-004	5.71	mg/L mg/L	Date Col Data Qual	0.8	0.2 0.5	TEA TEA	02/07/2018 02/07/2018	EPA 300.1-1997, Rev. 1.0 EPA 300.1-1997, Rev. 1.0 Northeastern Plant ate Received: 2/7/2018
Fluoride, F Sulfate, SO4 Northeastern Plant SP-11 Sample Number:	180447-004	5.71 63.1 Result	mg/L mg/L	Data	0.8 1	0.2 0.5 01/22/2	TEA TEA 2018 14:40	02/07/2018 02/07/2018 D a	EPA 300.1-1997, Rev. 1.0 EPA 300.1-1997, Rev. 1.0 Northeastern Plant ate Received: 2/7/2018
Fluoride, F Sulfate, SO4 Northeastern Plant SP-11 Sample Number: Parameter	180447-004	5.71 63.1 Result	mg/L mg/L	Data	0.8 1 lected:	0.2 0.5 01/22/2 MDL	TEA TEA 2018 14:40 Analysis By	02/07/2018 02/07/2018 Da Analysis Date/Time	EPA 300.1-1997, Rev. 1.0 EPA 300.1-1997, Rev. 1.0 Northeastern Plant ate Received: 2/7/2018 Method
Fluoride, F Sulfate, SO4 Northeastern Plant SP-11 Sample Number: Parameter Chloride, CI	180447-004	5.71 63.1 Result 470 2.96	mg/L mg/L Units mg/L	Data	0.8 1 lected: RL 8	0.2 0.5 01/22/2 MDL	TEA TEA 2018 14:40 Analysis By TEA	02/07/2018 02/07/2018 Date/Time 02/07/2018	EPA 300.1-1997, Rev. 1.0 EPA 300.1-1997, Rev. 1.0 Northeastern Plant ate Received: 2/7/2018 Method EPA 300.1-1997, Rev. 1.0
Fluoride, F Sulfate, SO4 Northeastern Plant SP-11 Sample Number: Parameter Chloride, Cl Fluoride, F	180447-004	5.71 63.1 Result 470 2.96	mg/L mg/L Units mg/L mg/L	Data	0.8 1 lected: RL 8 0.3	0.2 0.5 01/22/2 MDL 2 0.1	TEA TEA 2018 14:40 Analysis By TEA CRJ	02/07/2018 02/07/2018 Date	EPA 300.1-1997, Rev. 1.0 EPA 300.1-1997, Rev. 1.0 Northeastern Plant ate Received: 2/7/2018 Method EPA 300.1-1997, Rev. 1.0 EPA 300.1-1997, Rev. 1.0
Fluoride, F Sulfate, SO4 Northeastern Plant SP-11 Sample Number: Parameter Chloride, Cl Fluoride, F Sulfate, SO4	180447-004	5.71 63.1 Result 470 2.96	mg/L mg/L Units mg/L mg/L	Data	0.8 1 lected: RL 8 0.3	0.2 0.5 01/22/2 MDL 2 0.1	TEA TEA 2018 14:40 Analysis By TEA CRJ	02/07/2018 02/07/2018 Date	EPA 300.1-1997, Rev. 1.0 EPA 300.1-1997, Rev. 1.0 Northeastern Plant ate Received: 2/7/2018 Method EPA 300.1-1997, Rev. 1.0 EPA 300.1-1997, Rev. 1.0
Fluoride, F Sulfate, SO4 Northeastern Plant SP-11 Sample Number: Parameter Chloride, Cl Fluoride, F Sulfate, SO4 Northeastern Plant	180447-004	5.71 63.1 Result 470 2.96	mg/L mg/L Units mg/L mg/L	Data Qual	0.8 1 lected: RL 8 0.3 0.5	0.2 0.5 01/22/2 MDL 2 0.1 0.2	TEA TEA 2018 14:40 Analysis By TEA CRJ	02/07/2018 02/07/2018 Date	EPA 300.1-1997, Rev. 1.0 EPA 300.1-1997, Rev. 1.0 Northeastern Plant ate Received: 2/7/2018 Method EPA 300.1-1997, Rev. 1.0 EPA 300.1-1997, Rev. 1.0 EPA 300.1-1997, Rev. 1.0
Fluoride, F Sulfate, SO4 Northeastern Plant SP-11 Sample Number: Parameter Chloride, Cl Fluoride, F Sulfate, SO4 Northeastern Plant AD-11		5.71 63.1 Result 470 2.96	mg/L mg/L Units mg/L mg/L	Data Qual	0.8 1 lected: RL 8 0.3 0.5	0.2 0.5 01/22/2 MDL 2 0.1 0.2	TEA TEA 2018 14:40 Analysis By TEA CRJ CRJ	02/07/2018 02/07/2018 Date	EPA 300.1-1997, Rev. 1.0 EPA 300.1-1997, Rev. 1.0 Northeastern Plant ate Received: 2/7/2018 Method EPA 300.1-1997, Rev. 1.0 EPA 300.1-1997, Rev. 1.0 EPA 300.1-1997, Rev. 1.0 Welsh Plant ate Received: 2/7/2018

Welsh Plant

Location: Shreveport Chemical Laboratory

AD-13										Welsh Plant
Sample Number:	180447-006			Date Col	lected:	01/18/2	2018 11:37	Da	te Received:	2/7/2018
Parameter		Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method	
Sulfate, SO4		383	mg/L		2	1	TEA	02/07/2018	EPA 300.1-199	7, Rev. 1.0
Welsh Plant										
AD-14										Welsh Plant
Sample Number:	180447-007			Date Col	lected:	01/18/2	2018 11:12	Da	te Received:	2/7/2018
Parameter		Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method	
Parameter Chloride, Cl			Units mg/L		RL 0.06	MDL 0.02	Analysis By	Analysis Date/Time	Method EPA 300.1-199	7, Rev. 1.0
										7, Rev. 1.0
Chloride, Cl										7, Rev. 1.0 Welsh Plant
Chloride, Cl Welsh Plant	180447-008			Qual	0.06	0.02		02/07/2018		Welsh Plant
Chloride, Cl Welsh Plant AD-16	180447-008		mg/L	Qual	0.06	0.02	TEA	02/07/2018	EPA 300.1-199	Welsh Plant

Welsh Plant

Dave Conover, Chemist Principal

Email dpconover@aep.com Tel. 614-836-4219 Fax 614-836-4168 Audinet 210-4219

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Report Date: 2/8/2018

...

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

CHAIN OF CUSTODY

		トナナフス	_											ja.			
	Ç	<u>></u>															
Analysis Requested																	
Analy	_	- 3 G	L - T	D 0	×	×	×	×									
	3839	3802	0 K), A OF B CONTAINERS			-										77
	318-673-3839	318-673-3802		SAMPLE I.D.	212939	212943	212944	212945							DBY	D BY	13 10:0
FAX NO.	AEPW-SCL / Northeastern PP CCR	Sandra Wallace	ırson	SAMPLE SOURCE & DESCRIPTION	MW-6D	SP-2	SP-10	SP-11							DATE/TIME 12 (6) [18 1338]		81-60-68
NAME	V-SCL / Noi	Sandra	contact person	TIME	14:00	15:00	14:20	14:40						,	BY SIGN)	BY (SIGN)	
OPCO/PROJECT NAME	AEPV			DATE	22-Jan-18	22-Jan-18	22-Jan-18	22-Jan-18							RELINQUISHED BY SIGN)	RELINGUISHED	RECEIVED FOR LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

CHAIN OF CUSTODY

																16	
sted																	
Analysis Requested																	
Ā	S		₩ 10 ·		×	×	×	×									
			O C	A OF B CONTAINERS	_	_	_										
	318-673-3839	318-673-3802		SAMPLE I.D.	212798	212799	212800	212801									57:01
FAX NO.				PTION											RECEIVED BY	RECEIVED BY	4-18
	AEPW-SCL / Welsh PP CCR	Sandra Wallace	erson	SAMPLE SOURCE & DESCRIPTION	AD-11	AD-13	AD-14	AD-16							2 2 6 138		e 02-07-18
VAME	PW-SCL/	Sandra	contact person	TIME	10:42	11:37	11:12	12:12						0	Y GRIEN)	K (SIGN)	
OPCO/PROJECT NAME	AE			DATE	18-Jan-18	18-Jan-18	18-Jan-18	18-Jan-18	5					•	REINOUISHED BY (BIGM)	PELINQUISHEP	RECEIVED FOR LABORATORY

MEP WATER & WASTE SAMPLE RECEIPT FORM

	Package Type	Delivery Type
	Cooler Box Bag Envelope	PONY UPS FedEX USPS
		Other
	Plant/Customer_ Northeaster	Number of Plastic Containers:
	Opened By SM	Number of Glass Containers:
		Number of Mercury Containers:
+		or N/A Initial:on ice / no ice
	Was container in good condition? N	Comments
	Was Chain of Custody received? Y / N	Comments
	\ , /	If RUSH, who was notified?
	pH (15 min) Cr ⁺⁶ (pres) NO ₂ or N (24 hr)	NO_3 (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
	Was COC filled out properly?	Comments
	Were samples labeled properly?	Comments
	Were correct containers used? Y/N	
	Was pH checked & Color Coding done? Y	/N or N/A Initial & Date:
	- Was Add'l Preservative needed? Y / N If	Yes: By whom & when: (See Prep Book)
	Is sample filtration requested? Y N	comments (See Prep Book)
	Was the customer contacted? If Yes:	Person Contacted:
	Lab ID# Initial &	Date & Time :
	Logged by Comme	nts:
	Reviewed by Ado	
	war and a second a	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP ANALYTICAL CHEMISTRY SERVICES Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37591 Address: 502 N. Allen Avenue Report ID **Date Received:** 05/03/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 216017 Bv: KM **Collected Date:** 05/02/2018 Matrix: Water Cust Sample ID: MW-2D **Location:** Northeastern Power Plant

Sample Desc.: Coal Combustion Residuals (CCR)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00212	mg/L	0.00093	1	EPA 6010B 1996	05/31/2018 4:09	J	JDB
Arsenic	0.03715	mg/L	0.00105	1	EPA 6010B 1996	05/31/2018 4:09		JDB
Barium	0.00962	mg/L	0.00015	1	EPA 6010B 1996	05/31/2018 4:09		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	05/31/2018 4:09	U	JDB
Boron	10.5	mg/L	0.014	1:50	EPA 6010B 1996	05/30/2018 20:12		JDB
Cadmium	0.0003	mg/L	0.00007	1	EPA 6010B 1996	05/31/2018 4:09	J	JDB
Calcium	7.52	mg/L	0.0096	1	EPA 6010B 1996	05/31/2018 4:09		JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	05/31/2018 4:09	U	JDB
Cobalt	0.00036	mg/L	0.00014	1	EPA 6010B 1996	05/31/2018 4:09	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	05/31/2018 4:09	U	JDB
Lithium	0.0006	mg/L	0.00013	1	EPA 6010B 1996	05/31/2018 4:09	J	JDB
Mercury	0.000046	mg/L	0.000005	1	EPA 7470A 1994	05/17/2018 13:42		LNM
Molybdenum	0.588	mg/L	0.00029	1	EPA 6010B 1996	05/31/2018 4:09		JDB
Selenium	0.08277	mg/L	0.00099	1	EPA 6010B 1996	05/31/2018 4:09		JDB
Thallium	0.0011	mg/L	0.00086	1	EPA 6010B 1996	05/31/2018 4:09	J	JDB

Water (216017)
		_

Water (210017)							
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes Tech
Chloride	14	mg/L	0.219	1	EPA 300.0	05/16/2018 23:48	GB
Fluoride	2.028	mg/L	0.083	1	EPA 300.0	05/16/2018 23:48	GB
Solids, Total Dissolved (TDS)	1206	mg/L	2	1	SM 2540 C-2011	05/07/2018 10:00	LBH
Sulfate	628	mg/L	0.140	1:10	EPA 300.0	05/17/2018 0:07	GB

AEP ANALYTICAL CHEMISTRY SERVICES Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37591 Address: 502 N. Allen Avenue Report ID

Contact: Jill Parker-Witt **Date Received:** 05/03/2018 Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 216018 Bv: KM **Collected Date:** 05/02/2018 Matrix: Water Cust Sample ID: MW-3D **Location:** Northeastern Power Plant

Sample Desc.: Coal Combustion Residuals (CCR)

Meta	۱.	124	co	40
weta	S	ľZI	บต	10

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	05/31/2018 4:14	U	JDB
Arsenic	0.00138	mg/L	0.00105	1	EPA 6010B 1996	05/31/2018 4:14	J	JDB
Barium	0.107	mg/L	0.00015	1	EPA 6010B 1996	05/31/2018 4:14		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	05/31/2018 4:14	U	JDB
Boron	1.08	mg/L	0.00028	1	EPA 6010B 1996	05/31/2018 4:14		JDB
Cadmium	0.00009	mg/L	0.00007	1	EPA 6010B 1996	05/31/2018 4:14	J	JDB
Calcium	127	mg/L	0.48	1:50	EPA 6010B 1996	05/30/2018 20:17		JDB
Chromium	0.00024	mg/L	0.00023	1	EPA 6010B 1996	05/31/2018 4:14	J	JDB
Cobalt	0.00104	mg/L	0.00014	1	EPA 6010B 1996	05/31/2018 4:14	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	05/31/2018 4:14	U	JDB
Lithium	0.01568	mg/L	0.00013	1	EPA 6010B 1996	05/31/2018 4:14		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	05/17/2018 13:50	U	LNM
Molybdenum	0.00293	mg/L	0.00029	1	EPA 6010B 1996	05/31/2018 4:14	J	JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	05/31/2018 4:14	U	JDB
Thallium	< 0.00086	mg/L	0.00086	1	EPA 6010B 1996	05/31/2018 4:14	U	JDB

Water (21	601	8	١
			_	

Water (210010)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	13	mg/L	0.219	1	EPA 300.0	05/17/2018 0:26		GB
Fluoride	0.757	mg/L	0.083	1	EPA 300.0	05/17/2018 0:26	U	GB
Solids, Total Dissolved (TDS)	736	mg/L	2	1	SM 2540 C-2011	05/07/2018 10:00		LBH
Sulfate	196	mg/L	0.140	1:10	EPA 300.0	05/17/2018 0:45		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37591 Address: 502 N. Allen Avenue Report ID

Contact: Jill Parker-Witt **Date Received:** 05/03/2018 Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 216019 Bv: KM **Collected Date:** 05/02/2018 Cust Sample ID: MW-4D Location: Northeastern Power Plant Matrix: Water

Metals (2	216019)
-----------	---------

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00405	mg/L	0.00093	1	EPA 6010B 1996	05/31/2018 4:30	J	JDB
Arsenic	0.0023	mg/L	0.00105	1	EPA 6010B 1996	05/31/2018 4:30	J	JDB
Barium	0.171	mg/L	0.00015	1	EPA 6010B 1996	05/31/2018 4:30		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	05/31/2018 4:30	U	JDB
Boron	1.21	mg/L	0.00028	1	EPA 6010B 1996	05/31/2018 4:30		JDB
Cadmium	0.00014	mg/L	0.00007	1	EPA 6010B 1996	05/31/2018 4:30	J	JDB
Calcium	192	mg/L	0.48	1:50	EPA 6010B 1996	05/30/2018 20:22		JDB
Chromium	0.00137	mg/L	0.00023	1	EPA 6010B 1996	05/31/2018 4:30		JDB
Cobalt	0.00236	mg/L	0.00014	1	EPA 6010B 1996	05/31/2018 4:30	J	JDB
Lead	0.00147	mg/L	0.00068	1	EPA 6010B 1996	05/31/2018 4:30	J	JDB
Lithium	0.00533	mg/L	0.00013	1	EPA 6010B 1996	05/31/2018 4:30		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	05/17/2018 14:12	U	LNM
Molybdenum	0.00674	mg/L	0.00029	1	EPA 6010B 1996	05/31/2018 4:30		JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	05/31/2018 4:30	U	JDB
Thallium	0.00119	mg/L	0.00086	1	EPA 6010B 1996	05/31/2018 4:30	J	JDB

Water (216019	١

Water (210013)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	22	mg/L	0.219	1	EPA 300.0	05/17/2018 1:04		GB
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	05/17/2018 1:04	U	GB
Solids, Total Dissolved (TDS)	984	mg/L	2	1	SM 2540 C-2011	05/07/2018 10:00		LBH
Sulfate	328	mg/L	0.140	1:10	EPA 300.0	05/17/2018 1:22		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37591 Address: 502 N. Allen Avenue Report ID **Date Received:** 05/03/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 216020 Bv: KM **Collected Date:** 05/02/2018 Matrix: Water Cust Sample ID: MW-5D **Location:** Northeastern Power Plant

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00291	mg/L	0.00093	1	EPA 6010B 1996	05/31/2018 4:57	J	JDB
Arsenic	0.00124	mg/L	0.00105	1	EPA 6010B 1996	05/31/2018 4:57	J	JDB
Barium	0.127	mg/L	0.00015	1	EPA 6010B 1996	05/31/2018 4:57		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	05/31/2018 4:57	U	JDB
Boron	0.476	mg/L	0.00028	1	EPA 6010B 1996	05/31/2018 4:57		JDB
Cadmium	0.00036	mg/L	0.00007	1	EPA 6010B 1996	05/31/2018 4:57	J	JDB
Calcium	132	mg/L	0.48	1:50	EPA 6010B 1996	05/30/2018 20:27		JDB
Chromium	0.00059	mg/L	0.00023	1	EPA 6010B 1996	05/31/2018 4:57	J	JDB
Cobalt	0.00114	mg/L	0.00014	1	EPA 6010B 1996	05/31/2018 4:57	J	JDB
Lead	0.00101	mg/L	0.00068	1	EPA 6010B 1996	05/31/2018 4:57	J	JDB
Lithium	0.01243	mg/L	0.00013	1	EPA 6010B 1996	05/31/2018 4:57		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	05/17/2018 14:20	U	LNM
Molybdenum	0.00133	mg/L	0.00029	1	EPA 6010B 1996	05/31/2018 4:57	J	JDB
Selenium	0.00135	mg/L	0.00099	1	EPA 6010B 1996	05/31/2018 4:57	J	JDB
Thallium	0.00125	mg/L	0.00086	1	EPA 6010B 1996	05/31/2018 4:57	J	JDB

Water ((216020))

water (210020)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	25	mg/L	0.219	1	EPA 300.0	01/17/2018 1:41		GB
Fluoride	0.703	mg/L	0.083	1	EPA 300.0	05/17/2018 1:41	J	GB
Solids, Total Dissolved (TDS)	636	mg/L	2	1	SM 2540 C-2011	05/07/2018 10:00		LBH
Sulfate	126	mg/L	0.140	1:10	EPA 300.0	05/17/2018 2:00		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37591 Company: SEP - Environmental (JP-W) Address: 502 N. Allen Avenue

Date Received: 05/03/2018 Contact: Jill Parker-Witt Shreveport, LA 71101

AEP Sample ID: 216021 Collected Date: 05/02/2018 By: KM
Cust Sample ID: MW-6D Location: Northeastern Power Plant Matrix: Water

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00132	mg/L	0.00093	1	EPA 6010B 1996	05/31/2018 5:02	J	JDB
Arsenic	0.00238	mg/L	0.00105	1	EPA 6010B 1996	05/31/2018 5:02	J	JDB
Barium	0.07224	mg/L	0.00015	1	EPA 6010B 1996	05/31/2018 5:02		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	05/31/2018 5:02	U	JDB
Boron	3.52	mg/L	0.014	1:50	EPA 6010B 1996	05/30/2018 20:32		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	05/31/2018 5:02	U	JDB
Calcium	173	mg/L	0.48	1:50	EPA 6010B 1996	05/30/2018 20:32		JDB
Chromium	0.00151	mg/L	0.00023	1	EPA 6010B 1996	05/31/2018 5:02		JDB
Cobalt	0.00182	mg/L	0.00014	1	EPA 6010B 1996	05/31/2018 5:02	J	JDB
Lead	0.00129	mg/L	0.00068	1	EPA 6010B 1996	05/31/2018 5:02	J	JDB
Lithium	0.01975	mg/L	0.00013	1	EPA 6010B 1996	05/31/2018 5:02		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	05/17/2018 14:23	U	LNM
Molybdenum	0.09145	mg/L	0.00029	1	EPA 6010B 1996	05/31/2018 5:02		JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	05/31/2018 5:02	U	JDB
Thallium	0.00102	mg/L	0.00086	1	EPA 6010B 1996	05/31/2018 5:02	J	JDB

Water (216021)

rate (210021)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	31	mg/L	0.219	1	EPA 300.0	05/17/2018 2:19		GB
Fluoride	0.806	mg/L	0.083	1	EPA 300.0	05/17/2018 2:19	J	GB
Solids, Total Dissolved (TDS)	1062	mg/L	2	1	SM 2540 C-2011	05/07/2018 10:00		LBH
Sulfate	406	mg/L	0.140	1:10	EPA 300.0	05/17/2018 2:38		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37591 Address: 502 N. Allen Avenue Report ID **Date Received:** 05/03/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 216022 Bv: KM **Collected Date:** 05/02/2018 Cust Sample ID: MW-12D Location: Northeastern Power Plant Matrix: Water

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	05/31/2018 5:07	U	JDB
Arsenic	0.00156	mg/L	0.00105	1	EPA 6010B 1996	05/31/2018 5:07	J	JDB
Barium	0.121	mg/L	0.00015	1	EPA 6010B 1996	05/31/2018 5:07		JDB
Beryllium	0.00013	mg/L	0.00002	1	EPA 6010B 1996	05/31/2018 5:07	J	JDB
Boron	8.63	mg/L	0.014	1:50	EPA 6010B 1996	05/30/2018 20:37		JDB
Cadmium	0.0008	mg/L	0.00007	1	EPA 6010B 1996	05/31/2018 5:07	J	JDB
Calcium	184	mg/L	0.48	1:50	EPA 6010B 1996	05/30/2018 20:37		JDB
Chromium	0.00795	mg/L	0.00023	1	EPA 6010B 1996	05/31/2018 5:07		JDB
Cobalt	0.00352	mg/L	0.00014	1	EPA 6010B 1996	05/31/2018 5:07	J	JDB
Lead	0.00703	mg/L	0.00068	1	EPA 6010B 1996	05/31/2018 5:07		JDB
Lithium	0.00841	mg/L	0.00013	1	EPA 6010B 1996	05/31/2018 5:07		JDB
Mercury	0.000013	mg/L	0.000005	1	EPA 7470A 1994	05/17/2018 14:25	J	LNM
Molybdenum	0.693	mg/L	0.00029	1	EPA 6010B 1996	05/31/2018 5:07		JDB
Selenium	0.0045	mg/L	0.00099	1	EPA 6010B 1996	05/31/2018 5:07	J	JDB
Thallium	< 0.00086	mg/L	0.00086	1	EPA 6010B 1996	05/31/2018 5:07	U	JDB

Water (216022)
		_

Water (210022)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	17	mg/L	0.219	1	EPA 300.0	05/17/2018 3:53		GB
Fluoride	2.199	mg/L	0.083	1	EPA 300.0	05/17/2018 3:53		GB
Solids, Total Dissolved (TDS)	1044	mg/L	2	1	SM 2540 C-2011	05/07/2018 10:00		LBH
Sulfate	541	mg/L	0.140	1:10	EPA 300.0	05/17/2018 4:12		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37591 Address: 502 N. Allen Avenue Report ID Contact: Jill Parker-Witt **Date Received:** 05/03/2018

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 216023 Bv: KM **Collected Date:** 05/02/2018 Cust Sample ID: MW-13D Location: Northeastern Power Plant Matrix: Water

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	05/31/2018 5:12	U	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	05/31/2018 5:12	U	JDB
Barium	0.04884	mg/L	0.00015	1	EPA 6010B 1996	05/31/2018 5:12		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	05/31/2018 5:12	U	JDB
Boron	1.08	mg/L	0.00028	1	EPA 6010B 1996	05/31/2018 5:12		JDB
Cadmium	0.00013	mg/L	0.00007	1	EPA 6010B 1996	05/31/2018 5:12	J	JDB
Calcium	172	mg/L	0.48	1:50	EPA 6010B 1996	05/30/2018 20:42		JDB
Chromium	0.0008	mg/L	0.00023	1	EPA 6010B 1996	05/31/2018 5:12	J	JDB
Cobalt	0.00161	mg/L	0.00014	1	EPA 6010B 1996	05/31/2018 5:12	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	05/31/2018 5:12	U	JDB
Lithium	0.02997	mg/L	0.00013	1	EPA 6010B 1996	05/31/2018 5:12		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	05/17/2018 14:28	U	LNM
Molybdenum	0.01238	mg/L	0.00029	1	EPA 6010B 1996	05/31/2018 5:12		JDB
Selenium	0.01193	mg/L	0.00099	1	EPA 6010B 1996	05/31/2018 5:12		JDB
Thallium	< 0.00086	mg/L	0.00086	1	EPA 6010B 1996	05/31/2018 5:12	U	JDB

Water (216023)
		_

Water (210025)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	5	mg/L	0.219	1	EPA 300.0	05/17/2018 5:08		GB
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	05/17/2018 5:08	U	GB
Solids, Total Dissolved (TDS)	1064	mg/L	2	1	SM 2540 C-2011	05/08/2018 14:00		JTD
Sulfate	354	mg/L	0.140	1:10	EPA 300.0	05/17/2018 5:27		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37591 Address: 502 N. Allen Avenue Report ID Contact: Jill Parker-Witt **Date Received:** 05/03/2018

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 216024 Bv: KM **Collected Date:** 05/02/2018 Cust Sample ID: DUP Matrix: Water **Location:** Northeastern Power Plant

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (216024)

Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	05/31/2018 5:18	U	JDB
0.00111	mg/L	0.00105	1	EPA 6010B 1996	05/31/2018 5:18	J	JDB
0.109	mg/L	0.00015	1	EPA 6010B 1996	05/31/2018 5:18		JDB
< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	05/31/2018 5:18	U	JDB
1.01	mg/L	0.00028	1	EPA 6010B 1996	05/31/2018 5:18		JDB
0.0001	mg/L	0.00007	1	EPA 6010B 1996	05/31/2018 5:18	J	JDB
124	mg/L	0.48	1:50	EPA 6010B 1996	05/30/2018 20:57		JDB
0.0007	mg/L	0.00023	1	EPA 6010B 1996	05/31/2018 5:18	J	JDB
0.00127	mg/L	0.00014	1	EPA 6010B 1996	05/31/2018 5:18	J	JDB
0.0008	mg/L	0.00068	1	EPA 6010B 1996	05/31/2018 5:18	J	JDB
0.01516	mg/L	0.00013	1	EPA 6010B 1996	05/31/2018 5:18		JDB
< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	05/17/2018 14:31	U	LNM
0.00259	mg/L	0.00029	1	EPA 6010B 1996	05/31/2018 5:18	J	JDB
< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	05/31/2018 5:18	U	JDB
< 0.00086	mg/L	0.00086	1	EPA 6010B 1996	05/31/2018 5:18	U	JDB
	<0.00093 0.00111 0.109 <0.00002 1.01 0.0001 124 0.0007 0.00127 0.0008 0.01516 <0.000005 0.00259 <0.00099	< 0.00093	< 0.00093	< 0.00093	< 0.00093	< 0.00093 mg/L 0.00093 1 EPA 6010B 1996 05/31/2018 5:18 0.00111 mg/L 0.00105 1 EPA 6010B 1996 05/31/2018 5:18 0.109 mg/L 0.00015 1 EPA 6010B 1996 05/31/2018 5:18 < 0.00002	< 0.00093 mg/L 0.00093 1 EPA 6010B 1996 05/31/2018 5:18 U 0.00111 mg/L 0.00105 1 EPA 6010B 1996 05/31/2018 5:18 J 0.109 mg/L 0.00015 1 EPA 6010B 1996 05/31/2018 5:18 U < 0.00002

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	12	mg/L	0.219	1	EPA 300.0	05/17/2018 6:24		GB
Fluoride	0.783	mg/L	0.083	1	EPA 300.0	05/17/2018 6:24	J	GB
Solids, Total Dissolved (TDS)	728	mg/L	2	1	SM 2540 C-2011	05/08/2018 14:00		JTD
Sulfate	214	mg/L	0.140	1:10	EPA 300.0	05/17/2018 7:58		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 37591 Address: 502 N. Allen Avenue **Date Received:** 05/03/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 216025 Bv: KM **Collected Date:** 05/02/2018 Cust Sample ID: Equipment Blank **Location:** Northeastern Power Plant Matrix: Water

Metals (216025)			T	T=				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00419	mg/L	0.00093	1	EPA 6010B 1996	05/31/2018 5:33	J	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	05/31/2018 5:33	U	JDB
Barium	< 0.00015	mg/L	0.00015	1	EPA 6010B 1996	05/31/2018 5:33	U	JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	05/31/2018 5:33	U	JDB
Boron	0.05525	mg/L	0.00028	1	EPA 6010B 1996	05/31/2018 5:33		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	05/31/2018 5:33	U	JDB
Calcium	< 0.0096	mg/L	0.0096	1	EPA 6010B 1996	05/31/2018 5:33	U	JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	05/31/2018 5:33	U	JDB
Cobalt	< 0.00014	mg/L	0.00014	1	EPA 6010B 1996	05/31/2018 5:33	U	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	05/31/2018 5:33	U	JDB
Lithium	< 0.00013	mg/L	0.00013	1	EPA 6010B 1996	05/31/2018 5:33	U	JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	05/17/2018 14:34	U	LNM
Molybdenum	0.00055	mg/L	0.00029	1	EPA 6010B 1996	05/31/2018 5:33	J	JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	05/31/2018 5:33	U	JDB
Thallium	< 0.00086	mg/L	0.00086	1	EPA 6010B 1996	05/31/2018 5:33	U	JDB

Date Received: 05/03/2018

AEP ANALYTICAL CHEMISTRY SERVICES Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37591 Company: SEP - Environmental (JP-W)

Contact: Jill Parker-Witt

Address: 502 N. Allen Avenue Shreveport, LA 71101

Quality Control Data

* Quality control units are the same as reported analytical results

			Blank		Standard	<u> </u>		Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
5/31/2018	Antimony	216019.2	0.005019	0.8	0.8273685	103.4	0.8	0.8112554	101.4		0.2	JDB
5/31/2018	Antimony	216009.1	0.004033	0.8	0.8267759	103.3	0.8	0.7874176	98.4		0.1	JDB
5/31/2018	Antimony	215157.1	0.004033	0.8	0.8267759	103.3	0.8	0.8258387	103.2		0.4	JDB
5/31/2018	Arsenic	216019.2	<0.00105	0.8	0.8200254	102.5	0.8	0.8072418	100.9		0.2	JDB
5/31/2018	Arsenic	216009.1	0.001417	8.0	0.8260430	103.3	0.8	0.7852755	98.2		0.6	JDB
5/31/2018	Arsenic	215157.1	0.001417	8.0	0.8260430	103.3	0.8	0.8173489	102.2		0.9	JDB
5/31/2018	Barium	215157.1	<0.00015	0.2	0.2125247	106.3	0.2	0.2033549	101.7		0.6	JDB
5/31/2018	Barium	216019.2	<0.00015	0.2	0.2102812	105.1	0.2	0.1997377	99.9		0.1	JDB
5/31/2018	Barium	216009.1	<0.00015	0.2	0.2125247	106.3	0.2	0.1943424	97.2		1.6	JDB
5/31/2018	Beryllium	216019.2	<0.00002	0.2	0.2060517	103.0	0.2	0.2050819	102.5		0.5	JDB
5/31/2018	Beryllium	216009.1	<0.00002	0.2	0.2085850	104.3	0.2	0.2006993	100.3		0.3	JDB
5/31/2018	Beryllium	215157.1	<0.00002	0.2	0.2085850	104.3	0.2	0.2067083	103.4		0.2	JDB
5/30/2018	Boron	215129.1	0.005183	0.3	0.30363	101.2	0.3	0.3087853	102.9		0.3	JDB
5/31/2018	Boron	216019.2	0.044382	0.3	0.2990235	99.7	15	18.631447	124.2		3.9	JDB
5/31/2018	Cadmium	216019.2	<0.00007	0.2	0.2046035	102.3	0.2	0.1975905	98.8		0.3	JDB
5/31/2018	Cadmium	216009.1	<0.00007	0.2	0.2059064	103.0	0.2	0.1951314	97.6		0.4	JDB
5/31/2018	Cadmium	215157.1	<0.00007	0.2	0.2059064	103.0	0.2	0.2041354	102.1		0.5	JDB
5/30/2018	Calcium	216019.2	<0.48	1	1.0248191	102.5	50	59.200167	118.4		0.2	JDB
5/30/2018	Calcium	215129.1	0.052046	1	0.96387	96.4	1	0.93694	93.7		1.3	JDB
5/16/2018	Chloride			20	18.1	90.5						GB
5/16/2018	Chloride	216024	<0.219	20	18.3	91.5	50	66	132.0		0.0	GB
5/16/2018	Chloride		<0.219									GB
5/17/2018	Chloride		<0.219									GB
5/17/2018	Chloride	216024	<0.219	20	18.3	91.5	50	66	132.0		0.0	GB
5/17/2018	Chloride			20	18.1	90.5						GB
5/31/2018	Chromium	216019.2	<0.00023	0.4	0.4052233	101.3	0.4	0.4002418	100.1		0.6	JDB
5/31/2018	Chromium	216009.1	<0.00023	0.4	0.4088557	102.2	0.4	0.3885853	97.1		0.2	JDB
5/31/2018	Chromium	215157.1	<0.00023	0.4	0.4088557	102.2	0.4	0.4045946	101.1		0.1	JDB
5/31/2018	Cobalt	215157.1	<0.00014	0.2	0.2044290	102.2	0.2	0.2020274	101.0		0.0	JDB
5/31/2018	Cobalt	216009.1	<0.00014	0.2	0.2044290	102.2	0.2	0.192514	96.3		0.4	JDB
5/31/2018	Cobalt	216019.2	<0.00014	0.2	0.202216	101.1	0.2	0.198529	99.3		0.9	JDB
5/16/2018	Fluoride	216024	<0.083	10	11	110.0	20	25.92	129.6		0.0	GB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 10 of 11

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37591 Address: 502 N. Allen Avenue Report ID Contact: Jill Parker-Witt Date Received: 05/03/2018 Shrevenort LA 71101

Date Re	eceivea: 05/03/2018	om rank	01 11111			Si	Shreveport, LA 71101					
		Phone:	(318) 67	73-3816				Fax: (3)	18) 673-39	960		
5/16/2018	Fluoride		<0.083									GB
5/16/2018	Fluoride			10	11	110.0						GB
5/17/2018	Fluoride			10	11	110.0						GB
5/17/2018	Fluoride		<0.083									GB
5/17/2018	Fluoride	216024	<0.083	10	11	110.0	20	25.92	129.6		0.0	GB
5/31/2018	Lead	216009.1	<0.00068	1	1.0164545	101.6	1	0.9594413	95.9		0.3	JDB
5/31/2018	Lead	215157.1	<0.00068	1	1.0164545	101.6	1	1.0046001	100.5		0.2	JDB
5/31/2018	Lead	216019.2	<0.00068	1	1.0087892	100.9	1	0.9835240	98.4		0.3	JDB
5/31/2018	Lithium	216019.2	<0.00013	0.2	0.2062583	103.1	0.2	0.215069	107.5		0.4	JDB
5/31/2018	Lithium	216009.1	<0.00013	0.2	0.2059778	103.0	0.2	0.2166713	108.3		0.5	JDB
5/31/2018	Lithium	215157.1	<0.00013	0.2	0.2059778	103.0	0.2	0.2089146	104.5		0.3	JDB
5/17/2018	Mercury	216018.2	<0.00000	0.001	0.0008679	86.8	0.001	0.0009932	99.3		4.5	LNM
5/17/2018	Mercury	216008.1	<0.00000	0.001	0.00099	99.0	0.001	0.0009596	96.0		2.6	LNM
5/31/2018	Molybdenum	216019.2	0.000525	0.2	0.2015659	100.8	0.2	0.2012397	100.6		0.1	JDB
5/31/2018	Molybdenum	215157.1	0.000361	0.2	0.2031598	101.6	0.2	0.2014463	100.7		0.2	JDB
5/31/2018	Molybdenum	216009.1	0.000361	0.2	0.2031598	101.6	0.2	0.195156	97.6		0.3	JDB
5/31/2018	Selenium	216009.1	0.001072	2	2.0125011	100.6	2	1.9585120	97.9		0.3	JDB
5/31/2018	Selenium	215157.1	0.001072	2	2.0125011	100.6	2	2.0058802	100.3		0.8	JDB
5/31/2018	Selenium	216019.2	0.001851	2	2.0135684	100.7	2	1.9745820	98.7		0.2	JDB
5/7/2018	Solids, Total Dissolved (TDS)	216021	<2	101.67	106	104.3	2214	2178	98.4		1.7	LBH
5/8/2018	Solids, Total Dissolved (TDS)	216023	<2	101.67	106	104.3	2140	2124	99.3		8.0	JTD
5/17/2018	Sulfate		<0.140									GB
5/17/2018	Sulfate	216024	<0.140	20	18	90.0	50	46	92.0		8.4	GB
5/17/2018	Sulfate			20	18	90.0						GB
5/31/2018	Thallium	215157.1	0.001182	0.4	0.4102024	102.6	0.4	0.4039268	101.0		0.7	JDB
5/31/2018	Thallium	216019.2	0.000868	0.4	0.4064212	101.6	0.4	0.3913926	97.8		0.1	JDB
5/31/2018	Thallium	216009.1	0.001182	0.4	0.4102024	102.6	0.4	0.3745872	93.6		0.2	JDB

Code Code Description

- Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL). J
- U Analyte concentration below MDL.

