

SCOTT A. THOMPSON Executive Director February 27, 2020

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re: Annual Groundwater Monitoring Report – Landfill Public Service Company of Oklahoma-Northeastern Power Station Ash Landfill Rogers County Solid Waste Permit No. 3566010

Dear Ms. Parker-Witt:

On January 30, 2020, the Department of Environmental Quality (DEQ) received the Annual Groundwater Monitoring Report – Landfill CCR Management Unit (Report) for Northeastern Power Station Landfill (NPS). Oklahoma Administrative Code (OAC) 252:517-9-1(e) requires NPS prepare the annual groundwater monitoring and corrective action report to document the status of the coal combustion residual (CCR) landfill. The Report is to be submitted to DEQ for review and approval per OAC 252:517-9-1(g).

OAC 252:517-9-4(e) requires NPS to establish background groundwater quality for each constituent of concern. NPS currently does not have a viable background monitoring well for the landfill. In 2019, NPS investigated two monitoring wells, SP-6 and SP-7, for use as possible upgradient monitoring wells but neither were deemed suitable. NPS is continuing to investigate the site for a potential location to install an acceptable background monitoring well. On February 25, 2020, NPS submitted a drilling plan as part of the investigation which will be evaluated and responded to under separate correspondence. Intra-well statistical analyses are currently used to determine if a statistically significant increase (SSI) has occurred in any downgradient monitoring well.

In May and October 2018, an SSI was determined then confirmed for fluoride in MW-15. An alternate source demonstration (ASD) for fluoride in MW-15 was submitted which attributed the SSI to a laboratory cause. The ASD was accepted by DEQ in a letter dated March 18, 2019.

Semi-annual sampling events occurred on February 27, 2019 and August 26, 2019 under the detection monitoring program. Both Appendix A and Appendix B parameters were evaluated. No SSI was determined for any constituent in either semi-annual sampling event in 2019.

The Report is accepted as submitted. If you have any questions, please contact Ms. Cynthia Hailes, P.E. at (405) 702-5114.

Sincerely,

Hillary Young, P.E

Chief Engineer Land Protection Division

HY/ckh

please recycle

Annual Groundwater Monitoring Report

Public Service Company of Oklahoma Northeastern 3&4 Power Station

Landfill CCR Management Unit

7300 E HWY 88 Oologah, Oklahoma

January 2020

Prepared by: American Electric Power Service Corporation 1 Riverside Plaza Columbus, Ohio 43215

An AEP Company

BOUNDLESS ENERGY"

Table of Contents

I.	Summary	2
II.	Groundwater Monitoring Well Locations and Identification Numbers	3
III.	Monitoring Wells Installed or Decommissioned	4
IV.	Groundwater Quality Data and Static Water Elevation Data, With Flow Rate and Direction and Discussion	4
V.	Statistical Evaluation completed in 2019	4
VI.	Alternate Source Demonstrations completed in 2019	5
VII.	Discussion About Transition Between Monitoring Requirements or Alternate Monitoring Frequency	5
VIII.	Other Information Required	5
IX.	Description of Any Problems Encountered in 2019 and Actions Taken	5
X.	A Projection of Key Activities for the Upcoming Year	5

Appendix I

Appendix II

Appendix III

Appendix IV

I. <u>Summary</u>

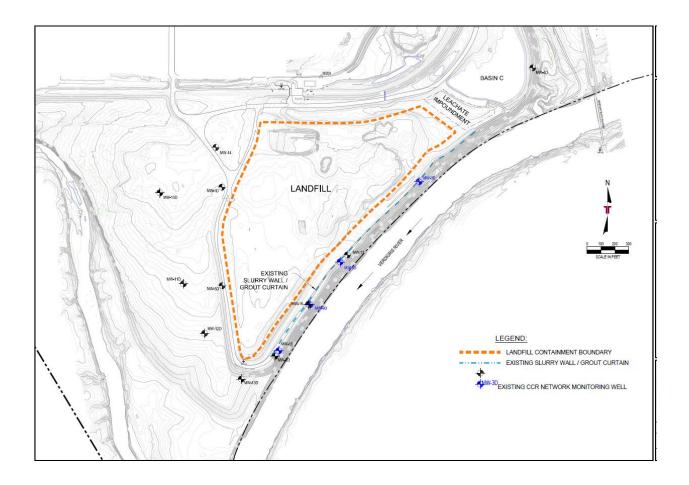
This *Annual Groundwater Monitoring Report* (Report) has been prepared to report the status of activities for the preceding year for an existing CCR unit at Public Service Company of Oklahoma's (PSO's), a wholly-owned subsidiary of American Electric Power Company (AEP), Northeastern 3&4 Power Station (NPS). The Oklahoma Department of Environmental Quality (ODEQ) CCR rules require that the Annual Groundwater Monitoring Report be posted to the operating record for the preceding year no later than January 31, 2020.

In general, the following activities were completed:

- Semi-annual groundwater samples were collected and analyzed for detection monitoring Appendix A constituents, as specified in OAC 255:517-9-5 and AEP's *Groundwater Sampling and Analysis Plan*;
- NPS continues to evaluate the site for appropriate upgradient/background well placement;
- Eight background groundwater sampling events were completed for 4D, 5D, and 12D. Background and Upper Prediction Limits (UPLs) were established for these wells;
- A statistically significant increase (SSI) for Fluoride in MW-15 was determined for the 1st semi-annual 2018 sampling event;
- A successful alternate source demonstration (ASD) was conducted for a Fluoride SSI in MW-15;
- Groundwater data underwent various validation tests, including tests for completeness, valid values, transcription errors, and consistent units;
- Groundwater Monitoring Statistical Evaluation Reports to evaluate groundwater data were prepared in accordance with 252:517-9-4 and certified. The statistical process was guided by USEPA's *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance* ("Unified Guidance", USEPA, 2009).
- This CCR Unit remained in detection monitoring during 2019.

The major components of this annual report, to the extent applicable at this time, are presented in sections that follow:

- A map, aerial photograph or a drawing showing the CCR management unit(s), all groundwater monitoring wells and monitoring well identification numbers;
- Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a statement as to why that happened;
- All of the monitoring data collected, including the rate and direction of groundwater flow, plus a summary showing the number of samples collected per monitoring well, the dates the samples were collected are included in Appendix I;


- Statistically reports are located in Appendix II;
- The ASDs are located in Appendix III.
- Field Sheets and Laboratory Reports are located in Appendix IV.

In addition, this report summarizes key actions completed, and where applicable, describes any problems encountered and actions taken to resolve those problems. The report includes a projection of key activities for the upcoming year.

II. Groundwater Monitoring Well Locations and Identification Numbers

The figure that follows depicts the PE-certified groundwater monitoring network, the monitoring well locations and their corresponding identification numbers.

	Landfill Monitoring Wells
Up Gradient	Down Gradient
Pending	MW-1D through MW-6D,
	MW-9D through MW-13D
	MW-14 through MW-17

III. Monitoring Wells Installed or Decommissioned

No monitoring wells were installed or decommissioned.

IV. <u>Groundwater Quality Data and Static Water Elevation Data. With Flow Rate and</u> <u>Direction and Discussion</u>

Appendix I contains tables showing the applicable groundwater data results obtained under OAC 252:517-9-1 through 252:517-9-5. Static water elevation data from each monitoring event are in Appendix I, along with the groundwater velocity, groundwater flow direction and potentiometric maps developed after each sampling event. Appendix IV contains the field sheets and laboratory reports for data relevant to this reporting period.

V. Statistical Evaluation completed in 2019

A SSI for Fluoride in MW-15 was determined for the 1st semi-annual 2018 sampling event.

No SSIs were determined for the 2nd semi-annual 2018 groundwater monitoring event.

No SSIs were determined for the 1st semi-annual 2019 or 2nd semi-annual 2019 groundwater monitoring events.

Background concentrations and UPLs were developed for Appendix A and B constituents, respectively for monitoring wells 4D, 5D, and 12D.

The statistical reports completed in 2019 are found in Appendix II.

VI. <u>Alternate Source Demonstrations completed in 2019</u>

ODEQ issued a Notice Of Deficiency (NOD) January 30, 2019 for the boron ASD submitted October 2018, which presented revised statistical results through intrawell analysis. ODEQ agreed that a statistical error had occurred related to inappropriate background wells MWs 7D and 8D and background concentrations could not be established; therefore prior to instituting an assessment monitoring program, a background well or wells representative of the aquifer must be established. Until the background concentrations can be established, statistical analysis will be completed on intra-well comparison.

An ASD was conducted for the Fluoride SSI detected in MW-15 during May 2018 and confirmed in October 2018. The ASD was submitted to ODEQ in January 2019 and approved by ODEQ March 18, 2019. Appendix III contains the ASD.

VII. <u>Discussion About Transition Between Monitoring Requirements or Alternate</u> <u>Monitoring Frequency</u>

This CCR Unit remained in detection monitoring during 2019.

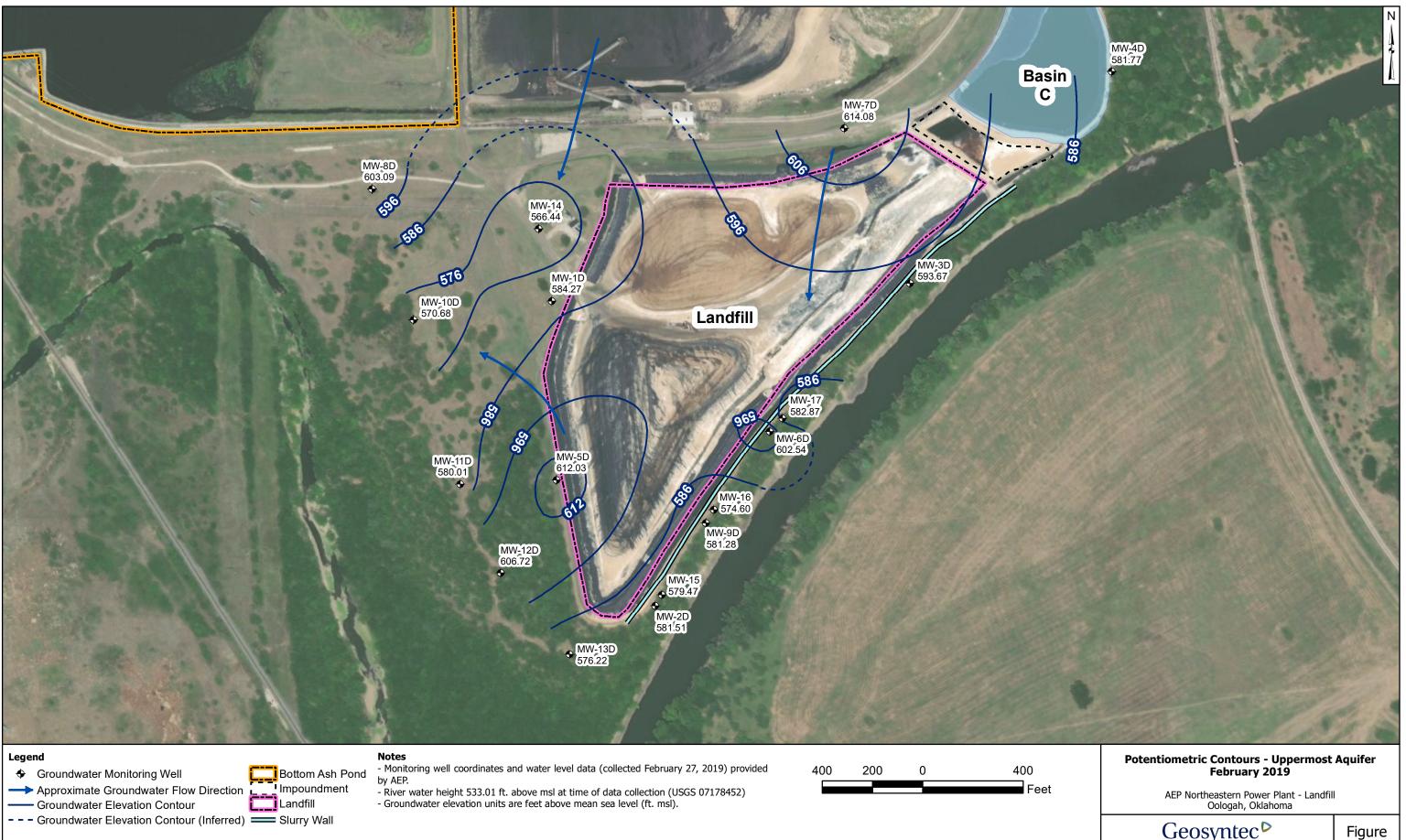
The sampling frequency of twice per year will be maintained for the current monitoring program.

VIII. Other Information Required

Financial Assurance – Corporate Financial Test was accepted by ODEQ in correspondence dated April, 5, 2019.

IX. Description of Any Problems Encountered in 2019 and Actions Taken

As required by OAC 252:517-9-1(b)(1)(c), the collection of a minimum of eight independent samples for each downgradient well within the monitoring well network was not possible as wells 1D, 2D, 10D, 11D, 13D, 14, 16, and 17 continue to lack sufficient water volume for sample collection after allowing 24 hours of recharge.

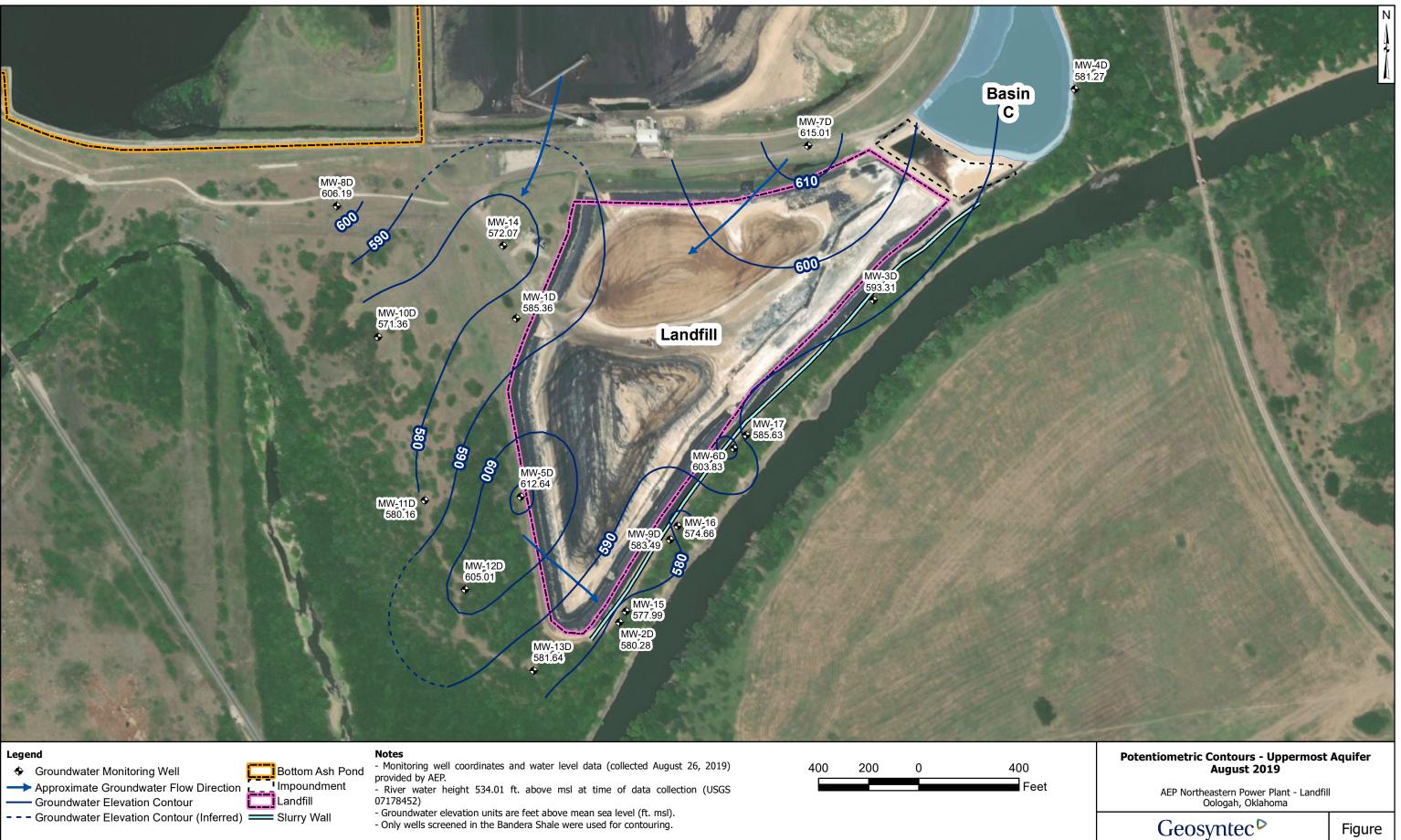

NPS conducted sampling of SP-6 and SP-7 to determine their suitability as background monitoring wells for inter-well statistical analyses, which was approved by ODEQ Jan 11, 2019. However, the water quality of these wells was determined to be the same as MWs 7D and 8D, which were previously determined inappropriate background wells. On June 25, 2019, ODEQ agreed that SP-6 was not a suitable upgradient background monitoring well for the landfill. On September 12, 2019, ODEQ agreed that SP-7 was not a suitable upgradient background monitoring well for the landfill.

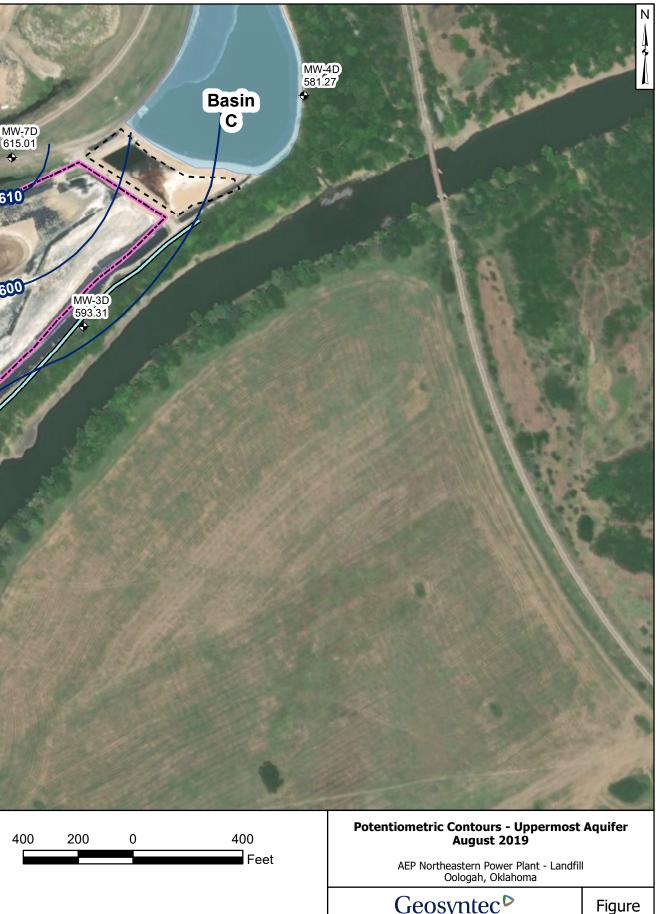
X. <u>A Projection of Key Activities for the Upcoming Year</u>

Key activities for 2020 include:

- Detection monitoring on a twice per year schedule;
- Submit Financial Assurance;
- Evaluation of the detection monitoring results from a statistical analysis viewpoint, looking for SSIs;
- Submit a drilling plan outlining the fieldwork that will assist in identifying appropriate background well(s) location(s), representative of the Landfill aquifer.
- Preparation of the next annual groundwater report.

Tables follow, showing the groundwater monitoring data collected, the rate and direction of groundwater flow, and a summary showing the number of samples collected per monitoring well. The dates that the samples were collected also is shown.





Geosyntec[▶] consultants 2020/01/22

1

Columbus, Ohio

consultants

2020/01/22

Columbus, Ohio

2

Table 1: Residence Time Calculation Summary Northeastern Landfill

			201	9-02	201	9-08
CCR Management Unit	Monitoring Well	Well Diameter (inches)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)
	MW-3D ^[2]	2.0	0.6	101	0.7	82
	MW-4D ^[2]	2.0	0.7	81	0.8	79
	MW-5D ^[2]	2.0	2.1	29	1.8	34
	MW-6D ^[2]	2.0	6.5	9.3	6.7	9.1
Landfill	MW-7D ^[3]	2.0	0.9	65	1.1	56
	MW-8D ^[3]	2.0	1.4	45	2.2	27
	MW-9D ^[2]	2.0	0.9	66	0.8	78
	MW-12D ^[2]	2.0	1.8	34	1.9	32
	MW-15 ^[2]	2.0	1.3	46	1.7	37

Notes:

[1] - Background Well

[2] - Downgradient Well

[3] - Observation Well

Table 1 - Groundwater Data Summary: MW-3D Northeastern - Landfill Appendix A Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
1/25/2017	Background	0.919	111	16	<1 U	7.5	658	174
3/14/2017	Background	0.913	120	14	1.0		648	175
4/27/2017	Background	0.972	110	14	0.77 J	7.9	662	181
5/18/2017	Background	0.789	163	12	<0.083 U		598	192
6/16/2017	Background	0.873	137	12	0.8472 J	7.3	742	225
6/28/2017	Background	0.840	194	13	0.7591 J	7.3	766	232
7/12/2017	Background	0.864	129	13	<0.083 U	6.9	728	210
8/4/2017	Background	0.856	135	12	0.7381 J	6.7	710	227
8/17/2017	Background	0.841	138	23	<0.083 U	6.8	728	213
8/30/2017	Background	0.840	136	12	0.7144 J	6.9	696	216
9/13/2017	Background	0.877	152	11	<0.083 U	6.8	848	212
9/20/2017	Background	0.853	139	11	<0.083 U	6.9	724	214
10/11/2017	Detection	0.878	134	13	<0.083 U	6.9	722	218
5/2/2018	Detection	1.08	127	13	0.757 J	7.3	736	196
5/30/2018	Detection	0.952	129	13	0.896 J	7.5	724	214
10/22/2018	Detection	1.02	142	14.89	1.09	7.2	702	210.57
11/28/2018	Detection	0.964			0.648 J	8.0		
2/27/2019	Detection	0.973	127	13.2	0.710	7.8	700	223
5/7/2019	Detection	1.56						
8/26/2019	Detection	0.979	130	12	0.608 J	8.5	686	181
12/3/2019	Detection					7.4		

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Due to limited groundwater volume, pH values for several sampling events were collected the day prior to collection of analytical samples for other parameters.

Table 1 - Groundwater Data Summary: MW-3D Northeastern - Landfill Appendix B Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
1/25/2017	Background	<5 U	<5 U	111	<1 U	<1 U	2.0	<5 U	2.153	<1 U	<5 U	0.0170	<0.025 U	<5 U	<5 U	<2 U
3/14/2017	Background	<5 U	<5 U	100	<1 U	<1 U	<1 U	<5 U	1.456	1.0	<5 U	0.0160	<0.025 U	<5 U	<5 U	<2 U
4/27/2017	Background	<0.93 U	3.3 J	89.64	<0.02 U	0.26 J	0.35 J	1.3 J	0.419	0.77 J	<0.68 U	0.01508	<0.005 U	1.97 J	<0.99 U	<0.86 U
5/18/2017	Background	<0.93 U	10.64	1040	0.92 J	0.61 J	18.06	5.32	2.443	<0.083 U	3.24 J	0.01943	0.01 J	4.15 J	<0.99 U	<0.86 U
6/16/2017	Background	1.44 J	1.48 J	150	0.08 J	0.22 J	1.23	1.09 J	1.706	0.8472 J	0.83 J	0.01451	<0.005 U	3.04 J	<0.99 U	<0.86 U
6/28/2017	Background	<0.93 U	<1.05 U	97.64	0.09 J	0.45 J	4.8	2.69 J	2.431	0.7591 J	2.99 J	0.01836	0.007 J	79.28	<0.99 U	<0.86 U
7/12/2017	Background	<0.93 U	<1.05 U	118	0.05 J	0.08 J	0.41 J	0.82 J	14.283	<0.083 U	<0.68 U	0.01435	<0.005 U	3.22 J	<0.99 U	<0.86 U
8/4/2017	Background	<0.93 U	<1.05 U	124	0.07 J	0.21 J	0.82 J	0.84 J	2.242	0.7381 J	0.8 J	0.01344	0.013 J	3.08 J	<0.99 U	<0.86 U
8/17/2017	Background	<0.93 U	<1.05 U	274	0.17 J	0.24 J	3.11	1.83 J	2.328	<0.083 U	<0.68 U	0.01495	<0.005 U	2.91 J	1 J	<0.86 U
8/30/2017	Background	<0.93 U	2.6 J	244	0.16 J	0.33 J	2.36	1.54 J	2.215	0.7144 J	<0.68 U	0.01465	<0.005 U	2.68 J	<0.99 U	<0.86 U
9/13/2017	Background	<0.93 U	4.52 J	430	0.35 J	0.49 J	6.32	2.97 J	1.566	<0.083 U	1.55 J	0.01639	<0.005 U	2.74 J	<0.99 U	1.02 J
9/20/2017	Background	1.63 J	1.14 J	267	0.17 J	0.21 J	2.74	1.41 J	2.162	<0.083 U	<0.68 U	0.01508	<0.005 U	3.33 J	<0.99 U	<0.86 U

Notes:

µg/L: micrograms per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag. J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Due to limited groundwater volume, radium samples for several sampling events were collected the day prior to collection of analytical samples for other parameters.

Table 1 - Groundwater Data Summary: MW-4D Northeastern - Landfill Appendix A Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/2/2018	Background	1.21	192	22	<0.083 U	7.1	984	328
5/30/2018	Background	1.27	164	20	0.4188 J	7.0	910	279
6/27/2018	Background	1.16	177	20	<0.083 U	7.9	882	258
7/31/2018	Background	1.04	196	31	<0.083 U	7.8	856	294
8/30/2018	Background	1.26	183			8.1	886	
9/19/2018	Background	1.13	174	31	<0.083 U	7.8	884	260
10/15/2018	Background	0.656	195	37.9	<0.083 U	7.6	846	289.3
10/22/2018	Background			39.8	<0.083 U	7.9		306
11/28/2018	Background	1.24	193	27.0	0.3357 J	7.9	972	295
1/15/2019	Detection	1.16	183	24.6	0.37 J	7.5		417.6
2/27/2019	Detection	1.42	187	31.2	0.30	7.7	696	463
5/7/2019	Detection							419
8/26/2019	Detection	0.987	184	23	0.171 J	8.1	830	274

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-4D Northeastern - Landfill Appendix B Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/2/2018	Background	4.05 J	2.3 J	171	<0.02 U	0.14 J	1.37	2.36 J	1.625	<0.083 U	1.47 J	0.00533	<0.005 U	6.74	<0.99 U	1.19 J
5/30/2018	Background	<0.93 U	<1.05 U	173	<0.02 U	<0.07 U	<0.23 U	1.28 J	1.991	0.4188 J	<0.68 U	0.00330	<0.005 U	4.91 J	<0.99 U	2.94
6/27/2018	Background	<0.93 U	<1.05 U	167	<0.02 U	<0.07 U	1.93	1.82 J	1.244	<0.083 U	<0.68 U	0.00491	<0.005 U	4.64 J	<0.99 U	2.94
7/31/2018	Background	0.05	1.25	173	0.01 J	0.04	<7 U	0.521	1.506	<0.083 U	0.130	0.00315	<0.005 U	4.59	0.2	0.02 J
8/30/2018	Background	0.10	1.60	163	0.049	0.11	0.551	0.807	0.912		0.804	0.00296	0.007 J	4.48	0.3	0.02 J
9/19/2018	Background	0.04 J	1.20	177	0.02 J	0.03 J	0.273	0.551	3.91	<0.083 U	0.595	0.00289	<0.005 U	3.71	0.2	<0.1 U
10/15/2018	Background	0.15	2.28	166	0.06 J	0.16	0.872	0.873	3.056	<0.083 U	1.41	0.00336	<0.005 U	4.58	0.3	<0.1 U
10/22/2018	Background									<0.083 U						
11/28/2018	Background	<0.1 U	1.31	171	<0.1 U	0.06 J	0.3 J	0.677	1.629	0.3357 J	0.3 J	0.00378	<0.005 U	8 J	0.2 J	<0.5 U

Notes:

µg/L: micrograms per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag. J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Table 1 - Groundwater Data Summary: MW-5D Northeastern - Landfill Appendix A Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/2/2018	Background	0.476	132	25	0.703 J	7.3	636	126
5/30/2018	Background	0.468	136	24	0.711 J	7.2	628	113
6/27/2018	Background	0.478	134	26	0.7487 J	8.2	658	122
7/31/2018	Background	0.491	142	30	0.8769 J	8.3	628	662
8/30/2018	Background	0.520	158			8.1	648	
9/19/2018	Background	0.444	156	30	0.7519 J	7.7	662	134
10/15/2018	Background	0.439	141	30.2	0.845 J	7.8	636	138.7
10/22/2018	Background			30.3	0.806 J	8.0		138
11/28/2018	Background	0.612	143	24.0	0.371 J	8.1	614	143
1/15/2019	Detection	0.540	157	24.0	0.316 J	7.8		127.6
2/27/2019	Detection	0.531	130	26.7	0.50	8.5	616	153
5/7/2019	Detection							158
8/26/2019	Detection	0.568	146	24	0.412 J	9.8	670	134
12/3/2019	Detection					7.2		

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017

events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-5D Northeastern - Landfill Appendix B Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/2/2018	Background	2.91 J	1.24 J	127	<0.02 U	0.36 J	0.59 J	1.14 J	2.449	0.703 J	1.01 J	0.01243	<0.005 U	1.33 J	1.35 J	1.25 J
5/30/2018	Background	<0.93 U	<1.05 U	139	<0.02 U	<0.07 U	1.53	1.31 J	3.06	0.711 J	1.09 J	0.01199	<0.005 U	<0.29 U	<0.99 U	<0.86 U
6/27/2018	Background	2.5 J	<1.05 U	126	<0.02 U	<0.07 U	0.8 J	0.63 J	2.512	0.7487 J	<0.68 U	0.01208	<0.005 U	0.96 J	<0.99 U	2
7/31/2018	Background	0.16	1.27	143	0.103	0.21	0.355	0.482	2.876	0.8769 J	1.43	0.01100	<0.005 U	1.21	0.4	0.02 J
8/30/2018	Background	0.10	0.98	111	0.076	0.1	0.518	0.300	2.906		0.706	0.01120	0.006 J	1.24	0.3	0.04 J
9/19/2018	Background	0.13	1.18	118	0.08 J	0.09	0.745	0.336	5.163	0.7519 J	0.720	0.01070	<0.005 U	2 J	0.4	<0.1 U
10/15/2018	Background	0.07 J	0.99	103	0.07 J	0.08	0.423	0.289	5.319	0.845 J	0.379	0.00977	<0.005 U	1 J	0.3	<0.1 U
11/28/2018	Background	<0.1 U	1.15	113	<0.1 U	0.06 J	0.5 J	0.324	2.393	0.371 J	0.4 J	0.01210	<0.005 U	0.2 J	0.3 J	<0.5 U

Notes:

µg/L: micrograms per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Table 1 - Groundwater Data Summary: MW-6D Northeastern - Landfill Appendix A Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
6/16/2017	Background	3.51	201	28	0.8054 J	7.5	1054	508
6/28/2017	Background	0.877	133	29	0.7596 J	7.9	1024	524
7/13/2017	Background	3.49	218	30	<0.083 U	7.3	1044	504
8/4/2017	Background	3.64	222	31	0.7656 J	6.4	1022	532
8/17/2017	Background	3.55	211	30	0.729 J	6.9	1016	509
8/30/2017	Background	3.41	210	30	0.7158 J	7.2	986	522
9/13/2017	Background	2.96	237	32	0.5406 J	7.1	1140	521
9/20/2017	Background	3.81	196	32	<0.083 U	7.1	1008	505
10/11/2017	Detection	3.74	165	29	0.9597 J	6.9	1032	545
1/22/2018	Detection	4.24			0.76 J	6.9		494
5/2/2018	Detection	3.52	173	31	0.806 J	7.3	1062	406
5/30/2018	Detection	3.35	269	32	0.9218 J	7.4	1090	401
10/22/2018	Detection	4.34	237	31.68	1.28	7.3	1152	471.81
11/28/2018	Detection				0.844 J	7.7		
2/27/2019	Detection	3.63	360	26.9	0.890	7.6	1144	496
5/7/2019	Detection		185				1038	
8/26/2019	Detection	2.88	181	13	0.634 J	8.6	1044	401
12/3/2019	Detection					7.5		

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Due to limited groundwater volume, pH values for several sampling events were collected the day prior to collection of analytical samples for other parameters.

Table 1 - Groundwater Data Summary: MW-6D Northeastern - Landfill Appendix B Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
6/16/2017	Background	<0.93 U	1.99 J	113	0.18 J	0.8 J	5.99	3.73 J	1.822	0.8054 J	3.48 J	0.02203	0.012 J	85.01	<0.99 U	<0.86 U
6/28/2017	Background	1.28 J	<1.05 U	170	0.06 J	0.37 J	0.86 J	1.09 J	1.917	0.7596 J	0.76 J	0.01356	<0.005 U	2.79 J	<0.99 U	<0.86 U
7/13/2017	Background	<0.93 U	<1.05 U	107	0.22 J	0.56 J	6.82	3.82 J	1.784	<0.083 U	5	0.02244	0.007 J	61.81	<0.99 U	<0.86 U
8/4/2017	Background	<0.93 U	<1.05 U	128	0.22 J	0.93 J	6.62	3.39 J	1.115	0.7656 J	4.96 J	0.01921	0.016 J	82.11	<0.99 U	<0.86 U
8/17/2017	Background	1.26 J	1.18 J	99.54	0.19 J	0.44 J	6.77	3.07 J	1.155	0.729 J	3.25 J	0.01925	0.011 J	81.32	<0.99 U	<0.86 U
8/30/2017	Background	<0.93 U	2.06 J	103	0.22 J	0.36 J	6.68	3.03 J	1.057	0.7158 J	2.5 J	0.01829	<0.005 U	85.75	<0.99 U	<0.86 U
9/13/2017	Background	<0.93 U	1.19 J	109	0.31 J	0.49 J	8.15	3.71 J	1.377	0.5406 J	3.28 J	0.02105	<0.005 U	58.00	<0.99 U	<0.86 U
9/20/2017	Background	1.18 J	1.93 J	75.04	0.14 J	0.22 J	3.86	2.27 J	1.43	<0.083 U	2.33 J	0.01701	<0.005 U	81.00	<0.99 U	<0.86 U

Notes:

µg/L: micrograms per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag. J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Due to limited groundwater volume, radium samples for several sampling events were collected the day prior to collection of analytical samples for other parameters.

Table 1 - Groundwater Data Summary: MW-9D Northeastern - Landfill Appendix A Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
6/16/2017	Background	7.09	229	100	0.9857 J	7.1	1458	781
6/28/2017	Background	7.01	191	232	0.8986 J	7.7	1114	876
7/12/2017	Background	7.63	244	98	2.191	7.4	2146	1048
8/4/2017	Background	7.59	337	60	0.6947 J	7.0	2256	1217
8/17/2017	Background	7.46	328	216	0.681 J	7.1	2486	1193
8/30/2017	Background	6.93	354	64	<0.083 U	7.3	2392	1192
9/13/2017	Background	6.78	366	293	0.37 J	7.2	2826	1244
10/4/2017	Background	6.68	304	180	<0.083 U	7.3	2296	1079
10/11/2017	Detection	7.07	288	314	1.5191	7.1	2188	1075
1/22/2018	Detection	7.43				7.1		
10/22/2018	Detection	7.19	199	106	0.6 J	7.1	1258	519.42
2/27/2019	Detection	6.49	155	28.9	0.890	7.6	1174	555
8/26/2019	Detection	6.95	136	24	0.758 J	8.8	1084	526
12/3/2019	Detection					7.6		

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017

events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Due to limited groundwater volume, pH values for several sampling events were collected the day prior to collection of analytical samples

Table 1 - Groundwater Data Summary: MW-9D Northeastern - Landfill Appendix B Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
6/16/2017	Background	<0.93 U	<1.05 U	188	0.32 J	0.81 J	12.34	6.18	0.931	0.9857 J	7.02	0.02386	0.009 J	173	5.0	<0.86 U
6/28/2017	Background	<0.93 U	<1.05 U	58.15	<0.02 U	0.26 J	0.89 J	7.14		0.8986 J	1.24 J	0.01647	<0.005 U	166	<0.99 U	<0.86 U
7/12/2017	Background	<0.93 U	<1.05 U	69.89	0.05 J	<0.07 U	4.09	5.69		2.191	2.36 J	0.02221	<0.005 U	151	1.32 J	<0.86 U
8/4/2017	Background	<0.93 U	<1.05 U	132	0.17 J	0.54 J	7.15	7.34		0.6947 J	4.26 J	0.02155	0.017 J	117	3.57 J	<0.86 U
8/17/2017	Background	<0.93 U	<1.05 U	196	0.22 J	0.25 J	9.52	8.17		0.681 J	5.33	0.02401	0.011 J	98.19	3.53 J	<0.86 U
8/30/2017	Background	<0.93 U	<1.05 U	323	0.37 J	0.91 J	20.06	15.08		<0.083 U	9.27	0.02964	0.016 J	93.84	2.94 J	<0.86 U
9/13/2017	Background	<0.93 U	<1.05 U	399	0.4 J	0.68 J	13.34	12.88		0.37 J	8.28	0.03257	0.016 J	78.39	2.8 J	<0.86 U
10/4/2017	Background	<0.93 U	<1.05 U	410	0.43 J	2.40	14.79	8.38		<0.083 U	9.69	0.03222	0.015 J	73.77	3.83 J	<0.86 U

Notes:

µg/L: micrograms per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag. J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Table 1 - Groundwater Data Summary: MW-12D Northeastern - Landfill Appendix A Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
3/15/2017	Background		76.9	16	2.0		1142	613
5/2/2018	Background	8.63	184	17	2.199	7.4	1044	541
5/30/2018	Background	8.35	89.9	91	2.379	7.7	1088	542
6/27/2018	Background	8.45	74.9	17	1.988	8.2	1070	586
7/31/2018	Background	8.72	108	22	2.6173	8.7	1034	662
8/30/2018	Background	9.71	141			9.2	1050	
9/19/2018	Background	9.02	110	21	2.8416	8.1	1052	582
10/15/2018	Background	8.68	70	21	2.99	9.4	1060	561.2
10/22/2018	Background			19.44	2.80	9.0		504.3
11/28/2018	Background	9.69	103	16.0	2.2238	8.9	1068	570
1/15/2019	Detection	9.08	68.0	14.6	2.028	8.1		437.4
2/27/2019	Detection	8.88	64.7	16.8	2.11	8.5	1014	564
8/26/2019	Detection	8.90	96.3	14	1.6	8.7	1018	540

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-12D Northeastern - Landfill Appendix B Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
3/15/2017	Background	<5 U	<5 U	31.0	<1 U	<1 U	<1 U	<5 U		2.0	<5 U		<0.025 U		<5 U	<2 U
5/2/2018	Background	<0.93 U	1.56 J	121	0.13 J	0.8 J	7.95	3.52 J	1.625	2.199	7.03	0.00841	0.013 J	693	4.5 J	<0.86 U
5/30/2018	Background	<0.93 U	1.24 J	77.75	<0.02 U	0.25 J	2.74	1.49 J	1.213	2.379	3.04 J	0.00608	<0.005 U	667	3.88 J	2.20
6/27/2018	Background	<0.93 U	<1.05 U	36.18	<0.02 U	<0.07 U	<0.23 U	0.39 J	1.331	1.988	<0.68 U	0.00541	<0.005 U	666	1.55 J	1.99 J
7/31/2018	Background	0.11	3.00	42.0	0.053	0.07	0.414	0.674	0.721	2.6173	2.32	0.00600	<0.005 U	818	1.7	0.106
8/30/2018	Background	0.20	3.39	65.8	0.097	0.31	1.82	2.17	3.137		5.43	0.00396	<0.005 U	872	3.1	0.241
9/19/2018	Background	0.36	4.67	82.6	0.1 J	0.33	2.03	1.57	4.417	2.8416	5.18	0.0041	0.012 J	828	2.9	0.2 J
10/15/2018	Background	0.43	6.46	50.2	0.06 J	0.20	1.6	1.31	3.541	2.99	3.51	0.00308	0.007 J	774	4.6	0.3 J
11/28/2018	Background	0.3 J	3.99	71.7	0.1 J	0.33	1.7	0.989	1.486	2.2238	4.12	0.00483	0.007 J	744	1.9	<0.5 U

Notes:

µg/L: micrograms per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag. J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Table 1 - Groundwater Data Summary: MW-15 Northeastern - Landfill Appendix A Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
1/25/2017	Background	9.45	87.0	19	2.0	8.0	1112	530
3/13/2017	Background	8.23	104	28	2.0		1110	551
4/27/2017	Background	9.44	73.1	78	1.83	7.6	1128	558
5/18/2017	Background	10.2	52.2	111	2.0		1092	596
6/16/2017	Background	9.74	126	24	1.96	7.9	1060	559
6/28/2017	Background	9.75	79.2	22	1.8739	8.5	1072	616
7/13/2017	Background	9.87	110	19	1.894	8.2	1076	632
8/4/2017	Background	9.66	86.3	19	1.759	7.6	1032	612
8/17/2017	Background	9.53	93.1	18	1.691	7.8	1110	572
8/30/2017	Background	9.59	64.9	17	2.0289	6.7	1038	590
9/13/2017	Background	9.13	68.0	17	1.671	8.6	1080	584
9/20/2017	Background	9.65	67.6	15	0.642 J	7.5	1036	543
10/11/2017	Detection	9.62	80.1	46	1.9468	7.6	1124	593
1/22/2018	Detection	9.16				7.2		
5/30/2018	Detection	8.76	105	33	2.331	7.7	1128	549
10/15/2018	Detection				2.27			
10/22/2018	Detection	8.90	250	46.81	2.17	7.8	1082	549.46
11/28/2018	Detection		119			8.3		
2/27/2019	Detection	8.34	96.9	24.3	1.45	8.6	1046	574
8/26/2019	Detection	8.28	119	20	1.252	10.5	1072	587
12/3/2019	Detection					7.7		

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Due to limited groundwater volume, pH values for several sampling events were collected the day prior to collection of analytical samples for other parameters.

Table 1 - Groundwater Data Summary: MW-15 Northeastern - Landfill Appendix B Constituents

Collection Date	Monitoring Program	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	rrogram	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	Thallium μg/L <2 U <2 U 1.05 J <0.86 U <0.86 U
1/25/2017	Background	<5 U	<5 U	107	<1 U	<1 U	3.00	<5 U	0.505	2.0	<5 U	0.0120	<0.025 U	643	<5 U	<2 U
3/13/2017	Background	<5 U	<5 U	100	<1 U	<1 U	3.00	<5 U	1.241	2.0	<5 U	0.0100	<0.025 U	550	<5 U	<2 U
4/27/2017	Background	1.31 J	2.85 J	55.73	<0.02 U	<0.07 U	0.23 J	0.64 J	0.203	1.83	<0.68 U	0.00786	<0.005 U	614	1.83 J	1.05 J
5/18/2017	Background	1.38 J	13.61	52.06	<0.02 U	0.26 J	0.96 J	0.62 J	1.097	2.0	1.7 J	0.00834	0.022 J	605	22.28	<0.86 U
6/16/2017	Background	<0.93 U	7.56	212	0.25 J	0.64 J	8.57	3.96 J	1.215	1.96	5.25	0.01148	0.02 J	662	12.46	<0.86 U
6/28/2017	Background	<0.93 U	4.4 J	98.67	0.02 J	<0.07 U	1.79	1.29 J	1.652	1.8739	2.42 J	0.00722	0.022 J	644	5.76	<0.86 U
7/13/2017	Background	1.63 J	3.77 J	150	0.12 J	0.09 J	4.03	2.64 J	0.287	1.894	2.87 J	0.00910	0.009 J	668	9.0	<0.86 U
8/4/2017	Background	1.56 J	3.73 J	94.19	0.08 J	0.09 J	1.51	1.4 J	0.914	1.759	1.36 J	0.00752	0.021 J	647	6.0	<0.86 U
8/17/2017	Background	0.99 J	4.44 J	133	0.09 J	<0.07 U	3.30	1.69 J	0.649	1.691	1.44 J	0.00823	0.015 J	642	5.95	<0.86 U
8/30/2017	Background	<0.93 U	6.32	64.87	0.04 J	<0.07 U	0.86 J	0.78 J	0.393	2.0289	<0.68 U	0.00629	0.01 J	656	9.24	<0.86 U
9/13/2017	Background	<0.93 U	4.18 J	54.34	0.03 J	<0.07 U	<0.23 U	0.66 J	1.070	1.671	<0.68 U	0.00635	0.008 J	638	1.45 J	<0.86 U
9/20/2017	Background	<0.93 U	3.87 J	49.23	<0.02 U	<0.07 U	0.23 J	0.77 J	0.887	0.642 J	<0.68 U	0.00621	<0.005 U	652	3.77 J	<0.86 U

Notes:

µg/L: micrograms per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag. J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Due to limited groundwater volume, radium samples for several sampling events were collected the day prior to collection of analytical samples for other parameters.

Where applicable, show in this appendix the results from statistical analyses, and a description of the statistical analysis method chosen. These statistical analyses are to be conducted separately for each constituent in each monitoring well.

941 Chatham Lane, Suite 103 Columbus, Ohio 43212 FHI 614.468.0415 FAX 614.468.0416 www.gauswrttac.com

Memorandum

Date:	January 11, 2019
To:	David Miller (AEP)
Copies to:	Jill Parker-Witt (AEP)
From:	Allison Kreinberg and Bruce Sass, Ph.D. (Geosyntec)
Subject:	Evaluation of Detection Monitoring Data at Northeastern Plant's Landfill (LF)

In accordance with Oklahoma Department of Environmental Quality rules regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (OAC 252.517) detection monitoring events were completed on May 30, 2018 and October 15, 2018 at the Landfill (LF), an existing CCR unit at the Northeastern Power Plant located in Oologah, Oklahoma.

Eight background monitoring events were conducted at the Northeastern LF prior to these detection monitoring events, and upper prediction limits (UPLs) were calculated for each Appendix III parameter to represent background values. Lower prediction limits (LPLs) were also calculated for pH. Details on the calculation of these background values are described in Geosyntec's *Statistical Analysis Summary* report, dated January 15, 2018. An alternative source demonstration (ASD) was certified on April 13, 2018 which resulted in a revision to the calculated prediction limits for boron and pH.

To achieve an acceptably high statistical power while maintaining a site-wide false-positive rate (SWFPR) of 10% per year or less, prediction limits were calculated based on a one-of-two retesting procedure. With this procedure, a statistically significant increase (SSI) is only concluded if both samples in a series of two exceeds the UPL. In practice, if the initial result did not exceed the UPL, a second sample was not collected or analyzed.

Detection monitoring results and the relevant background values are compared in Table 1 and the noted exceedance is described below.

Evaluation of Detection Monitoring Data – Northeastern LF January 11, 2019 Page 2

• Fluoride concentrations exceeded the intrawell UPL of 2.24 mg/L in both the initial (2.33 mg/L) and second (2.27 mg/L) samples collected at MW-15. Therefore, an SSI over background is concluded for fluoride at MW-15.

In response to the exceedance noted above the Northeastern LF CCR unit will either transition to assessment monitoring or an alternate source demonstration for fluoride will be conducted.

No other exceedances of UPLs were observed during these detection monitoring events.

The statistical analysis was conducted within 90 days of completion of sampling and analysis in accordance with OAC 252:517-9-4(h)(6). A certification of these statistics by a qualified professional engineer is provided in Attachment A.

Table 1: Detection Monitoring Data Evaluation Northeastern Plant - Landfill

Geosyntec Consultants, Inc.

Parameter	Units	Description	MW-3D	MW-6D	MW-9D	MV	V-15
I drameter	Units	Description	5/30/2018	5/30/2018		5/30/2018	10/15/2018
Boron	mg/L	Intrawell Background Value (UPL)	0.975	4.35	8.11	1	0.6
BOIOII	mg/L	Detection Monitoring Result	0.952	3.35		8.76	
Calcium	mg/L	Intrawell Background Value (UPL)	190	285	463	1	32
Calcium	mg/L	Detection Monitoring Result	129	269		105	
Chloride	mg/L	Intrawell Background Value (UPL)	16.2	33.9	383		78
Cilioride	mg/L	Detection Monitoring Result	13	32		33	
Fluoride	mg/L	Intrawell Background Value (UPL)	1.00	0.941	2.28	2.	.24
riuoriue	mg/L	Detection Monitoring Result	0.896	0.922		2.33	2.27
	SU	Intrawell Background Value (UPL)	8.03	8.32	7.77	9	.14
pH	SU	Intrawell Background Value (LPL)	6.17	5.98	6.74	6	.56
	SU	Detection Monitoring Result	7.46	7.39		7.713	
Total Dissolved Solids	mg/L	Intrawell Background Value (UPL)	853	1159	3591	1	152
I otal Dissolved Solids	mg/L	Detection Monitoring Result	724	1090		1128	
Sulfate	mg/L	Intrawell Background Value (UPL)	251	543	1524	6	49
Suitate	mg/L	Detection Monitoring Result	214	401		549	

Notes:

UPL: Upper prediction limit

LPL: Lower prediction limit

-: Not Sampled

Bold values exceed the background value.

Background values are shaded gray.

ATTACHMENT A

Certification by Qualified Professional Engineer

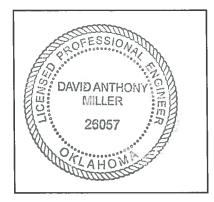
CERTIFICATION BY QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected statistical method, described above and in the January 15, 2018 *Statistical Analysis Summary* report, is appropriate for evaluating the groundwater monitoring data for the Northeastern LF CCR management area and that the requirements of 40 CFR 257.93(f) have been met.

DAVID ANTHONY MILLER

Printed Name of Licensed Professional Engineer

David Anthony Milles


Signature

26057

License Number

OKLAHOMA

Licensing State

01.17.19 Date

941 Chatham Lane, Suite 103 Columbus, Ohio 43212 PH 614.468.0415 FAX 614.468.0416 www.geosyntec.com

Memorandum

Date:	February 16, 2019
To:	David Miller (AEP)
Copies to:	Jill Parker-Witt (AEP)
From:	Allison Kreinberg and Bruce Sass, Ph.D. (Geosyntec)
Subject:	Evaluation of Detection Monitoring Data at Northeastern Plant's Landfill (LF)

In accordance with Oklahoma Department of Environmental Quality rules regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (OAC 252.517) detection monitoring events were completed on October 22, 2018 and November 29, 2018 at the Landfill (LF), an existing CCR unit at the Northeastern Power Plant located in Oologah, Oklahoma.

Eight to twelve background monitoring events were conducted at the Northeastern LF prior to these detection monitoring events, and upper prediction limits (UPLs) were calculated for each Appendix A parameter to represent background values. Lower prediction limits (LPLs) were also calculated for pH. Details on the calculation of these background values are described in Geosyntec's *Statistical Analysis Summary* report, dated January 15, 2018. An alternative source demonstration (ASD) was certified on April 13, 2018 which resulted in a revision to the calculated prediction limits for boron and pH.

To achieve an acceptably high statistical power while maintaining a site-wide false-positive rate (SWFPR) of 10% per year or less, prediction limits were calculated based on a one-of-two retesting procedure. With this procedure, a statistically significant increase (SSI) is only concluded if both samples in a series of two exceeds the UPL. In practice, if the initial result did not exceed the UPL, a second sample was not collected or analyzed.

Detection monitoring results and the relevant background values are compared in Table 1. No SSIs were observed at the Northeastern LF CCR unit, and as a result the Northeastern LF will remain in detection monitoring.

Evaluation of Detection Monitoring Data – Northeastern LF February 15, 2019 Page 2

The statistical analysis was conducted within 90 days of completion of sampling and analysis in accordance with OAC 252:517-9-4(h)(6). A certification of these statistics by a qualified professional engineer is provided in Attachment A.

Table 1: Detection Monitoring Data Evaluation Northeastern Plant - Landfill

Parameter	Units	Description	MW	/-3D	MW	7-6D	MW-9D	MW	/-15
Parameter	Units	Description	10/22/2018	11/29/2018	10/22/2018	11/29/2018	10/22/2018	10/22/2018	11/28/2018
Boron	mg/L	Intrawell Background Value (UPL)	0.975		4.	35	8.11	10	0.6
DOIOII	iiig/L	Detection Monitoring Result	1.02	0.964	4.34	-	7.19	8.90	-
Calcium	mg/L	Intrawell Background Value (UPL)	1	90	28	285		13	32
Calciulii	iiig/L	Detection Monitoring Result	142	-	237	-	199	141	119
Chloride	mg/L	Intrawell Background Value (UPL)	16.2		33.9		383	7	8
Chioride	iiig/L	Detection Monitoring Result	14.89	-	31.7	-	106	46.8	-
Fluoride	mg/L	Intrawell Background Value (UPL)	1		0.9	941	2.28	2.	24
Tuonue	IIIg/L	Detection Monitoring Result	1.09	0.648	1.28	0.844	0.600	2.17	-
		Intrawell Background Value (UPL)	8.03		8.32		7.77	9.14	
pН	SU	Intrawell Background Value (LPL)	6.	6.17		5.98		6.56	
		Detection Monitoring Result	7.20	-	7.25	-	7.13	7.79	-
Total Dissolved Solids	mg/L	Intrawell Background Value (UPL)	8:	853		1159		1152	
Total Dissolved Solids	iiig/L	Detection Monitoring Result	702	-	1152	-	1258	1082	-
Sulfate	ma/I	Intrawell Background Value (UPL)	251		543		1524	64	19
Suilate	mg/L	Detection Monitoring Result	211	-	472	_	519	549	-

Notes:

UPL: Upper prediction limit

LPL: Lower prediction limit

Bold values exceed the background value.

Background values are shaded gray.

Based on a 1-of-2 resampling, a statistically significant increase (SSI) is only identified when both samples in the detection monitoring period are above the calculated

ATTACHMENT A Statistical Analysis Output

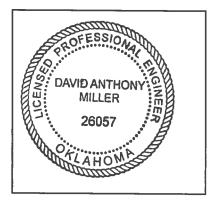
CERTIFICATION BY QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected statistical method, described above and in the January 15, 2018 *Statistical Analysis Summary* report, is appropriate for evaluating the groundwater monitoring data for the Northeastern LF CCR management area and that the requirements of OAC 252:517-9-4(g) have been met.

DAVID ANTHONY MILLER

Printed Name of Licensed Professional Engineer

avid Enthony Milles


Signature

26057

OKLAHOMA

License Number

Licensing State

03.15.19 Date

941 Chatham Lane, Suite 103 Columbus, Ohio 43212 PH 614.468.0415 FAX 614.468.0416 www.geosyntec.com

Memorandum

Date:	July 19, 2019
To:	David Miller (AEP)
Copies to:	Jill Parker-Witt (AEP)
From:	Allison Kreinberg and Bruce Sass, Ph.D. (Geosyntec)
Subject:	Evaluation of Detection Monitoring Data at Northeastern Plant's Landfill (LF)

In accordance with Oklahoma Department of Environmental Quality rules regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (OAC 252.517) detection monitoring events were completed on February 27, 2019 and May 7, 2019 at the Landfill (LF), an existing CCR unit at the Northeastern Power Plant located in Oologah, Oklahoma.

Eight to twelve background monitoring events were conducted at the Northeastern LF prior to these detection monitoring events, and upper prediction limits (UPLs) were calculated for each Appendix A parameter to represent background values. Lower prediction limits (LPLs) were also calculated for pH. Details on the calculation of these background values are described in Geosyntec's *Statistical Analysis Summary* report, dated January 15, 2018. An alternative source demonstration (ASD) was certified on April 13, 2018 which resulted in a revision to the calculated prediction limits for boron and pH. A subsequent *Statistical Analysis* Summary report was prepared on July 19, 2019 to document the calculation of background values for MW-4D, MW-5D, and MW-12D.

To achieve an acceptably high statistical power while maintaining a site-wide false-positive rate (SWFPR) of 10% per year or less, prediction limits were calculated based on a one-of-two retesting procedure. With this procedure, a statistically significant increase (SSI) is only concluded if both samples in a series of two exceeds the UPL. In practice, if the initial result did not exceed the UPL, a second sample was not collected or analyzed.

Detection monitoring results and the relevant background values are compared in Table 1. No SSIs were observed at the Northeastern LF CCR unit, and as a result the Northeastern LF will remain in detection monitoring.

Evaluation of Detection Monitoring Data – Northeastern LF July 19, 2019 Page 2

The statistical analysis was conducted within 90 days of completion of sampling and analysis in accordance with OAC 252:517-9-4(h)(6). A certification of these statistics by a qualified professional engineer is provided in Attachment A.

Table 1: Detection Monitoring Data EvaluationNortheastern Plant - Landfill

Danamatan	I I an \$4 m	Description	MW-3D	MW	7-4D	MW-5D	MW-6D		MW-9D	MW-12D	MW-15
Parameter	Units	Description	2/27/2019	2/27/2019	5/7/2019	2/27/2019	2/27/2019	5/7/2019	2/27/2019	2/27/2019	2/27/2019
Boron	mg/L	Intrawell Background Value (UPL)	0.985	1.52		0.647	4.4	44	8.22	10.30	10.70
Doron	iiig/L	Detection Monitoring Data	0.973	1.42	-	0.531	3.63	-	6.49	8.88	8.34
Calcium	mg/L	Intrawell Background Value (UPL)	195	22	21	172	29	95	483	198	136
Calciulii	IIIg/L	Detection Monitoring Data	127	187	-	130	360	185	155	64.7	96.9
Chloride	mg/L	Intrawell Background Value (UPL)	16.5	46.2		35.3	34.3		409	25.6	78.0
Chionae	iiig/L	Detection Monitoring Data	13.2	31.2	-	26.7	26.9	-	28.9	16.8	24.3
Fluoride	mg/L	Intrawell Background Value (UPL)	1.00	1.	00	1.24	0.9	97	2.44	3.40	2.21
Tuonde	iiig/L	Detection Monitoring Data	0.71	0.30	-	0.50	0.89	-	0.89	2.11	1.45
		Intrawell Background Value (UPL)	8.1	8.1 8.6		8.8	8.5		7.8	10.2	9.3
pH	SU	Intrawell Background Value (LPL)	6.1	6.	.7	6.9	5.	.8	6.7	6.7	6.4
		Detection Monitoring Data	7.8	7.7	-	8.5	7.6	-	7.6	8.5	8.6
Sulfate	mg/L	Intrawell Background Value (UPL)	256	42	28	160	54	16	1576	693	656
Sullate	Sunate nig/L	Detection Monitoring Data	223	463	419	153	496	-	555	564	574
TDS	mg/I	Intrawell Background Value (UPL)	867	10	37	686	11	73	3763	1158	1159
TDS mg/L	Detection Monitoring Data	700	696	-	616	1144	-	1174	1014	1046	

Notes

UPL: Upper prediction limit

LPL: Lower prediction limit

TDS: Total dissolved solids

Bold values exceed the background value.

Background values are shaded gray.

ATTACHMENT A Certification by Qualified Professional Engineer

CERTIFICATION BY QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected statistical method, described above and in the January 15, 2018 *Statistical Analysis Summary* report, is appropriate for evaluating the groundwater monitoring data for the Northeastern LF CCR management area and that the requirements of OAC 252:517-9-4(g) have been met.

DAVID ANTHONY MILLER

Printed Name of Licensed Professional Engineer

David Anthony Miller

Signature

26057

OKLAHOMA

License Number

Licensing State

07,19,19 Date

STATISTICAL ANALYSIS SUMMARY STATIONS 3 AND 4 LANDFILL Northeastern Power Station Oologah, Oklahoma

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

Geosyntec Consultants

engineers | scientists | innovators

941 Chatham Lane Suite 103 Columbus, Ohio 43214

July 2019

CHA8474

TABLE OF CONTENTS

SECTION 1	Execut	ive Summary	
SECTION 2	2 Landfil	ll Evaluation	2-1
2.1	Data V	alidation & QA/QC	2-1
2.2	Statisti	cal Analysis	2-1
	2.2.1	Background Outlier Evaluation	2-1
	2.2.2	Establishment of Background Levels	2-2
2.3	Conclu	isions	2-3
SECTION 3	Referen	nces	

LIST OF TABLES

Table 1	Groundwater Data Summary
Table 2	Background Level Summary

LIST OF ATTACHMENTS

Attachment A	Certification by Qualified Professional Engineer
Attachment B	Statistical Analysis Output

LIST OF ACRONYMS AND ABBREVIATIONS

AEP	American Electric Power

- ANOVA Analysis of Variance
- CCR Coal Combustion Residuals
- CCV Continuing Calibration Value
- CFR Code of Federal Regulations
- EPA Environmental Protection Agency
- LFB Laboratory Fortified Blanks
- LPL Lower Prediction Limit
- LRB Laboratory Reagent Blanks
- NELAP National Environmental Laboratory Accreditation Program
- ODEQ Oklahoma Department of Environmental Quality
- PQL Practical Quantitation Limit
- QA Quality Assurance
- QC Quality Control
- SSI Statistically Significant Increase
- SWFPR Site-Wide False-Positive Rate
- TDS Total Dissolved Solids
- UPL Upper Prediction Limit
- USEPA United States Environmental Protection Agency

SECTION 1

EXECUTIVE SUMMARY

In accordance with Oklahoma Department of Environmental Quality (ODEQ) rules regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (OAC 252.517, "CCR rule"), groundwater monitoring has been conducted at the Stations 3 and 4 Landfill, an existing CCR unit at the Northeastern Power Station located in Oologah, Oklahoma.

In January 2018, background concentrations were established for Appendix A and Appendix B parameters at the CCR unit. AEP had previously established a background dataset for MW-3D, -6D, -9D, and -15. At the request of ODEQ, the Landfill's groundwater monitoring network was expanded to include all 15 deep wells surrounding the unit (MW-1D through MW-6D, MW-9D through MW-17). At this time, adequate groundwater data has been collected for MW-4D, MW-5D, and MW-12D. To establish background concentrations for the expanded network, eight monitoring events were conducted under the CCR rule at the new locations. Groundwater data underwent several validation tests, including those for completeness, sample tracking accuracy, transcription errors, and consistent use of measurement units. No data quality issues were identified which would impact the usability of the data.

The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. The background data were reviewed for outliers, which were removed (when appropriate) prior to calculating upper prediction limits (UPLs) for each Appendix A parameter to represent background values. Oversight on the use of statistical calculations was provided by Dr. Kirk Cameron of MacStat Consulting, Ltd.

This report provides a summary of the statistical approach used to establish background concentrations for the three additional downgradient wells. A summary of the statistical evaluation to establish background concentrations for the initial groundwater monitoring network was previously documented (Geosyntec, 2018a). Certification of these statistics by a certified professional engineer is provided in **Attachment A**.

SECTION 2

LANDFILL EVALUATION

2.1 Data Validation & QA/QC

During the background monitoring program, eight sets of samples were collected for analysis from the three new compliance monitoring wells. A summary of data collected during background may be found in **Table 1**.

Chemical analysis was completed by an analytical laboratory certified by the National Environmental Laboratory Accreditation Program (NELAP). Quality assurance and quality control (QA/QC) samples completed by the analytical laboratory included the use of laboratory reagent blanks (LRBs), continuing calibration verification (CCV) samples, and laboratory fortified blanks (LFBs).

The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.9.5.32 statistics software. The export was checked against the analytical data for transcription errors and completeness. No QA/QC issues were noted which would impact data usability.

2.2 Statistical Analysis

The groundwater analytical data (background data) used to establish background groundwater quality for each constituent required in detection monitoring are summarized in **Table 1**. Statistical analyses for the landfill were conducted in accordance with the June 2018 *Statistical Analysis Plan* (Geosyntec, 2018b), except where noted below. Results for all completed statistical tests are provided in **Attachment B**.

Time series plots of Appendix A and B parameters are included in Attachment B. Mann-Kendall analyses ($\alpha = 0.01$) were conducted to evaluate trends in the background data. No significant increasing or decreasing trends were observed for Appendix A parameters at the three monitoring wells added to the groundwater monitoring network.

2.2.1 Background Outlier Evaluation

Potential outliers were identified using Tukey's outlier test; i.e., data points were considered potential outliers if they met one of the following criteria:

$$x_i < \tilde{x}_{0.25} - 3 \times IQR \quad (1)$$

$$x_i > \tilde{x}_{0.75} + 3 \times IQR \quad (2)$$

where:

 $\begin{array}{ll} x_i = & \text{individual data point} \\ \tilde{x}_{0.25} = & \text{first quartile} \\ \tilde{x}_{0.75} = & \text{third quartile} \\ IQR = & \text{the interquartile range} = \tilde{x}_{0.75} - \tilde{x}_{0.25} \end{array}$

Data that were evaluated as potential outliers are summarized in Attachment B. Tukey's outlier test indicated one potential outlier for Appendix A parameters in the new wells. Next, the data were reviewed to identify possible sources of errors or discrepancies, including data recording errors, unusual sampling conditions, laboratory quality, or inconsistent sample turbidity. The reported sulfate value of 662 milligrams per liter (mg/L) for the July 31, 2018 sampling event at downgradient well MW-5D was removed as an outlier. Because this value is associated with a downgradient well, its removal will not affect calculated interwell background values. Because this value was anomalously high, its removal would result in the generation of more conservative (i.e., lower) background values should intrawell tests be used. Removing such outliers is recommended by USEPA's Unified Guidance (USEPA, 2009).

2.2.2 Establishment of Background Levels

Analysis of variance (ANOVA) was conducted to determine whether spatial variation was present between the two background wells (Attachment B). ANOVA indicated significant variation for all Appendix A parameters except pH. Therefore, the appropriateness of using intrawell tests was evaluated for these parameters at the Northeastern Landfill.

Intrawell tests presume that the groundwater quality in the compliance wells was not initially impacted by the CCR unit. To test this presumption, the data from the background wells were pooled, and the data from each compliance well were compared to a pooled background value. Tolerance limits were calculated using the pooled background data for each Appendix A parameter. Parametric tolerance limits with 99% confidence and 95% coverage were calculated for boron and calcium; non-parametric tolerance limits were calculated for chloride, fluoride, pH, sulfate, and TDS, given the non-normal distribution of data observed for these five parameters. Confidence intervals were calculated for each of these seven parameters at each compliance monitoring well. If the lower confidence limit from a compliance well exceeded the upper tolerance limit for the pooled background data, it was concluded that groundwater concentrations at compliance wells were above background concentrations. In these instances, intrawell tests would not be appropriate. Elevated concentrations of boron were observed. No significant exceedances were noted for calcium, chloride, fluoride, pH, sulfate, and TDS.

Based on the statistical evaluation, interwell statistics would be selected for boron and pH. However, Geosyntec previously prepared an alternative source demonstration arguing that existing upgradient wells MW-7D and MW-8D are not appropriate for intrawell statistics at the Landfill

based on their elevated sodium and chloride concentrations (Geosyntec, 2018c). ODEQ has since documented their agreement that interwell statistics are not viable using the existing upgradient wells (ODEQ, 2019). Therefore, intrawell tests were used to evaluate potential statistically significant increases (SSIs) for all seven Appendix A parameters.

After equality of variance was tested and identified outliers were removed (where appropriate), a parametric or non-parametric analysis was selected based on the distribution of the data and the frequency of non-detect data. Estimated results less than the practical quantitation limit (PQL) – i.e., "J-flagged" data – were considered detections and the estimated results were used in the statistical analyses. Non-parametric analyses were selected for datasets with at least 50% non-detect data or datasets that could not be normalized. Parametric analyses were selected for datasets (either transformed or untransformed) that passed the Shapiro-Wilk / Shapiro-Franca test for normality. The Kaplan-Meier non-detect adjustment was applied to datasets with between 15% and 50% non-detect data. For datasets with fewer than 15% non-detect data, non-detect data were replaced with one half of the PQL. The selected analysis (i.e., parametric or non-parametric) and transformation (where applicable) for each background dataset are shown in **Attachment B**.

Upper prediction limits (UPLs) were calculated for each Appendix Aparameter to represent background values. A lower prediction limit (LPL) was also calculated for pH. To conduct the intrawell tests for boron, calcium, chloride, fluoride, pH, sulfate, and TDS, a separate UPL was calculated for each compliance well for each of these parameters. The background data used for the UPL calculations are summarized in **Table 1**; the calculated UPLs are summarized in **Table 2**.

UPLs were calculated for a one-of-two retesting procedure; i.e., if at least one sample in a series of two does not exceed the UPL, then it can be concluded that an SSI has not occurred. In practice, where a collected result did not exceed the UPL, a subsequent sample was not collected. The one-of-two retesting procedure allowed achieving an acceptably high statistical power while maintaining a site-wide false-positive rate (SWFPR) of 10% per year or less. Power curves were constructed for the intrawell parametric tests and are compared with the EPA Reference Power Curve in **Attachment B**. The power curves associated with the statistical tests for the Landfill exceed the EPA Reference Power Curve at 3 and 4 standard deviations; this is considered a "good" level of statistical power according to USEPA's *Unified Guidance* (USEPA, 2009).

2.3 <u>Conclusions</u>

Eight background monitoring events were completed in accordance with the CCR Rule at new compliance monitoring wells MW-4D, MW-5D, and MW-12D. The laboratory and field data were reviewed prior to statistical analysis, with no QA/QC issues identified that impacted data usability. A review of outliers identified one potential outliers, which was removed from the dataset without replacement. Prediction intervals were constructed based on the remaining background data and a one-of-two retesting procedure. Intrawell tests were selected for all seven Appendix A parameters.

SECTION 3

REFERENCES

Geosyntec Consultants, Inc. (Geosyntec). 2018a. Statistical Analysis Summary – Stations 3 and 4 Landfill. Northeastern Power Station. January.

Geosyntec. 2018b. Statistical Analysis Plan – Northeastern Power Station. June 2018.

Geosyntec. 2018c. Alternative Source Demonstration Report – State and Federal CCR Rule. Northeastern Power Station. April 2018.

Oklahoma Department of Environmental Quality (ODEQ). 2019. Response to Notice of Deficiency – Alternate Source Demonstration (ASD) – Coal Combustion Residuals (CCR) Landfill. January 30, 2019.

United States Environmental Protection Agency (USEPA). 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance. EPA 530/R-09-007. March 2009.

TABLES

Table 1 – Groundwater Data SummaryNortheastern - Landfill

MW-4D												
Parameter	Unit	5/2/2018	5/30/2018	6/27/2018	7/31/2018	8/30/2018	9/19/2018	10/15/2018	10/22/2018	11/28/2018	1/15/2019	2/27/2019
		BG	BG	BG	BG	BG	BG	BG	BG	BG	BG	2019-D1
Antimony	mg/L	0.00405 J	0.00500 U	0.00500 U	0.0000500	0.000100	0.0000400 J	0.000150	-	0.000500 U	-	-
Arsenic	mg/L	0.00230 J	0.00500 U	0.00500 U	0.00125	0.00160	0.00120	0.00228	-	0.00131	-	-
Barium	mg/L	0.171	0.173	0.167	0.173	0.163	0.177	0.166	-	0.171	-	-
Beryllium	mg/L	0.00100 U	0.00100 U	0.00100 U	0.0000100 J	0.0000490	0.0000200 J	0.0000600 J	-	0.000500 U	-	-
Boron	mg/L	1.21	1.27	1.16	1.04	1.26	1.13	0.656	-	1.24	1.16	1.42
Cadmium	mg/L	0.000140 J	0.00100 U	0.00100 U	0.0000400	0.000110	0.0000300 J	0.000160	-	0.0000600 J	-	-
Calcium	mg/L	192	164	177	196	183	174	195	-	193	183	187
Chloride	mg/L	22.0	20.0	20.0	31.0	-	31.0	37.9	39.8	27.0	24.6	31.2
Chromium	mg/L	0.00137	0.00100 U	0.00193	0.0500 U	0.000551	0.000273	0.000872	-	0.000300 J	-	-
Cobalt	mg/L	0.00236 J	0.00128 J	0.00182 J	0.000521	0.000807	0.000551	0.000873	-	0.000677	-	-
Combined Radium	pCi/L	1.63	1.99	1.24	1.51	0.912	3.91	3.06	-	1.63	-	-
Fluoride	mg/L	1.00 U	0.419 J	1.00 U	1.00 U	-	1.00 U	1.00 U	1.00 U	0.336 J	0.370 J	0.300
Lead	mg/L	0.00147 J	0.00500 U	0.00500 U	0.000130	0.000804	0.000595	0.00141	-	0.000300 J	-	-
Lithium	mg/L	0.00533	0.00330	0.00491	0.00315	0.00296	0.00289	0.00336	-	0.00378	-	-
Mercury	mg/L	0.0000250 U	0.0000250 U	0.0000250 U	0.0000250 U	0.00000700 J	0.0000250 U	0.0000250 U	-	0.0000250 U	-	0.0000250 U
Molybdenum	mg/L	0.00674	0.00491 J	0.00464 J	0.00459	0.00448	0.00371	0.00458	-	0.00800 J	-	-
Selenium	mg/L	0.00500 U	0.00500 U	0.00500 U	0.000200	0.000300	0.000200	0.000300	-	0.000200 J	-	-
Total Dissolved Solids	mg/L	984	910	882	856	886	884	846	-	972	-	696
Sulfate	mg/L	328	279	258	294	-	260	289	306	295	418	463
Thallium	mg/L	0.00119 J	0.00294	0.00294	0.0000200 J	0.0000200 J	0.000500 U	0.000500 U	-	0.00200 U	-	-
pН	SU	7.14	7.00	7.94	7.82	8.11	7.84	7.59	7.91	7.89	7.51	7.66

Notes:

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Non-detect value. For statistical analysis, parameters which were not detected were replaced with the reporting limit.

J: Estimated value. Parameter was detected in concentrations below the reporting limit.

-: Not sampled

BG: Background monitoring event

2019-D1: First detection monitoring event of 2019

Table 1 – Groundwater Data Summary Northeastern - Landfill

			MW-5D												
Parameter	Unit	5/2/2018	5/30/2018	6/27/2018	7/31/2018	8/30/2018	9/19/2018	10/15/2018	10/22/2018	11/28/2018	1/15/2019	2/27/2019			
		BG	BG	BG	BG	BG	BG	BG	BG	BG	BG	2019-D1			
Antimony	mg/L	0.00291 J	0.00500 U	0.00250 J	0.000160	0.000100	0.000130	0.0000700 J	-	0.000500 U	-	-			
Arsenic	mg/L	0.00124 J	0.00500 U	0.00500 U	0.00127	0.000980	0.00118	0.000990	-	0.00115	-	-			
Barium	mg/L	0.127	0.139	0.126	0.143	0.111	0.118	0.103	-	0.113	-	-			
Beryllium	mg/L	0.00100 U	0.00100 U	0.00100 U	0.000103	0.0000760	0.0000800 J	0.0000700 J	-	0.000500 U	-	-			
Boron	mg/L	0.476	0.468	0.478	0.491	0.520	0.444	0.439	-	0.612	0.540	0.531			
Cadmium	mg/L	0.000360 J	0.00100 U	0.00100 U	0.000210	0.000100	0.0000900	0.0000800	-	0.0000600 J	-	-			
Calcium	mg/L	132	136	134	142	158	156	141	-	143	157	130			
Chloride	mg/L	25.0	24.0	26.0	30.0	-	30.0	30.2	30.3	24.0	24.0	26.7			
Chromium	mg/L	0.000590 J	0.00153	0.000800 J	0.000355	0.000518	0.000745	0.000423	-	0.000500 J	-	-			
Cobalt	mg/L	0.00114 J	0.00131 J	0.000630 J	0.000482	0.000300	0.000336	0.000289	-	0.000324	-	-			
Combined Radium	pCi/L	2.45	3.06	2.51	2.88	2.91	5.16	5.32	-	2.39	-	-			
Fluoride	mg/L	0.703 J	0.711 J	0.749 J	0.877 J	-	0.752 J	0.845 J	0.806 J	0.371 J	0.316 J	0.500			
Lead	mg/L	0.00101 J	0.00109 J	0.00500 U	0.00143	0.000706	0.000720	0.000379	-	0.000400 J	-	-			
Lithium	mg/L	0.0124	0.0120	0.0121	0.0110	0.0112	0.0107	0.00977	-	0.0121	-	-			
Mercury	mg/L	0.0000250 U	0.0000250 U	0.0000250 U	0.0000250 U	0.00000600 J	0.0000250 U	0.0000250 U	-	0.0000250 U	-	0.0000250 U			
Molybdenum	mg/L	0.00133 J	0.00500 U	0.000960 J	0.00121	0.00124	0.00200 J	0.00100 J	-	0.000200 J	-	-			
Selenium	mg/L	0.00135 J	0.00500 U	0.00500 U	0.000400	0.000300	0.000400	0.000300	-	0.000300 J	-	-			
Total Dissolved Solids	mg/L	636	628	658	628	648	662	636	-	614	-	616			
Sulfate	mg/L	126	113	122	662	-	134	139	138	143	128	153			
Thallium	mg/L	0.00125 J	0.00200 U	0.00200	0.0000200 J	0.0000400 J	0.000500 U	0.000500 U	-	0.00200 U	-	-			
pН	SU	7.32	7.23	8.23	8.28	8.06	7.72	7.84	7.98	8.06	7.81	8.45			

Notes:

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL).

J: Estimated value. Parameter was detected in concentrations below the reporting limit.

-: Not sampled

BG: Background monitoring event

2019-D1: First detection monitoring event of 2019

Table 1 – Groundwater Data SummaryNortheastern - Landfill

			MW-12D													
Parameter	Unit	5/2/2018	5/30/2018	6/27/2018	7/31/2018	8/30/2018	9/19/2018	10/15/2018	10/22/2018	11/28/2018	1/15/2019	2/27/2019				
		BG	BG	BG	BG	2019-D1										
Antimony	mg/L	0.00500 U	0.00500 U	0.00500 U	0.000110	0.000200	0.000360	0.000430	-	0.000300 J	-	-				
Arsenic	mg/L	0.00156 J	0.00124 J	0.00500 U	0.00300	0.00339	0.00467	0.00646	-	0.00399	-	-				
Barium	mg/L	0.121	0.0778	0.0362	0.0420	0.0658	0.0826	0.0502	-	0.0717	-	-				
Beryllium	mg/L	0.000130 J	0.00100 U	0.00100 U	0.0000530	0.0000970	0.000100 J	0.0000600 J	-	0.000100 J	-	-				
Boron	mg/L	8.63	8.35	8.45	8.72	9.71	9.02	8.68	-	9.69	9.08	8.88				
Cadmium	mg/L	0.000800 J	0.000250 J	0.00100 U	0.0000700	0.000310	0.000330	0.000200	-	0.000330	-	-				
Calcium	mg/L	184	89.9	74.9	108	141	110	70.0	-	103	68.0	64.7				
Chloride	mg/L	17.0	91.0	17.0	22.0	-	21.0	21.0	19.4	16.0	14.6	16.8				
Chromium	mg/L	0.00795	0.00274	0.00100 U	0.000414	0.00182	0.00203	0.00160	-	0.00170	-	-				
Cobalt	mg/L	0.00352 J	0.00149 J	0.000390 J	0.000674	0.00217	0.00157	0.00131	-	0.000989	-	-				
Combined Radium	pCi/L	1.63	1.21	1.33	0.721	3.14	4.42	3.54	-	1.49	-	-				
Fluoride	mg/L	2.20	2.38	1.99	2.62	-	2.84	2.99	2.80	2.22	2.03	2.11				
Lead	mg/L	0.00703	0.00304 J	0.00500 U	0.00232	0.00543	0.00518	0.00351	-	0.00412	-	-				
Lithium	mg/L	0.00841	0.00608	0.00541	0.00600	0.00396	0.00410	0.00308	-	0.00483	-	-				
Mercury	mg/L	0.0000130 J	0.0000250 U	0.0000250 U	0.0000250 U	0.0000250 U	0.0000120 J	0.00000700 J	-	0.00000700 J	-	0.0000250 U				
Molybdenum	mg/L	0.693	0.667	0.666	0.818	0.872	0.828	0.774	-	0.744	-	-				
Selenium	mg/L	0.00450 J	0.00388 J	0.00155 J	0.00170	0.00310	0.00290	0.00460	-	0.00190	-	-				
Total Dissolved Solids	mg/L	1040	1090	1070	1030	1050	1050	1060	-	1070	-	1010				
Sulfate	mg/L	541	542	586	662	-	582	561	504	570	437	564				
Thallium	mg/L	0.00200 U	0.00220	0.00199 J	0.000106	0.000241	0.000200 J	0.000300 J	-	0.00200 U	-	-				
pН	SU	7.39	7.68	8.23	8.65	9.17	8.13	9.37	8.97	8.94	8.06	8.45				

Notes:

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL).

J: Estimated value. Parameter was detected in concentrations below the reporting limit.

-: Not sampled

BG: Background monitoring event

2019-D1: First detection monitoring event of 2019

Table 2: Background Level SummaryNortheastern Plant - Landfill

Parameter	Units	MW-3D	MW-4D	MW-5D	MW-6D	MW-9D	MW-12D	MW-15
Boron	mg/L	0.985	1.521	0.647	4.44	8.22	10.3	10.7
Calcium	mg/L	195	221	172	295	483	198	136
Chloride	mg/L	16.5	46.2	35.3	34.3	409	25.6	78.0
Fluoride	mg/L	1.00	1.00	1.24	0.967	2.44	3.40	2.21
pН	SU	8.1	8.6	8.8	8.5	7.8	10.2	9.3
рп		6.1	6.7	6.9	5.8	6.7	6.7	6.4
Sulfate	mg/L	256	428	160	546	1576	693	656
Total Dissolved Solids	mg/L	867	1037	686	1173	3763	1158	1159

Notes:

UPL: Upper prediction limit

LPL: Lower prediction limit

Intrawell background values (UPLs) were calculated for all parameters

mg/L: milligram per liter

SU: specific unit

ATTACHMENT A Certification by Qualified Professional Engineer

CERTIFICATION OF QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Northeastern Stations 3 & 4 Landfill CCR management area and that the requirements of OAC 252:517-9-4(e) have been met.

DAVID ANTHONY MILLER

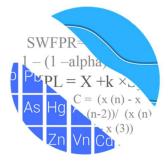
Printed Name of Licensed Professional Engineer

aird Anthony Miller

Signature

26057 License Number

OKLAHOMA


Licensing State

07.19.19 Date

ATTACHMENT B Statistical Analysis Output

GROUNDWATER STATS CONSULTING

July 19, 2019

Geosyntec Consultants Attn: Ms. Allison Kreinberg 941 Chatham Lane, #103 Worthington, OH 43221

Dear Ms. Kreinberg,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the screening and statistical analysis of background groundwater data for American Electric Power's Northeastern Landfill. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) as well as with the USEPA Unified Guidance (2009).

Sampling began at the Northeastern Landfill for the CCR program in 2016, and at least 8 background samples have been collected at each of the groundwater monitoring wells. The monitoring well network, as provided by Geosyntec Consultants, consists of the following: background wells MW-7D and MW-8D; and compliance wells MW-3D, MW-4D, MW-5D, MW-6D, MW-9D, MW-12D and MW-15. Downgradient wells MW-4D, MW-5D and MW-12D were added at a later date to the monitoring well network and are included in the attached screening.

Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was reviewed by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to Groundwater Stats Consulting.

The following constituents were evaluated: Appendix A parameters – boron, calcium, chloride, fluoride, pH, sulfate, and TDS; and Appendix B parameters - antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 & 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium.

Time series plots for Appendix A and B parameters at all wells are provided for the purpose of screening data at these wells (Figure A). Additionally, box plots are included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells.

Data at all wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix A parameters based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves are provided to demonstrate that the selected statistical methods for Appendix A parameters comply with the USEPA Unified Guidance recommendations as discussed below.

Summary of Statistical Method:

1) Intrawell prediction limits, combined with a 1-of-2 resample plan for boron, calcium, chloride, fluoride, pH, sulfate, and TDS.

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are nondetects, a nonparametric test is utilized. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. While the false positive rate associated with the parametric limits is based on an annual 10% as recommended by the EPA Unified Guidance (2009), the false positive rate associated with the nonparametric limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits.

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% nondetects in background, simple substitution of onehalf the reporting limit is utilized in the statistical analysis. The reporting limit utilized for nondetects is the practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% nondetects, the Kaplan-Meier nondetect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.

• Nonparametric prediction limits are used on data containing greater than 50% nondetects.

Background Screening

Outlier Evaluation

Time series plots are used to identify suspected outliers, or extreme values that would result in limits that are not conservative from a regulatory perspective, in proposed background data. Suspected outliers at all wells for Appendix A and Appendix B parameters were formally tested using Tukey's box plot method and, when identified, flagged in the computer database with "o" and deselected prior to construction of statistical limits (Figure C).

Tukey's outlier test noted a few outliers that were flagged in the database, and may be seen on the Outlier Data Summary Table. Well MW-7D had observations reported during the 9/20/17 sample event that appeared different from other measurements within the same well; however, these values were not identified as outliers when tested with Tukey's test. These values were flagged as may be seen on the outlier summary table (i.e. beryllium, chromium and cobalt).

Additionally, Tukey's test did not identify the reported measurement of 0.642 mg/L for fluoride in well MW-15; however, this value was significantly lower than the other measurements in this well and was flagged as an outlier in the database. Some low values exist in the data sets and appear on the graphs as possible low outliers relative to the Practical Quantitation Limit. However, these values are observed trace values (i.e. measurements reported by the laboratory between the Method Detection Limit and the Practical Quantitation Limit) and, therefore, were not flagged as outliers. A substitution of the most recent reporting limit was applied when varying detection limits existed in data.

No true seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made to the data. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will correctly account for the seasonality as a predictable pattern rather than random variation or a release. It was noted that for each constituent evaluated, the highest concentrations are reported in the upgradient wells.

While trends may be visual, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test was used to evaluate all data at each well to identify statistically significant increasing or decreasing trends (Figure D). In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, earlier data are evaluated to determine whether earlier concentration levels are significantly different than current reported concentrations and will be deselected as necessary. When the historical records of data are truncated for the reasons above, a summary report will be provided to show the date ranges used in construction of the statistical limits.

The results of the trend analyses showed several statistically significant increasing trends, primarily in background wells; and a few statistically significant decreasing trends, as may be seen on the Trend Test Summary table. No adjustments were made to the datasets at this time, since the majority of trends were noted in background wells and limited data are available at this time. Trends noted in background wells are generally an indication that concentrations are changing due to natural variation. However, as more data are collected, if it is determined that earlier measurements are no longer representative of present-day water quality, the records will be re-evaluated for possible truncation of earlier concentrations.

Appendix A – Determination of Spatial Variation

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells, which assists in identifying the most appropriate statistical approach (Figure E). Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells would not be conservative from a regulatory perspective; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

The ANOVA identified variation for the majority of Appendix A parameters. Therefore, all parameters were further evaluated as described below for the appropriateness of intrawell prediction limits to accommodate the groundwater quality. A summary table of the ANOVA results is included with the reports.

Appendix A - Statistical Limits

Intrawell limits constructed from carefully screened background data from within each well serve to provide statistical limits that will rapidly identify a change in more recent compliance data from within a given well. This statistical method removes the element of variation across wells and eliminates the chance of mistaking natural spatial variation for a release from the facility. Prior to performing intrawell prediction limits, several steps are required to reasonably demonstrate downgradient water quality does not have existing impacts from the practices of the facility.

Exploratory data analysis was used as a general comparison of concentrations in downgradient wells for all Appendix A parameters recommended for intrawell analyses to concentrations reported in upgradient wells. Upper tolerance limits are used in conjunction with confidence intervals to determine whether the estimated averages in downgradient wells are higher than observed levels upgradient of the facility. The upper tolerance limits were constructed to represent the extreme upper range of possible background levels at the site.

In cases where downgradient average concentrations are higher than observed concentrations upgradient for a given constituent, an independent study and hydrogeological investigation are required to identify local geochemical conditions and expected groundwater quality for the region to justify an intrawell approach. Such an assessment is beyond the scope of services provided by Groundwater Stats Consulting. However, further discussion is included below regarding the use of intrawell prediction limits.

Parametric tolerance limits were constructed with a target of 99% confidence and 95% coverage using pooled upgradient well data for each of the Appendix A parameters (Figure F). The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. As more data are collected, the background population is better represented and the confidence and coverage levels increase.

Confidence intervals were constructed on downgradient wells for each of the Appendix A parameters, using the tolerance limits discussed above, to determine intrawell eligibility (Figure G). When the entire confidence interval is above a background standard for a given parameter, interwell methods are initially recommended as the statistical method.

Therefore, only parameters with confidence intervals which did not exceed background standards are eligible for intrawell prediction limits.

Confidence intervals for the above parameters were found to be within their respective background limits for all parameters except for boron. However, previous correspondence between Oklahoma Department of Environmental Quality and AEP demonstrates that due to natural variation in groundwater as well as changes in direction of groundwater flow, the background wells are not representative of upgradient groundwater quality in which case interwell statistical limits are not recommended. Therefore, all Appendix A parameters are evaluated using intrawell methods.

All available data through November 2017 at each of the existing wells and through January 2019 through the new wells were used to establish intrawell background limits based on a 1-of-2 resample plan that will be used for future comparisons of compliance measurements during each subsequent semi-annual sampling event (Figure H).

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping an ash pond, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits will be necessary to accommodate these types of changes In the intrawell case, data for all wells and constituents are re-evaluated when a minimum of 4 new data points are available to determine whether earlier concentrations are representative of present-day groundwater quality. In some cases, the earlier portion of data are deselected prior to construction of limits in order to provide sensitive limits that will rapidly detect changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of up to two additional samples to determine whether the initial exceedance is confirmed. If either of the resamples fall within the statistical limit, the initial exceedance is considered to be a false positive result and, therefore, no further action is necessary. A summary table of the background prediction limits follows this letter.

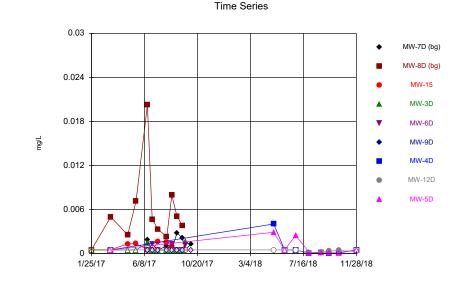
Appendix IV – Assessment Monitoring Program

During an Assessment Monitoring program confidence intervals are constructed at all wells for detected Appendix IV parameters. A minimum of 4 samples is required to construct confidence intervals; however, 8 samples are generally recommended for better representation of the true average population. Established Maximum Contaminant Levels (MCLs) are used as the GWPS comparisons or Regional Screening Levels (RSLs) for parameters without MCLs, unless background limits are higher as discussed below. Parametric confidence intervals are constructed with 99% confidence when data follow a normal or transformed-normal distribution. For all other cases, nonparametric confidence intervals are constructed, with the confidence level based on the number of samples available. The GWPS is exceeded only when the entire confidence interval exceeds its respective GWPS.

Background limits are established for the Appendix IV parameters using upper tolerance limits constructed with 95% confidence/95% coverage using pooled upgradient well data, for comparison against established MCLs or RSLs (for lead, cobalt, lithium and molybdenum). When background limits, or Alternate Contaminant Levels (ACLs), are higher than established MCLs or RSLs, the CCR Rule recommends using these ACLs as the GWPS for the confidence interval comparisons. Since the scope of this project included screening and development of background limits for Appendix A Detection Monitoring statistics, comparison of the Appendix IV parameters with confidence intervals was not included in this report.

Recommendations

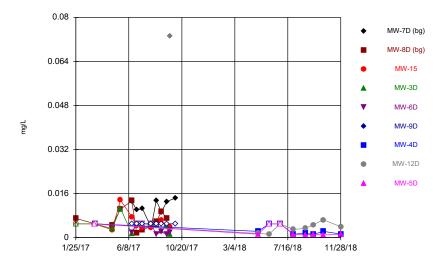
In summary, as a result of the background screening described in this letter, intrawell prediction limits combined with a 1-of-2 resample plan are recommended for all Appendix A parameters. The statistical analyses will be constructed according to the USEPA Unified Guidance, based on 7 Appendix A parameters and 7 downgradient wells.


Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Northeastern Landfill. If you have any questions or comments, please feel free to contact me.

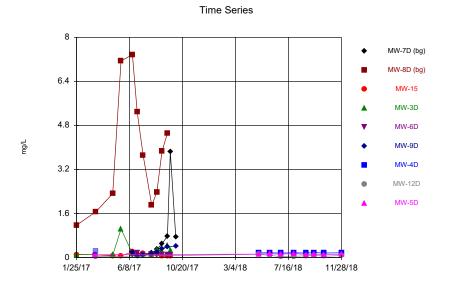
For Groundwater Stats Consulting,

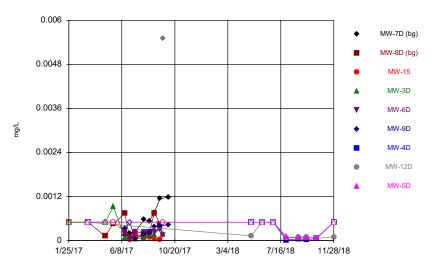
stine Rayner

Kristina L. Rayner Groundwater Statistician

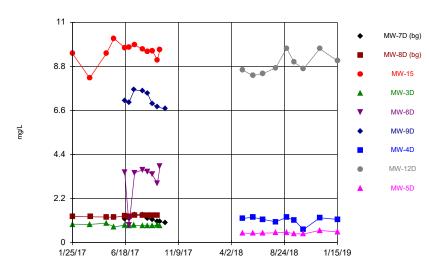

Sanitas[™] v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Antimony Analysis Run 3/21/2019 9:27 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas $^{\rm \tiny N}$ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

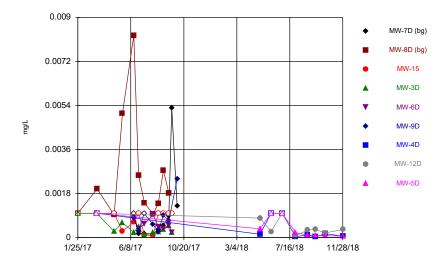

Constituent: Arsenic Analysis Run 3/21/2019 9:27 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

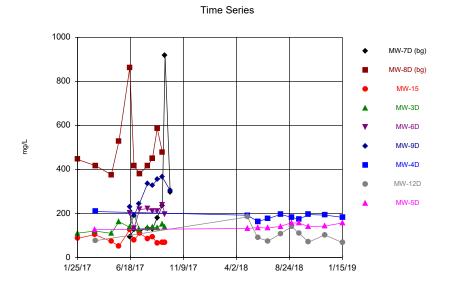

Constituent: Barium Analysis Run 3/21/2019 9:27 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas[™] v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

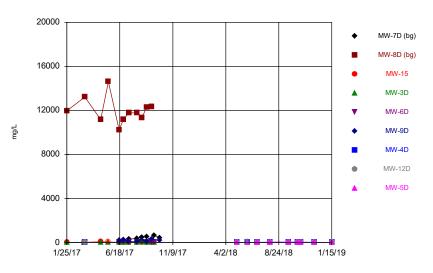
Time Series

Constituent: Beryllium Analysis Run 3/21/2019 9:27 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

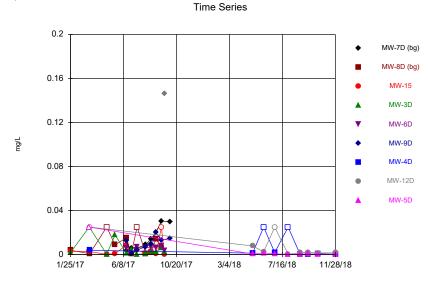

Time Series

Constituent: Boron Analysis Run 3/21/2019 9:27 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas¹⁰ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

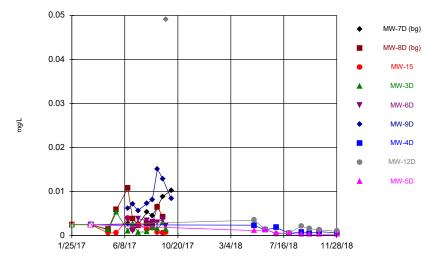

Constituent: Cadmium Analysis Run 3/21/2019 9:27 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

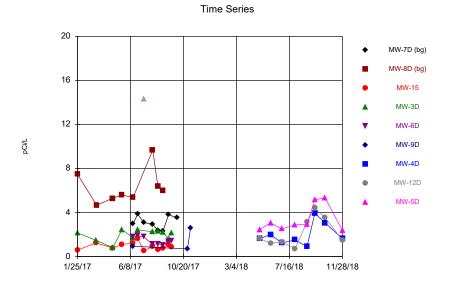


Constituent: Calcium Analysis Run 3/21/2019 9:27 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

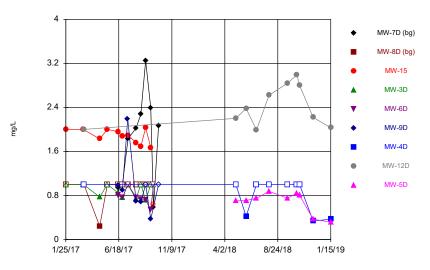
Time Series


Constituent: Chloride Analysis Run 3/21/2019 9:27 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas[™] v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Chromium Analysis Run 3/21/2019 9:27 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas $^{\rm w}$ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Cobalt Analysis Run 3/21/2019 9:27 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

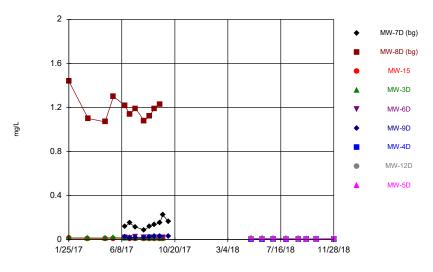

Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Combined Radium 226 + 228 Analysis Run 3/21/2019 9:27 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

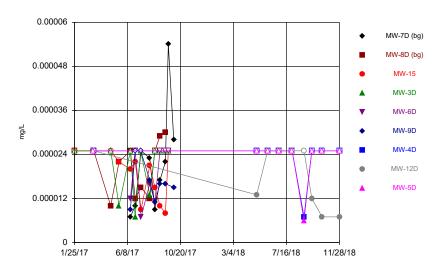

Sanitas[™] v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

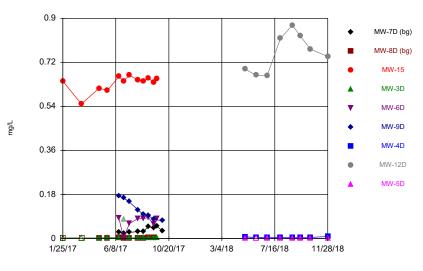
Constituent: Fluoride Analysis Run 3/21/2019 9:27 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas[™] v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

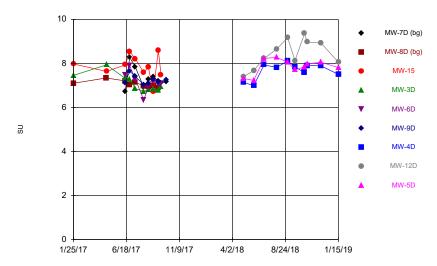


Constituent: Lead Analysis Run 3/21/2019 9:27 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF



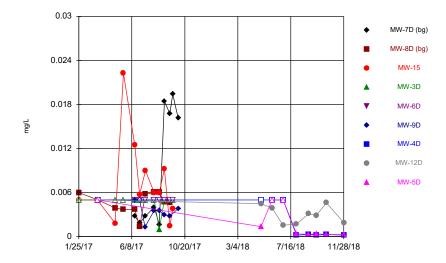
Constituent: Lithium Analysis Run 3/21/2019 9:27 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas¹¹ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

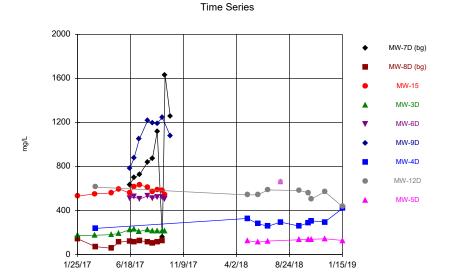

Constituent: Mercury Analysis Run 3/21/2019 9:27 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas¹¹ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

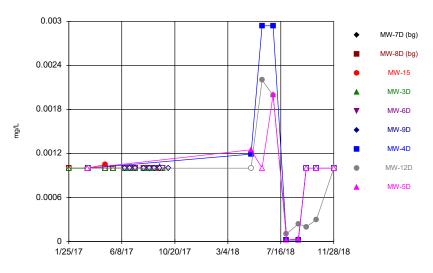
Time Series

Constituent: Molybdenum Analysis Run 3/21/2019 9:27 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

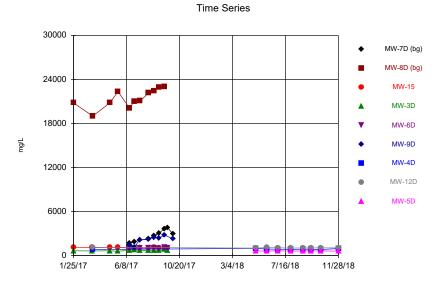

Time Series

Constituent: pH, field Analysis Run 3/21/2019 9:27 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas¹⁸ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Selenium Analysis Run 3/21/2019 9:27 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: Sulfate Analysis Run 3/21/2019 9:27 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas[™] v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

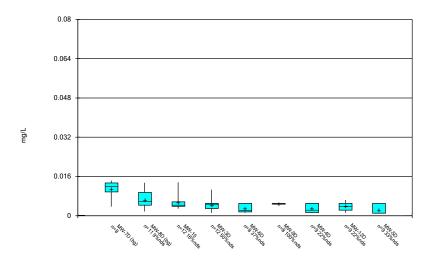
Time Series

Constituent: Thallium Analysis Run 3/21/2019 9:27 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

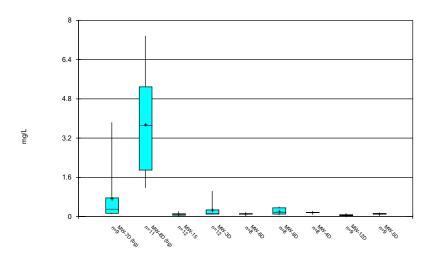
Sanitas[™] v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Total Dissolved Solids [TDS] Analysis Run 3/21/2019 9:27 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

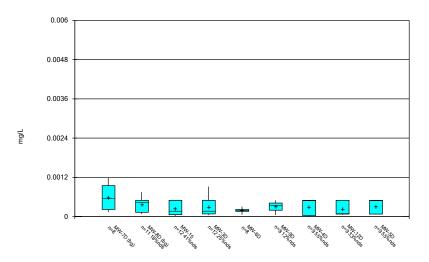

Box & Whiskers Plot

Constituent: Antimony Analysis Run 3/21/2019 9:29 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

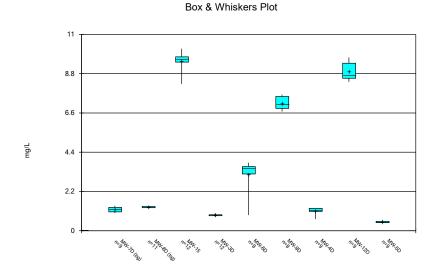

Box & Whiskers Plot

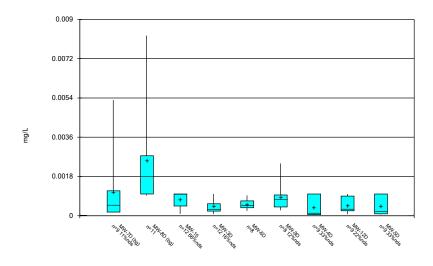
Constituent: Arsenic Analysis Run 3/21/2019 9:29 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG


Box & Whiskers Plot

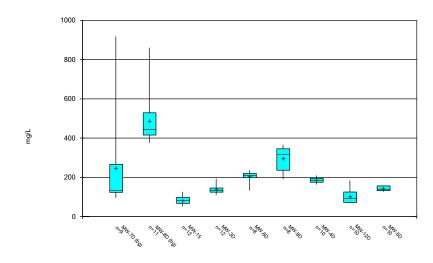
Constituent: Barium Analysis Run 3/21/2019 9:29 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Box & Whiskers Plot


Constituent: Beryllium Analysis Run 3/21/2019 9:29 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas[™] v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

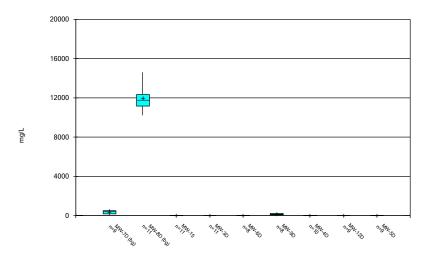
Sanitas[™] v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

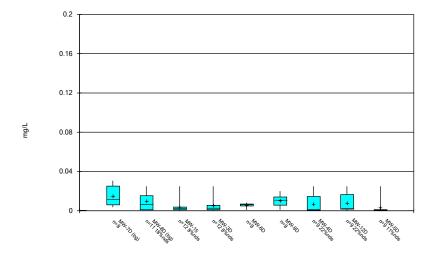

Constituent: Boron Analysis Run 3/21/2019 9:29 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Cadmium Analysis Run 3/21/2019 9:29 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas[™] v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

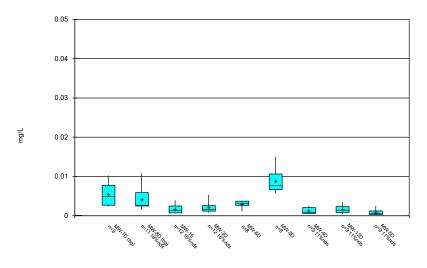

Box & Whiskers Plot

Constituent: Calcium Analysis Run 3/21/2019 9:29 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

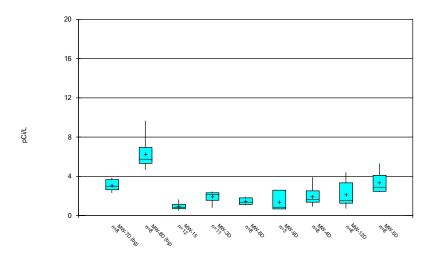

Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Chloride Analysis Run 3/21/2019 9:29 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

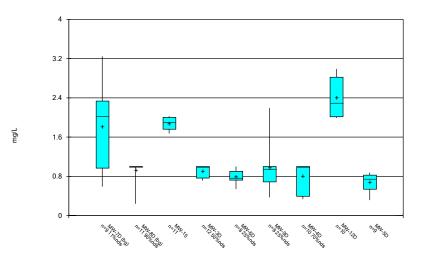

Box & Whiskers Plot

Constituent: Chromium Analysis Run 3/21/2019 9:29 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Box & Whiskers Plot

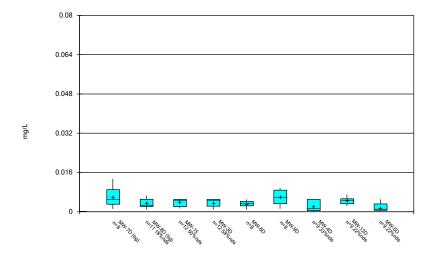
Constituent: Cobalt Analysis Run 3/21/2019 9:29 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG


Box & Whiskers Plot

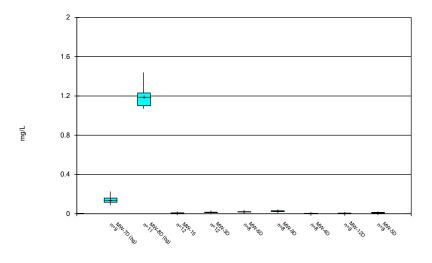
Constituent: Combined Radium 226 + 228 Analysis Run 3/21/2019 9:29 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

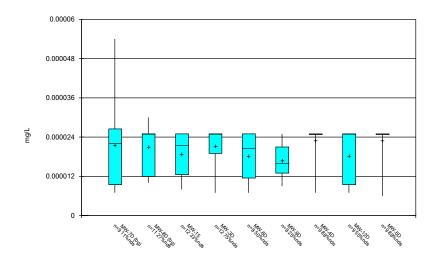

Box & Whiskers Plot

Constituent: Fluoride Analysis Run 3/21/2019 9:29 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

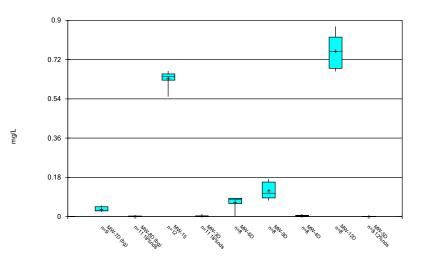

Box & Whiskers Plot

Constituent: Lead Analysis Run 3/21/2019 9:30 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Box & Whiskers Plot

Constituent: Lithium Analysis Run 3/21/2019 9:30 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

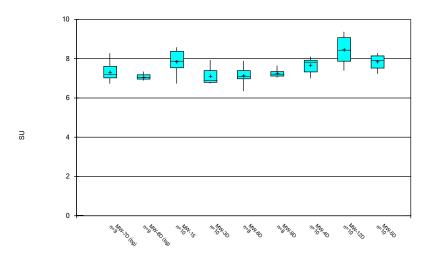
Sanitas[™] v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG


Box & Whiskers Plot

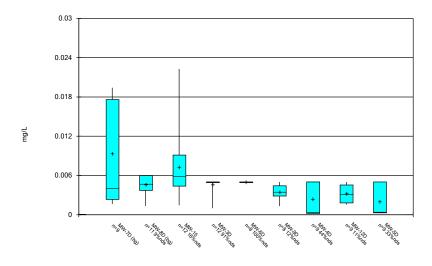
Constituent: Mercury Analysis Run 3/21/2019 9:30 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

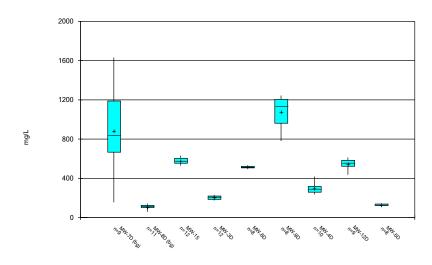

Constituent: Molybdenum Analysis Run 3/21/2019 9:30 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas[™] v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG


Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

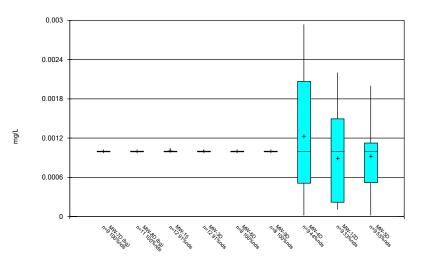
Box & Whiskers Plot

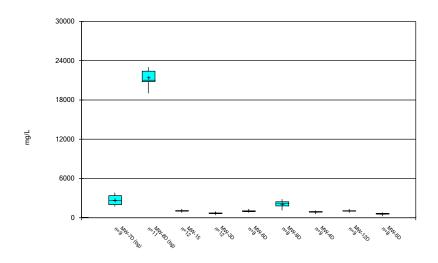
Box & Whiskers Plot


Constituent: pH, field Analysis Run 3/21/2019 9:30 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Selenium Analysis Run 3/21/2019 9:30 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG


Box & Whiskers Plot


Constituent: Sulfate Analysis Run 3/21/2019 9:30 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Box & Whiskers Plot

Constituent: Thallium Analysis Run 3/21/2019 9:30 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas™ v.9.6.12f Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Total Dissolved Solids [TDS] Analysis Run 3/21/2019 9:30 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Outlier Summary

	MW-7D Arsenii	c (mg/L) MW-4D Barium	i (mg/L) MW-7D Berylliu	ım (mg/L) MW-15 Chlorid	e (mg/L) MW-3D Chloric	ie (mg/L) MW-12D Chlor	ide (mg/L) MW-7D Chrom	_{iium} (mg/L) MW-7D Cobalt	(mg/L) MW-3D Combi	ned Radium 226 + 228 (pCi/L) MW-15 Fluoride (mg/L)	
3/15/2017		0.225 (o)									
5/18/2017				111 (o)							
6/28/2017											
7/12/2017									14.283 (o)		
8/17/2017					23 (o)						
9/20/2017	0.07314 (o)		0.0055 (o)				0.146 (o)	0.04905 (o)		0.642 (o)	
5/30/2018						91 (o)					
7/31/2018											

	MW-7D Lead (1	mg/L) MW-3D Molybo	Jenum (mg/L) MW-12D Sulfat	ie (mg/L) MW-5D Sulfate (mg/L)
3/15/2017				
5/18/2017				
6/28/2017		0.07928 (o)		
7/12/2017				
8/17/2017				
9/20/2017	0.07031 (o)			
5/30/2018				
7/31/2018			662 (o)	662 (o)

Outlier Analysis - Significant Results

Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 7/16/2019, 10:57 AM

Constituent	Well	Outlier	<u>Value(s)</u>	Method	<u>N</u>	Mean	Std. Dev.	Distributio	onNormality Test
Arsenic (mg/L)	MW-7D (bg)	Yes	0.07314	NP	9	0.01788	0.02098	ln(x)	ShapiroWilk
Barium (mg/L)	MW-4D	Yes	0.225	NP	9	0.1762	0.01877	ln(x)	ShapiroWilk
Chloride (mg/L)	MW-15	Yes	111	NP	12	32.25	30.12	ln(x)	ShapiroWilk
Chloride (mg/L)	MW-3D	Yes	23	NP	12	13.58	3.288	ln(x)	ShapiroWilk
Chloride (mg/L)	MW-12D	Yes	91	NP	10	25.5	23.15	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-3D	Yes	14.28	NP	12	2.982	3.592	ln(x)	ShapiroWilk
Molybdenum (mg/L)	MW-3D	Yes	0.07928	NP	12	0.009283	0.02205	ln(x)	ShapiroWilk
Sulfate (mg/L)	MW-5D	Yes	662	NP	9	189.4	177.5	ln(x)	ShapiroWilk

Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 7/16/2019, 10:57 AM

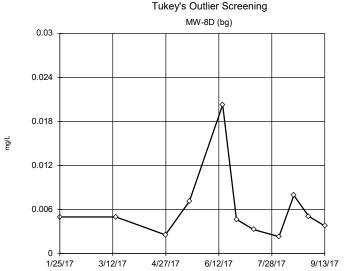
	i ve	nineastern	El Client. Geosyntec Data. Non						
Constituent	Well	Outlier	Value(s)	Method	N	Mean	Std. Dev.	Distributio	nNormality Test
Antimony (mg/L)	MW-7D (bg)	No	n/a	NP	9	0.003241	0.001742	ln(x)	ShapiroWilk
Antimony (mg/L)	MW-8D (bg)	No	n/a	NP	11	0.006095	0.005012	ln(x)	ShapiroWilk
Antimony (mg/L)	MW-15	No	n/a	NP	12	0.003489	0.001873	ln(x)	ShapiroWilk
Antimony (mg/L)	MW-3D	n/a	n/a	NP	12	0.004422	0.001349	unknown	ShapiroWilk
Antimony (mg/L)	MW-6D	No	n/a	NP	8	0.00359	0.001946	ln(x)	ShapiroWilk
Antimony (mg/L)	MW-9D	n/a	n/a	NP	8	0.005	0	unknown	ShapiroWilk
Antimony (mg/L)	MW-4D	No	n/a	NP	9	0.00221	0.002443	ln(x)	ShapiroWilk
Antimony (mg/L)	MW-12D	No	n/a	NP	9	0.002378	0.002489	ln(x)	ShapiroWilk
Antimony (mg/L)	MW-5D	No	n/a	NP	9	0.001819	0.002099	ln(x)	ShapiroWilk
Arsenic (mg/L)	MW-7D (bg)	Yes	0.07314	NP	9	0.01788	0.02098	ln(x)	ShapiroWilk
Arsenic (mg/L)	MW-8D (bg)	No	n/a	NP		0.006484	0.003466	x^(1/3)	ShapiroWilk
Arsenic (mg/L)	MW-15	No	n/a	NP		0.005394	0.002875	ln(x)	ShapiroWilk
Arsenic (mg/L)	MW-3D	No	n/a	NP		0.004473	0.002424	x^(1/3)	ShapiroWilk
Arsenic (mg/L)	MW-6D	No	n/a	NP	8	0.002919	0.001756	ln(x)	ShapiroWilk
Arsenic (mg/L)	MW-9D	n/a	n/a	NP	8	0.005	0	unknown	ShapiroWilk
Arsenic (mg/L)	MW-4D	No	n/a	NP	9	0.002771	0.00172	ln(x)	ShapiroWilk
Arsenic (mg/L)	MW-12D	No	n/a	NP	9	0.003812	0.00172	normal	·
									ShapiroWilk
Arsenic (mg/L)	MW-5D	No	n/a	NP	9	0.002423	0.001935	ln(x)	ShapiroWilk
Barium (mg/L)	MW-7D (bg)	No	n/a	NP	9	0.7454	1.19	ln(x)	ShapiroWilk
Barium (mg/L)	MW-8D (bg)	No	n/a	NP		3.756	2.143	ln(x)	ShapiroWilk
Barium (mg/L)	MW-15	No	n/a	NP		0.09759	0.0489	ln(x)	ShapiroWilk
Barium (mg/L)	MW-3D	No	n/a	NP		0.2538	0.2682	ln(x)	ShapiroWilk
Barium (mg/L)	MW-6D	No	n/a	NP	8	0.1131	0.02738	ln(x)	ShapiroWilk
Barium (mg/L)	MW-9D	No	n/a	NP	8	0.222	0.1398	x^(1/3)	ShapiroWilk
Barium (mg/L)	MW-4D	Yes	0.225	NP	9	0.1762	0.01877	ln(x)	ShapiroWilk
Barium (mg/L)	MW-12D	No	n/a	NP	9	0.06426	0.02825	ln(x)	ShapiroWilk
Barium (mg/L)	MW-5D	No	n/a	NP	9	0.1199	0.01516	ln(x)	ShapiroWilk
Beryllium (mg/L)	MW-7D (bg)	No	n/a	NP	9	0.00114	0.001679	ln(x)	ShapiroWilk
Beryllium (mg/L)	MW-8D (bg)	No	n/a	NP	11	0.0004655	0.0003544	ln(x)	ShapiroWilk
Beryllium (mg/L)	MW-15	No	n/a	NP	12	0.0004692	0.0004722	ln(x)	ShapiroWilk
Beryllium (mg/L)	MW-3D	No	n/a	NP	12	0.0004217	0.00042	ln(x)	ShapiroWilk
Beryllium (mg/L)	MW-6D	No	n/a	NP	8	0.0001925	0.00007226	normal	ShapiroWilk
Beryllium (mg/L)	MW-9D	No	n/a	NP	8	0.00037	0.0002851	x^(1/3)	ShapiroWilk
Beryllium (mg/L)	MW-4D	No	n/a	NP	9	0.0005154	0.0004829	ln(x)	ShapiroWilk
Beryllium (mg/L)	MW-12D	No	n/a	NP	9	0.0003933	0.0004556	ln(x)	ShapiroWilk
Beryllium (mg/L)	MW-5D	No	n/a	NP	9	0.0005366	0.0004592	ln(x)	ShapiroWilk
Boron (mg/L)	MW-7D (bg)	No	n/a	NP	9	1.183	0.1416	ln(x)	ShapiroWilk
Boron (mg/L)	MW-8D (bg)	No	n/a	NP	11	1.324	0.03585	x^3	ShapiroWilk
Boron (mg/L)	MW-15	No	n/a	NP	12	9.52	0.482	x^6	ShapiroWilk
Boron (mg/L)	MW-3D	No	n/a	NP	12	0.8698	0.04713	ln(x)	ShapiroWilk
Boron (mg/L)	MW-6D	No	n/a	NP	8	3.156	0.9525	x^6	ShapiroWilk
Boron (mg/L)	MW-9D	No	n/a	NP	8	7.146	0.3683	ln(x)	ShapiroWilk
Boron (mg/L)	MW-4D	No	n/a	NP	9	1.125	0.1902	x^6	ShapiroWilk
Boron (mg/L)	MW-12D	No	n/a	NP	9	8.926	0.4975	ln(x)	ShapiroWilk
Boron (mg/L)	MW-5D	No	n/a	NP	9	0.4964	0.05414	ln(x)	ShapiroWilk
Cadmium (mg/L)	MW-7D (bg)	No	n/a	NP	9	0.001086	0.001634	ln(x)	ShapiroWilk
Cadmium (mg/L)	MW-8D (bg)	No	n/a	NP	11	0.002558	0.002236	ln(x)	ShapiroWilk
Cadmium (mg/L)	MW-15	No	n/a	NP		0.0007567	0.0003841	normal	ShapiroWilk
Cadmium (mg/L)	MW-3D	No	n/a	NP		0.000425	0.0003052	ln(x)	ShapiroWilk
Cadmium (mg/L)	MW-6D	No	n/a	NP	8	0.0005213	0.0002371	ln(x)	ShapiroWilk
Cadmium (mg/L)	MW-9D	No	n/a	NP	8	0.0008563	0.0006827	ln(x)	ShapiroWilk
Cadmium (mg/L)	MW-4D	No	n/a	NP	9	0.0003933	0.000457	ln(x)	ShapiroWilk
Cadmium (mg/L)	MW-12D	No	n/a	NP	9	0.0004767	0.0003564	ln(x)	ShapiroWilk
Cadmium (mg/L)	MW-5D	No	n/a	NP	9	0.0004737	0.0004347	ln(x)	ShapiroWilk
Calcium (mg/L)	MW-3D MW-7D (bg)	No	n/a	NP	9	248.5	259.2		ShapiroWilk
Galoum (mg/L)	10144-1 D (DG)	NU	104	INF	Э	270.0	200.2	ln(x)	ShapirOvvilk