12-Jul-18 Report Date

Page 11 of 11

Sampler(s): Kenneth McDonald Relinquished by: Special Instructions/QC Requirements & Comments: Preservation Used: 1= ke, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Contact Phone: Contact Name: Project Name: Northeastern PP CCR Relinquished by: Relinquished by: Six 1L Bottles must be collected for Radium for every 10th sample. Contacts: Shreveport, LA 71101 Sample Identification Jonathan Barnhill (318-673-3803) EQUIPMENT BLANK John Davis (318-673-3811) Jill Parker-Witt 318-673-3816 MW-12D MW-13D MW-6D MW-5D MW-4D MW-3D MW-2D Company: Company PACIF Company: Sample Date Analysis Turnaround Time (in Calendar Days) 5/2/2018 5/2/2018 5/2/2018 5/2/2018 5/2/2018 5/2/2018 5/2/2018 5/2/2018 5/2/2018 Routine (28 days for Monitoring Wells) Sample Time 1130 1105 1140 1010 1035 1215 920 940 940 (C=Comp, G=Grab) Sample G G G G G G G G G Program: Coal Combustion Residuals (CCR) Date/Time: 05/03/18 Date/Time Matrix Date/Time: G₩ ВW GW GW GW GW GW GW ≶ F= filter in field # of Cont. _ N N N N N N N N 323 Site Contact: Sampler(s) Initials Received by: Received by: Received in Laboratory by: B, Ca, Sb, As, Ba, Be, 500 mL pH<2, Cd, Cr, Co, Pb, Li, Hg, Mo, Se, TL 4 \times × × × × × × × × bottle, then pH<2, HNO3 Field-filter 500 mL 7 dissolved Fe and Mn bottle Cool, 0-6C TDS, F, CI, SO4 × \times \times \times \times \times \times \times (six every 10th*) L bottles, pH<2, HNO3 Three Ra-226, Ra-228 4 Date: 216022.1-216022.2 Date/Time: Date/Time: 21/025 216024.1-216024.2 216023.1-216023.2 2/6021.1-2/6021.2 216026.1- 216020- 2 216019.1- 216019.2 COC/Order #: Date/Time: 21608-1-216018-2 216017.1-216017. Sample Specific Notes: 754.18 For Lab Use Only: N

Shreveport Chemical Laboratory (SCL)

Chain of Custody Record

502 N. Allen Ave.

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shrayeport, Rev. 1, 1/10/17

502 N. Allen Ave. **Shreveport**, LA 71101

Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type		De	elivery Type	2	
Ice Chest Bag Action Pak PCB Mailer Bottle	UPS	FEDEX	US Mail	Walk in	Shuttle
Other	Othe			-	1
	Tracking #				
Client Jill Parker		Sa	mple Matri	x	
Received By 370	DGA	PCB Oil	Water	Oil	Soil
Received Date \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-		222		
Open Date	Solid	Liquid	Other -		
Container Temp Read 2 Thermometer Serial #F04103	_	Project I.D.	375	9/	-,
Correction Factor +).2	Were sa	imples received	I on ice?	YES	NO
Corrected Temp 3.2	_				
Did container arrive in good condition?	YES	NO		-	
Was sample documentation received?	YES	NO			A Print
Was documentation filled out properly?	YES	NO	TANTA III A	100	
Were samples labeled properly?	ES	NO	×-0×1		
Were correct containers used?	YES	NO			
Were the pH's of samples appropriately checked?	(YES)	NO			
Total number of sample containers	_	-			7.2
Was any corrective action taken?	NO	Person Cont	-		
Comments		Date & Hills			
	0			1.5	

Sample ID	Analysis	рН	Preservative Added / Lot #
MW-SD	Metals	12	
MW-3D	1		
MW-4D			
Mw-SD			
MW-60			
MW-15D			
MW-13D			/
Oup			
Egup Blank	J		
V \		a	
		-	
		2	
	<u> </u>		

			J

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 37763 Address: 502 N. Allen Avenue Contact: Jill Parker-Witt **Date Received:** 06/01/2018

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 216844 Bv: KM **Collected Date:** 05/30/2018 Cust Sample ID: MW-1D **Location:** Northeastern Power Plant Matrix: Water

Metals (216844)			1					1
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00457	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 8:08	J	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 8:08	U	JDB
Barium	0.0181	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 8:08		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 8:08	U	JDB
Boron	1.2	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 8:08		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 8:08	U	JDB
Calcium	135	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 22:11		JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 8:08	U	JDB
Cobalt	0.00036	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 8:08	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 8:08	U	JDB
Lithium	0.05481	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 8:08		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 11:19	U	LNM
Molybdenum	0.01073	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 8:08		JDB
Selenium	0.00311	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 8:08	J	JDB
Thallium	0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 22:11		JDB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 37763 Address: 502 N. Allen Avenue **Date Received:** 06/01/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 216845 **Collected Date:** 05/30/2018 Cust Sample ID: MW-2D **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Matala (24C04E)

Metals (216845)		1114	Det Linet	D'1 /O	B.B (1)1	Associate Data Fina	0-1	T 1
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00195	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 8:13	J	JDB
Arsenic	0.03461	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 8:13		JDB
Barium	0.02917	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 8:13		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 8:13	U	JDB
Boron	10.1	mg/L	0.014	1:50	EPA 6010B 1996	07/10/2018 22:27		JDB
Cadmium	0.00044	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 8:13	J	JDB
Calcium	19.2	mg/L	0.0096	1	EPA 6010B 1996	07/11/2018 8:13		JDB
Chromium	0.0014	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 8:13		JDB
Cobalt	0.0003	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 8:13	J	JDB
Lead	0.00128	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 8:13	J	JDB
Lithium	0.00125	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 8:13		JDB
Mercury	0.00004	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 11:22		LNM
Molybdenum	0.552	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 8:13		JDB
Selenium	0.07231	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 8:13		JDB
Thallium	0.002	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 22:27		JDB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37763 Address: 502 N. Allen Avenue Report ID **Date Received:** 06/01/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 216846 **Collected Date:** 05/30/2018 Matrix: Water Cust Sample ID: MW-3D **Location:** Northeastern Power Plant

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 8:23	U	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 8:23	U	JDB
Barium	0.281	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 8:23		JDB
Beryllium	0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 8:23	J	JDB
Boron	0.952	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 8:23		JDB
Cadmium	0.00023	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 8:23	J	JDB
Calcium	129	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 22:33		JDB
Chromium	0.00264	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 8:23		JDB
Cobalt	0.00102	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 8:23	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 8:23	U	JDB
Lithium	0.01673	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 8:23		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 11:25	U	LNM
Molybdenum	0.00255	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 8:23	J	JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 8:23	U	JDB
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 22:33	U	JDB

Water ((216846)	

Water (210040)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	13	mg/L	0.219	1	EPA 300.0	06/06/2018 10:43		GB
Fluoride	0.896	mg/L	0.083	1	EPA 300.0	06/06/2018 10:43	J	GB
Solids, Total Dissolved (TDS)	724	mg/L	2	1	SM 2540 C-2011	06/06/2018 9:00		LBH
Sulfate	214	mg/L	0.140	1:10	EPA 300.0	06/06/2018 12:18		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37763 Company: SEP - Environmental (JP-W) Address: 502 N. Allen Avenue

Date Received: 06/01/2018 Contact: Jill Parker-Witt Shreveport, LA 71101

AEP Sample ID: 216847 Collected Date: 05/30/2018 By: KM
Cust Sample ID: MW-4D Location: Northeastern Power Plant Matrix: Water

Meta	ما	121	60	17
weta	IS (ľZI	004	+/

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 8:28	U	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 8:28	U	JDB
Barium	0.173	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 8:28		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 8:28	U	JDB
Boron	1.27	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 8:28		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 8:28	U	JDB
Calcium	164	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 22:38		JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 8:28	U	JDB
Cobalt	0.00128	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 8:28	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 8:28	U	JDB
Lithium	0.0033	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 8:28		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 11:27	U	LNM
Molybdenum	0.00491	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 8:28	J	JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 8:28	U	JDB
Thallium	0.00294	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 8:28		JDB

Water ((216847)	١

Water (210047)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	20	mg/L	0.219	1	EPA 300.0	06/06/2018 13:33		GB
Fluoride	0.4188	mg/L	0.083	1	EPA 300.0	06/06/2018 13:33	J	GB
Solids, Total Dissolved (TDS)	910	mg/L	2	1	SM 2540 C-2011	06/06/2018 9:00		LBH
Sulfate	279	mg/L	0.140	1:10	EPA 300.0	06/06/2018 13:52		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37763 Address: 502 N. Allen Avenue Report ID Contact: Jill Parker-Witt **Date Received:** 06/01/2018

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 216848 **Collected Date:** 05/30/2018 Matrix: Water Cust Sample ID: MW-5D **Location:** Northeastern Power Plant

М	tals	121	E Q	1 Q N
IVIC	Lais	121	uo	401

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 8:34	U	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 8:34	U	JDB
Barium	0.139	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 8:34		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 8:34	U	JDB
Boron	0.468	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 8:34		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 8:34	U	JDB
Calcium	136	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 22:43		JDB
Chromium	0.00153	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 8:34		JDB
Cobalt	0.00131	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 8:34	J	JDB
Lead	0.00109	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 8:34	J	JDB
Lithium	0.01199	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 8:34		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 11:36	U	LNM
Molybdenum	< 0.00029	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 8:34	U	JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 8:34	U	JDB
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 22:43	U	JDB

Water ((216848))

Water (210040)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	24	mg/L	0.219	1	EPA 300.0	06/06/2018 14:11		GB
Fluoride	0.711	mg/L	0.083	1	EPA 300.0	06/06/2018 14:11	J	GB
Solids, Total Dissolved (TDS)	628	mg/L	2	1	SM 2540 C-2011	06/06/2018 9:00		LBH
Sulfate	113	mg/L	0.140	1:10	EPA 300.0	06/06/2018 14:29		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37763 Address: 502 N. Allen Avenue Report ID **Date Received:** 06/01/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 216849 Bv: KM **Collected Date:** 05/30/2018 Location: Northeastern Power Plant Matrix: Water Cust Sample ID: MW-6D

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 8:39	U	JDB
Arsenic	0.00127	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 8:39	J	JDB
Barium	0.148	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 8:39		JDB
Beryllium	0.00029	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 8:39	J	JDB
Boron	3.35	mg/L	0.014	1:50	EPA 6010B 1996	07/10/2018 22:49		JDB
Cadmium	0.00057	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 8:39	J	JDB
Calcium	269	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 22:49	M4	JDB
Chromium	0.01265	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 8:39		JDB
Cobalt	0.00449	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 8:39	J	JDB
Lead	0.00644	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 8:39		JDB
Lithium	0.02463	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 8:39		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 11:52	U	LNM
Molybdenum	0.07477	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 8:39		JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 8:39	U	JDB
Thallium	0.024	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 22:49		JDB

Water ((216849))
		_

water (2100 1 3)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	32	mg/L	0.219	1	EPA 300.0	06/06/2018 14:48		GB
Fluoride	0.9218	mg/L	0.083	1	EPA 300.0	06/06/2018 11:48	J	GB
Solids, Total Dissolved (TDS)	1090	mg/L	2	1	SM 2540 C-2011	06/06/2018 9:00		LBH
Sulfate	401	mg/L	0.140	1:10	EPA 300.0	06/06/2018 15:07		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37763 Address: 502 N. Allen Avenue Report ID Contact: Jill Parker-Witt **Date Received:** 06/01/2018 Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

AEP Sample ID: 216850 Bv: KM **Collected Date:** 05/30/2018 Cust Sample ID: MW-7D Location: Northeastern Power Plant Matrix: Water

Metals (216850)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.0041	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 9:17	J	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 9:17	U	JDB
Barium	0.03081	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 9:17		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 9:17	U	JDB
Boron	0.84	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 9:17		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 9:17	U	JDB
Calcium	207	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 22:54		JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 9:17	U	JDB
Cobalt	0.00056	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 9:17	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 9:17	U	JDB
Lithium	0.173	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 9:17		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 11:55	U	LNM
Molybdenum	0.01325	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 9:17		JDB
Selenium	0.00226	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 9:17	J	JDB
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 22:54	U	JDB

Water ((216850))

Match (210000)									
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes Tech		
Chloride	511	mg/L	0.219	1:10	EPA 300.0	06/06/2018 15:45	GB		
Fluoride	3.456	mg/L	0.083	1	EPA 300.0	06/06/2018 15:26	GB		
Solids, Total Dissolved (TDS)	5912	mg/L	2	1	SM 2540 C-2011	06/06/2018 9:00	LBH		
Sulfate	2973	mg/L	0.140	1:100	EPA 300.0	06/25/2018 14:52	GB		

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 37763 Address: 502 N. Allen Avenue Contact: Jill Parker-Witt **Date Received:** 06/01/2018

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 216851 Bv: KM **Collected Date:** 05/30/2018 Matrix: Water Cust Sample ID: MW-8D **Location:** Northeastern Power Plant

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00283	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 9:22	J	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 9:22	U	JDB
Barium	4.11	mg/L	0.0075	1:50	EPA 6010B 1996	07/10/2018 22:59		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 9:22	U	JDB
Boron	1.31	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 9:22		JDB
Cadmium	0.00105	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 9:22		JDB
Calcium	353	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 22:59		JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 9:22	U	JDB
Cobalt	0.00206	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 9:22	J	JDB
Lead	0.00087	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 9:22	J	JDB
Lithium	1.09	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 9:22		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 11:57	U	LNM
Molybdenum	0.00032	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 9:22	J	JDB
Selenium	0.00196	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 9:22	J	JDB
Thallium	0.025	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 22:59		JDB

Water ((216851)

Water (210001)									
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes Tech		
Chloride	11942	mg/L	0.219	1:100	EPA 300.0	06/06/2018 17:38	GB		
Fluoride	3.314	mg/L	0.083	1:10	EPA 300.0	06/06/2018 17:19	GB		
Solids, Total Dissolved (TDS)	384	mg/L	2	1	SM 2540 C-2011	06/06/2018 9:00	LBH		
Sulfate	47	mg/L	0.140	1	EPA 300.0	06/06/2018 16:04	GB		

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 37763 Address: 502 N. Allen Avenue **Date Received:** 06/01/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM **AEP Sample ID** : 216852 **Collected Date:** 05/30/2018 Cust Sample ID: MW-10D **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Motale (216952)

Metals (216852)										
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech		
Antimony	0.00247	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 9:27	J	JDB		
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 9:27	U	JDB		
Barium	0.102	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 9:27		JDB		
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 9:27	U	JDB		
Boron	1.15	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 9:27		JDB		
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 9:27	U	JDB		
Calcium	54.9	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 23:05		JDB		
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 9:27	U	JDB		
Cobalt	0.00061	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 9:27	J	JDB		
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 9:27	U	JDB		
Lithium	0.451	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 9:27		JDB		
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 12:00	U	LNM		
Molybdenum	0.01972	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 9:27		JDB		
Selenium	0.00702	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 9:27		JDB		
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 23:05	U	JDB		

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 37763 Address: 502 N. Allen Avenue Contact: Jill Parker-Witt **Date Received:** 06/01/2018

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 216853 **Collected Date:** 05/30/2018 Cust Sample ID: MW-11D **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Matala (24C0E2)

Metals (216853)									
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech	
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 9:44	U	JDB	
Arsenic	0.00177	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 9:44	J	JDB	
Barium	0.05576	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 9:44		JDB	
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 9:44	U	JDB	
Boron	0.641	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 9:44		JDB	
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 9:44	U	JDB	
Calcium	114	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 23:10		JDB	
Chromium	0.0021	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 9:44		JDB	
Cobalt	0.00043	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 9:44	J	JDB	
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 9:44	U	JDB	
Lithium	0.03979	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 9:44		JDB	
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 12:08	U	LNM	
Molybdenum	0.01214	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 9:44		JDB	
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 9:44	U	JDB	
Thallium	0.0018	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 9:44	J	JDB	

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37763 Address: 502 N. Allen Avenue Report ID **Date Received:** 06/01/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 216854 Bv: KM **Collected Date:** 05/30/2018 Location: Northeastern Power Plant Matrix: Water Cust Sample ID: MW-12D

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 9:49	U	JDB
Arsenic	0.00124	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 9:49	J	JDB
Barium	0.07775	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 9:49		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 9:49	U	JDB
Boron	8.35	mg/L	0.014	1:50	EPA 6010B 1996	07/10/2018 23:16		JDB
Cadmium	0.00025	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 9:49	J	JDB
Calcium	89.9	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 23:16		JDB
Chromium	0.00274	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 9:49		JDB
Cobalt	0.00149	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 9:49	J	JDB
Lead	0.00304	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 9:49	J	JDB
Lithium	0.00608	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 9:49		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 12:11	U	LNM
Molybdenum	0.667	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 9:49		JDB
Selenium	0.00388	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 9:49	J	JDB
Thallium	0.0022	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 9:49		JDB

Water ((216854))

mater (£1000-7)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	91	mg/L	0.219	1	EPA 300.0	06/06/2018 17:57		GB
Fluoride	2.379	mg/L	0.083	1	EPA 300.0	06/06/2018 17:57		GB
Solids, Total Dissolved (TDS)	1088	mg/L	2	1	SM 2540 C-2011	06/06/2018 9:00		LBH
Sulfate	542	mg/L	0.140	1:10	EPA 300.0	06/06/2018 18:34		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37763 Address: 502 N. Allen Avenue Report ID **Date Received:** 06/01/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 216855 Bv: KM **Collected Date:** 05/30/2018 Cust Sample ID: MW-13D Location: Northeastern Power Plant Matrix: Water

Metals	s (21	6855)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 9:55	U	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 9:55	U	JDB
Barium	0.07607	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 9:55		JDB
Beryllium	0.00003	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 9:55	J	JDB
Boron	0.864	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 9:55		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 9:55	U	JDB
Calcium	171	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 23:32		JDB
Chromium	0.00148	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 9:55		JDB
Cobalt	0.00437	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 9:55	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 9:55	U	JDB
Lithium	0.03287	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 9:55		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 12:14	U	LNM
Molybdenum	0.01307	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 9:55		JDB
Selenium	0.01196	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 9:55		JDB
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 23:32	U	JDB

Water ((216855))

Water (210033)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	6	mg/L	0.219	1	EPA 300.0	06/06/2018 19:12		GB
Fluoride	0.4361	mg/L	0.083	1	EPA 300.0	06/06/2018 19:12	J	GB
Solids, Total Dissolved (TDS)	1068	mg/L	2	1	SM 2540 C-2011	06/06/2018 9:00		LBH
Sulfate	343	mg/L	0.140	1:10	EPA 300.0	06/06/2018 19:49		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 37763 Address: 502 N. Allen Avenue **Date Received:** 06/01/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 216856 **Collected Date:** 05/30/2018 Cust Sample ID: MW-14 **Location:** Northeastern Power Plant Matrix: Water

Metals (216856)	ı		T					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 10:00	J	JDB
Arsenic	0.00115	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 10:00	J	JDB
Barium	0.157	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 10:00		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 10:00	U	JDB
Boron	1.47	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 10:00		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 10:00	U	JDB
Calcium	77.1	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 23:37		JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 10:00	U	JDB
Cobalt	0.00329	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 10:00	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 10:00	U	JDB
Lithium	0.361	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 10:00		JDB
Mercury	0.000009	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 12:16	J	LNM
Molybdenum	0.02067	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 10:00		JDB
Selenium	0.00551	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 10:00		JDB
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 23:37	U	JDB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37763 Address: 502 N. Allen Avenue Report ID Contact: Jill Parker-Witt **Date Received:** 06/01/2018

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 216857 Bv: KM **Collected Date:** 05/30/2018 Cust Sample ID: MW-15 Location: Northeastern Power Plant Matrix: Water

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 10:05	U	JDB
Arsenic	0.0039	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 10:05	J	JDB
Barium	0.256	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 10:05		JDB
Beryllium	0.00125	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 10:05		JDB
Boron	8.76	mg/L	0.014	1:50	EPA 6010B 1996	07/10/2018 23:42		JDB
Cadmium	0.00038	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 10:05	J	JDB
Calcium	105	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 23:42		JDB
Chromium	0.00661	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 10:05		JDB
Cobalt	0.00261	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 10:05	J	JDB
Lead	0.00518	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 10:05		JDB
Lithium	0.01161	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 10:05		JDB
Mercury	0.000024	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 12:25	J	LNM
Molybdenum	0.551	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 10:05		JDB
Selenium	0.00537	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 10:05		JDB
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 23:42	U	JDB

Water	(216857))

Water (210001)									
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes Tech		
Chloride	33	mg/L	0.219	1	EPA 300.0	06/06/2018 20:27	GB		
Fluoride	2.331	mg/L	0.083	1	EPA 300.0	06/06/2018 20:27	GB		
Solids, Total Dissolved (TDS)	1128	mg/L	2	1	SM 2540 C-2011	06/06/2018 9:00	LBH		
Sulfate	549	mg/L	0.140	1:10	EPA 300.0	06/06/2018 21:05	GB		

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37763 Address: 502 N. Allen Avenue Report ID **Date Received:** 06/01/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 216858 **Collected Date:** 05/30/2018 Cust Sample ID: MW-17 **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Motale (216959)

Metals (216858)			Т					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00161	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 10:21	J	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 10:21	U	JDB
Barium	0.04012	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 10:21		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 10:21	U	JDB
Boron	0.702	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 10:21		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 10:21	U	JDB
Calcium	191	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 23:48		JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 10:21	U	JDB
Cobalt	0.00031	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 10:21	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 10:21	U	JDB
Lithium	0.01139	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 10:21		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 12:33	U	LNM
Molybdenum	0.00838	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 10:21		JDB
Selenium	0.0267	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 10:21		JDB
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 23:48	U	JDB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37763 Address: 502 N. Allen Avenue Report ID Contact: Jill Parker-Witt **Date Received:** 06/01/2018

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 216859 Bv: KM **Collected Date:** 05/30/2018 Location: Northeastern Power Plant Matrix: Water Cust Sample ID: Duplicate Landfill

_	_	_	_				
Q'	٠5	R	ĸ	121	18	etal	М
	1	n	n		-	ета	IVI

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 10:27	U	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 10:27	U	JDB
Barium	0.178	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 10:27		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 10:27	U	JDB
Boron	1.26	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 10:27		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 10:27	U	JDB
Calcium	161	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 23:53	M4	JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 10:27	U	JDB
Cobalt	0.0011	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 10:27	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 10:27	U	JDB
Lithium	0.00334	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 10:27		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 12:49	U	LNM
Molybdenum	0.00483	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 10:27	J	JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 10:27	U	JDB
Thallium	0.00289	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 10:27		JDB

Water (216859)

Water (210033)				1				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	21	mg/L	0.219	1	EPA 300.0	06/06/2018 21:42	M6	GB
Fluoride	0.411	mg/L	0.083	1	EPA 300.0	06/06/2018 21:42	J	GB
Solids, Total Dissolved (TDS)	916	mg/L	2	1	SM 2540 C-2011	06/06/2018 9:00		LBH
Sulfate	292	mg/L	0.140	1:10	EPA 300.0	06/25/2018 15:30		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 37763 Address: 502 N. Allen Avenue Contact: Jill Parker-Witt **Date Received:** 06/01/2018

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 216860 **Collected Date:** 05/30/2018 Cust Sample ID: Equipment Blank Landfill Location: Northeastern Power Plant Matrix: Water

Metals (216860)			1					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00115	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 10:54	J	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 10:54	U	JDB
Barium	< 0.00015	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 10:54	U	JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 10:54	U	JDB
Boron	0.05404	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 10:54		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 10:54	U	JDB
Calcium	0.0106	mg/L	0.0096	1	EPA 6010B 1996	07/11/2018 10:54		JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 10:54	U	JDB
Cobalt	< 0.00014	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 10:54	U	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 10:54	U	JDB
Lithium	< 0.00013	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 10:54	U	JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 12:52	U	LNM
Molybdenum	< 0.00029	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 10:54	U	JDB
Selenium	0.00193	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 10:54	J	JDB
Thallium	< 0.00086	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 10:54	U	JDB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37763 **Date Received**: 06/01/2018

Company: SEP - Environmental (JP-W)

Contact: Jill Parker-Witt

Address: 502 N. Allen Avenue Shreveport, LA 71101

Quality Control Data

* Quality control units are the same as reported analytical results

			Blank		Standard			Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
7/11/2018	Antimony	216829.1	0.002111	0.8	0.7743853	96.8	0.8	0.7694967	96.2		1.8	JDB
7/11/2018	Antimony	216607.1	0.011666	0.8	0.80691	100.9	0.8	0.770316	96.3		1.2	JDB
7/11/2018	Antimony	216839.1	<0.00093	0.8	0.7840294	98.0	0.8	0.7474474	93.4		0.5	JDB
7/11/2018	Antimony	216849.1	<0.00093	0.8	0.7840294	98.0	0.8	0.7162960	89.5		1.2	JDB
7/11/2018	Antimony	216859.1	<0.00093	8.0	0.7863861	98.3	0.8	0.7762676	97.0		0.2	JDB
7/11/2018	Antimony	217438.1	<0.00093	8.0	0.7863861	98.3	0.8	0.7518081	94.0		1.2	JDB
7/11/2018	Antimony	217448.1	<0.00093	8.0	0.7833788	97.9	0.8	0.7646954	95.6		1.2	JDB
7/11/2018	Arsenic	216859.1	<0.00105	8.0	0.7609157	95.1	8.0	0.7596461	95.0		1.1	JDB
7/11/2018	Arsenic	216607.1	<0.00105	8.0	0.82209	102.8	0.8	0.7777993	97.2		1.9	JDB
7/11/2018	Arsenic	216829.1	<0.00105	8.0	0.782387	97.8	0.8	0.7688641	96.1		2.1	JDB
7/11/2018	Arsenic	217448.1	<0.00105	0.8	0.7674074	95.9	0.8	0.7729410	96.6		0.4	JDB
7/11/2018	Arsenic	216849.1	<0.00105	0.8	0.7814274	97.7	0.8	0.7282816	91.0		0.2	JDB
7/11/2018	Arsenic	217438.1	<0.00105	8.0	0.7609157	95.1	8.0	0.7475921	93.4		1.0	JDB
7/11/2018	Arsenic	216839.1	<0.00105	8.0	0.7814274	97.7	0.8	0.7482348	93.5		0.5	JDB
7/11/2018	Barium	216829.1	<0.00015	0.2	0.1947964	97.4	0.2	0.1845827	92.3		2.2	JDB
7/11/2018	Barium	216607.1	<0.00015	0.2	0.20727	103.6	0.2	0.1924270	96.2		0.3	JDB
7/11/2018	Barium	217448.1	<0.00015	0.2	0.1989253	99.5	0.2	0.185726	92.9		0.7	JDB
7/11/2018	Barium	217438.1	<0.00015	0.2	0.1993587	99.7	0.2	0.174301	87.2		1.0	JDB
7/11/2018	Barium	216859.1	<0.00015	0.2	0.1993587	99.7	0.2	0.18852	94.3		0.9	JDB
7/11/2018	Barium	216849.1	<0.00015	0.2	0.1970746	98.5	0.2	0.1860327	93.0		1.0	JDB
7/11/2018	Barium	216839.1	<0.00015	0.2	0.1970746	98.5	0.2	0.1812223	90.6		0.6	JDB
7/11/2018	Beryllium	216607.1	<0.00002	0.2	0.20674	103.4	0.2	0.1968008	98.4		1.3	JDB
7/11/2018	Beryllium	217448.1	<0.00002	0.2	0.1940919	97.0	0.2	0.1934906	96.7		1.2	JDB
7/11/2018	Beryllium	216829.1	<0.00002	0.2	0.1942471	97.1	0.2	0.1962412	98.1		1.8	JDB
7/11/2018	Beryllium	216839.1	<0.00002	0.2	0.1940796	97.0	0.2	0.1927375	96.4		0.3	JDB
7/11/2018	Beryllium	216849.1	<0.00002	0.2	0.1940796	97.0	0.2	0.1873301	93.7		0.2	JDB
7/11/2018	Beryllium	217438.1	<0.00002	0.2	0.1940843	97.0	0.2	0.1922127	96.1		1.5	JDB
7/11/2018	Beryllium	216859.1	<0.00002	0.2	0.1940843	97.0	0.2	0.1945641	97.3		0.8	JDB
7/10/2018	Boron	216849.1	0.111559	0.3	0.2377648	79.3	0.3	0.2329567	77.7		0.8	JDB
7/11/2018	Boron	217448.1	0.068451	0.3	0.2803750	93.5	0.3	0.2338	77.9		0.1	JDB
7/11/2018	Boron	216859.1	0.044220	0.3	0.2766036	92.2	0.3	0.2715733	90.5		1.1	JDB
7/11/2018	Boron	216597.2	0.002614	0.3	0.29955	99.9	0.3	0.287187	95.7		2.6	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 18 of 21

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37763 Company: SEP - Environmental (JP-W) Address: 502 N. Allen Avenue

Contact: Jill Parker-Witt **Date Received: 06/01/2018** Shreveport, LA 71101 Phone: (318) 673-3816 Fax: (318) 673-3960 7/11/2018 216849.1 < 0.00007 0 1944529 97.2 0.2 0.1806458 90.3 0.3 JDB Cadmium 02 7/11/2018 216607.1 < 0.00007 0.20786 103 9 0.2 0 1958449 97 9 12 JDB Cadmium 02 216839.1 < 0.00007 97.2 0.2 0.1925503 96.3 JDB 7/11/2018 0.2 0.1944529 0.4 Cadmium 7/11/2018 Cadmium 216859.1 < 0.00007 02 0.1929989 96.5 0.2 0.188907 94.5 0.9 JDB 7/11/2018 217438.1 < 0.00007 0.2 0.1929989 96.5 0.2 0.1909662 95.5 1.5 JDB Cadmium 7/11/2018 Cadmium 217448.1 < 0.00007 02 0.192313 96.2 0.2 0.1923029 96.2 12 JDB JDB 7/11/2018 Cadmium 216829.1 < 0.00007 02 0.1957450 97.9 0.2 0.1938799 96.9 1.9 JDB 7/10/2018 Calcium 216849.1 < 0.48 1 0.9410564 94 1 0.3 90.4 1.1 JDB 7/10/2018 Calcium 216859.1 < 0.48 0.9037201 7/11/2018 Calcium 217448.1 < 0.48 1 0.9132641 91.3 0.4 JDB 216597.2 2.2 JDB 7/11/2018 < 0.0096 1 1.01517 101.5 1 0.940655 94.1 Calcium 6/6/2018 Chloride 50 48 96.0 8.3 GB GB 6/6/2018 Chloride < 0.219 6/6/2018 Chloride 216846 20 18.1 90.5 50 68 136.0 0.0 GB 6/6/2018 216859 20 18 4 92 0 50 73 146.0 0.0 GB Chloride < 0.219 6/6/2018 50 45 90.0 0.0 GB Chloride 0.3807842 12 JDB 7/11/2018 Chromium 217448 1 < 0.00023 0.40.3790240 948 0.4 95.2 7/11/2018 216607.1 < 0.00023 0.40533 101.3 0.4 0.3840149 96.0 1.3 JDB Chromium 7/11/2018 Chromium 216829 1 < 0.00023 0.40.3823525 95.6 0.4 0.3856683 96 4 19 JDB 7/11/2018 216839.1 < 0.00023 0.3813157 95.3 0.4 0.3769947 94.2 0.4 JDB Chromium 0.47/11/2018 216849.1 95.3 0.3663764 916 JDB Chromium < 0.00023 0.40.3813157 0.4 0.1 7/11/2018 217438.1 < 0.00023 0.3798332 95.0 0.4 0.3749093 93.7 1.5 JDB Chromium 0.4 7/11/2018 < 0.00023 0.3798332 0.3793229 JDB Chromium 216859.1 0.495.0 0.4 94.8 0.8 7/11/2018 Cobalt 216829.1 < 0.00014 02 0.1923129 96.2 0.2 0.1914518 95.7 2.1 JDB 7/11/2018 Cobalt 217438.1 < 0.00014 0.2 0.1937297 96.9 0.2 0.1871922 93.6 1.3 JDB 7/11/2018 216607.1 < 0.00014 0.20521 102.6 0.2 0.1938551 96.9 1.6 JDB Cobalt 0.2 7/11/2018 Cobalt 217448.1 < 0.00014 0.2 0.1928593 96.4 0.2 0.1864234 93.2 1.3 JDB 7/11/2018 Cobalt 216859.1 < 0.00014 0.2 0.1937297 96.9 0.2 0.1911424 95.6 0.9 JDB 7/11/2018 216849.1 < 0.00014 96.5 0.2 0.1832919 91.6 0.2 JDB Cobalt 0.2 0.1930186 216839.1 < 0.00014 96.5 0.2 0.1875445 93.8 0.5 JDB 7/11/2018 Cobalt 0.2 0.1930186 6/6/2018 216828 <0.083 10 10 100.0 10 10 100.0 9.4 GB Fluoride GB 6/6/2018 <0.083 Fluoride 6/6/2018 Fluoride 10 11 110.0 GB 6/6/2018 10 10 100.0 GB Fluoride 6/6/2018 216846 <0.083 10 11 110.0 10 9.8 98.0 0.0 GB Fluoride JDB 7/11/2018 Lead 216839.1 < 0.00068 0.9682329 96.8 0.9390272 93.9

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

6/6/2018

6/6/2018

6/6/2018

7/11/2018

7/11/2018

7/11/2018

7/11/2018

7/11/2018

7/11/2018

7/11/2018

7/11/2018

7/11/2018

7/11/2018

7/11/2018

7/11/2018

7/11/2018

7/11/2018

6/6/2018

6/6/2018

6/6/2018

6/6/2018

6/25/2018

Mercurv

Mercury

Mercurv

Molybdenum

Molybdenum

Molybdenum

Molvbdenum

Molybdenum

Molybdenum

Molybdenum

Selenium

Selenium

Selenium

Selenium

Selenium

Selenium

Selenium

Sulfate

Sulfate

Sulfate

Sulfate

Solids, Total Dissolved (TDS)

AEP ANALYTICAL CHEMISTRY SERVICES Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

0.3

15.3

22

0.5

1.0

1.2

1.0

1.0

10

1.9

1.5

1.6

4.8

1.8

0.2

8.0

8.0

0.7

0.0

I NM

I NM

I NM

JDB

LBH

GB

GB

GB GB

Company: SEP - Environmental (JP-W) : 37763 Report ID Address: 502 N. Allen Avenue Contact: Jill Parker-Witt **Date Received: 06/01/2018** Shreveport, LA 71101 Phone: (318) 673-3816 Fax: (318) 673-3960 7/11/2018 216829.1 <0.00068 0.9724599 97.2 0.9687459 96.9 1.9 JDB 1 Lead 7/11/2018 216849 1 < 0.00068 0.9682329 96.8 1 0.9115634 91 2 0.5 JDB lead 1 216859.1 <0.00068 96.3 0.9529827 95.3 0.9 JDB 7/11/2018 1 0.9628089 1 Lead 7/11/2018 Lead 217438.1 < 0.00068 1 0.9628089 96.3 1 0.9349115 93.5 1.6 JDB 7/11/2018 217448.1 < 0.00068 1 0.9668009 96.7 1 0.947151 94.7 1.1 JDB Lead 7/11/2018 Lead 216607.1 < 0.00068 1 1.0379 103.8 1 0.9737756 97.4 13 JDB 0.20681 JDB 7/11/2018 216849.1 < 0.00013 02 0.2006665 100.3 0.2 103.4 0.4 Lithium 0 2014402 JDB 7/11/2018 Lithium 216607.1 < 0.00013 0.20529 1026 0.2 100.7 13 100.3 0.2 105.7 JDB 7/11/2018 Lithium 216839.1 < 0.00013 0.2 0.2006665 0.2114136 7/11/2018 Lithium 216859.1 < 0.00013 02 0.2031312 101.6 0.2 0.2094512 104.7 0.3 JDB 217438.1 101.6 0.2 107.0 1.2 JDB 7/11/2018 < 0.00013 0.2 0.2031312 0.2139790 Lithium 7/11/2018 217448.1 < 0.00013 0.2 0.2009675 100.5 0.2 0.2102503 105.1 0.3 JDB Lithium 216829.1 < 0.00013 98.8 0.2 0.2088078 104.4 1.9 JDB 7/11/2018 0.2 0.1975821 Lithium 6/6/2018 216858.1 < 0.00000 0.001 0.0009016 90.2 0.001 0.0008205 82.1 4.9 LNM Mercury

0.001

0.001

0.001

0.2

02

0.2

02

0.2

02

02

2

2

2

2

2

2

2

99.33

20

20

0.00094

0.000875

0.00094

0.1905412

0.20379

0.1905412

0.1906861

0.1906861

0.1895818

0.1908355

1.9079876

1.98493

1.9186359

1.8985201

1.9077373

1.9077373

1.9186359

106

18

18

17.3

94.0

87.5

94 0

95.3

1019

95.3

95.3

95.3

94.8

95.4

95.4

99.2

95.9

94.9

95.4

95.4

95.9

106.7

90.0

90.0

86.5

0.001

0.001

0.001

0.2

0.2

0.2

0.2

0.2

0.2

0.2

2

2

2

2

2

2

2

2152

50

0.0008853

0.0008819

0.0008283

0.1843829

0 1916946

0.1867393

0 1931350

0.1700057

0.1953099

0.1943824

1.8855788

1.8985007

1.6210683

1.8805748

1.8568667

1.8317404

1.8739280

2114

52

88.5

88.2

828

92 2

95.8

93.4

96.6

85.0

97.7

97.2

94.3

94.9

81.1

94.0

92.8

91.6

93.7

98.2

104.0

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

216838.1

216848.1

216828.1

216849.1

216607 1

216839.1

216859.1

217438.1

217448.1

216829.1

217448.1

216607.1

217438.1

216829.1

216839.1

216849.1

216859.1

216859

216846

< 0.00000

<0.00000

< 0.00000

< 0.00029

< 0.00029

< 0.00029

< 0.00029

< 0.00029

< 0.00029

< 0.00029

< 0.00099

0.001565

< 0.00099

0.001256

< 0.00099

< 0.00099

< 0.00099

< 0.140

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report Date Re	ID : 37763 eceived: 06/01/2018	Contact:		er-Witt	ental (JP-W)		Α			LA 71101		
6/25/2018	Sulfate		<0.140									GB
6/25/2018	Sulfate	216859		20	17.2	86.0	50	51	102.0		0.3	GB
7/10/2018	Thallium	216607.1	<0.043	0.4	0.41188	103.0	0.4	0.3833643	95.8		0.6	JDB
7/10/2018	Thallium	216829.1	<0.043	0.4	0.385064	96.3	0.4	0.3749285	93.7		1.4	JDB
7/10/2018	Thallium	216849.1	<0.043	0.4	0.3845709	96.1	0.4	0.3579218	89.5		0.1	JDB
7/11/2018	Thallium	216859.1	<0.00086	0.4	0.386014	96.5	0.4	0.3752547	93.8		1.1	JDB
7/11/2018	Thallium	217438.1	<0.00086	0.4	0.386014	96.5	0.4	0.359684	89.9		1.6	JDB
7/11/2018	Thallium	217448.1	<0.043	0.4	0.386145	96.5	0.4	0.3536909	88.4		1.0	JDB
7/11/2018	Thallium	216839.1	<0.00086	0.4	0.3845709	96.1	0.4	0.3594548	89.9		0.1	JDB

Code Description Code

- J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).
- The analysis of the spiked sample required a dilution such that the spike recovery calculation does not provide useful information. The associated blank spike recovery M4 was acceptable.
- M6 Matrix spike recovery was high.
- U Analyte concentration below MDL.

Sandra D. Wallace 13-Jul-18 Laboratory Manager

Report Date

AT 8-1-18

Chain of Custody Record

Shreveport Chemical Laboratory (SCL) 502 N. Allen Ave.