	INC	Jimeastern	TLF Client. Geosyntec	Data. Northeastern LF	Pfinieu 7/10/20	19, 10.57	Aiv	1			
Constituent	Well	Outlier	Value(s)		Method		N	Mean	Std. Dev.	Distributio	nNormality Test
Calcium (mg/L)	MW-8D (bg)	No	n/a		NP		11	487	139	ln(x)	ShapiroWilk
Calcium (mg/L)	MW-15	No	n/a		NP		12	84.28	21.28	ln(x)	ShapiroWilk
Calcium (mg/L)	MW-3D	No	n/a		NP		12	138.7	23.13	ln(x)	ShapiroWilk
Calcium (mg/L)	MW-6D	No	n/a		NP		8	203.5	31.18	x^6	ShapiroWilk
Calcium (mg/L)	MW-9D	No	n/a		NP		8	294.1	64.61	x^4	ShapiroWilk
Calcium (mg/L)	MW-4D	No	n/a		NP		10	186.6	12.99	normal	ShapiroWilk
Calcium (mg/L)	MW-12D	No	n/a		NP		10	102.6	36.57	ln(x)	ShapiroWilk
Calcium (mg/L)	MW-5D	No	n/a		NP		10	142.6	11.06	ln(x)	ShapiroWilk
Chloride (mg/L)	MW-7D (bg)	No	n/a		NP		9	355.4	192.9	normal	ShapiroWilk
Chloride (mg/L)	MW-8D (bg)	No	n/a		NP		11	11986	1166	ln(x)	ShapiroWilk
Chloride (mg/L)	MW-15	Yes	111		NP			32.25	30.12	ln(x)	ShapiroWilk
Chloride (mg/L)	MW-3D	Yes	23		NP			13.58	3.288	ln(x)	ShapiroWilk
Chloride (mg/L)	MW-6D	No	n/a		NP			30.25	1.389	sqrt(x)	ShapiroWilk
Chloride (mg/L)	MW-9D	No	n/a		NP			155.4	86.93	sqrt(x)	ShapiroWilk
Chloride (mg/L)	MW-4D	No	n/a		NP			27.83	6.996	ln(x)	ShapiroWilk
Chloride (mg/L)	MW-12D	Yes	91		NP			25.5	23.15	ln(x)	ShapiroWilk
Chloride (mg/L)	MW-5D		n/a		NP			27.06	2.981		ShapiroWilk
		No			NP					ln(x)	ShapiroWilk
Chromium (mg/L)	MW-7D (bg)	No	n/a					0.02955	0.04483	ln(x)	
Chromium (mg/L)	MW-8D (bg)	No	n/a ,		NP			0.004962	0.005615	ln(x)	ShapiroWilk
Chromium (mg/L)	MW-15	No	n/a		NP			0.002332	0.002352	x^(1/3)	ShapiroWilk
Chromium (mg/L)	MW-3D	No	n/a ,		NP			0.003558	0.004924	ln(x)	ShapiroWilk
Chromium (mg/L)	MW-6D	No	n/a		NP			0.005719	0.002302	x^3	ShapiroWilk
Chromium (mg/L)	MW-9D	No	n/a		NP		8	0.01027	0.00617	normal	ShapiroWilk
Chromium (mg/L)	MW-4D	No	n/a		NP		9	0.003866	0.008012	ln(x)	ShapiroWilk
Chromium (mg/L)	MW-12D	No	n/a		NP		9	0.002139	0.00232	ln(x)	ShapiroWilk
Chromium (mg/L)	MW-5D	No	n/a		NP		9	0.0006623	0.0003552	ln(x)	ShapiroWilk
Cobalt (mg/L)	MW-7D (bg)	No	n/a		NP		9	0.01029	0.0148	ln(x)	ShapiroWilk
Cobalt (mg/L)	MW-8D (bg)	No	n/a		NP		11	0.004142	0.002704	ln(x)	ShapiroWilk
Cobalt (mg/L)	MW-15	No	n/a		NP		12	0.001621	0.001068	ln(x)	ShapiroWilk
Cobalt (mg/L)	MW-3D	No	n/a		NP		12	0.002067	0.001262	ln(x)	ShapiroWilk
Cobalt (mg/L)	MW-6D	No	n/a		NP		8	0.003014	0.0009294	x^4	ShapiroWilk
Cobalt (mg/L)	MW-9D	No	n/a		NP		8	0.008858	0.003339	ln(x)	ShapiroWilk
Cobalt (mg/L)	MW-4D	No	n/a		NP		9	0.001265	0.000775	ln(x)	ShapiroWilk
Cobalt (mg/L)	MW-12D	No	n/a		NP		9	0.001624	0.0009752	x^(1/3)	ShapiroWilk
Cobalt (mg/L)	MW-5D	No	n/a		NP		9	0.0008123	0.0007372	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-7D (bg)	No	n/a		NP		8	3.108	0.5949	normal	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-8D (bg)	No	n/a		NP		8	6.303	1.601	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-15	No	n/a		NP		12	0.9451	0.3271	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-3D	Yes	14.28		NP		12	2.982	3.592	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-6D	No	n/a		NP		8	1.457	0.3437	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-4D	No	n/a		NP		8	1.985	1.003	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-12D	No	n/a		NP		8	2.185	1.329	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-5D	No	n/a		NP		8	3.335	1.201	ln(x)	ShapiroWilk
Fluoride (mg/L)	MW-7D (bg)	No	n/a		NP		9	1.818	0.8399	normal	ShapiroWilk
Fluoride (mg/L)	MW-8D (bg)	n/a	n/a		NP		11	0.9309	0.2291	unknown	ShapiroWilk
Fluoride (mg/L)	MW-15	No	n/a		NP		12	1.779	0.3789	x^6	ShapiroWilk
Fluoride (mg/L)	MW-3D	No	n/a		NP			0.9024	0.1244	ln(x)	ShapiroWilk
Fluoride (mg/L)	MW-6D	No	n/a		NP			0.7895	0.1518	x^(1/3)	ShapiroWilk
Fluoride (mg/L)	MW-9D	No	n/a		NP			0.9776	0.5368	ln(x)	ShapiroWilk
Fluoride (mg/L)	MW-4D	No	n/a		NP			0.8125	0.3025	ln(x)	ShapiroWilk
Fluoride (mg/L)	MW-12D	No	n/a		NP			2.407	0.3782	ln(x)	ShapiroWilk
Fluoride (mg/L)	MW-5D	No	n/a		NP			0.6811	0.2004	x^5	ShapiroWilk
Lead (mg/L)	MW-7D (bg)	No	n/a		NP			0.01325	0.02176	ln(x)	ShapiroWilk
Lead (mg/L)	MW-8D (bg)	No	n/a		NP			0.003685	0.001825	sqrt(x)	ShapiroWilk
Lead (mg/L)	MW-85 (59)	No	n/a		NP			0.003085	0.001625	ln(x)	ShapiroWilk
Load (IIIg/L)	11147-13	NO	11/G		INF		12	0.003733	0.001000	(A)	Grapitovviik

Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 7/16/2019, 10:57 AM

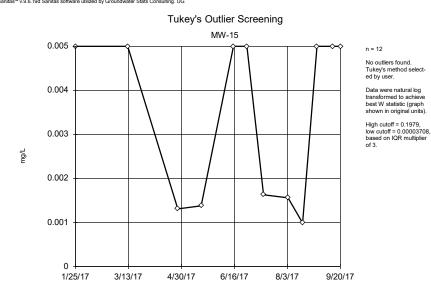
	1	Northeaster	n LF Client: Geosyntec	Data: Northeastern LF	Printed 7/16/2019, 10:	57 AN	И			
Constituent	Well	Outlier	Value(s)		Method	N	Mean	Std. Dev.	Distributio	nNormality Test
Lead (mg/L)	MW-3D	No	n/a		NP	12	0.003701	0.001753	normal	ShapiroWilk
Lead (mg/L)	MW-6D	No	n/a		NP	8	0.003195	0.001395	normal	ShapiroWilk
Lead (mg/L)	MW-9D	No	n/a		NP	8	0.005931	0.00316	normal	ShapiroWilk
Lead (mg/L)	MW-4D	No	n/a		NP	9	0.00219	0.002153	ln(x)	ShapiroWilk
Lead (mg/L)	MW-12D	No	n/a		NP	9	0.004514	0.001425	normal	ShapiroWilk
Lead (mg/L)	MW-5D	No	n/a		NP	9	0.001748	0.001873	ln(x)	ShapiroWilk
Lithium (mg/L)	MW-7D (bg)	No	n/a		NP	9	0.1411	0.03981	ln(x)	ShapiroWilk
Lithium (mg/L)	MW-8D (bg)	No	n/a		NP	11	1.189	0.1091	ln(x)	ShapiroWilk
Lithium (mg/L)	MW-15	No	n/a		NP	12	0.008383	0.001941	ln(x)	ShapiroWilk
Lithium (mg/L)	MW-3D	No	n/a		NP	12	0.01577	0.001757	ln(x)	ShapiroWilk
Lithium (mg/L)	MW-6D	No	n/a		NP	8	0.01911	0.00291	x^3	ShapiroWilk
Lithium (mg/L)	MW-9D	No	n/a		NP	8	0.02532	0.005668	sqrt(x)	ShapiroWilk
Lithium (mg/L)	MW-4D	No	n/a		NP	8	0.00371	0.0009187	ln(x)	ShapiroWilk
Lithium (mg/L)	MW-12D	No	n/a		NP	8	0.005234	0.001653	ln(x)	ShapiroWilk
Lithium (mg/L)	MW-5D	No	n/a		NP	8	0.01141	0.0009013	x^6	ShapiroWilk
Mercury (mg/L)	MW-7D (bg)	No	n/a		NP	9	0.00002167	0.00001428	ln(x)	ShapiroWilk
Mercury (mg/L)	MW-8D (bg)	n/a	n/a		NP	11	0.00002091	0.000007273	3 unknown	ShapiroWilk
Mercury (mg/L)	MW-15	n/a	n/a		NP	12	0.00001892	0.00000664	unknown	ShapiroWilk
Mercury (mg/L)	MW-3D	No	n/a		NP	12	0.00002125	0.000006904	l In(x)	ShapiroWilk
Mercury (mg/L)	MW-6D	No	n/a		NP	8		0.000007611		ShapiroWilk
Mercury (mg/L)	MW-9D	No	n/a		NP	8		0.000005776	()	ShapiroWilk
Mercury (mg/L)	MW-4D	n/a	n/a		NP	9	0.000023	0.000006	unknown	ShapiroWilk
Mercury (mg/L)	MW-12D	No	n/a		NP	9		0.000008273		ShapiroWilk
Mercury (mg/L)	MW-5D	n/a	n/a		NP	9	0.00002289	0.000006333		ShapiroWilk
Molybdenum (mg/L)	MW-7D (bg)	No	n/a		NP	9	0.03396	0.01079	ln(x)	ShapiroWilk
Molybdenum (mg/L)	MW-8D (bg)	No	n/a		NP		0.002343	0.001018	x^(1/3)	ShapiroWilk
Molybdenum (mg/L)	MW-15	No	n/a		NP		0.6351	0.03228	x^6	ShapiroWilk
morybaomann (mg/2)	11111 10		n/d			•	0.0001	0.00220	~ 0	onaphornat
Molybdenum (mg/L)	MW-3D	Yes	0 07928		NP	12	0 009283	0 02205	ln(x)	ShaniroWilk
Molybdenum (mg/L)	MW-3D MW-6D	Yes No	0.07928		NP		0.009283	0.02205	In(x) x^6	ShapiroWilk
Molybdenum (mg/L)	MW-6D	No	n/a		NP	8	0.06722	0.02812	x^6	ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L)	MW-6D MW-9D	No No	n/a n/a		NP NP	8 8	0.06722 0.1189	0.02812 0.03949	x^6 ln(x)	ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L)	MW-6D MW-9D MW-4D	No No No	n/a n/a n/a		NP NP NP	8 8 8	0.06722 0.1189 0.005206	0.02812 0.03949 0.001419	x^6 ln(x) ln(x)	ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L)	MW-6D MW-9D MW-4D MW-12D	No No No No	n/a n/a n/a		NP NP NP NP	8 8 8 8	0.06722 0.1189 0.005206 0.7578	0.02812 0.03949 0.001419 0.0783	x^6 ln(x) ln(x) x^2	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L)	MW-6D MW-9D MW-4D MW-12D MW-5D	No No No No	n/a n/a n/a n/a		NP NP NP NP NP	8 8 8 8	0.06722 0.1189 0.005206 0.7578 0.001305	0.02812 0.03949 0.001419 0.0783 0.0006926	x^6 ln(x) ln(x) x^2 normal	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg)	No No No No No	n/a n/a n/a n/a n/a		NP NP NP NP NP	8 8 8 8 9	0.06722 0.1189 0.005206 0.7578 0.001305 7.324	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731	x^6 ln(x) ln(x) x^2 normal ln(x)	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg)	No No No No No	n/a n/a n/a n/a n/a n/a		NP NP NP NP NP NP	8 8 8 9 9	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434	x^6 ln(x) ln(x) x^2 normal ln(x) ln(x)	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) pH, field (SU) pH, field (SU)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-5D MW-7D (bg) MW-8D (bg) MW-15	No No No No No No	n/a n/a n/a n/a n/a n/a		NP NP NP NP NP NP NP	8 8 8 9 9 10	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446	x^6 ln(x) ln(x) x^2 normal ln(x) ln(x) x^4	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) pH, field (SU) pH, field (SU) pH, field (SU)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-5D (bg) MW-8D (bg) MW-85 MW-15 MW-3D	No No No No No No No	n/a n/a n/a n/a n/a n/a n/a		NP NP NP NP NP NP NP	8 8 8 9 9 10	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915	x^6 ln(x) ln(x) x^2 normal ln(x) ln(x) x^4 ln(x)	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) pH, field (SU) pH, field (SU) pH, field (SU)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-5D (bg) MW-8D (bg) MW-15 MW-3D MW-3D	No No No No No No No	n/a n/a n/a n/a n/a n/a n/a n/a n/a		NP NP NP NP NP NP NP NP	8 8 8 9 9 10 10 8	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475	x^6 ln(x) ln(x) x^2 normal ln(x) ln(x) x^4 ln(x) x^2	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) pH, field (SU) pH, field (SU) pH, field (SU) pH, field (SU)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-7D (bg) MW-7D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-6D	No No No No No No No	n/a n/a n/a n/a n/a n/a n/a n/a n/a		NP NP NP NP NP NP NP NP NP	8 8 8 9 9 10 10 8 8	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972	x^6 In(x) In(x) x^2 normal In(x) In(x) x^4 In(x) x^2 In(x)	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) pH, field (SU) pH, field (SU) pH, field (SU) pH, field (SU) pH, field (SU)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-5D MW-7D (bg) MW-7D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-6D MW-9D MW-9D	No No No No No No No No	n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a		NP NP NP NP NP NP NP NP NP	8 8 8 9 10 10 8 8 10	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629	x^6 ln(x) ln(x) x^2 normal ln(x) ln(x) x^4 ln(x) x^2 ln(x) x^6	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) pH, field (SU) pH, field (SU) pH, field (SU) pH, field (SU) pH, field (SU) pH, field (SU)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-5D MW-7D (bg) MW-8D (bg) MW-8D (bg) MW-8D (bg) MW-4D MW-9D MW-4D MW-12D	No No No No No No No No No	n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a		NP NP NP NP NP NP NP NP NP NP	8 8 8 9 9 10 10 8 8 10 10	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611	x^6 ln(x) ln(x) x^2 normal ln(x) ln(x) x^4 ln(x) x^2 ln(x) x^6 x^2	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) pH, field (SU)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-5D MW-8D (bg) MW-8D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-9D MW-4D MW-12D MW-12D	No No No No No No No No No	n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a		NP NP NP NP NP NP NP NP NP NP NP	8 8 8 9 9 10 10 8 8 10 10	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525	x^6 ln(x) ln(x) x^2 normal ln(x) ln(x) x^4 ln(x) x^2 ln(x) x^6 x^2 x^6 x^6	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) pH, field (SU) Selenium (mg/L)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-5D (bg) MW-8D (bg) MW-8D (bg) MW-3D MW-9D MW-9D MW-12D MW-5D MW-5D (bg)	No No No No No No No No No No	n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a		NP NP NP NP NP NP NP NP NP NP NP NP	8 8 8 9 10 10 8 8 10 10 10 9	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525 0.008021	x^6 ln(x) ln(x) x^2 normal ln(x) ln(x) x^4 ln(x) x^2 ln(x) x^6 x^2 x^6 ln(x)	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) pH, field (SU) Selenium (mg/L)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-5D (bg) MW-8D (bg) MW-8D MW-6D MW-9D MW-4D MW-4D MW-12D MW-5D MW-7D (bg) MW-8D (bg)	No No No No No No No No No No	n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a		NP NP NP NP NP NP NP NP NP NP NP NP	8 8 8 9 10 10 8 8 10 10 10 9 11	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326 0.004629	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525 0.008021 0.001428	x^6 ln(x) ln(x) x^2 normal ln(x) ln(x) x^4 ln(x) x^2 ln(x) x^6 x^2 x^6 ln(x) x^6 x^2 x^6 ln(x) x^2	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) PH, field (SU) pH, field (SU) Selenium (mg/L) Selenium (mg/L)	MW-6D MW-9D MW-4D MW-12D MW-5D MW-5D (bg) MW-8D (bg) MW-15 MW-3D MW-4D MW-9D MW-4D MW-4D MW-12D MW-5D MW-7D (bg) MW-7D (bg)	No No No No No No No No No No No	n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a		NP NP NP NP NP NP NP NP NP NP NP NP NP N	8 8 8 9 9 10 10 8 8 10 10 10 9 11	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326 0.009326 0.004629 0.007312	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525 0.008021 0.001428 0.001428	x^6 In(x) In(x) x^2 normal In(x) In(x) x^4 In(x) x^6 x^2 In(x) x^6 In(x) x^2 In(x) x^2 In(x)	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) pH, field (SU) selenium (mg/L) Selenium (mg/L)	 MW-6D MW-9D MW-4D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-9D MW-4D MW-4D MW-12D MW-5D (bg) MW-7D (bg) MW-8D (bg) MW-8D (bg) MW-15 MW-3D 	No No No No No No No No No No No No No	n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a		NP NP NP NP NP NP NP NP NP NP NP NP NP N	8 8 8 9 10 10 8 8 10 10 10 9 11 12	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326 0.009326 0.004629 0.007312	0.02812 0.03949 0.001419 0.0783 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525 0.008021 0.001428 0.005647 0.001155	x^6 In(x) In(x) x^2 normal In(x) x^4 In(x) x^2 In(x) x^6 In(x) x^2 In(x) x^2 In(x) x^2	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) pH, field (SU) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L)	 MW-6D MW-9D MW-4D MW-5D MW-5D MW-7D (bg) MW-8D (bg) MW-4D MW-4D MW-4D MW-12D MW-5D MW-5D MW-5D MW-5D MW-5D MW-5D MW-5D MW-5D MW-6D MW-6D MW-3D 	No No No No No No No No No No No No No N	n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a		NP NP NP NP NP NP NP NP NP NP NP NP NP N	8 8 8 9 10 10 8 8 10 10 9 11 12 12 8	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326 0.009326 0.004629 0.007312 0.004667 0.005	0.02812 0.03949 0.001419 0.0783 0.4731 0.1434 0.5446 0.3915 0.4475 0.3929 0.6611 0.3525 0.008021 0.001428 0.005647 0.001155 0	x^6 In(x) In(x) x^2 In(x) In(x) x^4 In(x) x^2 In(x) x^6 In(x) x^2 In(x) x^2 In(x) unknown	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) pH, field (SU) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L)	 MW-6D MW-9D MW-4D MW-5D MW-5D MW-8D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-4D MW-12D MW-12D MW-5D MW-7D (bg) MW-7D (bg) MW-7D (bg) MW-5D MW-3D MW-3D MW-6D 	No No No No No No No No No No No No No N	n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a		NP NP NP NP NP NP NP NP NP NP NP NP NP N	8 8 8 9 10 10 8 8 10 10 9 11 12 12 8 8	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326 0.009326 0.004629 0.007312 0.004667 0.005 0.003499	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525 0.008021 0.001428 0.005647 0.001155 0	x^6 In(x) In(x) x^2 normal In(x) In(x) x^4 In(x) x^2 In(x) x^6 In(x) x^6 In(x) x^2 In(x) unknown unknown	ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH, field (SU) pH, field (SU) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L)	 MW-6D MW-9D MW-4D MW-5D MW-5D MW-8D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-12D MW-5D MW-5D MW-5D (bg) MW-5D (bg) MW-5D (bg) MW-5D (bg) MW-5D (bg) MW-5D (bg) MW-6D (bg) MW-5D (bg) MW-6D (bg)<	No No No No No No No No No No No No No N	n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a		NP NP NP NP NP NP NP NP NP NP NP NP NP N	8 8 8 9 9 10 10 8 8 10 10 9 11 12 12 8 8 9	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326 0.004629 0.007312 0.004667 0.005 0.003499 0.002356	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525 0.008021 0.001428 0.00155 0 0 0.001105	x^6 In(x) In(x) x^2 normal In(x) In(x) x^4 In(x) x^2 In(x) x^6 x^2 In(x) x^2 In(x) x^2 In(x) unknown unknown In(x)	ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) PH, field (SU) pH, field (SU) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L)	 MW-6D MW-9D MW-4D MW-5D MW-5D MW-8D (bg) MW-15 MW-3D MW-6D MW-4D MW-5D MW-7D (bg) MW-5D MW-7D (bg) MW-5D MW-7D (bg) MW-8D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-3D MW-6D MW-4D MW-4D MW-4D MW-12D 	No No No No No No No No No No No No No N	n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a		NP NP NP NP NP NP NP NP NP NP NP NP NP N	8 8 8 9 9 10 10 8 8 10 10 8 8 10 10 9 11 12 12 8 8 9 9	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326 0.004629 0.007312 0.004667 0.005 0.003499 0.002356 0.002356	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525 0.008021 0.001428 0.00155 0 0.001155 0 0.001205 0.002509 0.001328	x^6 In(x) In(x) x^2 In(x) In(x) x^4 In(x) x^2 In(x) x^6 In(x) x^6 In(x) x^2 In(x) unknown unknown normal In(x) normal	ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) PH, field (SU) pH, field (SU) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L)	 MW-6D MW-9D MW-4D MW-5D MW-5D MW-8D (bg) MW-15 MW-3D MW-6D MW-2D MW-7D (bg) MW-7D (bg) MW-7D (bg) MW-7D (bg) MW-8D (bg) MW-8D (bg) MW-8D (bg) MW-8D (bg) MW-6D MW-4D MW-4D MW-12D MW-12D MW-5D MW-12D MW-5D MW-12D MW-5D 	No No No No No No No No No No No No No N	n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a		NP NP NP NP NP NP NP NP NP NP NP NP NP N	8 8 9 9 10 8 8 10 10 8 8 10 10 9 11 12 12 8 8 9 9 9	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326 0.004629 0.007312 0.004667 0.005 0.003236 0.003236 0.003237 0.002066	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525 0.008021 0.001428 0.005647 0.001155 0 0.001205 0.002509 0.001328 0.00227	x^6 In(x) In(x) x^2 In(x) In(x) x^4 In(x) x^6 In(x) x^6 In(x) x^6 In(x) In(x) In(x) Inknown Inknown Inknown Inknown Inknown Inknown	ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) PH, field (SU) pH, field (SU) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L)	 MW-6D MW-9D MW-4D MW-5D MW-7D (bg) MW-8D (bg) MW-15 MW-9D MW-4D MW-12D MW-7D (bg) MW-7D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-6D MW-7D (bg) MW-6D MW-7D (bg) MW-5D MW-6D MW-6D MW-6D MW-6D MW-6D MW-6D MW-6D MW-5D MW-7D (bg) MW-5D MW-5D MW-5D MW-5D MW-5D MW-5D MW-7D (bg) 	No No No No No No No No No No No No No N	n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a		NP NP NP NP NP NP NP NP NP NP NP NP NP N	8 8 8 9 10 10 8 8 10 10 9 11 12 12 8 8 9 9 9 9 9	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326 0.004629 0.004629 0.007312 0.004667 0.005 0.003237 0.002356 0.003237 0.002006 881.6	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525 0.008021 0.001428 0.001428 0.001455 0 0.001205 0 0.001205 0.00227 419.4	x^6 in(x) in(x) x^2 normal in(x) in(x) x^4 in(x) x^6 in(x) x^6 in(x) x^6 in(x) x^2 in(x) unknown unknown inknown in(x) normal in(x) normal	ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) PH, field (SU) pH, field (SU) Selenium (mg/L) Selenium (mg/L)	 MW-6D MW-9D MW-4D MW-5D MW-7D (bg) MW-8D (bg) MW-8D (bg) MW-6D MW-4D MW-4D MW-4D MW-5D MW-5D MW-3D MW-3D MW-3D MW-5 MW-3D MW-6D MW-3D MW-5 MW-3D MW-5D MW-5D MW-4D MW-4D MW-5D MW-4D MW-5D MW-5D MW-7D (bg) MW-8D (bg) 	No No No No No No No No No No No No No N	n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a		NP NP NP NP NP NP NP NP NP NP NP NP NP N	8 8 8 9 9 10 10 8 8 10 10 10 9 11 12 12 8 8 9 9 9 9 9 11	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326 0.004629 0.007312 0.004667 0.005 0.003499 0.002356 0.003237 0.002356 0.003237 0.002066 881.6 109.6	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525 0.008021 0.001428 0.001428 0.001455 0 0.00155 0 0.001205 0.002509 0.001328 0.00227 419.4 24.76	x^6 in(x) in(x) x^2 normal in(x) in(x) x^4 in(x) x^6 in(x) x^6 in(x) x^6 in(x) x^2 in(x) unknown unknown normal in(x) normal in(x)	ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) PH, field (SU) pH, field (SU) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L)	 MW-6D MW-9D MW-4D MW-5D MW-7D (bg) MW-8D (bg) MW-8D (bg) MW-6D MW-9D MW-4D MW-12D MW-7D (bg) MW-8D (bg) MW-8D (bg) MW-15 MW-3D MW-6D MW-6D MW-6D MW-7D (bg) MW-4D MW-5D MW-6D MW-6D MW-6D MW-6D MW-6D MW-6D MW-6D MW-5D MW-7D (bg) MW-5D MW-5D MW-5D MW-5D MW-5D MW-5D MW-7D (bg) 	No No No No No No No No No No No No No N	n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a		NP NP NP NP NP NP NP NP NP NP NP NP NP N	8 8 8 9 9 10 10 8 8 10 10 8 8 10 10 9 11 12 12 8 8 9 9 9 9 9 11 12	0.06722 0.1189 0.005206 0.7578 0.001305 7.324 7.071 7.852 7.101 7.153 7.256 7.675 8.459 7.853 0.009326 0.004629 0.004629 0.007312 0.004667 0.005 0.003237 0.002356 0.003237 0.002006 881.6	0.02812 0.03949 0.001419 0.0783 0.0006926 0.4731 0.1434 0.5446 0.3915 0.4475 0.1972 0.3629 0.6611 0.3525 0.008021 0.001428 0.001428 0.001455 0 0.001205 0 0.001205 0.00227 419.4	x^6 in(x) in(x) x^2 normal in(x) in(x) x^4 in(x) x^6 in(x) x^6 in(x) x^6 in(x) x^2 in(x) unknown unknown inknown in(x) normal in(x) normal	ShapiroWilk ShapiroWilk

Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 7/16/2019, 10:57 AM

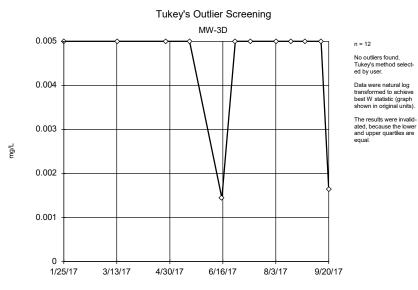

Constituent	Well	Outlier	<u>Value(s)</u>	Method	<u>N</u>	Mean	Std. Dev.	Distribution	nNormality Test
Sulfate (mg/L)	MW-6D	No	n/a	NP	8	515.6	10.41	ln(x)	ShapiroWilk
Sulfate (mg/L)	MW-9D	No	n/a	NP	8	1079	170.3	x^6	ShapiroWilk
Sulfate (mg/L)	MW-4D	No	n/a	NP	10	296.4	50.08	ln(x)	ShapiroWilk
Sulfate (mg/L)	MW-12D	No	n/a	NP	10	559.8	60.94	x^2	ShapiroWilk
Sulfate (mg/L)	MW-5D	Yes	662	NP	9	189.4	177.5	ln(x)	ShapiroWilk
Thallium (mg/L)	MW-7D (bg)	n/a	n/a	NP	9	0.001	0	unknown	ShapiroWilk
Thallium (mg/L)	MW-8D (bg)	n/a	n/a	NP	11	0.001	0	unknown	ShapiroWilk
Thallium (mg/L)	MW-15	n/a	n/a	NP	12	0.001004	0.00001443	unknown	ShapiroWilk
Thallium (mg/L)	MW-3D	n/a	n/a	NP	12	0.001002	0.000005773	unknown	ShapiroWilk
Thallium (mg/L)	MW-6D	n/a	n/a	NP	8	0.001	0	unknown	ShapiroWilk
Thallium (mg/L)	MW-9D	n/a	n/a	NP	8	0.001	0	unknown	ShapiroWilk
Thallium (mg/L)	MW-4D	No	n/a	NP	9	0.001234	0.00106	sqrt(x)	ShapiroWilk
Thallium (mg/L)	MW-12D	No	n/a	NP	9	0.000893	0.0007764	ln(x)	ShapiroWilk
Thallium (mg/L)	MW-5D	No	n/a	NP	9	0.0009233	0.0006012	normal	ShapiroWilk
Total Dissolved Solids [TDS] (mg/L)	MW-7D (bg)	No	n/a	NP	9	2690	764.7	ln(x)	ShapiroWilk
Total Dissolved Solids [TDS] (mg/L)	MW-8D (bg)	No	n/a	NP	11	21432	1259	x^4	ShapiroWilk
Total Dissolved Solids [TDS] (mg/L)	MW-15	No	n/a	NP	12	1079	32.67	x^6	ShapiroWilk
Total Dissolved Solids [TDS] (mg/L)	MW-3D	No	n/a	NP	12	709	64.4	ln(x)	ShapiroWilk
Total Dissolved Solids [TDS] (mg/L)	MW-6D	No	n/a	NP	8	1037	46.63	ln(x)	ShapiroWilk
Total Dissolved Solids [TDS] (mg/L)	MW-9D	No	n/a	NP	8	2122	561.5	x^3	ShapiroWilk
Total Dissolved Solids [TDS] (mg/L)	MW-4D	No	n/a	NP	9	896.4	50.69	ln(x)	ShapiroWilk
Total Dissolved Solids [TDS] (mg/L)	MW-12D	No	n/a	NP	9	1067	32.79	ln(x)	ShapiroWilk
Total Dissolved Solids [TDS] (mg/L)	MW-5D	No	n/a	NP	8	638.8	16.28	ln(x)	ShapiroWilk

Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Tukey's Outlier Screening MW-7D (bg) 0.005 n = 9 No outliers found. Tukey's method selected by user. 0.004 Data were natural log transformed to achieve best W statistic (graph shown in original units). High cutoff = 0.1674, low cutoff = 0.00004633, 0.003 based on IQR multiplier of 3. mg/L 0.002 0.001 Ω 6/16/17 7/8/17 7/30/17 8/21/17 9/12/17 10/4/17

Constituent: Antimony Analysis Run 7/16/2019 9:43 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Antimony Analysis Run 7/16/2019 9:43 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

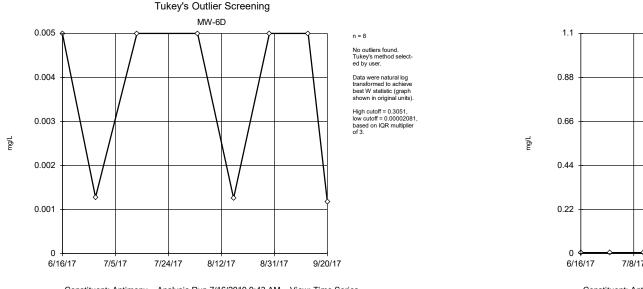
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Antimony Analysis Run 7/16/2019 9:43 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Tukey's method selected by user.

n = 11

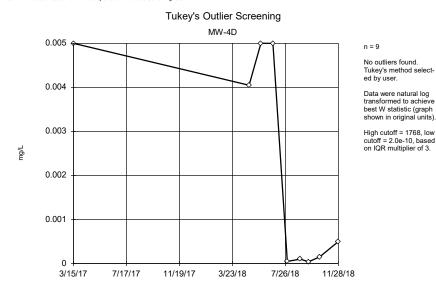
Data were natural log transformed to achieve best W statistic (graph shown in original units).


No outliers found.

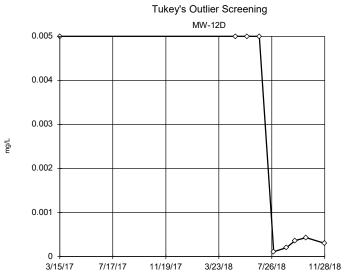
High cutoff = 0.07324, low cutoff = 0.0003193, based on IQR multiplier of 3.

Constituent: Antimony Analysis Run 7/16/2019 9:43 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: Antimony Analysis Run 7/16/2019 9:43 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

 7/17 7/8/17 7/30/17 8/21/17 9/12/17 10/4/17
 Constituent: Antimony Analysis Run 7/16/2019 9:43 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Tukey's Outlier Screening

MW-9D

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Antimony Analysis Run 7/16/2019 9:43 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

n = 9

n = 8

ed by user. Data were square root transformed to achieve

No outliers found. Tukey's method select-

best W statistic (graph

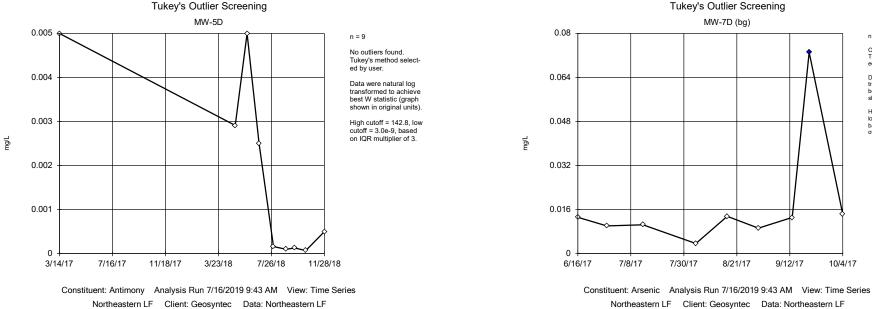
shown in original units)

The results were invalid-

ated, because the lower

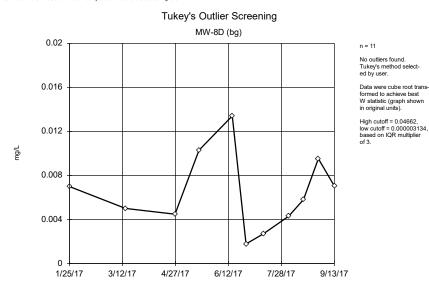
and upper quartiles are equal.

No outliers found. Tukey's method selected by user.

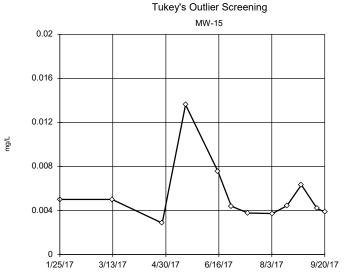

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 42.53, low cutoff = 2.9e-8, based on IQR multiplier of 3.

Constituent: Antimony Analysis Run 7/16/2019 9:43 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Arsenic Analysis Run 7/16/2019 9:43 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

n = 12

n = 9

ed by user.

Outlier is drawn as solid. Tukey's method select-

Data were natural log

transformed to achieve

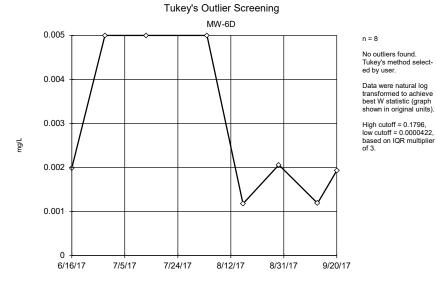
best W statistic (graph

shown in original units)

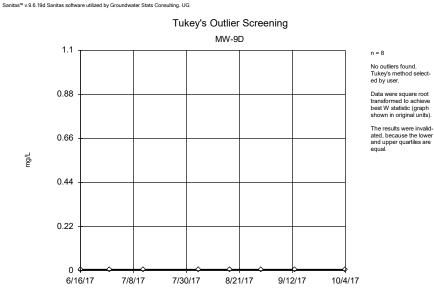
High cutoff = 0.0415, low cutoff = 0.003244,

based on IQR multiplier of 3.

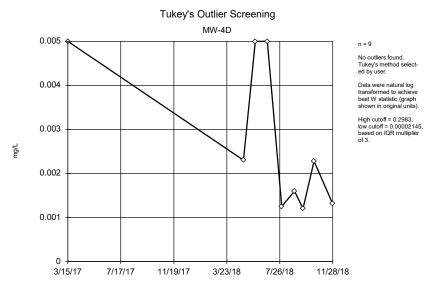
No outliers found. Tukey's method selected by user.


Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.01792, low cutoff = 0.001198, based on IQR multiplier of 3.

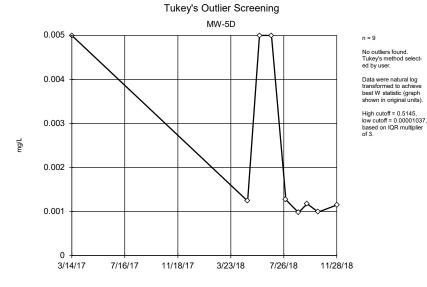

Constituent: Arsenic Analysis Run 7/16/2019 9:43 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Tukey's Outlier Screening MW-3D 0.02 n = 12 No outliers found. Tukey's method selected by user. 0.016 Data were cube root transformed to achieve best W statistic (graph shown in original units). High cutoff = 0.01647, low cutoff = 0.0002137, 0.012 based on IQR multiplier of 3. mg/L 0.008 0.004 Ω 1/25/17 3/13/17 4/30/17 6/16/17 8/3/17 9/20/17


Constituent: Arsenic Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

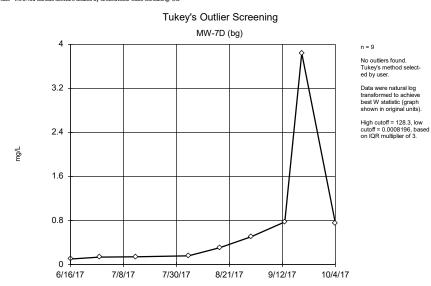
Constituent: Arsenic Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Arsenic Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

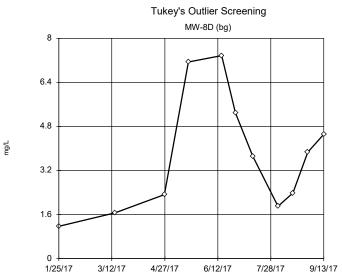

Constituent: Arsenic Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Tukey's Outlier Screening MW-12D 0.007 n = 9 No outliers found. Tukey's method selected by user. 0.0056 Ladder of Powers trans-formations did not improve normality; analysis run on raw data. High cutoff = 0.01316low cutoff = -0.00588, 0.0042 based on IQR multiplier of 3. mg/L 0.0028 0.0014 Ω 3/15/17 7/17/17 11/19/17 3/23/18 7/26/18 11/28/18

Constituent: Arsenic Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Arsenic Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

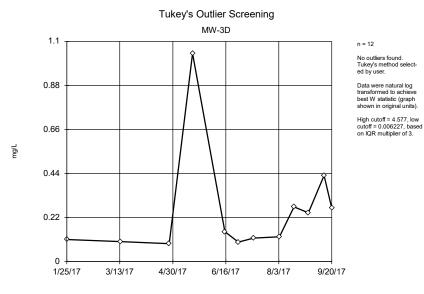
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Barium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

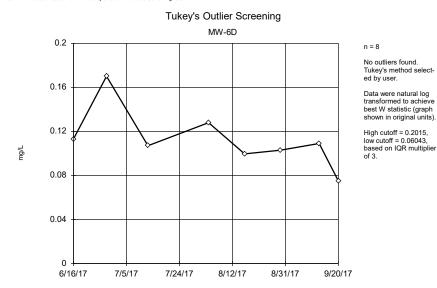
n = 11

No outliers found. Tukey's method selected by user.

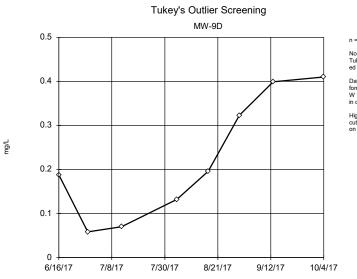
Data were natural log transformed to achieve best W statistic (graph shown in original units).


High cutoff = 114.2, low cutoff = 0.08803, based on IQR multiplier of 3.

Constituent: Barium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Tukey's Outlier Screening MW-15 0.3 n = 12 No outliers found. Tukey's method selected by user. 0.24 Data were natural log transformed to achieve best W statistic (graph shown in original units). High cutoff = 1.215, low cutoff = 0.005402, based 0.18 on IQR multiplier of 3. mg/L 0.12 0.06 Ω 1/25/17 3/13/17 4/30/17 6/16/17 8/3/17 9/20/17

Constituent: Barium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Barium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Barium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

n = 8 No outliers found. Tukey's method selected by user.

Data were cube root transformed to achieve best W statistic (graph shown in original units).

> High cutoff = 3.131, low cutoff = -0.02472, based on IQR multiplier of 3.

Constituent: Barium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Tukey's Outlier Screening

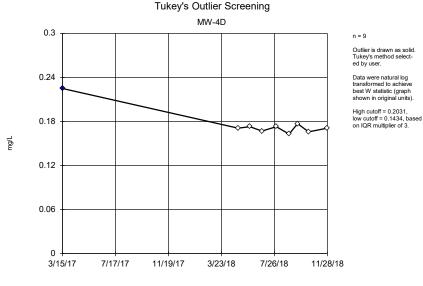
n = 9

of 3.

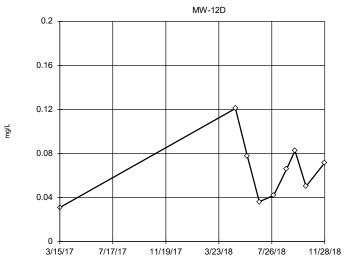
No outliers found.

ed by user.

Tukey's method select-

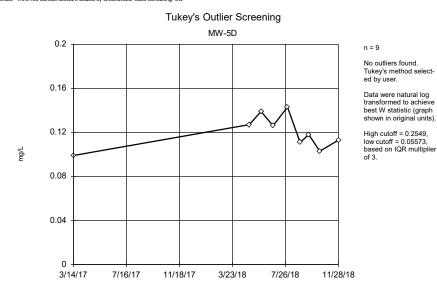

Data were natural log

transformed to achieve

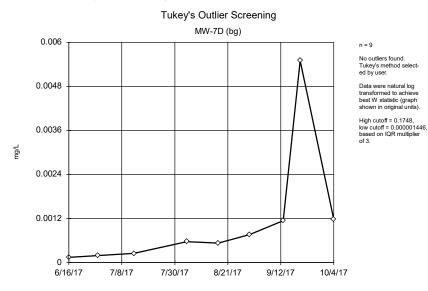

best W statistic (graph shown in original units).

High cutoff = 0.6966.

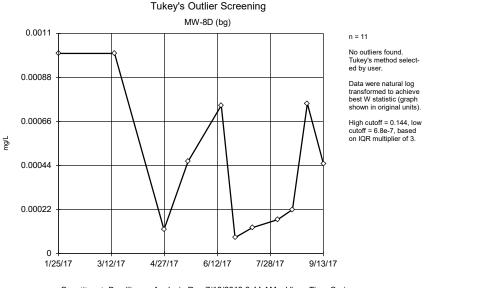
low cutoff = 0.004487, based on IQR multiplier

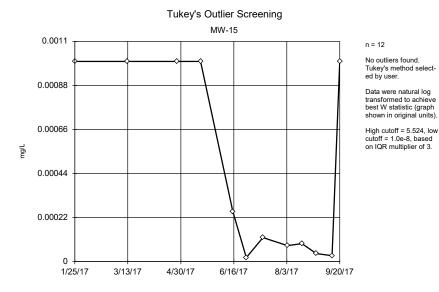


Constituent: Barium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

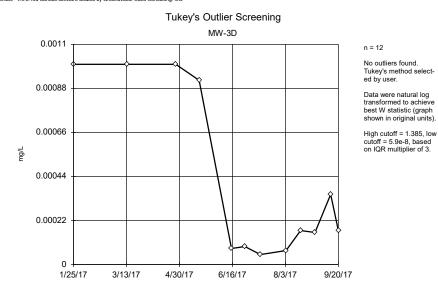


Constituent: Barium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

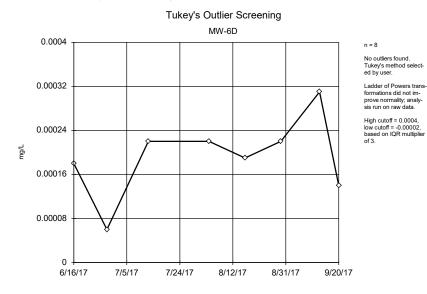

Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: Barium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Beryllium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

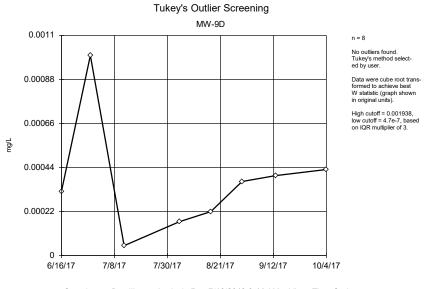


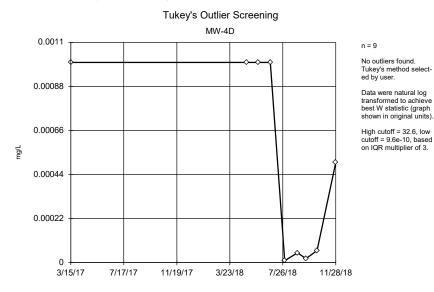
Constituent: Beryllium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Beryllium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

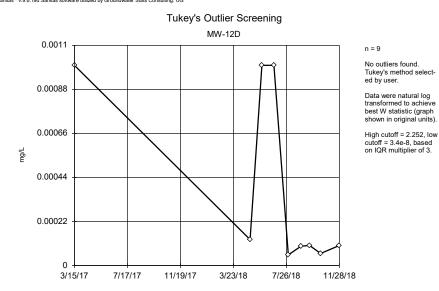
Constituent: Beryllium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF



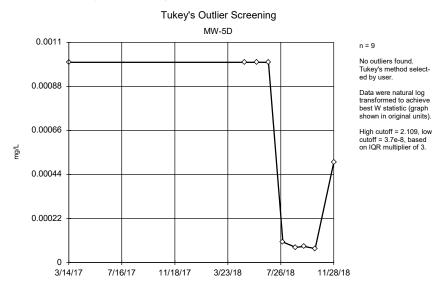

Constituent: Beryllium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

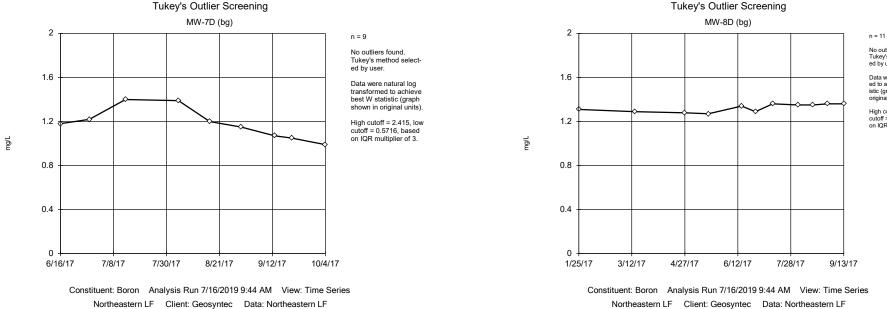
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG



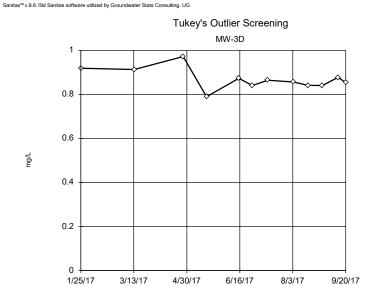
Constituent: Beryllium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF



Constituent: Beryllium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Beryllium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: Beryllium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

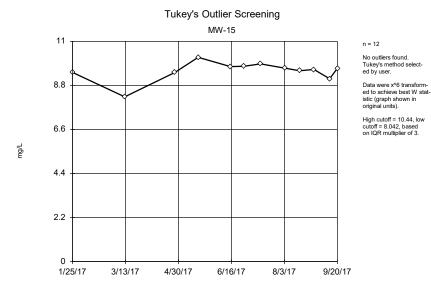
No outliers found. Tukey's method selected by user.

Data were cube transformed to achieve best W statistic (graph shown in original units).

High cutoff = 1.536, low cutoff = 1.013, based on IQR multiplier of 3.

Constituent: Boron Analysis Run 7/16/2019 9:44 AM View: Time Series

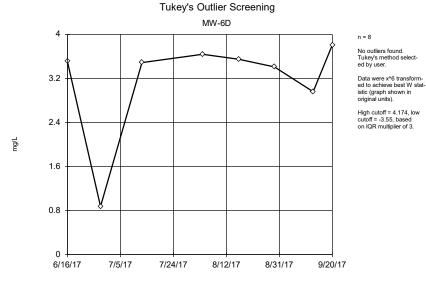
Northeastern LF Client: Geosyntec Data: Northeastern LF


n = 12

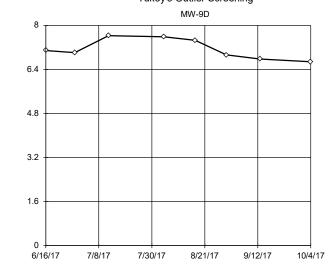
No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 1.08, low cutoff = 0.6965, based on IQR multiplier of 3.

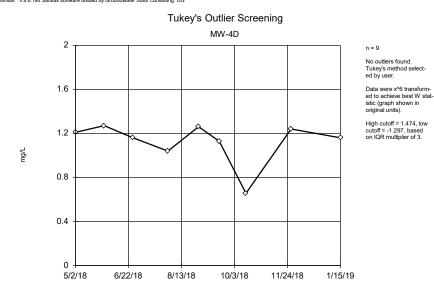

Constituent: Boron Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

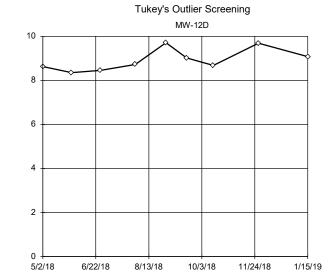

mg/L

mg/L

Tukey's Outlier Screening



Constituent: Boron Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Boron Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Boron Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

n = 9

n = 8

No outliers found. Tukey's method select-

Data were natural log

transformed to achieve

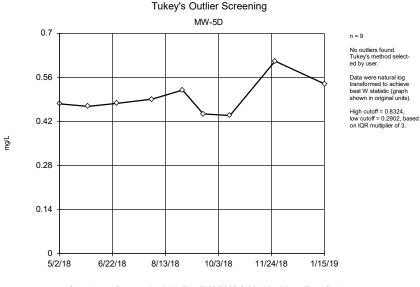
best W statistic (graph shown in original units).

High cutoff = 9.954, low

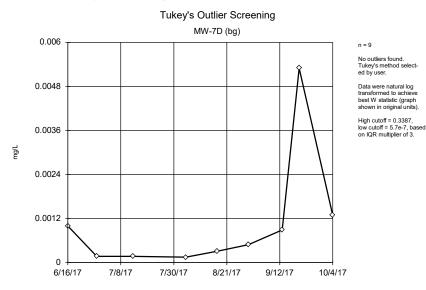
cutoff = 5.181, based on IQR multiplier of 3.

ed by user.

No outliers found. Tukey's method selected by user.

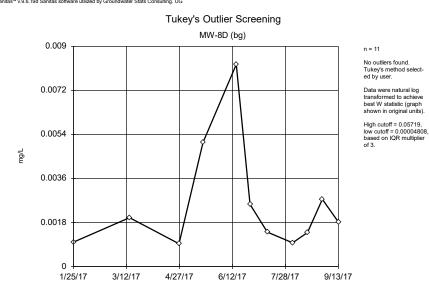

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 12.43, low cutoff = 6.443, based on IQR multiplier of 3.

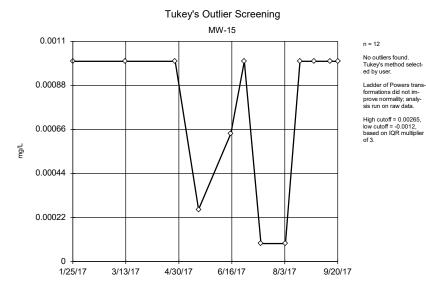

Constituent: Boron Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG



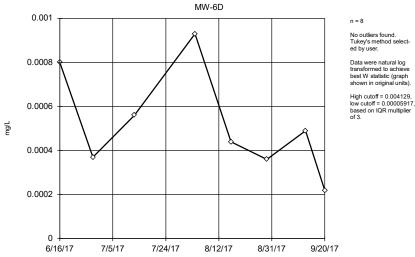
Constituent: Boron Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Cadmium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Cadmium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Cadmium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

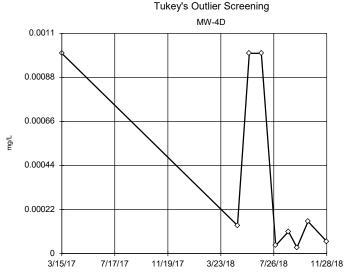

Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

mg/L

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Tukey's Outlier Screening MW-3D 0.0011 0.001 n = 12 No outliers found. Tukey's method selected by user. 0.00088 Data were natural log 0.0008 transformed to achieve best W statistic (graph shown in original units). High cutoff = 0.008997, low cutoff = 0.00001306, 0.00066 0.0006 based on IQR multiplier of 3. mg/L 0.00044 0.0004 0.00022 0.0002 Ω 0 1/25/17 3/13/17 4/30/17 6/16/17 8/3/17 9/20/17 6/16/17 7/5/17

Constituent: Cadmium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF



Tukey's Outlier Screening

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Cadmium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

n = 9

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 8.505, low cutoff = 5.8e-9, based on IQR multiplier of 3.

Constituent: Cadmium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Cadmium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

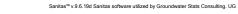
Tukey's Outlier Screening Tukey's Outlier Screening MW-12D 0.0011 0.0011 n = 9 No outliers found. Tukey's method selected by user. 0.00088 Data were natural log 0.00088 transformed to achieve best W statistic (graph shown in original units). High cutoff = 0.05724, low cutoff = 0.000003494, 0.00066 0.00066 based on IQR multiplier of 3. mg/L mg/L 0.00044 0.00044 0.00022 0.00022 Ω 0 3/15/17 7/17/17 11/19/17 3/23/18 7/26/18 11/28/18 3/14/17 7/16/17 11/18/17 Constituent: Cadmium Analysis Run 7/16/2019 9:44 AM View: Time Series Constituent: Cadmium Analysis Run 7/16/2019 9:44 AM View: Time Series

n = 9 No outliers found.

7/26/18

11/28/18

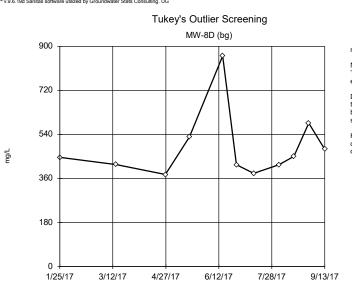
MW-5D


3/23/18

Northeastern LF Client: Geosyntec Data: Northeastern LF

Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).


High cutoff = 1.637, low cutoff = 5.2e-8, based on IQR multiplier of 3.

Tukey's Outlier Screening MW-7D (bg) 1000 n = 9 No outliers found. Tukey's method selected by user. 800 Data were natural log transformed to achieve best W statistic (graph shown in original units). 600 High cutoff = 2610, low cutoff = 12.53, based mg/L on IQR multiplier of 3. 400 200 0 6/16/17 7/8/17 7/30/17 8/21/17 9/12/17 10/4/17

Northeastern LF Client: Geosyntec Data: Northeastern LF

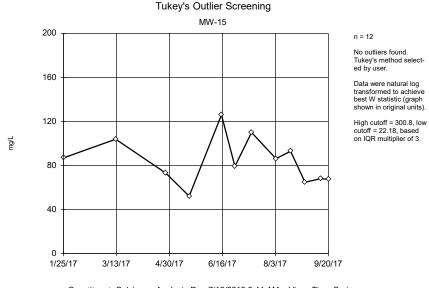
Constituent: Calcium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

n = 11

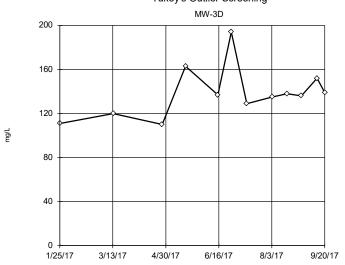
No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 1088, low cutoff = 202.3, based on IQR multiplier of 3.

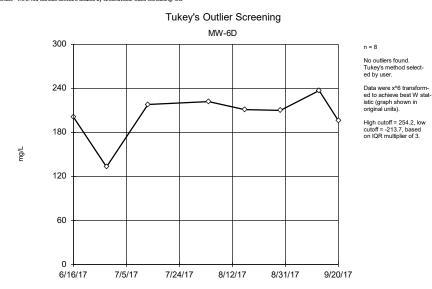

Constituent: Calcium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

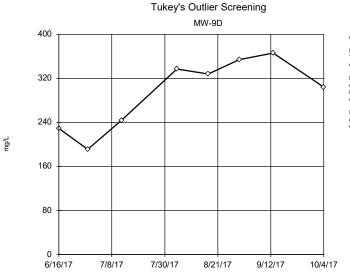

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Tukey's Outlier Screening



Constituent: Calcium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Calcium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Calcium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

n = 8 No outliers found. Tukey's method selected by user.

n = 12

ed by user.

No outliers found.

Tukey's method select-

Data were natural log

transformed to achieve

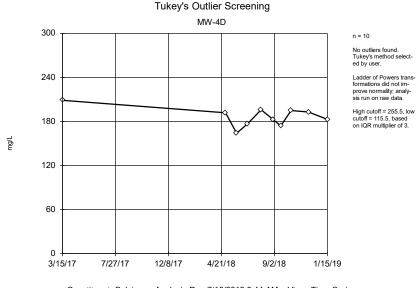
best W statistic (graph

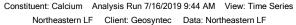
shown in original units).

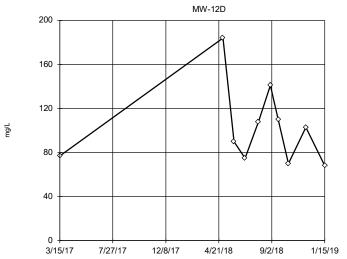
High cutoff = 231.8. low

cutoff = 78.03, based

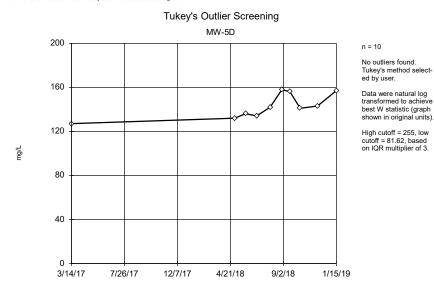
on IQR multiplier of 3.

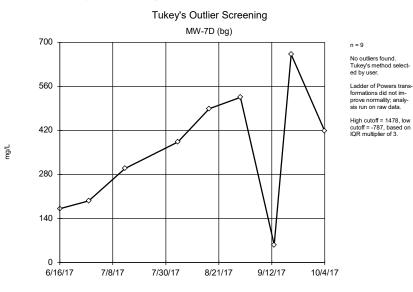

Data were x⁴ transformed to achieve best W statistic (graph shown in original units).


High cutoff = 467.5, low cutoff = -417.3, based on IQR multiplier of 3.


Constituent: Calcium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Tukey's Outlier Screening




Constituent: Calcium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Calcium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

n = 10

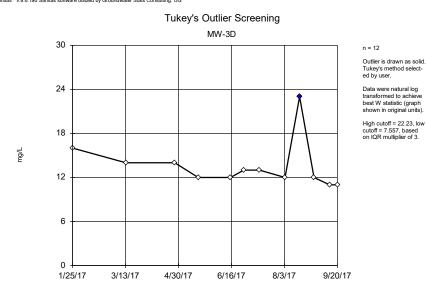
No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

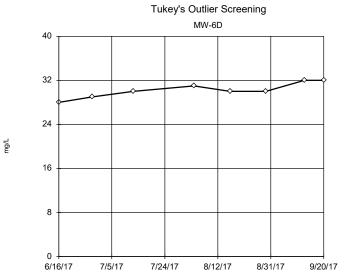
High cutoff = 633.7, low cutoff = 14.23, based on IQR multiplier of 3.

Constituent: Chloride Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Tukey's Outlier Screening MW-8D (bg) 20000 n = 11 No outliers found. Tukey's method selected by user. 16000 Data were natural log transformed to achieve best W statistic (graph shown in original units). High cutoff = 16585, low cutoff = 8306, based on 12000 IQR multiplier of 3. mg/L 8000 4000 Ω 9/13/17 1/25/17 3/12/17 4/27/17 6/12/17 7/28/17

Constituent: Chloride Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Chloride Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

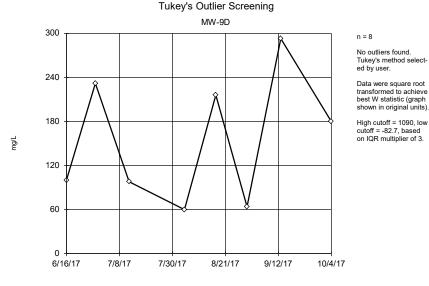
Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Chloride Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

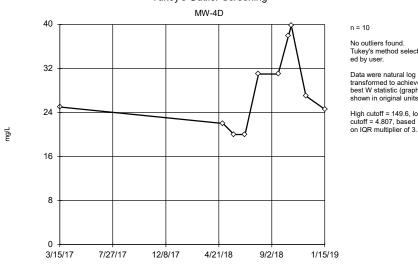
n = 8

No outliers found. Tukey's method selected by user.

Data were square root transformed to achieve best W statistic (graph shown in original units).

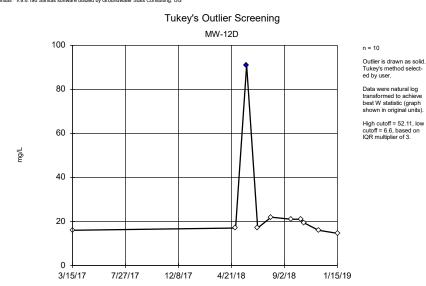

High cutoff = 37.89, low cutoff = 23.89, based on IQR multiplier of 3.

Constituent: Chloride Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

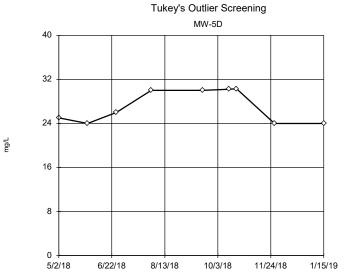

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Tukey's Outlier Screening



Constituent: Chloride Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Chloride Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Chloride Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

n = 9

n = 10

ed by user.

No outliers found.

Tukey's method select-

Data were natural log

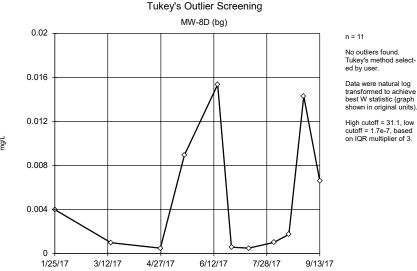
transformed to achieve

best W statistic (graph

shown in original units).

High cutoff = 149.6. low

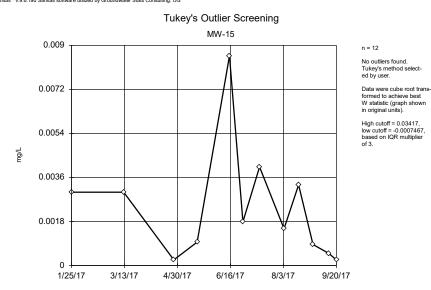
No outliers found. Tukey's method selected by user.


Data were natural log transformed to achieve best W statistic (graph shown in original units).

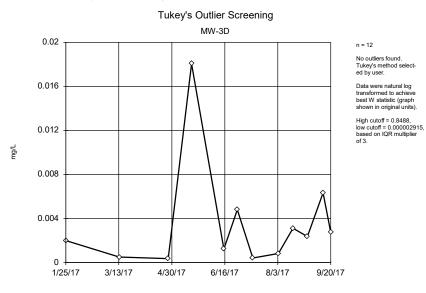
High cutoff = 59.38, low cutoff = 12.17, based on IQR multiplier of 3.

Constituent: Chloride Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Tukey's Outlier Screening MW-7D (bg) 0.2 n = 9 No outliers found. Tukey's method selected by user. 0.16 Data were natural log transformed to achieve best W statistic (graph shown in original units). High cutoff = 3.809, low cutoff = 0.00004793, based 0.12 on IQR multiplier of 3. mg/L mg/L 0.08 0.04 0 3 6/16/17 7/8/17 7/30/17 8/21/17 9/12/17 10/4/17 Constituent: Chromium Analysis Run 7/16/2019 9:44 AM View: Time Series

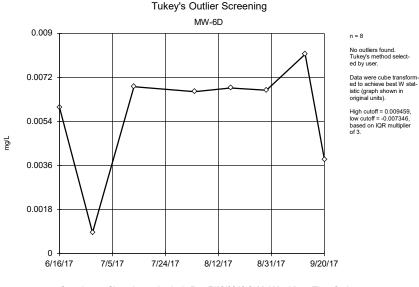

Northeastern LF Client: Geosyntec Data: Northeastern LF

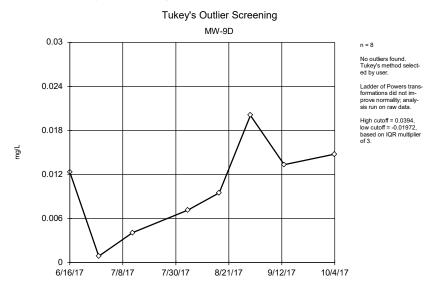
Constituent: Chromium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


shown in original units).

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

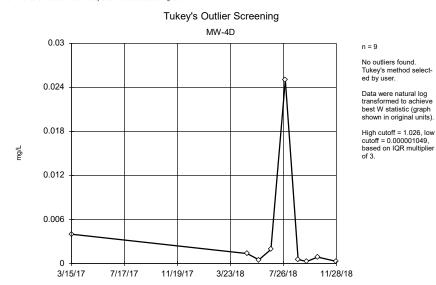
Constituent: Chromium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

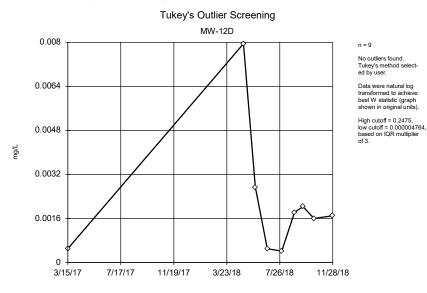

Constituent: Chromium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

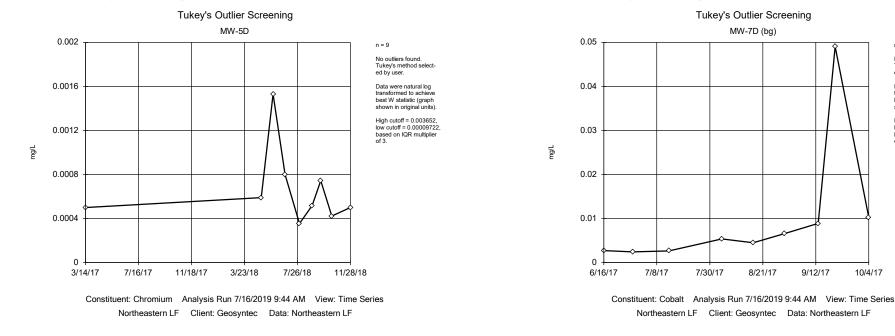


Constituent: Chromium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Chromium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Chromium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

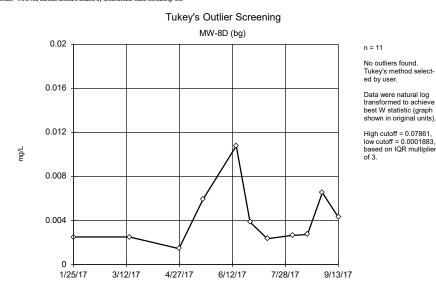


Constituent: Chromium Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

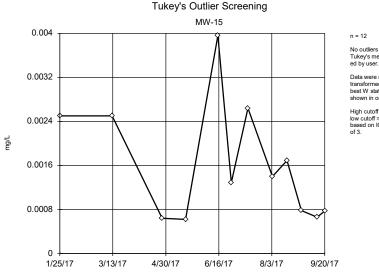
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

No outliers found. Tukey's method selected by user.


n = 9

10/4/17

Data were natural log transformed to achieve best W statistic (graph shown in original units)


High cutoff = 0.4239, low cutoff = 0.00006106, based on IQR multiplier of 3.

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

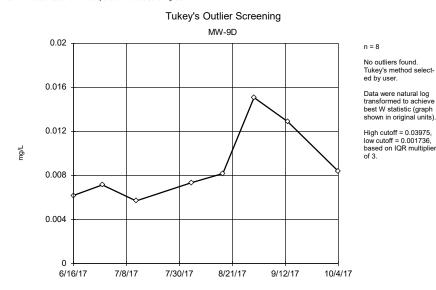
Constituent: Cobalt Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

n = 12 No outliers found. Tukey's method select-

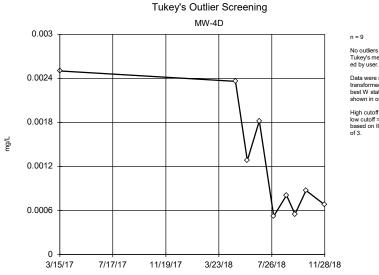
Data were natural log transformed to achieve best W statistic (graph shown in original units)

High cutoff = 0.1078, low cutoff = 0.00001653, based on IQR multiplier


Constituent: Cobalt Analysis Run 7/16/2019 9:44 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Tukey's Outlier Screening Tukey's Outlier Screening MW-3D MW-6D 0.006 0.004 n = 12 n = 8 No outliers found. Tukey's method select-No outliers found. Tukey's method selected by user. ed by user. 0.0048 0.0032 Data were x^4 transform-Data were natural log ed to achieve best W stattransformed to achieve istic (graph shown in best W statistic (graph original units). shown in original units). High cutoff = 0.004949, low cutoff = -0.004334, 0.0036 0.0024 High cutoff = 0.02681, based on IQR multiplier of 3. low cutoff = 0.0001151, based on IQR multiplier mg/L mg/L of 3. 0.0024 0.0016 0.0012 0.0008 Ω 0 9/20/17 1/25/17 3/13/17 4/30/17 6/16/17 8/3/17 9/20/17 6/16/17 7/5/17 7/24/17 8/12/17 8/31/17 Constituent: Cobalt Analysis Run 7/16/2019 9:45 AM View: Time Series Constituent: Cobalt Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Cobalt Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

No outliers found. Tukey's method select-

Data were natural log

transformed to achieve best W statistic (graph shown in original units)

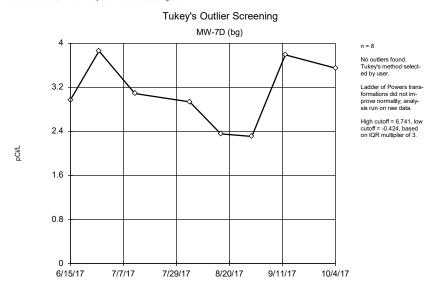
High cutoff = 0.08098, low cutoff = 0.00001563, based on IQR multiplier

Constituent: Cobalt Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

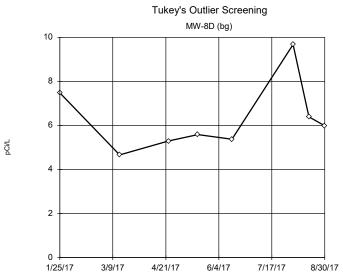
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Tukey's Outlier Screening Tukey's Outlier Screening MW-12D MW-5D 0.004 0.003 n = 9 No outliers found. Tukey's method selected by user. 0.0032 Data were cube root trans-0.0024 formed to achieve best W statistic (graph shown in original units). High cutoff = 0.01551, low cutoff = -0.00001242, 0.0024 0.0018 based on IQR multiplier of 3. mg/L mg/L 0.0016 0.0012 0.0008 0.0006 Ω 0 3/15/17 7/17/17 11/19/17 3/23/18 7/26/18 11/28/18 3/14/17 7/16/17 11/18/17 3/23/18 7/26/18 Constituent: Cobalt Analysis Run 7/16/2019 9:45 AM View: Time Series Constituent: Cobalt Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Northeastern LF Client: Geosyntec Data: Northeastern LF


No outliers found. Tukey's method selected by user.

n = 9

Data were natural log transformed to achieve best W statistic (graph shown in original units)

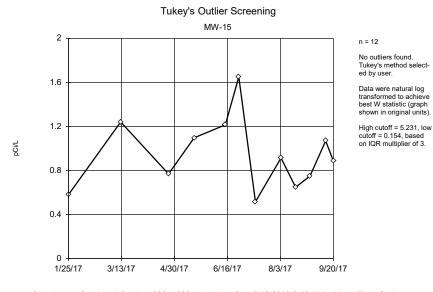

High cutoff = 0.0736, low cutoff = 0.000005177, based on IQR multiplier of 3.

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

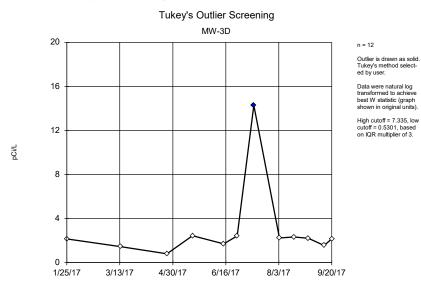
Constituent: Combined Radium 226 + 228 Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

n = 8

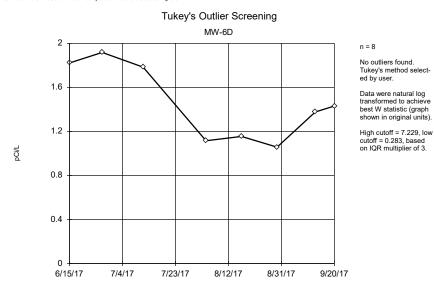

11/28/18

No outliers found. Tukey's method selected by user.

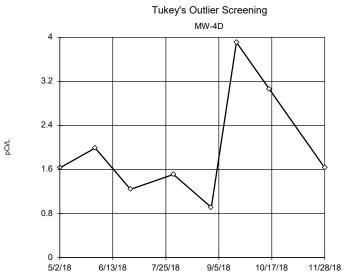

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 15.09, low cutoff = 2.442, based on IQR multiplier of 3.

Constituent: Combined Radium 226 + 228 Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF



Constituent: Combined Radium 226 + 228 Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Combined Radium 226 + 228 Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

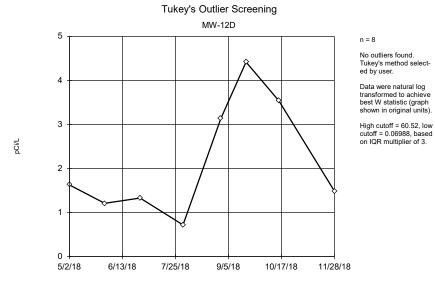
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Combined Radium 226 + 228 Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

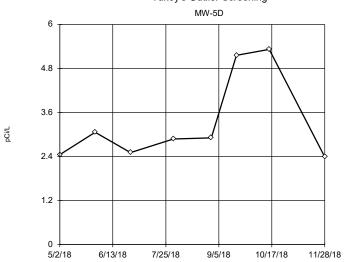
n = 8

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

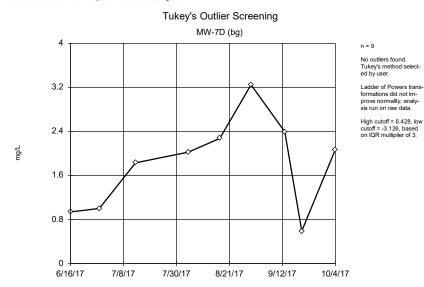

High cutoff = 14.47, low cutoff = 0.2333, based on IQR multiplier of 3.

Constituent: Combined Radium 226 + 228 Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

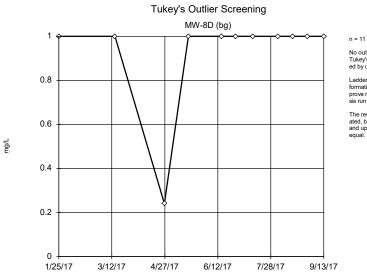

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Tukey's Outlier Screening



Constituent: Combined Radium 226 + 228 Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Combined Radium 226 + 228 Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Fluoride Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

n = 8

No outliers found.

ed by user.

Tukey's method select-

Data were natural log

transformed to achieve

best W statistic (graph

shown in original units).

High cutoff = 16.35, low

cutoff = 0.6027, based

on IQR multiplier of 3.

No outliers found. Tukey's method selected by user.

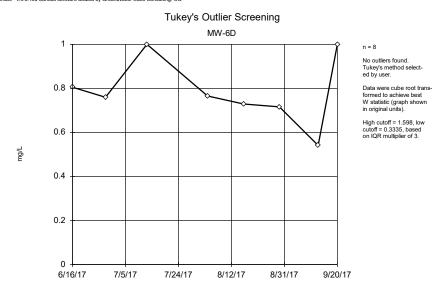
Ladder of Powers transformations did not improve normality; analysis run on raw data.

The results were invalidated, because the lower and upper quartiles are equal.

Constituent: Fluoride Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

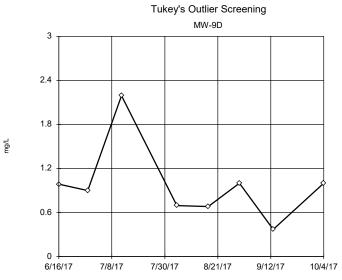
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Tukey's Outlier Screening Tukey's Outlier Screening MW-15 MW-3D 3 n = 12 No outliers found. Tukey's method selected by user. 2.4 Data were x^6 transform-0.8 ed to achieve best W statistic (graph shown in original units). High cutoff = 2.368, low cutoff = -2.101, based 1.8 0.6 on IQR multiplier of 3. mg/L mg/L 1.2 0.4 0.6 0.2 Ω Ω 3/13/17 1/25/17 3/13/17 4/30/17 6/16/17 8/3/17 9/20/17 1/25/17 4/30/17 6/16/17 Constituent: Fluoride Analysis Run 7/16/2019 9:45 AM View: Time Series Constituent: Fluoride Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Northeastern LF Client: Geosyntec Data: Northeastern LF


No outliers found. Tukey's method selected by user.

n = 12

Data were natural log transformed to achieve best W statistic (graph shown in original units).


High cutoff = 2.238, low cutoff = 0.3416, based on IQR multiplier of 3.

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Fluoride Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

n = 8

9/20/17

8/3/17

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 3.073, low cutoff = 0.2238, based on IQR multiplier of 3.

Constituent: Fluoride Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

1

0.8

0.6

0.4

0.2

Ω

3/15/17

7/27/17

12/8/17

mg/L

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Tukey's Outlier Screening Tukey's Outlier Screening MW-4D MW-12D 3 n = 10 No outliers found. Tukey's method selected by user. 2.4 Data were natural log transformed to achieve best W statistic (graph shown in original units). 1.8 High cutoff = 16.38. low cutoff = 0.02403, based on IQR multiplier of 3. mg/L 1.2 0.6 0

Constituent: Fluoride Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

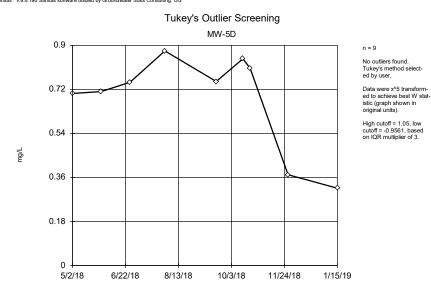
4/21/18

9/2/18

1/15/19

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 7.73, low cutoff = 0.7351, based on IQR multiplier of 3.

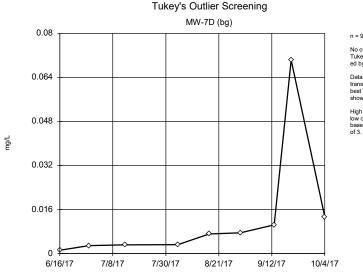

Constituent: Fluoride Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

4/21/18

9/2/18

1/15/19

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

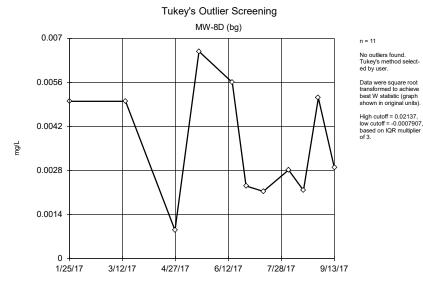


Constituent: Fluoride Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

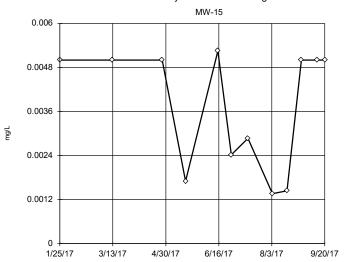
3/15/17

7/27/17

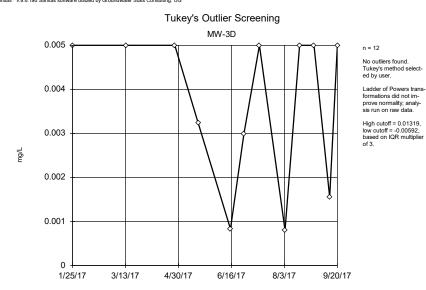
12/8/17


n = 9 No outliers found. Tukey's method selected by user.

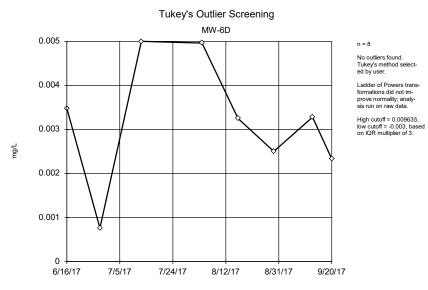
Data were natural log transformed to achieve best W statistic (graph shown in original units).


High cutoff = 0.6993, low cutoff = 0.00005122, based on IQR multiplier of 3

Constituent: Lead Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF



Constituent: Lead Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Lead Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

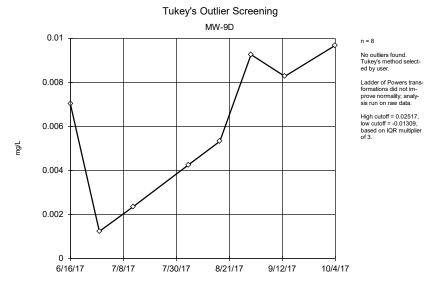
Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Lead Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

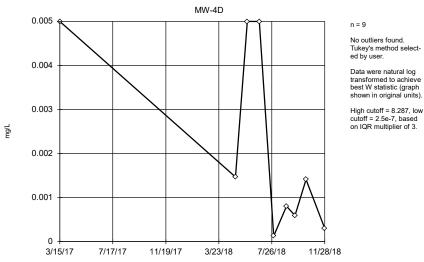
ed by user. Data were natural log transformed to achieve best W statistic (graph

No outliers found. Tukey's method select-

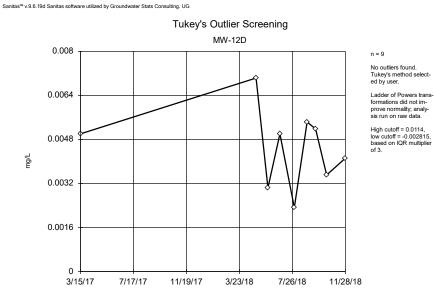
n = 12


of 3.

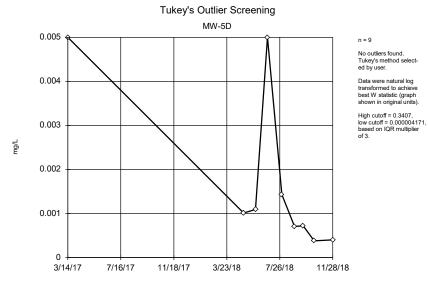
shown in original units). High cutoff = 0.0749, low cutoff = 0.0001354, based on IQR multiplier


Constituent: Lead Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

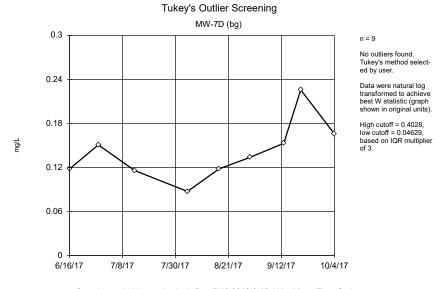
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

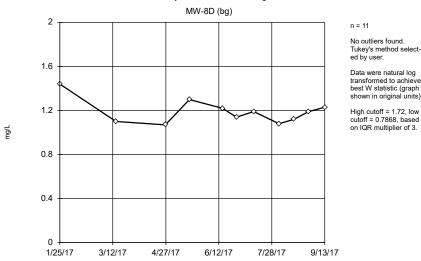
Constituent: Lead Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF



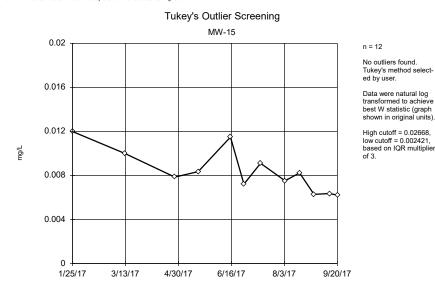
Constituent: Lead Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF



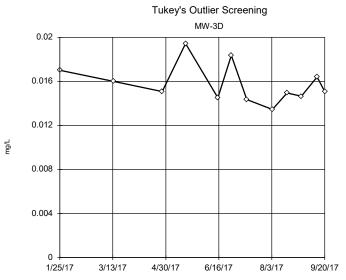
Constituent: Lead Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Lead Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF



Constituent: Lithium Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Lithium Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Lithium Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

n = 12

n = 11

No outliers found.

ed by user.

Tukey's method select-

Data were natural log

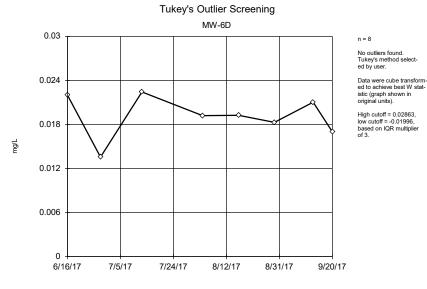
transformed to achieve

best W statistic (graph

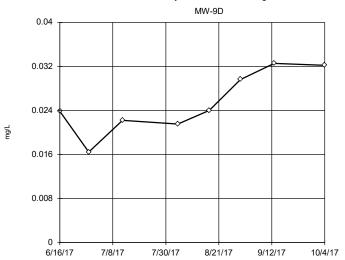
shown in original units).

High cutoff = 1.72. low

No outliers found. Tukey's method selected by user.


Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.02505, low cutoff = 0.009716, based on IQR multiplier of 3.


Constituent: Lithium Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

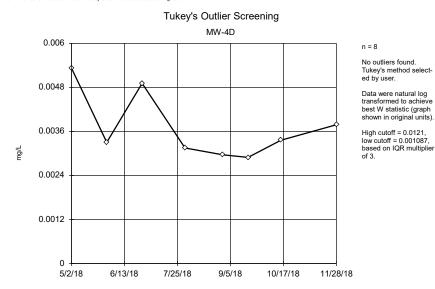
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

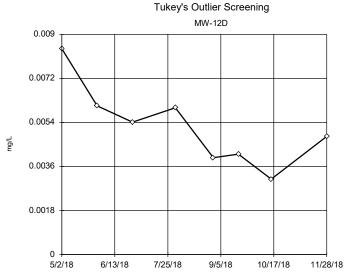
Constituent: Lithium Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Tukey's method selected by user. Data were square root transformed to achieve

No outliers found.


n = 8

best W statistic (graph shown in original units). High cutoff = 0.06738.


low cutoff = 0.004117, based on IQR multiplier of 3.

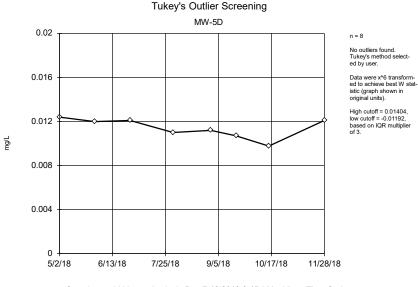
Constituent: Lithium Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

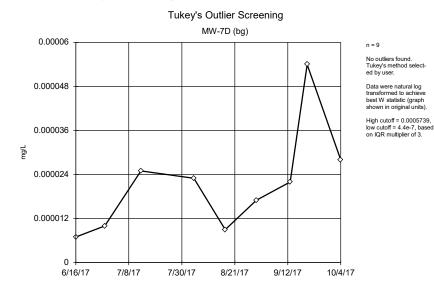
Constituent: Lithium Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

n = 8

No outliers found. Tukey's method selected by user.

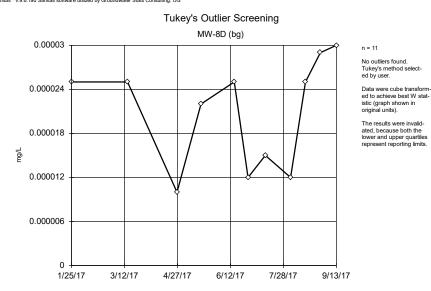

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.02034, low cutoff = 0.001196, based on IQR multiplier of 3.

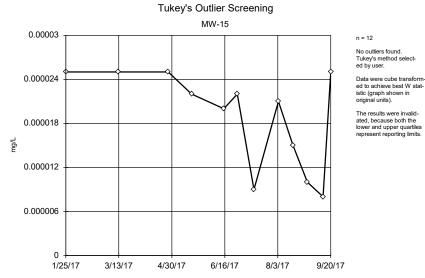

Constituent: Lithium Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: Lithium Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Mercury Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Mercury Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Mercury Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

0.00003

0.000024

0.000018

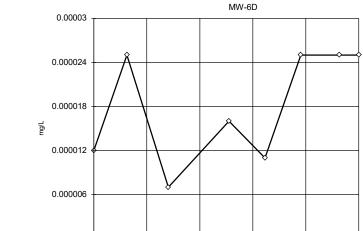
0.000012

0.000006

Ω

1/25/17

3/13/17


4/30/17

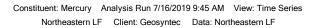
mg/L

Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

MW-3D n = 12 No outliers found. Tukey's method select-ed by user. Data were natural log transformed to achieve best W statistic (graph statistic (gra

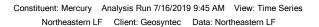
9/20/17

7/24/17


No outliers found. Tukey's method selected by user.

n = 8

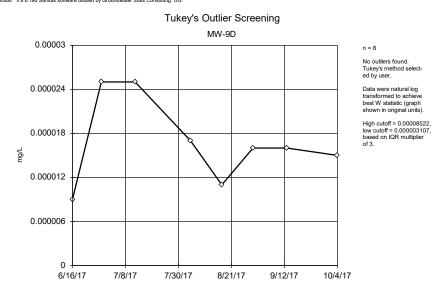
9/20/17


Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.0002576, low cutoff = 0.000001115, based on IQR multiplier of 3.

6/16/17

8/3/17

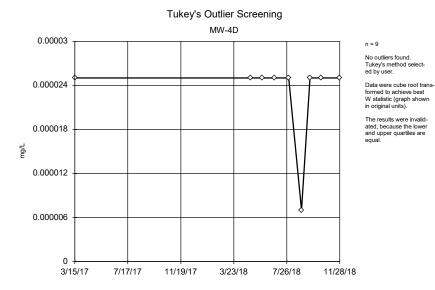


8/12/17

8/31/17

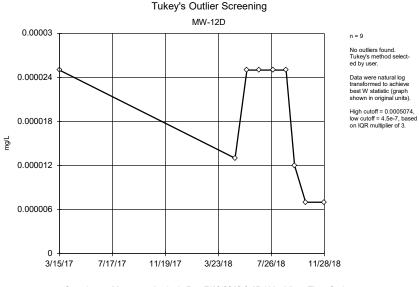
Tukey's Outlier Screening

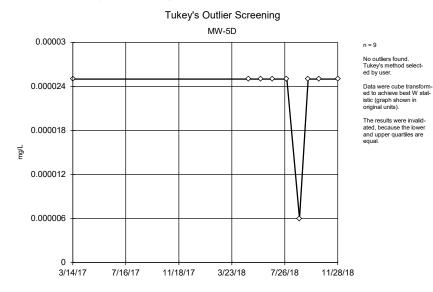
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: Mercury Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

0

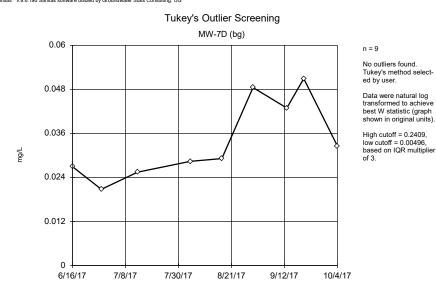
6/16/17


7/5/17

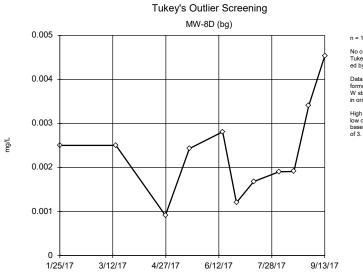

Constituent: Mercury Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG



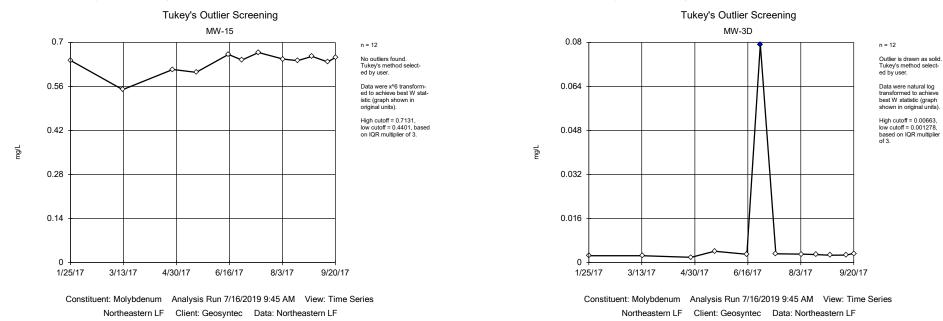
Constituent: Mercury Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

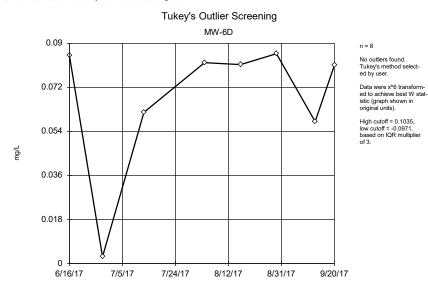

Constituent: Mercury Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Molybdenum Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

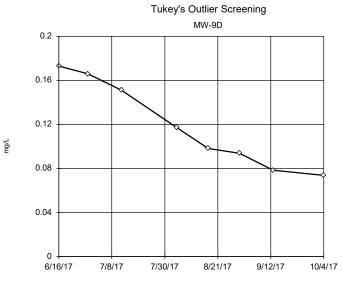
n = 11 No outliers found. Tukey's method selected by user.


Data were cube root transformed to achieve best W statistic (graph shown in original units).


High cutoff = 0.008975, low cutoff = 0.000142, based on IQR multiplier of 3

Constituent: Molybdenum Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

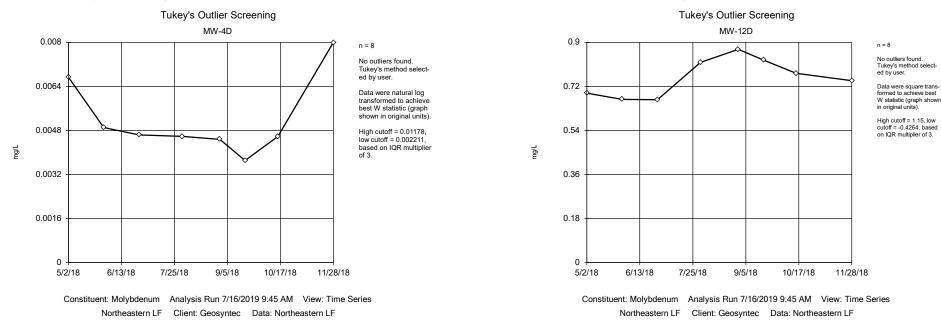
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

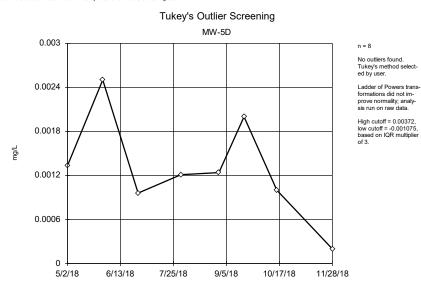

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Molybdenum Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

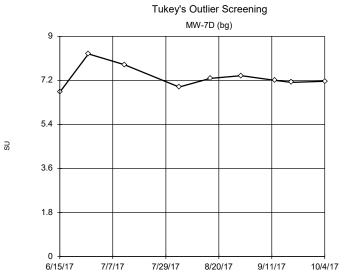
n = 8

No outliers found. Tukey's method selected by user.


Data were natural log transformed to achieve best W statistic (graph shown in original units).


High cutoff = 0.9959, low cutoff = 0.01364, based on IQR multiplier of 3.

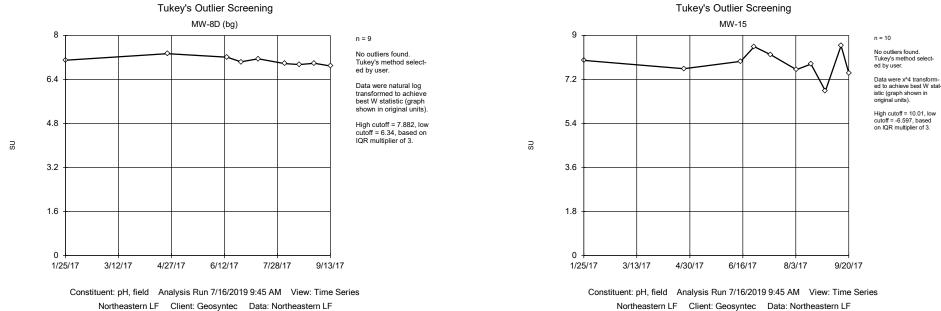
Constituent: Molybdenum Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

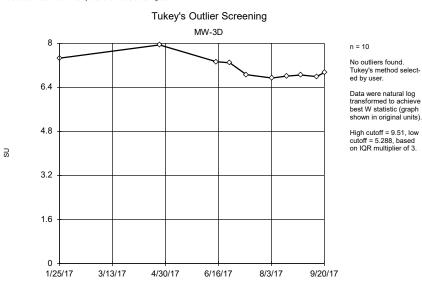
Constituent: Molybdenum Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

n = 9

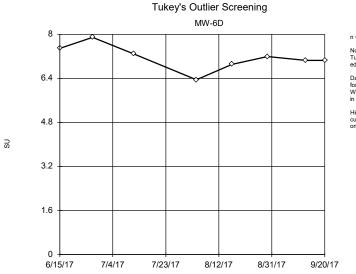

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 9.685, low cutoff = 5.521, based on IQR multiplier of 3.

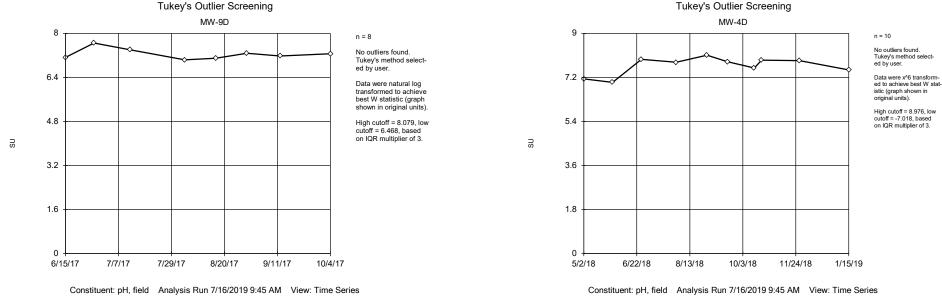

Constituent: pH, field Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: pH, field Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


n = 8 No outliers found. Tukey's method selected by user.

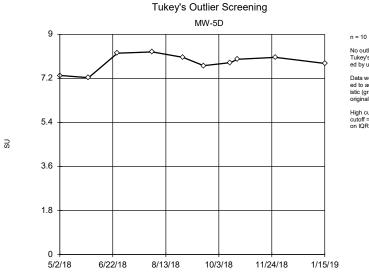
Data were square transformed to achieve best W statistic (graph shown in original units).

> High cutoff = 8.504, low cutoff = 5.571, based on IQR multiplier of 3.

Constituent: pH, field Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Northeastern LF Client: Geosyntec Data: Northeastern LF


Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

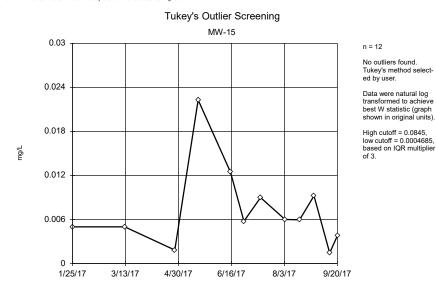
Constituent: pH, field Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

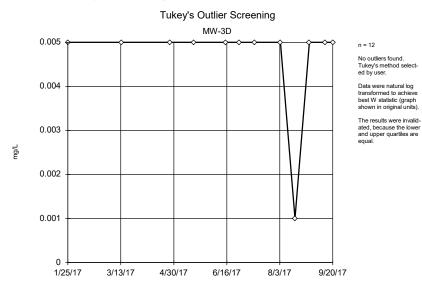
No outliers found. Tukey's method selected by user. Data were x^6 transform-

ed to achieve best W statistic (graph shown in original units).

High cutoff = 9.238, low cutoff = -7.259, based on IQR multiplier of 3.

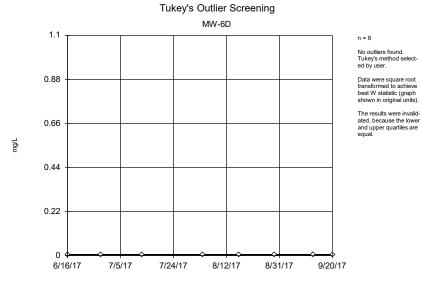

Constituent: pH, field Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

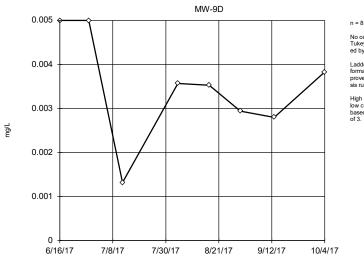
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Tukey's Outlier Screening Tukey's Outlier Screening MW-7D (bg) MW-8D (bg) 0.02 0.007 n = 9 n = 11 No outliers found. Tukey's method select-No outliers found. Tukey's method selected by user. ed by user. 0.016 0.0056 Data were square trans-Data were natural log formed to achieve best transformed to achieve W statistic (graph shown best W statistic (graph in original units). shown in original units). High cutoff = 0.01013low cutoff = -0.007276, 0.012 0.0042 High cutoff = 7.99. low based on IQR multiplier of 3. cutoff = 0.000005037. based on IQR multiplier mg/L mg/L of 3. 0.008 0.0028 0.004 0.0014 Ω Ω 9/13/17 6/16/17 7/8/17 7/30/17 8/21/17 9/12/17 10/4/17 1/25/17 3/12/17 4/27/17 6/12/17 7/28/17 Constituent: Selenium Analysis Run 7/16/2019 9:45 AM View: Time Series Constituent: Selenium Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Northeastern LF Client: Geosyntec Data: Northeastern LF

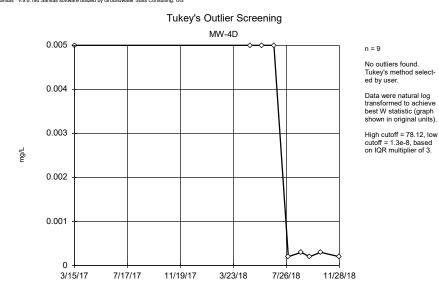
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: Selenium Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

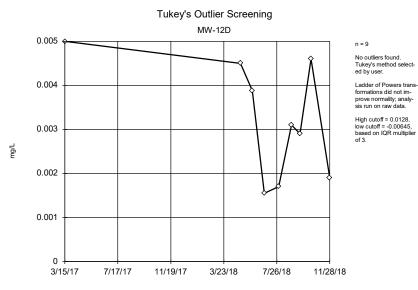

Constituent: Selenium Analysis Run 7/16/2019 9:45 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG



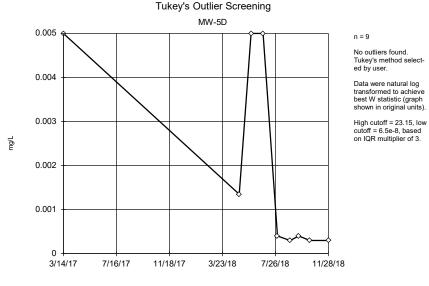
Constituent: Selenium Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Selenium Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

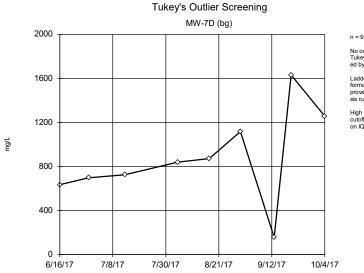
Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Selenium Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

No outliers found. Tukey's method selected by user.

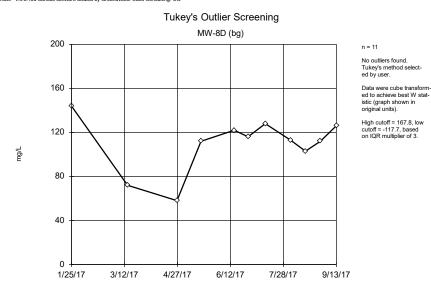

Ladder of Powers transformations did not improve normality; analysis run on raw data.

High cutoff = 0.00905, low cutoff = -0.001765, based on IQR multiplier of 3.

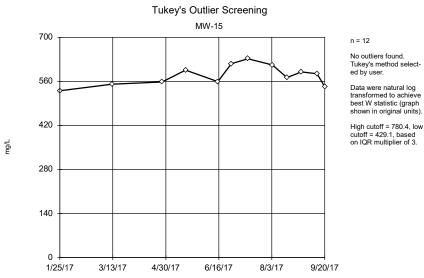

Constituent: Selenium Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: Selenium Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Sulfate Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Sulfate Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

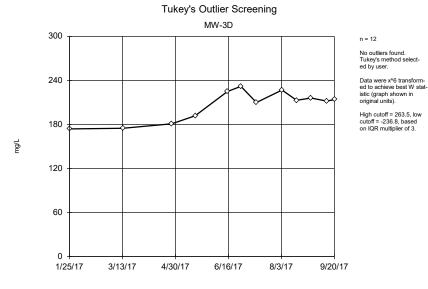
Constituent: Sulfate Analysis Run 7/16/2019 9:46 AM View: Time Series

No outliers found. Tukey's method selected by user.

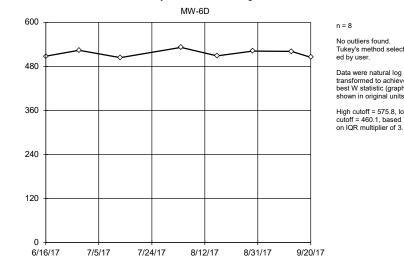
Ladder of Powers trans-formations did not improve normality; analysis run on raw data.

High cutoff = 2751, low cutoff = -896.5, based on IQR multiplier of 3.

shown in original units).

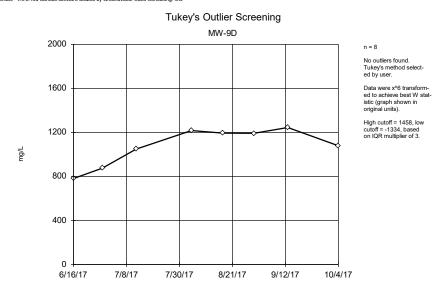

Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

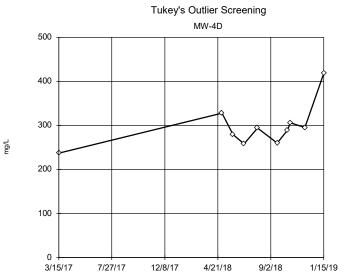

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

mg/L

Tukey's Outlier Screening



Constituent: Sulfate Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Sulfate Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Sulfate Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

n = 10

n = 8

No outliers found. Tukey's method select-

Data were natural log

transformed to achieve

best W statistic (graph shown in original units).

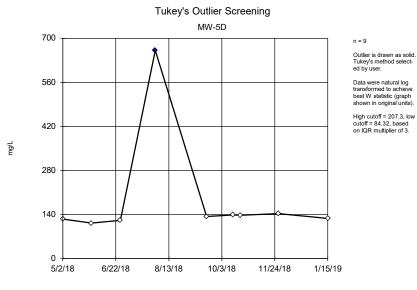
High cutoff = 575.8. low

ed by user.

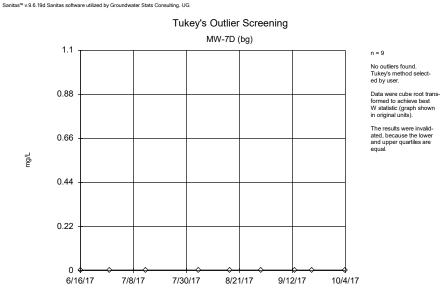
No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

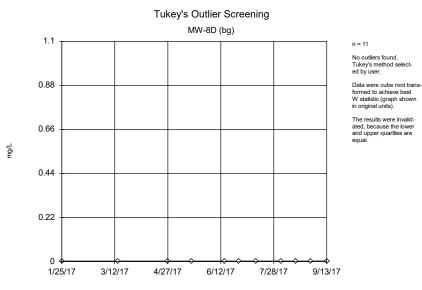
High cutoff = 579.8, low cutoff = 141.5, based on IQR multiplier of 3.


Constituent: Sulfate Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

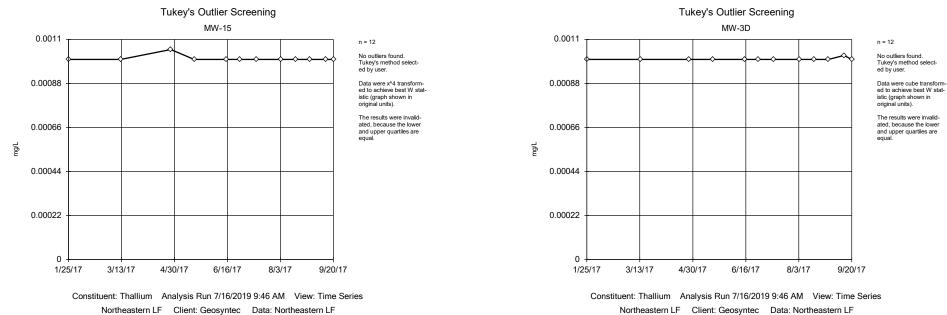
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Tukey's Outlier Screening MW-12D 700 n = 10 No outliers found. Tukey's method selected by user. 560 Data were square transformed to achieve best W statistic (graph shown in original units). High cutoff = 786.3, low cutoff = 121, based on 420 IQR multiplier of 3. mg/L 280 140 Ω 3/15/17 7/27/17 12/8/17 4/21/18 9/2/18 1/15/19


Constituent: Sulfate Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Sulfate Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF



Constituent: Thallium Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Thallium Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

n = 8

ed by user.

No outliers found. Tukey's method select-

Data were cube root trans-

formed to achieve best

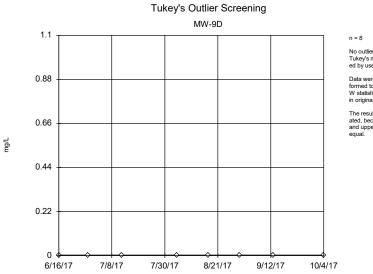
The results were invalid-

ated, because the lower

and upper quartiles are

in original units).

equal.


W statistic (graph shown

Northeastern LF Client: Geosyntec Data: Northeastern LF

Tukey's Outlier Screening

MW-6D

Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Thallium Analysis Run 7/16/2019 9:46 AM View: Time Series

Northeastern LF Client: Geosyntec Data: Northeastern LF

No outliers found. Tukey's method selected by user.

Data were cube root transformed to achieve best W statistic (graph shown in original units).

The results were invalidated, because the lower and upper quartiles are

Constituent: Thallium Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

8/12/17

8/31/17

9/20/17

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

1.1

0.88

0.66

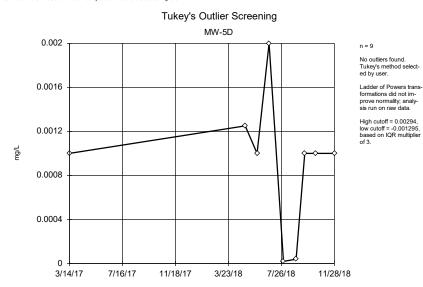
0.44

0.22

0

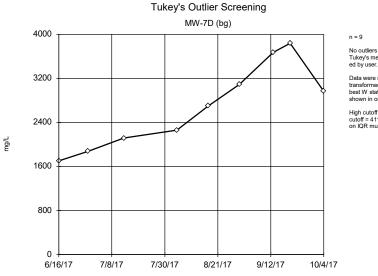
6/16/17

7/5/17


7/24/17

mg/L

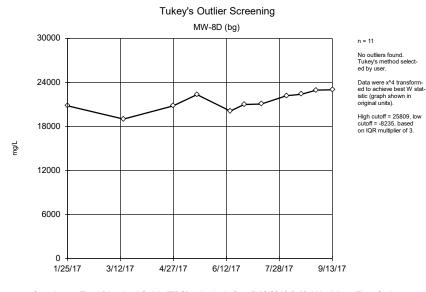
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

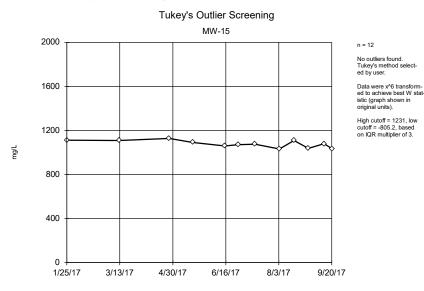
Constituent: Thallium Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

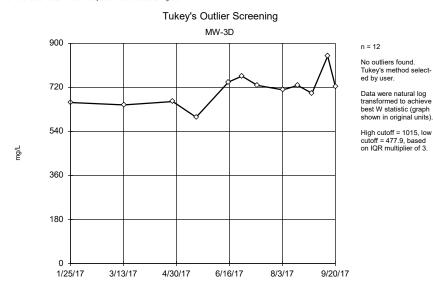
No outliers found. Tukey's method select-


Data were natural log transformed to achieve best W statistic (graph shown in original units)

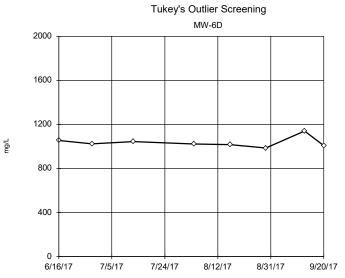
High cutoff = 16304, low cutoff = 411.4, based on IQR multiplier of 3.


Constituent: Total Dissolved Solids [TDS] Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: Total Dissolved Solids [TDS] Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF



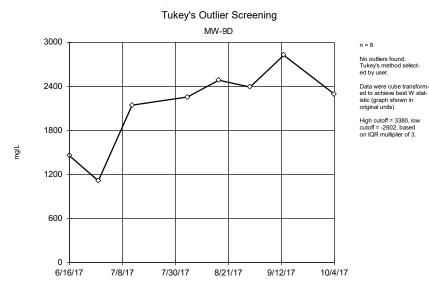
Constituent: Total Dissolved Solids [TDS] Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Total Dissolved Solids [TDS] Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

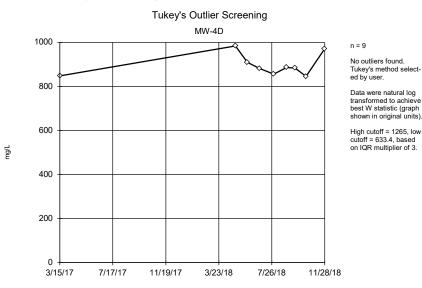
No outliers found. Tukey's method se

n = 8

Tukey's method selected by user.