Shreveport, LA 71101			P	rogram:	Coal C	ombustion	Program: Coal Combustion Residuals	(CCR)			
Jonathan Barnhill (318-673-3803) Contacts: John Davis (318-673-3811)					Site	Site Contact:			Date:		For Lab Use Only: COC/Order #
Project Name: Northeastern PP CCR	Analysis T	Analysis Turnaround Time (in Calendar Days)	lime (in Cal	endar Day	<u>s</u>	500 mL	Field-filter	_	Three		With the
Contact Name: Jill Parker-Witt						bottle, pH<2,	-	bottle,	10th") 1		10 miles m
Contact Phone: 318-673-3816	Z o	Need results by July 18, 2018	oy July 18, 2	018		Be, Hg,	VIn HNO3	- 1	pH<2, HNO3		
Sampler(s): Kenneth McDonald					itials	s, Ba, Pb, Li,	e and	, SO	a-228		
ě			Sample		er(s) Ini	Sb, As , Co, P	lved Fe	F, CI,	26, Ra		
Sample Identification	Sample Date	Sample ((C=Comp, G=Grab)	Matrix Co	Cont. Sample	B, Ca, Cd, Cr Mo, Se	dissol	TDS,	Ra-22		Sample Specific Notes:
MW-1D	5/30/2018	1312	G	GW	1	×					216844
MW-2D	5/30/2018	1342	G	GW	1	×					216845
MW-3D	5/30/2018	1422	G	GW	2	×		×			211846.1-216846.2
MW-4D	5/30/2018	1437	G	GW	2	×		×			216847.1-216847.2
MW-5D	5/30/2018	1326	G	GW	2	×		×			N.
MW-6D	5/30/2018	1409	G	GW	2	×		×			216849.1- 216849.2
MW-7D	5/30/2018	1451	ြ	GW	2	×		×			216850.1-216850-2
MW-8D	5/30/2018	1512	G	GW	2	×		×			216851-1-216851-2
MW-10D	5/30/2018	1137	G	GW		×					216852
MW-11D	5/30/2018	1200	G	GW		×					214853
MW-12D	5/30/2018	1223	G	GW	2	×		×			216854.1-216854-2
MW-13D	5/30/2018	1242	G	GW	2	×		×			216855.1-216855.2
Preservation Used: 1= lce, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	NO3; 5=NaO	H; 6= Othe	er e	; F= filte	F= filter in field	4	F4	1	4		
* Six 1L Bottles must be collected for Radium for every 10th sample	every 10th s	ample.									
ements & Comm	its:	****Nee	****Need results by July 18, 2018***	y July 18	. 2018***						
Relinquished by W M	Company: CAUL	Alle		Date/Time:	1/18 1008	Received by:	by:			Í	Date/Time:
Relinquished by:	Company:			Date/Time:	••	Received by:	by:				Date∕Time:
Relinquished by:	Company:			Date/Time:	•	Received	Received in Laboratory by:	۶ ٪	N. 5555	:	Date/Time: 6/1/18 (009
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	rd for Coal C	ombustion	n Residual	(CCR) Sa	mpling - \$	Shreveport, R	ev. 1, 1/10/17				

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17 Relinquished by: Relinquished by: Special Instructions/QC Requirements & Comments: Contact Phone: Project Name: Northeastern PP CCR Relinquished by: Preservation Used: 1= ice, 2= HCi; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Sampler(s): Kenneth McDonald Contact Name: Six 1L Bottles must be collected for Radium for every 10th sample. Contacts: **Equipment Blank Landfill** Shreveport, LA 71101 Sample Identification Jonathan Barnhill (318-673-3803) John Davis (318-673-3811) 502 N. Allen Ave. **Duplicate Landfill** Jill Parker-Witt 318-673-3816 MW-17 MW-15 MW-14 Company 19011 Company: Company: 5/30/2018 Sample Date 5/30/2018 5/30/2018 5/30/2018 5/30/2018 Analysis Turnaround Time (in Calendar Days) Need results by July 18, 2018 Sample Time 1437 1417 1357 1258 1549 ****Need results by July 18, 2018*** (C=Comp, G=Grab) Sample Type G G G G G Program: Coal Combustion Residuals (CCR) Date/Time: Date/Time: Date/Time Matrix GW GW GW GW ≶ F= filter in field # of Cont. _ _ _ N N Site Contact: Sampler(s) Initials Received in Laboratory by Received by: Received by: B, Ca, Sb, As, Ba, Be, 500 mL pH<2, HNO3 Cd, Cr, Co, Pb, Li, Hg, Mo, Se, TL \times × \times \times \times bottle, then pH<2, HNO3 Field-filter 500 mL F dissolved Fe and Mn bottle, Cool, 0-6C TDS, F, CI, SO4 × × (six every 10th*) 1 L bottles, pH<2, HNO3 Three 4 Ra-226, Ra-228 Date: Date/Time: 216858 21.65871-Date/Time: Date/Time: 216860 216857.1-216857. 216856 COC/Order #: (Mc#37763 Sample Specific Notes: For Lab Use Only: 00

Shreveport Chemical Laboratory (SCL)

Chain of Custody Record

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type	Delivery Type
Ice Chest Bag Action Pak PCB Mailer Bottle	UPS FEDEX US Mail Walk in Shuttle
Other	Other
	Tracking #
Client	Sample Matrix
Received By	DGA PCB Oil Water Oil Soil
Received Date 611/19	
Open Date	Solid Liquid Other
Container Temp Read	Project I.D. <u>37763</u>
Correction Factor + [2 ° (Were samples received on ice? YES NO
Corrected Temp 4.7°/	(135)
Did container arrive in good condition?	YES NO
Was sample documentation received?	NO NO
Was documentation filled out properly?	YES NO
Were samples labeled properly?	NO NO
Were correct containers used?	NO NO
Were the pH's of samples appropriately checked?	VES NO metals pt: 42
Total number of sample containers 27	
Was any corrective action taken?	NO Person Contacted Date & Time
Comments	Dute & Time
Comments	Date & Time

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 37913 Address: 502 N. Allen Avenue Contact: Jill Parker-Witt **Date Received:** 06/28/2018

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 217443 Bv: KM **Collected Date:** 06/27/2018

Cust Sample ID: MW-4D Matrix: Water Location: Northeastern PP Sample Desc.: MW-4D

Metals (217443)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 12:04	U	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 12:04	U	JDB
Barium	0.167	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 12:04		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 12:04	U	JDB
Boron	1.16	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 12:04		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 12:04	U	JDB
Calcium	177	mg/L	0.48	1:50	EPA 6010B 1996	07/11/2018 0:41	U	JDB
Chromium	0.00193	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 12:04		JDB
Cobalt	0.00182	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 12:04	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 12:04	U	JDB
Lithium	0.00491	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 12:04		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	07/06/2018 10:37	U	LNM
Molybdenum	0.00464	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 12:04	J	JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 12:04	U	JDB
Thallium	0.00294	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 12:04		JDB

Water ((217443)	

water (21/443)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	20	mg/L	0.219	1	EPA 300.0	07/12/2018 0:04		GB
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	07/12/2018 0:04	U	GB
Solids, Total Dissolved (TDS)	882	mg/L	2	1	SM 2540 C-2011	07/02/2018 15:30		LBH
Sulfate	258	mg/L	0.140	1:10	EPA 300.0	07/12/2018 1:57		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 37913 Address: 502 N. Allen Avenue **Date Received:** 06/28/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Collected Date: 06/27/2018 Bv: KM AEP Sample ID: 217444

Matrix: Water Cust Sample ID: MW-5D Location: Northeastern PP

Motale (247444)

Sample Desc.: MW-5D

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.0025	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 12:20	J	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 12:20	U	JDB
Barium	0.126	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 12:20		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 12:20	U	JDB
Boron	0.478	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 12:20		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 12:20	U	JDB
Calcium	134	mg/L	0.48	1:50	EPA 6010B 1996	07/11/2018 0:47		JDB
Chromium	0.0008	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 12:20	J	JDB
Cobalt	0.00063	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 12:20	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 12:20	U	JDB
Lithium	0.01208	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 12:20		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	07/06/2018 10:40	U	LNM
Molybdenum	0.00096	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 12:20	J	JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 12:20	U	JDB
Thallium	0.002	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 12:20		JDB
Water (217444)			- 1	,				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech

water (211777)										
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech		
Chloride	26	mg/L	0.219	1	EPA 300.0	07/12/2018 3:50		GB		
Fluoride	0.7487	mg/L	0.083	1	EPA 300.0	07/12/2018 3:50	J	GB		
Solids, Total Dissolved (TDS)	658	mg/L	2	1	SM 2540 C-2011	07/02/2018 15:30		LBH		
Sulfate	122	mg/L	0.140	1:10	EPA 300.0	07/12/2018 4:28		GB		

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 37913 Address: 502 N. Allen Avenue **Date Received:** 06/28/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Collected Date: 06/27/2018 Bv: KM AEP Sample ID: 217445 Matrix: Water Cust Sample ID: MW-10D Location: Northeastern PP

Sample Desc.: MW-10D

Metals (217445)												
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech				
Antimony	0.00174	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 12:37	J	JDB				
Arsenic	0.00159	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 12:37	J	JDB				
Barium	0.131	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 12:37		JDB				
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 12:37	U	JDB				
Boron	1.16	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 12:37		JDB				
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 12:37	U	JDB				
Calcium	52.5	mg/L	0.48	1:50	EPA 6010B 1996	07/11/2018 0:52		JDB				
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 12:37	U	JDB				
Cobalt	0.00101	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 12:37	J	JDB				
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 12:37	U	JDB				
Lithium	0.461	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 12:37		JDB				
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	07/06/2018 10:43	U	LNM				
Molybdenum	0.0162	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 12:37		JDB				
Selenium	0.00503	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 12:37		JDB				
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/11/2018 0:52	U	JDB				

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37913 Address: 502 N. Allen Avenue Report ID Contact: Jill Parker-Witt **Date Received:** 06/28/2018

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 217446 **Collected Date:** 06/27/2018 Cust Sample ID: MW-12D Matrix: Water Location: Northeastern PP

Sample Desc.: MW-12D

Metals (217446)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 12:42	U	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 12:42	U	JDB
Barium	0.03618	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 12:42		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 12:42	U	JDB
Boron	8.45	mg/L	0.014	1:50	EPA 6010B 1996	07/11/2018 0:57		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 12:42	U	JDB
Calcium	74.9	mg/L	0.48	1:50	EPA 6010B 1996	07/11/2018 0:57		JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 12:42	U	JDB
Cobalt	0.00039	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 12:42	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 12:42	U	JDB
Lithium	0.00541	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 12:42		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	07/06/2018 10:45	U	LNM
Molybdenum	0.666	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 12:42		JDB
Selenium	0.00155	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 12:42	J	JDB
Thallium	0.00199	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 12:42	J	JDB

Water (217446)

valer (217440)							
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes Tech
Chloride	17	mg/L	0.219	1	EPA 300.0	07/12/2018 5:25	GB
Fluoride	1.988	mg/L	0.083	1	EPA 300.0	07/12/2018 5:25	GB
Solids, Total Dissolved (TDS)	1070	mg/L	2	1	SM 2540 C-2011	07/02/2018 15:30	LBH
Sulfate	586	mg/L	0.140	1:10	EPA 300.0	07/12/2018 6:21	GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 37913 Address: 502 N. Allen Avenue

Contact: Jill Parker-Witt **Date Received:** 06/28/2018 Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 217447 Collected Date: 06/27/2018 Bv: KM Cust Sample ID: MW-13D Matrix: Water Location: Northeastern PP

Sample Desc.: MW-13D

Metals (217447)						T		Toch
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 12:48	U	JDB
Arsenic	0.00113	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 12:48	J	JDB
Barium	0.119	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 12:48		JDB
Beryllium	0.00012	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 12:48	J	JDB
Boron	1.35	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 12:48		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 12:48	U	JDB
Calcium	212	mg/L	0.48	1:50	EPA 6010B 1996	07/11/2018 1:03		JDB
Chromium	0.00374	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 12:48		JDB
Cobalt	0.00496	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 12:48	J	JDB
Lead	0.00184	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 12:48	J	JDB
Lithium	0.02781	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 12:48		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	07/06/2018 10:54	U	LNM
Molybdenum	0.02456	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 12:48		JDB
Selenium	0.01011	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 12:48		JDB
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/11/2018 1:03	U	JDB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 37913 Address: 502 N. Allen Avenue **Date Received:** 06/28/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 217448 **Collected Date:** 06/27/2018

Matrix: Water Cust Sample ID: MW-14 Location: Northeastern PP Sample Desc.: MW-14

Motale (247440)

Metals (217448)							1	
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 12:53	U	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 12:53	U	JDB
Barium	0.161	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 12:53		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 12:53	U	JDB
Boron	1.56	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 12:53		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 12:53	U	JDB
Calcium	71	mg/L	0.48	1:50	EPA 6010B 1996	07/11/2018 1:08	M4	JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 12:53	U	JDB
Cobalt	0.00314	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 12:53	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 12:53	U	JDB
Lithium	0.378	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 12:53		JDB
Mercury	0.000006	mg/L	0.000005	1	EPA 7470A 1994	07/06/2018 11:10	J	LNM
Molybdenum	0.02016	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 12:53		JDB
Selenium	0.00435	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 12:53	J	JDB
Thallium	0.042	mg/L	0.043	1:50	EPA 6010B 1996	07/11/2018 1:08		JDB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 37913 Address: 502 N. Allen Avenue **Date Received:** 06/28/2018 Shreveport, LA 71101

Contact: Jill Parker-Witt Phone: (318) 673-3816

Fax: (318) 673-3960

Collected Date: 06/27/2018 Bv: KM AEP Sample ID: 217449

Matrix: Water Cust Sample ID: MW-17 Location: Northeastern PP Sample Desc.: MW-17

Matala (247440)

Metals (217449)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00257	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 13:31	J	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 13:31	U	JDB
Barium	0.04152	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 13:31		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 13:31	U	JDB
Boron	0.715	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 13:31		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 13:31	U	JDB
Calcium	205	mg/L	0.48	1:50	EPA 6010B 1996	07/11/2018 1:14		JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 13:31	U	JDB
Cobalt	0.00075	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 13:31	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 13:31	U	JDB
Lithium	0.01282	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 13:31		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	07/06/2018 11:18	U	LNM
Molybdenum	0.00794	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 13:31		JDB
Selenium	0.01246	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 13:31		JDB
Thallium	0.00163	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 13:31	J	JDB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37913 Address: 502 N. Allen Avenue Report ID **Date Received:** 06/28/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 217450 **Collected Date:** 06/27/2018

Cust Sample ID: Duplicate Location: Northeastern PP Matrix: Water Sample Desc.: Duplicate

Metals (217450)

Solids, Total Dissolved (TDS)

Sulfate

wietais (217450)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 13:36	U	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 13:36	U	JDB
Barium	0.166	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 13:36		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 13:36	U	JDB
Boron	1.11	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 13:36		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 13:36	U	JDB
Calcium	170	mg/L	0.48	1:50	EPA 6010B 1996	07/11/2018 1:19		JDB
Chromium	0.00165	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 13:36		JDB
Cobalt	0.00135	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 13:36	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 13:36	U	JDB
Lithium	0.00475	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 13:36		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	07/06/2018 11:26	U	LNM
Molybdenum	0.00485	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 13:36	J	JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 13:36	U	JDB
Thallium	0.00351	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 13:36		JDB
Water (217450)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	20	mg/L	0.219	1	EPA 300.0	07/12/2018 7:36		GB
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	07/12/2018 7:36	U	GB

2

0.140

1

1:110

SM 2540 C-2011

EPA 300.0

886

241

mg/L

mg/L

LBH

GB

07/02/2018 15:30

07/12/2018 8:14

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 37913 Address: 502 N. Allen Avenue Contact: Jill Parker-Witt **Date Received:** 06/28/2018

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 217451 Bv: KM **Collected Date:** 06/27/2018

Matrix: Water Cust Sample ID: Equipment Blank Location: Northeastern PP Sample Desc.: Equipment Blank

Motole (217454)

Metals (217451)							•	
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB
Barium	< 0.00015	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB
Boron	0.06304	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 13:41		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB
Calcium	0.0106	mg/L	0.0096	1	EPA 6010B 1996	07/11/2018 13:41		JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB
Cobalt	< 0.00014	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB
Lithium	< 0.00013	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	07/06/2018 11:29	U	LNM
Molybdenum	< 0.00029	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB
Thallium	< 0.00086	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37913 **Date Received**: 06/28/2018

Company: SEP - Environmental (JP-W)

Contact: Jill Parker-Witt

Address: 502 N. Allen Avenue Shreveport, LA 71101

Quality Control Data

* Quality control units are the same as reported analytical results

			Blank		Standard			Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tecl
7/11/2018	Antimony	217438.1	<0.00093	0.8	0.7863861	98.3	0.8	0.7518081	94.0		1.2	JDB
7/11/2018	Antimony	216607.1	0.011666	0.8	0.80691	100.9	0.8	0.770316	96.3		1.2	JDB
7/11/2018	Antimony	216829.1	0.002111	0.8	0.7743853	96.8	0.8	0.7694967	96.2		1.8	JDB
7/11/2018	Antimony	216839.1	<0.00093	0.8	0.7840294	98.0	0.8	0.7474474	93.4		0.5	JDB
7/11/2018	Antimony	216859.1	<0.00093	0.8	0.7863861	98.3	0.8	0.7762676	97.0		0.2	JDB
7/11/2018	Antimony	217448.1	<0.00093	0.8	0.7833788	97.9	0.8	0.7646954	95.6		1.2	JDB
7/11/2018	Antimony	216849.1	<0.00093	0.8	0.7840294	98.0	0.8	0.7162960	89.5		1.2	JDB
7/11/2018	Arsenic	216607.1	<0.00105	0.8	0.82209	102.8	0.8	0.7777993	97.2		1.9	JDB
7/11/2018	Arsenic	216829.1	<0.00105	0.8	0.782387	97.8	0.8	0.7688641	96.1		2.1	JDB
7/11/2018	Arsenic	216839.1	<0.00105	0.8	0.7814274	97.7	0.8	0.7482348	93.5		0.5	JDB
7/11/2018	Arsenic	216849.1	<0.00105	8.0	0.7814274	97.7	0.8	0.7282816	91.0		0.2	JDB
7/11/2018	Arsenic	216859.1	<0.00105	0.8	0.7609157	95.1	0.8	0.7596461	95.0		1.1	JDB
7/11/2018	Arsenic	217438.1	<0.00105	0.8	0.7609157	95.1	0.8	0.7475921	93.4		1.0	JDB
7/11/2018	Arsenic	217448.1	<0.00105	0.8	0.7674074	95.9	0.8	0.7729410	96.6		0.4	JDB
7/11/2018	Barium	216849.1	<0.00015	0.2	0.1970746	98.5	0.2	0.1860327	93.0		1.0	JDB
7/11/2018	Barium	217448.1	<0.00015	0.2	0.1989253	99.5	0.2	0.185726	92.9		0.7	JDB
7/11/2018	Barium	216859.1	<0.00015	0.2	0.1993587	99.7	0.2	0.18852	94.3		0.9	JDB
7/11/2018	Barium	217438.1	<0.00015	0.2	0.1993587	99.7	0.2	0.174301	87.2		1.0	JDB
7/11/2018	Barium	216607.1	<0.00015	0.2	0.20727	103.6	0.2	0.1924270	96.2		0.3	JDB
7/11/2018	Barium	216839.1	<0.00015	0.2	0.1970746	98.5	0.2	0.1812223	90.6		0.6	JDB
7/11/2018	Barium	216829.1	<0.00015	0.2	0.1947964	97.4	0.2	0.1845827	92.3		2.2	JDB
7/11/2018	Beryllium	217448.1	<0.00002	0.2	0.1940919	97.0	0.2	0.1934906	96.7		1.2	JDB
7/11/2018	Beryllium	217438.1	<0.00002	0.2	0.1940843	97.0	0.2	0.1922127	96.1		1.5	JDB
7/11/2018	Beryllium	216859.1	<0.00002	0.2	0.1940843	97.0	0.2	0.1945641	97.3		0.8	JDB
7/11/2018	Beryllium	216849.1	<0.00002	0.2	0.1940796	97.0	0.2	0.1873301	93.7		0.2	JDB
7/11/2018	Beryllium	216839.1	<0.00002	0.2	0.1940796	97.0	0.2	0.1927375	96.4		0.3	JDB
7/11/2018	Beryllium	216829.1	<0.00002	0.2	0.1942471	97.1	0.2	0.1962412	98.1		1.8	JDB
7/11/2018	Beryllium	216607.1	<0.00002	0.2	0.20674	103.4	0.2	0.1968008	98.4		1.3	JDB
7/11/2018	Boron	217448.1	0.068451	0.3	0.2803750	93.5	0.3	0.2338	77.9		0.1	JDB
7/11/2018	Boron	216859.1	0.044220	0.3	0.2766036	92.2	0.3	0.2715733	90.5		1.1	JDB
7/11/2018	Boron	216597.2	0.002614	0.3	0.29955	99.9	0.3	0.287187	95.7		2.6	JDB
7/11/2018	Cadmium	216839.1	<0.00007	0.2	0.1944529	97.2	0.2	0.1925503	96.3		0.4	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 10 of 13

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37913 Report ID Address: 502 N. Allen Avenue Contact: Jill Parker-Witt Date Peceived: 06/29/2010

Shrovoport I A 71101

Date Receive	ved: 06/28/2018		: JIII Parke					Sh	reveport, I	LA 71101		
		Phone	: (318) 673	3-3816				Fax: (31	18) 673-39	960		
7/11/2018 Cad	dmium	216829.1	<0.00007	0.2	0.1957450	97.9	0.2	0.1938799	96.9		1.9	JDB
7/11/2018 Cad	dmium	216859.1	<0.00007	0.2	0.1929989	96.5	0.2	0.188907	94.5		0.9	JDB
7/11/2018 Cad	dmium	217438.1	<0.00007	0.2	0.1929989	96.5	0.2	0.1909662	95.5		1.5	JDB
7/11/2018 Cad	dmium	217448.1	<0.00007	0.2	0.192313	96.2	0.2	0.1923029	96.2		1.2	JDB
7/11/2018 Cad	dmium	216607.1	<0.00007	0.2	0.20786	103.9	0.2	0.1958449	97.9		1.2	JDB
7/11/2018 Cad	dmium	216849.1	<0.00007	0.2	0.1944529	97.2	0.2	0.1806458	90.3		0.3	JDB
7/11/2018 Cal	cium	217448.1	<0.48	1	0.9132641	91.3					0.4	JDB
7/11/2018 Cal	cium	216597.2	<0.0096	1	1.01517	101.5	1	0.940655	94.1		2.2	JDB
7/12/2018 Chl	oride		<0.219									GB
7/12/2018 Chl	oride			20	19	95.0						GB
7/12/2018 Chl	oride	217443	<0.219	20	20	100.0	50	52	104.0		0.0	GB
7/11/2018 Chr	romium	216829.1	<0.00023	0.4	0.3823525	95.6	0.4	0.3856683	96.4		1.9	JDB
7/11/2018 Chr	romium	217448.1	<0.00023	0.4	0.3790240	94.8	0.4	0.3807842	95.2		1.2	JDB
7/11/2018 Chr	romium	217438.1	<0.00023	0.4	0.3798332	95.0	0.4	0.3749093	93.7		1.5	JDB
7/11/2018 Chr	romium	216859.1	<0.00023	0.4	0.3798332	95.0	0.4	0.3793229	94.8		0.8	JDB
7/11/2018 Chr	romium	216839.1	<0.00023	0.4	0.3813157	95.3	0.4	0.3769947	94.2		0.4	JDB
7/11/2018 Chr	romium	216607.1	<0.00023	0.4	0.40533	101.3	0.4	0.3840149	96.0		1.3	JDB
7/11/2018 Chr	romium	216849.1	<0.00023	0.4	0.3813157	95.3	0.4	0.3663764	91.6		0.1	JDB
7/11/2018 Col	palt	216849.1	<0.00014	0.2	0.1930186	96.5	0.2	0.1832919	91.6		0.2	JDB
7/11/2018 Col	palt	217448.1	<0.00014	0.2	0.1928593	96.4	0.2	0.1864234	93.2		1.3	JDB
7/11/2018 Col	palt	217438.1	<0.00014	0.2	0.1937297	96.9	0.2	0.1871922	93.6		1.3	JDB
7/11/2018 Col	palt	216859.1	<0.00014	0.2	0.1937297	96.9	0.2	0.1911424	95.6		0.9	JDB
7/11/2018 Col	palt	216839.1	<0.00014	0.2	0.1930186	96.5	0.2	0.1875445	93.8		0.5	JDB
7/11/2018 Col	palt	216607.1	<0.00014	0.2	0.20521	102.6	0.2	0.1938551	96.9		1.6	JDB
7/11/2018 Col	palt	216829.1	<0.00014	0.2	0.1923129	96.2	0.2	0.1914518	95.7		2.1	JDB
7/12/2018 Fluo	oride		<0.083									GB
7/12/2018 Fluo	oride			10	10	100.0						GB
7/12/2018 Fluo	oride	217443	<0.083	10	10	100.0	10	10	100.0		0.0	GB
7/11/2018 Lea	ad	217438.1	<0.00068	1	0.9628089	96.3	1	0.9349115	93.5		1.6	JDB
7/11/2018 Lea	ad	217448.1	<0.00068	1	0.9668009	96.7	1	0.947151	94.7		1.1	JDB
7/11/2018 Lea	ad	216849.1	<0.00068	1	0.9682329	96.8	1	0.9115634	91.2		0.5	JDB
7/11/2018 Lea	ad	216839.1	<0.00068	1	0.9682329	96.8	1	0.9390272	93.9		0.4	JDB
7/11/2018 Lea	ad	216607.1	<0.00068	1	1.0379	103.8	1	0.9737756	97.4		1.3	JDB
7/11/2018 Lea	ad	216829.1	<0.00068	1	0.9724599	97.2	1	0.9687459	96.9		1.9	JDB
7/11/2018 Lea	ad	216859.1	<0.00068	1	0.9628089	96.3	1	0.9529827	95.3		0.9	JDB
7/11/2018 Lith	nium	216859.1	<0.00013	0.2	0.2031312	101.6	0.2	0.2094512	104.7		0.3	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37913 Report ID Address: 502 N. Allen Avenue Contact: Jill Parker-Witt **Date Received: 06/28/2018** Shreveport, LA 71101 Phone: (318) 673-3816 Fax: (318) 673-3960 7/11/2018 216849.1 < 0.00013 0.2006665 100.3 0.2 0.20681 103 4 0.4 JDB Lithium 02 7/11/2018 216839.1 < 0.00013 0.2006665 100.3 0.2 0.2114136 105.7 JDB Lithium 02 0.1 7/11/2018 216829.1 < 0.00013 0.1975821 98.8 0.2 0.2088078 104.4 1.9 JDB 0.2 Lithium 7/11/2018 Lithium 216607.1 < 0.00013 02 0.20529 102.6 0.2 0.2014402 100.7 1.3 JDB 7/11/2018 217448.1 < 0.00013 0.2 0.2009675 100.5 0.2 0.2102503 105.1 0.3 JDB Lithium 7/11/2018 Lithium 217438.1 < 0.00013 02 0.2031312 1016 0.2 0.2139790 107.0 12 .IDB 217437.1 0.0009169 I NM 7/6/2018 0.000007 0.001 0.001 100.0 0.001 91.7 3.8 Mercury I NM 7/6/2018 Mercury 217447.1 < 0.00000 0.001 0.0010197 102 0 0.001 0.0010343 103.4 117 97.7 JDB 7/11/2018 Molvbdenum 217448.1 < 0.00029 0.2 0.1895818 94.8 0.2 0.1953099 1.0 7/11/2018 Molybdenum 216607.1 < 0.00029 02 0.20379 101.9 0.2 0.1916946 95.8 1.0 JDB 216829.1 0.2 97.2 JDB 7/11/2018 Molvbdenum < 0.00029 0.2 0.1908355 95.4 0.1943824 1.9 7/11/2018 Molybdenum 216839.1 < 0.00029 0.2 0.1905412 95.3 0.2 0.1867393 93.4 1.2 JDB < 0.00029 95.3 0.2 92.2 JDB 7/11/2018 Molybdenum 216849.1 0.2 0.1905412 0.1843829 0.5 7/11/2018 Molybdenum 217438.1 < 0.00029 0.2 0.1906861 95.3 0.2 0.1700057 85.0 1.0 JDB 7/11/2018 216859.1 < 0.00029 95.3 0.2 0.1931350 96.6 1.0 JDB Molvbdenum 02 0.1906861 7/11/2018 216859.1 < 0.00099 2 1.9186359 95.9 2 1.8739280 93.7 0.8 JDB Selenium 2 2 JDB 7/11/2018 Selenium 216839.1 < 0.00099 1.9077373 95 4 1.8568667 928 02 7/11/2018 216849.1 < 0.00099 2 1.9077373 95.4 2 1.8317404 91.6 0.8 JDB Selenium 2 2 7/11/2018 Selenium 216607 1 0.001565 1 98493 99 2 1 8985007 94 9 16 JDB 7/11/2018 217438.1 < 0.00099 2 95.9 2 1.6210683 81.1 4.8 JDB Selenium 1.9186359 7/11/2018 217448 1 2 95 4 2 JDB Selenium < 0.00099 1.9079876 1.8855788 943 15 7/11/2018 216829.1 0.001256 2 1.8985201 94.9 2 1.8805748 94.0 1.8 JDB Selenium 7/2/2018 217443 99 33 2834 2754 IBH Solids, Total Dissolved (TDS) <2 106 106 7 97.2 23 7/12/2018 Sulfate 217443 < 0.00086 20 17.2 86.0 50 54 108.0 0.0 GB 7/12/2018 Sulfate 20 17.2 86.0 GB GB 7/12/2018 < 0.140 Sulfate 7/11/2018 Thallium 217438.1 <0.00086 0.4 0.386014 96.5 0.4 0.359684 89.9 1.6 JDB 7/11/2018 Thallium 216859.1 <0.00086 0.4 0.386014 96.5 0.4 0.3752547 93.8 1.1 JDB 7/11/2018 216839.1 <0.00086 96.1 0.4 0.3594548 89.9 0.1 JDB Thallium 0.4 0.3845709

Code Code Description

Thallium

7/11/2018

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

217448.1

M4 The analysis of the spiked sample required a dilution such that the spike recovery calculation does not provide useful information. The associated blank spike recovery was acceptable.

0.4

0.386145

96.5

0.4

0.3536909

88.4

< 0.043

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

JDB

1.0

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37913

Company: SEP - Environmental (JP-W)

Address: 502 N. Allen Avenue

Date Received: 06/28/2018

Contact: Jill Parker-Witt Phone: (318) 673-3816

Shreveport, LA 71101 **Fax:** (318) 673-3960

U Analyte concentration below MDL.

Sandra D. Wallace

13-Jul-18

Report Date

Relinquished by: Special Instructions/QC Requirements & Comments: Sampler(s): Kenneth McDonald Contact Phone: Relinquished by: Relinquished by: Preservation Used: 1= ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Project Name: Northeastern PP CCR Contact Name: Six 1L Bottles must be collected for Radium for every 10th sample. Contacts: Shreveport, LA 71101 Sample Identification John Davis (318-673-3811) Jonathan Barnhill (318-673-3803) EQUIPMENT BLANK 502 N. Allen Ave. Jill Parker-Witt 318-673-3816 DUPLICATE MW-13D MW-12D MW-10D MW-17 MW-14 MW-5D MW-4D Company 7616 Company: Company: Sample Date 6/27/2018 6/27/2018 6/27/2018 6/27/2018 6/27/2018 6/27/2018 6/27/2018 6/27/2018 6/27/2018 Analysis Turnaround Time (in Calendar Days) Routine (28 days for Monitoring Wells) Sample Time 1430 1105 1410 1335 1315 1210 1105 1020 930 (C=Comp, G=Grab) Sample Type G G G G G G 0 G G Program: Coal Combustion Residuals (CCR) Site Contact: Date/Time; 06/28/18 Date/Time Matrix GW GW GW GW ωW GW GW GW ≶ F= filter in field # of Cont. N N N N 130 Sampler(s) Initials Received in Laboratory by: Received by: Received by: B, Ca, Sb, As, Ba, Be, bottle, pH<2, 500 mL HNO3 Cd, Cr, Co, Pb, Li, Hg, Mo, Se, TL × × × \times × × \times \times × Field-filter 500 mL bottle, then pH<2, HNO3 T dissolved Fe and Mn bottle, Cool, 0-6C **TDS, F, CI, SO4** × \times × × (six every 10th*) L bottles, pH<2, HNO3 Three Ra-226, Ra-228 Date: COC/Order #: Date/Time: Date/Time: Coc+ Sample Specific Notes: For Lab Use Only: 0

Shreveport Chemical Laboratory (SCL)

Chain of Custody Record

7/1/10/17 (COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - S

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type	Delivery Type
Other Bag Action Pak PCB Mailer Bottle	UPS FEDEX US Mail Walk in Shuttle
	Tracking #
Client J:11 Parker - Wilt	Sample Matrix
Received By 570	DGA PCB Oil Water Oil Soil
Received Date Open Date	Solid Liquid Other
Container Temp Read 3 Thermometer Senal #F04103	Project I.D.
Correction Factor	Were samples received on ice? (ES) NO
Corrected Temp	
Did container arrive in good condition?	MES NO
Was sample documentation received?	YES NO
Was documentation filled out properly?	YES NO
Were samples labeled properly?	YES NO
Were correct containers used?	YES NO
Were the pH's of samples appropriately checked?	YES NO N
Total number of sample containers	5TD
Was any corrective action taken?	NO Person Contacted
Comments	Date & Time
	

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 8/14/2018

MW-4D

Sample Number: 182223-001 Date Collected: 06/27/2018 11:05 Date Received: 7/3/2018

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	0.72	pCi/L	0.15	0.47	ttp	8/10/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.524	pCi/L	0.081	0.084	jls	7/30/2018	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the established range of 30-110%.

MW-5D

Sample Number: 182223-002 Date Collected: 06/27/2018 09:30 Date Received: 7/3/2018

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	1.99	pCi/L	0.15	0.42	ttp	8/10/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.522	pCi/L	0.080	0.086	jls	7/30/2018	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the established range of 30-110%.

MW-12D

Sample Number: 182223-003 Date Collected: 06/27/2018 13:15 Date Received: 7/3/2018

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	1.05	pCi/L	0.17	0.53	ttp	8/10/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.281	pCi/L	0.074	0.12	jls	7/30/2018	SW-846 9315-1986,Rev. 0

*The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Michael Ohlinger, Chemist

Muhael & Ollinger

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Chain of Custody Record

Dolan Chemical Laboratory (DCL)

4001 Bixby Road

Groveport, Ohio 43125				Drogr	J.Wc	مي ادم.	mortion	Program: Coal Combuction Besiduals (CCB)	(0,0)				
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)					8	Site Contact:	tact:		S CON	Date:		For Lab Use Only:	
Project Name: Northeastern PP CCR Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816	Analysis To	urnaround∵	Analysis Turnaround Time (in Calendar Days) © Routine (28 days for Monitoring Wells)	ndar Da	ys)		250 mL bottle, pH<2, HNO3	Three (six every 10th*) 1L bottles, pH<2, HNO3	1 L + 250 mL bottles, Cool, 0-6C	40 mL Glass vial or 250 mL PTFE lined bottle, HCL**, pH<2	Field-filter 250 mL bottle, then pH<2, HNO3	182223	
Sampler(s): Kenneth McDonald							,d9 ,o	1-228					
Sample Identification	Sample Date	Sample	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) Ini	B, Ca, Li, Sb, Be, Cd, Cr, C Mo, Se, TL and Na, K, M	Ra-226, Ra	TDS, F, CI, and Br, All	рН	bevlossib bevlossib	Sample Specific Notes:	1
MW-4D	6/27/2018	1105	ŋ	GW	9			×					
MW-5D	6/27/2018	930	Ø	QW	m			×					_
MW-12D	6/27/2018	1315	O	GW	က			×					Т
													_
						П							
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	VO3; 5=NaOH;	6= Other		= filter	; F = fitter in field		4	4	1	2	F 4		
* Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th san	nole.											_

^{*} Six 1L Bottles must be collected for Radium for every 10th sample.

Special Instructions/QC Requirements & Comments:

Relinquished by: 1997	Company AGI F	Date/Time: 06/2 9/18 1400	Received by:	Date/Time:
Relinquished by:	Company:	Date/Time:	Received by:	Date/Time:
Relinquished by:	Сотрапу:	Date/Time:	Received in Laboratory, by: ACM	7/3/2018 1445

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Dolan, Rev. 2, 11/02/16

^{**} HCI must be Trace Metal Grade for Mercury analysis when samples cannot be delivered to the laboratory within 48 hours of sampling.

MED WATER & WASTE SAMPLE RECEIPT FORM

	Package Type	Delivery Type
(0	cooler Box Bag Envelope	PONY UPS FedEX USPS
		Other
F	lant/Customer Northcastun	Number of Plastic Containers: 12
(pened By	Number of Glass Containers:
	·	Number of Mercury Containers:
11.		o(N/A)Initial:on ice/no ice
1.7		- If No, specify each deviation:
		Comments
		Comments
		If RUSH, who was notified?
	pH (15 min) Cr^{+6} (pres) NO_2 or 1 (24 hr)	NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
,	Nas COC filled out properly? (Y) N	Comments
,	Were samples labeled properly? (Y) N	Comments
	Were correct containers used?	Comments
	Was pH checked & Color Coding done?(Y	N or N/A Initial & Date: \(\int \mathcal{VB} \) \(\frac{7/3/2019}{}{}
		f Yes: By whom & when: (See Prep Book)
	Is sample filtration requested? Y / 🛍	Comments (See Prep Book)
	Was the customer contacted? If Yes:	Person Contacted:
	Lab ID#182223 Initial 8	Date & Time :
	Lagrand has	ents:
	Reviewed by M6	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 9/5/2018

MW-4D

Sample Number: 182698-001 Date Collected: 07/31/2018 09:10 Date Received: 8/9/2018

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	0.691	pCi/L	0.16	0.52	jls	8/27/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.815	pCi/L	0.13	0.14	ils	8/30/2018	SW-846 9315-1986,Rev. 0

MW-5D

Sample Number: 182698-002 Date Collected: 07/31/2018 08:30 Date Received: 8/9/2018

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	2.2	pCi/L	0.19	0.57	jls	8/27/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.676	pCi/L	0.094	0.088	jls	8/30/2018	SW-846 9315-1986,Rev. 0

MW-12D

Sample Number: 182698-003 Date Collected: 07/31/2018 09:40 Date Received: 8/9/2018

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	0.299	pCi/L	0.14	0.48	jls	8/27/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.422	pCi/L	0.060	0.060	jls	8/30/2018	SW-846 9315-1986,Rev. 0

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Michael Ohlinger, Chemist

Muhael & Ollinge

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Chain of Custody Record

Dolan Chemical Laboratory (DCL)

4001 Bixby Road

Groveport, Ohio 43125				Progr	'am: C	oal Co	mbustion	Program: Coal Combustion Residuals (CCR)	Is (CCR)	_			
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)					03	Site Contact:	tact:			Date:		For Lab Use Only: COC/Order #:	
Project Name: Northeastern PP CCR Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816	Analysis Tu	urnaround	Analysis Turnaround Time (in Calendar Days) © Routine (28 days for Monitoring Wells)	endar Da	lys)	I	250 mL bottle, pH<2, HNO3	Three (six every 10th*) 1L bottles, pH<2, HNO3	1 L + 250 mL bottles, Cool, 0-6C	40 mL Glass vial or 250 mL PTFE lined bottle, HCL**,	Field-filter 250 mL bottle, then pH<2, HNO3	182698	
Sampler(s): Kenneth McDonald	ļ						o, Pb,	1-228	SO4, calinity				
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) Ini	B, Ca, Li, Sb, Be, Cd, Cr, C Mo, Se, TL and Na, K, M	Ra-226, Ra	TDS, F, CI, and Br, All	6H	bəvlossib bəvlossib	Sample Specific Notes:	1
MW-4D	7/31/2018	910	9	GW	9			×					
MW-5D	7/31/2018	830	O	QW.	6			×					
MW-12D	7/31/2018	940	O	GW.	65			×					
	1.5												
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	NO3; 5=NaOH;	6= Other		; F = filter in field	r in field		4	4	1	2	F 4		
* Civ 4! Dottles must be collected for Dodium for south and	aco 40th con	922											Ī

* Six 1L Bottles must be collected for Radium for every 10th sample.