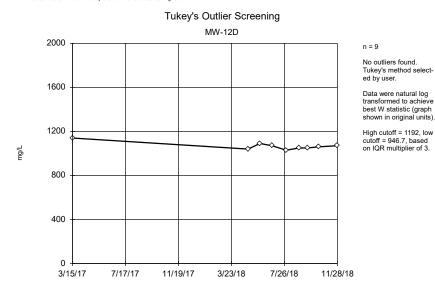

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 1168, low cutoff = 908.7, based on IQR multiplier of 3.

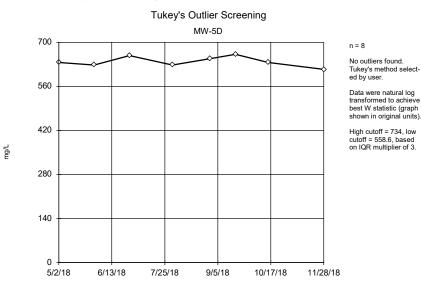

Constituent: Total Dissolved Solids [TDS] Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: Total Dissolved Solids [TDS] Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Total Dissolved Solids [TDS] Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Total Dissolved Solids [TDS] Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Total Dissolved Solids [TDS] Analysis Run 7/16/2019 9:46 AM View: Time Series Northeastern LF Client: Geosyntec Data: Northeastern LF

Trend Tests Summary Table - Significant Results

Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 1/2/2018, 10:28 PM

Constituent	Well	Slope	Calc.	Critical	Sig.	N	0/ ND	s Normality	Xform	Alpha	Method
Constituent	vven	Siope	Calc.	Gnical	<u>sig.</u>	IN	70IND	s <u>Normailly</u>		Alpha	INIELIIOU
Barium (mg/L)	MW-7D (bg)	2.758	32	25	Yes	9	0	n/a	n/a	0.01	NP
Barium (mg/L)	MW-9D	1.295	22	21	Yes	8	0	n/a	n/a	0.01	NP
Beryllium (mg/L)	MW-7D (bg)	0.003984	32	25	Yes	9	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-7D (bg)	675.4	30	25	Yes	9	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-15	-26.93	-41	-34	Yes	11	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-3D	-6.518	-38	-34	Yes	11	0	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-7D (bg)	0.1097	30	25	Yes	9	0	n/a	n/a	0.01	NP
Cobalt (mg/L)	MW-7D (bg)	0.02943	28	25	Yes	9	0	n/a	n/a	0.01	NP
Lead (mg/L)	MW-7D (bg)	0.04368	34	25	Yes	9	0	n/a	n/a	0.01	NP
Lithium (mg/L)	MW-15	-0.007242	-42	-38	Yes	12	0	n/a	n/a	0.01	NP
Molybdenum (mg/L)	MW-9D	-0.3866	-28	-21	Yes	8	0	n/a	n/a	0.01	NP
Total Dissolve Solids [TDS] (mg/L)	MW-7D (bg)	6905	30	25	Yes	9	0	n/a	n/a	0.01	NP
Total Dissolve Solids [TDS] (mg/L)	MW-8D (bg)	6248	39	34	Yes	11	0	n/a	n/a	0.01	NP

Trend Tests Summary Table - All Results

Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 1/2/2018, 10:28 PM

	Northeastern LF Client. Geosyn	lec Dala. No	rineasiern	ILF FIIIled 1/2	2/2010	, 10.20	PIVI				
Constituent	Well	Slope	Calc.	Critical	<u>Sig.</u>	N	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	MW-7D (bg)	0	-4	-25	No	9	44.44	n/a	n/a	0.01	NP
Antimony (mg/L)	MW-8D (bg)	-0.0008848	-4	-34	No	11	9.091	n/a	n/a	0.01	NP
Antimony (mg/L)	MW-15	0	3	38	No	12	58.33	n/a	n/a	0.01	NP
Antimony (mg/L)	MW-3D	0	-7	-38	No	12	83.33	n/a	n/a	0.01	NP
Antimony (mg/L)	MW-6D	0	-6	-21	No	8	62.5	n/a	n/a	0.01	NP
Antimony (mg/L)	MW-9D	0	0	21	No	8	100	n/a	n/a	0.01	NP
Arsenic (mg/L)	MW-7D (bg)	0.01562	12	25	No	9	0	n/a	n/a	0.01	NP
Arsenic (mg/L)	MW-8D (bg)	0.001884	3	34	No	11	9.091	n/a	n/a	0.01	NP
Arsenic (mg/L)	MW-15	-0.001524	-13	-38	No	12	16.67	n/a	n/a	0.01	NP
Arsenic (mg/L)	MW-3D	-0.001668	-21	-38	No	12	50	n/a	n/a	0.01	NP
Arsenic (mg/L)	MW-6D	-0.004025	-9	-21	No	8	37.5	n/a	n/a	0.01	NP
Arsenic (mg/L)	MW-9D	0	0	21	No	8	100	n/a	n/a	0.01	NP
Barium (mg/L)	MW-7D (bg)	2.758	32	25	Yes	9	0	n/a	n/a	0.01	NP
Barium (mg/L)	MW-8D (bg)	3.65	15	34	No	11	0	n/a	n/a	0.01	NP
Barium (mg/L)	MW-15	-0.07315	-22	-38	No	12	0	n/a	n/a	0.01	NP
Barium (mg/L)	MW-3D	0.3013	28	38	No	12	0	n/a	n/a	0.01	NP
Barium (mg/L)	MW-6D	-0.1567	-14	-21	No	8	0	n/a	n/a	0.01	NP
Barium (mg/L)	MW-9D	1.295	22	21	Yes		0	n/a	n/a	0.01	NP
Beryllium (mg/L)	MW-7D (bg)	0.003984	32	25	Yes		0	n/a	n/a	0.01	NP
Beryllium (mg/L)	MW-8D (bg)	-0.0004205	-6	-34		11	- 18.18		n/a	0.01	NP
Beryllium (mg/L)	MW-15	-0.000982	-30	-38	No	12	41.67		n/a	0.01	NP
Beryllium (mg/L)	MW-3D	-0.001158	-20	-38	No	12	25	n/a	n/a	0.01	NP
Beryllium (mg/L)	MW-6D	0.0002463	7	21	No	8	0	n/a	n/a	0.01	NP
Beryllium (mg/L)	MW-9D	0.0007039	, 10	21	No	8		n/a	n/a	0.01	NP
	MW-3D MW-7D (bg)	-1.397	-24	-25	No	9	0	n/a	n/a	0.01	NP
Boron (mg/L)						5 11	0				NP
Boron (mg/L)	MW-8D (bg) MW-15	0.1352 0.05173	30 0	34 38	No No	12	0	n/a n/a	n/a	0.01 0.01	NP
Boron (mg/L)	MW-15 MW-3D					12	0		n/a		NP
Boron (mg/L)		-0.1204	-23	-34	No			n/a	n/a	0.01	
Boron (mg/L)	MW-6D	0.797	4	21	No	8	0	n/a	n/a	0.01	NP
Boron (mg/L)	MW-9D	-1.731	-16	-21	No	8	0	n/a	n/a	0.01	NP
Cadmium (mg/L)	MW-7D (bg)	0.004366	17	25	No	9	11.11		n/a	0.01	NP
Cadmium (mg/L)	MW-8D (bg)	0.0006978	3	34	No	11	0	n/a	n/a	0.01	NP
Cadmium (mg/L)	MW-15	0	1	38	No	12	66.67		n/a	0.01	NP
Cadmium (mg/L)	MW-3D	-0.0009236	-24	-38	No	12	16.67		n/a	0.01	NP
Cadmium (mg/L)	MW-6D	-0.00166	-12	-21	No	8	0	n/a	n/a	0.01	NP
Cadmium (mg/L)	MW-9D	0.002329	6	21	No	8		n/a	n/a	0.01	NP
Calcium (mg/L)	MW-7D (bg)	675.4	30	25	Yes	9	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-8D (bg)	124.3	10	34	No	11	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-15	-29.89	-16	-38	No	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-3D	44.4	26	38	No	12	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-6D	62.62	4	21	No	8	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-9D	537.8	16	21	No	8	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-7D (bg)	1721	18	25	No	9	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-8D (bg)	568.5	5	34	No	11	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-15	-26.93	-41	-34	Yes	11	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-3D	-6.518	-38	-34	Yes	11	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-6D	12.4	20	21	No	8	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-9D	160.8	2	21	No	8	0	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-7D (bg)	0.1097	30	25	Yes	9	0	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-8D (bg)	0.002444	12	34	No	11	18.18	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-15	-0.003672	-16	-38	No	12	8.333	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-3D	0.00314	14	38	No	12	8.333	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-6D	0.004402	6	21	No	8	0	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-9D	0.0501	16	21	No	8	0	n/a	n/a	0.01	NP
Cobalt (mg/L)	MW-7D (bg)	0.02943	28	25	Yes	9	0	n/a	n/a	0.01	NP

Trend Tests Summary Table - All Results

Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 1/2/2018, 10:28 PM

	Northeastern LF Client: Geosyn	lec Dala: No	rineasierr	ILF Printed 1/2	2/2018	, 10:28	PIN				
Constituent	Well	Slope	Calc.	<u>Critical</u>	<u>Sig.</u>	N	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Cobalt (mg/L)	MW-8D (bg)	0	0	34	No	11	18.18	n/a	n/a	0.01	NP
Cobalt (mg/L)	MW-15	-0.006205	-23	-38	No	12	16.67	n/a	n/a	0.01	NP
Cobalt (mg/L)	MW-3D	-0.00392	-15	-38	No	12	16.67	n/a	n/a	0.01	NP
Cobalt (mg/L)	MW-6D	-0.00297	-8	-21	No	8	0	n/a	n/a	0.01	NP
Cobalt (mg/L)	MW-9D	0.01751	18	21	No	8	0	n/a	n/a	0.01	NP
Combined Radium 226 + 228 (pCi/L)	MW-7D (bg)	-0.7352	-4	-21	No	8	0	n/a	n/a	0.01	NP
Combined Radium 226 + 228 (pCi/L)	MW-8D (bg)	2.841	8	21	No	8	0	n/a	n/a	0.01	NP
Combined Radium 226 + 228 (pCi/L)	MW-15	-0.09224	-4	-38	No	12	0	n/a	n/a	0.01	NP
Combined Radium 226 + 228 (pCi/L)	MW-3D	0.1043	3	34	No	11	0	n/a	n/a	0.01	NP
Combined Radium 226 + 228 (pCi/L)	MW-6D	-1.969	-10	-21	No	8	0	n/a	n/a	0.01	NP
Combined Radium 226 + 228 (pCi/L)	MW-9D	4.147	NaN	NaN	No	3	0	n/a	n/a	NaN	NP
Fluoride (mg/L)	MW-7D (bg)	3.568	14	25	No	9	11.11	n/a	n/a	0.01	NP
Fluoride (mg/L)	MW-8D (bg)	0	6	34	No	11	90.91	n/a	n/a	0.01	NP
Fluoride (mg/L)	MW-15	-0.6635	-35	-38	No	12	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	MW-3D	0	-7	-38	No	12	50	n/a	n/a	0.01	NP
Fluoride (mg/L)	MW-6D	-0.4033	-9	-21	No	8	25	n/a	n/a	0.01	NP
Fluoride (mg/L)	MW-9D	-1.691	-5	-21	No	8	25	n/a	n/a	0.01	NP
Lead (mg/L)	MW-7D (bg)	0.04368	34	25	Yes	9	0	n/a	n/a	0.01	NP
Lead (mg/L)	MW-8D (bg)	-0.002385	-4	-34	No	11	18.18	n/a	n/a	0.01	NP
Lead (mg/L)	MW-15	0	-5	-38	No	12	50	n/a	n/a	0.01	NP
Lead (mg/L)	MW-3D	0	-7	-38	No	12	58.33	n/a	n/a	0.01	NP
Lead (mg/L)	MW-6D	-0.003664	-8	-21	No	8	0	n/a	n/a	0.01	NP
Lead (mg/L)	MW-9D	0.03008	18	21	No	8	0	n/a	n/a	0.01	NP
Lithium (mg/L)	MW-7D (bg)	0.2229	19	25	No	9	0	n/a	n/a	0.01	NP
Lithium (mg/L)	MW-8D (bg)	-0.05141	-2	-34	No	11	0	n/a	n/a	0.01	NP
Lithium (mg/L)	MW-15	-0.007242	-42	-38	Yes	12	0	n/a	n/a	0.01	NP
Lithium (mg/L)	MW-3D	-0.00293	-15	-38	No	12	0	n/a	n/a	0.01	NP
Lithium (mg/L)	MW-6D	-0.01464	-6	-21	No	8	0	n/a	n/a	0.01	NP
Lithium (mg/L)	MW-9D	0.05519	18	21	No	8	0	n/a	n/a	0.01	NP
Mercury (mg/L)	MW-7D (bg)	0.00008047	18	25	No	9	11.11	n/a	n/a	0.01	NP
Mercury (mg/L)	MW-8D (bg)	0.00000869	14	34	No	11	27.27	n/a	n/a	0.01	NP
Mercury (mg/L)	MW-15	-0.00001855	-33	-38	No	12	33.33	n/a	n/a	0.01	NP
Mercury (mg/L)	MW-3D	0	4	38	No	12	75	n/a	n/a	0.01	NP
Mercury (mg/L)	MW-6D	0.00004557	10	21	No	8	50	n/a	n/a	0.01	NP
Mercury (mg/L)	MW-9D	-0.0000112	-6	-21	No	8	25	n/a	n/a	0.01	NP
Molybdenum (mg/L)	MW-7D (bg)	0.06326	24	25	No	9	0	n/a	n/a	0.01	NP
Molybdenum (mg/L)	MW-8D (bg)	0.0002808	2	34	No	11	18.18	n/a	n/a	0.01	NP
Molybdenum (mg/L)	MW-15	0.05851	18	38	No	12	0	n/a	n/a	0.01	NP
Molybdenum (mg/L)	MW-3D	-0.003103	-20	-34	No	11	18.18	n/a	n/a	0.01	NP
Molybdenum (mg/L)	MW-6D	0.00008302	0	21	No	8	0	n/a	n/a	0.01	NP
Molybdenum (mg/L)	MW-9D	-0.3866	-28	-21	Yes		0	n/a	n/a	0.01	NP
pH, field (SU)	MW-7D (bg)	-1.4	-6	-25	No	9	0	n/a	n/a	0.01	NP
pH, field (SU)	MW-8D (bg)	-0.8495	-24	-25	No	9	0	n/a	n/a	0.01	NP
pH, field (SU)	MW-15	-0.6373	-9	-30	No	10	0	n/a	n/a	0.01	NP
pH, field (SU)	MW-3D	-1.376	-25	-30	No	10	0	n/a	n/a	0.01	NP
pH, field (SU)	MW-6D	-1.72	-11	-21	No	8	0	n/a	n/a	0.01	NP
pH, field (SU)	MW-9D	-0.1912	-2	-21	No	8	0	n/a	n/a	0.01	NP
Selenium (mg/L)	MW-7D (bg)	0.05794	16	25	No	9	0	n/a	n/a	0.01	NP
Selenium (mg/L)	MW-8D (bg)	0.00008946	3	34	No	11	9.091		n/a	0.01	NP
Selenium (mg/L)	MW-15	-0.001645	-5	-38	No	12	16.67		n/a	0.01	NP
Selenium (mg/L)	MW-3D	0	-5	-38	No	12	91.67		n/a	0.01	NP
Selenium (mg/L)	MW-6D	0	0	21	No	8	100	n/a	n/a	0.01	NP
Selenium (mg/L)	MW-9D	-0.005692	-9	-21	No	8	12.5	n/a	n/a	0.01	NP
Sulfate (mg/L)	MW-7D (bg)	1994	22	25	No	9	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	MW-8D (bg)	16.4	4	34	No	11	0	n/a	n/a	0.01	NP

Trend Tests Summary Table - All Results

Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 1/2/2018, 10:28 PM

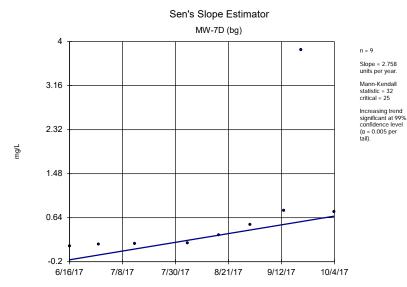
Constituent	Well	Slope	Calc.	<u>Critical</u>	<u>Sig.</u>	N	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Sulfate (mg/L)	MW-15	66.87	14	38	No	12	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	MW-3D	70.21	30	38	No	12	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	MW-6D	-11.5	-2	-21	No	8	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	MW-9D	1246	14	21	No	8	0	n/a	n/a	0.01	NP
Thallium (mg/L)	MW-7D (bg)	0	0	25	No	9	100	n/a	n/a	0.01	NP
Thallium (mg/L)	MW-8D (bg)	0	0	34	No	11	100	n/a	n/a	0.01	NP
Thallium (mg/L)	MW-15	0	7	38	No	12	91.67	n/a	n/a	0.01	NP
Thallium (mg/L)	MW-3D	0	-9	-38	No	12	91.67	n/a	n/a	0.01	NP
Thallium (mg/L)	MW-6D	0	0	21	No	8	100	n/a	n/a	0.01	NP
Thallium (mg/L)	MW-9D	0	0	21	No	8	100	n/a	n/a	0.01	NP
Total Dissolve Solids [TDS] (mg/L)	MW-7D (bg)	6905	30	25	Yes	9	0	n/a	n/a	0.01	NP
Total Dissolve Solids [TDS] (mg/L)	MW-8D (bg)	6248	39	34	Yes	11	0	n/a	n/a	0.01	NP
Total Dissolve Solids [TDS] (mg/L)	MW-15	-111.8	-31	-38	No	12	0	n/a	n/a	0.01	NP
Total Dissolve Solids [TDS] (mg/L)	MW-3D	153.5	23	38	No	12	0	n/a	n/a	0.01	NP
Total Dissolve Solids [TDS] (mg/L)	MW-6D	-135.2	-7	-18	No	7	0	n/a	n/a	0.01	NP
Total Dissolve Solids [TDS] (mg/L)	MW-9D	4474	18	21	No	8	0	n/a	n/a	0.01	NP

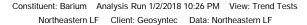
Page 3

Trend Test Summary Table - New Wells Significant Results

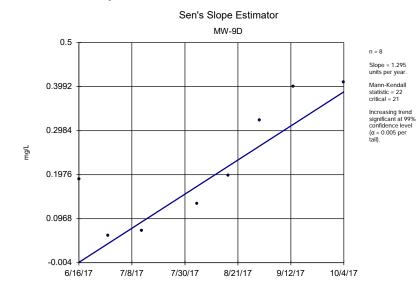
	Northea	Northeastern LF Client: Geosyntec		Data: Northeastern LF			Printed 3/6	0/2019, 10:0			
Constituent	Well	Slope	Calc.	Critical	<u>Sig.</u>	N	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Cadmium (mg/L)	MW-5D	-0.0006039	-29	-25	Yes	9	33.33	n/a	n/a	0.01	NP
Cobalt (mg/L)	MW-5D	-0.001422	-28	-25	Yes	9	11.11	n/a	n/a	0.01	NP

Trend Test Summary Table - New Wells All Results

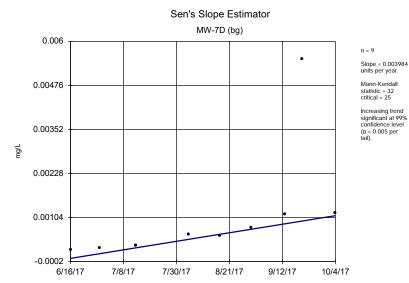

Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 3/6/2019, 10:05 AM

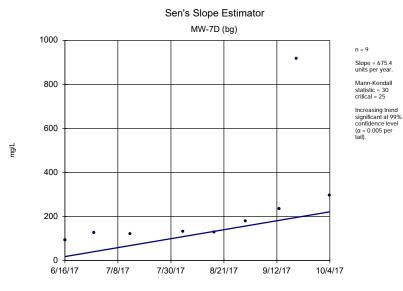

	Nor	theastern LF Clien	t: Geosyntee	c Data: No	Data: Northeastern LF		Printed	ed 3/6/2019, 10:05 AM			
Constituent	Well	Slope	Calc.	Critical	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	MW-4D	-0.0002888	-12	-25	No	9	44.44	n/a	n/a	0.01	NP
Antimony (mg/L)	MW-12D	-0.002972	-14	-25	No	9	44.44	n/a	n/a	0.01	NP
Antimony (mg/L)	MW-5D	-0.0005811	-17	-25	No	9	33.33	n/a	n/a	0.01	NP
Arsenic (mg/L)	MW-4D	-0.002245	-17	-25	No	9	22.22	n/a	n/a	0.01	NP
Arsenic (mg/L)	MW-12D	0.004484	9	25	No	9	22.22	n/a	n/a	0.01	NP
Arsenic (mg/L)	MW-5D	-0.001798	-19	-25	No	9	33.33	n/a	n/a	0.01	NP
Barium (mg/L)	MW-4D	-0.001659	-2	-21	No	8	0	n/a	n/a	0.01	NP
Barium (mg/L)	MW-12D	0.01387	6	25	No	9	0	n/a	n/a	0.01	NP
Barium (mg/L)	MW-5D	-0.0252	-6	-25	No	9	0	n/a	n/a	0.01	NP
Beryllium (mg/L)	MW-4D	0	-8	-25	No	9	55.56	n/a	n/a	0.01	NP
Beryllium (mg/L)	MW-12D	-0.0003029	-14	-25	No	9	33.33	n/a	n/a	0.01	NP
Beryllium (mg/L)	MW-5D	-0.0001632	-16	-25	No	9	55.56	n/a	n/a	0.01	NP
Boron (mg/L)	MW-4D	-0.1057	-9	-25	No	9	0	n/a	n/a	0.01	NP
Boron (mg/L)	MW-12D	1.148	18	25	No	9	0	n/a	n/a	0.01	NP
Boron (mg/L)	MW-5D	0.1092	10	25	No	9	0	n/a	n/a	0.01	NP
Cadmium (mg/L)	MW-4D	-0.0004675	-15	-25	No	9	33.33	n/a	n/a	0.01	NP
Cadmium (mg/L)	MW-12D	-0.0004574	-10	-25	No	9	22.22	n/a	n/a	0.01	NP
Cadmium (mg/L)	MW-5D	-0.0006039	-29	-25	Yes	9	33.33	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-4D	-8.826	-4	-30	No	10	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-12D	-15.21	-11	-30	No	10	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-5D	19.12	29	30	No	10	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-4D	8.132	13	30	No	10	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-12D	-1.25	-5	-25	No	9	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-5D	1.14	6	25	No	9	0	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-4D	-0.002411	-17	-25	No	9	22.22	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-12D	-0.0004559	-3	-25	No	9	22.22	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-5D	-0.0003455	-16	-25	No	9	11.11	n/a	n/a	0.01	NP
Cobalt (mg/L)	MW-4D	-0.001361	-20	-25	No	9	11.11	n/a	n/a	0.01	NP
Cobalt (mg/L)	MW-12D	-0.000945	-12	-25	No	9	11.11	n/a	n/a	0.01	NP
Cobalt (mg/L)	MW-5D	-0.001422	-28	-25	Yes	9	11.11	n/a	n/a	0.01	NP
Combined Radium 226 + 228 (pCi/L)	MW-4D	0.6447	3	21	No	8	0	n/a	n/a	0.01	NP
Combined Radium 226 + 228 (pCi/L)	MW-12D	2.756	8	21	No	8	0	n/a	n/a	0.01	NP
Combined Radium 226 + 228 (pCi/L)	MW-5D	1.995	8	21	No	8	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	MW-4D	0	-12	-30	No	10	70	n/a	n/a	0.01	NP
Fluoride (mg/L)	MW-12D	0.3145	11	30	No	10	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	MW-5D	-0.233	-2	-25	No	9	0	n/a	n/a	0.01	NP
Lead (mg/L)	MW-4D	-0.002517	-17	-25	No	9	33.33	n/a	n/a	0.01	NP
Lead (mg/L)	MW-12D	-0.001281	-5	-25	No	9	22.22	n/a	n/a	0.01	NP
Lead (mg/L)	MW-5D	-0.002233	-21	-25	No	9	22.22	n/a	n/a	0.01	NP
Lithium (mg/L)	MW-4D	-0.001623	-8	-21	No	8	0	n/a	n/a	0.01	NP
Lithium (mg/L)	MW-12D	-0.007833	-18	-21	No	8	0	n/a	n/a	0.01	NP
Lithium (mg/L)	MW-5D	-0.004334	-13	-21	No	8	0	n/a	n/a	0.01	NP
Mercury (mg/L)	MW-4D	0	-2	-25	No	9	88.89	n/a	n/a	0.01	NP
Mercury (mg/L)	MW-12D	-0.00001049	-17	-25	No	9	55.56	n/a	n/a	0.01	NP
Mercury (mg/L)	MW-5D	0	-2	-25	No	9	88.89	n/a	n/a	0.01	NP
Molybdenum (mg/L)	MW-4D	-0.001125	-10	-21	No	8	0	n/a	n/a	0.01	NP
Molybdenum (mg/L)	MW-12D	0.1663	6	21	No	8	0	n/a	n/a	0.01	NP
Molybdenum (mg/L)	MW-5D	-0.001715	-10	-21	No	8	12.5	n/a	n/a	0.01	NP
pH, field (SU)	MW-4D	0.2607	5	30	No	10	0	n/a	n/a	0.01	NP
pH, field (SU)	MW-12D	1.929	15	30	No	10	0	n/a	n/a	0.01	NP
pH, field (SU)	MW-5D	0.5368	4	30	No	10	0	n/a	n/a	0.01	NP
Selenium (mg/L)	MW-4D	-0.003066	-20	-25	No	9	44.44	n/a	n/a	0.01	NP
Selenium (mg/L)	MW-12D	-0.001601	-10	-25	No	9	11.11	n/a	n/a	0.01	NP
Selenium (mg/L)	MW-5D	-0.002613	-23	-25	No	9	33.33	n/a	n/a	0.01	NP
Sulfate (mg/L)	MW-4D	42.98	21	30	No	10	0	n/a	n/a	0.01	NP

Trend Test Summary Table - New Wells All Results Page 2

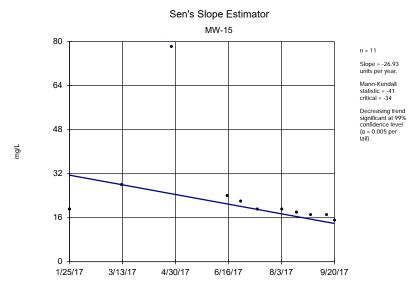

			Northea	Northeastern LF		: Geosy	ntec D	ata: Northea	stern LF		
Constituent	Well	Slope	Calc.	Critical	Sig.	N	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Sulfate (mg/L)	MW-12D	-60.67	-14	-25	No	9	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	MW-5D	29.07	12	25	No	9	0	n/a	n/a	0.01	NP
Thallium (mg/L)	MW-4D	0	-2	-25	No	9	44.44	n/a	n/a	0.01	NP
Thallium (mg/L)	MW-12D	-0.0005747	-9	-25	No	9	33.33	n/a	n/a	0.01	NP
Thallium (mg/L)	MW-5D	0	3	25	No	9	55.56	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-4D	-11.06	-2	-25	No	9	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-12D	-36.65	-4	-25	No	9	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-5D	-14.04	-2	-21	No	8	0	n/a	n/a	0.01	NP

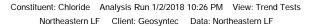
Sanitas[™] v.9.6.00 Groundwater Stats Consulting. UG

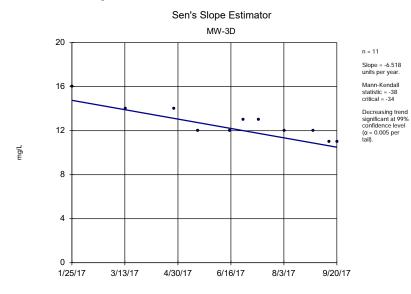



Constituent: Barium Analysis Run 1/2/2018 10:26 PM View: Trend Tests Northeastern LF Client: Geosyntec Data: Northeastern LF

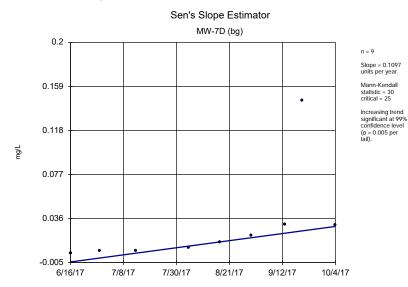
Sanitas[™] v.9.6.00 Groundwater Stats Consulting. UG


Constituent: Beryllium Analysis Run 1/2/2018 10:26 PM View: Trend Tests Northeastern LF Client: Geosyntec Data: Northeastern LF

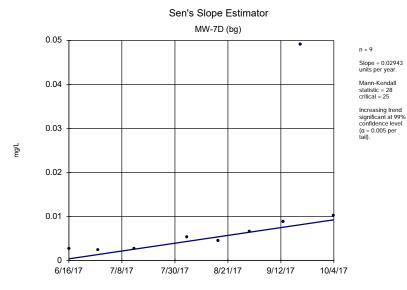



Constituent: Calcium Analysis Run 1/2/2018 10:26 PM View: Trend Tests Northeastern LF Client: Geosyntec Data: Northeastern LF

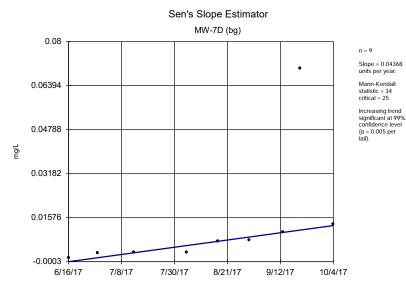
Sanitas[™] v.9.6.00 Groundwater Stats Consulting. UG

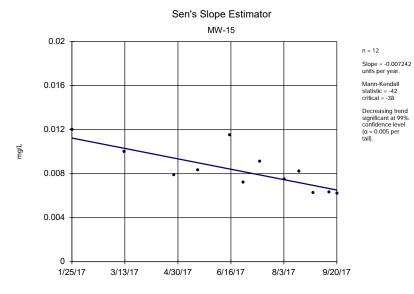


Sanitas[™] v.9.6.00 Groundwater Stats Consulting. UG

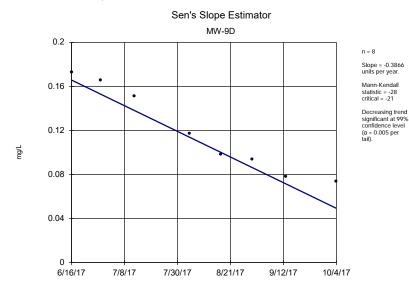

Constituent: Chloride Analysis Run 1/2/2018 10:26 PM View: Trend Tests Northeastern LF Client: Geosyntec Data: Northeastern LF

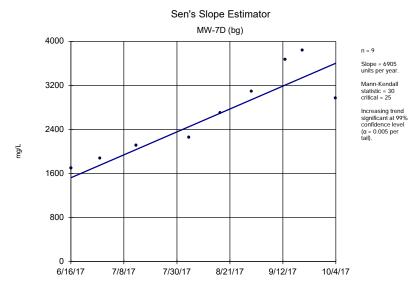
Sanitas[™] v.9.6.00 Groundwater Stats Consulting. UG


Constituent: Chromium Analysis Run 1/2/2018 10:26 PM View: Trend Tests Northeastern LF Client: Geosyntec Data: Northeastern LF

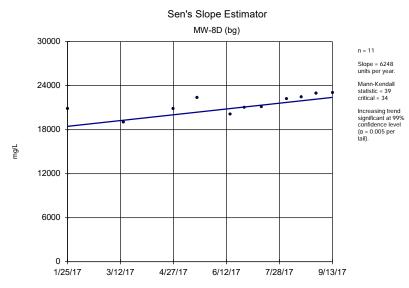

Constituent: Cobalt Analysis Run 1/2/2018 10:26 PM View: Trend Tests Northeastern LF Client: Geosyntec Data: Northeastern LF

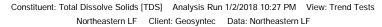
Sanitas[™] v.9.6.00 Groundwater Stats Consulting. UG


Constituent: Lead Analysis Run 1/2/2018 10:26 PM View: Trend Tests Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Lithium Analysis Run 1/2/2018 10:26 PM View: Trend Tests Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas[™] v.9.6.00 Groundwater Stats Consulting. UG


Constituent: Molybdenum Analysis Run 1/2/2018 10:27 PM View: Trend Tests Northeastern LF Client: Geosyntec Data: Northeastern LF



Constituent: Total Dissolve Solids [TDS] Analysis Run 1/2/2018 10:27 PM View: Trend Tests Northeastern LF Client: Geosyntec Data: Northeastern LF

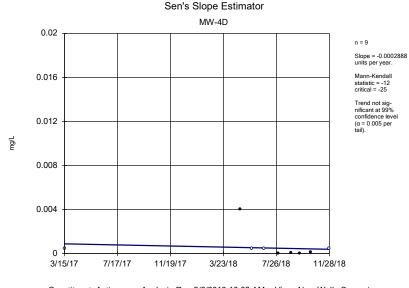
Sanitas[™] v.9.6.00 Groundwater Stats Consulting. UG

Trend Test Summary Table - New Wells Significant Results

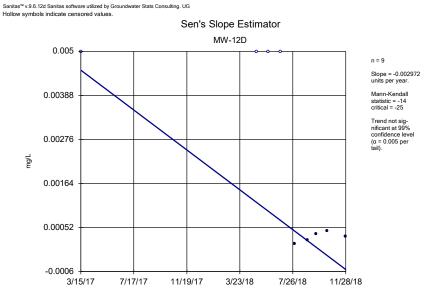
	INC	ortheastern LF Clie	ent: Geosyn	lec Dala: I	vortnea	Stern LF	Printe	a 3/6/2019,	10:05 AW		
Constituent	Well	Slope	Calc.	Critical	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Cadmium (mg/L)	MW-5D	-0.0006039	-29	-25	Yes	9	33.33	n/a	n/a	0.01	NP
Cobalt (mg/L)	MW-5D	-0.001422	-28	-25	Yes	9	11.11	n/a	n/a	0.01	NP

Trend Test Summary Table - New Wells All Results

Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 3/6/2019, 10:05 AM

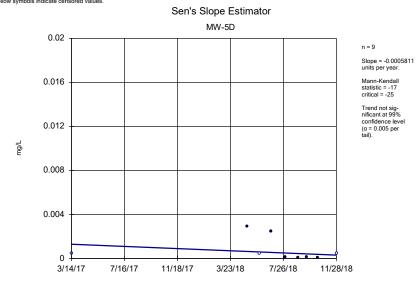

	North	eastern LF	Client: G	Seosyntec	Data: North	leasteri	n LF F	Printed 3/	6/2019, 10:0	5 AM		
Constituent	Well	Slope		Calc.	Critical	Sig.	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	MW-4D	-0.00028	88	-12	-25	No	9	44.44	n/a	n/a	0.01	NP
Antimony (mg/L)	MW-12D	-0.00297	2	-14	-25	No	9	44.44	n/a	n/a	0.01	NP
Antimony (mg/L)	MW-5D	-0.00058	11	-17	-25	No	9	33.33	n/a	n/a	0.01	NP
Arsenic (mg/L)	MW-4D	-0.00224	5	-17	-25	No	9	22.22	n/a	n/a	0.01	NP
Arsenic (mg/L)	MW-12D	0.004484		9	25	No	9	22.22	n/a	n/a	0.01	NP
Arsenic (mg/L)	MW-5D	-0.00179	В	-19	-25	No	9	33.33	n/a	n/a	0.01	NP
Barium (mg/L)	MW-4D	-0.00165	9	-2	-21	No	8	0	n/a	n/a	0.01	NP
Barium (mg/L)	MW-12D	0.01387		6	25	No	9	0	n/a	n/a	0.01	NP
Barium (mg/L)	MW-5D	-0.0252		-6	-25	No	9	0	n/a	n/a	0.01	NP
Beryllium (mg/L)	MW-4D	0		-8	-25	No	9	55.56	n/a	n/a	0.01	NP
Beryllium (mg/L)	MW-12D	-0.00030	29	-14	-25	No	9	33.33	n/a	n/a	0.01	NP
Beryllium (mg/L)	MW-5D	-0.00016	32	-16	-25	No	9	55.56	n/a	n/a	0.01	NP
Boron (mg/L)	MW-4D	-0.1057		-9	-25	No	9	0	n/a	n/a	0.01	NP
Boron (mg/L)	MW-12D	1.148		18	25	No	9	0	n/a	n/a	0.01	NP
Boron (mg/L)	MW-5D	0.1092		10	25	No	9	0	n/a	n/a	0.01	NP
Cadmium (mg/L)	MW-4D	-0.00046	75	-15	-25	No	9	33.33	n/a	n/a	0.01	NP
Cadmium (mg/L)	MW-12D	-0.00045	74	-10	-25	No	9	22.22	n/a	n/a	0.01	NP
Cadmium (mg/L)	MW-5D	-0.00060	39	-29	-25	Yes	9	33.33	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-4D	-8.826		-4	-30	No	10	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-12D	-15.21		-11	-30	No	10	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-5D	19.12		29	30	No	10	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-4D	8.132		13	30	No	10	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-12D	-1.25		-5	-25	No	9	0	n/a	n/a	0.01	NP
Chloride (mg/L)	MW-5D	1.14		6	25	No	9	0	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-4D	-0.00241	1	-17	-25	No	9	22.22	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-12D	-0.00045	59	-3	-25	No	9	22.22	n/a	n/a	0.01	NP
Chromium (mg/L)	MW-5D	-0.00034	55	-16	-25	No	9	11.11	n/a	n/a	0.01	NP
Cobalt (mg/L)	MW-4D	-0.00136	1	-20	-25	No	9	11.11	n/a	n/a	0.01	NP
Cobalt (mg/L)	MW-12D	-0.00094	5	-12	-25	No	9	11.11	n/a	n/a	0.01	NP
Cobalt (mg/L)	MW-5D	-0.00142	2	-28	-25	Yes	9	11.11	n/a	n/a	0.01	NP
Combined Radium 226 + 228 (pCi/L)	MW-4D	0.6447		3	21	No	8	0	n/a	n/a	0.01	NP
Combined Radium 226 + 228 (pCi/L)	MW-12D	2.756		8	21	No	8	0	n/a	n/a	0.01	NP
Combined Radium 226 + 228 (pCi/L)	MW-5D	1.995		8	21	No	8	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	MW-4D	0		-12	-30	No	10	70	n/a	n/a	0.01	NP
Fluoride (mg/L)	MW-12D	0.3145		11	30	No	10	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	MW-5D	-0.233		-2	-25	No	9	0	n/a	n/a	0.01	NP
Lead (mg/L)	MW-4D	-0.00251	7	-17	-25	No	9	33.33	n/a	n/a	0.01	NP
Lead (mg/L)	MW-12D	-0.00128	1	-5	-25	No	9	22.22	n/a	n/a	0.01	NP
Lead (mg/L)	MW-5D	-0.00223	3	-21	-25	No	9	22.22	n/a	n/a	0.01	NP
Lithium (mg/L)	MW-4D	-0.00162	3	-8	-21	No	8	0	n/a	n/a	0.01	NP
Lithium (mg/L)	MW-12D	-0.00783	3	-18	-21	No	8	0	n/a	n/a	0.01	NP
Lithium (mg/L)	MW-5D	-0.00433	4	-13	-21	No	8	0	n/a	n/a	0.01	NP
Mercury (mg/L)	MW-4D	0		-2	-25	No	9	88.89	n/a	n/a	0.01	NP
Mercury (mg/L)	MW-12D	-0.00001	049	-17	-25	No	9	55.56	n/a	n/a	0.01	NP
Mercury (mg/L)	MW-5D	0		-2	-25	No	9	88.89	n/a	n/a	0.01	NP
Molybdenum (mg/L)	MW-4D	-0.00112	5	-10	-21	No	8	0	n/a	n/a	0.01	NP
Molybdenum (mg/L)	MW-12D	0.1663		6	21	No	8	0	n/a	n/a	0.01	NP
Molybdenum (mg/L)	MW-5D	-0.00171	5	-10	-21	No	8	12.5	n/a	n/a	0.01	NP
pH, field (SU)	MW-4D	0.2607		5	30	No	10	0	n/a	n/a	0.01	NP
pH, field (SU)	MW-12D	1.929		15	30	No	10	0	n/a	n/a	0.01	NP
pH, field (SU)	MW-5D	0.5368		4	30	No	10	0	n/a	n/a	0.01	NP
Selenium (mg/L)	MW-4D	-0.00306	6	-20	-25	No	9	44.44	n/a	n/a	0.01	NP
Selenium (mg/L)	MW-12D	-0.00160	1	-10	-25	No	9	11.11	n/a	n/a	0.01	NP
Selenium (mg/L)	MW-5D	-0.00261	3	-23	-25	No	9	33.33	n/a	n/a	0.01	NP
Sulfate (mg/L)	MW-4D	42.98		21	30	No	10	0	n/a	n/a	0.01	NP

Trend Test Summary Table - New Wells All Results Page 2

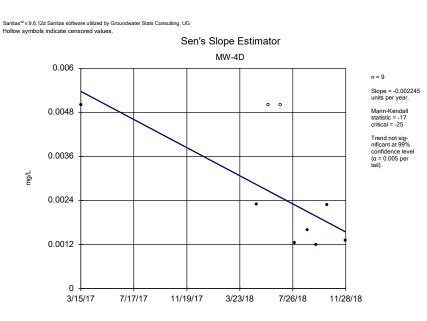

Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 3/6/2019, 10:05 AM

Constituent	Well	Slope	Calc.	Critical	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Sulfate (mg/L)	MW-12D	-60.67	-14	-25	No	9	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	MW-5D	29.07	12	25	No	9	0	n/a	n/a	0.01	NP
Thallium (mg/L)	MW-4D	0	-2	-25	No	9	44.44	n/a	n/a	0.01	NP
Thallium (mg/L)	MW-12D	-0.0005747	-9	-25	No	9	33.33	n/a	n/a	0.01	NP
Thallium (mg/L)	MW-5D	0	3	25	No	9	55.56	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-4D	-11.06	-2	-25	No	9	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-12D	-36.65	-4	-25	No	9	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-5D	-14.04	-2	-21	No	8	0	n/a	n/a	0.01	NP

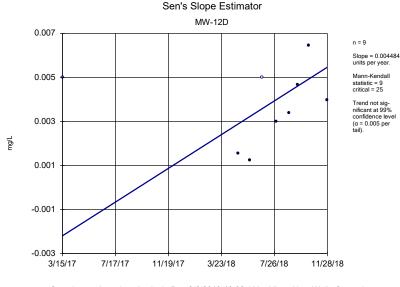
Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Antimony Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

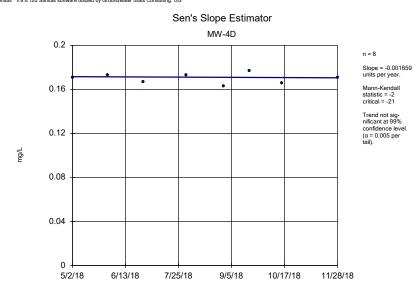


Constituent: Antimony Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

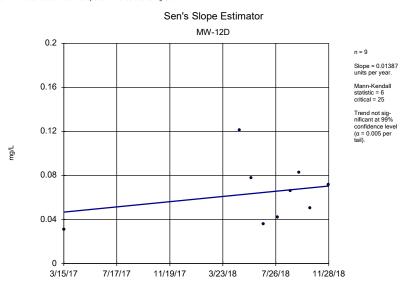

Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Antimony Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

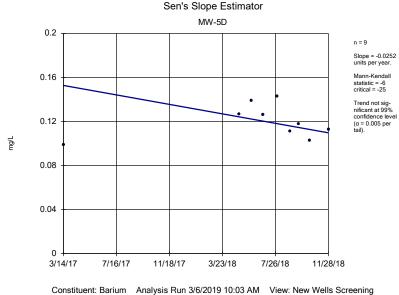
Constituent: Arsenic Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



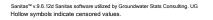
Constituent: Arsenic Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

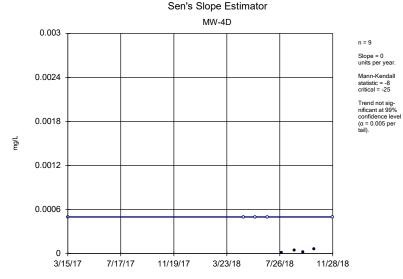

Constituent: Arsenic Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

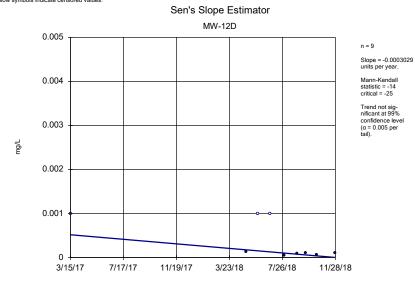

Constituent: Barium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

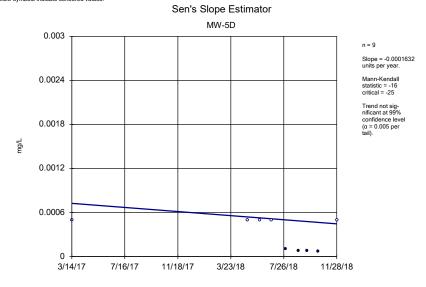
Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG




Constituent: Barium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

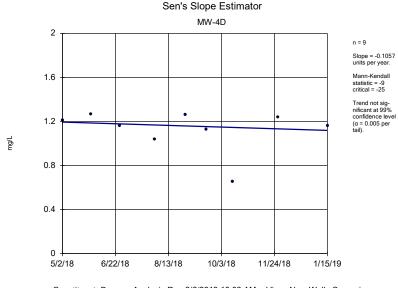
Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG


Northeastern LF Client: Geosyntec Data: Northeastern LF

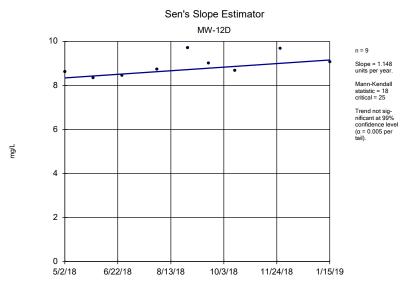


Constituent: Beryllium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

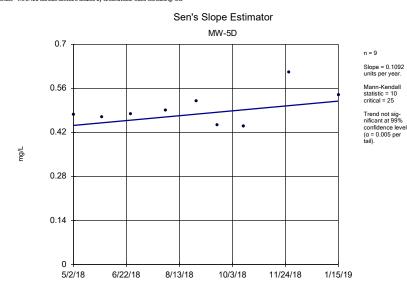
Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

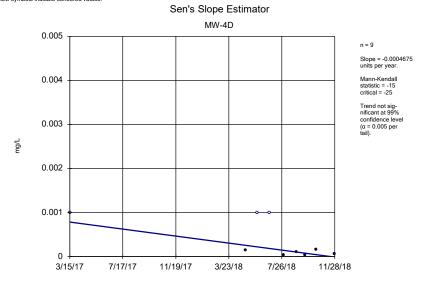


Constituent: Beryllium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



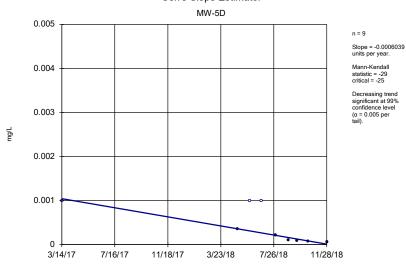
Constituent: Beryllium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF



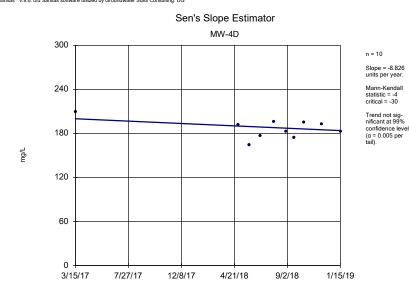

Constituent: Boron Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Boron Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

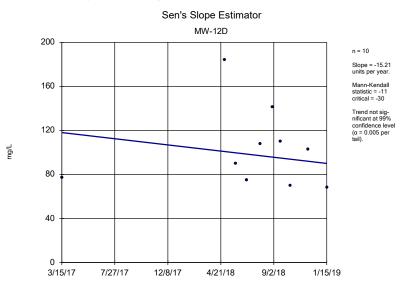
Constituent: Boron Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Cadmium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

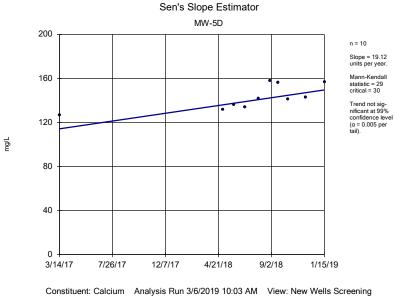

Northeastern LF Client: Geosyntec Data: Northeastern LF

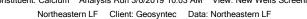
Sanitas ^w v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Sen's Slope Estimator

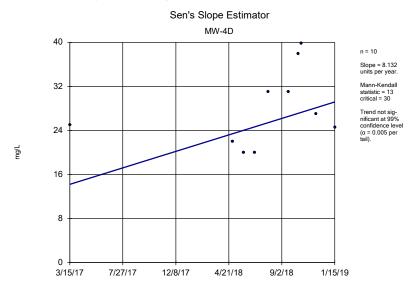


Constituent: Cadmium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

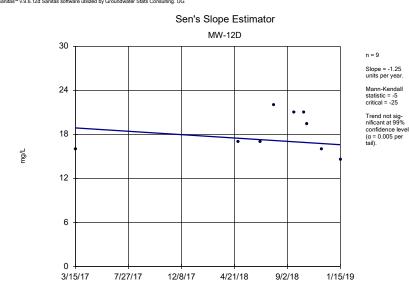
Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

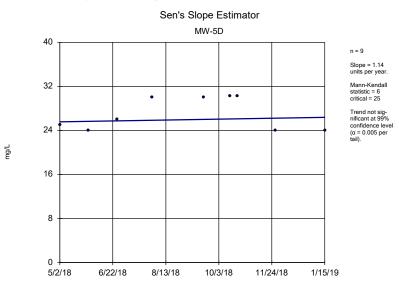

Constituent: Calcium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG



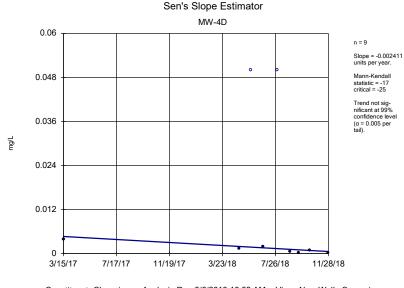

Constituent: Calcium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

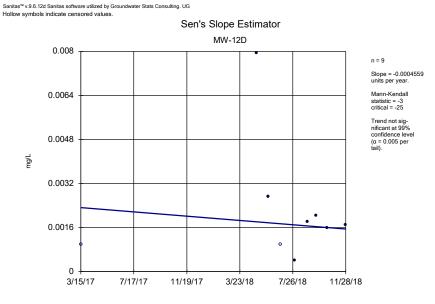

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: Chloride Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

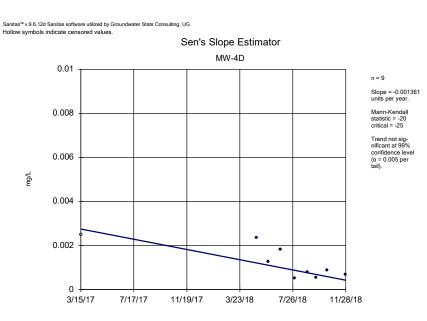


Constituent: Chloride Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

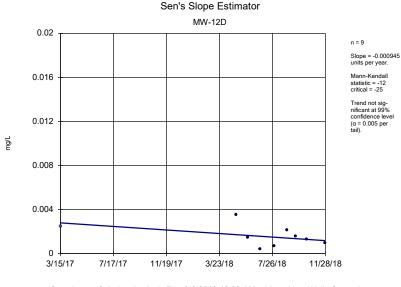

Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

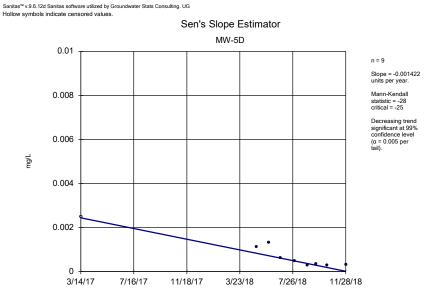
Constituent: Chloride Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Chromium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

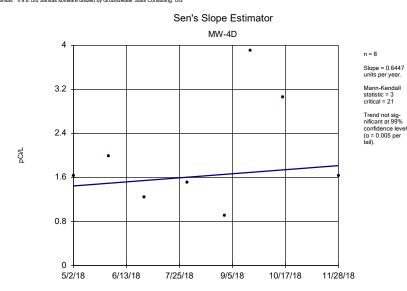


Constituent: Chromium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Chromium Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

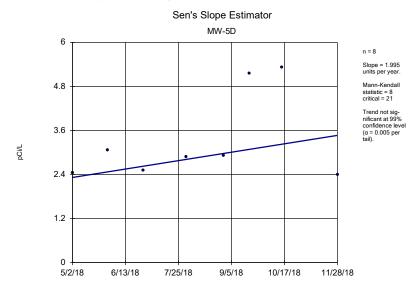
Constituent: Cobalt Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



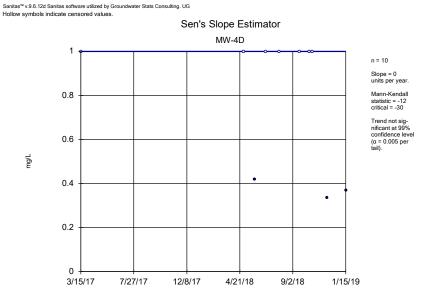
Constituent: Cobalt Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Cobalt Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

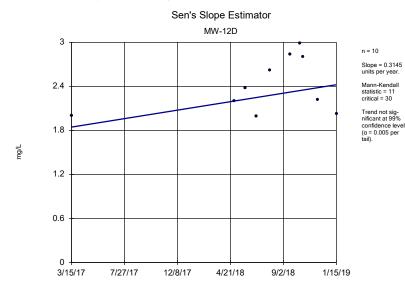
Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: Combined Radium 226 + 228 Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

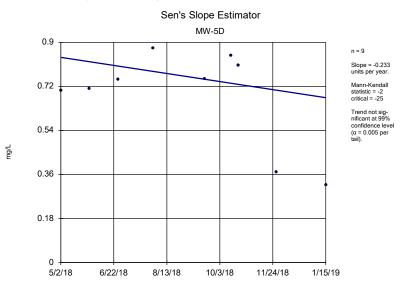
Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG



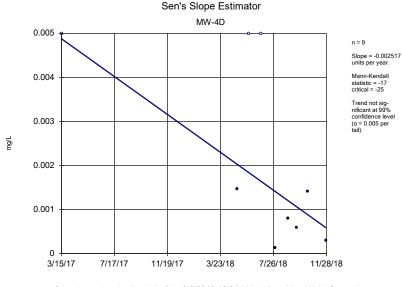
Constituent: Combined Radium 226 + 228 Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

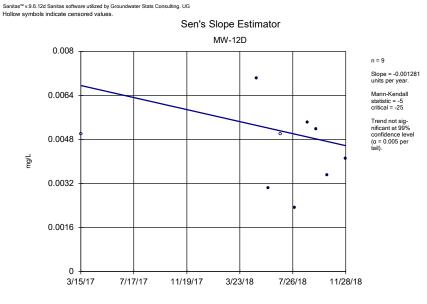
Constituent: Combined Radium 226 + 228 Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF



Constituent: Fluoride Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

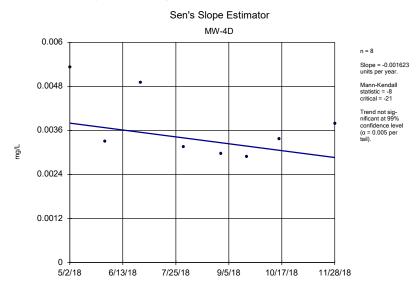


Constituent: Fluoride Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF



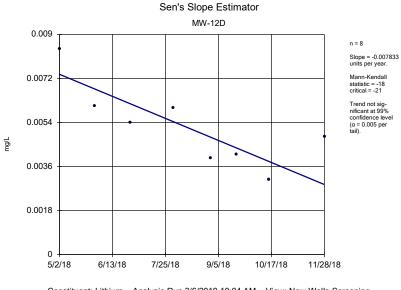
Constituent: Fluoride Analysis Run 3/6/2019 10:03 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

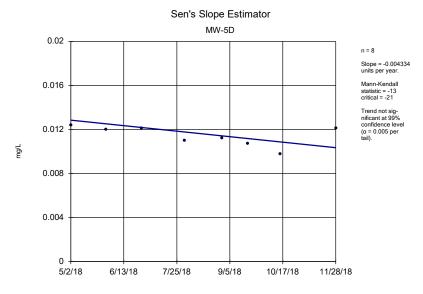
Constituent: Lead Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF



Constituent: Lead Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

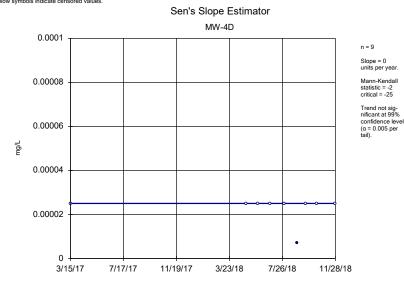
Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Lead Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

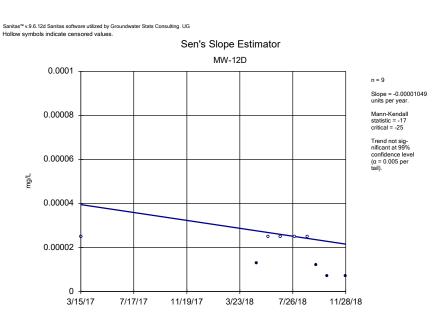

Constituent: Lithium Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

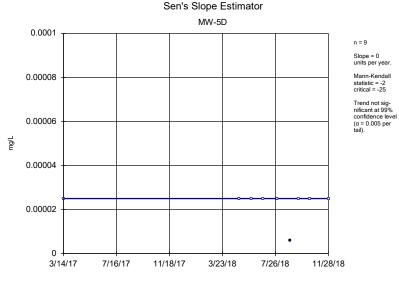
Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

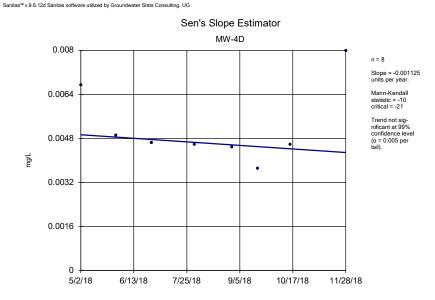


Constituent: Lithium Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

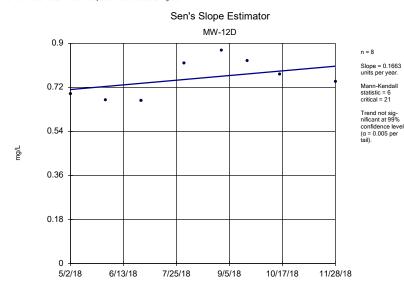


Constituent: Lithium Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

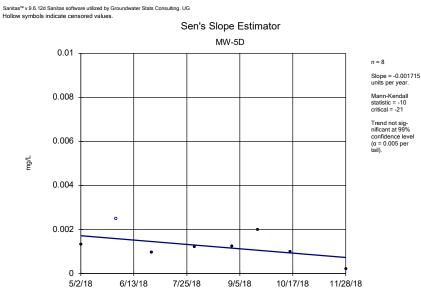

Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Mercury Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Mercury Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas¹¹ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

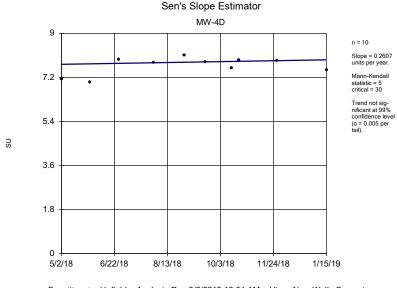


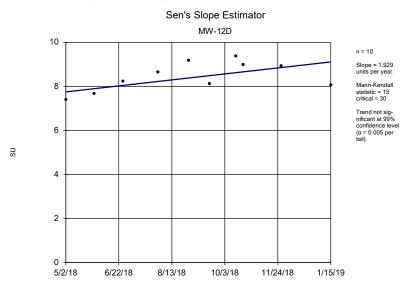
Constituent: Mercury Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF



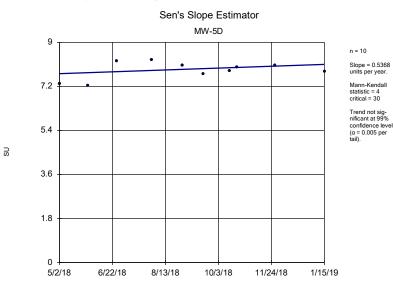
Constituent: Molybdenum Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

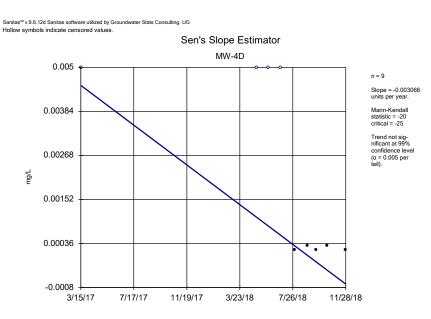
Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

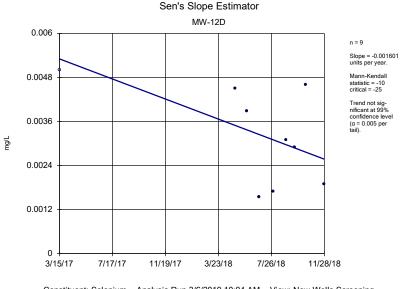

Constituent: Molybdenum Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

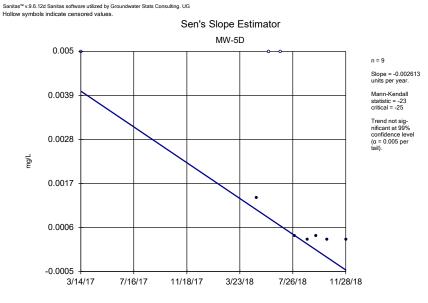

Constituent: Molybdenum Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

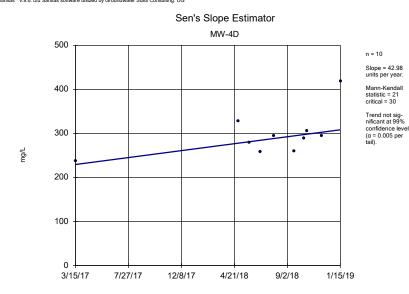

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: pH, field Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

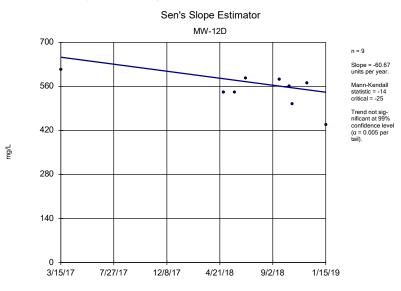

Constituent: pH, field Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: pH, field Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

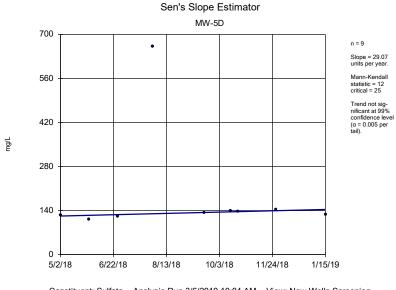
Constituent: Selenium Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

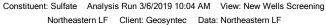


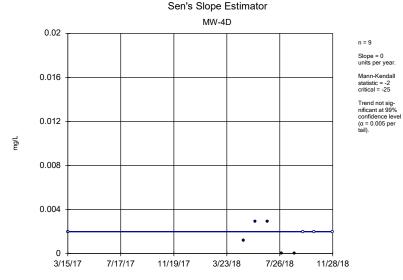
Constituent: Selenium Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF


Constituent: Selenium Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

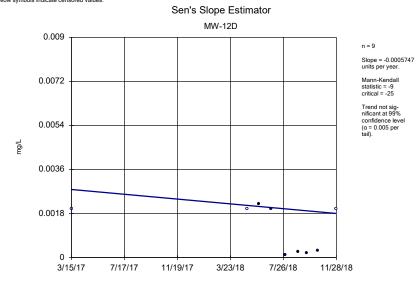
Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: Sulfate Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

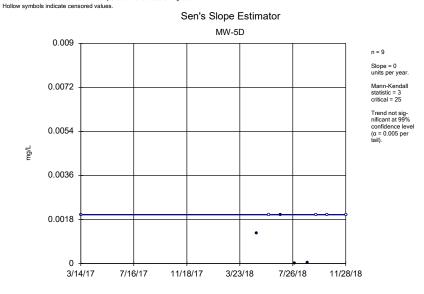

Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: Sulfate Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

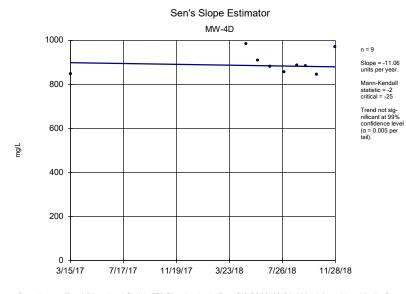


Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



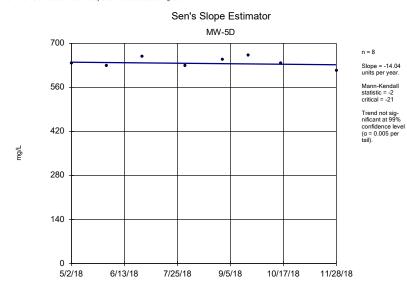
Constituent: Thallium Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Thallium Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Thallium Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG


Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Total Dissolved Solids [TDS] Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Total Dissolved Solids [TDS] Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Total Dissolved Solids [TDS] Analysis Run 3/6/2019 10:04 AM View: New Wells Screening Northeastern LF Client: Geosyntec Data: Northeastern LF

Analysis of Variance

Northeastern LF	Client: Geosyntec	Data: Northeastern I F	Printed 1/2/2018. 10:36 PM

Constituent	Crit.	<u>Sig.</u>	<u>Alpha</u>	Transform	ANOVA Sig.	Calc.	<u>Alpha</u>	Method
Boron (mg/L)	n/a	n/a	n/a	No	Yes	4.385	0.05	NP (eq. var.)
Calcium (mg/L)	n/a	n/a	n/a	No	Yes	8.562	0.05	NP (eq. var.)
Chloride (mg/L)	n/a	n/a	n/a	sqrt(x)	Yes	1387	0.05	Param.
Fluoride (mg/L)	n/a	n/a	n/a	No	Yes	4.151	0.05	NP (normality)
pH, field (SU)	n/a	n/a	n/a	ln(x)	No	2.314	0.05	Param.
Sulfate (mg/L)	n/a	n/a	n/a	No	Yes	14.15	0.05	NP (normality)
Total Dissolve Solids [TDS] (mg/L)	n/a	n/a	n/a	No	Yes	1525	0.05	Param.