** HCI must be Trace Metal Grade for Mercury analysis when samples cannot be delivered to the laboratory within 48 hours of sampling.

Special Instructions/QC Requirements & Comments:

Relinquished by: CAAA	Company: <i>F</i> 46 <i>i f</i>	Date/Time:/ 1400 P	Received by:	Date/Time:
Relinquished by:	Company:		Received by:	Date/Time:
Relinquished by:	Company:	Date/Time:	Received in Laboratory by	Date 7 19018 1445

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Dolan, Rev. 2, 11/02/16

MATER & WASTE SAMPLE RECEIPT FORM

	Package Type De	elivery Type
	Cooler Box Bag Envelope PONY	UPS FedEX USPS
	Other_	
	Plant/Customer Northeaster Number of Plant	astic Containers:
	Opened By Number of Gla	ass Containers:
Time!	Date/Time &-9-18 2:45 Number of Me	ercury Containers:
1	Were all temperatures within 0-6°C? Y / N or N/A Initial:	
1	(IR Gun Ser# 170779030 Expir. 11-06-19) - If No, specify	
	Was container in good condition? Y) / N Comments	W. Steelerman
	Was Chain of Custody received? Y N Comments If RUSH, who was	as notified?
	pH (15 min) Cr ⁺⁶ (pres) NO ₂ or NO ₃ (48 hr) o (24 hr)	
	Was COC filled out properly? YN Comments	
	Were samples labeled properly? (Y) N Comments	
	Were correct containers used? YN Comments	
	Was pH checked & Color Coding done R Y N or N/A In	nitial & Date: 450/2003 8-9-13
	- Was Add'l Preservative needed? Y N f Yes: By whom &	when:(See Prep Book)
	Is sample filtration requested? Y/N Comments	(See Prep Book)
		ed:
	0 - 1 - 0	
	Logged by	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 38097 Address: 502 N. Allen Avenue **Date Received:** 08/01/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 218133 Bv: KM **Collected Date:** 07/31/2018 Matrix: Water Cust Sample ID: MW-4D Location: Northeastern P.P.

M	leta	le i	171	있1	331

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	Q18	mg/L	0.00093	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Arsenic	Q18	mg/L	0.00105	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Barium	Q18	mg/L	0.00015	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Beryllium	Q18	mg/L	0.00002	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Boron	Q18	mg/L	0.00028	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cadmium	Q18	mg/L	0.00007	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Calcium	Q18	mg/L	0.0096	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Chromium	Q18	mg/L	0.00023	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cobalt	Q18	mg/L	0.00014	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lead	Q18	mg/L	0.00068	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lithium	Q18	mg/L	0.00013	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	08/03/2018 10:26	U	LNM
Molybdenum	Q18	mg/L	0.00029	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Selenium	Q18	mg/L	0.00099	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Thallium	Q18	mg/L	0.00086	1	EPA 6010B 1996	08/01/2018 10:04		Q18

water (210133)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	31	mg/L	0.219	1	EPA 300.0	08/08/2018 13:49		GB
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	08/08/2018 13:49	U	GB
Solids, Total Dissolved (TDS)	856	mg/L	2	1	SM 2540 C-2011	08/03/2018 16:00		LBH
Sulfate	294	mg/L	0.140	1:10	EPA 300.0	08/08/2018 14:45		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 38097 Address: 502 N. Allen Avenue Report ID

Contact: Jill Parker-Witt **Date Received:** 08/01/2018 Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 218134 Bv: KM **Collected Date:** 07/31/2018 Cust Sample ID: MW-5D Matrix: Water **Location:** Northeastern P.P.

	_	_	_			
N	leta	le i	121	Ω1	3/1	۱
ıv	ıcıa					,

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	Q18	mg/L	0.00093	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Arsenic	Q18	mg/L	0.00105	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Barium	Q18	mg/L	0.00015	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Beryllium	Q18	mg/L	0.00002	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Boron	Q18	mg/L	0.00028	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cadmium	Q18	mg/L	0.00007	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Calcium	Q18	mg/L	0.0096	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Chromium	Q18	mg/L	0.00023	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cobalt	Q18	mg/L	0.00014	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lead	Q18	mg/L	0.00068	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lithium	Q18	mg/L	0.00013	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	08/03/2018 10:34	U	LNM
Molybdenum	Q18	mg/L	0.00029	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Selenium	Q18	mg/L	0.00099	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Thallium	Q18	mg/L	0.00086	1	EPA 6010B 1996	08/01/2018 10:04		Q18

Water ((218134)	١
		_

valer (210134)											
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech			
Chloride	30	mg/L	0.219	1	EPA 300.0	08/08/2018 15:23		GB			
Fluoride	0.8769	mg/L	0.083	1	EPA 300.0	08/08/2018 15:23	J	GB			
Solids, Total Dissolved (TDS)	628	mg/L	2	1	SM 2540 C-2011	08/03/2018 16:00		LBH			
Sulfate	662	mg/L	0.140	1:10	EPA 300.0	08/08/2018 17:35		GB			

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 38097 Address: 502 N. Allen Avenue Report ID

Contact: Jill Parker-Witt **Date Received:** 08/01/2018 Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 218135 Bv: KM **Collected Date:** 07/31/2018 Cust Sample ID: MW-12D Matrix: Water **Location:** Northeastern P.P.

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	Q18	mg/L	0.00093	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Arsenic	Q18	mg/L	0.00105	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Barium	Q18	mg/L	0.00015	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Beryllium	Q18	mg/L	0.00002	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Boron	Q18	mg/L	0.00028	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cadmium	Q18	mg/L	0.00007	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Calcium	Q18	mg/L	0.0096	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Chromium	Q18	mg/L	0.00023	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cobalt	Q18	mg/L	0.00014	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lead	Q18	mg/L	0.00068	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lithium	Q18	mg/L	0.00013	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	08/03/2018 10:42	U	LNM
Molybdenum	Q18	mg/L	0.00029	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Selenium	Q18	mg/L	0.00099	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Thallium	Q18	mg/L	0.00086	1	EPA 6010B 1996	08/01/2018 10:04		Q18

Water (21813	35)

Mater (210153)											
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech			
Chloride	22	mg/L	0.219	1	EPA 300.0	08/08/2018 16:01		GB			
Fluoride	2.6173	mg/L	0.083	1	EPA 300.0	08/08/2018 16:01		GB			
Solids, Total Dissolved (TDS)	1034	mg/L	2	1	SM 2540 C-2011	08/03/2018 16:00		LBH			
Sulfate	662	mg/L	0.140	1:10	EPA 300.0	08/08/2018 17:35		GB			

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 38097 Address: 502 N. Allen Avenue Contact: Jill Parker-Witt **Date Received:** 08/01/2018

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 218136 **Collected Date:** 07/31/2018 Cust Sample ID: MW-14 Location: Northeastern P.P. Matrix: Water

Metals (218136)			B . I	D:: 40		1	•	T
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	Q18	mg/L	0.00093	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Arsenic	Q18	mg/L	0.00105	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Barium	Q18	mg/L	0.00015	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Beryllium	Q18	mg/L	0.00002	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Boron	Q18	mg/L	0.00028	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cadmium	Q18	mg/L	0.00007	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Calcium	Q18	mg/L	0.0096	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Chromium	Q18	mg/L	0.00023	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cobalt	Q18	mg/L	0.00014	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lead	Q18	mg/L	0.00068	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lithium	Q18	mg/L	0.00013	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Mercury	0.000008	mg/L	0.000005	1	EPA 7470A 1994	08/03/2018 10:45	J	LNM
Molybdenum	Q18	mg/L	0.00029	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Selenium	Q18	mg/L	0.00099	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Thallium	Q18	mg/L	0.00086	1	EPA 6010B 1996	08/01/2018 10:04		Q18

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 38097 Address: 502 N. Allen Avenue Report ID **Date Received:** 08/01/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 218137 **Collected Date:** 07/31/2018 Cust Sample ID: MW-17 Location: Northeastern P.P. Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Motole (219127)

Metals (218137)			T			1		
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	Q18	mg/L	0.00093	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Arsenic	Q18	mg/L	0.00105	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Barium	Q18	mg/L	0.00015	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Beryllium	Q18	mg/L	0.00002	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Boron	Q18	mg/L	0.00028	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cadmium	Q18	mg/L	0.00007	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Calcium	Q18	mg/L	0.0096	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Chromium	Q18	mg/L	0.00023	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cobalt	Q18	mg/L	0.00014	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lead	Q18	mg/L	0.00068	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lithium	Q18	mg/L	0.00013	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	08/03/2018 10:48	U	LNM
Molybdenum	Q18	mg/L	0.00029	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Selenium	Q18	mg/L	0.00099	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Thallium	Q18	mg/L	0.00086	1	EPA 6010B 1996	08/01/2018 10:04		Q18

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 38097 Address: 502 N. Allen Avenue Report ID

Contact: Jill Parker-Witt **Date Received:** 08/01/2018 Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 218138 Collected Date: 07/31/2018 Bv: KM Location: Northeastern P.P. Matrix: Water Cust Sample ID: Duplicate

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	Q18	mg/L	0.00093	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Arsenic	Q18	mg/L	0.00105	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Barium	Q18	mg/L	0.00015	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Beryllium	Q18	mg/L	0.00002	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Boron	Q18	mg/L	0.00028	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cadmium	Q18	mg/L	0.00007	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Calcium	Q18	mg/L	0.0096	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Chromium	Q18	mg/L	0.00023	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cobalt	Q18	mg/L	0.00014	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lead	Q18	mg/L	0.00068	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lithium	Q18	mg/L	0.00013	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	08/03/2018 10:50	U	LNM
Molybdenum	Q18	mg/L	0.00029	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Selenium	Q18	mg/L	0.00099	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Thallium	Q18	mg/L	0.00086	1	EPA 6010B 1996	08/01/2018 10:04		Q18
			*			· ·		

Water ((218138))

Water (210130)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	30	mg/L	0.219	1	EPA 300.0	08/08/2018 16:38		GB
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	08/08/2018 16:38	U	GB
Solids, Total Dissolved (TDS)	860	mg/L	2	1	SM 2540 C-2011	08/03/2018 16:00		LBH
Sulfate	292	mg/L	0.140	1:10	EPA 300.0	08/08/2018 17:54		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 38097 Address: 502 N. Allen Avenue Report ID **Date Received:** 08/01/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 218139 Bv: KM **Collected Date:** 07/31/2018 Cust Sample ID: Equipment Blank Location: Northeastern P.P. Matrix: Water

Metals (218139)			B . I	D:: 40		1	•	T
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	Q18	mg/L	0.00093	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Arsenic	Q18	mg/L	0.00105	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Barium	Q18	mg/L	0.00015	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Beryllium	Q18	mg/L	0.00002	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Boron	Q18	mg/L	0.00028	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cadmium	Q18	mg/L	0.00007	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Calcium	Q18	mg/L	0.0096	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Chromium	Q18	mg/L	0.00023	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cobalt	Q18	mg/L	0.00014	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lead	Q18	mg/L	0.00068	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lithium	Q18	mg/L	0.00013	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	08/03/2018 10:53	U	LNM
Molybdenum	Q18	mg/L	0.00029	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Selenium	Q18	mg/L	0.00099	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Thallium	Q18	mg/L	0.00086	1	EPA 6010B 1996	08/01/2018 10:04		Q18

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 38097 Date Received: 08/01/2018 Company: SEP - Environmental (JP-W)

Contact: Jill Parker-Witt

Address: 502 N. Allen Avenue

Phone: (318) 673-3816

Shreveport, LA 71101 **Fax:** (318) 673-3960

Quality Control Data

* Quality control units are the same as reported analytical results

			Blank		Standard			Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
8/8/2018	Chloride	218155	<0.219	20	20	100.0	20	11	55.0		0.0	GB
8/8/2018	Chloride		<0.219									GB
8/8/2018	Chloride			20	20	100.0						GB
8/8/2018	Fluoride	218155	<0.083	10	11	110.0	10	10	100.0		0.0	GB
8/8/2018	Fluoride		<0.083									GB
8/8/2018	Fluoride			10	11	110.0						GB
8/3/2018	Mercury	218132.1	<0.00000	0.001	0.0008533	85.3	0.001	0.0010354	103.5		10.6	LNM
8/3/2018	Solids, Total Dissolved (TDS)	218133	<2	95.33	102	107.0	2212	2168	98.0		1.9	LBH
8/8/2018	Sulfate	218155	<0.140	20	18	90.0	20	11	55.0		0.0	GB
8/8/2018	Sulfate		<0.140									GB
8/8/2018	Sulfate			20	18	90.0						GB

Code Code Description

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

U Analyte concentration below MDL.

11-Oct-18

nger

ndra D. Wallace

Report Date

Shreveport Chemical Laboratory (SCL)

Chain of Custody Record

ות	73	T)	(0	*	To											CO	C	0	ד		_	_
Relinquished by:	Relinquished by:	Relinquished by: WTM	Special Instructions/QC Requirements & Comments:	Six 1L Bottles must be collected for Radium for every 10th sample	Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other			EQUIPMENT BLANK	DUPLICATE	MW-17	MW-14	MW-12D	MW-5D	MW-4D	Sample Identification	Sampler(s): Kenneth McDonald		Contact Name: Jill Parker-Witt	Project Name: Northeastern PP CCR	Contacts: John Davis (318-673-3811)	Shreveport, LA 71101	502 N. Allen Ave.
Company:	Company:	Company: CAGU	ts:	every 10th s	NO3; 5=NaC			7/31/2018	7/31/2018	7/31/2018	7/31/2018	7/31/2018	7/31/2018	7/31/2018	Sample Date		© Rout	Analysis T				
		Jugo		sample.)H; 6= Oth			1000	910	850	810	940	830	910	Samp l e Time		line (28 da	urnaround				
					ner			6	G	G	G	G	G	G	Sample Type (C=Comp, G=Grab)		 Routine (28 days for Monitoring Wells) 	Analysis Turnaround Time (in Calendar Days)			_	
Date/Time:	Date/Time:	Date/Time: 08/01/19						GW	GW	GW	GW	GW	GW	GW	Matrix		toring We	alendar C			Program:	9
me:	me:				F= filter in field			_	Ni	_	_	2	2	N	# of Cont.		ils)	ays)		1 (0		
	10.	1003		į	eld										Sampler(s) Ini	tials				Site Contact:	Com	9
Received in	Received by:	Received by			4			×	×	×	×	×	×	×	B, Ca, Sb, As Cd, Cr, Co, F Mo, Se, TL	s, Ba, Be, b, Li, Hg,	HNO3		500 mL	act:	oustion R	Anone
Received in Laboratory by:	•••				F4										dissolved Fo	e and Mn	HNO3	bottle, then	Field-filter 500 mL		Coal Combustion Residuals (CCR)	
y:					-				×			×	×	×	TDS, F, CI	SO4	Cool, 0-6C	bottle,			(CCR)	2
				:	4										Ra-226, Ra	a-228	pH<2, HNO3	10th*) 1	Three	Date:		
			I							-	-	\vdash		\vdash						-		
D ₂	D	D						2	2	2	2	2	2	2						8		
Date/Time:	Date/Time:	8/1/1/8 10:04						218139	219139,1-218158.7	218137	218136	18135.1-218135 2	218134.1 - 24134-2	218133.1-218133.7	Sample Specific Notes:		(11, 28cc)	11100 1001	C. A.	COC/Order #		
									l													

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type	Delivery Type									
Ice Chest Bag Action Pak PCB Mailer Bottle	UPS	FEDEX	US Mail	Walk in	Shuttle					
Other	Othe	er								
	Tracking #	‡	9							
Client			ample Matri	x						
Received By Received Date 8/1/18	DGA	PCB Oil	Water	Oil	Soil					
Received Date Open Date ### Style="background-color: blue;">	– Solid	Liquid	Other							
Container Temp Read Thermometer Serial #F04103	_	Project I.D.	38097	7	_					
Corrected Temp 4/.Z	_ Were sa	amples receive	ed on ice? (YES	NO					
Did container arrive in good condition? (YES	NO			-					
Was sample documentation received?	YES	NO								
Was documentation filled out properly?	YES	NO								
Were samples labeled properly?	YES	NO			- XXII 486 - 1					
Were correct containers used?	YES	NO								
Were the pH's of samples appropriately checked?	YES	NO								
Total number of sample containers	_			2298						
Was any corrective action taken?	NO	Person Cor Date & Tim		***						
Comments		Date & III								
		- 75								
		241.1								

Sample ID	Analysis	рН	Preservative Added / Lot #
MW-4D	Metals		
MW-SD			
MW-1SD			
MW-14			
MW-17			
Duplicate			
Egyipment Blank			
<i>V</i> ,			
			/
			/
			/
			/
	"		/
			1

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station

Report Date: 10/11/2018

MW-4D

Sample Number: 182919-001 Date Collected: 07/31/2018 09:10 Date Received: 8/23/2018

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.05	ug/L		0.05	0.01	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.25	ug/L		0.05	0.01	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Barium, Ba	173	ug/L		0.1	0.02	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.01	ug/L	J	0.02	0.004	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Boron, B	1.04	mg/L		0.005	0.001	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.04	ug/L		0.02	0.005	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	196	mg/L		0.02	0.004	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	< 0.007	ug/L	U	0.05	0.007	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.521	ug/L		0.02	0.004	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.130	ug/L		0.02	0.004	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00315	mg/L		0.0002	0.00006	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	4.59	ug/L		0.1	0.02	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.2	ug/L		0.1	0.03	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.02	ug/L	J	0.05	0.01	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4

MW-5D

Sample Number: 182919-002 Date Collected: 07/31/2018 08:30 Date Received: 8/23/2018

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.16 ug/L		0.05	0.01	GES	09/26/2018 18:36	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.27 ug/L		0.05	0.01	GES	09/26/2018 18:36	EPA 200.8-1994, Rev. 5.4
Barium, Ba	143 ug/L		0.1	0.02	GES	09/26/2018 18:36	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.103 ug/L		0.02	0.004	GES	09/26/2018 18:36	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.21 ug/L		0.02	0.005	GES	09/26/2018 18:36	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.355 ug/L		0.05	0.007	GES	09/26/2018 18:36	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.482 ug/L		0.02	0.004	GES	09/26/2018 18:36	EPA 200.8-1994, Rev. 5.4
Lead, Pb	1.43 ug/L		0.02	0.004	GES	09/26/2018 18:36	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	1.21 ug/L		0.1	0.02	GES	09/26/2018 18:36	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.4 ug/L		0.1	0.03	GES	09/26/2018 18:36	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.02 ug/L	J	0.05	0.01	GES	09/26/2018 18:36	EPA 200.8-1994, Rev. 5.4
Boron, B	0.491 mg/L		0.005	0.002	DAM	09/20/2018 11:10	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	142 mg/L		0.02	0.005	DAM	09/20/2018 11:10	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0.011 mg/L		0.001	0.0002	DAM	09/20/2018 11:10	SW-846 6010C-2007, Rev. 3.0

Location: Northeastern Station Report Date: 10/11/2018

MW-12D

Sample Number: 182919-003 Date Collected: 07/31/2018 09:40 Date Received: 8/23/2018

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.11 ug/L		0.05	0.01	GES	09/26/2018 18:41	EPA 200.8-1994, Rev. 5.4
Arsenic, As	3.00 ug/L		0.05	0.01	GES	09/26/2018 18:41	EPA 200.8-1994, Rev. 5.4
Barium, Ba	42.0 ug/L		0.1	0.02	GES	09/26/2018 18:41	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.053 ug/L		0.02	0.004	GES	09/26/2018 18:41	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.07 ug/L		0.02	0.005	GES	09/26/2018 18:41	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.414 ug/L		0.05	0.007	GES	09/26/2018 18:41	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.674 ug/L		0.02	0.004	GES	09/26/2018 18:41	EPA 200.8-1994, Rev. 5.4
Lead, Pb	2.32 ug/L		0.02	0.004	GES	09/26/2018 18:41	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	818 ug/L		0.1	0.02	GES	09/26/2018 18:41	EPA 200.8-1994, Rev. 5.4
Selenium, Se	1.7 ug/L		0.1	0.03	GES	09/26/2018 18:41	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.106 ug/L		0.05	0.01	GES	09/26/2018 18:41	EPA 200.8-1994, Rev. 5.4
Boron, B	8.72 mg/L		0.005	0.002	DAM	09/20/2018 11:13	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	108 mg/L		0.02	0.005	DAM	09/20/2018 11:13	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0.006 mg/L		0.001	0.0002	DAM	09/20/2018 11:13	SW-846 6010C-2007, Rev. 3.0

MW-14

Sample Number: 182919-004 Date Collected: 07/31/2018 08:10 Date Received: 8/23/2018

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	1.35 ug/L		0.05	0.01	GES	09/26/2018 18:46	EPA 200.8-1994, Rev. 5.4
Arsenic, As	0.58 ug/L		0.05	0.01	GES	09/26/2018 18:46	EPA 200.8-1994, Rev. 5.4
Barium, Ba	172 ug/L		0.1	0.02	GES	09/26/2018 18:46	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.029 ug/L		0.02	0.004	GES	09/26/2018 18:46	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.18 ug/L		0.02	0.005	GES	09/26/2018 18:46	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	< 0.007 ug/L	U	0.05	0.007	GES	09/26/2018 18:46	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	2.63 ug/L		0.02	0.004	GES	09/26/2018 18:46	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.037 ug/L		0.02	0.004	GES	09/26/2018 18:46	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	27.8 ug/L		0.1	0.02	GES	09/26/2018 18:46	EPA 200.8-1994, Rev. 5.4
Selenium, Se	3.5 ug/L		0.1	0.03	GES	09/26/2018 18:46	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.05 ug/L	J	0.05	0.01	GES	09/26/2018 18:46	EPA 200.8-1994, Rev. 5.4
Boron, B	1.50 mg/L		0.005	0.002	DAM	09/20/2018 11:16	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	68.0 mg/L		0.02	0.005	DAM	09/20/2018 11:16	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0.362 mg/L		0.001	0.0002	DAM	09/20/2018 11:16	SW-846 6010C-2007, Rev. 3.0

Location: Northeastern Station Report Date: 10/11/2018

MW-17

Sample Number: 182919-005 Date Collected: 07/31/2018 08:50 Date Received: 8/23/2018

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.28 ug/L		0.05	0.01	GES	09/26/2018 18:51	EPA 200.8-1994, Rev. 5.4
Arsenic, As	0.28 ug/L		0.05	0.01	GES	09/26/2018 18:51	EPA 200.8-1994, Rev. 5.4
Barium, Ba	39.5 ug/L		0.1	0.02	GES	09/26/2018 18:51	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.005 ug/L	J	0.02	0.004	GES	09/26/2018 18:51	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.10 ug/L		0.02	0.005	GES	09/26/2018 18:51	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	< 0.007 ug/L	U	0.05	0.007	GES	09/26/2018 18:51	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	1.84 ug/L		0.02	0.004	GES	09/26/2018 18:51	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.056 ug/L		0.02	0.004	GES	09/26/2018 18:51	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	8.66 ug/L		0.1	0.02	GES	09/26/2018 18:51	EPA 200.8-1994, Rev. 5.4
Selenium, Se	5.4 ug/L		0.1	0.03	GES	09/26/2018 18:51	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.057 ug/L		0.05	0.01	GES	09/26/2018 18:51	EPA 200.8-1994, Rev. 5.4
Boron, B	0.843 mg/L		0.005	0.002	DAM	09/20/2018 11:31	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	234 mg/L		0.02	0.005	DAM	09/20/2018 11:31	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0.017 mg/L		0.001	0.0002	DAM	09/20/2018 11:31	SW-846 6010C-2007, Rev. 3.0

Duplicate

Sample Number: 182919-006 Date Collected: 07/31/2018 09:10 Date Received: 8/23/2018

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.06 ug/L		0.05	0.01	GES	09/26/2018 18:56	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.27 ug/L		0.05	0.01	GES	09/26/2018 18:56	EPA 200.8-1994, Rev. 5.4
Barium, Ba	180 ug/L		0.1	0.02	GES	09/26/2018 18:56	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.02 ug/L	J	0.02	0.004	GES	09/26/2018 18:56	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.05 ug/L		0.02	0.005	GES	09/26/2018 18:56	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.03 ug/L	J	0.05	0.007	GES	09/26/2018 18:56	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.620 ug/L		0.02	0.004	GES	09/26/2018 18:56	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.206 ug/L		0.02	0.004	GES	09/26/2018 18:56	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	4.71 ug/L		0.1	0.02	GES	09/26/2018 18:56	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.2 ug/L		0.1	0.03	GES	09/26/2018 18:56	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.02 ug/L	J	0.05	0.01	GES	09/26/2018 18:56	EPA 200.8-1994, Rev. 5.4
Boron, B	1.01 mg/L		0.005	0.002	DAM	09/20/2018 11:34	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	163 mg/L		0.02	0.005	DAM	09/20/2018 11:34	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0.007 mg/L		0.001	0.0002	DAM	09/20/2018 11:34	SW-846 6010C-2007, Rev. 3.0

Location: Northeastern Station Report Date: 10/11/2018

Equipment Blank

Sample Number: 182919-007 Date Collected: 07/31/2018 10:00 Date Received: 8/23/2018

P	D 14	1124-	Data	ы	MDI	Associate Dec	Analosis Data (Time	Made and
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	< 0.01	ug/L	U	0.05	0.01	GES	09/26/2018 19:01	EPA 200.8-1994, Rev. 5.4
Arsenic, As	< 0.01	ug/L	U	0.05	0.01	GES	09/26/2018 19:01	EPA 200.8-1994, Rev. 5.4
Barium, Ba	0.06	ug/L	J	0.1	0.02	GES	09/26/2018 19:01	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.004	ug/L	U	0.02	0.004	GES	09/26/2018 19:01	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.005	ug/L	U	0.02	0.005	GES	09/26/2018 19:01	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	< 0.007	ug/L	U	0.05	0.007	GES	09/26/2018 19:01	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.01	ug/L	J	0.02	0.004	GES	09/26/2018 19:01	EPA 200.8-1994, Rev. 5.4
Lead, Pb	< 0.004	ug/L	U	0.02	0.004	GES	09/26/2018 19:01	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	0.17	ug/L		0.1	0.02	GES	09/26/2018 19:01	EPA 200.8-1994, Rev. 5.4
Selenium, Se	< 0.03	ug/L	U	0.1	0.03	GES	09/26/2018 19:01	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.01	ug/L	U	0.05	0.01	GES	09/26/2018 19:01	EPA 200.8-1994, Rev. 5.4
Boron, B	0.034	mg/L		0.005	0.002	DAM	09/20/2018 11:38	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	0.029	mg/L		0.02	0.005	DAM	09/20/2018 11:38	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0.002	mg/L		0.001	0.0002	DAM	09/20/2018 11:38	SW-846 6010C-2007, Rev. 3.0

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

Michael Ohlinger, Chemist

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Chain of Custody Record

Dolan Chemical Laboratory (DCL)

4001 Bixby Road

Groveport, Ohio 43125				Progra	am: Cc	oal Comb	ustion F	Program: Coal Combustion Residuals (CCR)	(CCR)				
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)					is.	Site Contact:				Date:		For Lab Use Only: COC/Order #:	
Project Name:Northeastern PP CCR Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816	Analysis T	urnaround '	Analysis Turnaround Time (in Calendar Days)	indar Day	(s)	256 bo ph ph	250 mL (s bottle, pH<2, 11 HNO3 pH	Three (six every 10th*) 1L bottles, pH<2, HNO3	To the Second Se	40 mL Glass vial or 260 mL PTFE lined bottle, HCL**,	Field-filter 250 mL bottle, then pH<2, HNO3	182919	
Sampler(s) Kenneth McDonald						,98 ,68 ,	, Li, Mo,	822-					
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) Init	Cd, Cr, Co, Pl Se, Tl	F8 -2226, Ra	TDS. F. CI.	бН	bevlossib A bevlossib	Sample Specific Notes:	
MW-4D	7/31/2018	910	O	GW	-		×						
MW-5D	7/31/2018	830	9	GW	-		×						
MW-12D	7/31/2018	940	9	GW	-		×						T
MW-14	7/31/2018	810	9	GW	-		×						Т
MW-17	7/31/2018	850	9	GW	-		×						
DUPLICATE	7/31/2018	910	g	GW	-		×						1
EQUIPMENT BLANK	7/31/2018	1000	9	GW	1		×						Т
													T^{T}
			ľ	.11				!					
													T
													$\overline{}$
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	403; 5=NaOH	; 6= Other		; F = filter in field	in field		4	4	1	2	F4		
* C		•											ľ

Six 1L Bottles must be collected for Radium for every 10th sample.

Special Instructions/QC Requirements & Comments:

_						
J	Reinfluished by: Ballil	Company	Date/Time: 8-20-79 0853	Received by:	Date/Time:	
	Relinquished by:	Company:	Date/Time:	Received by:	Date/Time:	
	Relinquished by:	Company:	Date/Time:	Received in paparation by:	Date/Time: 81/35/135/13	5
	Form COC 04 AED Chair of Carted (COC) Barrell for Carte and Carte Barrell and Carte Barrelll and Carte Barrell and Carte Barrell and Carte Barrell and Carte	A feet Care the state of the Care the	0 1000			

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Dolan, Rev. 2, 11/02/16

^{**} HCI must be Trace Metal Grade for Mercury analysis when samples cannot be delivered to the laboratory within 48 hours of sampling.

WATER & WASTE SAMPLE RECEIPT FORM

	Package Type		Delivery Type	
	Cooler Box Bag Envelop	96	PONY (JPS) FedE	X USPS
		,	Other	na nasarahna 7 a manahar na wakan na singara
	Plant/Customer Shflvepor:	+ Lub	Number of Plastic Container	S
	Opened By M50	TOTO TO THE STREET	Number of Glass Containers	1
	Date/Time 8/23/18 8:3	5Am	Number of Mercury Containe	ers:
	Were all temperatures within 0-6°C			
Ŧ	(IR Gun Ser# 170179036 Expir. Was container in good condition?			
	Was Chain of Custody received?	_		
	Requested turnaround:	- N	If RUSH, who was notified?	
	pH (15 min) Cr ⁺⁶ (pres) (24 hr)	NO ₂ or N	O ₃ (48 hr) ortho-PO ₄ (48 hr)	Hg-diss (pres) (48 hr)
	Was COC filled out properly?	W/N	Comments	
	Were samples labeled properly?	DIN	Comments	
	Were correct containers used? (M	Comments	
	Was pH checked & Color Coding d	ione? Y	N or N/A Initial & Date:	
	- Was Add'l Preservative needed?	Y /N If	Yes: By whom & when:	(See Prep Book)
	Is sample filtration requested?	YID	Comments	(See Prep Book)
	Was the customer contacted?	lf Yes:	Person Contacted:	
	182919 #U10161	Initial &	Date & Time :	h dh'a dhar il an fhàinn ann ann ban nìoth naoinn, air a' prình ba dh'ainnig air bàirn airt a ghlibheann a
	Logged by M55		is:	
	Reviewed by Marian and American and American	namenyi daribidada dari		Billions philippe and the confidence of the conf

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Date Received: 08/30/2018

AEP ANALYTICAL CHEMISTRY SERVICES Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 38260 Report ID

Contact: Jill Parker-Witt

Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

Address: 502 N. Allen Avenue

Bv: KM AEP Sample ID: 218925 **Collected Date:** 08/30/2018 Cust Sample ID: MW-4D **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (218925)

motare (210020)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	0.000007	mg/L	0.000005	1	EPA 7470A 1994	09/14/2018 10:38	J	LNM
Water (218925)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	29	mg/L	0.219	1	EPA 300.0	10/04/2018 14:23	H1	GB
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	10/04/2018 14:23	H1,U	GB
Solids, Total Dissolved (TDS)	886	mg/L	2	1	SM 2540 C-2011	09/04/2018 16:15		JTD
Sulfate	267	mg/L	0.140	1:10	EPA 300.0	10/04/2018 14:42	H1	GB

AEP Sample ID: 218926 **Collected Date:** 08/30/2018 By: KM Matrix: Water

Cust Sample ID: MW-5D Location: Northeastern Power Plant

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (218926)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	0.000006	mg/L	0.000005	1	EPA 7470A 1994	09/14/2018 10:41	J	LNM
Water (218926)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	30	mg/L	0.219	1	EPA 300.0	10/04/2018 15:01	H1	GB
Fluoride	0.7931	mg/L	0.083	1	EPA 300.0	10/04/2018 15:01	H1,J	GB
Solids, Total Dissolved (TDS)	648	mg/L	2	1	SM 2540 C-2011	09/04/2018 16:15		JTD
Sulfate	130	mg/L	0.140	1:10	EPA 300.0	10/04/2018 15:20	H1	GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 38260 Address: 502 N. Allen Avenue Report ID **Date Received:** 08/30/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM **Collected Date:** 08/30/2018 AEP Sample ID: 218927 Cust Sample ID: MW-12D **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals	(218927)
--------	----------

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/14/2018 10:49	U	LNM
Water (218927)			į					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	21	mg/L	0.219	1	EPA 300.0	10/04/2018 15:38	H1	GB
Fluoride	2.3093	mg/L	0.083	1	EPA 300.0	10/04/2018 15:38	H1	GB
Solids, Total Dissolved (TDS)	1050	mg/L	2	1	SM 2540 C-2011	09/04/2018 16:15		JTD
Sulfate	590	mg/L	0.140	1:10	EPA 300.0	10/04/2018 15:57	H1	GB

AEP Sample ID: 218928 **Collected Date:** 08/30/2018 By: KM

Location: Northeastern Power Plant Cust Sample ID: MW-14 Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (218928)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/14/2018 11:06	U	LNM

Collected Date: 08/30/2018 By: KM AEP Sample ID: 218929 Matrix: Water

Cust Sample ID: Duplicate Location: Northeastern Power Plant Sample Desc.: Coal Combustion Residuals (CCR)

Metals (218929)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/18/2018 9:35	U	LNM
Water (218929)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Old cold	0.0		0.040	4	EDA 000 0	40/04/0040 40 40	1.14	00

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	30	mg/L	0.219	1	EPA 300.0	10/04/2018 16:16	H1	GB
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	10/04/2018 16:16	H1,U	GB
Solids, Total Dissolved (TDS)	868	mg/L	2	1	SM 2540 C-2011	09/04/2018 16:15		JTD
Sulfate	265	mg/L	0.140	1:10	EPA 300.0	10/04/2018 16:35	H1	GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 38260 Address: 502 N. Allen Avenue Report ID **Date Received:** 08/30/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Collected Date: 08/30/2018 Bv: KM AEP Sample ID: 218930 Cust Sample ID: Equipment Blank **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (218930)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/14/2018 11:14	U	LNM

Quality Control Data

* Quality control units are the same as reported analytical results

		Quanty	control units	s are the sar	ne as reported	i anaryticar	iesuits					
			Blank		Standard			Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
10/4/2018	Chloride	218987	<0.219	20	23	115.0	20	22	110.0		0.0	GB
10/4/2018	Chloride		<0.219									GB
10/4/2018	Fluoride	218897	<0.083	10	10	100.0	10	10	100.0		0.0	GB
10/4/2018	Fluoride		<0.083									GB
9/14/2018	Mercury	218927.2	<0.00000	0.001	0.00097	97.0	0.001	0.0009754	97.5		0.5	LNM
9/14/2018	Mercury	218890.1	<0.00000	0.001	0.0008940	89.4	0.001	0.0010291	102.9		0.6	LNM
9/18/2018	Mercury	218929.2	<0.00000	0.001	0.00108	108.0	0.001	0.0009299	93.0		2.3	LNM
9/18/2018	Mercury	218910.2	<0.00000	0.001	0.0008968	89.7	0.001	0.0010450	104.5		12.7	LNM
9/18/2018	Mercury	218900.1	<0.00000	0.001	0.00108	108.0	0.001	0.0011062	110.6		4.1	LNM
9/4/2018	Solids, Total Dissolved (TDS)	218926	<2	94	102	108.5	2824	2760	97.7		3.3	JTD
10/4/2018	Sulfate	218897	<0.140	20	19	95.0	20	20	100.0		0.0	GB
10/4/2018	Sulfate		<0.140									GB

Code Description Code

- H1 Sample analysis performed past holding time
- J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).
- U Analyte concentration below MDL.

ndra D. Wallace

05-Oct-18

Report Date

Shreveport Chemical Laboratory (SCL)

Chain of Custody Record

502 N. Allen Ave.

Relinquished by: HAM Special Instructions/QC Requirements & Comments: Relinquished by: Preservation Used: 1= lce, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Sampler(s): Kenneth McDonald Contact Name: Relinquished by: Contact Phone: Project Name: Northeastern PP CCR Six 1L Bottles must be collected for Radium for every 10th sample. Contacts: Shreveport, LA 71101 Sample Identification John Davis (318-673-3811) Jonathan Barnhill (318-673-3803) EQUIPMENT BLANK Jill Parker-Witt 318-673-3816 DUPLICATE MW-14 MW-12D MW-5D MW-4D Company CAGIL Company: Company: Sample Date 8/30/2018 8/30/2018 8/30/2018 8/30/2018 8/30/2018 8/30/2018 Analysis Turnaround Time (in Calendar Days) Routine (28 days for Monitoring Wells) Sample Time 815 830 900 830 800 845 Type (C=Comp, G=Grab) Sample G G Ø G 0 G 9/14/18 Program: Coal Combustion Residuals (CCR) Date/Time: 1532 Matrix Date/Time: Date/Time: gw W GW. gW GW GW GW W GW F= filter in field # of Cont. _ N N N Ŋ Site Contact: Sampler(s) Initials Redeived in Laboratory by: Received by: Received by: 500 mL bottle, pH<2, HNO3 Mercury 4 × × × × \times × bottle, then pH<2, HNO3 Field-filter 500 mL dissolved Fe and Mn F4 t L bottle, Cool, 0-6C **TDS, F, CI, SO4** × × × × Three (six every 10th*) L bottles, pH<2, HNO3 Ra-226, Ra-228 Date: COC/Order #: Date/Time: Date/Time: 21/229.1-118927.1-218936. 24430 218925,1-219925 18928 Sample Specific Notes: For Lab Use Only: 21476-7