Non-Parametric ANOVA

Constituent: Boron Analysis Run 1/2/2018 10:36 PM View: ANOVA Northeastern LF Client: Geosyntec Data: Northeastern LF

For observations made between 1/25/2017 and 10/4/2017, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 4.385

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 3 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 4.365 Adjusted Kruskal-Wallis statistic (H') = 4.385

Non-Parametric ANOVA

Constituent: Calcium Analysis Run 1/2/2018 10:36 PM View: ANOVA Northeastern LF Client: Geosyntec Data: Northeastern LF

For observations made between 1/25/2017 and 10/4/2017, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 8.562

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 8.556 Adjusted Kruskal-Wallis statistic (H') = 8.562

Parametric ANOVA

Constituent: Chloride Analysis Run 1/2/2018 10:36 PM View: ANOVA Northeastern LF Client: Geosyntec Data: Northeastern LF

For observations made between 1/25/2017 and 10/4/2017 the parametric analysis of variance test (after square root transformation) indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 1387

Tabulated F statistic = 4.41 with 1 and 18 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	1.7e9	1	1.7e9	1525
Error Within Groups	2.1e7	18	1140393	
Total	1.8e9	19		

The Shapiro Wilk normality test on the residuals passed after square root transformation. Alpha = 0.01, calculated = 0.9895, critical = 0.868. Levene's Equality of Variance test passed. Calculated = 0.3135, tabulated = 4.41.

Non-Parametric ANOVA

Constituent: Fluoride Analysis Run 1/2/2018 10:36 PM View: ANOVA Northeastern LF Client: Geosyntec Data: Northeastern LF

For observations made between 1/25/2017 and 10/4/2017, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 4.151

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 3.465 Adjusted Kruskal-Wallis statistic (H') = 4.151

Parametric ANOVA

Constituent: pH, field Analysis Run 1/2/2018 10:36 PM View: ANOVA Northeastern LF Client: Geosyntec Data: Northeastern LF

For observations made between 1/25/2017 and 10/4/2017 the parametric analysis of variance test (after natural log transformation) indicates NO VARIATION at the 5% significance level. Because the calculated F statistic is less than or equal to the tabulated F statistic, the hypothesis of a single homogeneous population is accepted.

Calculated F statistic = 2.314

Tabulated F statistic = 4.49 with 1 and 16 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	1.7e9	1	1.7e9	1525
Error Within Groups	2.1e7	18	1140393	
Total	1.8e9	19		

The Shapiro Wilk normality test on the residuals passed after natural log transformation. Alpha = 0.05, calculated = 0.9074, critical = 0.897. Levene's Equality of Variance test passed. Calculated = 4.417, tabulated = 4.49.

Non-Parametric ANOVA

Constituent: Sulfate Analysis Run 1/2/2018 10:36 PM View: ANOVA Northeastern LF Client: Geosyntec Data: Northeastern LF

For observations made between 1/25/2017 and 10/4/2017, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 14.15

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 14.14 Adjusted Kruskal-Wallis statistic (H') = 14.15

Parametric ANOVA

Constituent: Total Dissolve Solids [TDS] Analysis Run 1/2/2018 10:36 PM View: ANOVA Northeastern LF Client: Geosyntec Data: Northeastern LF

For observations made between 1/25/2017 and 10/4/2017 the parametric analysis of variance test indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 1525

Tabulated F statistic = 4.41 with 1 and 18 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	1.7e9	1	1.7e9	1525
Error Within Groups	2.1e7	18	1140393	
Total	1.8e9	19		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9568, critical = 0.868. Levene's Equality of Variance test passed. Calculated = 3.197, tabulated = 4.41.

Tolerance Limits - Appendix A

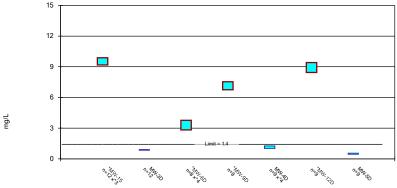
Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 1/2/2018, 10:38 PM

Constituent	Upper Lim.	Lower Lim.	<u>Bg N</u>	<u>Bg Mean</u>	Std. Dev.	<u>%NDs</u>	<u>ND Adj.</u>	Transform	<u>Alpha</u>	Method
Boron (mg/L)	1.596	n/a	20	1.261	0.1194	0	None	No	0.01	Inter
Calcium (mg/L)	1028	n/a	20	379.7	230.8	0	None	No	0.01	Inter
Chloride (mg/L)	14606	n/a	20	n/a	n/a	0	n/a	n/a	0.3585	NP Inter(normality)
Fluoride (mg/L)	3.248	n/a	20	n/a	n/a	55	n/a	n/a	0.3585	NP Inter(normality)
pH, field (SU)	8.28	6.72	18	n/a	n/a	0	n/a	n/a	0.7735	NP Inter(normality)
Sulfate (mg/L)	1632	n/a	20	n/a	n/a	0	n/a	n/a	0.3585	NP Inter(normality)
Total Dissolve Solids [TDS] (mg/L)	23012	n/a	20	n/a	n/a	0	n/a	n/a	0.3585	NP Inter(normality)

Confidence Interval Summary Table - Significant Results

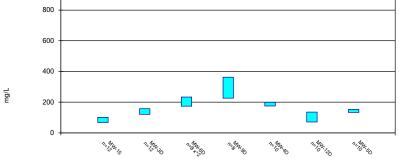
Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 3/6/2019, 11:06 AM

Constituent	Well	Upper Lim.	Lower Lim.	Compliand	<u>e Sig.</u>	<u>N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Boron (mg/L)	MW-15	9.88	9.177	1.4	Yes	12	0	x^3	0.01	Param.
Boron (mg/L)	MW-6D	3.767	2.818	1.4	Yes	8	0	x^4	0.01	Param.
Boron (mg/L)	MW-9D	7.537	6.756	1.4	Yes	8	0	No	0.01	Param.
Boron (mg/L)	MW-12D	9.406	8.445	1.4	Yes	9	0	No	0.01	Param.

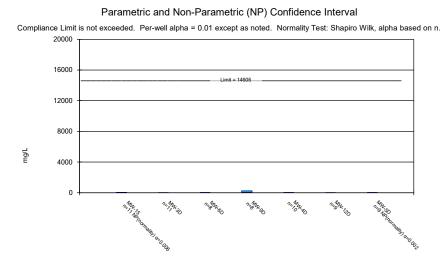

Confidence Interval Summary Table - All Results


Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 3/6/2019, 11:06 AM

Constituent	Well	Uppor Lim	Lower Lim.	Compliance			<u>%NDs</u>	Transform	Alpha	Method
Boron (mg/L)	<u>wen</u> MW-15	<u>Upper Lim.</u> 9.88	<u>20wer 2im.</u> 9.177	1.4	Yes		0	<u>11ansionn</u> x^3	<u>Alpha</u> 0.01	Param.
Boron (mg/L)	MW-3D	0.9067	0.8328	1.4	No	12	0	No	0.01	Param.
Boron (mg/L)	MW-6D	3.767	2.818	1.4	Yes		0	x^4	0.01	Param.
Boron (mg/L)	MW-9D	7.537	6.756	1.4	Yes		0	No	0.01	Param.
Boron (mg/L)	MW-4D	1.262	1.017	1.4	No	9	0	x^4	0.01	Param.
Boron (mg/L)	MW-12D	9.406	8.445	1.4	Yes		0	No	0.01	Param.
Boron (mg/L)	MW-5D	0.5487	0.4442	1.4	No	9	0	No	0.01	Param.
Calcium (mg/L)	MW-15	101	67.59	918	No	12	0	No	0.01	Param.
Calcium (mg/L)	MW-3D	156.8	120.5	918	No	12	0	No	0.01	Param.
Calcium (mg/L)	MW-6D	233	173.9	918	No	8	0	x^2	0.01	Param.
Calcium (mg/L)	MW-9D	362.6	225.6	918	No	8	0	No	0.01	Param.
Calcium (mg/L)	MW-4D	198.2	175	918	No	10	0	No	0.01	Param.
Calcium (mg/L)	MW-12D	135.2	69.95	918	No	10	0	No	0.01	Param.
Calcium (mg/L)	MW-5D	152.5	132.7	918	No	10	0	No	0.01	Param.
Chloride (mg/L)	MW-15	28	15	14606	No	11	0	No	0.006	NP (normality)
Chloride (mg/L)	MW-3D	13.97	11.49	14606	No	11	0	No	0.01	Param.
Chloride (mg/L)	MW-6D	31.72	28.78	14606	No	8	0	No	0.01	Param.
Chloride (mg/L)	MW-9D	247.5	63.23	14606	No	8	0	No	0.01	Param.
Chloride (mg/L)	MW-4D	34.07	21.59	14606	No	10	0	No	0.01	Param.
Chloride (mg/L)	MW-12D	20.8	15.64	14606	No	9	0	No	0.01	Param.
Chloride (mg/L)	MW-5D	30.3	24	14606	No	9	0	No	0.002	NP (normality)
Fluoride (mg/L)	MW-15	1.991	1.774	4	No	11	0	No	0.01	Param.
Fluoride (mg/L)	MW-3D	1	0.7381	4	No	12	50	No	0.01	NP (normality)
Fluoride (mg/L)	MW-6D	1.013	0.6152	4	No	8	25	No	0.01	Param.
Fluoride (mg/L)	MW-9D	2.191	0.37	4	No	8	25	No	0.004	NP (Cohens/xfrm)
Fluoride (mg/L)	MW-4D	1	0.336	4	No	10	70	No	0.011	NP (normality)
Fluoride (mg/L)	MW-12D	2.744	2.07	4	No	10	0	No	0.01	Param.
Fluoride (mg/L)	MW-5D	0.8521	0.5226	4	No	9	0	x^2	0.01	Param.
pH, field (SU)	MW-15	8.412	7.292	8.28	No	10	0	No	0.005	Param.
pH, field (SU)	MW-3D	7.499	6.705	8.28	No	10	0	sqrt(x)	0.005	Param.
pH, field (SU)	MW-6D	7.706	6.599	8.28	No	8	0	No	0.005	Param.
pH, field (SU)	MW-9D	7.5	7.012	8.28	No	8	0	No	0.005	Param.
pH, field (SU)	MW-4D	8.048	7.302	8.28	No	10	0	No	0.005	Param.
pH, field (SU)	MW-12D	9.138	7.78	8.28	No	10	0	No	0.005	Param.
pH, field (SU)	MW-5D	8.215	7.491	8.28	No	10	0	No	0.005	Param.
Sulfate (mg/L)	MW-15	603.5	553.7	1632	No	12	0	No	0.01	Param.
Sulfate (mg/L)	MW-3D	221.9	190	1632	No	12	0	No	0.01	Param.
Sulfate (mg/L)	MW-6D	526.7	504.6	1632	No	8	0	No	0.01	Param.
Sulfate (mg/L)	MW-9D	1259	898.2	1632	No	8	0	No	0.01	Param.
Sulfate (mg/L)	MW-4D	341.1	251.7	1632	No	10	0	No	0.01	Param.
Sulfate (mg/L)	MW-12D	598.9	498	1632	No	9	0	No	0.01	Param.
Sulfate (mg/L)	MW-5D	662	113	1632	No	9	0	No	0.002	NP (normality)
Total Dissolved Solids [TDS] (mg/L)	MW-15	1104	1053	23012	No	12	0	No	0.01	Param.
Total Dissolved Solids [TDS] (mg/L)	MW-3D	759.5	658.5	23012	No	12	0	No	0.01	Param.
Total Dissolved Solids [TDS] (mg/L)	MW-6D	1140	986	23012	No	8	0	No	0.004	NP (normality)
Total Dissolved Solids [TDS] (mg/L)	MW-9D	2717	1527	23012	No	8	0	No	0.01	Param.
Total Dissolved Solids [TDS] (mg/L)	MW-4D	944.8	848.2	23012	No	9	0	x^(1/3)	0.01	Param.
Total Dissolved Solids [TDS] (mg/L)	MW-12D	1098	1035	23012	No	9	0	No	0.01	Param.
Total Dissolved Solids [TDS] (mg/L)	MW-5D	656	621.5	23012	No	8	0	No	0.01	Param.

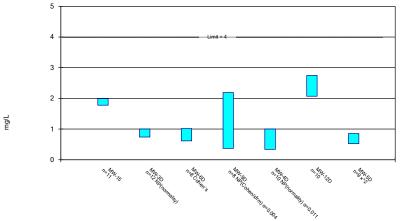

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

Parametric Confidence Interval Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

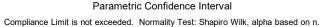

Parametric Confidence Interval

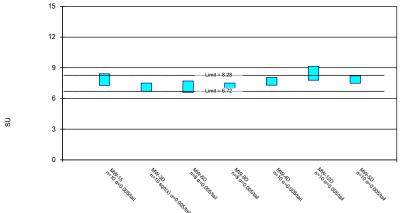
Constituent: Boron Analysis Run 3/6/2019 11:00 AM View: Confidence Intervals - App III Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Calcium Analysis Run 3/6/2019 11:00 AM View: Confidence Intervals - App III Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas[™] v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

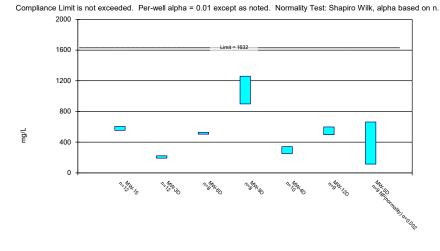
Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Fluoride Analysis Run 3/6/2019 11:00 AM View: Confidence Intervals - App III Northeastern LF Client: Geosyntec Data: Northeastern LF

Parametric and Non-Parametric (NP) Confidence Interval



Constituent: pH, field Analysis Run 3/6/2019 11:00 AM View: Confidence Intervals - App III Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Sulfate Analysis Run 3/6/2019 11:00 AM View: Confidence Intervals - App III Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.12d Sanitas software utilized by Groundwater Stats Consulting. UG

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n. 30000 24000 Limit = 23012 18000 12000 mg/L 6000 0 7. Mr. 80 n. Mark SD 1. 1. 1. 1. S n May 30

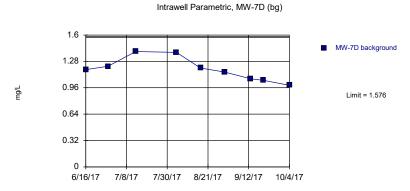
Parametric and Non-Parametric (NP) Confidence Interval

Constituent: Total Dissolved Solids [TDS] Analysis Run 3/6/2019 11:00 AM View: Confidence Intervals - A Northeastern LF Client: Geosyntec Data: Northeastern LF

Intrawell Prediction Limit Summary

Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 7/18/2019, 3:45 PM

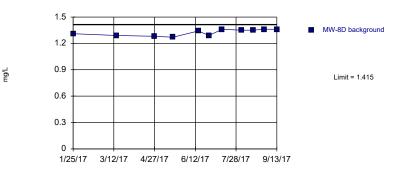
	Northe	astern LF (Client: Geosynt	ec D	Data: Northea	stern LF P	rinted 7/18	/2019, 3:45 PM			
Constituent	Well	Upper Lim.	Lower Lim.	Bg N	Bg Mean	Std. Dev.	<u>%NDs</u>	<u>ND Adj.</u>	Transform	<u>Alpha</u>	Method
Boron (mg/L)	MW-7D	1.576	n/a	9	1.183	0.1416	0	None	No	0.001075	Param Intra 1 of 2
Boron (mg/L)	MW-8D	1.415	n/a	11	1.324	0.03585	0	None	No	0.001075	Param Intra 1 of 2
Boron (mg/L)	MW-15	10.7	n/a	12	9.52	0.482	0	None	No	0.001075	Param Intra 1 of 2
Boron (mg/L)	MW-3D	0.9852	n/a	12	0.8698	0.04713	0	None	No	0.001075	Param Intra 1 of 2
Boron (mg/L)	MW-6D	4.438	n/a	8	37.54	17.06	0	None	x^3	0.001075	Param Intra 1 of 2
Boron (mg/L)	MW-9D	8.223	n/a	8	7.146	0.3683	0	None	No	0.001075	Param Intra 1 of 2
Boron (mg/L)	MW-4D	1.521	n/a	9	1.298	0.3662	0	None	x^2	0.001075	Param Intra 1 of 2
Boron (mg/L)	MW-12D	10.3	n/a	9	8.926	0.4975	0	None	No	0.001075	Param Intra 1 of 2
Boron (mg/L)	MW-5D	0.6465	n/a	9	0.4964	0.05414	0	None	No	0.001075	Param Intra 1 of 2
Calcium (mg/L)	MW-7D	1288	n/a	9	5.235	0.6946	0	None	ln(x)	0.001075	Param Intra 1 of 2
Calcium (mg/L)	MW-8D	854.2	n/a	11	7.815	0.6602	0	None	x^(1/3)	0.001075	Param Intra 1 of 2
Calcium (mg/L)	MW-15	136.4	n/a	12	84.28	21.28	0	None	No	0.001075	Param Intra 1 of 2
Calcium (mg/L)	MW-3D	195.3	n/a	12	138.7	23.13	0	None	No	0.001075	Param Intra 1 of 2
Calcium (mg/L)	MW-6D	294.6	n/a	8	203.5	31.18	0	None	No	0.001075	Param Intra 1 of 2
Calcium (mg/L)	MW-9D	483	n/a	8	294.1	64.61	0	None	No	0.001075	Param Intra 1 of 2
Calcium (mg/L)	MW-4D	220.6	n/a	10	186.6	12.99	0	None	No	0.001075	Param Intra 1 of 2
Calcium (mg/L)	MW-12D	198.4	n/a	10	102.6	36.57	0	None	No	0.001075	Param Intra 1 of 2
Calcium (mg/L)	MW-5D	171.6	n/a	10	142.6	11.06	0	None	No	0.001075	Param Intra 1 of 2
Chloride (mg/L)	MW-7D	890	n/a	9	355.4	192.9	0	None	No	0.001075	Param Intra 1 of 2
Chloride (mg/L)	MW-8D	14942	n/a	11	11986	1166	0	None	No	0.001075	Param Intra 1 of 2
Chloride (mg/L)	MW-15	78	n/a	11	n/a	n/a	0	n/a	n/a	0.01276	NP Intra (normality) 1 of 2
Chloride (mg/L)	MW-3D	16.5	n/a	11	12.73	1.489	0	None	No	0.001075	Param Intra 1 of 2
Chloride (mg/L)	MW-6D	34.31	n/a	8	30.25	1.389	0	None	No	0.001075	Param Intra 1 of 2
Chloride (mg/L)	MW-9D	409.4	n/a	8	155.4	86.93	0	None	No	0.001075	Param Intra 1 of 2
Chloride (mg/L)	MW-4D	46.16	n/a	10	27.83	6.996	0	None	No	0.001075	Param Intra 1 of 2
Chloride (mg/L)	MW-12D	25.63	n/a	9	18.22	2.671	0	None	No	0.001075	Param Intra 1 of 2
Chloride (mg/L)	MW-5D	35.32	n/a	9	27.06	2.981	0	None	No	0.001075	Param Intra 1 of 2
Fluoride (mg/L)	MW-7D	4.146	n/a	9	1.818	0.8399	11.11	None	No	0.001075	Param Intra 1 of 2
Fluoride (mg/L)	MW-8D	1	n/a	11	n/a	n/a	90.91	n/a	n/a	0.01276	NP Intra (NDs) 1 of 2
Fluoride (mg/L)	MW-15	2.212	n/a	11	1.883	0.1298	0	None	No	0.001075	Param Intra 1 of 2
Fluoride (mg/L)	MW-3D	1	n/a	12	n/a	n/a	50	n/a	n/a	0.01077	NP Intra (normality) 1 of 2
Fluoride (mg/L)	MW-6D	0.9674	n/a	8	0.7193	0.08487	25	Kaplan-Meier	No	0.001075	Param Intra 1 of 2
Fluoride (mg/L)	MW-9D	2.44	n/a	8	0.9091	0.5239	25	Kaplan-Meier	No	0.001075	Param Intra 1 of 2
Fluoride (mg/L)	MW-4D	1	n/a	10	n/a	n/a	70	n/a	n/a	0.01476	NP Intra (NDs) 1 of 2
Fluoride (mg/L)	MW-12D	3.398	n/a	10	2.407	0.3782	0	None	No	0.001075	Param Intra 1 of 2
Fluoride (mg/L)	MW-5D	1.237	n/a	9	0.6811	0.2004	0	None	No	0.001075	Param Intra 1 of 2
pH, field (SU)	MW-7D	8.636	6.013	9	7.324	0.4731	0	None	No	0.0005373	Param Intra 1 of 2
pH, field (SU)	MW-8D	7.469	6.674	9	7.071	0.1434	0	None	No	0.0005373	Param Intra 1 of 2
pH, field (SU)	MW-15	9.279	6.425	10	7.852	0.5446	0	None	No	0.0005373	Param Intra 1 of 2
pH, field (SU)	MW-3D	8.127	6.075	10	7.101	0.3915	0	None	No	0.0005373	Param Intra 1 of 2
pH, field (SU)	MW-6D	8.46	5.845	8	7.153	0.4475	0	None	No	0.0005373	Param Intra 1 of 2
pH, field (SU)	MW-9D	7.833	6.68	8	7.256	0.1972	0	None	No	0.0005373	Param Intra 1 of 2
pH, field (SU)	MW-4D	8.626	6.724	10	7.675	0.3629	0	None	No	0.0005373	Param Intra 1 of 2
pH, field (SU)	MW-12D	10.19	6.726	10	8.459	0.6611	0	None	No	0.0005373	Param Intra 1 of 2
pH, field (SU)	MW-5D	8.777	6.929	10	7.853	0.3525	0	None	No	0.0005373	Param Intra 1 of 2
Sulfate (mg/L)	MW-3D	2044	0.929 n/a	9	881.6	419.4	0	None	No	0.001075	Param Intra 1 of 2
Sulfate (mg/L)	MW-8D	172.4		9 11	109.6	24.76	0	None		0.001075	Param Intra 1 of 2
Sulfate (mg/L)	MW-15	656.3	n/a	11	578.6	24.76 31.72	0	None	No No	0.001075	Param Intra 1 of 2
Sulfate (mg/L)		255.7	n/a		205.9						
	MW-3D		n/a	12		20.34	0	None	No	0.001075	Param Intra 1 of 2
Sulfate (mg/L)	MW-6D	546	n/a	8	515.6	10.41	0	None	No	0.001075	Param Intra 1 of 2


Intrawell Prediction Limit Summary

Northeastern LF Client: Geosyntec Data: Northeastern LF Printed 7/18/2019, 3:45 PM

Constituent	Well	Upper Lim.	Lower Lim.	Bg	N <u>Bg Mean</u>	Std. Dev.	<u>%NDs</u>	ND Adj.	Transform	<u>Alpha</u>	Method
Sulfate (mg/L)	MW-9D	1576	n/a	8	1079	170.3	0	None	No	0.001075	Param Intra 1 of 2
Sulfate (mg/L)	MW-4D	427.6	n/a	10	296.4	50.08	0	None	No	0.001075	Param Intra 1 of 2
Sulfate (mg/L)	MW-12D	693.2	n/a	9	548.4	52.22	0	None	No	0.001075	Param Intra 1 of 2
Sulfate (mg/L)	MW-5D	159.6	n/a	8	130.4	10.01	0	None	No	0.001075	Param Intra 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-7D	4809	n/a	9	2690	764.7	0	None	No	0.001075	Param Intra 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-8D	24623	n/a	11	21432	1259	0	None	No	0.001075	Param Intra 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-15	1159	n/a	12	1079	32.67	0	None	No	0.001075	Param Intra 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-3D	866.7	n/a	12	709	64.4	0	None	No	0.001075	Param Intra 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-6D	1173	n/a	8	1037	46.63	0	None	No	0.001075	Param Intra 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-9D	3763	n/a	8	2122	561.5	0	None	No	0.001075	Param Intra 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-4D	1037	n/a	9	896.4	50.69	0	None	No	0.001075	Param Intra 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-12D	1158	n/a	9	1067	32.79	0	None	No	0.001075	Param Intra 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-5D	686.3	n/a	8	638.8	16.28	0	None	No	0.001075	Param Intra 1 of 2

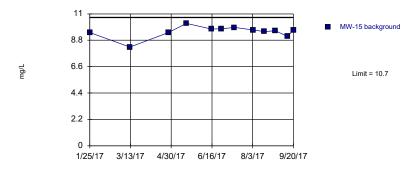
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Prediction Limit Intrawell Parametric, MW-8D (bg)

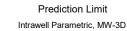
Prediction Limit

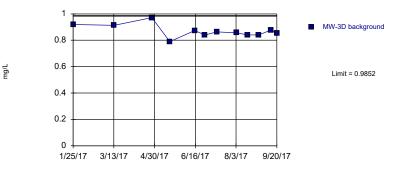
Background Data Summary: Mean=1.183, Std. Dev.=0.1416, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9293, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

> Constituent: Boron Analysis Run 7/18/2019 3:40 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF



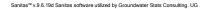
Background Data Summary: Mean=1.324, Std. Dev.=0.03585, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8431, critical = 0.792. Kappa = 2.535 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

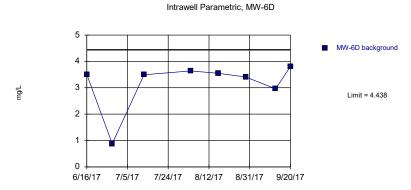

> Constituent: Boron Analysis Run 7/18/2019 3:40 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-15

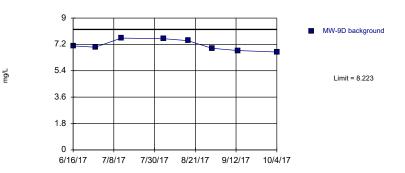
Background Data Summary: Mean=9.52, Std. Dev.=0.482, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.831, critical = 0.805. Kappa = 2.449 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value. Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG




Background Data Summary: Mean=0.8698, Std. Dev.=0.04713, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.938, critical = 0.805. Kappa = 2.449 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

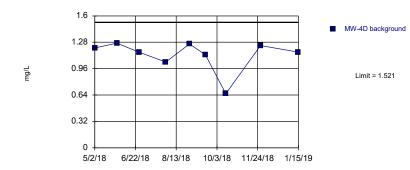
Constituent: Boron Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

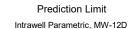


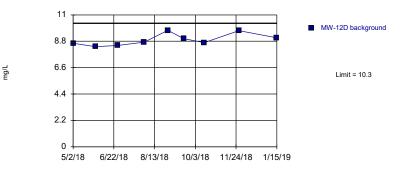
Prediction Limit

Background Data Summary (based on cube transformation): Mean=37.54, Std. Dev.=17.06, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.827, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.00157. Assumes 1 future value.



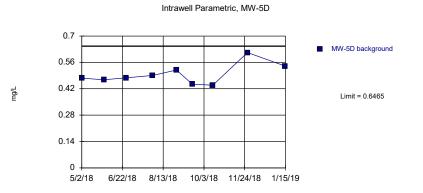
Background Data Summary: Mean=7.146, Std. Dev.=0.3683, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9073, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.


Constituent: Boron Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF Constituent: Boron Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

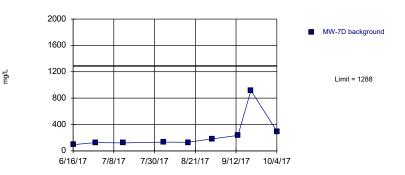
Prediction Limit Intrawell Parametric, MW-4D

Background Data Summary (based on square transformation): Mean=1.298, Std. Dev.=0.3662, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7945, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value. Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG



Background Data Summary: Mean=8.926, Std. Dev.=0.4975, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8856, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

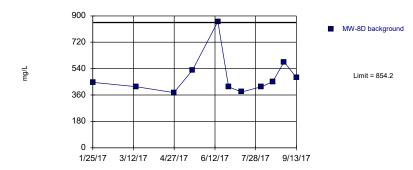
Constituent: Boron Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit

Prediction Limit

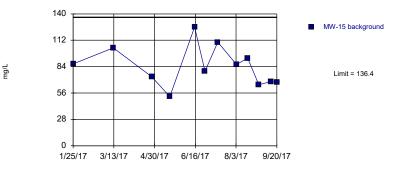
Background Data Summary: Mean=0.4964, Std. Dev.=0.05414, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8928, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.



Background Data Summary (based on natural log transformation): Mean=5.235, Std. Dev.=0.6946, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8257, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.0075. Assumes 1 future value.

Constituent: Boron Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF Constituent: Calcium Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

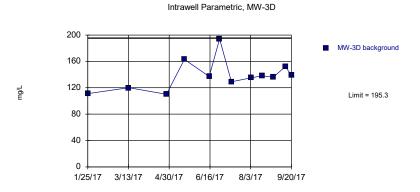
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Prediction Limit Intrawell Parametric, MW-8D (bg)

Background Data Summary (based on cube root transformation): Mean=7.815, Std. Dev.=0.6602, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7955, critical = 0.792. Kappa = 2.535 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.00175. Assumes 1 future value.

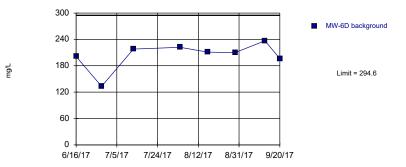
Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-15



Background Data Summary: Mean=84.28, Std. Dev.=21.28, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9679, critical = 0.805. Kappa = 2.449 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Prediction Limit

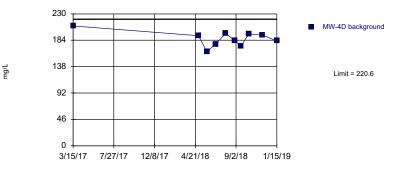
Prediction Limit

Background Data Summary: Mean=138.7, Std. Dev.=23.13, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8977, critical = 0.805. Kappa = 2.449 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Background Data Summary: Mean=203.5, Std. Dev.=31.18, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8086, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

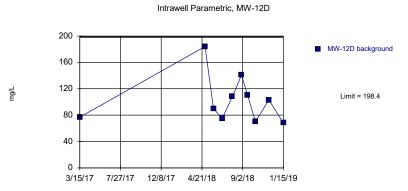
Constituent: Calcium Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Calcium Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-9D

Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

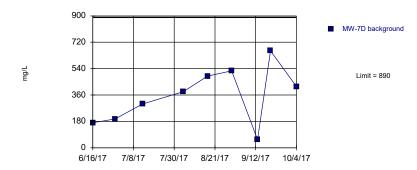

Prediction Limit Intrawell Parametric, MW-4D

Background Data Summary: Mean=186.6, Std. Dev.=12.99, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9763, critical = 0.781. Kappa = 2.621 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Background Data Summary: Mean=294.1, Std. Dev.=64.61, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9094, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

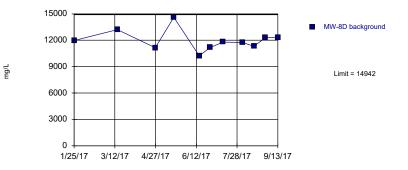
Prediction Limit

Background Data Summary: Mean=102.6, Std. Dev.=36.57, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8609, critical = 0.781. Kappa = 2.621 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.



Background Data Summary: Mean=142.6, Std. Dev.=11.06, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9089, critical = 0.781. Kappa = 2.621 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

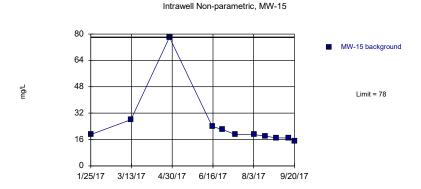
Constituent: Calcium Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF Constituent: Calcium Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-7D (bg)

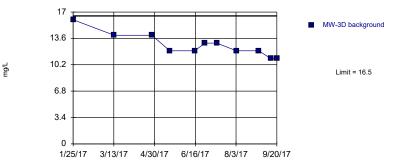
Background Data Summary: Mean=355.4, Std. Dev.=192.9, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.983, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value. Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-8D (bg)



Background Data Summary: Mean=11986, Std. Dev.=1166, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9298, critical = 0.792. Kappa = 2.535 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Prediction Limit

Intrawell Parametric, MW-3D

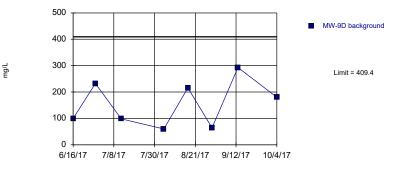
Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 11 background values. Well-constituent pair annual alpha = 0.01276 (1 of 2). Assumes 1 future value.

Background Data Summary: Mean=12.73, Std. Dev.=1.489, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8965, critical = 0.792. Kappa = 2.535 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: Chloride Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

Prediction Limit

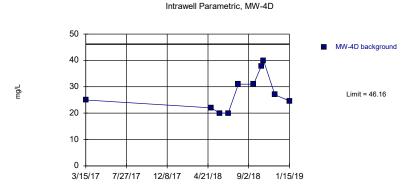

Constituent: Chloride Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Background Data Summary: Mean=30.25, Std. Dev.=1.389, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9305, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

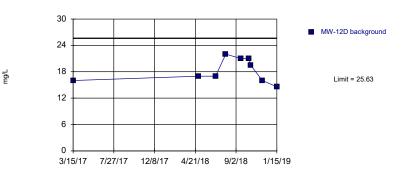
Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-9D


Background Data Summary: Mean=155.4, Std. Dev.=86.93, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9085, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

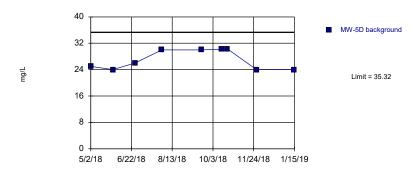
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Prediction Limit

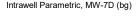
Prediction Limit

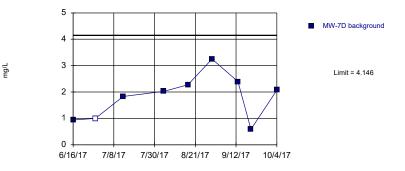
Background Data Summary: Mean=27.83, Std. Dev.=6.996, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.912, critical = 0.781. Kappa = 2.621 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.



Background Data Summary: Mean=18.22, Std. Dev.=2.671, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9069, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: Chloride Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF Constituent: Chloride Analysis Run 7/18/2019 3:41 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

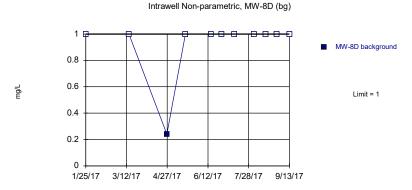

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Prediction Limit Intrawell Parametric, MW-5D

Background Data Summary: Mean=27.06, Std. Dev.=2.981, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.766, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value. Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

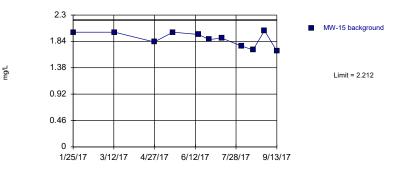
Prediction Limit





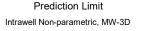
Background Data Summary: Mean=1.818, Std. Dev.=0.8399, n=9, 11.11% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9474, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value. Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

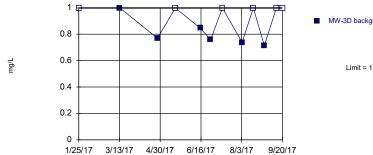
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Prediction Limit

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 11 background values. 90.91% NDs. Well-constituent pair annual alpha = 0.02537. Individual comparison alpha = 0.01276 (1 of 2). Assumes 1 future value.

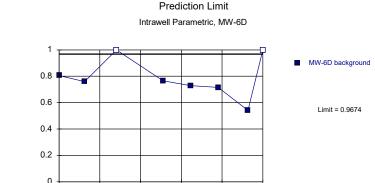



Background Data Summary: Mean=1.883, Std. Dev.=0.1298, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8919, critical = 0.792. Kappa = 2.535 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: Fluoride Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Fluoride Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



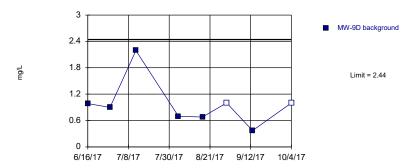
MW-3D background

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

mg/L

Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.7193, Std. Dev.=0.08487, n=8, 25% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9023, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

6/16/17 7/5/17 7/24/17 8/12/17 8/31/17 9/20/17

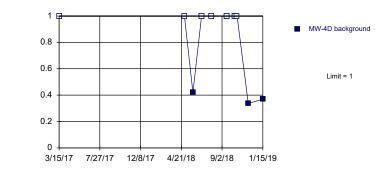

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. 50% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2). Assumes 1 future value.

> Constituent: Fluoride Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: Fluoride Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit Intrawell Parametric, MW-9D



Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.9091, Std. Dev.=0.5239, n=8, 25% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7886, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.00175. Assumes 1 future value. Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

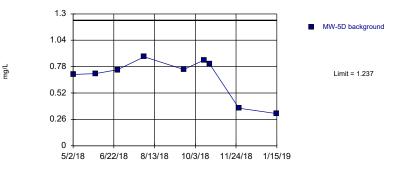
mg/L

Prediction Limit

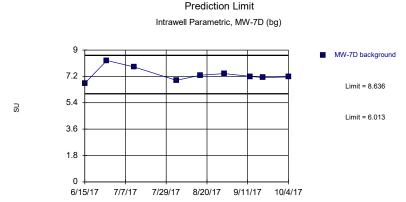
Intrawell Non-parametric, MW-4D

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 10 background values. 70% NDs. Well-constituent pair annual alpha = 0.0293. Individual comparison alpha = 0.01476 (1 of 2). Assumes 1 future value.

Constituent: Fluoride Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF Constituent: Fluoride Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-12D


Background Data Summary: Mean=2.407, Std. Dev.=0.3782, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8943, critical = 0.781. Kappa = 2.621 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value. Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

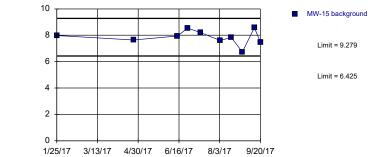
Prediction Limit Intrawell Parametric, MW-5D

Background Data Summary: Mean=0.6811, Std. Dev.=0.2004, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8042, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW-8D (bg)

Background Data Summary: Mean=7.324, Std. Dev.=0.4731, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9129, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Background Data Summary: Mean=7.071, Std. Dev.=0.1434, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.956, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

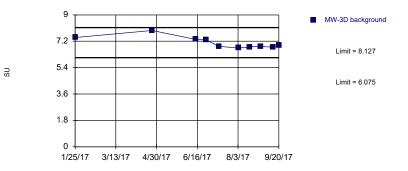

Constituent: pH, field Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

Constituent: pH, field Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

SU


Prediction Limit Intrawell Parametric, MW-15

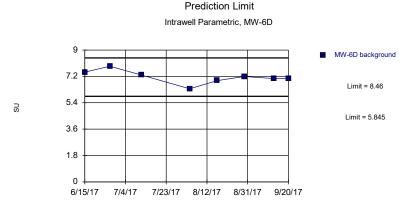


Limit = 9.279

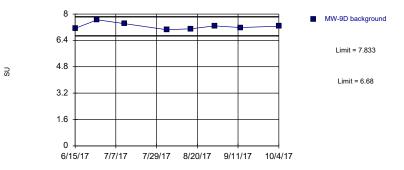
Limit = 6.425

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Background Data Summary: Mean=7.101, Std. Dev.=0.3915, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8416, critical = 0.781. Kappa = 2.621 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

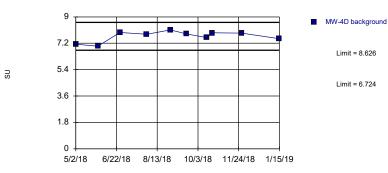

Background Data Summary: Mean=7.852, Std. Dev.=0.5446, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9476, critical = 0.781. Kappa = 2.621 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

> Constituent: pH, field Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

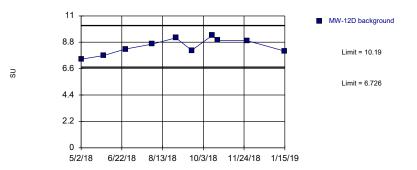
Prediction Limit

Background Data Summary: Mean=7.153, Std. Dev.=0.4475, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.0684, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.



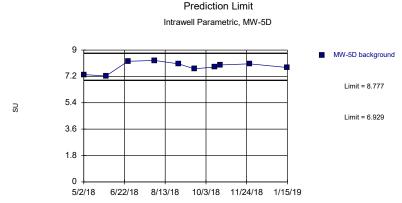
Background Data Summary: Mean=7.256, Std. Dev.=0.1972, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9107, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

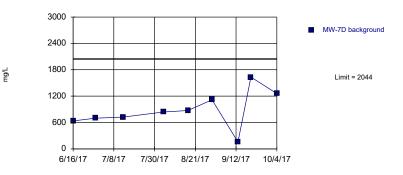
Constituent: pH, field Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF Constituent: pH, field Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-4D

Background Data Summary: Mean=7.675, Std. Dev.=0.3629, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8836, critical = 0.781. Kappa = 2.621 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value. Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

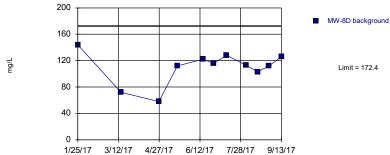



Background Data Summary: Mean=8.459, Std. Dev.=0.6611, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9542, critical = 0.781. Kappa = 2.621 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

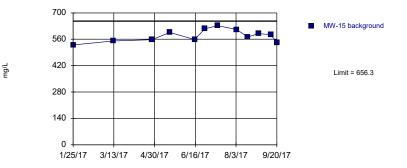
Prediction Limit Intrawell Parametric, MW-7D (bg)

Background Data Summary: Mean=7.853, Std. Dev.=0.3525, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9142, critical = 0.781. Kappa = 2.621 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.


Background Data Summary: Mean=881.6, Std. Dev.=419.4, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9691, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

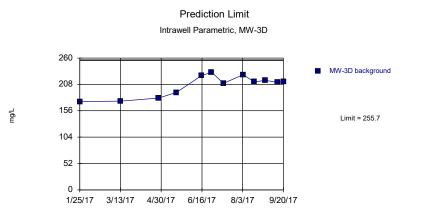
Constituent: pH, field Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

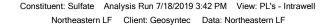
Constituent: Sulfate Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

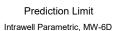
Prediction Limit Intrawell Parametric, MW-8D (bg)

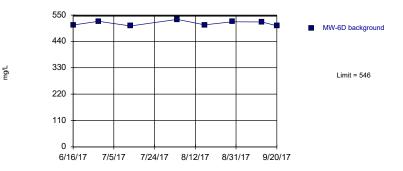
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Prediction Limit Intrawell Parametric, MW-15


Background Data Summary: Mean=578.6, Std. Dev.=31.72, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.971, critical = 0.805. Kappa = 2.449 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

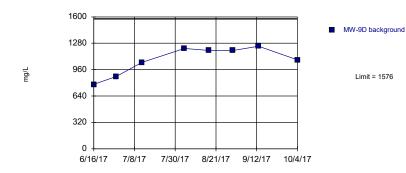
Background Data Summary: Mean=109.6, Std. Dev.=24.76, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8848, critical = 0.792. Kappa = 2.535 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.


Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG



Background Data Summary: Mean=205.9, Std. Dev.=20.34, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8886, critical = 0.805. Kappa = 2.449 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG



Background Data Summary: Mean=515.6, Std. Dev.=10.41, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8968, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

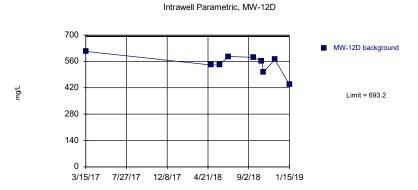
> Constituent: Sulfate Analysis Run 7/18/2019 3:42 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-9D

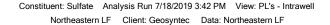
Background Data Summary: Mean=1079, Std. Dev.=170.3, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8677, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value. Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

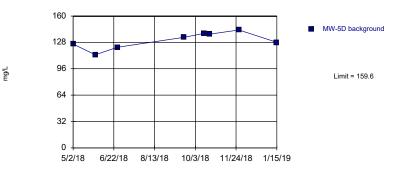
Prediction Limit Intrawell Parametric, MW-4D



Background Data Summary: Mean=296.4, Std. Dev.=50.08, n=10. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.855, critical = 0.781. Kappa = 2.621 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Prediction Limit

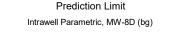
Prediction Limit

Background Data Summary: Mean=548.4, Std. Dev.=52.22, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9111, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Background Data Summary: Mean=130.4, Std. Dev.=10.01, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9604, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

> Constituent: Sulfate Analysis Run 7/18/2019 3:43 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

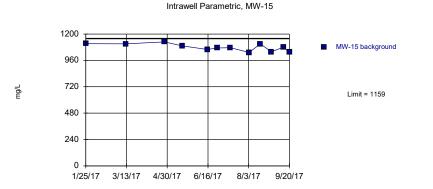

Prediction Limit Intrawell Parametric, MW-7D (bg)

Background Data Summary: Mean=2690, Std. Dev.=764.7, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9436, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

6/16/17 7/8/17 7/30/17 8/21/17 9/12/17 10/4/17

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

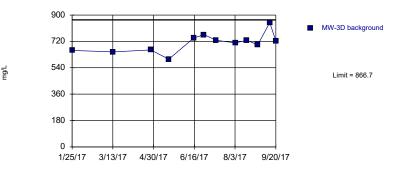
mg/L


Background Data Summary: Mean=21432, Std. Dev.=1259, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9319, critical = 0.792. Kappa = 2.535 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: Total Dissolved Solids [TDS] Analysis Run 7/18/2019 3:43 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

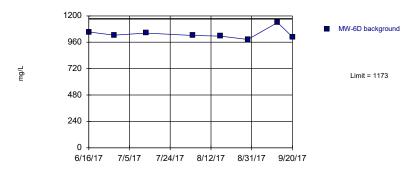
Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG


Prediction Limit Intrawell Parametric, MW-3D

Prediction Limit

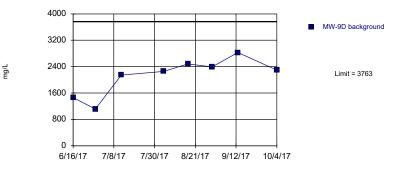
Background Data Summary: Mean=1079, Std. Dev.=32.67, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9324, critical = 0.805. Kappa = 2.449 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: Total Dissolved Solids [TDS] Analysis Run 7/18/2019 3:43 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF



Background Data Summary: Mean=709, Std. Dev.=64.4, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9634, critical = 0.805. Kappa = 2.449 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

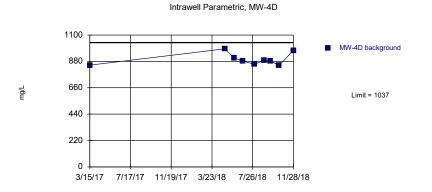
Constituent: Total Dissolved Solids [TDS] Analysis Run 7/18/2019 3:43 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF


Sanitas[™] v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-6D

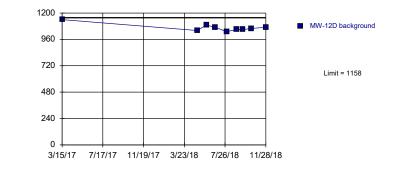
Background Data Summary: Mean=1037, Std. Dev.=46.63, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.835, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value. Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

Background Data Summary: Mean=2122, Std. Dev.=561.5, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8964, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.


Constituent: Total Dissolved Solids [TDS] Analysis Run 7/18/2019 3:43 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

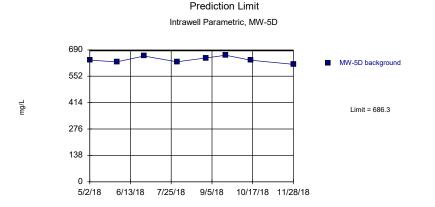
Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG

mg/L

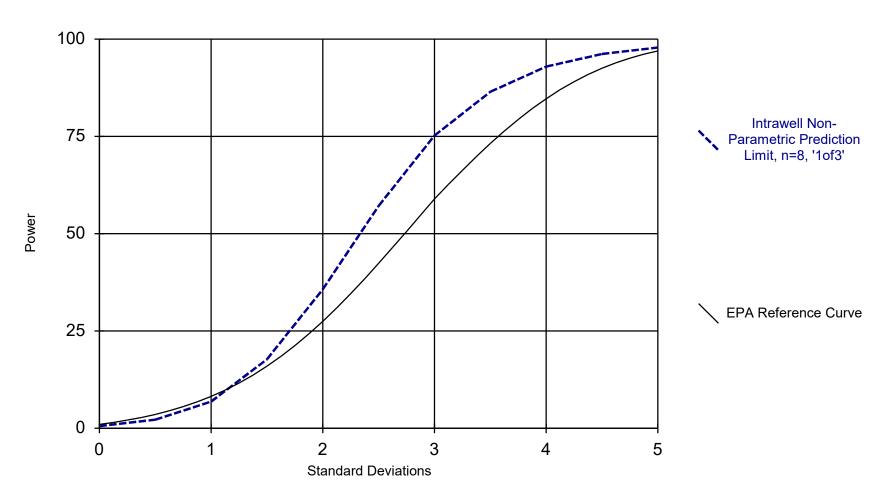

Prediction Limit

Intrawell Parametric, MW-12D

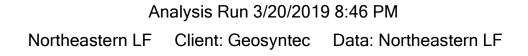
Prediction Limit

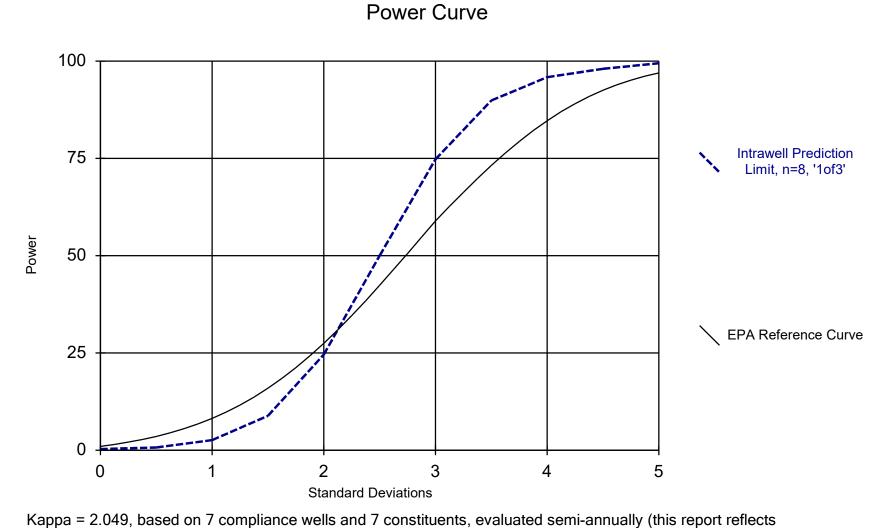

Background Data Summary: Mean-896.4, Std. Dev.=50.69, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8544, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Background Data Summary: Mean=1067, Std. Dev.=32.79, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8768, critical = 0.764. Kappa = 2.772 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

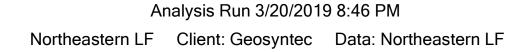

Constituent: Total Dissolved Solids [TDS] Analysis Run 7/18/2019 3:43 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF Constituent: Total Dissolved Solids [TDS] Analysis Run 7/18/2019 3:43 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF

Sanitas™ v.9.6.19d Sanitas software utilized by Groundwater Stats Consulting. UG




Background Data Summary: Mean=638.8, Std. Dev.=16.28, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9519, critical = 0.749. Kappa = 2.923 (c=7, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001075. Assumes 1 future value.

Constituent: Total Dissolved Solids [TDS] Analysis Run 7/18/2019 3:43 PM View: PL's - Intrawell Northeastern LF Client: Geosyntec Data: Northeastern LF



Power Curve

annual total).

941 Chatham Lane, Suite 103 Columbus, Ohio 43212 PH 614.468.0415 FAX 614.468.0416 www.geosyntec.com

Memorandum

Date:	January 8, 2020
To:	David Miller (AEP)
Copies to:	Jill Parker-Witt (AEP)
From:	Allison Kreinberg and Bruce Sass, Ph.D. (Geosyntec)
Subject:	Evaluation of Detection Monitoring Data at Northeastern Plant's Landfill (LF)

In accordance with Oklahoma Department of Environmental Quality rules regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (OAC 252.517) detection monitoring events were completed on August 26, 2019 and December 3, 2019 at the Landfill (LF), an existing CCR unit at the Northeastern Power Plant located in Oologah, Oklahoma.

Background values for the LF were previously calculated for wells MW-3D, MW-6D, MW-9D, MW-12D, and MW-15 in January 2018. After a minimum of four detection monitoring events, the results of those events were compared to the existing background dataset, and the background dataset was updated as appropriate. Revised upper prediction limits (UPLs) were calculated for each Appendix A parameter to represent background values. Lower prediction limits (LPLs) were also calculated for pH. Details on the calculation of these revised background values are described in Geosyntec's *Statistical Analysis Summary* report, dated January 8, 2020. After a revision to the well network, background values for MW-4D, and MW-5D, and MW-12D were calculated in July 2019.

To achieve an acceptably high statistical power while maintaining a site-wide false-positive rate (SWFPR) of 10% per year or less, prediction limits were calculated based on a one-of-two retesting procedure. With this procedure, a statistically significant increase (SSI) is only concluded if both samples in a series of two exceeds the UPL. In practice, if the initial result did not exceed the UPL, a second sample was not collected or analyzed.

Evaluation of Detection Monitoring Data – Northeastern LF January 8, 2020 Page 2

Detection monitoring results and the relevant background values are compared in Table 1. No SSIs were observed at the Northeastern LF CCR unit, and as a result the Northeastern LF will remain in detection monitoring.

The statistical analysis was conducted within 90 days of completion of sampling and analysis in accordance with OAC 252:517-9-4(h)(6). A certification of these statistics by a qualified professional engineer is provided in Attachment A.

Table 1: Detection Monitoring Data Evaluation Northeastern Plant - Landfill

Description	T L * 4	Duration	MW	7-3D	MW-4D	MW	7-5D	MW	7-6D	MW	√-9D	MW-12D	MW	V-15
Parameter	Units	Description	8/26/2019	12/3/2019	8/26/2019	8/26/2019	12/3/2019	8/26/2019	12/3/2019	8/26/2019	12/3/2019	8/26/2019	8/26/2019	12/3/2019
Boron	ma/I	Intrawell Background Value (UPL)	1.	07	1.52	0.647		4.′	73	8.	00	10.3	10).6
DOIOII	mg/L	Detection Monitoring Data	0.979	-	0.987	0.568	-	2.88	-	6.95	-	8.9	8.28	-
Calcium	mg/L	Intrawell Background Value (UPL)	18	81	221	172		34	12	4:	56	198	19	96
Calcium	IIIg/L	Detection Monitoring Data	130	-	184	146	-	181	-	136	-	96.3	119	-
Chloride	mg/L	Intrawell Background Value (UPL)	16	.0	46.2	35.3		34	.1	40	03	25.6	10	04
Ciliolide	iiig/L	Detection Monitoring Data	12.0	-	23.0	24.0	-	13.0	-	24.0	-	14.0	20.0	-
Fluoride	mg/L	Intrawell Background Value (UPL)	1.	09	1.00	1.24		1.2	24	2.	18	3.40	2.4	49
Tuonae	IIIg/L	Detection Monitoring Data	0.608	-	0.171	0.412	-	0.634	-	0.758	-	1.60	1.25	-
		Intrawell Background Value (UPL)	8.	.2	8.6	8.8		8.	1	7	.7	10.2	9	.0
pН	SU	Intrawell Background Value (LPL)	6.	.3	6.7	6.9		6.	3	6	.8	6.7	6	.7
		Detection Monitoring Data	8.5	7.4	8.1	9.8	7.2	8.6	7.5	8.8	7.6	8.7	10.5	7.7
Sulfate	mg/L	Intrawell Background Value (UPL)	24	18	428	160		58	35	16	540	720	64	42
Sullate	IIIg/L	Detection Monitoring Data	181	-	274	134	-	401	-	526	-	540	587	-
TDS	mg/L	Intrawell Background Value (UPL)	83	32	1040	686		11	80	34	80	1160	11	60
105	iiig/L	Detection Monitoring Data	686	-	830	670	-	1040	-	1080	-	1020	1070	-

<u>Notes</u> UPL: Upper prediction limit

LPL: Lower prediction limit

TDS: Total dissolved solids

Bold values exceed the background value.

Background values are shaded gray.

ATTACHMENT A Certification by Qualified Professional Engineer

CERTIFICATION BY QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected statistical method, described above and in the January 8, 2020 *Statistical Analysis Summary* report, is appropriate for evaluating the groundwater monitoring data for the Northeastern LF CCR management area and that the requirements of OAC 252:517-9-4(g) have been met.

DAVID ANTHONY MILLER

Printed Name of Licensed Professional Engineer

David Anthony Milles

Signature

26057

OKLAHOMA

License Number

Licensing State

01.23.2020

Date

Alternate source demonstrations are included in this appendix. Alternate sources are sources or reasons that explain that statistically significant increases over background or statistically significant levels above the groundwater protection standard are not attributable to the CCR unit.

ALTERNATIVE SOURCE DEMONSTRATION REPORT STATE CCR RULE

Northeastern Plant Landfill Oologah, Oklahoma

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

engineers | scientists | innovators

941 Chatham Lane Suite 103 Columbus, OH 43221

January 31, 2019

CHA8462

TABLE OF CONTENTS

SECTION 1	Introduction and Summary	.1-1
1.1	CCR Rule Requirements	.1-1
1.2	Demonstration of Alternative Sources	.1-2
SECTION 2	Alternative Source Demonstration	.2-1
2.1	Proposed Alternative Source	.2-1
2.2	Sampling Requirements	.2-1
SECTION 3	Conclusions and Recommendations	.3-1
SECTION 4	References	.4-1

LIST OF TABLES

Table 1Detection Monitoring Data Evaluation

LIST OF FIGURES

Figure 1 Fluoride Time Series Graph at MW-15

LIST OF ACRONYMS AND ABBREVIATIONS

- AEP American Electric Power
- ASD Alternative Source Demonstration
- CCR Coal Combustion Residuals
- EPRI Electric Power Research Institute
- LPL Lower Prediction Limit
- OAC Oklahoma Administrative Code
- ODEQ Oklahoma Department of Environmental Quality
- QA Quality Assurance
- QC Quality Control
- SSI Statistically Significant Increase
- UPL Upper Prediction Limit
- USEPA United States Environmental Protection Agency

INTRODUCTION AND SUMMARY

Eight to twelve background monitoring events were previously conducted at the Northeastern Landfill. Upper prediction limits (UPLs) were calculated for each Appendix A parameter to represent background values using the results of these eight to twelve events. In addition, a lower prediction limit (LPL) was also calculated for pH. A one-of-two retesting procedure was employed for all wells at the Northeastern Landfill. Using this procedure, a statistically significant increase (SSI) is concluded only if both samples in a series of two exceed the UPL and, for pH, are lower than the LPL. If the initial result did not exceed a prediction limit, a second sample was not collected. These prediction limits were recalculated using intrawell statistics to reflect natural variability between wells, as described in the Alternate Source Demonstration (ASD) report prepared on April 13, 2018 (Geosyntec, 2018).

The first semi-annual detection monitoring event was performed in May 2018 (initial sampling event) and October 2018 (verification sampling event), and the results were compared to the calculated prediction limits. An SSI was identified for fluoride at MW-15 using intrawell comparisons following the procedure indicated in the April 2018 ASD report. A summary of the detection monitoring analytical results and the calculated prediction limits to which they were compared is presented in Table 1.

1.1 <u>CCR Rule Requirements</u>

Oklahoma Department of Environmental Quality (ODEQ) regulations regarding detection monitoring programs for coal combustion residuals (CCR) landfills and surface impoundments allow the following evaluation process when an SSI has been identified (OAC 252:517-9-5(e)(2)):

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report.

The first semi-annual sampling event was conducted on May 30, 2018 at the Northeastern Landfill to evaluate for SSIs over background limits. As part of the one-of-two retesting scheme, well MW-15 was resampled for fluoride on October 15, 2018 and an SSI was identified. Pursuant to OAC 252:517-9-5(e)(2), Geosyntec Consultants, Inc. (Geosyntec) has prepared this Alternative Source Demonstration (ASD) report, which documents that the SSI should not be attributed to the Northeastern Landfill.

1.2 Demonstration of Alternative Sources

An evaluation was completed to assess possible alternative sources to which the identified SSI could be attributed. Alternative sources were identified amongst five types, based on methodology provided by EPRI (2017):

- ASD Type I: Sampling Causes;
- ASD Type II: Laboratory Causes;
- ASD Type III: Statistical Evaluation Causes;
- ASD Type IV: Natural Variation; and
- ASD Type V: Alternative Sources.

A demonstration was conducted to show that the increases in constituent concentrations were based on a Type II cause at MW-15 and not by a release from the Northeastern Landfill.

ALTERNATIVE SOURCE DEMONSTRATION

The State CCR Rule allows the owner or operator 90 days from the determination of an SSI to demonstrate that a source other than the CCR unit caused the SSI. Identified SSIs, evaluation methodology, and the proposed alternative source are described below.

2.1 **Proposed Alternative Source**

Initial review of site geochemistry, site historical data, and laboratory QA/QC did not identify ASDs due to a Type I issue (sampling causes). As described below, the SSI was attributed to variation in the laboratory results, which is a Type II issue.

Following the revision to intrawell statistical techniques, the calculated UPL for fluoride at MW-15 is 2.24 milligrams per liter (mg/L). Both the initial and verification sampling results for the first semi-annual detection monitoring event in 2018 were above the UPL, with reported concentrations of 2.33 mg/L and 2.27 mg/L, respectively. The samples were analyzed using USEPA Method 300.0, which prescribes $\pm 10\%$ variation as the daily calibration verification standard acceptance criteria (USEPA, 1993). Because both reported concentrations are within 10% (4% and 1.3% respectively) of the calculated UPL, the variations observed, although above the UPL, are likely due to the acceptable variation in the analytical procedure.

The second semi-annual sampling event was conducted on October 22, 2018. The reported fluoride concentration for the sample from well MW-15 was 2.17 mg/L, which is below the calculated UPL. Based on the three results for MW-15 during the 2018 groundwater monitoring events, a positive trend is not demonstrated for fluoride. Additionally, no other Appendix A exceedances were observed for MW-15 during the first semi-annual event. Thus, the observed fluoride concentrations during the first semi-annual event are not considered indicative of a release from the Landfill and are instead likely due to acceptable variation in the laboratory procedure and reporting results.

2.2 <u>Sampling Requirements</u>

As the ASD described above supports the position that the identified SSI is not due to a release from the Northeastern Landfill, the unit will remain in the detection monitoring program. Groundwater at the unit will continue to be sampled for Appendix A parameters on a semi-annual basis.

CONCLUSIONS AND RECOMMENDATIONS

The preceding information serves as the ASD prepared in accordance with OAC 252:517-9-4(e)(2) and supports the position that the SSI in fluoride for MW-15 observed during the first semi-annual sampling event in 2018 was not due to a release from the Northeastern Landfill. The observed SSI was, instead, attributed to allowable variation in the laboratory calibration standard. Therefore, no further action is warranted, and the Northeastern Landfill will remain in the detection monitoring program. Certification of this ASD by a qualified professional engineer is provided in Attachment A.

REFERENCES

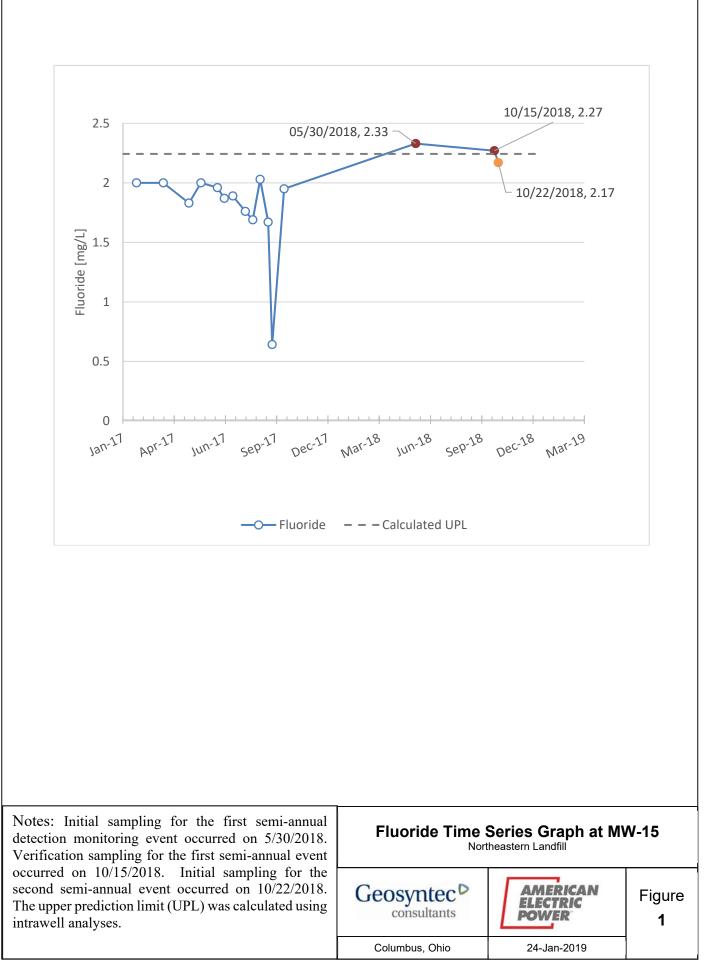
- AEP, 2017. Statistical Analysis Plan Northeastern Power Station. Oologah, Oklahoma. January 2017.
- EPRI, 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Site. 3002010920. October 2017.
- Geosyntec Consultants, 2018. Alternative Source Demonstration Report Federal CCR Rule. Northeastern Plant Landfill. April.
- USEPA, 1993. Method 300.0 Determination of Inorganic Anions by Ion Chromatography. Revision 2.1.

Table 1: Detection Monitoring Data Evaluation Northeastern Plant - Landfill

Parameter	Units	Description	MW-3D	MW-6D	MW-9D	MW	/-15
Farameter	Omis	Description	5/30/2018	5/30/2018		5/30/2018	10/15/2018
Boron	mg/L	Intrawell Background Value (UPL)	0.975	4.35	8.11	10).6
DOIOII	mg/L	Detection Monitoring Result	0.952	3.35		8.76	
Calcium	mg/L	Intrawell Background Value (UPL)	190	285	463	1.	32
Calciulii	mg/L	Detection Monitoring Result	129	269		105	
Chloride	mg/L	Intrawell Background Value (UPL) 16.2 33.9 383		78			
Ciliolide	mg/L	Detection Monitoring Result	13	32		33	
Fluoride	mg/L	Intrawell Background Value (UPL)	1	0.941	2.28	2.2	243
Fluoride	mg/L	Detection Monitoring Result	0.896	0.922		2.33	2.27
	SU	Intrawell Background Value (UPL)	8.03	8.32	7.77	9.	14
pН	SU	Intrawell Background Value (LPL)	6.17	5.98	6.74	6.	56
	SU	Detection Monitoring Result	7.46	7.39		7.713	
Total Dissolved Solids	mg/L	Intrawell Background Value (UPL)	853	1159	3591	11	52
Total Dissolved Sollds	mg/L	Detection Monitoring Result	724	1090		1128	
Sulfate	mg/L	Intrawell Background Value (UPL)	251	543	1524	64	49
Suilate	mg/L	Detection Monitoring Result	214	401		549	

Notes:

UPL: Upper prediction limit


LPL: Lower prediction limit

-: Not Sampled

Bold values exceed the background value.

Background values are shaded gray.

MW-9D was purged dry during the May 2018 event and a sample could not be collected.

ernal info: path, date revised,

CERTIFICATION BY A QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected and above described alternative source demonstration is appropriate for evaluating the groundwater monitoring data for the Northeastern Landfill CCR management area and that the requirements of OAC 252:517-9-4(e)(2) have been met.

Beth Ann Gross Printed Name of Licensed Professional Engineer

ih an Giors

Signature

Geosyntec Consultants 8217 Shoal Creek Blvd., Suite 200 Austin, TX 78757

Oklahoma Firm Certificate of Authorization No. 1996 Exp. 6/30/2020

18167 License Number Oklahoma Licensing State

Janua 2019 Date

SCOTT A. THOMPSON Executive Director

March 18, 2019

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

RECEIVED and 1 2 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re: Alternate Source Demonstration – Coal Combustion Residuals Landfill Public Service Company of Oklahoma-Northeastern Power Station Ash Landfill Rogers County Solid Waste Permit No. 3566010

Dear Ms. Parker-Witt:

The Department of Environmental Quality (DEQ) received the Alternate Source Demonstration (ASD) for the Coal Combustion Residuals (CCR) Landfill, by email, on January 31, 2019. A statistically significant increase (SSI) over background was indicated for fluoride at groundwater monitoring well MW-15. Oklahoma Administrative Code (OAC) 252:517-9-5(e)(2) allows NPS to demonstrate, within ninety (90) days of detecting an SSI, that a source other than the CCR landfill caused the SSI over background levels.

The first sampling event was May 30, 2018. MW-15 was resampled for fluoride on October 15, 2018. The second semi-annual sampling event was October 22, 2018. The concentrations of fluoride were 2.24 mg/L, 2.27 mg/L and 2.17 mg/L respectively. The sample and resample concentrations are within ten (10) percent of the intrawell upper prediction limit (UPL) of 2.24 mg/L (4% and 1.3% respectively) which is the acceptable variation for the analytical procedure used in the analyses. Additionally, the result for the second semi-annual detection monitoring event was below the UPL and an increasing trend was not indicated. The SSI is attributed to a laboratory cause and the ASD is accepted as submitted.

If you have any questions, please contact Ms. Cynthia Hailes, P.E. at (405) 702-5114.

Sincerely,

Hillary Young, P.E.

Chief Engineer Land Protection Division

HY/ckh

Groundwater monitoring field and laboratory reports.

SAMPLED BY: KINNITH MIDONALL . DATE: 01/22/18

Well Identification Number	MW-1D	MW-2D	MW-3D	MW-4D	MW-5D	MW-6D
Sample Identification			SAMPLE			SAMPLE
Elevation of Top of Casing (ft. NGVD)	638.07	638.19	630.65	625.00	636.84	636.8
Depth to Water (ft)						33.97
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.25	61.80	62.95	53.95	58.42	58.51
Height of Water Column (ft.)						
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)						
Water Removed From Well (gallons)						
Method of Removal						
Was Well Purged Dry?						
pH (standard units)						6.85
Temperature (°C)						17,24
Conductivity (µmhos/cc)						1910
Turbidity (NTU)						108
Dissolved Oxygen (mg/L)						3,61
ORP (mV)						137
Purge Time - Begin						
Purge Time - End						
Sample Time						S04/F/B
Sample Date						

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNETH Mc DOMAIN . DATE: 01/22/18

Well Identification Number	MW-7D	MW-8D	MW-9D	MW-10D	MW-11D	MW-12D
Sample Identification	SAMPLE	SAMPLE	SAMPLE			
Elevation of Top of Casing (ft. NGVD)	626.45	629.32				
Depth to Water (ft)			59.72			
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.70	64.50	64.02	71.20	50.17	44.80
Height of Water Column (ft.)						
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)						
Water Removed From Well (gallons)						
Method of Removal						
Was Well Purged Dry?						
pH (standard units)			7,14			
Temperature (°C)			18.23			
Conductivity (µmhos/cc)			1720			
Turbidity (NTU)			306			
Dissolved Oxygen (mg/L)			1.84			
ORP (mV)			157			
Purge Time - Begin						
Purge Time - End						
Sample Time			BIRA			
Sample Date			ZRA			

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNETH McDONALD . DATE: 01/22/18

Well Identification Number	MW-13D	MW-14	MW-15	MW-16	MW-17	SP-1
Sample Identification			SAMPLE			SAMPLE
Elevation of Top of Casing (ft. NGVD)						621.26
Depth to Water (ft)			61.71			16,70
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	47.39	78.96	74.21	64.15	58.41	37.99
Height of Water Column (ft.)						
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)						
Water Removed From Well (gallons)						
Method of Removal						
Was Well Purged Dry?						
pH (standard units)			7,24			6.90
Temperature (°C)			17,91			18.09
Conductivity (µmhos/cc)		5	1850			849
Turbidity (NTU)			208			54.2
Dissolved Oxygen (mg/L)			5,31			3,14
ORP (mV)			136			131
Purge Time - Begin						
Purge Time - End						
Sample Time			В			Ca
Sample Date						

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KINNY MIDIONALI . DATE: 05/01-02/18

_____.

Well Identification Number	MW-1D	MW-1S	MW-2D	MW-2S	MW-3D	MW-3S
Sample Identification	CCR III & IV	Gauge	CCR III & IV	Metals IV	CCR III & IV	Metals IV
Elevation of Top of Casing (ft. NGVD)	638.07	638.89	638.19	637.37	630.65	630.19
Depth to Water (ft)	54,04	22,41	55.13	32,22	37.07	21.31
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.25	37.76	61.80	36.75	62.95	27.21
Height of Water Column (ft.)	4,21	15.35	6.67	4.53	25,88	5.90
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.68	2,50	1.08	0,74	4,72	0.96
Water Removed From Well (gallons)	0.50		3,25	1,0	13.0	1.25
Method of Removal	BAILER		RMP	Pump	Pump	Rime
Was Well Purged Dry?	YES		NO	YES	No	415
pH (standard units)		-	10,60	9,16	7.27	7.36
Temperature (°C)		-	20.32	19.98	20,30	20,25
Conductivity (µmhos/cc)			1770	2250	1020	2260
Turbidity (NTU)			183	285	78.3	108
Appearance		_	SUIGHTUT TURBID	tunsip	CLIMAN	SLIGHTLY TURBIP
Odor			NONF	Nonf	Nont	SULCHT SULPHIA
Purge Time - Begin	DTW 57.04 044@ 1455					
Purge Time - End	P+~ 56.18					
Sample Time	0.330AL INSUFFICIENT		1035	1045	940	0955
Sample Date	wattn		05/02/18	05/02/18	05/02/18	05/02/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

Pup Dup-111

SAMPLED BY: KINNY Milling DATE: 05/01-02/18

.

Well Identification Number	MW-4D	MW-4S	MW-5D	MW-5S	MW-6D	MW-6S
Sample Identification	CCR III & IV	Gauge	CCR III & IV	Metals IV	CCR III & IV	Metals IV
Elevation of Top of Casing (ft. NGVD)	625.00	624.54	636.84	636.72	636.80	636.66
Depth to Water (ft)	43,15	Dny	22,20	20,91	33,95	pny
Water Level Elevation (ft. NGVD))				(
Measured Depth Total Depth of Well (ft.)	53.86	32.94	58.42	33.15	58.51	28.20
Height of Water Column (ft.)	10171		36,22	12,24	24.56	1
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1,75	1	5,90	2.00	4.00	(
Water Removed From Well (gallons)	610	(11.25	6,0	10,50	(
Method of Removal	PUMP	-	Pump	Pump	Rmp	(
Was Well Purged Dry?	No	_	YES	No	YES	
pH (standard units)	7.14	-	7.32	7,03	7.28	(
Temperature (°C)	20.66		19.22	19.27	20,40	
Conductivity (µmhos/cc)	1240	(931	1240	1370	
Turbidity (NTU)	136		94,6	117	206	(
Appearance	SLIGHTLY TURBIP	_	CLIAN	(Liman	SLIGHTLY TUABLO	
Odor	Nont	(Nort	SLIGHT SULPHUR	NUNT	
Purge Time - Begin		1				-
Purge Time - End						(
Sample Time	920		1105	1055	1010	
Sample Date	05/02/18	(05/02/18	05/02/18	05/02/18	1

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: Ktnny Millandel . DATE: 05/01-02/18

Well Identification Number	MW-7D	MW-7S	MW-8D	MW-8S	MW-9D	MW-9S
Sample Identification	Gauge	Gauge	Gauge	Gauge	CCR III & IV	Metals IV
Elevation of Top of Casing (ft. NGVD)	626.45	626.46	629.32	628.71	637,04	636.94
Depth to Water (ft)	13,93	11.46	27,36	7,51	57.03	26147
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.70	33.54	64.50	43.30	63.10	36.71
Height of Water Column (ft.)	44.77	22,08	42,14	35.79	6.07	10,24
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	7.30	3,60	6.87	5,83	0,99	1.67
Water Removed From Well (gallons)			(0,75	2,0
Method of Removal		-	-	-	Pump	PUMP
Was Well Purged Dry?				~	YES	465
pH (standard units))	/				11,83
Temperature (°C)		~		-		20.45
Conductivity (µmhos/cc)	~	_	(3690
Turbidity (NTU)		~~~	-	-		289
Appearance	-	_	_	~		TINTAD BROWN
Odor	(_				Nont
Purge Time - Begin		_	(~	DTW62:36 05/01@1530	
Purge Time - End		_	(~	07W 61,94 05/02 81305	
Sample Time	_	~			0,190AL INSVFFICIENT	1025
Sample Date	(WATTIN	05/02/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNY MEDONALD . DATE: 05/01-02/18

Well Identification Number	MW-10D	MW-10S	MW-11D	MW-11S	MW-12D	MW-12S
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Metals IV	CCR III & IV	Metals IV
Elevation of Top of Casing (ft. NGVD)	639.32	6 39,58	628.77	628.75	623.67	623.50
Depth to Water (ft)	68.32	22,77	47,68	12,51	15,62	11,78
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	71.33 71.20	36.22	50.34 50.17	31.02	44.80	22.44
Height of Water Column (ft.)	3.01	13.45	2,66	18:51	29.30	11,16
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0,49	2,19	0,43	3.02	4.78	1.82
Water Removed From Well (gallons)	0,25	7,0	0.25	10.0	11.0	610
Method of Removal	BHAILFA	Pump	BAILER	Pump	rump	Pump
Was Well Purged Dry?	415	NO	465	NO	YES	NO
pH (standard units)		8,17		7,87	7.39	7.17
Temperature (°C)		19,68		19.06	18.00	18,20
Conductivity (µmhos/cc)		904		799	1330	948
Turbidity (NTU)		53.Z		41.6	422	108
Appearance		Clean		CLIAN	tungin	CLAM
Odor		pont		honf-	Nont	wont
Purge Time - Begin	0+~ 70:01 05/01@ 1600		DTW 48:67 05/01 @ 1610			
Purge Time - End	DTW 69,88 05/0201210		07W 48,62 05/02@1200			
Sample Time	0:23 GAL INSUFFICIENT	1205	0:280AL IWSVFFICHA	<i>i155</i>	1140	1145
Sample Date	WATT	05/02/18	WATTN	05/02/18	05/02/18	05/02/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNY McDenned . DATE: 05/01-02/18

Well Identification Number	MW-13D	MW-13S	MW-14	MW-15	MW-16	MW-17
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Gauge	CCR III & IV	CCR III & IV
Elevation of Top of Casing (ft. NGVD)	619.06	619.15	640.89	637.71		636,52
Depth to Water (ft)	34.78	15.66	72.21	55,85	61,29	52,11
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	47.39	18.12	78.96	74.21	64.15	58.41
Height of Water Column (ft.)	12,78	12.44	6,75	18.36	2,86	6,30
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	2,08	0,40	1.10	2,99	0,47	1.03
Water Removed From Well (gallons)	6,50	0,25	0.75	-	6,25	0,50
Method of Removal	Rmp	DAILM	Pump		Pump	Pump
Was Well Purged Dry?	No	YKS	465	(YFS	YES
pH (standard units)	7,08	7,19		-		
Temperature (°C)	19,06	17,25		-		
Conductivity (µmhos/cc)	13,80	908		1		
Turbidity (NTU)	101	124				
Appearance	Cum	Clfnn		5		
Odor	Nont	Nont		_		
Purge Time - Begin			07W 77.31 05/010 1440		PTW 63,01 05001@ 1540	DTW 56.67 05/010 1550
Purge Time - End			0+W 76.82 05/02 @ 1310	-	DTW 62,21 05/0201315	DTN 56,03
Sample Time	1130	1125	0.35 GAL INSUFFLUENT	(0:326AL INSUFFICIEN	0,396.92
Sample Date	05/02/18	05/02/18	WATTE	/	WATTIN	WATTA

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KINNY Milonaid . DATE: 05/29-30/18

Well Identification Number	MW-1D	MW-1S	MW-2D	MW-2S	MW-3D	MW-3S
Sample Identification	CCR III & IV	NA	CCR III & IV	Metals IV	CCR III & IV (No Radium)	Metals IV
Elevation of Top of Casing (ft. NGVD)		638.89	638.19	637.37	630.65	630.19
Depth to Water (ft)	53.76		58.41	34,23	37.11	21.89
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.25	37.76	61.80	36.75	62.95	27.21
Height of Water Column (ft.)	4,49		3.39	2.52	25,84	5.32
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0,73		0,55	0.41	4.21	0,87
Water Removed From Well (gallons)	0.50		1,25	0,50	13.0	1,0
Method of Removal	BAILM		Pump	Pump	Rmp	Pump
Was Well Purged Dry?	YES		YES	YES	NO	YES
pH (standard units)	7,38		10.43	7,81	7.46	6,97
Гетреrature (°С)	22,92		21.86	20,94	22,34	22,88
Conductivity (µmhos/cc)	4060		1840	1320	1120	2260
Furbidity (NTU)	21.8		122	127	64.8	21,4
Appearance	clenn		SLIGHTLY	TURBID	CLAM	Clarge
Ddor	Nort		NONF	NONE	NUNG	Nont
Purge Time - Begin						
Purge Time - End						
ample Time	1312		1342	1039	1422	1// (
ample Date	05/30/18		05/30/18	05/30/18	05/30/18	05/30/18
	A HTALS ONLY		MEMISONM	1		BUPLICATE SHAUGW
	For 2" well multipl For 4" well multipl		0.163 0.653			- HALLIN

SAMPLED BY: KINN MillonAid . DATE: 05/29-Jo/18

Well Identification Number	MW-4D	MW-4S	MW-5D	MW-5S	MW-6D	MW-6S
Sample Identification	CCR III & IV	NA	CCR III & IV	Metals IV	CCR III & IV (No Radium)	Metals
Elevation of Top of Casing (ft. NGVD)		624.54	636.84	636.72	636.80	<u>IV</u> 636.66
Depth to Water (ft)	43,54		29.73	22,61	33.66	DRY
Water Level Elevation (ft. NGVD)	1				5 170	Uni
Measured Depth Total Depth of Well (ft.)	53.86	32.94	58.42	33.15	58.51	28.20
Height of Water Column (ft.)	10,32		28,69	10.54	24,85	
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1.68		4,68	1.72	4,05	-
Water Removed From Well (gallons)	5,5		9.75	6,0	9.75	
Method of Removal	Pump		Pump	PUMP	PUMP	(
Was Well Purged Dry?	NO		YES	No	YES	1
pH (standard units)	7,00		7,23	6.78	7.39	
Temperature (°C)	22,71		22,16	20,90	22,41	_
Conductivity (µmhos/cc)	1150		1520	1430	1290	
Furbidity (NTU)	60,2		125	72,3	128	<u>(</u>
Appearance	CLAAN		SUIGHT19 TURBID	CLEAR BROWN TINT	+ URBID	
Odor	Nort		Nort	SLIGHT SULPHUR	Nort	_
Purge Time - Begin						_
Purge Time - End						_
Sample Time	1437		1326	1022	1409	
Sample Date	05/30/18		05/30/18	05/30/18	05/30/18	-
	LANDFILL DUP					
	For 2" well multipl		0.163			
l	For 4" well multipl	y by	0.653			

SAMPLED BY: KENNY Millenned . DATE: 05/29-30/18

Well Identification Number	MW-7D	MW-7S	MW-8D	MW-8S	MW-9D	MW-9S
Sample Identification	CCR III & IV (No Radium)	NA	CCR III & IV (No Radium)	NA	CCR III & IV	Metals IV
Elevation of Top of Casing (ft. NGVD)	626.45	626.46	629.32	628.71	637.04	636.94
Depth to Water (ft)	13,12		21,71		56.66	26:75
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.70	33.54	64.50	43.30	63.10	36.71
Height of Water Column (ft.)	45,58		42.79		6144	9.96
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	7,43		6.97		1.05	1.62
Water Removed From Well (gallons)	18,25		16:0		0:75	1,75
Method of Removal	Pump		fump		Pump	PUMP
Was Well Purged Dry?	YES		YES		YES	YES
pH (standard units)	7.05		6,95			11.25
Temperature (°C)	22,25		21,72		(22,91
Conductivity (µmhos/cc)	6230		29700			3280
Turbidity (NTU)	21,8		17,0		_	88,3
Appearance	CLEAN		CLEAR		(BROWN
Odor	NONF		Nort			NUNF
Purge Time - Begin						
Purge Time - End						
Sample Time	1451		1512		INSUFFICIENT	1053
Sample Date	05/30/18		05/30/18		WAIM	05/30/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNY MIDONAL . DATE: 05/29-30/18

-

Well Identification Number	MW-10D	MW-10S	MW-11D	MW-11S	MW-12D	MW-12S
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Metals IV	CCR	Metals
Elevation of Top of Casing (ft. NGVD)		639.58	628.27	628.75	623.67	IV 623.50
Depth to Water (ft)	68.15	24,29	47.57	14:37	18.75	13.38
Water Level Elevation (ft. NGVD)				. [0.7]		10100
Measured Depth Total Depth of Well (ft.)	71.33	36.22	50.34	31.02	44.92	22.94
Height of Water Column (ft.)	3,18	11,93	2,77	16.65	26,17	9.54
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.52	1.94	DiYS	2,71	4.27	1.56
Water Removed From Well (gallons)	0,25	6.0	0.25	9.5	9,75	5.0
Method of Removal	BAIWA	PUMP	PAILER	fump	PUMP	pump
Was Well Purged Dry?	YES	NO	YF5	NO	YES	No
pH (standard units)	7.46	7,26	7.34	7,32	7,68	6.77
Temperature (°C)	19,69	19,02	19,46	18.61	18,20	18,17
Conductivity (µmhos/cc)	9560	1390	1450	832	1330	899
Turbidity (NTU)	44.6	128	62.5	34,2	158	81,4
Appearance	Lican	SCIGHT 1 TURBOD	CLOAN	CLAPM	SLIGHTLY TURBID	Clann
Odor	Nont	None	NONE	NONG-	NONE	NON(-
Purge Time - Begin						
Purge Time - End						
Sample Time	1137	1131	1200	1158	1223	1217
Sample Date	05/30/18	05/30/18	05/30/18	05/30/18	05/30/18	05/30/18
	METALSONIY		METALSONLY		L	
	For 2" well multi		0.163			
	For 4" well multi	ply by	0.653			

SAMPLED BY: KIMM MIDONALD . DATE: 05/29-30/18

•

Well Identification Number	MW-13D	MW-13S	MW-14	MW-15	MW-16	MW-17
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	CCR III & IV (No Radium)	CCR III & IV	CCR
Elevation of Top of Casing (ft. NGVD)	the second se	619.15	640.89	637.71	637.26	636.52
Depth to Water (ft)	40,69	14,60	71.65	60.04	61,18	51.54
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	47.56	18.12	78.96	74.21	64.15	58.41
Height of Water Column (ft.)	6.87	1.52	7.3	14,17	2,97	6.87
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1.12	0,25	1.19	2,31	0.48	1,12
Water Removed From Well (gallons)	4,0	0.1	0,75	4,5	0,25	1.5
Method of Removal	Pump	BALLER	PUMP	pump	fump	PUMP
Was Well Purged Dry?	No	YES	445	YES	YES	YES
pH (standard units)	6.89		6172	7.71		7.98
Femperature (°C)	20,61	_	25.27	23.64	-	22.64
Conductivity (µmhos/cc)	1370		9080	1620	~	1560
Furbidity (NTU)	283		59,1	152	-	22.3
Appearance	TURBID		CLAAN	TURBID	_	CLAM
Odor	Nonf		Nont	NONE	-	Nort
Purge Time - Begin						
Purge Time - End						
Sample Time	1242	INSUFFICENT	1258	1357	INSUFFICIEN WATER	
Sample Date	05/30/18	WATCh	05/30/18	05/30/18		
			MHALSONLY			MPTALS
	For 2" well multi		0.163			MPTALS
	For 4" well multi	ply by	0.653			01.51

SAMPLED BY:

Kinny Miller Ald . DATE: 06/26-27/18

____.

Well Identification Number	MW-1D	MW-1S	MW-2D	MW-2S	MW-3D	MW-3S
Sample Identification	CCR III & IV	Gauge	CCR III & IV	Metals IV	NA	Metals IV
Elevation of Top of Casing (ft. NGVD)	638.07	638.89	638.19	637.37	630.65	630.19
Depth to Water (ft)	54.96	24.62	59,67	35.23		24,49
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.25	37.76	61.80	36.75	62.95	27.21
Height of Water Column (ft.)	3,29	13,14	2.13	1,52		2.72
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.54	2,14	0.35	0:25	-	0.44
Water Removed From Well (gallons)	0,25		0.25	0.1	-	0.25
Method of Removal	Bitilin		BAILTA	BAILER	Í	BAILM
Was Well Purged Dry?	465		YES	YES	(YES
pH (standard units)	,		-			
Temperature (°C)			(ĺ	~
Conductivity (µmhos/cc)	~		Ĵ		(
Turbidity (NTU)		•	(-
Appearance	-				5	(
Odor	~		(
Purge Time - Begin				-		
Purge Time - End	~		***			/
Sample Time			\sim	-		
Sample Date	~	_	_	-		

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KINNY M (DONAL) . DATE: 06/26-27/18/

CCR	and the second se		and the second se		MW-6S
III & IV	Metals IV	CCR III & IV	Metals IV	NA	Metals IV
625.00	624.54	636.84	636.72	636.80	636.66
43,81	PRY	30.87	23.48		DRY
				Í	*
53.86	32.94	58.42	33.15	58.51	28.20
10.05	· · · · · · · · · · · · · · · · · · ·	27,55	9.67		
2	2	2	2	2	2
1.64	(4149	1.58	-	
6.0	l	8.25	5.0	(
Pump	\sim	pump	Pump	1	
NO	(YES	No	ĺ	
7.94		8,23	7,89		(
20,13	-	20,04	22,41		~
1220		938	1400		-
113		76.4	51,2		
COMM	¢.	SUIDHITUM TUPPID	SCICTICT TUNDID		\frown
Nowt	(NINE	Nont		
			r		~
/	~	_	~		
1105		0930	0915		
06/27/18	(06/27/18	06/27/18		~
	ЦЗ,8) 53.86 10.05 2 1,64 6.0 Римр No 7294 20.13 1226 113 (ссмял Nowe 113 (ссмял Nowe 1105 06/27/18 Рурециять	L13,81 PAY 53.86 32.94 10.05 2 2 1,64 6.0 PUMP No 7.94 1225 113 CCMAR NONF 105 06/27/18	U3,81 Рлч 30.87 53.86 32.94 58.42 10.05 27,55 2 2 2 1,64 4149 6.0 8,25 PUMP PUMP No 7,44 1226 938 113 76,4 13 76,4 NONF NINC NONF NINC NONF 0430 06/27/18 04/27/18	43,81 Рлч 30.87 23.48 53.86 32.94 58.42 33.15 10.05 27,55 9.67 2 2 2 2 1,64 4149 1:58 6.0 8.25 5.0 Римр Римр Римр 7.94 8.23 7.89 20.13 20.04 22.41 122b 938 1400 113 76.4 51.2 Ссаят 5.00 5.0 Now 938 1400 113 76.4 51.2 Осаят 5.00 5.00 105 0430 0915 06/27/18 06/27/18 66/27/18	U3,81 Рлу 30.87 23.48 53.86 32.94 58.42 33.15 58.51 10.05 27,55 9.67 2 2 2 2 2 1,64 4149 1:58 6.0 8.25 5.0 7.00 9.25 5.0 7.01 9.25 5.0 7.02 9.825 5.0 7.01 9.25 7.89 7.02 9.25 7.89 7.94 8.723 7.89 7.94 8.723 7.89 7.94 9.8 1400 1220 938 1400 113 76.4 51.2 113 70.4 8.12 113 01.4 1.4 1.4 10.5 0430 0915

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KINNY M Danad . DATE: 06/26-27/18

Well Identification Number	MW-7D	MW-7S	MW-8D	MW-8S	MW-9D	MW-9S
Sample Identification	NA	GAUGE	NA	GAUGE	NA	Metals IV
Elevation of Top of Casing (ft. NGVD)	626.45	626.46	629.32	628.71	637.04	636.94
Depth to Water (ft)	\sim	12.85		9.66		27,18
Water Level Elevation (ft. NGVD)					(
Measured Depth Total Depth of Well (ft.)	58.70	33.54	64.50	43.30	63.10	36.71
Height of Water Column (ft.)		20,69		33,64]	9,53
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	-	3137	-	5.48		1.55
Water Removed From Well (gallons)	-	_			۰ <u>ـــــ</u>	1,5
Method of Removal	-		_	-	•	PUMP
Was Well Purged Dry?	-	-				YES
pH (standard units)						11.79
Temperature (°C)	-	-			~	22,48
Conductivity (µmhos/cc)		-	-			3380
Turbidity (NTU)			-			55.5
Appearance	-		-	~	-	BROWN TINT
Odor	~					NONE
Purge Time - Begin	-	(5	Canton	\frown
Purge Time - End	-	(-	-	
Sample Time	((-		1000
Sample Date	<u></u>	/	_		~	66/27/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNY MIDONALD . DATE: 06/26-27/18

•

Well Identification Number	MW-10D	MW-10S	MW-11D	MW-11S	MW-12D	MW-12S
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Metals IV	CCR III & IV	Metals IV
Elevation of Top of Casing (ft. NGVD)	639.32	639.58	628.27	628.75	623.67	623.50
Depth to Water (ft)	68.96	25,29	48,29	15.26	19.79	19.40
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	71.33	36.22	50.34	31.02	44.92	22.94
Height of Water Column (ft.)	2,37	10,93	2.05	15.76	25,13	3.54
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.39	1.78	0.33	2.57	4,10	0,58
Water Removed From Well (gallons)	0,25	6,5	0,25	8.0	8.0	1,25
Method of Removal	BAILIA	pump	Digilta	Pump	Pump	Pump
Was Well Purged Dry?	YES	NO	YES	NO	YES	YES
pH (standard units)	7.72	8.29		8.23	8.23	7,49
Temperature (°C)	20,84	20,64	-	19,60	18,33	19.03
Conductivity (µmhos/cc)	8760	826	(860	1390	972
Turbidity (NTU)	52,1	46.2		43.3	124	27,2
Appearance	CLIMAN	CLAM	/	Citan	CLAR	Cipan
Odor	Nont	Nont	-	Nont	Nont	SUL PHUR
Purge Time - Begin	_	·	<u> </u>	_	-	(
Purge Time - End	_	1		6	6	-
Sample Time	1210	1150	(1240	1315	1255
Sample Date	06/27/18	06/27/18	J	06/27/18	06/27/18	06/27/18
	Mtralsony For 2" well multi	ply by	0.163	PUPSHALLOW		

0.653

For 4" well multiply by

SAMPLED BY:

KENNY McDenned

DATE:

06/26-27/18

Well Identification Number **MW-13D MW-13S MW-14 MW-15 MW-16 MW-17** CCR Metals CCR CCR CCR **Sample Identification** NA III & IV IV III & IV Ш& IV III & IV Elevation of Top of Casing (ft. 619.06 619.15 640.89 637.71 637.26 636.52 NGVD) 61.61 53,07 44,88 Depth to Water (ft) 73.06 17.05 Water Level Elevation (ft. NGVD) Measured Depth Total Depth 47.56 18.12 78.96 74.21 64.15 58.41 of Well (ft.) ____ 5.34 2.68 1.07 5.90 2.54 Height of Water Column (ft.) 2 2 2 Well Size (I.D.) (inches) 2 2 2 Volume of Water in Well 0,44 0,87 0,96 0,41 0,17 (gallons) Water Removed From Well 0,75 0,1 0.75 1.0 0,25 (gallons) BAILOR Pump PUMP Pump PUMP Method of Removal YES YES YES YES YES Was Well Purged Dry? 7.29 7.27 pH (standard units) 8.54 19.82 23,27 Temperature (°C) 23.21 1400 -9050 1640 Conductivity (µmhos/cc) -170 50,1 15,4 **Turbidity (NTU)** SLIGHTLY CLMAN CLAM Appearance TURBID Nonf NUNF Odor NONG **Purge Time - Begin Purge Time - End** 1020 Sample Time 1335 1410 06/27/18 06/27/18 06/27/18 / Sample Date MITALSONLY M FTALSONIY METALSONY For 2" well multiply by 0.163 For 4" well multiply by 0.653

SAMPLED BY:

KENNY Me DONALD . DATE: 07/30/31/18

Well Identification Number	MW-1D	MW-1S	MW-2D	MW-28	MW-3D	MW-3S
Sample Identification	्राम् जिन्द्र	Gamere	CCP Entropy	Matalis TWéi	NA	Mictalis IW
Elevation of Top of Casing (ff. NGVD)	638.07	638.89	638.19	637.37	630.65	630.19
Depth to Water (ft)	54.77	24,86	60.31	35.18	·	25,85
Water Level Elevation (ft. NGVD)					•	
Measured Depth Total Depth of Well (ft.)	58.25	37.76	61.80	36.75	62.95	27.21
Height of Water Column (ft.)	3,48	12,90	1.49	1.57		1.36
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0,57	2,10	0.24	0.26	<u> </u>	0.22
Water:Removed From Well (gallons)	0,25	Quero and a second	0, (d	0.10		
Method of Removal	BAILON		Вант	BAILA	,	
Was Well Purged Dry?	YES		Yes	YES		
pH (standard units)	1807 8 - 0 111199-00- - 9	APPENDENCE	4.1000 Million	VI ALSO MALL		Contracting of the second s
Temperature (°C)	Carrier and a second	Contraction of the local sectors and		/		**************************************
Conductivity (µmhos/cc)	And a state of the		-			
Turbidity (NTU)	~		Martine and Andrews			
Appearance		~	<u> </u>			dimen .
Odor	all the second sec	(Windowskiewan	~	~	_	-
Rurge Time - Begin			· • • • • • • • • • • • • • • • • • • •		\sim	S Rophysion William
Purge Time - End	And the second second	_	6			geningenege
Sample Time	NO	-	~0	NO		NO
Sample Date	SAMPLE.	_	SAMPLE	SAMPLY	_	SAMPLE

For 2" well multiply by	0.163
For 4" well multiply by	0.653
	210

NO LID

SAMPLED BY:__

KENN AcpORAd

DATE: 07/30731/18

Well Identification Number MW-4D MW-48 MW-5D MW-5S MW-6D MW-6S Metals Maals Metals Sample Identification NA ĪĪ ___<u>_</u>[∭ ĪV Elevation of Top of Casing (ft. 625.00 624,54 636.84 636.72 636.80 636.66 NGVD) Depth to Water (ft) 29,38 23.92 43.42 DAY Dry Water Level Elevation (ft. NGVD) Measured Depth Total Depth 53.86 32.94 58.42 33.15 58.51 28.20 of Well (ft.) Height of Water Column (ft.) 9.23 10,44 29.04 Well Size (1.D.) (inches) 2 2 2 2 2 2 Volume of Water in Well 1.70 4,73 1,50 (gallons) Water Removed From Well 8.0 8.75 6.0 (gallons) PUMP Pump Method of Removal pump No Was Well Purged Dry? Nb 415 pH (standard units) 7.82 6,28 7,81 Temperature (°C) 19,06 20,01 18,96 1140 920 Conductivity (umhos/cc) 1490 Turbidity (NTU) 30.4 1814 67.1 SUGHTLY TONBID SUGHTM Appearance (1/m TCABIO Odor NONF NONG-NONG Purge Time - Begin Purge Time - End 0910 0942 Sample Time NO 0830 KO. SAMPLE 07/31/18 SAMPUT 157/31/18 07/30/18 Sample Date ANDEIL pup

UMPFILL	
For 2" well multiply by	0.163
For 4" well multiply by	0.653
PUP	

SHALOW

SAMPLED BY: KIMM Mc Peraid . DATE: 07/30-31/18

Well Identification Number	MW-7D	MW-78	MW-8D	MW-88	MW-9D	MW-98
Sample Identification	NA	GANUGE	NA	GAUCII	NA	Mkajariks ITV
Elevation of Top of Casing (ff. NGVD)	626.45	626.46	629.32	628.71	637.04	636.94
Depth to Water (ft)		12,80		10,51		27,68
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth : of Well (ft.)	58.70	33.54	64.50	43.30	63.10	36.71
Height of Water Column (ft.)		20,74	-	32,79	Сфанурорана	9,03
Well Size (1.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)		3,38	-	5,34		1.47
Water Removed From Well (gallons)		,		" <u> </u>	en parte	1,50
Method of Removal	-		•			pump
Was Well Purged Dry?			Records and the second se	<u> </u>	(YES
pH (standard units)						11,52
Temperature (°C)	frances and a second	Notes Statement		(2	21,05
Conductivity (µmhos/cc)	to an and the second		Management of the		Í	3500
Turbidity (NTU)	7 <u>0</u> 000000000	Syppome (SM-9mm)				57,8
Appearance #			-			BROWN TINT
Odor			<u> </u>		•	NUN(
Purge Time - Begin				<u> </u>		
Purge Time - End		C. Barreton			****	·
Sample Time		turner and the second	<u> </u>			1016
Sample Date	·					1) 7/30/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653
•	

	-
SAMPLED	BY:

Konny Mc Denned . DATE: 07/30-31/18

Well Identification Number	MW-10D	MW-10S	.MW-11D	MW-111S	MW-12D	MW-128
Sample Identification	n an Angeler Na Angeler	Micials IV	n na star Distancia da seconda da	Mleúalls IIV	n 1900 av	Metals IV
Elevation of Top of Casing (ft. NGVD)	639.32	639.58	628.27	628.75	623.67	623.50
Depth to Water (ft)	69.30	25,84	48.27	15.61	20.09	20,79
Water Level Elevation (ft, NGVD)						
Measured Depth Total Depth of Well (ft.)	71.33	36.22	50.34	31.02	44.92	22.94
Height of Water Column (ft.)	2,03	10,38	2,07	15,41	24.83	2,15
Well Size (1.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0:33	1,69	0,34	2,51	4.05	0,35
Water Removed From Well (gallons)	6.1	6,0	0,25	910	7,75	\$10
Method of Removal	BAUCA	PUMP	byicm	Pump	fimp	PUND
Was Well Purged Dry?	445	NO	YHS	No	YFS	YES
pH (standard units)		8.43		8.75	8.65	7,24
Temperature (°C)		21.70	0.000	20,73	19,37	19,68
Conductivity (µmhos/cc)	/	751	-	788	1280	1006
Furbidity (NTU).	analy in the second	55,8	*) (199 0)	23,1	97.4	42,7
Appearance		CIGAA	t and the second se	Cum	SUGHTLY +URBID	SUIGHTLY TURBIN
Odor	_	Nort	-	NONt	NONE	NUNF
Parge Time - Begin	the second s		-		340-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	
Purge Time - End		<u> </u>	Sec.	6	/	_
Sample Time	NO	liss	Wo	1225	0940	1300
Sample Date	SAMPLE	07/30/18	Sample	07/30/18	07/31/18	07/30/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY:	(mm	MIPERA	. J .	DATE: (7/30-31/1	8	<u> </u>
Well Identification Numb	er	MW-13D	MW-138	MW-14	MW-15	MW-16	MW-17
Sample Identification		COR IN & IV	Michils Il V	CCR UTAIN	NA	CCR NDC	CCP. Internet
Elevation of Top of Casin NGVD)	g (ft.	619.06	619.15	640.89	637.71	637.26	636.52
Depth to Water (ft)		45.95	17,28	73,43	Without and the second s	61.96	53.45
Water Level Elevation (ff NGVD)	•						
Measured Depth Total Do of Well (ft.)	epth	47.56	18.12	78.96	74.21	64.15	58.41
Height of Water Column	(ft.)	1.61	0.84	5.53		219	4,96
Well Size (I.D.) (inches)		2	. 2	2	2	2	2
Volume of Water in Well (gallons)		0.26	0.14	0.90	-	0.36	0,81
Water Removed From W (gallons)	ell	Auton Auton	and the second sec	0,75		0,25	0.75
Method of Removal		BAILM		BAILTA		BAILA	PUMP
Was Well Purged Dry?		765	-7155	765		YES	YHS
pH (standard units)			, ******* ******	Q2;39	_	Landonsenanda	8.64
Femperature (°C)			******	20.21	-		21.02
Conductivity (µmhos/cc)			6	9610	~		1790
Turbidity (NTU)			fouristic contrary.	87.1			40.7
Appearance		F3000000000000000000000000000000000000	<u> </u>	Elenn			(CFAM
Odor			Converte States	NONT		Con-a pyrodationau Line - a pyrodationau	Non-
Purge Time - Begin		4	Carlos and a second sec	MALS			protoppes
Purge Time - End			6	ONLY		California de	OMY
Sample Time		IN 0	N0	18 8 10 × 10		NO	6850
Sample Date	149 - 26 A 1920 - 25 Aug	GAMPLE	SIAMPLA	67/31/18		Samut	07/31/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY:

KFNNY MeDENALd

DATE:

08/29-30/18

MW-2D MW-3S Well Identification Number MW-1D **MW-1S** MW-2S MW-3D Meels Monts Sample Identification NA JIV . Elevation of Top of Casing (ft. 638.07 638.89 638.19 637.37 630.65 630.19 NGVD) 电子时间 电原始分子 54.56 60,26 Depth to Water (ft). 24,49 35.12 2593 Water Level Elevation (ft. NGVD) Measured Depth Total Depth 58.25 37.76 61.80 36.75 62.95 27.21 of Well (ft.) 3,69 1.63 1.54 1,28 Height of Water Column (ft.) 13,27 Well Size (I.D.) (inches) 2 2 2 2 2 2 Volume of Water in Well 0.60 2.16 0.27 0,25 0,21 (gallons) Water Removed From Well 0,4 0,1 0,1 0.1 (gallons) 3 5 11 1 Method of Removal BAYER BAILIN BANCA BAILON YES 465 Yes Yes Was Well Purged Dry? pH (standard units) Temperature (°C) Conductivity (umhos/cc) -----Turbidity (NTU) 6 more and Appearance Ödör Purge Time - Begin Purge Time - End NO Sample Time Nð MO NO SAMPLY SAMPLE SAMPLE GAMPLE Sample Date

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY:_

KENNYMEDENNED . DATE: 08/29-30/18

Well Identification Number	MW-4D	MW-4S	MW-5D	MW-5S	MW-6D	MW-6S
Sample Identification	i mirst	. Mictalis INV.		-Merik IV	NA	Metals IV
Elevation of Top of Casing (ft. NGVD)	625.00	624.54	636.84	636.72	636.80	636.66
Depth to Water (ft)	43.67	Dny	31.05	23,47	Kinter - and	PRY
Water Level Elevation (ft		1				
Measured Depth Total Depth of Well (ft.)	53.86	32.94	58.42	33.15	58.51	28.20
Height of Water Column (ft.)	10,19	د سر بی باد ه	27,37	9,68	944444	
Well Size (1.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1.66	·	4.46	1,58	STERE CHARMEN	
Water Removed From Well (gallons)	8,0	Factor	9.25	6.0		have
Method of Removal	Pump	45 mary south many south many	· prmp	Pump	5	
Was Well Purged Dry?	N ₀	then a start and a start a sta	YFS	~ ₀	Cara Cara Cara Cara Cara Cara Cara Cara	
pH (standard units)	8.11	<u>e-m-eat</u>	8,06	7,87		1
Temperature (°C)	21,87	Concernance of the second	20,53	19.74	5 <u></u>	
Conductivity (µmhos/cc)	1200	~	759	1280		ç
Turbidity (NTU)	129	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	149	13.4		
Appearance	CLAM		CUm	Clonn		
Ddor	NONO		NONG	NONG	6	
Purge Time - Begin				-	******	y
Purge Time - End		all the second second		-		£******
Sample Time	8830	Νð	0815	89 80	1.000000	MO
Sample Date	08/30/18	sample	0 8/30/18	08/29/18	. <u></u>	SAMPIG
	CCADSP For 2" well multip	alv by	0.163	<u> </u>		

0.653

For 4" well multiply by

SAMPLED BY: KENNY Melenard . DATE: 08/29/30/18

Well Identification Number	MW-7D	MW-78	MW-8D	MW-88	MW-9D	MW-9S
Sample Identification	NA	(GANU(GAR	NA		NA	Microts IN
Elevation of Top of Casing (ft. NGVD)	626.45	626.46	629.32	628.71	637.04	636.94
Depth to Water (ft)		11.99		9,94	(therein a strong to be a strong to	27,89
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.70	33.54	64.50	43.30	63.10	36.71
Height of Water Column (ft.)	Carlos Con Carlos Carlo	21.55	1 Martin and State of	33,36	and the second	8,82
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)		3.51	-	5,44	the state of the s	1,44
Water Removed From Well (gallons)	⁴ Norman and a second	€ daymers 20 taxazin (a.,		Print and a state of the state	() (() () () () () () () () (1,25
Method of Removal	· John and Constanting of the second se	terran .	and the second second	energy and the second s	an that and the second	PUMP
Was Well Purged Dry?	and the second se		Concension of	Contraction of the second s	and the state of the	Yes
pH (standard units)		Synametric and	den anticipation de la construcción de la construcc		A	12,56
Temperature (°C)		L	(27 mail 1 and	Complete States		20.95
Conductivity (µmhos/cc)		Co nsta ntinant and	and the second se	Carl Constitution of the		3470
Turbidity (NTU)		-	And the second second	Constant Provent	e	21,2
Appearance	a second and a second	Central Contraction	and the second second		<u>alan</u>	BROWN
Odor		Same State	Continue or		~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Nort
Purge Time - Begin		Manager Market	an a		4000	
Purge Time - End			A <u>REALINA</u>		angen Barra	
Sample Time	at	-		and the second s	·	1040
Sample Date		レ	• • • • • • • • • • • • • • • • • • •	S ASSOCIATE DE LA COMPANY	line and the second	08/79/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

Kinn Milanail . DATE: 08/29-30/18

Well Identification Number	MW-10D	MW-10S	MW-11D	. MW-11S	MW-12D	MW-128
Sample Identification		Mitoialis ITV		Menis IV		Metals IV
Elevation of Top of Casing (ft. NGVD)	639.32	639.58	628.27	628.75	623.67	623.50
Depth to Water (ft)	69,21	25,98	48,25	15.24	19,96	21,53
Water Level Elevation (ft. NGVD)					<u></u>	
Measured Depth Total Depth of Well (ft.)	71.33	36.22	50.34	31.02	44.92	22.94
Height of Water Column (ff.)	2,12	10.24	2,09	15,78	24.96	1.41
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0,35	1.67	0,34	2,57	4.07	0.23
Water Removed From Well (gallons)	6,25	7.0	0,25	10,0	7.50	0, 1
Method of Removal	BAIM	fump	BAIM	Pump	fump	BAILM
Was Well Purged Dry?	YHS	No	415	NO	YAS	YES
pH (standard units)		8.80		8.65	9,17	
Temperature (°C)	enter and and a second second	21,43		20,30	19,63	
Conductivity (µmhos/cc)	a states	870		699	1380	
Turbidity (NTU)		440		12,9	245	
Appearance)	Olin	SCIENTCY TURBIO	
Odor	And the second sec	CLAMA NONG		NONG	NONT	
Purge Time - Begin			1	j	again an ann an Anna Anna Anna Anna Anna A	
Purge Time - End	6					
Sample Time	NO	1230	NO	300	0845	NO
Sample Date	SAMPLE	08/29/18	SAMPY	08/29/18	08/30/18	SAMPL
		DUPSHAUM				
	For 2" well multip		0.163			
	For 4" well multi	ply by	0.653			