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type	Delivery Type
(see Chest) Bag Action Pak PCB Mailer Bottle	UPS FEDEX US Mail Walk in Shuttle
Other	Other
	Tracking #
Client Jill Parker,	Sample Matrix
Received By 2018	DGA PCB Oil Water Oil Soil
Received Date Open Date	Solid Liquid Other
/	2C2 C d
Container Temp Read 23,0°C Thermometer Serial #F04103	Project I.D. 38 Hall
Correction Factor +\.2	Were samples received on ice? YES NO
Corrected Temp 4.2°C	
Did container arrive in good condition?	YES NO
Was sample documentation received?	(VES) NO
Was documentation filled out properly?	YES) NO
vvas accumentation mica out property:	10
Were samples labeled properly?	YES NO
Were correct containers used?	YES NO
Were the pH's of samples appropriately checked?	(YES) NO
Total number of sample containers	
Was any corrective action taken?	NO Person Contacted
	Date & Time
Comments	
7	

Sample ID	Analysis	рН	Preservative Added / Lot #
a Pumi	Ha	iz	/
1WW-5D			
DS1-WM			
MW-14			
		·	
Blank	+	1	/
			/
			/
			, /
	is.		
87			<u> </u>

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 10/1/2018

MW-4D

Sample Number: 183093-001 Date Collected: 08/30/2018 08:30 Date Received: 9/5/2018

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.10	ug/L		0.05	0.01	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.60	ug/L		0.05	0.01	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Barium, Ba	163	ug/L		0.1	0.02	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.049	ug/L		0.02	0.004	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.11	ug/L		0.02	0.005	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.551	ug/L		0.05	0.007	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.807	ug/L		0.02	0.004	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.804	ug/L		0.02	0.004	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	4.48	ug/L		0.1	0.02	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.3	ug/L		0.1	0.03	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.02	ug/L	J	0.05	0.01	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Boron, B	1.26	mg/L		0.005	0.001	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	183	mg/L		0.02	0.004	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00296	mg/L		0.0002	0.00006	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	0.453	pCi/L	0.19	0.63	jls	9/24/2018	SW-846 9320-2014,Rev. 1.0
The LFBD spike recov	ery is outside th	e established	range of 75-125%. A	ll other QC ass	ociated with this ba	tch is acceptable.	
Radium-226	0.459	pCi/L	0.094	0.14	jls	9/27/2018	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the established range of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

MW-5D

Sample Number: 183093-002 Date Collected: 08/30/2018 08:15 Date Received: 9/5/2018

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.10	ug/L		0.05	0.01	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Arsenic, As	0.98	ug/L		0.05	0.01	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Barium, Ba	111	ug/L		0.1	0.02	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.076	ug/L		0.02	0.004	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.10	ug/L		0.02	0.005	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.518	ug/L		0.05	0.007	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.300	ug/L		0.02	0.004	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.706	ug/L		0.02	0.004	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	1.24	ug/L		0.1	0.02	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.3	ug/L		0.1	0.03	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.04	ug/L	J	0.05	0.01	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Boron, B	0.520	mg/L		0.005	0.001	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	158	mg/L		0.02	0.004	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0112	mg/L		0.0002	0.00006	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	2.17	pCi/L	0.18	0.50	jls	9/24/2018	SW-846 9320-2014,Rev. 1.0
The LFBD spike recov	ery is outside th	e established	range of 75-125%. A	ll other QC ass	ociated with this ba	tch is acceptable.	
Radium-226	0.736	pCi/L	0.12	0.13	jls	9/27/2018	SW-846 9315-1986,Rev. 0

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

MW-12D

Sample Number: 183093-003 Date Collected: 08/30/2018 08:45 Date Received: 9/5/2018

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.20	ug/L		0.05	0.01	GES	09/20/2018 03:18	EPA 200.8-1994, Rev. 5.4
Arsenic, As	3.39	ug/L		0.05	0.01	GES	09/20/2018 03:18	EPA 200.8-1994, Rev. 5.4
Barium, Ba	65.8	ug/L		0.1	0.02	GES	09/20/2018 03:18	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.097	ug/L		0.02	0.004	GES	09/20/2018 03:18	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.31	ug/L		0.02	0.005	GES	09/20/2018 03:18	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	1.82	ug/L		0.05	0.007	GES	09/20/2018 03:18	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	2.17	ug/L		0.02	0.004	GES	09/20/2018 03:18	EPA 200.8-1994, Rev. 5.4
Lead, Pb	5.43	ug/L		0.02	0.004	GES	09/20/2018 03:18	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	872	ug/L		0.1	0.02	GES	09/20/2018 03:18	EPA 200.8-1994, Rev. 5.4
Selenium, Se	3.1	ug/L		0.1	0.03	GES	09/20/2018 03:18	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.241	ug/L		0.05	0.01	GES	09/20/2018 03:18	EPA 200.8-1994, Rev. 5.4
Boron, B	9.71	mg/L		0.005	0.001	GES	09/20/2018 03:18	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	141	mg/L		0.02	0.004	GES	09/20/2018 03:18	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00396	mg/L		0.0002	0.00006	GES	09/20/2018 03:18	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	2.35	pCi/L	0.17	0.48	jls	9/24/2018	SW-846 9320-2014,Rev. 1.0
The LFBD spike recove	ery is outside th	e established	range of 75-125%. A	I other QC ass	ociated with this ba	tch is acceptable.	
Radium-226	0.787	pCi/L	0.12	0.10	jls	9/27/2018	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the established range of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

MW-14

Sample Number: 183093-004 Date Collected: 08/30/2018 08:00 Date Received: 9/5/2018

			Data					
Parameter	Result I	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	1.61 u	ug/L		0.05	0.01	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Arsenic, As	0.57 ι	ug/L		0.05	0.01	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Barium, Ba	153 ເ	ug/L		0.1	0.02	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.034 ι	ug/L		0.02	0.004	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.21 ເ	ug/L		0.02	0.005	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.286 ເ	ug/L		0.05	0.007	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	1.71 u	ug/L		0.02	0.004	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Lead, Pb	1.06 ເ	ug/L		0.02	0.004	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	31.7 u	ug/L		0.1	0.02	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Selenium, Se	2.2 ι	ug/L		0.1	0.03	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.03 ι	ug/L	J	0.05	0.01	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Boron, B	2.09 r	mg/L		0.005	0.001	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	181 r	mg/L		0.02	0.004	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.380 r	mg/L		0.0002	0.00006	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Duplicate

Sample Number: 183093-005 Date Collected: 08/30/2018 08:30 Date Received: 9/5/2018

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.10	ug/L		0.05	0.01	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.69	ug/L		0.05	0.01	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Barium, Ba	166	ug/L		0.1	0.02	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.060	ug/L		0.02	0.004	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.14	ug/L		0.02	0.005	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.549	ug/L		0.05	0.007	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.821	ug/L		0.02	0.004	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.831	ug/L		0.02	0.004	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	4.96	ug/L		0.1	0.02	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.3	ug/L		0.1	0.03	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Thallium, TI	0.03	ug/L	J	0.05	0.01	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Boron, B	1.22	mg/L		0.005	0.001	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	189	mg/L		0.02	0.004	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00349	mg/L		0.0002	0.00006	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Equipment Blank

Sample Number: 183093-006 Date Collected: 08/30/2018 09:00 Date Received: 9/5/2018

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	< 0.01	ug/L	U	0.05	0.01	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Arsenic, As	< 0.01	ug/L	U	0.05	0.01	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Barium, Ba	0.03	ug/L	J	0.1	0.02	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.004	ug/L	U	0.02	0.004	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.005	ug/L	U	0.02	0.005	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.03	ug/L	J	0.05	0.007	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.007	ug/L	J	0.02	0.004	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Lead, Pb	< 0.004	ug/L	U	0.02	0.004	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	0.28	ug/L		0.1	0.02	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Selenium, Se	< 0.03	ug/L	U	0.1	0.03	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.01	ug/L	J	0.05	0.01	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Boron, B	0.021	mg/L		0.005	0.001	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	< 0.004	mg/L	U	0.02	0.004	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Lithium, Li	< 0.00006	mg/L	U	0.0002	0.00006	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

Michael Ohlinger, Chemist

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Bixby Road	17			ည	ain of	Custod	ain of Custody Record	ъ		
Groveport, Ohio 43125			ъ.	rograr	n: Coal C	cmbustion	Program: Coal Combustion Residuals (CCR)	CCR)		
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)					Site	Site Contact:			Date:	For Lab Use Only: COC/Order #:
Project Name: Northeastern PP CCR						250 mL		-	Three (six every	
Contact Name: Jill Parker-Witt	Analysis T	urnaround	Analysis Turnaround Time (in Calendar Days)	lendar Da	ays)	bottle,		bottle,	10th") 1	(2/ KX)
Contact Phone: 318-673-3816	@ Rou	tine (28 day	 Routine (28 days for Monitoring Wells) 	ing Wells	~	HNO3	HNO3	0-6C	pH<2, HNO3	500
Sampler(s): Kenny McDonald					Sig	,98 ,68	d, Cr, Mg, Mn,	204	822.	
					i i i i i i	,sA	a, Cd , Li, N	(1)	-6A	
Sample Identification	Sample	Sample	Sample Type (C=Comp, G=Grab)	Matrix	C # Sampler(s)	8, Ca, Sb Cd, Cr, Cd	Dissolved Ba, Be, C. Co, Fe, K. Mo, Na, P	, F, SQT	Ra-226,	Sample Specific Notes:
MW-4D	8/30/2018	830	Ö	GW	7	×			×	
MW-5D	8/30/2018	815	ŋ	GW	4	×			×	
MW-12D	8/30/2018	845	9	GW	4	×			×	
MW-14	8/30/2018	800	g	GW	1	×				
DUPLICATE	8/30/2018	830	g	GW	-	×				
EQUIPMENT BLANK	8/30/2018	006	g	>	-	×				
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3; 5=NaC	H; 6= Oth	er	; F=fi	; F= filter in field	4	F4	1	4	
* Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th s	sample.								

Special Instructions/QC Requirements & Comments:

Relinquished by:	Company:	Date/Time: 1400	Received by:	Date/Time;
Relinquished by:	Company:	Date/Time:	Received by:	Date/Time:
Relinquished by:	Company:	Date/Time:	Received in Mabdratory by:	915/18 3,000 m

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
<u></u>	361116117 1795
Cooler Box Bag Envelope	PONY UPS (FedEX) USPS
	Other
Plant/Customer Not Pr Weste	Number of Plastic Containers:
Opened By Mishha	Number of Glass Containers:
Date/Time 09/05//8 3:00/	Number of Mercury Containers:
) - If No, specify each deviation:
Was container in good condition?(Y)	/ N Comments
Was Chain of Custody received?)/ N Comments
1	If RUSH, who was notified?
I 0	O ₂ or NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	/ N Comments
Were samples labeled properly?	/ N Comments
Were correct containers used?	N Comments
Was pH checked & Color Coding don	e? N or N/A Initial & Date: M6/1 9/05/18
- Was Add'l Preservative needed? Y	/ 🗓 If Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y	/ (N Comments (See Prep Book)
Was the customer contacted?	Yes: Person Contacted:
Lab ID# 183093 Ini	tial & Date & Time :
Logged byCo	omments:
Reviewed by ARb	· · · · · · · · · · · · · · · · · · ·

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 38529 Address: 502 N. Allen Avenue Report ID **Date Received:** 10/17/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

> Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 219921 **Collected Date: 10/15/2018** Cust Sample ID: MW-15 **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Water (219921)

110101 (=100=1)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Fluoride	2.27	mg/L	0.083	1	EPA 300.0	10/25/2018 9:17		GB

		* Quality		•	ntrol Data ne as reported		results					
			Blank		Standard			Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
10/25/2018	Fluoride	220179	<0.083	10	10	100.0	10	10.4	104.0		0.0	GB
10/25/2018	Fluoride		<0.083									GB
10/25/2018	Fluoride			10	10.2	102.0						GB

Sandra D. Wallace Laboratory Manager

30-Oct-18

Report Date

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type		D	elivery Ty	pe	
Tce Chest Bag Action Pak PCB Mailer Bottle Other	UPS Othe	FEDEX	US Mail	Walk in	Shuttle
	Tracking #			2410000000	NA
Client Jill Parker- Witt		Sa	mple Mat	rix	***************************************
Received By	DGA	PCB Oil	Water	Oil	Soil
Received Date 10/17/18	-				
Open Date	Solid	Liquid	Othe	r	7 700
Container Temp Read Thermometer Serial #F04103	-	Project I.D.	3852	29	
Correction Factor Corrected Temp	Were sa	mples receive	d on ice?	YES (NO
Did container arrive in good condition?	YES	NO			
Was sample documentation received?	YES	NO			1,000
Was documentation filled out properly?	YES	NO			
Were samples labeled properly?	YES	NO			
Were correct containers used?	YES	NO		William .	
Were the pH's of samples appropriately checked?	YES	NONA			
Total number of sample containers	_	-		- A	
Was any corrective action taken?	NO	Person Con			
Comments	Nue in	340 G 11111			
o					- Serience

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 38393 Address: 502 N. Allen Avenue Report ID **Date Received:** 09/20/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 219436 **Collected Date:** 09/19/2018 Cust Sample ID: MW-4D **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combusiton Residuals (CCR)

Metals (219436)

MCtais (215400)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/28/2018 10:21	U	LNM
Water (219436)								•
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	31	mg/L	0.219	1	EPA 300.0	09/26/2018 12:31		GB
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	09/26/2018 12:31	U	GB
Solids, Total Dissolved (TDS)	884	mg/L	2	1	SM 2540 C-2011	09/24/2018 9:45		LBH
Sulfate	260	mg/L	0.140	1:10	EPA 300.0	09/26/2018 12:50		GB

AEP Sample ID: 219437 **Collected Date:** 09/19/2018 By: KM

Cust Sample ID: MW-5D Location: Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combusiton Residuals (CCR)

Metals (219437)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/28/2018 10:37	U	LNM
Water (219437)			_					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	30	mg/L	0.219	1	EPA 300.0	09/26/2018 13:09		GB
Fluoride	0.7519	mg/L	0.083	1	EPA 300.0	09/26/2018 13:09	J	GB
Solids, Total Dissolved (TDS)	662	mg/L	2	1	SM 2540 C-2011	09/24/2018 9:45		LBH
Sulfate	134	mg/L	0.140	1:10	EPA 300.0	09/26/2018 13:28		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 38393 Address: 502 N. Allen Avenue Report ID **Date Received:** 09/20/2018

Contact: Jill Parker-Witt

Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

Bv: KM **Collected Date:** 09/19/2018 AEP Sample ID: 219438 Matrix: Water Cust Sample ID: MW-12D **Location:** Northeastern Power Plant

Sample Desc.: Coal Combusiton Residuals (CCR)

Metals (219438)

ysis Date/Time	• •	
ysis bater i lille	Codes	Tech
28/2018 10:40	J	LNM
ysis Date/Time	Codes	Tech
26/2018 13:47		GB
26/2018 13:47		GB
/24/2018 9:45		LBH
26/2018 14:24		GB
12	24/2018 9:45	24/2018 9:45

AEP Sample ID: 219439 **Collected Date:** 09/19/2018 By: KM

Cust Sample ID: MW-17 Location: Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combusiton Residuals (CCR)

Metals (219439)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/28/2018 10:48	U	LNM

Collected Date: 09/19/2018 By: KM AEP Sample ID: 219440

Unit

Cust Sample ID: Duplicate Location: Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combusiton Residuals (CCR)

Value

Metals (219440)

Parameter

Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/28/2018 10:51	U	LNM
Water (219440)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	31	mg/L	0.219	1	EPA 300.0	09/26/2018 15:02		GB
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	09/26/2018 15:02	U	GB
Solids, Total Dissolved (TDS)	870	mg/L	2	1	SM 2540 C-2011	09/24/2018 9:45		LBH
Sulfate	263	mg/L	0.140	1:10	EPA 300.0	09/26/2018 15:21		GB

Det. Limit Dil./Conc.

Method

Analysis Date/Time | Codes | Tech

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 38393 Report ID Address: 502 N. Allen Avenue **Date Received:** 09/20/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Collected Date: 09/19/2018 Bv: KM AEP Sample ID: 219441 Cust Sample ID: Equipment Blank Location: Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combusiton Residuals (CCR)

Metals (219441)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/28/2018 10:53	U	LNM

Quality Control Data * Quality control units are the same as reported analytical results Blank Standard Spike Surrogate **Duplicate %** Sample ID Date **Parameter** % Recovery Difference Value * Tech Value * Recoverv* % Value Recoverv* % 9/26/2018 Chloride 219573 <0.219 9/26/2018 < 0.219 GB Chloride 9/28/2018 219436.2 < 0.00000 0.001 0.00087 87.0 0.001 0.0007912 79.1 6.9 LNM Mercury Solids. Total Dissolved (TDS) <2 94 99.5 2.6 LBH 9/24/2018 219360 100 106.4 2768 2754 9/26/2018 219573 < 0.140 18 18 100.0 20 100.0 0.0 GB Sulfate 20 GB 9/26/2018 Sulfate < 0.140 20 18 90.0 9/26/2018 < 0.140 GB Sulfate

Code **Code Description**

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

U Analyte concentration below MDL.

Sandra	IJ.	Wallace	05-Nov-18
_aboratory Manager			Report Date

Shreveport Chemical Laboratory (SCL)				Ch	ain c	of Cu	stody	Chain of Custody Record	ď			3
502 N. Allen Ave.			P	Program:	ı: Coa	ll Com	bustion F	Coal Combustion Residuals (CCR)	CCR)			5.2. 8-20-18
Jonathan Barnhill (318-673-3803) Contacts: John Davis (318-673-3811)		i			S	Site Contact:	tact:			Date:		For Lab Use Only: COC/Order #:
Project Name: Northeastern PP CCR Contact Name: Jill Parker-Witt	Analysis Tı	Analysis Tumaround Time (in Calendar Days)	îme (in Cal	endar Da	ays)		500 mL bottle, pH<2,	Field-filter 500 mL bottle, then pH<2,	1 L bottle,	Three (six every 10th*) 1		CVC#383 93
Sampler(s): Kenneth McDonald						itials		e and Mn	, SO4	a-228		
Sample Identification	Sample Date	Sample (Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) In	Mercury	dissolved F	TDS, F, CI	Ra-226, R		Sample Specific Notes:
MW-4D	9/19/2018	1336	G	GW	2		×		×			219476.1-219436.2
MW-5D	9/19/2018	1232	G	GW	2		×		×			219437, 1- 219487 2
MW-12D	9/19/2018	1107	G	GW	2		×		×			2114881 214438.2
MW-17	9/19/2018	1402	G	GW	->		×					2.4.5
DUPLICATE	9/19/2018	1336	G	GW	N		×		×			217440-1-117440-
EQUIPMENT BLANK	9/19/2018	1420	G	GW			×					20441
					Ц							
Preservation Used: 1= lce, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	1NO3; 5=Na	он; 6= Oth	ler	l. 77	F= filter in field	field	4	F4	1	4		
* Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th	sample.										
Special Instructions/QC Requirements & Comments:	nts:										i	
Relinquished by: HAM	4194 Luband	4014	7	Date/Tir	Date/Time: ////////////////////////////////////	1332	Received by:	Y:		:		Date/Time:
Relinquished by:	Company:			Date/Time:	ne:		Received by:	Ý.				Date/Time:
Relinquished by:	Company:		2	Date/Time:	ne:		Received.i	Received in Laboratory by:	by:			Date/Time: 9/20/18 13:38

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Spreeport, Rev. 1, 1/10/17

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type	- The second and the	ina Dreign digi der velt godi med em gegr vigt i spira errept til a pere eje egte til delikovette me met	Delivery Type		SE PPROCESSASIONAL SEPCEL PROCESSASIONAL SALACIO, Australia Allacia, A
Ice Chest Bag Action Pak PCB Mailer Bottle Other	UPS Othe	FEDEX	US Mail	Walk in	Shuttle
Client	Tracking #				
Client Sill Parker - With Received By Received Date 9/20/18	DGA	PCB Oil	Water Water	X Oil	Soil
Open Date	Solid	Liquid	Other		
Container Temp Read 2 Thermometer Senal #F04103	_	Project I.D	3839	73	-1
Corrected Temp 3.2	Were sa	amples receive	ed on ice?	YES	NO
Did container arrive in good condition?	YES	NO		740.0	
Was sample documentation received?	YES	NO			
Was documentation filled out properly?	YES	NO			
Were samples labeled properly?	YES	NO			
Were correct containers used?	YES	NO		NIMA JAS	
Were the pH's of samples appropriately checked?	YES	NO			
Total number of sample containers	_				11
Was any corrective action taken?	NO	Person Co Date & Tir			
Comments		- Date & Til	,		
	100				

Sample ID	Analysis	рН	Preservative Added / Lot #
MW- 40	Mellury	12	
MW-SD			/
			/
MW-120			
MWW-17			
Dup		1,	
Equip Blank	, v	V	/

			/
	746.54		
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
			/
		99.	
		= -	J
			/

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 11/8/2018

MW-4D

Sample Number: 183323-001 Date Collected: 09/19/2018 13:36 Date Received: 9/24/2018

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.04	ug/L	J	0.1	0.02	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.20	ug/L		0.1	0.03	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Barium, Ba	177	ug/L		0.1	0.02	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.02	ug/L	J	0.1	0.02	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.03	ug/L	J	0.05	0.01	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.273	ug/L		0.2	0.04	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.551	ug/L		0.05	0.02	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.595	ug/L		0.1	0.02	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	3.71	ug/L		2	0.4	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.2	ug/L		0.2	0.03	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1	ug/L	U	0.5	0.1	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Boron, B	1.13	mg/L		0.005	0.0009	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	174	mg/L		0.02	0.003	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00289	mg/L		0.0002	0.00001	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	3.46	pCi/L	0.30	0.88	jls	10/30/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.45	pCi/L	0.11	0.17	jls	10/31/2018	SW-846 9315-1986,Rev. 0

The sample and duplicate result is below the critical value of 0.95 pCi/L. This resulted in the RPD exceeding 25% between the two results.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

MW-5D

Sample Number: 183323-002 Date Collected: 09/19/2018 12:32 Date Received: 9/24/2018

			Data					
Parameter	Result (Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.13	ug/L		0.1	0.02	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.18 ເ	ug/L		0.1	0.03	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Barium, Ba	118 ເ	ug/L		0.1	0.02	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.08 (ug/L	J	0.1	0.02	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.09 (ug/L		0.05	0.01	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.745 (ug/L		0.2	0.04	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.336 (ug/L		0.05	0.02	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.720 (ug/L		0.1	0.02	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	2 ι	ug/L	J	2	0.4	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.4 (ug/L		0.2	0.03	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1 u	ug/L	U	0.5	0.1	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Boron, B	0.444 ı	mg/L		0.005	0.0009	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	156 ו	mg/L		0.02	0.003	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0107 ו	mg/L		0.0002	0.00001	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	4.85	pCi/L	0.25	0.65	jls	10/30/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.313	pCi/L	0.091	0.16	jls	10/31/2018	SW-846 9315-1986,Rev. 0

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

MW-12D

Sample Number: 183323-003 Date Collected: 09/19/2018 11:07 Date Received: 9/24/2018

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.36 ug/L		0.1	0.02	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Arsenic, As	4.67 ug/L		0.1	0.03	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Barium, Ba	82.6 ug/L		0.1	0.02	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.1 ug/L	J	0.1	0.02	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.33 ug/L		0.05	0.01	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	2.03 ug/L		0.2	0.04	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	1.57 ug/L		0.05	0.02	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Lead, Pb	5.18 ug/L		0.1	0.02	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	828 ug/L		2	0.4	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Selenium, Se	2.9 ug/L		0.2	0.03	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.2 ug/L	J	0.5	0.1	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Boron, B	9.02 mg/L		0.005	0.0009	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	110 mg/L		0.02	0.003	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00410 mg/L		0.0002	0.00001	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	3.77	pCi/L	0.23	0.60	jls	10/30/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.647	pCi/L	0.11	0.12	jls	10/31/2018	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the established range of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

MW-17

Sample Number: 183323-004 Date Collected: 09/19/2018 14:02 Date Received: 9/24/2018

		Dat	a				
Parameter	Result Ur	nits Qu	al RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.20 ug	g/L	0.1	0.02	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Arsenic, As	0.27 ug	g/L	0.1	0.03	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Barium, Ba	36.7 ug	g/L	0.1	0.02	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.02 ug	g/L U	0.1	0.02	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.07 ug	g/L	0.05	0.01	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	< 0.04 ug	g/L U	0.2	0.04	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	2.98 ug	g/L	0.05	0.02	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.06 ug	g/L J	0.1	0.02	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	9.62 ug	g/L	2	0.4	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Selenium, Se	4.4 ug	g/L	0.2	0.03	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1 ug	g/L U	0.5	0.1	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Boron, B	0.767 mg	ıg/L	0.005	0.0009	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	330 mg	ıg/L	0.02	0.003	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0121 mg	ng/L	0.0002	0.00001	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Duplicate

Sample Number: 183323-005 Date Collected: 09/19/2018 13:36 Date Received: 9/24/2018

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.04 ug/L	J	0.1	0.02	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.27 ug/L		0.1	0.03	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Barium, Ba	187 ug/L		0.1	0.02	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.02 ug/L	U	0.1	0.02	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.02 ug/L	J	0.05	0.01	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.346 ug/L		0.2	0.04	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.576 ug/L		0.05	0.02	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.246 ug/L		0.1	0.02	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	3.97 ug/L		2	0.4	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.2 ug/L		0.2	0.03	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1 ug/L	U	0.5	0.1	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Boron, B	1.10 mg/L		0.005	0.0009	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	187 mg/L		0.02	0.003	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00277 mg/L		0.0002	0.00001	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Equipment Blank

Sample Number: 183323-006 Date Collected: 09/19/2018 14:20 Date Received: 9/24/2018

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	< 0.02 ug/L	U	0.1	0.02	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Arsenic, As	< 0.03 ug/L	U	0.1	0.03	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Barium, Ba	0.06 ug/L	J	0.1	0.02	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.02 ug/L	U	0.1	0.02	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.01 ug/L	U	0.05	0.01	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	< 0.04 ug/L	U	0.2	0.04	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	< 0.02 ug/L	U	0.05	0.02	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Lead, Pb	< 0.02 ug/L	U	0.1	0.02	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	< 0.4 ug/L	U	2	0.4	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Selenium, Se	< 0.03 ug/L	U	0.2	0.03	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1 ug/L	U	0.5	0.1	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Boron, B	0.030 mg/L		0.005	0.0009	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	0.02 mg/L	J	0.02	0.003	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00002 mg/L	J	0.0002	0.00001	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

Michael Ohlinger, Chemist

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Chain of Custody Record

Dolan Chemical Laboratory (DCL)	-			Ch	ain c	of Cus	stody	ain of Custody Record	_				
Groveport, Ohio 43125				Program:		I Comb	ustion R	Coal Combustion Residuals (CCR)	CR)				
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)						Site Contact:	ct:	l .		Date:		For Lak	For Lab Use Only:
Project Name: Northeastern PP CCR Contact Name: Jill Parker-Witt	Analysis	umaround	Analysis Turnaround Time (in Calendar Days)	lendar Da	iys)			Field-filter 250 mL bottle, then pH<2.	1 L bottle,	Three (six every 10th*)		183	183322
Contact Phone: 318-673-3816	© Ro	utine (28 day	 Routine (28 days for Monitoring Wells) 	ing Wells	^		HN03	HNO3		pH<2, HNO3			? \ \
Sampler(s): Kenny McDonald		5					,iJ ,d	,d, Cr,	⊅OS	822-	A.C. 900		
Sample Identification	Sample Date	Sample	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	inl (a)nelqms2	B, Ca, Sb, Ag Cd, Cr, Co, P Mo, Se, TL	Dissolved B, Ba, Be, Ca, C Co, Fe, K, Li, Mo, Na, Pb, 9	TDS, F, CI,	Ra-226, Ra		Sample S	Sample Specific Notes:
MW-4D	9/19/2018	1336	9	GW	7		×			×			
MW-5D	9/19/2018	1232	9	GW	4		×			×			
MW-12D	9/19/2018	1107	B	GW	4		×			×			
MVV-17	9/19/2018	1402	G	GW	-		×						
DUPLICATE	9/19/2018	1336	G	GW	1		×					3	
EQUIPMENT BLANK	9/19/2018	1420	G	*	1		×						
					\neg								
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HN03; 5=Na	OH; 6= Ot		; F= filter in field	Iter in f	jeld	4	F4	-	4			The Age of
* Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.											
Special Instructions/QC Requirements & Comments.	ints:												
Relinquished by: Land	Company A614	719		Date/Time: 140 0	14/8/		Received by	2	()	9		Date/Tige: 24/18	8 2:40
	Company:			Date/Time:	 0		Received by:					Date/Time:	0
Relinquished by:	Company:			Date/Time:	 G	쪼	eceived in	Received in Laboratory by				Date/Time:	
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	ord for Coal	Combusti	on Residua	(CCR)	Samplin	g - Shrev	eport, Rev	1, 1/10/17					

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS (FedEX) USPS
2/ // 7	Other
Plant/Customer Northlaskn 7	Number of Plastic Containers:
Opened By	Number of Glass Containers:
Date/Time 9-24-18 3:2:40	Number of Mercury Containers:
Were all temperatures within 0-6°C? Y / N	on ice / no ice
(IR Gun Ser# <u>) 1077 9 03 Expir.</u> 1 /) - If No, specify each deviation: Comments The Cooker was through Gway, A
	, 1
Was Chain of Custody received? Y N	
Requested turnaround:	If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) NO ₂ or N (24 hr)	O ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	Comments
Were samples labeled properly?	Comments
	Comments
Was pH checked & Color Coding done 2 Y	N or N/A Initial & Date: MSO 9-24-18
	Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / N	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID#	Date & Time :
Logged by Commen	Its A The Cooker had a broken
this	> reason.
Reviewed by M50	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 38529 Address: 502 N. Allen Avenue Report ID **Date Received:** 10/17/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

> Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 219921 **Collected Date: 10/15/2018** Cust Sample ID: MW-15 **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Water (219921)

110101 (=100=1)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Fluoride	2.27	mg/L	0.083	1	EPA 300.0	10/25/2018 9:17		GB

		* Quality		•	ntrol Data ne as reported		results					
		Parameter Sample ID Blank Standard Spike Surrogate Duplicate % Value * Value * Recovery* % Value * Recovery* % Value * Recovery* % Recovery* % Technology										
Date	Parameter										Tech	
10/25/2018	Fluoride	220179	<0.083	10	10	100.0	10	10.4	104.0		0.0	GB
10/25/2018	Fluoride		<0.083									GB
10/25/2018	Fluoride			10	10.2	102.0						GB

Sandra D. Wallace Laboratory Manager

30-Oct-18

Report Date

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type		D	elivery Ty	pe	
Tce Chest Bag Action Pak PCB Mailer Bottle	UPS	FEDEX	US Mail	Walk in	Shuttle
Other	Othe	Г	-	well-will be a second of the s	MANAGEMENT AND ADDRESS OF THE PARTY OF THE P
	Tracking #				
Client (:) Perk a built	Tracking #		ample Mat	riv	
Descined Du	DGA	PCB Oil	Water	Oil	Soil
Received Date D 171/8	-	1 00 0	vvator:	011	0011
Open Date	- Solid	Liquid	Othe	Γ	
•	-		2.4		
Container Temp Read	-	Project I.D.	385	29	
Correction Factor	Were sa	mples receive	d on ice?	YES (ÑO
Corrected Temp	-				
Did container arrive in good condition?	YES	NO			
Did container arrive in good condition:	1123	NO	===		117811
Was sample documentation received?	NEC	NO .			
was sample documentation received:	YES	NO	-		
Was documentation filled out properly?	YES	NO .		EMEC .	
was documentation filled out properly?	TES	INO		*)***	
Were samples labeled properly?	YES	NO .			
were samples labeled property:	(TES	NO			
Were correct containers used?	YES	NO .			
Were correct containers used?	(15)	NO			•
Were the pH's of samples appropriately checked?	YES	(i)			
were the pirs of samples appropriately checked:	TES	NO N/A			
Total number of sample containers			W.S.		
Total number of sample containers	-				
Was any corrective action taken?	NO	Person Con	tacted		
vvas any corrective action taken:	(NO)	Date & Tim			
Comments					***************************************
Marie Co.					
					THE PARTY OF THE P

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 38595 Company: SEP - Environmental (JP-W) Address: 502 N. Allen Avenue

Date Received: 10/24/2018 Contact: Jill Parker-Witt Shreveport, LA 71101

AEP Sample ID: 220156 Collected Date: 10/22/2018 By: KM
Cust Sample ID: MW-3D Location: Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Water (220156)

Water (220130)							
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes Tech
Chloride	14.89	mg/L	0.219	1	EPA 300.0	10/26/2018 10:52	GB
Fluoride	1.09	mg/L	0.083	1	EPA 300.0	10/26/2018 10:52	GB
Solids, Total Dissolved (TDS)	702	mg/L	2	1	SM 2540 C-2011	10/26/2018 15:30	JTD
Sulfate	210.57	mg/L	0.140	1:10	EPA 300.0	10/26/2018 11:11	GB

AEP Sample ID: 220157 Collected Date: 10/22/2018 By: KM

Cust Sample ID: MW-6D Location: Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Water (220157)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	31.68	mg/L	0.219	1	EPA 300.0	10/26/2018 11:30		GB
Fluoride	1.28	mg/L	0.083	1	EPA 300.0	10/26/2018 11:30		GB
Solids, Total Dissolved (TDS)	1152	mg/L	2	1	SM 2540 C-2011	10/26/2018 15:30		JTD
Sulfate	471.81	mg/L	0.140	1:10	EPA 300.0	10/26/2018 11:49		GB

AEP Sample ID: 220158 Collected Date: 10/22/2018 By: KM
Cust Sample ID: MW-7D Location: Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Water (220158)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	568.00	mg/L	0.219	1:10	EPA 300.0	10/26/2018 12:27		GB
Fluoride	0.9527	mg/L	0.083	50	EPA 300.0	10/26/2018 12:08	J	GB
Solids, Total Dissolved (TDS)	5844	mg/L	2	1	SM 2540 C-2011	10/26/2018 15:30		JTD
Sulfate	1374.80	mg/L	0.140	1:50	EPA 300.0	10/26/2018 19:21		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 38595 Company: SEP - Environmental (JP-W) Address: 502 N. Allen Avenue

Date Received: 10/24/2018 Contact: Jill Parker-Witt Shreveport, LA 71101

AEP Sample ID: 220159 Collected Date: 10/22/2018 By: KM
Cust Sample ID: MW-8D Location: Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Water (220159)

114101 (220100)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	11680.46	mg/L	0.219	1:100	EPA 300.0	10/26/2018 14:20		GB
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	10/26/2018 12:46	U	GB
Solids, Total Dissolved (TDS)	20896	mg/L	2	1	SM 2540 C-2011	10/26/2018 15:30		JTD
Sulfate	48.41	mg/L	0.140	1	EPA 300.0	10/26/2018 12:46		GB

AEP Sample ID: 220160 Collected Date: 10/22/2018 By: KM
Cust Sample ID: MW-9D Location: Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Water (220160)

Water (220100)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	106	mg/L	0.219	1	EPA 300.0	10/26/2018 14:38		GB
Fluoride	0.600	mg/L	0.083	1	EPA 300.0	10/26/2018 14:38	J	GB
Solids, Total Dissolved (TDS)	1258	mg/L	2	1	SM 2540 C-2011	10/26/2018 15:30		JTD
Sulfate	519.42	mg/L	0.140	1:100	EPA 300.0	10/26/2018 14:57		GB

AEP Sample ID: 220161 Collected Date: 10/22/2018 By: KM
Cust Sample ID: MW-15 Location: Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Water (220161)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	46.81	mg/L	0.219	1	EPA 300.0	10/26/2018 15:16		GB
Fluoride	2.17	mg/L	0.083	1	EPA 300.0	10/26/2018 15:16		GB
Solids, Total Dissolved (TDS)	1082	mg/L	2	1	SM 2540 C-2011	10/26/2018 15:30		JTD
Sulfate	549.46	mg/L	0.140	1:10	EPA 300.0	10/26/2018 15:35		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 38595 Address: 502 N. Allen Avenue Report ID Contact: Jill Parker-Witt **Date Received:** 10/24/2018

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 220162 **Collected Date: 10/22/2018** Cust Sample ID: Duplicate - Landfill **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Water (220162)

Trace (ZZO IOZ)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	16.36	mg/L	0.219	1	EPA 300.0	10/26/2018 16:13		GB
Fluoride	1.13	mg/L	0.083	10	EPA 300.0	10/26/2018 16:13		GB
Solids, Total Dissolved (TDS)	722	mg/L	2	1	SM 2540 C-2011	10/26/2018 15:30		JTD
Sulfate	241.48	mg/L	0.140	1:10	EPA 300.0	10/26/2018 17:47		GB

Quality Control Data

* Quality control units are the same as reported analytical results

		Quanty	control unit	s are the sai	ne as reported	analy treat	Courts					
			Blank		Standard			Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
10/26/2018	Chloride	220162.1	<0.219	20	22.8	114.0	20	21	105.0		11.5	GB
10/26/2018	Chloride		<0.219									GB
10/26/2018	Chloride			20	22.4	112.0						GB
10/26/2018	Fluoride	220162.1	<0.083	10	10.58	105.8	10	11.5	115.0		1.8	GB
10/26/2018	Fluoride		<0.083									GB
10/26/2018	Fluoride			10	11.03	110.3						GB
10/26/2018	Solids, Total Dissolved (TDS)	220156.1	<2	99.33	106	106.7	2802	2810	100.3		0.3	JTD
10/26/2018	Sulfate	220162.1	<0.140	20	18.8	94.0	50	62.2	124.4		2.2	GB
10/26/2018	Sulfate		<0.140									GB
10/26/2018	Sulfate			20	18.6	93.0						GB

Code Code Description

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

U Analyte concentration below MDL.

Sandra D. Wallace

Laboratory Manager

Report Date

07-Nov-18

Shreveport Chemical Laboratory (SCL)				ဌ	ain	of Cu	ustody	Chain of Custody Record	<u>a</u>	-7	5	
502 N. Allen Ave. Shreveport, LA 71101			ס	rograr	 ငစ္စ	Com	Program: Coal Combustion Residuals	esiduals ((CCR)		10/25/1	17/18
Contacts: John Davis (318-673-3803)					- (0	Site Contact:	itact:			Date:		For Lab Use Only: COC/Order #:
Project Name: Northeastern PP CCR							500 mL	Field-filter 500 mL	-	Three (six every		not the
Contact Name: Jill Parker-Witt	Analysis To	ırnaround 1 ne (28 days	Analysis Turnaround Time (in Calendar Days) Routine (28 days for Monitoring Wells)	endar D	ays)		pH<2,	bottle, then pH<2,	bottle, Cool,	10th*) 1 L bottles,		51886,00
Sampler(s): Kenneth McDonald							2	d Mn	04	8		
- 1						nitials		Fe an	CI, SC	Ra-22		
Sample Identification	Sample Date	Sample (Sample Type (C=Comp, G=Grab)	Matrix	# of	Sampler(s) In	Mercury	dissolved F	TDS. F, C	Ra-226, R		Sample Specific Notes:
MW-3D	10/22/2018	840	ഒ	GW	_				×			220156
MW-6D	10/22/2018	900	ഒ	GW					×			220157
MW-7D	10/22/2018	1100	G	GW	_				×			351066
MW-8D	10/22/2018	1040	G	GW	_				×			151066
MW-9D	10/22/2018	920	G	GW	_				×			091066
MW-15	10/22/2018	940	G	GW					×			191066
DUPLICATE - LANDFILL	10/22/2018	840	G	GW	_				×			23062
Preservation Used: 1= ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	NO3; 5=NaO	H; 6= Othe		, F= ±	F= filter in field	eld	4	Z	1	4		
* Six 1L Bottles must be collected for Radium for every 10th sample	every 10th s	ample.						:				
Special Instructions/QC Requirements & Comments:	ts:				-		ir					
Relinquished by: At M	Company:	jlf		Date/Time: 10/24/18		1625	Received by:					Date/Time:
Relinquished by:	Company:			Date/Time:	ie:		Received by:					Date/Time:
Relinquished by:	Company:			Date/Time:	i ei		Received in	in Laboratory by:	Š			Date/Time: 16.125

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreyaport, Rev. 1, 1/10/17

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type	I		Delivery Typ	е	
Ice Chest Bag Action Pak PCB Mailer Bottle	UPS	FEDEX	US Mail	Walk in	Shuttle
Other	Othe	er			
	Tracking	#			
Client J: 11 Parker With			ample Matr	ix	
Received By Received Date	DGA	PCB Oil	Water	Oil	Soil
Open Date	— Solid	Liquid	Other		
	_		200		
Container Temp Read	_	Project I.D	. 385	95	_
Corrected Temp	Were s	amples receive	ed on ice?	TES	NO
Did container arrive in good condition?	YES	NO			
Was sample documentation received?	YES	NO			
Was documentation filled out properly?	YES	NO			-
Were samples labeled properly?	YES	NO		<u> </u>	
Were correct containers used?	YES	NO			
Were the pH's of samples appropriately checked?	YES	NO 10/4			
Total number of sample containers	_			-25) 34	
Was any corrective action taken?	NO	Person Co Date & Tin	10		
Comments		Date & III	ie .		

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 11/16/2018

	•	-3	v	-	

Sample Number: 183735-001 Date Collected: 10/22/2018 08:40 Date Received: 10/30/2018

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	1.02 mg/L		0.02	0.005	GES	11/14/2018 15:32	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	142 mg/L		0.1	0.02	GES	11/14/2018 15:32	EPA 200.8-1994, Rev. 5.4

MW-6D

Sample Number: 183735-002 Date Collected: 10/22/2018 09:00 Date Received: 10/30/2018

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	4.34 mg/L		0.02	0.005	GES	11/14/2018 15:37	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	237 mg/L		0.1	0.02	GES	11/14/2018 15:37	EPA 200.8-1994, Rev. 5.4

MW-7D

Sample Number: 183735-003 Date Collected: 10/22/2018 11:00 Date Received: 10/30/2018

Parameter	Result Units	Data Qual RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	1.10 mg/L	0.02	0.005	GES	11/14/2018 15:42	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	357 mg/L	0.1	0.02	GES	11/14/2018 15:42	EPA 200.8-1994, Rev. 5.4

MW-8D

Sample Number: 183735-004 Date Collected: 10/22/2018 10:40 Date Received: 10/30/2018

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	1.75 mg/L		0.1	0.02	GES	11/14/2018 15:47	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	1290 mg/L		0.4	0.06	GES	11/14/2018 15:47	EPA 200.8-1994, Rev. 5.4

MW-9D

Sample Number: 183735-005 Date Collected: 10/22/2018 09:20 Date Received: 10/30/2018

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	7.19 mg/L		0.02	0.005	GES	11/14/2018 15:52	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	199 mg/L		0.1	0.02	GES	11/14/2018 15:52	EPA 200.8-1994, Rev. 5.4

MW-15

Sample Number: 183735-006 Date Collected: 10/22/2018 09:40 Date Received: 10/30/2018

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	8.90 mg/L		0.02	0.005	GES	11/14/2018 15:57	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	250 mg/L		0.1	0.02	GES	11/14/2018 15:57	EPA 200.8-1994, Rev. 5.4

Duplicate - Landfill

Sample Number: 183735-007 Date Collected: 10/22/2018 08:40 Date Received: 10/30/2018

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.985 mg/L		0.02	0.005	GES	11/14/2018 16:02	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	141 mg/L		0.1	0.02	GES	11/14/2018 16:02	EPA 200.8-1994, Rev. 5.4

Equipment Blank

Sample Number: 183735-008 Date Collected: 10/22/2018 11:20 Date Received: 10/30/2018

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.015 mg/L		0.005	0.0009	GES	11/14/2018 16:06	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	0.005 mg/L	J	0.02	0.003	GES	11/14/2018 16:06	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

Michael Ohlinger, Chemist

Email msohlinger@aep.com

Fax 614-836-4168 Audinet 8-210-

Tel.

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 11/16/2018

٨	Л	١	٨	ı_	2	ח	١.

Sample Number:	192725-001	Data Collected:	10/22/2018 08:40	Date Received:	10/20/2019
Samble Number:	103/33-001	Date Collected.	10/22/2010 00.40	Date Neceiveu.	10/30/2010

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	1.02 mg/L		0.02	0.005	GES	11/14/2018 15:32	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	142 mg/L		0.1	0.02	GES	11/14/2018 15:32	EPA 200.8-1994, Rev. 5.4

MW-6D

	400705 000	Data Callagtad	10/22/2018 09:00	Date Received: 10/30/2018
Sample Number:	183735-002	Date Collected:	10/22/201X 09:00	Date Received: 10/30/2018

Parameter	Result Units	Data Qual RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	4.34 mg/L	0.02	0.005	GES	11/14/2018 15:37	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	237 mg/L	0.1	0.02	GES	11/14/2018 15:37	EPA 200.8-1994, Rev. 5.4

MW-7D

Sample Number:	183735-003	Date Collected:	10/22/2018 11:00	Date Received:	10/30/2018
----------------	------------	-----------------	------------------	----------------	------------

Parameter	Result Units	Data Qual RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	1.10 mg/L	0.02	0.005	GES	11/14/2018 15:42	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	357 mg/L	0.1	0.02	GES	11/14/2018 15:42	EPA 200.8-1994, Rev. 5.4

MW-8D

Sample Number:	183735-004	Date Collected: 10/22/2018 10:40	Date Received: 10/30/2018
----------------	------------	----------------------------------	---------------------------

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	1.75 mg/L		0.1	0.02	GES	11/14/2018 15:47	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	1290 mg/L		0.4	0.06	GES	11/14/2018 15:47	EPA 200.8-1994, Rev. 5.4

MW-9D

Sample Number: 183735-005	Date Collected: 10/22/2018 09:20	Date Received: 10/30/2018
---------------------------	----------------------------------	---------------------------

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	7.19 mg/L		0.02	0.005	GES	11/14/2018 15:52	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	199 mg/L		0.1	0.02	GES	11/14/2018 15:52	EPA 200.8-1994, Rev. 5.4

MW-15

Sample Number: 183735-006 Date Collected: 10/22/2018 09:40 Date Received: 10/30/2018

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	8.90 mg/L		0.02	0.005	GES	11/14/2018 15:57	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	250 mg/L		0.1	0.02	GES	11/14/2018 15:57	EPA 200.8-1994, Rev. 5.4

Duplicate - Landfill

Sample Number: 183735-007 Date Collected: 10/22/2018 08:40 Date Received: 10/30/2018

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.985 mg/L		0.02	0.005	GES	11/14/2018 16:02	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	141 mg/L		0.1	0.02	GES	11/14/2018 16:02	EPA 200.8-1994, Rev. 5.4

Equipment Blank

Sample Number: 183735-008 Date Collected: 10/22/2018 11:20 Date Received: 10/30/2018

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.015 mg/L		0.005	0.0009	GES	11/14/2018 16:06	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	0.005 mg/L	J	0.02	0.003	GES	11/14/2018 16:06	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

Michael Ohlinger, Chemist

Email msohlinger@aep.com

Fax 614-836-4168 Audinet 8-210-

Tel.

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Bixby Road

Groveport, Ohio 43125			-	rogran	n: Co	al Comb	Sustion R	Program: Coal Combustion Residuals (CCR)	CR)				
Michael Ohilnger (614-836-4184) Contacts: Dave Conover (614-836-4219)						Site Contact:	act:			Date:	COC/Order #:	For Lab Use Only:	
Project Name: Northeastern PP CCR							250 mL	Field-filter 250 mL	÷	Three	-)	
Contact Name: Jill Parker-Witt	Analysis T	urnaround	Analysis Turnaround Time (in Calendar Days)	lendar Da	ays)			bottle, then		10th") 1	~ ~ ~	83738	
Contact Phone: 318-673-3816	@ Rout	ine (28 da)	 Routine (28 days for Monitoring Wells) 	ing Wells	· ·		HNO3	pH<2, HNO3	Cool, 0-6C	L bottles, pH<2, HNO3			
Sampler(s): Kenny McDonald						S	ı	Cr, g, Mn,	ÞO	82			
						lsiti	uni	'PC	s '	Z-6			7
	-	Sample			o #	inl (a) leiqma	oron, Calci	issolved B, o, Fe, K, Li, o, Na, Pb, 9	D2' E' CI	:a-226, R			
Sample Identification	Date	e E	G≃Grab)	Matrix	Cont.	s	8	В	1	В		Sample Specific Notes:	П
MW-3D	10/22/2018	840	ග	GW	_		×						
MW-6D	10/22/2018	006	g	GW	-		×						
MW-7D	10/22/2018	1100	G	GW	+-		×						
MW-8D	10/22/2018	1040	G	GW	1		×						
GE-WM	10/22/2018	920	g	GW	-		×						
MW-15	10/22/2018	940	G	GW	1		×						
DUPLICATE - LANDFILL	10/22/2018	840	G	GW	1		×						
EQUIPMENT BLANK	10/22/2018	1120	g	*	-		×						
						·							
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	-INO3; 5=NaO	H; 6= Oth	her	; F= filter in field	Iter in fi	leld	4	F4	1	4			
* Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th s	ample.											

Special Instructions/QC Requirements & Comments:

Relinquished by:	Company: FAGI &	Date/Time; 1400	Received by;	Date/Time;
Relinquished by:	Company:	Date/Time:	Received by:	Date/Time;
Relinquished by:	Сотрапу:	Date/Time:	Received in Laboratory by:	Date/June: 2130PM

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type				
Cooler Box Bag Envelope	PONY UPS FEDEX USPS				
	Other				
Plant/Customer Northern HV	Number of Plastic Containers:				
Opened By MSO	Number of Glass Containers:				
Date/Time 15/39/18 2:30 PM					
Were all temperatures within 0-6°C? Y/N	or WA Initial:on ice / no ice				
940.0	Comments				
Was Chain of Custody received? Y/N	Comments				
	If RUSH, who was notified?				
(24 hr)	O ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)				
Was COC filled out properly?	Comments				
Were samples labeled properly? YN	Comments				
Were correct containers used?	Comments				
Was pH checked & Color Coding done? (9/ N or N/A Initial & Date: 40/30/2018					
- Was Add'l Preservative needed? Y / N If '	Yes: By whom & when: (See Prep Book)				
Is sample filtration requested? Y / M	Comments (See Prep Book)				
Was the customer contacted? If Yes:	Person Contacted:				
Lab ID# 183735 Initial & D	eate & Time :				
Logged by	ts:				
Reviewed by					

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 38807 Address: 502 N. Allen Avenue Report ID **Date Received:** 11/29/2018

Contact: Jill Parker-Witt

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 220948 Collected Date: 11/28/2018 Cust Sample ID: MW-3D Location: Northeastern P.P. Matrix: Water

Sample Desc.: Coal Combustion Residuals

Water (220948)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Fluoride	0.648	mg/L	0.083	1	EPA 300.0	12/04/2018 16:27	J	GB

By: KM AEP Sample ID: 220949 **Collected Date: 11/28/2018** Cust Sample ID: MW-6D Matrix: Water Location: Northeastern P.P.

Sample Desc.: Coal Combustion Residuals

Water (220949)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Fluoride	0.844	mg/L	0.083	1	EPA 300.0	12/04/2018 17:04	J	GB

	* 0	uality control	Quality Co			results					
		Blan		Standard	, .		Spike		Surrogate	Duplicate %	
Date	Parameter Samp	ole ID Value	* Value *	Recovery*	%	Value ³	Recovery*	%	% Recovery	Difference	Tech
12/4/2018	Fluoride 220840	<0.083	10	10	100.0	10	10.1	101.0		0.0	GB
12/4/2018	Fluoride	<0.083									GB
12/4/2018	Fluoride		10	10	100.0						GB

Code **Code Description**

Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

Laboratory Manager

19-Dec-18

Report Date

Chain of Custody Record

Shreveport Chemical Laboratory (SCL) 502 N. Allen Ave.

Shreveport, LA 71101			Program:	2ND	HALF	2018 D	ETECTIO	Program: 2ND HALF 2018 DETECTION MONITORING; 2 OF 2	RING:	2 OF 2				
Jonathan Barnhill (318-673-3803) Contacts: John Davis (318-673-3811)						Site Contact:	tact:			Date:	*		For Lab Use Only: COC/Order #:	
Project Name: Northeastem PP CCR							500 mL	Field-filter 500 mL		Three			Con // 10	
Contact Name: Jill Parker-Witt	Analysis T	urnaround	Analysis Turnaround Time (In Calendar Days)	lendar D	ays)		bottle, pH<2.	bottle, then	bottle,	10th*)	-		108864	
	© Rout	ine (28 da)	Routine (28 days for Monitoring Wells)	ring We	ls)		HNO3	HNO3	0-60	pH<2, HNO3		\vdash	0,000	
Sampler(s): Kenneth McDonald						als		and Mn		228				
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) Init	Mercury	dissolved Fe	Fluoride	Ra-226, Ra			Sample Specific Notes:	
MW-3D	11/28/2018	930	G	GW	>				×				220948	
MW-6D	11/28/2018	950	G	GW					×				220147	
											<u> </u>	\vdash		
											+	+		
												+		
												\vdash		
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	NO3; 5=NaC)H; 6= Oth	ег	_; F=f	F= filter in field	field	4	F4	1	4				
* Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th s	ample.												
Special Instructions/QC Requirements & Comments:	its:							:						
Relinquished by:	Company: CAGIF	4611		Date/Time:		1610	Received by:						Date/Time:	
Relinquished by:	Company:			Date/Time:	ne:		Received by:	.7					Date/Time:	
Relinquished by:	Company:			Date/Time:	ne:		Received in	Received in Laboratory by:	×.				Date/Time:	

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling Spreedeport, Rev. 1, 1/10/17

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type			Delivery Type	2	
Ce Chest Bag Action Pak PCB Mailer Bottle	UPS	FEDEX	US Mail	Walk in	Shuttle
Other	Othe	r			
	Tracking #				
Client Sill Parker-Witt			ample Matri		
Received By Received Date ### Tip Indiana.com Received By ### Received By	DGA	PCB Oil	Water	Oil	Soil
Open Date ///24//8	Solid	Liquid	Other		
Container Temp Read	_	Project I.D.	3880	7	_
Correction Factor //.Z	_ Were sa	amples receive	ed on ice? (YES	NO
Corrected Temp 1.2	-				
Did container arrive in good condition?	YES	NO			
Was sample documentation received?	YES	NO			
Was documentation filled out properly?	YES	NO			
Were samples labeled properly?	YES	NO			
Were correct containers used?	ES	NO			
Were the pH's of samples appropriately checked?	YES	NO NIA			
Total number of sample containers 2	_				
Was any corrective action taken?	NO	Person Cor Date & Tim			
Comments		Date & IIII			

Date Received: 11/29/2018

AEP ANALYTICAL CHEMISTRY SERVICES Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 38805 Company: SEP - Environmental (JP-W)

Contact: Jill Parker-Witt

Address: 502 N. Allen Avenue Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

AEP Sample ID: 220937 Collected Date: 11/28/2018 By: KM
Cust Sample ID: MW-4D Location: Northeastern P.P. Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (220937)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	12/06/2018 14:16	U	LNM
Water (220937)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	27	mg/L	0.219	1	EPA 300.0	12/04/2018 18:38		GB
Fluoride	0.3357	mg/L	0.083	1	EPA 300.0	12/04/2018 18:38	J	GB
Solids, Total Dissolved (TDS)	972	mg/L	2	1	SM 2540 C-2011	12/03/2018 14:18		JTD
Sulfate	295	mg/L	0.140	1:10	EPA 300.0	12/04/2018 18:57		GB

AEP Sample ID: 220938 Collected Date: 11/28/2018 By: KM
Cust Sample ID: MW-5D Location: Northeastern P.P. Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (220938)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	12/06/2018 14:32	U	LNM
Water (220938)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	24	mg/L	0.219	1	EPA 300.0	12/04/2018 19:16		GB
Fluoride	0.371	mg/L	0.083	1	EPA 300.0	12/04/2018 19:16	J	GB
Solids, Total Dissolved (TDS)	614	mg/L	2	1	SM 2540 C-2011	12/03/2018 14:18		JTD
Sulfate	143	mg/L	0.140	1:10	EPA 300.0	12/04/2018 19:35		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Analysis Date/Time Codes Took

Report ID : 38805 Company: SEP - Environmental (JP-W) Address: 502 N. Allen Avenue

Date Received: 11/29/2018 Contact: Jill Parker-Witt Shreveport, LA 71101

Mathad

AEP Sample ID: 220939 Collected Date: 11/28/2018 By: KM
Cust Sample ID: MW-12D Location: Northeastern P.P. Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (220939)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	0.000007	mg/L	0.000005	1	EPA 7470A 1994	12/06/2018 14:35	J	LNM
Water (220939)			į					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	16	mg/L	0.219	1	EPA 300.0	12/04/2018 19:54		GB
Fluoride	2.2238	mg/L	0.083	1	EPA 300.0	12/04/2018 19:54		GB
Solids, Total Dissolved (TDS)	1068	mg/L	2	1	SM 2540 C-2011	12/03/2018 14:18		JTD
Sulfate	570	mg/L	0.140	1:10	EPA 300.0	12/04/2018 20:13		GB

AEP Sample ID: 220940 Collected Date: 11/28/2018 By: KM
Cust Sample ID: Duplicate Location: Northeastern P.P. Matrix: Water

Hait

Sample Desc.: Coal Combustion Residuals (CCR)

Value

Metals (220940)

Doromotor

Parameter	value	Unit	Det. Limit	Dil./Conc.	wethod	Analysis Date/Time	Codes	recn
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	12/06/2018 14:43	U	LNM
Water (220940)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	28	mg/L	0.219	1	EPA 300.0	12/04/2018 21:47		GB
Fluoride	0.2688	mg/L	0.083	1	EPA 300.0	12/04/2018 21:47	J	GB
Solids, Total Dissolved (TDS)	948	mg/L	2	1	SM 2540 C-2011	12/03/2018 14:18		JTD
Sulfate	329	mg/L	0.140	1:10	EPA 300.0	12/04/2018 23:21		GB

Dot Limit Dil/Cono

AEP Sample ID: 220941 Collected Date: 11/28/2018 By: KM
Cust Sample ID: Equipment Blank Location: Northeastern P.P. Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (220941)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	12/06/2018 14:45	U	LNM

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

: 38805 Report ID

Date Received: 11/29/2018

Company: SEP - Environmental (JP-W)

Contact: Jill Parker-Witt Phone: (318) 673-3816

Address: 502 N. Allen Avenue

Shreveport, LA 71101

Fax: (318) 673-3960

Quality Control Data

* Quality control units are the same as reported analytical results

		Q										
			Blank		Standard			Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
12/4/2018	Chloride	220840	<0.219	20	16.5	82.5	50	61	122.0		7.0	GB
12/4/2018	Chloride		<0.219		53							GB
12/4/2018	Chloride			20	16.5	82.5						GB
12/4/2018	Fluoride	220840	<0.083	10	10	100.0	10	10.1	101.0		0.0	GB
12/4/2018	Fluoride		<0.083									GB
12/4/2018	Fluoride			10	10	100.0						GB
12/6/2018	Mercury	220947.1	<0.00000	0.001	0.00097	97.0	0.001	0.0009558	95.6		0.7	LNM
12/6/2018	Mercury	220937.1	<0.00000	0.001	0.00097	97.0	0.001	0.0009076	90.8		1.0	LNM
12/3/2018	Solids, Total Dissolved (TDS)		<2	99.33	100	100.7	2802	2806	100.1		12.0	JTD
12/4/2018	Sulfate	220840	<0.140	20	17	85.0						GB
12/4/2018	Sulfate		<0.140									GB
12/4/2018	Sulfate			20	17	85.0						GB

Code Description Code

Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

U Analyte concentration below MDL.

19-Dec-18

Report Date

Shreveport Chemical Laboratory (SCL)

Chain of Custody Record

JOB 11-29-18

502 N. Allen Ave.

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Street port, Rev. 1, 1/10/17

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type		D	elivery Type	е	***************************************
Ice Chest Bag Action Pak PCB Mailer Bottle	UPS	FEDEX	US Mail	Walk in	Shuttle
Other	Othe	er			
	Tracking #	!			
Client Jill Parker-With	Tracking +		ample Matri	ix	
Received By JTD	DGA	PCB Oil	vvater	Oil	Soil
Received Date 11/24/18	_				
Open Date	Solid	Liquid	Other		
Container Temp Read Thermometer Serial #F04103	_	Project I.D.	388	05	_
Corrected Temp	_ Were s	amples receive	d on ice? (YES	NO
Did container arrive in good condition?	YES	NO			
Was sample documentation received?	YES	NO			
Was documentation filled out properly?	MES	NO			
Were samples labeled properly?	YES	NO			
Were correct containers used?	YES	NO			
Were the pH's of samples appropriately checked?	YES	(NO A) IN			
Total number of sample containers9	_	11/29//8 379			
Was any corrective action taken?	NO	Person Con			
Comments		Date & HM	ie .		<u></u>

Sample ID	Analysis	рН	Preservative Added / Lot #
MW-41)	Mercury	<u> </u>	
	/		
CISI-WM	1		
Ma.			
To preate			
Equipment Blank	V		
	à.		
			1
		<u> </u>	
			<i></i>
			/
	1		

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 12/28/2018

MW-4D

Sample Number: 184031-001 Date Collected: 11/28/2018 08:50 Date Received: 12/3/2018

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	< 0.1 ug/L	U	0.5	0.1	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.31 ug/L		0.5	0.2	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Barium, Ba	171 ug/L		0.5	0.1	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.1 ug/L	U	0.5	0.1	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.06 ug/L	J	0.2	0.05	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.3 ug/L	J	1	0.2	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.677 ug/L		0.2	0.1	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.3 ug/L	J	0.5	0.1	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	8 ug/L	J	10	2	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.2 ug/L	J	1	0.2	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.5 ug/L	U	2	0.5	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Boron, B	1.24 mg/L		0.02	0.005	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	193 mg/L		0.1	0.02	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00378 mg/L		0.001	0.00005	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	1.21	pCi/L	0.17	0.53	jls	12/27/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.419	pCi/L	0.087	0.10	jls	12/26/2018	SW-846 9315-1986,Rev. 0

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

MW-5D

Sample Number: 184031-002 Date Collected: 11/28/2018 11:35 Date Received: 12/3/2018

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	< 0.1 ug/L	U	0.5	0.1	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.15 ug/L		0.5	0.2	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Barium, Ba	113 ug/L		0.5	0.1	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.1 ug/L	U	0.5	0.1	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.06 ug/L	J	0.2	0.05	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.5 ug/L	J	1	0.2	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.324 ug/L		0.2	0.1	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.4 ug/L	J	0.5	0.1	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	2 ug/L	J	10	2	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.3 ug/L	J	1	0.2	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.5 ug/L	U	2	0.5	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Boron, B	0.612 mg/L		0.02	0.005	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	143 mg/L		0.1	0.02	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0121 mg/L		0.001	0.00005	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	1.99	pCi/L	0.16	0.48	jls	12/27/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.403	pCi/L	0.070	0.087	jls	12/26/2018	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the established range of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

MW-12D

Sample Number: 184031-003 Date Collected: 11/28/2018 13:25 Date Received: 12/3/2018

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.3 ug/L	J	0.5	0.1	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Arsenic, As	3.99 ug/L		0.5	0.2	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Barium, Ba	71.7 ug/L		0.5	0.1	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.1 ug/L	J	0.5	0.1	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.33 ug/L		0.2	0.05	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	1.70 ug/L		1	0.2	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.989 ug/L		0.2	0.1	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Lead, Pb	4.12 ug/L		0.5	0.1	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	744 ug/L		10	2	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Selenium, Se	1.9 ug/L		1	0.2	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.5 ug/L	U	2	0.5	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Boron, B	9.69 mg/L		0.02	0.005	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	103 mg/L		0.1	0.02	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00483 mg/L		0.001	0.00005	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	1.05	pCi/L	0.15	0.46	jls	12/27/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.436	pCi/L	0.076	0.084	jls	12/26/2018	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the established range of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Duplicate

Sample Number: 184031-004 Date Collected: 11/28/2018 08:50 Date Received: 12/3/2018

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	< 0.1 ug/L	U	0.5	0.1	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.25 ug/L		0.5	0.2	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Barium, Ba	171 ug/L		0.5	0.1	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.1 ug/L	U	0.5	0.1	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.05 ug/L	J	0.2	0.05	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.3 ug/L	J	1	0.2	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.668 ug/L		0.2	0.1	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.3 ug/L	J	0.5	0.1	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	9 ug/L	J	10	2	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.2 ug/L	J	1	0.2	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.5 ug/L	U	2	0.5	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Boron, B	1.17 mg/L		0.02	0.005	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	201 mg/L		0.1	0.02	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00391 mg/L		0.001	0.00005	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Equipment Blank

Sample Number: 184031-005 Date Collected: 11/28/2018 15:00 Date Received: 12/3/2018

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	< 0.02 ug/L	U	0.1	0.02	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Arsenic, As	< 0.03 ug/L	U	0.1	0.03	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Barium, Ba	0.05 ug/L	J	0.1	0.02	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.02 ug/L	U	0.1	0.02	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.01 ug/L	U	0.05	0.01	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	< 0.04 ug/L	U	0.2	0.04	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	< 0.02 ug/L	U	0.05	0.02	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Lead, Pb	< 0.02 ug/L	U	0.1	0.02	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	< 0.4 ug/L	U	2	0.4	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Selenium, Se	< 0.03 ug/L	U	0.2	0.03	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1 ug/L	U	0.5	0.1	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Boron, B	0.024 mg/L		0.005	0.0009	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	0.01 mg/L	J	0.02	0.003	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00002 mg/L	J	0.0002	0.00001	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

MW-3D

Sample Number: 184031-006 Date Collected: 11/28/2018 09:30 Date Received: 12/3/2018

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron. B	0.964 mg/L		0.02	0.005	GES	12/17/2018 16:03	EPA 200.8-1994. Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

MW-15

Sample Number: 184031-007 Date Collected: 11/28/2018 11:00 Date Received: 12/3/2018

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Calcium, Ca	119 mg/L		0.1	0.02	GES	12/17/2018 16:08	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

Michael Ohlinger, Chemist

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Bixby Road

Groveport, Ohio 43125			-	rogram	: Coal (ombustic	Program: Coal Combustion Residuals (CCR)	(CCR)			
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)					Site	Site Contact:			Date:	For Lab Use Only: COC/Order #:	
Project Name: Northeastern PP CCR						250 mL	Field-filter		Three		
Contact Name: Jill Parker-Witt	Analysis 1	Analysis Turnaround Time (in Calendar Days)	Time (in Ca	endar Day	s)	bottle,	ڡٞ		(six every 10th*) 1	2000	
Contact Phone: 318-673-3816	6 Rou	 Routine (28 days for Monitoring Wells) 	s for Monitor	ing Wells)		HNO3	5, pH<2,	Cool, 0-6C	L botties, pH<2, HNO3	0000	
Sampler(s): Kenny McDonald					y es	,9g ,e	tr, , Mn,		8		
					gleit	:8 's) 'p:		J-55		
	Sample				o g mpler(s) Ini	Ca, Sb, As d, Cr, Co, F	5, TL ssolved B, 3, Be, Ca, C 0, Re, K, Li, 0, Na, Pb, 9	D2' E' CI'	a-226, Ra		
Sample Identification	Date	Time	G=Grab)	Matrix C	4	B,	CS BS DI	4	צי	Sample Specific Notes:	
MW-4D	11/28/2018	850	g	GW	7	×			×		
MW-5D	11/28/2018	1135	g	GW	4	×			×		
MW-12D	11/28/2018	1325	9	GW	4	×			×		
DUPLICATE	11/28/2018	850	9	GW	T	×					
EQUIPMENT BLANK	11/28/2018	1500	9	GW	-	×					
					_						
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	1NO3; 5=NaC	0H; 6= Oth	Je.	; F= filte	; F= filter in field	4	F4	,	4		
* Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th s	ample.									

Date/Time:

Date/Time:

Received in Laboratory by:

Date/Time:

Received by:

Date/Time: 1400 | Date/Time:

Company: F. #61 F

Relinquished by:

Special Instructions/QC Requirements & Comments:

Company:

Company:

Relinquished by:

Relinquished by:

Received by:

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Bixby Road

SQ.	Groveport, Ohio 43125 Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219) Project Name: Northeastem PP CCR Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816 Sampler(s): Kenny McDonald	Analysis © Roi	Furnaround	Program: 2nd HAI Analysis Turnaround Time (in Calendar Days) Routine (28 days for Monitoring Wells) Sample Type	endar Da	VS)	Site Contact: Output Output	ct: 250 mL bottle, pH<2, HNO3	2nd HALF 2018 DETECTION MONITORING; 2 OF 2 Site Contact: adar Days) bottle, bottle, bottle, bottle, bottle, bottle, hottle, bottle, hottle, bottle, hottle,	11. SO4 bottle, Cool, Cool, F. CI, SO4	Date: Three (six every 10th*) 1 Loutles, pH-2, HN03	COC/Order #	For Lab Use Only:	ly:	
11/28/2018 930 G GW 1	MW-3D MW-15	11/28/2018	930	o o	% % % %			×	×						
11/28/2018 1100 G GW 1															
11/28/2018 1100 G GW 1															
11/28/2018 1100 G GW 1															1
11/28/2018 1100 G GW 1															
11/28/2018 1100 G GW 1						+									
11/28/2018 1100 G GW 1															7
11/28/2018 1100 G GW 1															_
11/28/2018 1100 G GW 1									1			*			
S GW 1	on Used: 1= Ice, 2= HC ; 3= H2SO4; 4=H tottles must be collected for Radium for	every 10th	Sample.	Jer.	# #	er in fle	9	4	Ž.	-	4				
G GW 1	structions/QC Requirements & Commen	nts:							:						
G GW 1 X X															_
G GW 1 X X X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	MARY	Company:	401F		Jate/Time	7/8/		eceived by:	200	9	d	Date/Time:	81-50-	インド	_
1-16	Relinquished by:	Company:	,		Date/Time:	iii		Received by:	2			Date/Time:			_

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

Date/Time:

Received in Laboratory by:

Date/Time:

Company:

Relinquished by:

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer NOTHICSTES	Number of Plastic Containers:
Opened By SH	Number of Glass Containers:
Date/Time 12-03-18 11:45	Number of Mercury Containers:
Were all temperatures within 0-6°C? Y / N o	on ice / no ice
Was container in good condition? Y/ N) - If No, specify each deviation:
	Comments
Requested turnaround: Requested turnaround:	If RUSH, who was notified?
	O ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	Comments
Were samples labeled properly? N	Comments
Were correct containers used?	
Was pH checked & Color Coding done? Y /	N or N/A Initial & Date: 54 12-03-17
- Was Add'l Preservative needed? Y	Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / N	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# 184031 Initial & D	Pate & Time :
Logged by Comment	ts:
A.I. O	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Date Received: 01/17/2019

AEP ANALYTICAL CHEMISTRY SERVICES Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 39067 Company: SEP - Environmental (JP-W)

Contact: Jill Parker-Witt

Address: 502 N. Allen Avenue Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

AEP Sample ID: 222034 Collected Date: 01/15/2019 By: KM
Cust Sample ID: MW-4D Location: Northeastern P P Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Water (222034)

Valci (LLLOOT)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	24.6	mg/L	0.219	1	EPA 300.0	01/18/2019 18:10		GB
Fluoride	0.370	mg/L	0.083	1	EPA 300.0	01/22/2019 13:45	J	GB
Sulfate	417.6	mg/L	0.140	1:10	EPA 300.0	01/18/2019 18:29		GB

AEP Sample ID: 222035 Collected Date: 01/15/2019 By: KM
Cust Sample ID: MW-5D Location: Northeastern P P Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Water (222035)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	24.0	mg/L	0.219	1	EPA 300.0	01/18/2019 18:48		GB
Fluoride	0.316	mg/L	0.083	1	EPA 300.0	01/22/2019 14:03	J	GB
Sulfate	127.6	mg/L	0.140	1:10	EPA 300.0	01/18/2019 19:06		GB

AEP Sample ID: 222036 Collected Date: 01/15/2019 By: KM
Cust Sample ID: MW-12D Location: Northeastern P P Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Water (222036)

Water (222030)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	14.6	mg/L	0.219	1	EPA 300.0	01/18/2019 19:25		GB
Fluoride	2.028	mg/L	0.083	1	EPA 300.0	01/19/2019 14:22		GB
Sulfate	437.4	mg/L	0.140	1:100	EPA 300.0	01/18/2019 20:20		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 39067 Address: 502 N. Allen Avenue Report ID Contact: Jill Parker-Witt **Date Received:** 01/17/2019

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 222037 **Collected Date: 01/15/2019** Cust Sample ID: Duplicate Location: Northeastern P P Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Water (222037)

Water (ZZZOST)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	24.5	mg/L	0.219	1	EPA 300.0	01/18/2019 20:22		GB
Fluoride	0.335	mg/L	0.083	1	EPA 300.0	01/19/2019 14:41	J	GB
Sulfate	470.5	mg/L	0.140	1:10	EPA 300.0	01/18/2019 20:41		GB

Quality Control Data

* Quality control units are the same as reported analytical results

		Quanty			ne us reported							
			Blank		Standard			Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
1/18/2019	Chloride	221959	<0.219	20	20	100.0	20	20	100.0		0.0	GB
1/18/2019	Chloride		<0.219	20	20	100.0						GB
1/18/2019	Chloride		<0.219	20	19	95.0						GB
1/18/2019	Chloride		<0.219									GB
1/22/2019	Fluoride	222046		10	10	100.0					0.0	GB
1/22/2019	Fluoride		<0.083									
1/18/2019	Sulfate	221959	<0.140	20	19	95.0	20	21	105.0		0.0	GB
1/18/2019	Sulfate		<0.140	20	19	95.0						GB
1/18/2019	Sulfate		<0.140									GB

Code	Code	Descri	ntion
Code	Coue	Descri	มแบบ

	Laboratory Manager	Papart Data	
	7-101-110 pg 1 - (u-c)	28-Jan-19	
J	Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).		

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Report Date

Shreveport Chemical Laboratory (SCL)

Chain of Custody Record

502 N. Allen Ave.

Form COC-04,

hain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shre

rt, Rev. 1, 1/10/17

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type			Delivery Typ	oe	
Ice Chest Bag Action Pak PCB Mailer Bottle Other	UPS Ott	FEDEX	US Mail	Walk in	Shuttle
	Tracking	#			
Client Jil Parker - With Received By Received Date 1/17/19	DGA		water	rix Oil	Soil
Open Date	Solid	Liquid	Other	r	
Container Temp Read		Project I.D	. 3904	47	_
Corrected Temp	Were	samples receive	ed on ice?	(YES)	NO
Did container arrive in good condition?	YES	NO			
Was sample documentation received?	YES	NO			
Was documentation filled out properly?	YES	NO		· · · · · · · · · · · · · · · · · · ·	
Were samples labeled properly?	YES	NO	e		
Were correct containers used?	YES	NO			
Were the pH's of samples appropriately checked?	YES	NO N/	4		
Total number of sample containers	_				
Was any corrective action taken?	NO	Person Co Date & Tin		5:1	1 parle
Comments The Somple collect	tion of	ite			5.
		uld a	1/21	/19.	

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 2/6/2019

٨л	۱A	I-4	п.
IVI	v	1-4	

Sample Number: 190230-001 Date Collected: 01/15/2019 16:00 Date Received: 1/21/2019

		Data				
Parameter	Result Units	Qual R	_ MDL	Analysis By	Analysis Date/Time	Method
Boron, B	1.16 mg/L	0.0	2 0.005	GES	02/05/2019 17:07	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	183 mg/L	0.	1 0.02	GES	02/05/2019 17:07	EPA 200.8-1994, Rev. 5.4

MW-5D

Sample Number: 190230-002 Date Collected: 01/15/2019 18:05 Date Received: 1/21/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.540 mg/L		0.005	0.0009	GES	02/04/2019 17:17	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	157 mg/L		0.02	0.003	GES	02/04/2019 17:17	EPA 200.8-1994, Rev. 5.4

MW-12D

Sample Number: 190230-003 Date Collected: 01/15/2019 15:20 Date Received: 1/21/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	9.08 mg/L		0.02	0.005	GES	02/05/2019 17:12	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	68.0 mg/L		0.1	0.02	GES	02/05/2019 17:12	EPA 200.8-1994, Rev. 5.4

Equipment Blank

Sample Number: 190230-004 Date Collected: 01/15/2019 16:00 Date Received: 1/21/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.048 mg/L		0.005	0.0009	GES	02/04/2019 17:27	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	0.01 mg/L	J	0.02	0.003	GES	02/04/2019 17:27	EPA 200.8-1994, Rev. 5.4

Duplicate

Sample Number: 190230-005 Date Collected: 01/15/2019 18:10 Date Received: 1/21/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	1.12 mg/L		0.005	0.0009	GES	02/04/2019 17:32	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	201 mg/L		0.02	0.003	GES	02/04/2019 17:32	EPA 200.8-1994, Rev. 5.4

Location: Northeastern Station

Report Date: 2/6/2019

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Ice was present in all samples upon arrival due to outside temperatures.

Michael Ohlinger, Chemist

Michael & Ollinger

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, **UNLESS OTHERWISE NOTED.**

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Bixby Road

Groveport, Ohio 43125	-		a.	Program:	n: Co	al Com	bustion R	Coal Combustion Residuals (CCR)	CCR)	0 0000		
Contacts: Dave Conover (614-836-4184)						Site Contact:	act:			Date:	For Lab Use Only: COC/Order #:	
Project Name: Northeastern PP CCR							250 mL	Field-filter 250 mL	-	Three		
Contact Name: Jill Parker-Witt	Analysis T	urnaround	Analysis Turnaround Time (in Calendar Days)	endar D	ays)		bottle,	bottle, then	bottle,	10th") 1	170650	
Contact Phone: 318-673-3816	@ Rout	ine (28 da)	 Routine (28 days for Monitoring Wells) 	ing Wells	()		HNO3	HNO3	0-6C	L bottles, pH<2, HNO3		
Sampler(s): Kenny McDonald						slai	wr	d, Cr, Mg, Mn,	708	-228		
Sample Identification	Sample Date	Sample	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) Init	Boron, Calciu	Dissolved B, Co, Fe, K, Li, Co, Na, Pb, S	TDS, F, CI,	Ra-226, Ra	Sample Specific Notes:	
MW-4D	1/15/2019	1600	9	GW	-		×					
MW-5D	1/15/2019	1805	g	GW	+		×					
MW-12D	1/15/2019	1520	g	GW	4		×					
DUPLICATE	1/15/2019	1600	O	GW	-		×					
EQUIPMENT BLANK	1/15/2019	1810	g	3	-		×					
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	4NO3; 5=NaO	H; 6= Oth	ier	; F=fi	F= filter in field	plei	4	F4	1	4		
* Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th s	ample.										

Special Instructions/QC Requirements & Comments:

Relinquished by:	Company:	61/i7/19 1400	Received by:	Date/Time:
Relinquished by:	Company:	Date/Time:	Received by:	Date/Time:
Relinquished by:	Company:	Date/Time:	Received in Labratory by: () ()	Date/Time: 1/21/19 /2;30,9m
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	ord for Coal Combustion Residua	I (CCR) Sampling - Shre		, ,

MEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FEDEX USPS
	Other
Plant/Customer Nortle45 tun	Number of Plastic Containers:
Opened By;//wo	Number of Glass Containers:
	Number of Mercury Containers:
	or N/A Initial:on ice / no ice
	Comments
Was Chain of Custody received? (Y) / N	Comments
Requested turnaround: 28042	If RUSH, who was notified?
pH (15 min) Cr^{+6} (pres) NO_2 or N (24 hr)	O ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? N	Comments
	Comments
Were correct containers used?	Comments
Was pH checked & Color Coding done?	N or N/A Initial & Date:
- Was Add'l Preservative needed? Y / N If	Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / N	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID#	Pate & Time :
Logged by MSD Comments	ts: Due to cultent Weather, whis were partially thosen
Reviewed by	n'arrival,

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 39317 Address: 502 N. Allen Avenue Report ID **Date Received:** 02/28/2019

Contact: Jill Parker-Witt

Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

Collected Date: 02/27/2019 By: KM AEP Sample ID: 223097 Cust Sample ID: MW-2D **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (223097)

Motale (220001)										
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech		
Mercury	0.000028	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 12:10		LNM		
Water (223097)										
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech		
Solids, Total Dissolved (TDS)	1218	mg/L	2	1	SM 2540 C-2011	03/02/2019 14:02		JTD		

AEP Sample ID: 223098 Collected Date: 02/27/2019 Bv: KM Location: Northeastern Power Plant Cust Sample ID: MW-3D Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (223098)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 12:27	U	LNM
Water (223098)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	700	mg/L	2	1	SM 2540 C-2011	03/02/2019 14:02		JTD

Collected Date: 02/27/2019 By: KM AEP Sample ID: 223099 Matrix: Water

Cust Sample ID: MW-4D **Location:** Northeastern Power Plant

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (223099)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 12:29	U	LNM
Water (223099)	·							
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	696	mg/L	2	1	SM 2540 C-2011	03/02/2019 14:02		JTD

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 39317 Address: 502 N. Allen Avenue Contact: Jill Parker-Witt Date Received: 02/28/2019

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Collected Date: 02/27/2019 By: KM AEP Sample ID: 223100 Matrix: Water Cust Sample ID: MW-5D **Location:** Northeastern Power Plant

Sample Desc.: Coal Combustion Residuals (CCR)

Metals	(223100)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech			
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 13:35	U	LNM			
Water (223100)											
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech			
Solids, Total Dissolved (TDS)	616	mg/L	2	1	SM 2540 C-2011	03/02/2019 16:00		JTD			

AEP Sample ID: 223101 Collected Date: 02/27/2019 Bv: KM **Location:** Northeastern Power Plant Cust Sample ID: MW-6D Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (223101)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	0.000115	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 13:38		LNM
Water (223101)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids Total Dissolved (TDS)	1144	ma/l	2	1	SM 2540 C-2011	03/02/2019 16:00		JTD

AEP Sample ID: 223102 Collected Date: 02/27/2019 By: KM Cust Sample ID: MW-7D **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (223102)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	0.000006	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 13:41	J	LNM
Water (223102)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	4500	mg/L	2	1	SM 2540 C-2011	03/02/2019 16:00		JTD

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 39317 Address: 502 N. Allen Avenue Date Received: 02/28/2019

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Collected Date: 02/27/2019 By: KM AEP Sample ID: 223103 Matrix: Water Cust Sample ID: MW-8D **Location:** Northeastern Power Plant

Sample Desc.: Coal Combustion Residuals (CCR)

N	lotal	le i	(2231	U3)
I۱	лета	15	IZZJ	เบอเ

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech			
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 13:44	U	LNM			
Water (223103)											
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech			
Solids, Total Dissolved (TDS)	17128	mg/L	2	1	SM 2540 C-2011	03/02/2019 14:02		JTD			

AEP Sample ID: 223104 Collected Date: 02/27/2019 Bv: KM **Location:** Northeastern Power Plant Cust Sample ID: MW-9D Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (223104)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	0.000019	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 13:47	J	LNM
Water (223104)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	1174	mg/L	2	1	SM 2540 C-2011	03/02/2019 14:02		JTD

AEP Sample ID: 223105 Collected Date: 02/27/2019 By: KM

Cust Sample ID: MW-12D **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (223105)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 13:50	U	LNM
Water (223105)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	1014	mg/L	2	1	SM 2540 C-2011	03/02/2019 14:02		JTD

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 39317 Address: 502 N. Allen Avenue Contact: Jill Parker-Witt Date Received: 02/28/2019 Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Collected Date: 02/27/2019 By: KM AEP Sample ID: 223106 Matrix: Water Cust Sample ID: MW-15 **Location:** Northeastern Power Plant

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (223106)	Metal	s (223	106
-----------------	-------	--------	-----

Motale (220100)									
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech	
Mercury	0.000007	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 13:53	J	LNM	
Water (223106)									
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech	
Solids, Total Dissolved (TDS)	1046	mg/L	2	1	SM 2540 C-2011	03/02/2019 14:02		JTD	

Collected Date: 02/27/2019 AEP Sample ID: 223107 Bv: KM Location: Northeastern Power Plant Cust Sample ID: Duplicate Landfill Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (222107)

Wielais (223 IUI)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 14:02	U	LNM
Water (223107)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	1072	mg/L	2	1	SM 2540 C-2011	03/02/2019 14:02		JTD

By: KM AEP Sample ID: 223108 Collected Date: 02/27/2019

Cust Sample ID: Equipment Blank Landfill **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (223108)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 14:21	C	LNM

Date Received: 02/28/2019

AEP ANALYTICAL CHEMISTRY SERVICES Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 39317 Company: SEP - Environmental (JP-W)

Contact: Jill Parker-Witt

Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

Address: 502 N. Allen Avenue

Quality Control Data

* Quality control units are the same as reported analytical results

			Blank	Standard				Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
3/6/2019	Mercury	223139.2	<0.00000	0.001	0.0008521	85.2	0.001	0.000892	89.2		2.0	LNM
3/6/2019	Mercury	223107.2	<0.00000	0.001	0.00097	97.0	0.001	0.0009418	94.2		3.4	LNM
3/6/2019	Mercury	223097.2	<0.00000	0.001	0.00097	97.0	0.001	0.0008259	82.6		2.5	LNM
3/2/2019	Solids, Total Dissolved (TDS)	223111	<2	99.33	100	100.7	2806	2794	99.6		3.2	JTD
3/2/2019	Solids, Total Dissolved (TDS)	223110	<2	99.33	98	98.7	2806	2766	98.6		3.4	JTD

Code Code Description

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

U Analyte concentration below MDL.

15-Apr-19

Quality Assurance Officer

Report Date

Sampler(s): Kenneth McDonald Contact Phone: Project Name: Northeastern PP CCR Special Instructions/QC Requirements & Comments: Preservation Used: 1= lce, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other_ Contact Name: Relinquished by: Relinquished by: Relinquished by: Six 1L Bottles must be collected for Radium for every 10th sample EQUIPMENT BLANK LANDFILL DUPLICATE LANDFILL Sample Identification Jill Parker-Witt 318-673-3816 MW-15 MW-8D MW-7D MW-6D MW-5D MW-4D MW-3D MW-2D MW-12D MW-9D Company: Lang Ut Company: Company: Sample Date 2/27/2019 2/27/2019 2/27/2019 2/27/2019 Analysis Turnaround Time (in Calendar Days) 2/27/2019 2/27/2019 2/27/2019 2/27/2019 2/27/2019 2/27/2019 2/27/2019 2/27/2019 Routine (28 days for Monitoring Wells) Sample Time 1340 1120 810 1200 1325 1022 1350 1000 1225 900 835 835 Type (C=Comp, G=Grab) Sample 0 G G G G 0 0 G 0 0 **G** G 02/28/9 Matrix Date/Time: Date/Time: GW GW GW. GW GW GW GW GW GW GW GW ٤ F= filter in field # of Cont. 2 N N 2 N N N N N N 555 Sampler(s) Initials Received by: bottle, Received in Laboratory by: Received by: 250 mL pH<2, HNO3 Mercury × × × \times \times \times × × × × × × bottle, then Field-filter 500 mL pH<2, HNO3 dissolved Fe and Mn T. 250 mL bottle, Cool, 0-6C TDS × × \times × \times \times \times \times × × × (six every 10th*) L bottles, pH<2, HNO3 Three Ra-226, Ra-228 4 25104.1-223104.2 023103.1-523103.5 223/02-1-223/02-2 223160.1-223/00.2 223099.1-223099.7 23028-1-223028-2 23/05.1-223/05.2 223/01.1-223/01.2 223097.1- 223097.2 Date/Time: 223104 723107.6-223106-1-223106-2 Date/Time: Sample Specific Notes: 223102-5

Contacts: John Davis (318-673-3811)

Shreveport Chemical Laboratory (SCL)

502 N. Allen Ave.

Shreveport, LA 71101

Program: Coal Combustion Residuals (CCR)

Site Contact:

Date:

COC/Order #:

For Lab Use Only:

N 2-28-19

Chain of Custody Record

Jonathan Barnhill (318-673-3803)

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type	Delivery Type						
Other Bag Action Pak PCB Mailer Bottle	UPS Othe	FEDEX	US Mail	Walk in	Shuttle		
	Tracking #						
Client Jill Partier - With	_	S	ample Matr	rix			
Received By 5710	DGA	PCB Oil	Water	Oil	Soil		
Received Date 2/28/19	_						
Open Date	Solid	Liquid	Other				
Container Temp Read 7 Thermometer Serial #F04103	_	Project I.D	393	17			
Correction Factor	Were sa	amples receive	ed on ice? (YES)	NO		
Corrected Temp 4, z	_						
Did container arrive in good condition?	YES	NO					
Was sample documentation received?	YES	NO					
Was documentation filled out properly?	TES	NO "					
Were samples labeled properly?	TES	NO					
Were correct containers used?	YES	NO					
Were the pH's of samples appropriately checked?	YES	NO					
Total number of sample containers 23	_						
Was any corrective action taken?	NO	Person Cor					
Comments		Date & Tin	ne				
				· · · · · · · · · · · · · · · · · · ·			
				- 3			

Sample ID	Analysis	рН	Preservative Added / Lot #
MW-212	Mercury		
Mw-3D			
MW-40			
Miv-SD			
MW-60			
Mw-71)			
MULSD			
MW-90			
MW-1212			
MW-15			
Dup Lundfill			
Kyvip Landfill			
			/
			/
			/
			/
			/
			/
		-	

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 4/15/2019

MW-2D

Sample Number: 190787-001 Date Collected: 02/27/2019 12:00 Date Received: 3/5/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	16.4 mg/L		0.1	0.03	CRJ	03/22/2019 09:54	EPA 300.1-1997, Rev. 1.0
Fluoride, F	1.56 mg/L		0.2	0.04	CRJ	03/22/2019 09:54	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	612 mg/L		10	2	CRJ	03/21/2019 05:09	EPA 300.1-1997, Rev. 1.0

MW-3D

Sample Number: 190787-002 Date Collected: 02/27/2019 09:00 Date Received: 3/5/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	13.2 mg/L		0.1	0.03	CRJ	03/21/2019 20:53	EPA 300.1-1997, Rev. 1.0
Fluoride, F	0.71 mg/L		0.2	0.04	CRJ	03/21/2019 20:53	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	223 mg/L		10	2	CRJ	03/21/2019 05:32	EPA 300.1-1997, Rev. 1.0

MW-4D

Sample Number: 190787-003 Date Collected: 02/27/2019 08:35 Date Received: 3/5/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	31.2 mg/L		0.1	0.03	MGK	03/21/2019 13:13	EPA 300.1-1997, Rev. 1.0
Fluoride, F	0.30 mg/L		0.2	0.04	MGK	03/21/2019 13:13	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	463 mg/L		10	2	CRJ	03/21/2019 05:55	EPA 300.1-1997, Rev. 1.0

MW-5D

Sample Number: 190787-004 Date Collected: 02/27/2019 12:25 Date Received: 3/5/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	26.7 mg/L		0.1	0.03	MGK	03/21/2019 13:59	EPA 300.1-1997, Rev. 1.0
Fluoride, F	0.50 mg/L		0.2	0.04	MGK	03/21/2019 13:59	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	153 mg/L		10	2	CRJ	03/21/2019 06:17	EPA 300.1-1997, Rev. 1.0

			_	_
M	V	V-(ы	D

Sample Number: 190787-005 Date Collected: 02/27/2019 10:00 Date Received: 3/5/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	26.9 mg/L		0.1	0.03	MGK	03/21/2019 14:22	EPA 300.1-1997, Rev. 1.0
Fluoride, F	0.89 mg/L		0.2	0.04	MGK	03/21/2019 14:22	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	496 mg/L		10	2	CRJ	03/21/2019 07:03	EPA 300.1-1997, Rev. 1.0

MW-7D

Sample Number: 190787-006 Date Collected: 02/27/2019 08:10 Date Received: 3/5/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	385 mg/L		1	0.3	CRJ	03/21/2019 07:26	EPA 300.1-1997, Rev. 1.0
Fluoride, F	1.66 mg/L		0.2	0.04	MGK	03/21/2019 14:45	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	2390 mg/L		10	2	CRJ	03/21/2019 07:26	EPA 300.1-1997, Rev. 1.0

MW-8D

Sample Number: 190787-007 Date Collected: 02/27/2019 13:50 Date Received: 3/5/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	9650 mg/L		20	8	CRJ	03/21/2019 15:30	EPA 300.1-1997, Rev. 1.0
Fluoride, F	2.28 mg/L		8.0	0.2	CRJ	03/21/2019 15:53	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	43.4 mg/L		5	8.0	CRJ	03/21/2019 15:53	EPA 300.1-1997, Rev. 1.0

MW-9D

Sample Number: 190787-008 Date Collected: 02/27/2019 10:22 Date Received: 3/5/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	28.9 mg/L		0.1	0.03	MGK	03/21/2019 16:41	EPA 300.1-1997, Rev. 1.0
Fluoride, F	0.89 mg/L		0.2	0.04	MGK	03/21/2019 16:41	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	555 mg/L		10	2	CRJ	03/21/2019 08:15	EPA 300.1-1997, Rev. 1.0

MW-12D

Sample Number: 190787-009 Date Collected: 02/27/2019 13:25 Date Received: 3/5/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	16.8 mg/L		0.1	0.03	MGK	03/21/2019 17:04	EPA 300.1-1997, Rev. 1.0
Fluoride, F	2.11 mg/L		0.2	0.04	MGK	03/21/2019 17:04	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	564 mg/L		10	2	CRJ	03/21/2019 09:00	EPA 300.1-1997, Rev. 1.0

Location: Northeastern Station Report Date: 4/15/2019

MW-15

Sample Number: 190787-010 Date Collected: 02/27/2019 11:20 Date Received: 3/5/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	24.3 mg/L		0.1	0.03	MGK	03/21/2019 17:27	EPA 300.1-1997, Rev. 1.0
Fluoride, F	1.45 mg/L		0.2	0.04	MGK	03/21/2019 17:27	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	574 mg/L		10	2	CRJ	03/21/2019 09:23	EPA 300.1-1997, Rev. 1.0

Duplicate Landfill

Sample Number: 190787-011 Date Collected: 02/27/2019 08:35 Date Received: 3/5/2019

	I	Data				
Parameter	Result Units	Qual RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	29.9 mg/L	0.1	0.03	MGK	03/21/2019 18:13	EPA 300.1-1997, Rev. 1.0
Fluoride, F	0.30 mg/L	0.2	0.04	MGK	03/21/2019 18:13	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	462 mg/L	10	2	CRJ	03/21/2019 09:46	EPA 300.1-1997, Rev. 1.0

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

Michael Ohlinger, Chemist

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Bixby Road				ပ်	ain o	f Cus	tody	Chain of Custody Record	77				
Groveport, Ohio 43125			E.	rogran	n: Coal	Combu	stion Re	Program: Coal Combustion Residuals (CCR)	CCR)				
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)					S.	Site Contact:	·			Date:		For Lab Use Only: COC/Order #:	
Project Name: Northeastern PP CCR						75		Field-filter 250 mL	250 ml	Three			
Contact Name: Jill Parker-Witt	Analysis T	urnaround	Analysis Turnaround Time (in Calendar Days)	endar Da	lys)	.	bottle, b	Ę		10th*)		100787	
Contact Phone: 318-673-3816	© Rou	tine (28 day	 Routine (28 days for Monitoring Wells) 	ing Wells	_	2 I	HNO3	PHSZ, HNO3	0-6C	L bottles, pH<2, HNO3		10 0	
Sampler(s): Kenny McDonald						,		Cr, I, Mn,	fate	87			
						elsiti) ,bc	llu S	3-25			
			Sample			inl (s)r		, K, Li, , Ca, C	,ebi de, S	5, Rs			
Sample Identification	Sample Date	Sample	Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sample	Boron,	Dissolv Ba, Be, Co, Fe, Mo, Na	Fluori Chlor	Ra-22		Sample Specific Notes:	
MW-2D	2/27/2019	1200	Ø	GW	-				×				
MW-3D	2/27/2019	006	O	QW.	-				×				
MW-4D	2/27/2019	835	ဟ	GW	-				×				
MW-5D	2/27/2019	1225	9	GW	-				×				
MW-6D	2/27/2019	1000	G	GW	1				×				
MW-7D	2/27/2019	810	ŋ	GW	-				×				
MW-8D	2/27/2019	1350	9	GW	1				×			300	
D6-WM	2/27/2019	1022	ß	GW	1				×				nalinating and the
MW-12D	2/27/2019	1325	9	GW	1				×				
MW-15	2/27/2019	1120	ŋ	МЫ	-				×				100
DUPLICATE LANDFILL	2/27/2019	835	O	ВW	_				×				
											_		
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3; 5=NaC)H; 6= Oth		; F= fi	; F= filter in field	P	4	F4		4			
* Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th :	sample.											

Special Instructions/QC Requirements & Comments:

					7
Relinquished by:	Company: CH61F	Date/Time: // //9 //9 Peceived by:	Received by:	Date/Time:	
Relinquished by:	Company:	Date/Time:	Received by:	Date/Time:	
Relinquished by:	Company:	Date/Time:	Received in aboration by:	Date/I'me: 11,50,70	
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	C) Record for Coal Combustion Residua	al (CCR) Sampling - Shre	veport, Rev. 1, 1/10/17		1

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FEDEX USPS
	Other
Plant/Customer Northeastin	Number of Plastic Containers:
Opened By MS TUB	Number of Glass Containers:
Date/Time 3/5/19 11:50Am	Number of Mercury Containers:
Were all temperatures within 0-6°C°(Y)/ N of (IR Gun Ser# 181354432, Expir. 16-12-20)	or N/A Initial:or_ice/ no ice/) - If No, specify each deviation:
	Comments
Was Chain of Custody received? N Requested turnaround:	Comments If RUSH, who was notified?
	O ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? (Y) N	Comments
Were samples labeled properly? \(\overline{\text{V}} / \text{N} \)	Comments
Were correct containers used? Y/N	Comments
Was pH checked & Color Coding done?	N or N/A Initial & Date: MS / JWB 3/5/19
- Was Add'l Preservative needed? Y N If Y	es: By whom & when: (See Prep Book)
Is sample filtration requested? Y / N (Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# 190787 Initial & Da	ate & Time :
Logged by	s:
Reviewed by	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 4/15/2019

MW-2D

Sample Number: 190825-001 Date Collected: 02/27/2019 12:00 Date Received: 3/7/2019

Parameter		Data Qual RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	9.67 mg/L	0.02	0.005	GES	04/04/2019 14:38	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	9.26 mg/L	0.1	0.02	GES	04/04/2019 14:38	EPA 200.8-1994, Rev. 5.4

Laboratory Fortified Blank and Laboratory Fortified Blank Duplicate relative percent difference was greater than the quality control limit of 10%.

MW-3D

Sample Number: 190825-002 Date Collected: 02/27/2019 09:00 Date Received: 3/7/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.973 mg/L		0.02	0.005	GES	04/04/2019 14:43	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	127 mg/L		0.1	0.02	GES	04/04/2019 14:43	EPA 200.8-1994, Rev. 5.4

Laboratory Fortified Blank and Laboratory Fortified Blank Duplicate relative percent difference was greater than the quality control limit of 10%.

MW-4D

Sample Number: 190825-003 Date Collected: 02/27/2019 08:35 Date Received: 3/7/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	1.42 mg/L		0.02	0.005	GES	04/04/2019 14:48	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	187 mg/L		0.1	0.02	GES	04/04/2019 14:48	EPA 200.8-1994, Rev. 5.4
Laboratory Fortified Blank ar	nd Laboratory Fortified Bla	nk Duplica	ate relati	ve percent	difference was	greater than the quality	y control limit of 10%.

MW-5D

Sample Number: 190825-004 Date Collected: 02/27/2019 12:25 Date Received: 3/7/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.531 mg/L	Quai	0.02	0.005	GES	04/04/2019 14:53	EPA 200.8-1994. Rev. 5.4
Calcium, Ca	130 mg/L		0.1	0.02	GES	04/04/2019 14:53	EPA 200.8-1994, Rev. 5.4

Laboratory Fortified Blank and Laboratory Fortified Blank Duplicate relative percent difference was greater than the quality control limit of 10%.

MW-6D

Sample Number: 190825-005 Date Collected: 02/27/2019 10:00 Date Received: 3/7/2019

Parameter	Result Units	Data Qual RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	3.63 mg/L	0.02	0.005	GES	04/04/2019 14:58	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	360 mg/L	0.1	0.02	GES	04/04/2019 14:58	EPA 200.8-1994, Rev. 5.4

Laboratory Fortified Blank and Laboratory Fortified Blank Duplicate relative percent difference was greater than the quality control limit of 10%.

MW-7D

Sample Number: 190825-006 Date Collected: 02/27/2019 08:10 Date Received: 3/7/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	1.00 mg/L		0.02	0.005	GES	04/04/2019 15:03	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	185 mg/L		0.1	0.02	GES	04/04/2019 15:03	EPA 200.8-1994, Rev. 5.4

Laboratory Fortified Blank and Laboratory Fortified Blank Duplicate relative percent difference was greater than the quality control limit of 10%.

MW-8D

Sample Number: 190825-007 Date Collected: 02/27/2019 13:50 Date Received: 3/7/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	1.62 mg/L		0.02	0.005	GES	04/04/2019 15:08	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	788 mg/L		0.1	0.02	GES	04/04/2019 15:08	EPA 200.8-1994, Rev. 5.4

Laboratory Fortified Blank and Laboratory Fortified Blank Duplicate relative percent difference was greater than the quality control limit of 10%.

MW-9D

Sample Number: 190825-008 Date Collected: 02/27/2019 10:22 Date Received: 3/7/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	6.49 mg/L		0.1	0.02	CTK	04/05/2019 12:02	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	155 mg/L		0.4	0.06	CTK	04/05/2019 12:02	EPA 200.8-1994, Rev. 5.4

MW-12D

Sample Number: 190825-009 Date Collected: 02/27/2019 13:25 Date Received: 3/7/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	8.88 mg/L		0.1	0.02	СТК	04/05/2019 12:07	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	64.7 mg/L		0.4	0.06	CTK	04/05/2019 12:07	EPA 200.8-1994, Rev. 5.4

MW-15

Sample Number: 190825-010 Date Collected: 02/27/2019 11:20 Date Received: 3/7/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	8.34 mg/L		0.1	0.02	CTK	04/05/2019 12:12	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	96.9 mg/L		0.4	0.06	CTK	04/05/2019 12:12	EPA 200.8-1994, Rev. 5.4

Duplicate Landfill

Sample Number: 190825-011 Date Collected: 02/27/2019 08:35 Date Received: 3/7/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	1.45 mg/L		0.02	0.005	GES	04/04/2019 17:21	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	198 mg/L		0.1	0.02	GES	04/04/2019 17:21	EPA 200.8-1994. Rev. 5.4

Location: Northeastern Station Report Date: 4/15/2019

Equipment Blank Landfill

Sample Number: 190825-012 Date Collected: 02/27/2019 13:40 Date Received: 3/7/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.006 mg/L		0.005	0.0009	CTK	04/05/2019 11:57	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	0.01 mg/L	J	0.02	0.003	CTK	04/05/2019 11:57	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Michael Ohlinger, Chemist

Muhael & Ollinger

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, **UNLESS OTHERWISE NOTED.**

Chain of Custody Record

Laboratory (DCL) by Road Ohlo 43125 Chain of Custody Record Coal Combustion Residuals (CCR)	-836-4184) 16-4219)	Analysis Turnaround Time (in Calendar Days) Analysis Turnaround Time (in Calendar Days) Ph<2, ph<2, ph<2, cool, L bottles, HNO3 Routine (28 days for Monitoring Wells) Ph = 250 mL 250 mL 1 (six every bottle, 11 (six every bottle, 11 (six every L bottles, 11 (six every L bottles, 12 (cool, L bottles, 14 (cool) L bottles, 14 (cool, L bottles,	isls Sb, As, d, Cr, Mg, Mn, Re, Sr, Ti	Sample Sample (C=Comp, Matrix Cont. 50 Matrix	1-2D S2772019 1200 G GW 1 X	-3D 2/27/2019 900 G GW 1 X	7-4D X Z127/2019 835 G GW 1 X	1-5D 2/27/2019 1225 G GW 1 X	7-6D	7-7D 810 G GW 1 X	7-8D 2/27/2019 1350 G GW 1 X	7-9D 2/27/2019 1022 G GW 1 X	-12D 2/27/2019 1325 G GW 1 X	7-15 Z2772019 1120 G GW 1 X	ELANDFILL 2/27/2019 835 G GW 1 X	ANK LANDFILL 2/27/2019 1340 G W 1 X	A FA 1 A ELINO - 1-1-1-100 - 1-1-1-10 - 1-1-1-10 - 1-1-1-10 - 1-10 - 1
Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125	Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)	Project Name: Northeastern PP CCR Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816	Genn	Sample Identification	MW-2D	MW-3D	MW-4D	MW-5D	MW-6D	MW-7D	MW-8D	MW-9D	MW-12D	MW-15	DUPLICATE LANDFILL	EQUIPMENT BLANK LANDFILL	Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other

Special Instructions/QC Requirements & Comments:

Relinquished by:	Company:	Date/Time: 14 (b) 1	Received by:	Date/Time:
Relinquished by:	Company:	Date/Time:	Received by:	Date/Time:
Relinquished by:	Сотрапу:	Date/Time:	Received in Laboratory by:	Date/Time: 03/07/19 11:40

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer Not In Castlin PP Ca	Number of Plastic Containers:
Opened By Mistina	Number of Glass Containers:
Date/Time 03/07/19 11:40	
Were all temperatures within 0-6°C? Y / N	or N/A Initial: //// on ice / no ice
	Comments
	Comments
Requested turnaround: Requested turnaround:	If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) NO ₂ or N (24 hr)	O ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
	Comments
Were samples labeled properly? N	Comments
Were correct containers used?	Comments
Was pH checked & Color Coding done?	N or N/A Initial & Date: 10-16 03/07/19
- Was Add'l Preservative needed? Y / N J	Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / N	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# 190825 Initial & D	Date & Time :
Logged by Commer	ts:
r ? ~	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 39755

Address: 502 N. Allen Avenue

Date Received: 05/09/2019

Contact: Jill Parker-Witt

Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

AEP Sample ID: 225074

Collected Date: 05/07/2019

By: KM

Cust Sample ID: MW-6D

Location: Northeastern Power Plant

Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Water (225074)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	1038	mg/L	2	1	SM 2540 C-2011	05/13/2019 16:50		GB

	Quality Control Data * Quality control units are the same as reported analytical results											
Blank Standard Spike Surrogate Duplicate %												
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
5/13/2019	Solids, Total Dissolved (TDS)	225129		1000	876	87.6	2880	2787	96.8		14.9	GB
5/13/2019	Solids, Total Dissolved (TDS)		<2									GB

05-Jun-19

Report Date

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	Relinquished by:	Relinquished by:	Relinquished by AM	Special Instructions/QC Requirements & Comments:	* Six 1L Bottles must be collected for Radium for every 10th sample.	Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other						MW-6D	Sample Identification	Sampler(s): Kenneth McDonald	Contact Phone: 318-673-3816	Contact Name: Jill Parker-Witt	Project Name: Northeastern PP	Contacts: John Davis (318-673-3811)	Shreveport, LA 71101	Shreveport Chemical Laboratory (SCL) 502 N. Allen Ave.
for Coal Co	Company:	Company:	Company Ault	i.	every 10th sai	103; 5=NaOH						5/7/2019	Sample Sa		Routine (28 days for Monitoring Wells)	Analysis Turnaround Time (in Calendar Days)				
nbustion			110		nple.	6= Othe						1155	Sample (C		(28 days	naround T				
Residua												G	Sample Type (C=Comp, G=Grab)		for Monito	ime (in Ca				
I (CCR)	Date/Time:	Date/Time:	Date(Tim)			_; F= #					\perp	GW	Matrix		oring Well	lendar Da				Cha
Sampling	e.	ė.	9580 1/10/10/08			F= filter in field			+		+		# of Cont.		s)	iys)		S	Progra	ain o
- Shrev	Re	Re		3		ā		+	\perp	++	_		Sampler(s) In	tials				Site Contact:	am: 2	f Cu
eport, Re	ceived in L	Received by:	Received by:			4							Mercury		HNO3	bottle, pH<2	250 mL	ict:	Program: 2 of 2 Sampling	stody
v. 1, 1/10/17	Received in Laboratory by:	t.				F4							dissolved F	e and Mn	HNO3	bottle, then	Field-filter 500 mL		mpling	Chain of Custody Record
	[1						×	TDS		0-6C	bottle,	250 ml			ď
) eller					4							Ra-226, Ra	1-228	pH<2, HNO3	10th*)	Three	Date:	U	MA
																				10/19
	Date/Time: 9 -1 9 9:00	Date∕Time:	Date/Time:									225074	Sample Specific Notes:			55662,00	Anne	For Lab Use Only: COC/Order #:		9

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type			Delivery Type		
Ice Chest Bag Action Pak PCB Mailer Bottle	UPS	FEDEX	US Mail	Walk in	Shuttle
Other	Other				
	Tracking #				
Client Jell Wift No Athersky	1	***	Sample Matrix	(
Received By SAndawalle	DGA	PCB Oil	Water	Oil	Soil
Received Date 5-9-19	•3				
Open Date	Solid	Liquid	Other_		
Container Temp Read Thermometer Serial #F04103		Project I.D	3975	5	_
Correction Factor (- Z	Were sa	mples receiv	ed on ice?	(ES)	NO
Corrected Temp	196 (2015)				
Did container arrive in good condition?	YES	NO		· · · · · · · · · · · · · · · · · · ·	
Was sample documentation received?	YES	NO	-		
Was documentation filled out properly?	YES	NO	2		
Were samples labeled properly?	YES	NO		-	
Were correct containers used?	VES	NO			- 12-
Were the pH's of samples appropriately checked?	YES	NO 1	117		
Total number of sample containers/	-				
Was any corrective action taken?	NO	Person Co			
Comments		Date & 110	_		

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 6/13/2019

	_	.3	

Sample Number: 191627-001 Date Collected: 05/07/2019 11:20 Date Received: 5/10/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method	
Boron, B	1.56 ma/L		0.05	0.009	GES	06/04/2019 15:26	EPA 200.8-1994. Rev. 5.4	

MW-4D

Sample Number: 191627-002 Date Collected: 05/07/2019 10:45 Date Received: 5/10/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Sulfate, SO4	419 mg/L		10	2	CRJ	05/21/2019 18:07	EPA 300.1-1997, Rev. 1.0

MW-5D

Sample Number: 191627-003 Date Collected: 05/07/2019 12:30 Date Received: 5/10/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Sulfate, SO4	158 mg/L		10	2	CRJ	05/21/2019 18:26	EPA 300.1-1997, Rev. 1.0

MW-6D

Sample Number: 191627-004 Date Collected: 05/07/2019 11:55 Date Received: 5/10/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Calcium, Ca	185 mg/L		0.2	0.03	GES	06/04/2019 15:31	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

Michael Ohlinger, Chemist

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Chain of Custody Record

Dolan Chemical Laboratory (DCL)

4001 Bixby Road

Sample Specific Notes For Lab Use Only: COC/Order #: Date: 1 L bottles, pH<2, HNO3 (six every 10th*) Three Ra-226, Ra-228 4 250 mL bottle, Cool, 0-6C Sulfate × × pH<2, HNO3 250 mL bottle, Calcium Program: 2 of 2 Sampling F4 × 250 mL bottle, pH<2, HNO3 Boron × 4 Site Contact: Sampler(s) Initials F= filter in field # of Cont. Analysis Turnaround Time (in Calendar Days) Routine (28 days for Monitoring Wells) Matrix ĞΝ ĞΝ ĞΜ GΝ G=Grab) (C=Comp, Sample Type O O O O Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Sample Time 1045 Six 1L Bottles must be collected for Radium for every 10th sample. 1120 1230 1155 Sample Date 5/7/2019 5/7/2019 5/7/2019 5/7/2019 Michael Ohlinger (614-836-4184) Confacts: Dave Conover (614-836-4219) Groveport, Ohio 43125 Sample Identification 318-673-3816 Jill Parker-Witt Project Name: Northeastern PP Sampler(s): Kenny McDonald MW-4D MW-5D MW-6D Contact Phone: Contact Name:

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

. 3 O

0

9

Date/Time:

Received in Laboratory by

Date/Time:

Received by:

Date/Time:

Received by

05/04/19 1400

Company:

Relinquished by:

Relinquished by

Special Instructions/QC Requirements & Comments:

Company

Company.

Relinquished by:

Date/Time:

Date/Time:

AEP WATER & WASTE SAMPLE RECEIPT FORM

Dealesce Tune	Physical Property of the Control of										
Package Type	Delivery Type										
Gooler Box Bag Envelope	PONY UPS FOREX USPS										
	Other										
Plant/Customer Workenstein	Number of Plastic Containers:										
Opened By MSU 5/10/19	Number of Glass Containers:										
Date/Time 5/10/19 10(3	Number of Mercury Containers:										
Were all temperatures within 0-6°C?	Y/N or N/A Initial: on ice / no ice										
Was container in good condition? Y	call temperatures within 0-6°C? Y/N or N/A Initial:										
Was Chain of Custody received? (Y	N Comments										
Requested turnaround: Rout my	If RUSH who was notified?										
	Number of Plastic Containers: Septend By MGU 5/10/19										
Was COC filled out properly?	Chain of Custody received? Y N Comments uested turnaround: Kout riv If RUSH, who was notified? (15 min) Cr ⁺⁸ (pres) NO ₂ or NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr) COC filled out properly? Y/N Comments e samples labeled properly? Y N Comments										
Were samples labeled properly? Y	(15 min) Cr ⁺⁶ (pres) NO ₂ or NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (24 hr) (48 hr) s COC filled out properly? Y/N Comments										
Were correct containers used?	N Comments										
Was pH checked & Color Coding done	e?(Y)N or N/A Initial & Date: MSD 5/10/19										
- Was Add'l Preservative needed? Y	(See Prep Book)										
is sample filtration requested? Y	Comments (See Prep Book)										
Was the customer contacted?	Yes: Person Contacted:										
Lab ID# 191627 Init	tial & Date & Time :										
Logged by	mments:										
Logged by											
Reviewed by											

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 40447 Report ID

Contact: Jill Parker-Witt

Address: 502 N. Allen Avenue Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

AEP Sample ID: 228539 **Collected Date:** 08/26/2019 Cust Sample ID: MW-2D

Bv: KM/MH

Sample Desc.: CCR

Date Received: 08/29/2019

Location: Northeastern PP

Matrix: Water

Water (228539)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	12	mg/L	0.219	1	EPA 300.0	09/01/2019 18:41	M6	GB
Fluoride	1.661	mg/L	0.083	1	EPA 300.0	09/01/2019 18:41		GB
Solids, Total Dissolved (TDS)	1236	mg/L	2	1	SM 2540 C-2011	08/29/2019 18:30		JTD
Sulfate	591	mg/L	0.140	1:10	EPA 300.0	09/01/2019 19:56		GB

AEP Sample ID: 228540 **Collected Date:** 08/26/2019 By: KM/MH Cust Sample ID: MW-3D Location: Northeastern PP Matrix: Water

Sample Desc.: CCR

Water (228540)

Water (220570)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	12	mg/L	0.219	1	EPA 300.0	09/01/2019 21:12	M6	GB
Fluoride	0.608	mg/L	0.083	1	EPA 300.0	09/01/2019 21:12	J	GB
Solids, Total Dissolved (TDS)	686	mg/L	2	1	SM 2540 C-2011	08/29/2019 18:30	M6	JTD
Sulfate	181	mg/L	0.140	1:10	EPA 300.0	09/01/2019 21:30		GB

By: KM/MH AEP Sample ID: 228541 **Collected Date:** 08/26/2019 Cust Sample ID: MW-4D Location: Northeastern PP Matrix: Water

Sample Desc.: CCR

Water (228541)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	23	mg/L	0.219	1	EPA 300.0	09/01/2019 21:49	M6	GB
Fluoride	0.171	mg/L	0.083	1	EPA 300.0	09/01/2019 21:49	J	GB
Solids, Total Dissolved (TDS)	830	mg/L	2	1	SM 2540 C-2011	08/29/2019 18:30		JTD
Sulfate	274	mg/L	0.140	1:10	EPA 300.0	09/01/2019 22:08		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

AEP Sample ID: 228542 Collected Date: 08/26/2019 By: KM/MH
Cust Sample ID: MW-5D Location: Northeastern PP Matrix: Water

Sample Desc.: CCR

Water (228542)

Waler (220042)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	24	mg/L	0.219	1	EPA 300.0	09/01/2019 22:26	M6	GB
Fluoride	0.412	mg/L	0.083	1	EPA 300.0	09/01/2019 22:26	J	GB
Solids, Total Dissolved (TDS)	670	mg/L	2	1	SM 2540 C-2011	08/29/2019 18:30		JTD
Sulfate	134	mg/L	0.140	1:10	EPA 300.0	09/01/2019 22:45		GB

AEP Sample ID: 228543 Collected Date: 08/26/2019 By: KM/MH
Cust Sample ID: MW-6D Location: Northeastern PP Matrix: Water

Sample Desc.: CCR

Water (228543)

Water (220343)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	13	mg/L	0.219	1	EPA 300.0	09/01/2019 23:04	M6	GB
Fluoride	0.634	mg/L	0.083	1	EPA 300.0	09/01/2019 23:04	J	GB
Solids, Total Dissolved (TDS)	1044	mg/L	2	1	SM 2540 C-2011	08/29/2019 18:30		JTD
Sulfate	401	mg/L	0.140	1:10	EPA 300.0	09/01/2019 23:23		GB

AEP Sample ID: 228544 Collected Date: 08/26/2019 By: KM/MH
Cust Sample ID: MW-9D Location: Northeastern PP Matrix: Water

Sample Desc.: CCR

Water (228544)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	24	mg/L	0.219	1	EPA 300.0	09/11/2019 12:48		GB
Fluoride	0.758	mg/L	0.083	1	EPA 300.0	09/11/2019 12:48	J	GB
Solids, Total Dissolved (TDS)	1084	mg/L	2	1	SM 2540 C-2011	08/29/2019 18:30		JTD
Sulfate	526	mg/L	0.140	1:10	EPA 300.0	09/11/2019 14:40	M6	GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 40447 Report ID **Date Received:** 08/29/2019

Contact: Jill Parker-Witt

Address: 502 N. Allen Avenue Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

AEP Sample ID: 228545 **Collected Date:** 08/26/2019 Cust Sample ID: MW-12D

Bv: KM/MH

Sample Desc.: CCR

Location: Northeastern PP Matrix: Water

Water (228545)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	14	mg/L	0.219	1	EPA 300.0	09/11/2019 16:14		GB
Fluoride	1.600	mg/L	0.083	1	EPA 300.0	09/11/2019 16:14		GB
Solids, Total Dissolved (TDS)	1018	mg/L	2	1	SM 2540 C-2011	08/29/2019 18:30		JTD
Sulfate	540	mg/L	0.140	1:10	EPA 300.0	09/11/2019 16:33	M6	GB

AEP Sample ID: 228546 **Collected Date:** 08/26/2019 By: KM/MH Cust Sample ID: MW-14 Location: Northeastern PP Matrix: Water

Sample Desc.: CCR

Motor (220546)

water (220040)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	3117	mg/L	0.219	1:10	EPA 300.0	09/11/2019 18:07		GB
Fluoride	3.066	mg/L	0.083	1:10	EPA 300.0	09/11/2019 18:07		GB
Solids, Total Dissolved (TDS)	6198	mg/L	2	1	SM 2540 C-2011	08/29/2019 18:30		JTD
Sulfate	357	mg/L	0.140	1:10	EPA 300.0	09/11/2019 18:07	M6	GB

By: KM/MH AEP Sample ID: 228547 **Collected Date:** 08/26/2019 Cust Sample ID: MW-15 Location: Northeastern PP Matrix: Water

Sample Desc.: CCR

Water (228547)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	20	mg/L	0.219	1	EPA 300.0	09/11/2019 18:25		GB
Fluoride	1.252	mg/L	0.083	1	EPA 300.0	09/11/2019 18:25		GB
Solids, Total Dissolved (TDS)	1072	mg/L	2	1	SM 2540 C-2011	08/29/2019 18:30		JTD
Sulfate	587	mg/L	0.140	1:10	EPA 300.0	09/11/2019 18:44	M6	GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 40447 Address: 502 N. Allen Avenue Report ID **Date Received:** 08/29/2019

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

By: KM/MH AEP Sample ID: 228548 **Collected Date:** 08/26/2019 Matrix: Water Cust Sample ID: Duplicate Landfill Location: Northeastern PP

Sample Desc.: CCR

Water (228548)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	24	mg/L	0.219	1	EPA 300.0	09/11/2019 19:03		GB
Fluoride	0.198	mg/L	0.083	1	EPA 300.0	09/11/2019 19:03	J	GB
Solids, Total Dissolved (TDS)	850	mg/L	2	1	SM 2540 C-2011	08/29/2019 18:30		JTD
Sulfate	276	mg/L	0.140	1:10	EPA 300.0	09/11/2019 20:37	M6	GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

: 40447 Report ID

Date Received: 08/29/2019

Company: SEP - Environmental (JP-W)

Contact: Jill Parker-Witt

Phone: (318) 673-3816

Address: 502 N. Allen Avenue

Shreveport, LA 71101

Fax: (318) 673-3960

Quality Control Data

* Quality control units are the same as reported analytical results

										T _		
			Blank		Standard			Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
9/1/2019	Chloride	228539.1				92.0	25	33	132.0		0.0	GB
9/1/2019	Chloride		<0.219									GB
9/1/2019	Chloride	228531		25	23	92.0	25	25	100.0		0.0	GB
9/11/2019	Chloride	228544.1		25	23	92.0	25	27	108.0		0.0	GB
9/11/2019	Chloride		<0.219									GB
9/11/2019	Chloride	228548.1		25	23	92.0	25	26	104.0		0.0	GB
9/1/2019	Fluoride		<0.083									GB
9/1/2019	Fluoride	228531		6	5.8	96.7	6	5.9	98.3		0.0	GB
9/1/2019	Fluoride	228539.1		6	5.8	96.7	6	6.1	101.7		0.0	GB
9/11/2019	Fluoride	228548.1		6	5.7	95.0	6	6.4	106.7		0.3	GB
9/11/2019	Fluoride		<0.083									GB
9/11/2019	Fluoride	228544.1		6	5.7	95.0	6	5.8	96.7		2.8	GB
8/29/2019	Solids, Total Dissolved (TDS)	228540.1	<2	50	46	92.0	1008	1166	115.7		2.0	JTD
9/1/2019	Sulfate	228539.1		25	23	92.0	50	59	118.0		0.0	GB
9/1/2019	Sulfate	228531		25	23	92.0	25	27	108.0		2.0	GB
9/1/2019	Sulfate		<0.140									GB
9/11/2019	Sulfate	228544.1		25	23	92.0	50	62	124.0		0.6	GB
9/11/2019	Sulfate	228548.1		25	23	92.0	50	58	116.0		0.0	GB
9/11/2019	Sulfate		<0.140									GB

Date Required: 10/12/19

Code Code Description

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

M6 Matrix spike recovery was high.

10-Oct-19

Quality Assurance Officer

Report Date

Relinquished by:	Relinquished by:	Relinquished by John Was		Special Instructions/QC Requirements & Comments:	* Six 1L Bottles must be collected for Radium for every 10th sample.	Preservation Used: 1= lce, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other		DUPLICATE LANDFILL	MW-15	MW-14	MW-12D	MW-9D	MW-6D	MW-5D	MW-4D	MW-3D	MW-2D	Sample Identification	Sampler(s): Kenneth McDonald/Matt Hamilton	Project Name: Northeastern PP CCR Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816	Contacts: Jonathan Barnhill (318-673-3803)	Shreveport Chemical Laboratory (SCL) 502 N. Allen Ave. Shreveport . LA 71101
Company:	Company:	Company:		its:	every 10th s	NO3; 5=NaC		8/26/2019	8/26/2019	8/26/2019	8/26/2019	8/26/2019	8/26/2019	8/26/2019	8/26/2019	8/26/2019	8/26/2019	Sample Date		Analysis T RES		
	C	307	***		sample.)H; 6= Oth		1433	1525	1600	1405	1510	1500	1540	1433	1444	1530	Sample		urnaround ULTS DU		0,3
						er		G	G	ရ	ഒ	G	ര	G	G	G	G	Sample Type (C=Comp, G=Grab)		Analysis Turnaround Time (in Calendar Days) RESULTS DUE OCTOBER 12		129/19
Date/Time:	Date/Time:	Date/Time:	RESULTS DUE			; F= fil		GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	Matrix		lendar Da ER 12		° Ch
ē:	ē.	7	SDL	3		F= filter in field	\vdash	_					->	-				# of Cont.		ys)	Sit	ain of
Z)	Z.	146 R				a			-									Sampler(s) In	itials	.	Site Contact:	r Cui
eceived in	Received by:	Received by:	CTC	3		4												Mercury		250 mL bottle, pH<2, HNO3	8	stody
Received in Laboratory by		, ,	OCTOBER			F4										!		dissolved F		Field-filter 500 mL bottle, then pH<2, HNO3		⟨ Chain of Custody Record Program: Coal Combustion Residuals (CCR)
			12			1		>	×	×	×	×	×	×	×	×	×	Chloride, Fluoride, S TDS	Sulfate,	1 L bottle, Cool, 0-6C		CCR)
Walley						4												Ra-226, Ra	a-228	Three (six every 10th*) 1 L bottles, pH<2, HNO3	Date:	
												\vdash										
D		D								\perp			F						1		2	
Date/Time: 8-29-19 11:45	Date/Time:	Date/Time:		5				70000	74007	228546	728545	228544	228543	728542	728541	228540	121	Sample Specific Notes:		Coc 40447	For Lab Use Only: COC/Order #:	

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type		Delivery Type
Ice Chest Bag Action Pak PCB Mailer Bottle	UPS	FEDEX US Mail Walk in Shuttle
Other	Othe	er
		,
Client Jill DARKEN Witt	Tracking #	
Received By SANDRA WALLACE	- DGA	Sample Matrix PCB Oil Water Oil Soil
Received Date 8-29-19		TOD OIL SUIT
Open Date 8 - 29 - 19	- Solid	Liquid Other
	-	·
Container Temp Read 3.1		Project I.D.
Correction Factor Thermometer Serial #F04103	147	
Corrected Temp U 2	_ Were sa	amples received on ice? (YES) NO
1.5		
Did container arrive in good condition?	YES')	NO
		-
Was sample documentation received? (YES')	NO
Was documentation filled out properly?	YÉS"	NO
Were samples labeled properly?	(YÉS')	NO
Were correct containers used?	(YES)	NO
Were the pH's of samples appropriately checked?	YES	NO N A
Total number of sample containers	_	
	_	
Was any corrective action taken?	NÔ	Person Contacted
	_	Date & Time
Comments		
4 April 1997		

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 10/10/2019

MW-2D

Sample Number: 192953-001 Date Collected: 08/26/2019 15:30 Date Received: 9/4/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	10.7 mg/L		0.2	0.1	KAN	09/23/2019 18:24	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	14.3 mg/L		0.2	0.1	KAN	09/23/2019 18:24	EPA 200.8-1994, Rev. 5.4

MW-3D

Sample Number: 192953-002 Date Collected: 08/26/2019 14:44 Date Received: 9/4/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.979 mg/L		0.2	0.1	KAN	09/23/2019 18:29	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	130 mg/L		0.2	0.1	KAN	09/23/2019 18:29	EPA 200.8-1994, Rev. 5.4

MW-4D

Sample Number: 192953-003 Date Collected: 08/26/2019 14:33 Date Received: 9/4/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.987 mg/L		0.2	0.1	KAN	•	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	184 mg/L		0.2	0.1	KAN	09/23/2019 18:34	EPA 200.8-1994, Rev. 5.4

MW-5D

Sample Number: 192953-004 Date Collected: 08/26/2019 15:40 Date Received: 9/4/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.568 mg/L		0.2	0.1	KAN	09/23/2019 18:40	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	146 mg/L		0.2	0.1	KAN	09/23/2019 18:40	EPA 200.8-1994, Rev. 5.4

The MSD is outside the acceptable limit of 75-125%. The RPD between the MS/MSD exceeds 20%.

MW-6D

Sample Number: 192953-005 Date Collected: 08/26/2019 15:00 Date Received: 9/4/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	2.88 mg/L		0.2	0.1	KAN	09/23/2019 18:45	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	181 mg/L		0.2	0.1	KAN	09/23/2019 18:45	EPA 200.8-1994, Rev. 5.4

Location: Northeastern Station Report Date: 10/10/2019

RЯ	14	V-9	
IVI	v	V - 9	u

Sample Number: 192953-006 Date Collected: 08/26/2019 15:10 Date Received: 9/4/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	6.95 mg/L		0.2	0.1	KAN	09/23/2019 18:50	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	136 mg/L		0.2	0.1	KAN	09/23/2019 18:50	EPA 200.8-1994, Rev. 5.4

MW-12D

Sample Number: 192953-007 Date Collected: 08/26/2019 14:05 Date Received: 9/4/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	8.90 mg/L		0.2	0.1	KAN	09/23/2019 18:55	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	96.3 mg/L		0.2	0.1	KAN	09/23/2019 18:55	EPA 200.8-1994, Rev. 5.4

MW-14

Sample Number: 192953-008 Date Collected: 08/26/2019 16:00 Date Received: 9/4/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	1.69 mg/L		0.2	0.1	KAN	09/23/2019 19:00	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	110 mg/L		0.2	0.1	KAN	09/23/2019 19:00	EPA 200.8-1994, Rev. 5.4

MW-15

Sample Number: 192953-009 Date Collected: 08/26/2019 15:25 Date Received: 9/4/2019

Parameter	Result Units	Data Qual F	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	8.28 mg/L	().2	0.1	KAN	09/23/2019 20:38	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	119 mg/L	().2	0.1	KAN	09/23/2019 20:38	EPA 200.8-1994, Rev. 5.4

Dulicate Landfill

Sample Number: 192953-010 Date Collected: 08/26/2019 14:33 Date Received: 9/4/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.956 mg/L		0.2	0.1	KAN	09/23/2019 20:43	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	183 mg/L		0.2	0.1	KAN	09/23/2019 20:43	EPA 200.8-1994, Rev. 5.4

Equipment Blank Landfill

Sample Number: 192953-011 Date Collected: 08/26/2019 15:55 Date Received: 9/4/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	< 0.1 mg/L	U	0.2	0.1	KAN	09/23/2019 20:48	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	0.2 mg/L	J	0.2	0.1	KAN	09/23/2019 20:48	EPA 200.8-1994, Rev. 5.4

Location: Northeastern Station

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Landfill CCR

Michael Ohlinger, Chemist

Michael & Ollinger

Email msohlinger@aep.com

Fax 614-836-4168 Audinet 8-210-

Tel.

Report Date: 10/10/2019

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Relinquished by: Relinquished by: Special Instructions/QC Requirements & Comments: Preservation Used: 1= lce, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Sampler(s): Relinquished by: Contact Phone: Contact Name: Project Name: Northeastern PP Landfill CCR Six 1L Bottles must be collected for Radium for every 10th sample. Contacts: EQUIPMENT BLANK LANDFILL Kenny McDonald/Matt Hamilton DUPLICATE LANDFILL Groveport, Ohio 43125 Dave Conover (614-836-4219) Sample Identification Michael Ohlinger (614-836-4184) 4001 Bixby Road Jill Parker-Witt 318-673-3816 MW-12D MW-14 MW-3D MW-2D 2 MW-15 MW-9D MW-5D MW-4D MW-6D **** RESULTS DUE OCTOBER 12 Company: Company: Company: 8/26/2019 Sample Date 8/26/2019 8/26/2019 8/26/2019 8/26/2019 8/26/2019 8/26/2019 8/26/2019 8/26/2019 8/26/2019 8/26/2019 Analysis Turnaround Time (in Calendar Days) RESULTS DUE OCTOBER 12 Sample 1433 1405 1510 1500 1540 1433 1530 Time 1525 1600 1444 1555 (C=Comp, G=Grab) **G** G **G** G G G 0 G G 0 0 Date/Time: 08/30/19 Program: Coal Combustion Residuals (CCR) Date/Time Date/Time: Matrix GW F= filter in field # of Cont. _ _ <u></u> _ _ _ 1400 Site Contact: Sampler(s) Initials Received in Laboratory by: Received by: Received by: 250 mL bottle, pH<2, HNO3 Boron, Calcium × × × × × × × \times × × Ι× 4 Field-filter 250 mL bottle, then pH<2, HNO3 Dissolved B, Sb, As, Ba, Be, Ca, Cd, Cr, TA Co, Fe, K, Li, Mg, Mn, Mo, Na, Pb, Se, Sr, Tl TDS, F, CI, SO4 (six every 10th*) L bottles, pH<2, HNO3 Ra-226, Ra-228 4 Date: 0/4/19 COC/Order #: Date/Time Date/Time: Sample Specific Notes: For Lab Use Only:

Dolan Chemical Laboratory (DCL)

Chain of Custody Record

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/1

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FEDEX USPS
	Other
Plant/Customer Northeagten	Number of Plastic Containers:
Opened By M50	Number of Glass Containers:
	Number of Mercury Containers:
Were all temperatures within 0-6°C? Y / N or N/A Initial: on ice / no ide \$\frac{1}{2}\text{(IR Gun Ser#\frac{81354432}{54432}, Expir. \frac{12-20}{612-20})} - If No specify each deviation	
Was container in good condition? \(\overline{\pi}\) N	Comments
Was Chain of Custody received? (Y) / N	Comments
Requested turnaround: 16/12/19	If RUSH, who was notified?
pH (15 min) Cr ⁺⁸ (pres) NO₂ or No (24 hr)	O ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? (V)/ N	Comments
Were samples labeled properly? Y/N	Comments No Jules /times on labels
Were correct containers used? (Y) N	Comments
Was pH checked & Color Coding done? Y/	N or N/A Initial & Date: JAB/ MGW
- Was Add'l Preservative needed? Y /(N)f \	res: By whom & when: (See Prep Book)
is sample filtration requested? Y/N	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# 192953 Initial & D	ate & Time :
Logged by	S
SH -	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer

APPENDIX V

ODEQ 2019 Correspondence

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

January 30, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re:

Response to Notice of Deficiency - Alternate Source Demonstration (ASD) - Coal Combustion Residuals (CCR) Landfill

Public Service Company of Oklahoma-Northeastern Power Station (NPS) Ash Landfill

Rogers County

Solid Waste Permit No. 3566010

Dear Ms. Parker-Witt:

The Revised 2017 Annual Groundwater Monitoring Report for the landfill at the Public Service Company of Oklahoma-Northeast Power Station (NPS) contained the initial statistical analysis, dated February 26, 2018, for the detection monitoring program. It utilized interwell statistical analyses for boron and pH but intrawell methods for all other constituents. Statistically significant increases (SSIs) over background were indicated for boron at groundwater monitoring wells MW-6D, MW-9D and MW-15. Oklahoma Administrative Code (OAC) 252:517-9-5(e)(2) allows NPS to demonstrate, within ninety (90) days of detecting an SSI, that a source other than the CCR landfill caused the SSIs over background levels. An alternate source demonstration (ASD) dated May 1, 2018 was submitted by NPS. In the ASD, NPS determined that MW-7D and MW-8D were not appropriate upgradient background wells for statistical analyses due to groundwater mounding at the landfill and elevated salts not reflective of groundwater geochemistry across the site. DEQ agrees that an interwell approach is not currently viable for boron at MW-6D, MW-9D and MW-15 using MW-7D and MW-8D as background wells. The submittal also contained the justification for the use of an intrawell approach when statistically evaluating boron. The previous SSIs were not observed when using the intrawell statistical analyses methods for boron; and the ASD attributed the SSIs to statistical errors and not a release from the landfill.

On August 2, 2018, the Department of Environmental Quality (DEQ) issued a Notice of Deficiency (NOD) for the ASD at the landfill. The NOD requested NPS to conduct an independent study and hydrogeological investigation to identify local geochemical conditions and expected groundwater quality for boron near MW-6D, MW-9D, and MW-15 to justify the intrawell approach. Further, if the intrawell approach could not be justified, then an alternative monitor well location would need to be determined to establish interwell background values for boron.

On October 8, 2018, by email, DEQ received a 30-day time extension request from NPS to complete and submit the hydrogeological investigation to fulfill the NOD. DEO approved the Ms. Jill Parker-Witt, P.E. American Electric Power – Northeastern Power Station January 30, 2019 Page 2 of 3

time extension and received the completed hydrogeological investigation on October 30, 2018, by email, as part of the Response to the NOD. Additional information was received on January 10, 2019 and January 14, 2019.

DEQ reviewed the NOD Response and provides the following assessment that addresses the ASD conclusions below.

1. Page 1. The geochemical mixing model could not simultaneously replicate the concentrations of boron and other common inorganic species given the low boron concentrations relative to Total Dissolved Solids (TDS) in samples of leachate; therefore, landfill leakage was dismissed as a source of boron in groundwater due to an inability to simulate observed groundwater data using the mixing model.

The inability to replicate the relatively high boron concentrations in MW-6D, MW9D and MW-15 using a simple mixing model to simulate dilution does not prove that the source of boron is not from CCR associated with the landfill. It more likely demonstrates that more complex contaminant transport mechanisms such as chemical reactions and interactions with the aquifer are affecting the boron migration and concentrations in groundwater. The boron in the leachate is of similar magnitude to the concentrations in MW-6D, MW9D and MW-15.

2. Page 2. MW-6D, MW-9D and MW-15 are installed in locations where coal ash had been used as structural fill. Boron is suspected to be leaching from the CCR used as structural fill, rather than CCR that is contained in the Landfill.

OAC 252:517-9-1(d) requires NPS to control the sources of releases to prevent further releases of contaminants into the environment. The source of boron detected in these monitoring wells is CCR.

3. Page 3, 5 and 6. Boron is known to adsorb to bentonite. It is hypothesized that since the start of construction of the slurry wall and grout curtain, boron leached from the CCR and was adsorbed by the bentonite grout. It is proposed that boron is now being released to the deep groundwater and monitor wells (MW-6D, MW-9D and MW-15) as a result of calcium partitioning from the native groundwater to the bentonite clay which then releases adsorbed boron, sodium and interstitial water.

This proposition gives the initial source of the boron as the CCR Landfill. It is now being released to the environment as documented by relatively high boron in MW-6D, MW-9D and MW-15.

DEQ has concluded that the Response provided by NPS does not sufficiently show that the elevated boron concentrations in MW-6D, MW-9D and MW-15 are from a source other than CCR. Therefore, the ASD Response is not accepted and the intrawell approach for evaluating boron in monitor wells MW-6D, MW-9D and MW-15 at the landfill is not considered viable nor

Ms. Jill Parker-Witt, P.E. American Electric Power – Northeastern Power Station January 30, 2019 Page 3 of 3

protective of the environment since the elevated boron there could not be definitively attributed to a non-CCR source. However, DEQ agrees with the ASD in terms of a statistical error related to inappropriate background wells MW -7D and MW-8D.

OAC 252:517-9-5(e)(1) requires NPS, within 90 days of detecting a SSI, to establish an assessment monitoring program. The assessment monitoring program establishes background values and groundwater protection standards (GWPS) in accordance with OAC 252:517-9-6. Since MW-7D and MW-8D are not viable background wells, the GWPS and background values cannot be established; therefore, prior to instituting an assessment monitoring program, a background well representative of the aquifer must be obtained.

A background well for conducting interwell statistical evaluations for boron and establishing GWPS for Appendix B constituents is needed. In the ASD NOD, DEQ gave NPS the option of determining an alternative monitoring well from existing wells at the site, or constructing a new monitoring well to be used as a background monitoring well for interwell statistical analyses. On January 10, 2019, NPS informed DEQ that groundwater monitoring well SP-6 would be used for background monitoring and monthly monitoring would commence this month. A total of eight (8) samples are required to determine background water quality. In an email dated January 11, 2019, DEQ approved the use of SP-6 as a background monitoring well and approved the monthly monitoring to obtain background data. Please add SP-7 as a second background well since it has better water yield, would provide a means to evaluate spatial variation and would provide pooled background data for statistical comparisons to compliance wells.

Please revise the groundwater monitoring network to include SP-6 and SP-7. Also, please revise related groundwater monitoring documents, including the sampling and analysis plan and the statistical analysis plan. Once acquisition of 8 background samples have been completed and approved by DEQ, please conduct the statistical analyses to determine if SSIs over background exist at the landfill. If so, an assessment monitoring plan shall be submitted to DEQ within 90 days. If you have any questions, please contact Ms. Cynthia Hailes, P.E. at (405) 702-5114.

Sincerely.

Hillary Young, P.E.

Chief Engineer

Land Protection Division

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

March 1, 2019

CERTIFIED MAIL RETURN RECEIPT REQUESTED

Ms. Jill Parker-Witt, P.E. American Electric Power – Northeastern Power Station 502 North Allen Avenue Shreveport, LA 71101

Re:

Annual CCR Unit Inspection Reports 252:517-13-4 and 252:517-13-5 Public Service Company of Oklahoma - Northeastern Power Station

Coal Combustion Residuals Bottom Ash Pond and Landfill

Rogers County

Solid Waste Permit No. 3566010

Dear Ms. Parker-Witt:

The Department of Environmental Quality (DEQ) received, by email dated January 25, 2019, the notification of the completion of the annual engineering inspections for the Bottom Ash Pond (BAP) and the Ash Landfill (Landfill) at American Electric Power's Public Service Company of Oklahoma- Northeastern Power Station (AEP-NPS).

The notice indicates the inspection reports were placed in the operating record on January 10, 2019 in accordance with Oklahoma Administrative Code (OAC) 252:517-19-1(g). The inspection reports were posted to AEP's publicly accessible internet site as required by OAC 252:517-19-3(g).

Both inspection reports are accepted as submitted. If you have any questions, please contact Ms. Cindy Hailes at (405) 702-5114.

Sincerely,

Hillary Young, P.E.

Chief Engineer

Land Protection Division

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

March 11, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re: Annual Groundwater Monitoring Report – Landfill

Public Service Company of Oklahoma-Northeastern Power Station Ash Landfill

Rogers County

Solid Waste Permit No. 3566010

Dear Ms. Parker-Witt:

On January 31, 2019, the Department of Environmental Quality (DEQ) received the Annual Groundwater Monitoring Report – Landfill CCR Management Unit (Report) for Northeastern Power Station Landfill (NPS). Field sheets were received by email on March 7, 2019 and analytical reports on March 11, 2019. Oklahoma Administrative Code (OAC) 252:517-9-1(e) requires NPS prepare the annual groundwater monitoring and corrective action report to document the status of the coal combustion residual (CCR) landfill. The Report is to be submitted to DEQ for review and approval per OAC 252:517-9-1(g).

Section II Groundwater Monitoring Well Locations and Identification Numbers on Page 3 of the Report lists the upgradient monitoring wells as MW-7D and MW-8D. The fifteen (15) deep downgradient monitoring wells listed are MW1D-13D and MW14-17. In a letter submitted on May 3, 2018, NPS determined that MW-7D and MW-8D were not appropriate upgradient background wells for statistical analyses due to groundwater mounding at the landfill and elevated salts not reflective of groundwater geochemistry across the site. DEQ agreed with NPS and on January 10, 2019, NPS informed DEQ that groundwater monitoring well SP-6 would be used for background monitoring and monthly monitoring would commence that month. In an email dated January 11, 2019, DEQ approved the use of SP-6 as a background monitoring well and requested NPS add SP-7 as a second background well. Both monitoring wells are currently undergoing monthly background monitoring. Neither SP-6 nor SP-7 are included in the annual report since DEQ did not approve them to commence background monitoring until after December 31, 2018.

Section V Statistical Evaluation of 2018 Events states, "Eight background samples were collected from 4D, 5D, and 12D and analyzed for Appendix A and B constituents. AEP continues to attempt to collect background samples from 1D, 2D, 10D, 11D, 13D, 14, 16, and 17 as these wells do not produce sufficient groundwater volume after allowing the well to recharge for 24 hours." Please continue to collect background samples from these wells. Semi-annual sampling events occurred on May 30, 2018 and October 22, 2019 under the detection monitoring program.

Ms. Jill Parker-Witt, P.E. American Electric Power – Northeastern Power Station March 11, 2019 Page 2 of 2

Table 1 lists the calculated groundwater velocities in MW-3D, MW-6D, MW-7D, MW-8D, MW-9D and MW-15 and the estimated residence time of groundwater within the well. The residence times range from 44 days to 259 days, indicating very slow groundwater movement. Groundwater flow is primarily to the south with indications of mounding.

The statistical analysis presented in this report is for the October 11, 2017 and January 22, 2018 sampling events. The statistical analysis for the May 30, 2018 and October 22, 2018 sampling events was not completed by January 31, 2019 and will be submitted in a separate document. In future annual reports, please provide all laboratory reports and statistical analyses conducted in the year represented by the report. This should include at least the statistical evaluation of the first semi-annual sampling event even if the statistical analyses for the second semi-annual sampling event have not been completed. OAC 252:517-4(i)(2) requires statistical analysis to determine SSI's be completed for samples within 90 days after completing sampling.

The statistical analysis based on the October 11, 2017 and January 22, 2018 sampling events resulted in the statistically significant increase in boron at MW-6D (3.74 mg/L)(4.24 mg/L), MW-9D (7.07 mg/L)(7.43 mg/L) and at MW-15 (9.62 mg/L)(9.16 mg/L). NPS conducted an alternate source demonstration (ASD) that was not accepted by DEQ; however, DEQ approved sampling in SP-6 and SP-7 to determine if they were suitable for use as background monitoring wells. In a letter dated January 30, 2019, DEQ determined that since MW-7D and MW-8D are not viable background wells, the groundwater protection standards and background values cannot be established; therefore, prior to instituting an assessment monitoring program, a background well representative of the aquifer must be obtained.

The Report is accepted as submitted. Please submit the analytical results for SP-6 and SP-7 within 90 days of when AEP completes background sampling. Please include the analyses performed to determine their suitability as background monitoring wells and any statistical re-evaluation of constituent background values and groundwater protection standards. If you have any questions, please contact Ms. Cynthia Hailes, P.E. at (405) 702-5114.

Sincerely,

Hillary Young, P.È Chief Engineer

Land Protection Division

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

April 5, 2019

Elizabeth Gunter
Counsel for Public Service Company of Oklahoma
Public Service Company of Oklahoma
1 Riverside Plaza
Columbus, OH 43215

RE: Financial Assurance – Corporate Financial Test
Facility: Northeastern Power Station Coal Ash Landfill; Permit Number: 3566010; and Bottom Ash Pond
(currently in the permit application process)
Rogers County, Oklahoma

Dear Ms. Gunter:

As required by Oklahoma Administrative Code (OAC) 252:517-17-3: Duty to maintain financial assurance, this letter acknowledges that DEQ has received Public Service Company of Oklahoma's (PSO's) 2019 Corporate Financial Test mechanism. PSO is the owner/operator of the Northcastern Power Station Coal Ash Landfill (Landfill), Permit No. 3566016, and the Bottom Ash Pond. The mechanism has been determined to be satisfactory at this time. Importantly however, DEQ may require additional information at any time if it appears PSO no longer satisfies its financial assurance obligation as owner/operator of the Landfill and the Bottom Ash Pond. DEQ reserves any and all rights it has to pursue enforcement actions or proceedings under applicable law with regard to PSO's financial assurance obligations, if the obligations are found to be inadequate.

PSO has certified the following cost estimates are assured through the company's 2019 Corporate Financial Test mechanism dated March 7, 2019:

Bottom Ash Pond:

Closure:

 $$9,393,690 \times 3\% = $9,675,501$

Post-Closure:

 $1,189,415 \times 3\% = 1,225,097$

- Total:

\$10,900,598

• Landfill (Permit No. 3566016):

- Closure:

 $3,969,964 \times 3\% = 4,089,062$

Post-Closure:

 $$5,821,984 \times 3\% = $5,996,644$

- Total:

\$10,085,706

Thank you for ensuring PSO has met its 2019 financial assurance obligations for the Landfill and Bottom Ash Pond. If you have any questions, please contact Carol Bartlett at (405) 702-5109.

Sincerely,

Hillary Young, P.E.

Chief Engineer

Land Protection Division

HY/cb

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

June 25, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re: Monitoring Well SP-6 Analysis Report

Public Service Company of Oklahoma-Northeastern Power Station Ash Landfill

Rogers County

Solid Waste Permit No. 3566010

Dear Ms. Parker-Witt:

On March 19, 2019, the Department of Environmental Quality (DEQ) received, by email, the Analysis Report (Report) for Oklahoma Administrative Code (OAC) 252:517 Appendix A anions and mercury in Monitoring Well SP-6 for Northeastern Power Station Landfill (Landfill). The Report was used to determine if SP-6 is acceptable as an upgradient background well for statistical analysis in the Landfill monitoring well network.

In a letter dated April 13, 2018, NPS determined that MW-7D and MW-8D were not appropriate upgradient background wells for statistical analyses due to groundwater mounding at the landfill and elevated salts not reflective of groundwater geochemistry across the site. In an email dated January 11, 2019, DEQ approved SP-6 to commence background monitoring to determine its use as a potential background monitoring well and NPS added SP-7 as a second potential background monitoring well.

SP-6 was sampled on January 16, 2019. Chloride (14,133 mg/L) and TDS (22,956 mg/L) in SP-6 exceeded the concentrations of MW-7D and MW-8D and all downgradient monitoring wells sampled in the October 22, 2018 sampling event.

After reviewing the Report, it appears that SP-6 is not a suitable upgradient background monitoring well for the Landfill. Please submit the analytical results from all samplings from monitoring well SP-7 when complete.

If you have any questions, please contact Ms. Cynthia Hailes, P.E. at (405) 702-5114.

Sincerely,

Hillary Young, P.E. Chief Engineer

Land Protection Division

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

September 12, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101 RECEIVED SEP 1 0 2016

Re: Monitoring Well SP-6 Mercury and SP-7 Analysis Reports

Public Service Company of Oklahoma-Northeastern Power Station Ash Landfill

Rogers County

Solid Waste Permit No. 3566010

Dear Ms. Parker-Witt:

In a letter dated April 13, 2018, Northeastern Power Station (NPS) determined that MW-7D and MW-8D were not appropriate upgradient background wells for statistical analyses for the NPS Landfill due to groundwater mounding at the Landfill and elevated salts not reflective of groundwater geochemistry across the site. In an email dated January 11, 2019, the Department of Environmental Quality (DEQ) approved SP-6 to commence background monitoring to determine its use as a potential background monitoring well and NPS added SP-7 as a second potential background monitoring well.

On June 25, 2019, DEQ determined that monitoring well SP-6 was not a suitable upgradient background monitoring well. On July 16, 2019, DEQ received, by email, the Analysis Report (Report) for Oklahoma Administrative Code (OAC) 252:517 Appendix A anions and mercury in SP-6 and SP-7. The Report was used to determine if SP-7 is acceptable as an upgradient background well for statistical analysis in the Landfill monitoring well network.

SP-7 was sampled on May 7, 2019. Chloride (30,900 mg/L) and TDS (47,146 mg/L) in SP-7 exceeded the concentrations of MW-7D and MW-8D and all downgradient monitoring wells sampled in the October 22, 2018 sampling event.

After reviewing the Report, it appears that SP-7 is not a suitable upgradient background monitoring well for the Landfill. Please review the site geology and hydrology and submit a plan to find a suitable background monitoring well that is representative of background groundwater quality for the Landfill.

If you have any questions, please contact Ms. Cynthia Hailes, P.E. at (405) 702-5114.

Sincerely,

Hillary Young, P.E.

Chief Engineer

Land Protection Division

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

October 11, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re:

Annual CCR Fugitive Dust Control Report – OAC 252:517-13-1(b)(6)

Public Service Company of Oklahoma

Northeastern Power Station Ash Landfill and Bottom Ash Pond

Rogers County

Solid Waste Permit No. 3566010

Dear Ms. Parker-Witt:

On September 12, 2019, the Department of Environmental Quality (DEQ) received the Annual CCR Fugitive Dust Control Report (Report) from Northeastern Power Station (NPS). Oklahoma Administrative Code (OAC) 252:517-13-1(c) requires the Report to be submitted to DEQ and placed in the facility's operating record in accordance with OAC 252:517-19-1(g)(1). The Report has also been placed on the facility's publicly accessible Internet site as required by OAC 252:517-19-1(g)(2). The Landfill is a permitted CCR landfill that accepts CCR generated on-site. The Bottom Ash Pond accepts bottom ash from Unit 3 that is wet sluiced to the surface impoundment for removal and segregation. The permit application for the BAP is currently under review by DEQ.

The Report meets the requirements of OAC 252:517-13-1(c) and is accepted as submitted.

If you have any questions, please contact Ms. Cindy Hailes at (405) 702-5114.

Sincerely,

Hillary Young, P.E.

Chief Engineer

Land Protection Division

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

December 19, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re:

Fugitive Dust Control Plan Revision 4 – OAC 252:517-13-1(b)(6)

Public Service Company of Oklahoma

Northeastern Power Station Ash Landfill and Bottom Ash Pond

Rogers County

Solid Waste Permit No. 3566010

Dear Ms. Parker-Witt:

On October 21, 2019, the Department of Environmental Quality (DEQ) received the Fugitive Dust Control Plan Rev. 4 from Northeastern Power Station (NPS). Oklahoma Administrative Code (OAC) 252:517-13-1(b)(6) allows amendment of the written Coal Combustion Residuals (CCR) fugitive dust control plan at any time provided the revised plan is approved by DEQ then placed in the facility's operating record in accordance with OAC 252:517-19-1(g)(1).

The August 2019 revisions are summarized in Appendix E. No regulatory or technical revisions were made.

DEQ accepts the Fugitive Dust Control Plan – Revision 4. Please notify DEQ when the revised Dust Control Plan has been placed in the operating record per OAC 252:517-19-2 (c) and on the facility's publically accessible internet site per OAC 252:517-19-3-(d).

If you have any questions, please contact Ms. Cindy Hailes at (405) 702-5114.

Sincerely,

Hillary Young, P. Chief Engineer

Land Protection Division