SAMPLED BY:____

KINNY Millonaud . DATE: 08/29-30/18

Well Identification Number	MW-13D	MW-138	MW-14	MW-15	-MW-16	MW-17
Sample Identification		Mietals INV	(二)(注)))。 21)(正正多)(文	NA	a dan Maraza	rCCP Andres ab
Elevation of Top of Casing (ft. NGVD)	619.06	619.15	640.89	637.71	637.26	636.52
Depth to Water (ft)	45.79	17,38	74,64	Same and the second	61.50	55.06
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	47.56	18.12	78.96	74.21	64.15	58.41
Height of Water Column (ft.)	1,77	6,74	4,32	Contraction of the Contraction	2,65	3,35
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0,29	6.12	0.70	-	0.43	0,55
Water Removed From Well (gallons)	0,2S	D.1	0.5		0.25	0,25
Method of Removal	BAIGR	BAILM	BAILIN	4-CALLER STORE	BAUGA	BAILM
Was Well Purged Dry?	YHS	YES	YES		465	YES
pH (standard units)		(7.79	**************************************		
Temperature (°C)			21,73	anatojopiint 19		
Conductivity (µmhos/cc)	((9380	4 Same Carlos and		·
Turbidity (NTU)			101	and the second sec	********	
Appearance			Cim	تىتىتىنىنى مەرسىيەت. مەرسىيەت		4.00 Takena
Odor	Sancara and		Nort	And the second second		
Purge Time - Begin			MEMLS	V Westerner wy		occurrent j
Purge Time - End	\subseteq		Only			OF BELLEV
Sample Time	NO SAMPLE	NO	0800		No	No
Sample Date	J-1-9-00	SAMPLA	08/0/18		SAMPLA	SAMPLE

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY:

Krany Mc Denald . DATE: 09/18-19/18

Well Identification Number	MW-1D	MW-1S	MW-2D	MW-2S	MW-3D	MW-3S
Sample Identification	CCR III & IV	Gauge	CCR III & IV	Metals IV	NA	Metals IV
Elevation of Top of Casing (ft. NGVD)	638.07	638.89	638.19	637.37	630.65	630.19
Depth to Water (ft)	54,52	24.39	60.28	35,19	<u>, </u>	26,03
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.25	37.76	61.80	36.75	62.95	27.21
Height of Water Column (ft.)	3.73	13,37	1.52	1.56		1.18
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	6,61	2,18	0,25	0.25		0,19
Water Removed From Well (gallons)	0,50		0,1	0.	_	0.1
Method of Removal	BAILOR		BAIM	BAUGA	-	BAILM
Was Well Purged Dry?	YHS	4	765	YES	_	465
pH (standard units)			-		_	
Temperature (°C)	~					_
Conductivity (µmhos/cc)	-		~	-	-	
Turbidity (NTU)				5	_	-
Appearance	_			(_	~
Odor		_		(<u> </u>	~
Purge Time - Begin	-			_	-	
Purge Time - End	-	~		_	~	
Sample Time	NO	~	NO	~0	-	NO
Sample Date	SAMPLE	_	SAMPIE	SAMPLE	~	SAMPU

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KINNY MC DONALD . DATE: 09/18-19/18

Well Identification Number	MW-4D	MW-4S	MW-5D	MW-5S	MW-6D	MW-6S
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Metals IV	NA	Metals IV
Elevation of Top of Casing (ft. NGVD)		624.54	636.84	636.72	636.80	636.66
Depth to Water (ft)	43.85	pny	31,92	23.65		Dry
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	53.86	32.94	58.42	33.15	58.51	28.20
Height of Water Column (ft.)	10.01		26,50	9,50		
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1.63	-	4.32	1.55		
Water Removed From Well (gallons)	10.0		8,75	7.0	-	
Method of Removal	Pump		pump	Pump		F Duaman
Was Well Purged Dry?	No		YPS	NO	_	-
oH (standard units)	7.84		7,72	8.02		(
Femperature (°C)	20,52		22.41	20,84	1	-
Conductivity (µmhos/cc)	1160	(905	1/80	_	-
Furbidity (NTU)	18.2		325	24,6	~	-
Appearance	CLIMAN		CLAM	CLEMA	/	-
Ddor	NONE		NONE	Nont	<u> </u>	
Purge Time - Begin		~		5		
Purge Time - End		_		~	~	_
Sample Time	1336	NO	1232	1254	-	NO
ample Date	09/19/18	SAMPLE	09/19/18	09/19/18	~	Sponfle
64	ecapup			SHALLOW DVALCATE		
	For 2" well multip		0.163	DVFUCKIE		
	For 4" well multip	bly by	0.653			

SAMPLED BY: KENNY Me DerAcd . DATE: 09/18-19/18

Well Identification Number	MW-7D	MW-7S	MW-8D	MW-8S	MW-9D	MW-9S
Sample Identification	NA	GAUGE	NA	GAUGE	NA	Metals IV
Elevation of Top of Casing (ft. NGVD)	626.45	626.46	629.32	628.71	637.04	636.94
Depth to Water (ft)	6	11.97	a	10,14		28,00
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.70	33.54	64.50	43.30	63.10	36.71
Height of Water Column (ft.)		21,57		33.16		8.71
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	-	3,52	-	5,41		1.42
Water Removed From Well (gallons)		-			(2,25
Method of Removal				{	1	pump
Was Well Purged Dry?			1		_	YES
pH (standard units)	~					0000
Temperature (°C)	de la construcción de la constru			-		21.6
Conductivity (µmhos/cc)	<u> </u>	-	1)	-	3280
Turbidity (NTU)	_	(\sim		_	88.2
Appearance		$\left(\right)$	(~	_	YELLOWISH BROWN THAT
Odor	-		~		\sim	NONG
Purge Time - Begin	~				1)
Purge Time - End	-	<u> </u>	~)	(
Sample Time	L	~	6		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1154
Sample Date	-	_	(_	1	09/19/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KINNY MIDONALD . DATE: 09/18-19/18

Well Identification Number	MW-10D	MW-10S	MW-11D	MW-11S	MW-12D	MW-128
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Metals IV	CCR III & IV	Metals IV
Elevation of Top of Casing (ft. NGVD)	639.32	639.58	628.27	628.75	623.67	623.50
Depth to Water (ft)	69,13	26.11	48.26	15,27	19,91	21,27
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	71.33	36.22	50.34	31.02	44.92	22.94
Height of Water Column (ft.)	2,20	10.17	2.08	15.75	25,01	1,67
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0,36	1.65	0,34	2,57	4,08	0,27
Water Removed From Well (gallons)	0,25	6.0	0,25	10,0	8.25	0.20
Method of Removal	BAILM	Pump	BAILER	Pump	Pump	BAILIN
Was Well Purged Dry?	TES	No	YES	N 0	465	YES
pH (standard units)		8,60		and the second	8,13	
Temperature (°C)		21.12	(21,24	20.42	
Conductivity (µmhos/cc)		737	.]	802	39240	_
Turbidity (NTU)		25.8	(18,6	304	-
Appearance		CLGAN	(CLAAN	TURBIN	~
Odor	<u> </u>	wont		Nont	Nont	-
Purge Time - Begin	5		_	\sim	1	
Purge Time - End	6		(_	-
Sample Time	N 0	0948	NO	1017	1107	NO
Sample Date	SAMPLE	09/19/18	SAMPLE	09/19/18	09/19/18	SAMPLY

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: Ktory MiDenaid. DATE: 09/18-19/18

Well Identification Number	MW-13D	MW-138	MW-14	MW-15	MW-16	MW-17
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	NA	CCR III & IV	CCR III & IV
Elevation of Top of Casing (ft. NGVD)	619.06	619.15	640.89	637.71	637.26	636.52
Depth to Water (ft)	45.70	17,44	76.03		61.34	54,71
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	47.56	18.12	78.96	74.21	64.15	58.41
Height of Water Column (ft.)	1.86	0.68	2,93		2181	3.70
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0,30	0, 11	6.48		0,46	0.60
Water Removed From Well (gallons)	0,25	discontraction of the second	0.25		0,25	0,50
Method of Removal	BAICM		BAILM	~	BAILTR	BAILON
Was Well Purged Dry?	465	~	YES		YFS	445
pH (standard units)		(~		7.94
Temperature (°C)	Ì			-	_	21.28
Conductivity (µmhos/cc)			-		-	1630
Turbidity (NTU))		-			24,2
Appearance)				(CLOND
Odor)			~	Nort
Purge Time - Begin	-	-		-	4	(
Purge Time - End		-	_	~		
Sample Time	N Ó	NO	NO	_	No	1402
Sample Date	SAMILE	SAMPLY	SAMPLE	~	SAMPLE	09/19/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY:__

KINNY MIDENAL . DATE: 10/15/18

Well Identification Number	MW-1D	MW-1S	MW-2D	MW-2S	MW-3D	MW-3S
Sample Identification	CCR III & IV	Gauge	CCR III & IV	Metals IV	NA	Metals IV
Elevation of Top of Casing (ft. NGVD)	638.07	638.89	638.19	637.37	630.65	630.19
Depth to Water (ft)	54.45	23,93	60.59	35.25		26,14
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.25	37.76	61.80	36.75	62.95	27.21
Height of Water Column (ft.)	3.80	13.83	1.21	1.50		0.80
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.62	1.80	0,20	6,24	~	0,13
Water Removed From Well (gallons)	0.S	/	0,1	0.1	-	. <u> </u>
Method of Removal	BAILFR		BAILOR	BAILTA	5	
Was Well Purged Dry?	YES		YES	YES)	405
pH (standard units)		~			-	~,
Temperature (°C)	j	~		r	/	
Conductivity (µmhos/cc)	(_	~	1	
Turbidity (NTU)			_	<u> </u>	-	<u> </u>
Appearance)	_)	-	_
Odor	(~	Anna and an and a second s)	-	`
Purge Time - Begin		5	_	~	-)
Purge Time - End	~	·	-)
Sample Time	NU	5	Νb	\sim_0	~	NO
Sample Date	Sample	·	SAMPY	Sample	\sim	SAMPLE

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNY Millenfil . DATE: 10/15/18

Well Identification Number	MW-4D	MW-4S	MW-5D	MW-5S	MW-6D	MW-6S
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Metals IV	NA	Metals IV
Elevation of Top of Casing (ft. NGVD)		624.54	636.84	636.72	636.80	636.66
Depth to Water (ft)	43.49	Dny	32.01	23,51		Dry
Water Level Elevation (ft. NGVD)	RER					
Measured Depth Total Depth of Well (ft.)	53.86	32.94	58.42	33.15	58.51	28.20
Height of Water Column (ft.)	9,96		26,41	9.64		/
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1,62		4.30	1.57	_	
Water Removed From Well (gallons)	8.0	1	9.0	6,0	5	
Method of Removal	Pump		Pump	fump		~
Was Well Purged Dry?	No		YFS	No		_
pH (standard units)	7.59		7,84	7.74	/	/
Temperature (°C)	21,28	\sim	20,74	20,10	-	
Conductivity (µmhos/cc)	1270		979	1310	5	_
Turbidity (NTU)	97,4	-	42.8	21.8	-	-
Appearance	CLEAR		CLMA	CUTAN	_	~
Odor	Nont)	NUNT	Nont	_	
Purge Time - Begin		-	(_		-
Purge Time - End	-	_	-			-
Sample Time	1310	Nυ	1335	0950	-	NJ
Sample Date	10/15/18	SAMPLE	10/15/18	10/15/18	ـــــ	SAMPH
	CA DVP For 2" well multi For 4" well multi		0.163 0.653	S'HALLOV DUP		

SAMPLED BY:____

KENNY MIDERACI . DATE: 10/15/18

Well Identification Number	MW-7D	MW-7S	MW-8D	MW-8S	MW-9D	MW-9S
Sample Identification	NA	GAUGE	NA	GAUGE	NA	Metals
Elevation of Top of Casing (ft. NGVD)	626.45	626.46	629.32	628.71	637.04	IV 636.94
Depth to Water (ft)		11.78		10,35	_	28.47
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.70	33.54	64.50	43.30	63.10	36.71
Height of Water Column (ft.)		21,76		32,95		8,24
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	_	3,55		5,37		1.34
Water Removed From Well (gallons)			5]	1	1.0
Method of Removal		_			-	Pump
Was Well Purged Dry?		ļ		-	_	YES
pH (standard units)		~		_		\$ 22 22
Temperature (°C)		_	-			20,76
Conductivity (µmhos/cc)	/	1	<u> </u>		_	3490
Turbidity (NTU)			(5		102
Appearance				-	-	BROWN TINT
Odor	(~			ront
Purge Time - Begin	~	~		~		<u> </u>
Purge Time - End	~	<u> </u>	<u> </u>		~	-
Sample Time	~	\sim		~	\sim	1020
Sample Date	\sim	\sim	/		\sim	10/15/18

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNY MIDENARD . DATE: 10/15/18

Well Identification Number	MW-10D	MW-105	MW-11D	MW-115	MW-12D	MW-12S
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Metals IV	CCR III & IV	Metals IV
Elevation of Top of Casing (ft. NGVD)	639.32	639.58	628.27	628.75	623.67	623.50
Depth to Water (ft)	69.11	26.11	48.31	14.94	19,97	21,02
Water Level Elevation (ft. NGVD)			/			
Measured Depth Total Depth of Well (ft.)	71.33	36.22	50.34	31.02	44.92	22.94
Height of Water Column (ft.)	2,22	10,11	2,03	16,08	24,95	1.92
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.36	1.65	0,33	2.62	4,07	6.31
Water Removed From Well (gallons)	0.25	10,0	0.29	10,0	8,25	0,25
Method of Removal	BAILM	pump	BAICM	pump	Pump	BALLA
Was Well Purged Dry?	YES	No	YES	NO	YES	YHS
pH (standard units)	Í	9.03	_	8.55	9.37	_
Temperature (°C)		21,28		22,31	22,08	_
Conductivity (µmhos/cc)	Ĵ	740	-	8 SY	1340	
Turbidity (NTU)	J	30,4		20,4	154)
Appearance	-	CLEMA	-	CUPAR	SLIGHTLY TUNBIN	
Odor		NONT	- Magniniterese	NONF	Nont	
Purge Time - Begin		ĺ	(-	-
Purge Time - End	5	5	5	~	C	\sim
Sample Time	NU	1120	ND	1150	1350	NO
Sample Date	Siample	10/15/18	Sampli	10/15/18	10/15/18	SAMPLA

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY:

KAMM MI DEAMEL . DATE: 10/15/18

Well Identification Number	MW-13D	MW-138	MW-14	MW-15	MW-16	MW-17
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	CCR III	CCR III & IV	CCR III & IV
Elevation of Top of Casing (ft. NGVD)	619.06	619.15	640.89	637.71	637.26	636.52
Depth to Water (ft)	45,62	17.58	75.58	61.94	61.66	56.02
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	47.56	18.12	78.96	74.21	64.15	58.41
Height of Water Column (ft.)	1.92	0.54	3.38	12,27	2,49	2,39
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.32	0.09	0.55	2,00	0,41	0.39
Water Removed From Well (gallons)	0.25		0.25	3,50	6,25	0.25
Method of Removal	Pump		BAULK	Pump	BAIM	BAILTA
Was Well Purged Dry?	THS		YES	YES	415	YES
pH (standard units)		_		8.04]	_
Temperature (°C)	-	_		22,46	-	1
Conductivity (µmhos/cc)		-		1490	5)
Turbidity (NTU)	1	-	(164	(
Appearance	-	5		SLIGHTLY TORBIP)	-
Odor)	(NONF)	_
Purge Time - Begin	-	((-	
Purge Time - End	_	~	~)	_
Sample Time	r6	NO	NO	1240	NU	NU
Sample Date	SAMPLE	SAMPU	SAMPLE	10/15/18	SAMPLE	SAMPLE

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNY MEDENALD . DATE: 10/22/18

Well Identification Number	MW-1D	MW-1S	MW-2D	MW-2S	MW-3D	MW-3S
Sample Identification	NA	NA	NA	NA	Appendix III	NA
Elevation of Top of Casing (ft. NGVD)	638.07	638.89	638.19	637.37	630.65	630.19
Depth to Water (ft)				5	37.09	
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.25	37.76	61.80	36.75	62.95	27.21
Height of Water Column (ft.)					25.86	
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)					4.22	
Water Removed From Well (gallons)					13,0	
Method of Removal					Pump	
Was Well Purged Dry?					NO	
pH (standard units)					7,20	
Гетрегаture (°С)					21,82	
Conductivity (µmhos/cc)					890	
Furbidity (NTU)					52,6	
Appearance					Clim	
Ddor					NONE	
Purge Time - Begin					_	
Purge Time - End					-	
ample Time					0.840	
ample Date					0840	

For 2" well multiply by	0.163
For 4" well multiply by	0.653

DUP LANDIILL

SAMPLED BY: KtARY MIDERALD . DATE: 10/22/18

Resample	NA				
	I VI K	Resample	NA	Appendix III	NA
625.00	624.54	636.84	636.72	636.80	636.66
43,41		41.92		34,34	
12.11					
53.86	32.94	58.42	33.15	58.51	28.20
10,45		16,50		24,17	
2	2	2	2	2	2
1.70		2.69		3,94	
10.0		6,0		8,25	
PUMP		Pump		Pump	
No		YHS		YES	
7,91		7,98		7,25	
21,24		20.94		20.42	
1150		982		1310	
42,8		31.6		206	
CIHAN		CitAn		TURBIP	
Nont		Nont		Kont	
	5	_			
	Q.	_		~	
0840		1000		0900	
10/22/18		10/22/18		10/22/18	
DUP	1 1	0.1.00			
	21,24 1150 42,8 CLAAR NONE 0840 10/22/18 DUP r 2" well multip	21,24 1150 42,8 CLAAR NONE 0840 10/22/18	21,24 21,24 20,94 1150 982 42,8 31,6 CUTAN NONE NONE 0840 1000 10/22/18 DUP r2" well multiply by 0.163	21,24 20,94 1150 982 42,8 31,6 CLHAR CLHAR NONE Nont - - 0840 1000 10/22/18 10/22/18 DVP 0.163	21,2 Y 20,9 Y 20,4 Z 11 S0 98 Z 1310 42,8 31,6 206 CLHAN CLHAN TVAGID NONE NONE NONE - - - 0840 1000 0906 10/22/18 10/22/18 10/22/18

.

SAMPLED BY: KENNY MCPORALD . DATE: 10/22/18

Well Identification Number	MW-7D	MW-7S	MW-8D	MW-8S	MW-9D	MW-9S
Sample Identification	Appendix III	NA	Appendix III	NA	Appendix	NA
Elevation of Top of Casing (ft. NGVD)	626.45	626.46	629.32	628.71	637.04	636.94
Depth to Water (ft)	13,08		32.72		56,60	
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.70	33.54	64.50	43.30	63.10	36.71
Height of Water Column (ft.)	45.62		31,78		6,50	
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	7.44		5,18		1.06	
Water Removed From Well (gallons)	19.0		10,5		1.0	
Method of Removal	fump		Pump		PUMP	
Was Well Purged Dry?	Yes		YES		YES	
pH (standard units)	7,42		7,12		7,13	
Гетрегаture (°С)	22.39		22.59		20,97	
Conductivity (µmhos/cc)	5820		28400		1820	
Furbidity (NTU)	52,3		28.3		428	
Appearance	CLEAR		CLAAN		TURSIO	Si .
Ddor	NONE		Nort		NONF	
Purge Time - Begin	-		_		_	
urge Time - End	-		_		-	
ample Time	1100		1040		0920	
ample Date	10/22/18		10/22/18		10/22/18	

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNY MiDENAID . DATE: 10/22/18

Well Identification Number	MW-10D	MW-10S	MW-11D	MW-118	MW-12D	MW-12S
Sample Identification	NA	NA	NA	NA	Resample	NA
Elevation of Top of Casing (ft. NGVD)	639.32	639.58	628.27	628.75	623.67	623.50
Depth to Water (ft)					19.85	
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	71.33	36.22	50.34	31.02	44.92	22.94
Height of Water Column (ft.)					25,07	
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)					4.09	
Water Removed From Well (gallons)					9,5	
Method of Removal					PUMP	
Was Well Purged Dry?					Yes	
pH (standard units)					8,97	
Temperature (°C)					21.37	
Conductivity (µmhos/cc)					1380	
Turbidity (NTU)					187	
Appearance					TURDIP	
Odor					NUNT	
Purge Time - Begin						
Purge Time - End					~	
Sample Time					1020	
Sample Date					10/22/18	

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KINNY MIDONALD . DATE: 10/22/18

Well Identification Number	MW-13D	MW-13S	MW-14	MW-15	MW-16	MW-17
Sample Identification	NA	NA	NA	Appendix III	NA	NA
Elevation of Top of Casing (ft. NGVD)	619.06	619.15	640.89	637.71	637.26	636.52
Depth to Water (ft)				60.80		
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	47.56	18.12	78.96	74.21	64.15	58.41
Height of Water Column (ft.)	×			13,41		
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)		3		2,19		
Water Removed From Well (gallons)				4,25		
Method of Removal				Pump		
Was Well Purged Dry?				YES		
pH (standard units)				7,79		
Temperature (°C)				22,08		
Conductivity (µmhos/cc)				1420		
Turbidity (NTU)				188		
Appearance				TURBID		
Odor				NONG		
Purge Time - Begin				_		
Purge Time - End				-		
Sample Time				6940		
Sample Date				jo/22/18		

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY:_

KENNY MEDENALD . DATE: 11/28/18

Well Identification Number	MW-1D	MW-1S	MW-2D	MW-2S	MW-3D	MW-3S
Sample Identification	CCR III & IV	Gauge	CCR III & IV	Metals IV	B NA F	Metals IV
Elevation of Top of Casing (ft. NGVD)	638.07	638.89	638.19	637.37	630.65	630.19
Depth to Water (ft)	54,27	24,67	60,19	35,31	36,85	24,55
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.25	37.76	61.80	36.75	62.95	27.21
Height of Water Column (ft.)	3.98	13,09	1.61	1.44	26.10	2,66
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.65	2,13	0,26	0.23	4.25	0,43
Water Removed From Well (gallons)	0.5			0,	13.0	0,25
Method of Removal	BAILER			BAILM	Pump	BAILTA
Was Well Purged Dry?	YES	1		465	NO	Yrs
pH (standard units)			-		8.01	
Temperature (°C)			1	_	21.38	
Conductivity (µmhos/cc)				-	1200	
Turbidity (NTU))	Ĵ		48.3	(
Appearance		_	1	-	(UFAN	-
Odor	~		5		rort	(
Purge Time - Begin			_	-		-
Purge Time - End		_	-	~	/	_
Sample Time	N 0	-	No	No	0930	NO
Sample Date	Siample		SAMPIL	SAMPLE	11/28/18	SAMPLE

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KINNY MI DENALL . DATE: 11/28/18

•

Well Identification Number	MW-4D	MW-4S	MW-5D	MW-5S	MW-6D	MW-6S
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Metals IV	FNA	Metals IV
Elevation of Top of Casing (ft. NGVD)	625.00	624.54	636.84	636.72	636.80	636.66
Depth to Water (ft)	43.19	Pny	28,84	23,79	33.94	Dry
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	53.86	32.94	58.42	33.15	58.51	28.20
Height of Water Column (ft.)	10.67		29.58	9136	24.57	(
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1.74	(4.82	1,53	4.00	
Water Removed From Well (gallons)	10.0	(10:0	8.0	8.25	-
Method of Removal	Pump	-	Pump	pump	Pomp	-
Was Well Purged Dry?	NO	-	YHS	NO	YES	-
pH (standard units)	7,89		8.06	8:13	7.71	
Temperature (°C)	17.21		20,71	18,24	20.94	-
Conductivity (µmhos/cc)	1150	-	1010	1220	1330	-
Turbidity (NTU)	26,8		52,6	-18,4	114)
Appearance	(LIAA	ĺ	ClfiAn	CIMA	SLIGHTLY TURBIO	-
Odor	NONF	<u> </u>	NUNt	Non-	NONG	ſ
Purge Time - Begin	-	-	_	_	~	
Purge Time - End		1	-	-	-	
Sample Time	0850	~	1135	1125	0950	
Sample Date	11/28/18	~	11/28/18	11/28/18	11/28/18	-
	For 2" well multi	ply by	0.163			

0.653

For 4" well multiply by

SAMPLED BY:

Klann MiDennel

DATE:

11/28/18

Well Identification Number MW-7D MW-7S MW-8D **MW-8S** MW-9D **MW-9S** Metals Sample Identification NA GAUGE NA GAUGE NA IV Elevation of Top of Casing (ft. 626.45 626.46 628.71 637.04 636.94 629.32 NGVD) 8.48 1.8 28,30 _ Depth to Water (ft) Water Level Elevation (ft. NGVD) Measured Depth Total Depth 33.54 58.70 64.50 43.30 63.10 36.71 of Well (ft.) 21.73 Height of Water Column (ft.) -34.82 8.41 Well Size (I.D.) (inches) 2 2 2 2 2 2 Volume of Water in Well 3.54 5,68 1.37 (gallons) Water Removed From Well 2.0 (gallons) Method of Removal Rmr Was Well Purged Dry? YFS pH (standard units) 11.31 Temperature (°C) --18,04 Conductivity (µmhos/cc) 3360 **Turbidity (NTU)** 127 BROWNTIFF -Appearance Odor **Purge Time - Begin Purge Time - End Sample Time** 1020 11/28/18 / -Sample Date 4

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: Kimpy nilenned . DATE: 11/28/18

Well Identification Number	MW-10D	MW-10S	MW-11D	MW-11S	MW-12D	MW-12S
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Metals IV	CCR III & IV	Metals IV
Elevation of Top of Casing (ft. NGVD)	639.32	639.58	628.27	628.75	623.67	623.50
Depth to Water (ft)	68,91	26.18	48.28	15.42	19,73	20.68
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	71.33	36.22	50.34	31.02	44.92	22.94
Height of Water Column (ft.)	2,42	10.04	2,06	15.60	25.19	2,26
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0,39	1,64	0.34	2,54	4,11	0.34
Water Removed From Well (gallons)	0.25	8.0	0.25	10.0	9.0	0,25
Method of Removal	BAILM	pomp	BALLM	pump	Pump	Pump
Was Well Purged Dry?	YES	NO	YFS	NO	YES	YHS
pH (standard units)		8.92	~	8,61	8.94	7.25
Temperature (°C)	5	19.07)	26,00	21.62	19,28
Conductivity (µmhos/cc)	-	756	-	906	1290	920
Turbidity (NTU)	ļ	21.4		17.6	216	64.3
Appearance	/	CLAN)	CLFAC	TIRBIP	CLGAR
Odor	-	NON(-)	NUMF	NUNE	MUNY
Purge Time - Begin	-	~	_	1		-
Purge Time - End	-	~	1	-	-	-
Sample Time	NO	1440	NO	1425	1325	1340
Sample Date	SAMPLA	11/28/18	SAMPIF	11/28/18	11/28/18	11/28/18

For 2" well multiply by	0.163	SHAME
For 4" well multiply by	0.653	DVP

SAMPLED BY: Ktony Million Date: 11/18/18

.

Well Identification Number	MW-13D	MW-138	MW-14	MW-15	MW-16	MW-17
Sample Identification	CCR III & IV	Metals IV	CCR III & IV	Ca NA	CCR III & IV	CCR III & IV
Elevation of Top of Casing (ft. NGVD)	619.06	619.15	640.89	637.71	637.26	636.52
Depth to Water (ft)	45.35	17.65	76.19	61.62	62.36	55,23
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	47.56	18.12	78.96	74.21	64.15	58.41
Height of Water Column (ft.)	2,21	0,47	2.77	17,59	1.79	3.18
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.36	0.08	0,45	2.05	0,29	0.52
Water Removed From Well (gallons)	0.25	-	0.25	4,0		0,25
Method of Removal	BAILER	_	BAILM	pump		BAUMI
Was Well Purged Dry?	YES		445	YES	1	413
pH (standard units)		_	~	8.26		
Temperature (°C)		_	(21.49		
Conductivity (µmhos/cc)	/	-	-	1380	1)
Turbidity (NTU)		-	-	182	-	
Appearance		-		SLICHTLY TURBID	1)
Odor		-	-	Nont	<u> </u>	
Purge Time - Begin		~			1	-
Purge Time - End	_	-)	/	_	_
Sample Time	\sim_0	No	NO	1100	No	NO
Sample Date	SAMPLE	SAMPLI	SAMPLE	11/28/18	SAMPIK	SAMPLE

For 2" well multiply by	0.163
For 4" well multiply by	0.653

.

SAMPLED BY: Ktony Mc DONALd

01/15-16/19 DATE:

Well Identification Number MW-1D MW-1S MW-2D MW-2S MW-3D MW-3S Sample Identification Gauge Gauge Gauge Metals Gauge Metals Elevation of Top of Casing (ft. 638.07 638.89 638.19 637.37 630.65 630.19 NGVD) 31,12 36,69 49.60 54.06 4.31 Depth to Water (ft) 21,84 Water Level Elevation (ft. NGVD) Measured Depth Total Depth 27.21 58.25 37.76 61.80 36.75 62.95 of Well (ft.) 5,37 5.63 Height of Water Column (ft.) Well Size (I.D.) (inches) 2 2 2 2 2 2 Volume of Water in Well 0,92 0,88 (gallons) Water Removed From Well 0.5 0,75 (gallons) BANKA BAILM Method of Removal YES Was Well Purged Dry? YFS 9,52 pH (standard units) 7.93 19,83 Temperature (°C) 20.04 Conductivity (µmhos/cc) 2240 2180 **Turbidity (NTU)** 102 122 SLIGHH9 tungig SUGHTLY TURBIO Appearance NONT Odor NONF **Purge Time - Begin** Purge Time - End Sample Time 1620 1715 01/15/19 01/15/19 Sample Date

		SHALLOW
For 2" well multiply by	0.163	JAAcco
For 4" well multiply by	0.653	DUP

SAMPLED BY: KINNY Mi DonAid

DATE: 01/15-16/19

Well Identification Number MW-4D MW-4S MW-5D MW-5S MW-6D MW-6S CCR CCR Sample Identification Metals Metals Gauge Metals Ш Ш Elevation of Top of Casing (ft. 625.00 624.54 636.84 636.72 636.80 636.66 NGVD) 34.05 25,38 42,90 DAY 16,01 Drg Depth to Water (ft) Water Level Elevation (ft. NGVD) Measured Depth Total Depth 53.86 32.94 58.42 33.15 58.51 28.20 of Well (ft.) 17,14 10,96 33,04 Height of Water Column (ft.) 2 2 2 2 2 2 Well Size (I.D.) (inches) Volume of Water in Well 1.79 2,79 5.39 (gallons) Water Removed From Well 10.0 10,0 10.0 (gallons) PUMP Pump PUMP Method of Removal NO YES NO Was Well Purged Dry? 7.51 7,81 8,24 pH (standard units) 19,87 Temperature (°C) 19,22 20,08 1080 1010 Conductivity (µmhos/cc) 1420 51.0 29.8 **Turbidity (NTU)** 41.6 SUGHTVY CUM Appearance CUM TURBID NONG NONE NONF Odor **Purge Time - Begin** Purge Time - End 1600 1805 1750 **Sample Time** 01/15/19 01/15/19 01/15/19 Sample Date DUPLICATI For 2" well multiply by 0.163 For 4" well multiply by 0.653

SAMPLED BY: KENNY MEDERALD . DATE: 01/15-16/19

____**.**

Well Identification Number	MW-7D	MW-7S	MW-8D	MW-8S	MW-9D	MW-9S
Sample Identification	Gauge	Gauge	Gauge	Gauge	Gauge	Metals
Elevation of Top of Casing (ft. NGVD)	626.45	626.46	629.32	628.71	637.04	636.94
Depth to Water (ft)	13,66	9,98	31.73	7.14	56,52	26,45
Water Level Elevation (ft. NGVD)	-/ · / ¥					
Measured Depth Total Depth of Well (ft.)	58.70	33.54	64.50	43.30	63.10	36.71
Height of Water Column (ft.)						10,26
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)						1,67
Water Removed From Well (gallons)						2,0
Method of Removal						2,0 Pump
Was Well Purged Dry?						Yes
pH (standard units)						11.16
Temperature (°C)						20,19
Conductivity (µmhos/cc)						3720
Turbidity (NTU)						121
Appearance						BRINN
Odor						NONF
Purge Time - Begin						~
Purge Time - End						
Sample Time						1645
Sample Date)	~	~	1645 01/15/19

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KANY Miland . DATE: 01/15-16/19

.

Well Identification Number	MW-10D	MW-10S	MW-11D	MW-11S	MW-12D	MW-12S
Sample Identification	Gauge	Metals	Gauge	Metals	CCR III	Metals
Elevation of Top of Casing (ft. NGVD)	639.32	639.58	628.27	628.75	623.67	623.50
Depth to Water (ft)	68.77	14.54	48,26	10.98	13,14	9,24
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	71.33	36.22	50.34	31.02	44.92	22.94
Height of Water Column (ft.)		21.68		20.04	31,78	13.70
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)		3,53		3,27	5.18	2,23
Water Removed From Well (gallons)		14.0		12,0	10,25	4.0
Method of Removal		PUMP		pump	Pump	Pump
Was Well Purged Dry?		No		No	YES	YES
pH (standard units)		8.41		8,37	8.06	7.28
Temperature (°C)		21.01		21,19	20,71	19,21
Conductivity (µmhos/cc)		806		1000	1310	884
Turbidity (NTU)		17,6		15,8	184	41.6
Appearance		CLEAN		Com	TURBID	Citran
Odor		Nort		wort	NONE	port
Purge Time - Begin		-		-	_	-
Purge Time - End		/		1	1	
Sample Time		1550		1535	1520	1510
Sample Date	-	01/15/19		01/15/19	01/15/19	1510 61/15/19

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENING Mc PONArd . DATE: 01/15-16/19

Well Identification Number	MW-13D	MW-13S	MW-14	MW-15	MW-16	MW-17
Sample Identification	Gauge	Metals	Gauge	Gauge	Gauge	Gauge
Elevation of Top of Casing (ft. NGVD)	619.06	619.15	640.89	637.71	637.26	636.52
Depth to Water (ft)	45,41	17,32	75,30	50,42	60.02	54.38
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	47.56	18.12	78.96	74.21	64.15	58.41
Height of Water Column (ft.)		0.80				
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)		0.13				
Water Removed From Well (gallons)		<u> </u>				
Method of Removal		-				
Was Well Purged Dry?						
pH (standard units)		_				
Temperature (°C)						
Conductivity (µmhos/cc)		-				
Turbidity (NTU)		-				
Appearance		-				
Odor		1				
Purge Time - Begin		-				
Purge Time - End		-				
Sample Time		NU				
Sample Date		Sigmple	_			-

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENRY MIDONALD . DATE: 02/27/19

_____.

Well Identification Number	MW-1D	MW-1S	MW-2D	MW-2S	MW-3D	MW-3S
Activities	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Sample	Appendix III	NA	Appendix III	Appendix IV	Appendix III	Appendix IV
Depth to Water (ft)	53,80	21,94	56.68	32,86	36,98	21,29
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.25	37.76	61.80	36.75	62.95	27.21
Height of Water Column (ft.)	4,45		5.12	3,89	25,97	5.92
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0,73		0.83	0.63	4,23	0,96
Water Removed From Well (gallons)	0.5		3.0	1,25	13.0	1,0
Method of Removal	BAILM		PVMP	PUMP	fump	Pump
Was Well Purged Dry?	YES		NO	YES	No	Yes
pH (standard units)			11.0.3	8,90	7.80	7,38
Temperature (°C)	-		17.91	18.24	18,04	17,42
Conductivity (µmhos/cc)	(1570	2920	934	2780
Turbidity (NTU)	(-	134	116	38.9	134
Appearance			SCICHTES TURBID	SLIGHTLY TUNDID	CLGAN	SUIGHTLY TURDID
Odor			NONF	NON-	NONF	NONF
Ohio Containers	250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3	
Shreveport Containers	250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3	500 mL HNO3	250 mL Unpres 250mL HNO3	500 mL HNO3
Sample Time		_	1200	1140	900	920
Sample Date			02/27/19	07/27/19	02/27/19	02/27/19

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KINNY MIDUNALD . DATE: 02/27/19

Well Identification Number	MW-4D	MW-4S	MW-5D	MW-5S	MW-6D	MW-6S
Activities	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Samples	Appendix III	NA	Appendix III	NA	Appendix III	Appendix IV
Depth to Water (ft)	43.23	Pry	24.81	20,87	34,12	Dry
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	53.86	32.94	58.42	33.15	58.51	28.20
Height of Water Column (ft.)	10,63		37.61		24,39	-
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1,73		5.48		3,98	~
Water Removed From Well (gallons)	10.0		10,25		8.0	
Method of Removal	Pump		Pump		Pump	
Was Well Purged Dry?	NO		YES		YFS	
pH (standard units)	7.66		8.45		7.62	
Temperature (°C)	16.80		17,41		18124	
Conductivity (µmhos/cc)	1243		773		1420	
Turbidity (NTU)	21,6		5 Z,		108	
Appearance	Cuhan		(1 han		SUIGHTLY TURBIN	
Odor	NONE		NUNF		Nont	
Ohio Containers	250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3	
Shreveport Containers	250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3	500 mL HNO3
Sample Time	0835		1225		1000	
Sample Date	02/27/19		02/27/19		02/27/19	
	PUPLICATE					
	For 2" well multip	пу бу	0.163			

For 2" well multiply by	0.163
For 4" well multiply by	0.653
10-10-111	

LANDFILL

SAMPLED BY: Ktony Mc Pinaid . DATE: 02/27/19

Well Identification Number	MW-7D	MW-7S	MW-8D	MW-8S	MW-9D	MW-9S
Sample Identification	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Elevation of Top of Casing (ft. NGVD)	Appendix III	NA	Appendix III	NA	Appendix III	Appendix IV
Depth to Water (ft)	12,38	11.55	26.23	7.17	55.76	26.64
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.70	33.54	64.50	43.30	63.10	36.71
Height of Water Column (ft.)	46.32		38,27		7,34	10.07
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	7.55		6.24		1,20	1.64
Water Removed From Well (gallons)	18.0		10,75		1.0	2,25
Method of Removal	Pump		Pump		Pump	Pump
Was Well Purged Dry?	YES		YFS		YFS	YB
pH (standard units)	8.28		8,03		7,58	12,34
Temperature (°C)	19,12		18,49		17.81	18.38
Conductivity (µmhos/cc)	6240		22400		1930	4240
Turbidity (NTU)	38.7		58.6		342	147
Appearance	Clim		CLHAN		TURBIO	BROWN TINT
Odor	NONF		wort		NONF	Nont
Ohio Containers	250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3)
Shreveport Containers	250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3	500 mL HNO3
Sample Time	0810		1350		1022	1045
Sample Date	02/27/19		02/27/19		02/27/19	02/27/19

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KENNY Milling . DATE: 02/27/19

Well Identification Number	MW-10D	MW-10S	MW-11D	MW-11S	MW-12D	MW-12S
Sample Identification	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Elevation of Top of Casing (ft. NGVD)	Appendix III	NA	Appendix III	NA	Appendix III	Appendix IV
Depth to Water (ft)	68.64	20,58	48,26	12,20	16,95	12.01
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	71.33	36.22	50.34	31.02	44.92	22.94
Height of Water Column (ft.)	2,69		2.08		27,97	10:93
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.44		0.34		4.56	1.78
Water Removed From Well (gallons)	0.25		0.25		10,25	4,0
Method of Removal	BAILM		BAILM		lump	Pump
Was Well Purged Dry?	YES		YES		YES	YES
pH (standard units)					8,45	7.57
Temperature (°C)			-		18.04	18.71
Conductivity (µmhos/cc)	_		-		1230	983
Turbidity (NTU))				158	44,6
Appearance	ĺ		~		TURBID	CLAAN
Odor	5		1		NONE	Nont
Ohio Containers	250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3	_
Shreveport Containers	250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3		250 mL Unpres 250mL HNO3	500 mL HNO3
Sample Time		_	-	~	1325	300
Sample Date	~		~		02/27/19	02/27/19

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KINNY MIDENALD . DATE: 02/27/19

Well Identification Number	MW-13D	MW-13S	MW-14	MW-15	MW-16	MW-17
Activities	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Samples	Appendix III	Appendix IV	Appendix III	Appendix III	Appendix III	Appendix III
Depth to Water (ft)	42,8C	15,29	74,45	58,24	62,66	53.65
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	47.56	18.12	78.96	74.21	64.15	58.41
Height of Water Column (ft.)	4.72	2,83	4,51	15,97	1,49	4.76
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	6.77	0,46	0,74	2.60	0,24	0.78
Water Removed From Well (gallons)	0,50	0.25	0.50	4,25		0,50
Method of Removal	funl	BAILM	PAILM	pump	(BAILA
Was Well Purged Dry?	YES	465	YES	YES	-	715
pH (standard units)		5	/	8,60	-	5
Temperature (°C)	-		-	19,25	-	(
Conductivity (µmhos/cc))	1	5	izys	~	/
Turbidity (NTU)	1	-	1	142	-	-
Appearance)	1	1	tukblo	-	
Odor)	5	1	Nort	-	_
Ohio Containers	250 mL Unpres 250mL HNO3	_	250 mL Unpres 250mL HNO3			
Shreveport Containers	250 mL Unpres 250mL HNO3	500 mL HNO3	250 mL Unpres 250mL HNO3	250 mL Unpres 250mL HNO3	250 mL Unpres 250mL HNO3	250 mL Unpres 250mL HNO3
Sample Time			13,	1120		
Sample Date	<u> </u>	/	/	02/27/19		~

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: Kinny Me Durand / MATT HAMILTON DATE: 08/26/19

Well Identification Number	MW-1D	MW-1S	MW-2D	MW-2S	MW-3D	MW-3S
Activities	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Samples	Appendix III	NA	Appendix III	Appendix IV Metals	Appendix III	Appendix IV Metals
Depth to Water (ft)	52,71	23,95	57,91	32,54	37,34	22,94
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.25	37.76	61.80	36.75	62.95	27.21
Height of Water Column (ft.)	SSY	13,81	3.89	4.21	25.61	4,27
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.90	2,25	0.63	0.69	4.17	0.70
Water Removed From Well (gallons)	0,75	,	3,0	1.75	13,0	1.0
Method of Removal	BAILTA		Rmp	Pump	Pump	PUMP
Was Well Purged Dry?	YES	~	NO	Yts	No	YFS
pH (standard units)	1	-	12,79	12,90	8:46	8,23
Temperature (°C)]	-	23.28	22,91	22.41	2283
Conductivity (µmhos/cc)	1		1900	2370	1060	3060
Turbidity (NTU)	1		930	118	246	217
Appearance		(SUDitTU9 TURBID	Arown TINT	SLIG HILY	Sciottrey TUNBLO
Odor	J		NONE	NONE	Nort	Nona
Ohio Containers	250mL HNO3	(250mL HNO3	4	250mL HNO3	~
Shreveport Containers	1L Unpres		1L Unpres	500 mL HNO3	1L Unpres	500 mL HNO3
Sample Time		1	15 30	1535	1444	1450
Sample Date	~		08/26/19	08/20/19	08/26/19	

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KINNY MC DONALD/MATT HAMILTON DATE: 08/26/19

•

Well Identification Number	MW-4D	MW-4S	MW-5D	MW-5S	MW-6D	MW-6S
Activities	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Samples	Appendix III	NA	Appendix III	Appendix IV Metals	Appendix III	Appendix IV Metals
Depth to Water (ft)	43,73	Dry	24,20	22,88	32,83	DRY
Water Level Elevation (ft. NGVD)		\sim				
Measured Depth Total Depth of Well (ft.)	53.86	32.94	58.42	33.15	58.51	28.20
Height of Water Column (ft.)	10,13		34.22	5,40	25.68	-
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1.65	<u> </u>	5,58	0.88	4,19	13 martine
Water Removed From Well (gallons)	10.0		13,25	3,0	9,5	
Method of Removal	Pump		Pump	Pump	Pump	
Was Well Purged Dry?	NO	/	YHS	NO	YHS	
pH (standard units)	8.13	/	9,81	8,45	8.58	
Temperature (°C)	23,98	/	27,44	21.39	23.16	
Conductivity (µmhos/cc)	1230	-	1040	1160	1500	
Turbidity (NTU)	88,2	\smile	198	158	303	
Appearance	CLEAN		CLGAN	CLOM	SCIENTLY	
Odor	Norf		Nont	Nort	Nont	
Ohio Containers	250mL HNO3		250mL HNO3	-	250mL HNO3	
Shreveport Containers	1L Unpres		1L Unpres	500 mL HNO3	1L Unpres	500 mL HNO3
Sample Time	1433	~	1540	15 50	1500	
Sample Date	08/26/19	\smile	08/26/19	08/26/19	08/26/19	6~

L HWPPIU For 2" well multiply by 0.163 For 4" well multiply by 0.653 DJP

scorry DUPLICAN

SAMPLED BY: KENNY M. DENAL /MATT HAMILTON DATE: 08/26/19

Well Identification Number	MW-7D	MW-7S	MW-8D	MW-8S	MW-9D	MW-9S
Activities	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Samples	NA	NA	NA	NA	Appendix III	Appendix IV Metals
Depth to Water (ft)	11.45	11.48	23,13	9.30	53,55	26,26
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	58.70	33.54	64.50	43.30	63.10	36.71
Height of Water Column (ft.)	47.25	22,06	41.37	34.00	9.55	10,45
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	7.70	3.60	6.74	5,54	1,56	1.70
Water Removed From Well (gallons)			-	Ĺ	2,25	2,5
Method of Removal	(.)		-	Pump	pump
Was Well Purged Dry?	-		-	-	YHS	YFS
pH (standard units)	(_	(-	8.82	12,41
Temperature (°C)	<u> </u>			-	23,25	21.39
Conductivity (µmhos/cc)		_	-	-	1550	4180
Turbidity (NTU)	1	-	(-	128	130
Appearance)			-	SUCHT19 TURAD	Brown
Odor	1	-		~	Nort	Nont
Ohio Containers	-	_		/	250mL HNO3	ł
Shreveport Containers	-	-			1L Unpres	500 mL HNO3
Sample Time	/	-	-	-	1510	1515
Sample Date	~	_	-		08/26/19	1515 08/26/19

For 2" well multiply by	0.163
For 4" well multiply by	0.653

•

SAMPLED BY: KINNY MIDONALD /MATT HAMILTON DATE: 08/26/19

Well Identification Number	MW-10D	MW-10S	MW-11D	MW-11S	MW-12D	MW-12S
Activities	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Samples	Appendix III	Appendix IV Metals	Appendix III	Appendix IV Metals	Appendix III	Appendix IV Metals
Depth to Water (ft)	67,96	25,19	48.11	LARGE	18,66	15.71
Water Level Elevation (ft. NGVD)				WASP NEST		
Measured Depth Total Depth of Well (ft.)	71.33	36.22	50.34	31.02 δ F PAOTHI	44.92	22.94
Height of Water Column (ft.)	3137	11.03	2,23	OFTE	26:26	7.23
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	0.55	1.80	0.36		4.28	1.18
Water Removed From Well (gallons)	0,50	6.0	13		10,0	3,0
Method of Removal	BAIM	Pump	-		Pump	pump
Was Well Purged Dry?	Yts	No	2		YES	YH
pH (standard units)		7,60	-		8,68	7,31
Temperature (°C))	21.44		-	20,29	24.72
Conductivity (µmhos/cc)	-	915)		1410	1(50
Turbidity (NTU)	(30.0			469	523
Appearance	(Clom	~		SLIGHTLY TUBBD	CLEAR
Odor	1	NONF			Nont	WONO
Ohio Containers	250mL HNO3	- Annotation and the second	250mL HNO3	-	250mL HNO3	
Shreveport Containers	1L Unpres	500 mL HNO3	1L Unpres	500 mL HNO3	1L Unpres	500 mL HNO3
Sample Time	/	320	~		1405	1355
Sample Date		08/26/19	\sim		08/24/19	1355 08/26/19

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KONMY M. DENAL /MATT HAMILTON DATE: 08/26/19

Well Identification Number	MW-13D	MW-13S	MW-14	MW-15	MW-16	MW-17
Activities	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Samples	Appendix III	Appendix IV Metals	Appendix III	Appendix III	Appendix III	Appendix III
Depth to Water (ft)	37.42	17,16	68.82	Sapa .	62,60	50.89
Water Level Elevation (ft. NGVD)				59,72	~	
Measured Depth Total Depth of Well (ft.)	47.56	18.12	78.96	74.21	64.15	58.41
Height of Water Column (ft.)	10.14	6,96	10,14	14.49	-	7.52
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	1.65	0.16	1.65	2.36	~	1,23
Water Removed From Well (gallons)	1,50	~	1.75	5,0	~	1.0
Method of Removal	Pump		Brank	Pump	~	PUMP
Was Well Purged Dry?	YES	~	YES	10:514P)	YFS
pH (standard units)	-	[8.57		~	
Temperature (°C)		~	27,75	23,13		
Conductivity (µmhos/cc)	<u> </u>		10200	1560)	-
Turbidity (NTU)	ļ	1	20.3	178)	
Appearance	[-	CUM	SUIGHTLY TUPDOD	_	
Odor	/	/	wort	Nort	/	
Ohio Containers	250mL HNO3	~	250mL HNO3	250mL HNO3	250mL HNO3	250mL HNO3
Shreveport Containers	1L Unpres	500 mL HNO3	1L Unpres	1L Unpres	1L Unpres	1L Unpres
Sample Time		5	1600	1525		
Sample Date	1	~	08/26/19	08/26/19		\sim

For 2" well multiply by	0.163
For 4" well multiply by	0.653

ATTACHMENT B Laboratory Analytical Reports

Analysis Report

Report ID : 36899 Date Received: 01/24/2018	C	mpany: SEF Contact: Jill F Phone: (318	Parker-Witt	ental (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 212939 Cust Sample ID: MW-6D Sample Desc.: Coal Combustion	Lo	d Date: 01/2 ocation: Nort R)		ver Plant	By: h Matrix: \			
Metals (212939)			F					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Boron	4.24	mg/L	0.014	1:50	EPA 6010B 1996	01/31/2018 17:04		JDB
Water (212939)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Fluoride	0.76	mg/L	0.083	1	EPA 300.0	02/07/2018 0:00	Q18,J	Q18
Sulfate	494	mg/L	0.140	1	EPA 300.0	02/07/2018 0:00	Q18	Q18
Cust Sample ID: MW-9D Sample Desc.: Coal Combustion Metals (212940)	on Residuals (CCI		<u> </u>		Matrix: \			
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	
Boron	7.43	mg/L	0.014	1:50	EPA 6010B 1996	01/31/2018 17:10		JDB
AEP Sample ID : 212941 Cust Sample ID: MW-15 Sample Desc.: Coal Combustion	Lo	d Date: 01/2 cation: Nort R)		ver Plant	By: H Matrix: \			
Metals (212941)						-		
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Boron	9.16	mg/L	0.014	1:50	EPA 6010B 1996	01/31/2018 17:15		JDB
AEP Sample ID : 212942 Cust Sample ID: SP-1	P-1 Location: Northeastern Power Plant Matrix: Water							
Sample Desc.: Coal Combustion								
Sample Desc.: Coal Combustion				Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Sample Desc.: Coal Combustion	on Residuals (CCI	R)			Method EPA 6010B 1996	1	Codes	Tec JDE

Analysis Report

Report ID : 36899 Date Received: 01/24/2018	C	npany: SEP ontact: Jill F Phone: (318	arker-Witt	ental (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 212943 Cust Sample ID: SP-2 Sample Desc.: Coal Combustic	Lo	d Date: 01/22 cation: North R)		ver Plant	By: H Matrix: \			
Water (212943)						-		
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	975	mg/L	0.219	1	EPA 300.0	02/07/2018 0:00	Q18	Q18
Solids, Total Dissolved (TDS)	1910	mg/L	2	1	SM 2540 C-2011	01/26/2018 17:00		LBH
AEP Sample ID : 212944 Cust Sample ID: SP-10 Sample Desc.: Coal Combustic	Lo	d Date: 01/22 cation: North R)		ver Plant	By: H Matrix: ^V			
Metals (212944)								_
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Boron	1.08	mg/L	0.00028	1	EPA 6010B 1996	01/31/2018 18:30		JDB
Water (212944)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	1630	mg/L	0.219	1	EPA 300.0	02/07/2018 0:00	Q18	Q18
Fluoride	5.71	mg/L	0.083	1	EPA 300.0	02/07/2018 0:00	Q18	Q18
Solids, Total Dissolved (TDS)	3236	mg/L	2	1	SM 2540 C-2011	01/26/2018 17:00		LBH
Sulfate	63.1	mg/L	0.140	1	EPA 300.0	02/07/2018 0:00	Q18	Q18
AEP Sample ID : 212945 Cust Sample ID: SP-11 Sample Desc.: Coal Combustic	Lo	d Date: 01/22 cation: North R)		ver Plant	By: H Matrix: \			
Water (212945)	Value	l Init	Det. Limit	Dil./Conc.	Method	Analysia Data/Tima	Cadaa	Tech
Parameter		Unit				Analysis Date/Time	Codes Q18	_
Chloride	470	mg/L	0.219	1	EPA 300.0	02/07/2018 0:00		Q18
Fluoride	2.96	mg/L	0.083	1	EPA 300.0	02/07/2018 0:00	Q18	Q18
Solids, Total Dissolved (TDS)	1544	mg/L	2	1	SM 2540 C-2011	01/26/2018 17:00		LBH
Sulfate	222	mg/L	0.140	1	EPA 300.0	02/07/2018 0:00	Q18	Q18

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report Date Re	ID : 36899 eceived: 01/24/2018	Company: Contact: Phone:		er-Witt	ntal (JP-W)		Address: 502 N. Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960						
		* Ouglitze			ntrol Data ne as reported		no cu 1t c						
		* Quanty o		s are the sam	•	i anaryticar	results						
			Blank	Standard				Spike		Surrogate	Duplicate %		
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value ³	* Recovery*	%	% Recovery	Difference	Tech	
1/31/2018	Boron	212939.2	<0.014	0.3	0.30296	101.0	0.3	0.2841	94.7		0.5	JDB	
1/26/2018	Solids, Total Dissolved (TDS)	212943.1									2.2	LBH	
1/26/2018	Solids, Total Dissolved (TDS)		<2									LBH	
1/26/2018	Solids, Total Dissolved (TDS)			196	184	93.9						LBH	
1/26/2018	Solids, Total Dissolved (TDS)						3120	2914	93.4			LBH	

Code Code Description

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

Q18 Analysis was performed by a contracted Laboratory. See attached report.

Sandra D. Wallace Laboratory Manager

08-Feb-18 Report Date

Form COC-04, AEP Chain of Custody (COC) Reco	Relinquished by: Company: Date/Time: Réceived in Laboratory by:	Relinquished by:	Kann	ourser vedoureurs a country	Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other					SP-11	SP-10	SP-2	SP-1	MW-15	MW-9D	MW-6D	Sample Identification	Sampler(s): Kenneth McDonaid	Project Name: Northeastern PP CCR Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816	Contacts: John Davis (318-673-3803) John Davis (318-673-3811)	Shreveport, LA 71101	Shreveport Chemical Laboratory (SCL) 502 N. Allen Ave.
rd for Coal	Company:	Company:	Company:		1NO3; 5=Na					1/22/2018	1/22/2018	1/22/2018	1/22/2018	1/22/2018	1/22/2018	1/22/2018	Sample Date		Analysis Ro			
Combust			64		90H; 6= Ot					1440	1420	1500	1520	1320	1340	1400	Sample Tîme		Turmarounk utine (28 da			
on Residua					her					G	G	G	G	G	G	G	Sample Type (C=Comp, G=Grab)		Analysis Turmaround Time (In Calendar Days) © Routine (28 days for Monitoring Wellis)			
il (CCR) ;	Date/Tim	Date/Time:	01/2 1/18							GW	GW	GW	GW	GW	GW	GW	Matrix		alendar Da oring Wei		Program:	C
Sampling	ō	9	111 81		F= filter in field		_				N	-	-	_	-	N	# of Cont.		ays) Hs)	0		hain
3 - Shrev	᠋᠆ᡒ	Re			a 		_										Sampler(s) In	itials	1 =	Site Contact:	bal Con	of C
gþórt, R	cewed in	Received by:	Received by:		-											×	Fluoride, S	Sulfate	L bottle, Cool, 0-6C	<u>6</u>	nbustic	usto
ev. 1, 1/16	Laborato	y:	Y:		-							×					TDS, Chlo	ride	1 L bottle, Cool, 0-6C		on Resid	Chain of Custody Record
1 14	Wby:				-					×	×						TDS, Chlo Fluoride, S	ride, Sulfate	1 L bottle, 1 L bottle, Cool, Cool, Cool, 0-6C 0-6C 0-6C		Coal Combustion Residuals (CCR)	cord
	Ø				*						×			×	×	×	Boron		500 mL bottle, pH<2, HNO3		R	
					4								×				Calcium		500 mL pH<2, HNO3	Date:		22
																						11ulla
						$\left \right $	+	+	-	_	-	-								-		0
	Date Time: // S	Date/Time:	Date/Time:							Shall	1	ENULIE	212942	146212		212939.1-21	Sample Sp		Cuct	COC/Order #:		
	0111										T 5 AA6710					212939.2	Sample Specific Notes:		66895	For Lab Use Only:		

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type		D	elivery Type		
Ice Chest Bag Action Pak PCB Mailer Bottle	UPS	FEDEX	US Mail	Walk in	Shuttle
< Other	Othe	r			
	Tracking #				
Client Panker	Indexing #	4#4	ample Matrix	{	
Received By	DGA	PCB Oil	Water	Oil	Soil
Received Date 12418	_				
Open Date	Solid	Liquid	Other		
Container Temp Read 1.5°C	_	Project I.D.	3489	9	_
Correction Factor	Were sa	mples receive	ed on ice? (A	fes)	NO
Corrected Temp 2.5°C	-		C		
Did container arrive in good condition?	(YES)	NO			
Was sample documentation received?	reg	NO			
	3				
Was documentation filled out properly?	VES	NO			
Ware complex labeled preperly?		NO			
Were samples labeled properly?	(YES)	NO			
Were correct containers used?	FS	NO			
	\bigcirc				
Were the pH's of samples appropriately checked?	VES	NO			
	\bigcirc				
Total number of sample containers	_				
	\frown				
Was any corrective action taken?	NO	Person Con	_		
Comments		Date & Tim	ie –		
				7/	

Sample ID	Analysis	рН	Preservative Added / Lot #
MW-GD	Boron	42	/
9D	Boron		/
MW-15	Boron		/
SP-1	Calcium		Nitric / 115070
SP-10	Boron		Nitrio / 1115070
		• <u>• • • · · · · · · · · · · · · · · · ·</u>	/
			/
			/
		•	//
			//
			//
			/
			/
			/
		-	/
R.			
			/
			<u>_</u>
			//
			/

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Location: Shreveport Chemical Laboratory

Water Analysis

Report Date: 2/8/2018

MW-6D									Northeastern Plant
Sample Number:	180447-001			Date Col	lected:	01/22/2	2018 14:00	Da	ate Received: 2/7/2018
Parameter		Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Fluoride, F		0.76	mg/L		0.2	0.05	TEA	02/07/2018	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4		494	mg/L		1	0.5	TEA	02/07/2018	EPA 300.1-1997, Rev. 1.0
Northeastern Plant									
SP-2									Northeastern Plant
Sample Number:	180447-002			Date Col	lected:	01/22/2	2018 15:00	Da	ate Received: 2/7/2018
Parameter		Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl		975	mg/L		8	2	TEA	02/07/2018	EPA 300.1-1997, Rev. 1.0
Northeastern Plant									
SP-10									Northeastern Plant
Sample Number:	180447-003			Date Col	lected:	01/22/2	2018 14:20	Da	ate Received: 2/7/2018
				Data					
Parameter		Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl		1630	mg/L		8	2	TEA	02/07/2018	EPA 300.1-1997, Rev. 1.0
Fluoride, F		5.71	mg/L		0.8	0.2	TEA	02/07/2018	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4		63.1	mg/L		1	0.5	TEA	02/07/2018	EPA 300.1-1997, Rev. 1.0
Northeastern Plant									
SP-11									Northeastern Plant
Sample Number:	180447-004			Date Col	lected:	01/22/2	2018 14:40	Da	ate Received: 2/7/2018
Parameter		Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl		470	mg/L		8	2	TEA	02/07/2018	EPA 300.1-1997, Rev. 1.0
Fluoride, F		2.96	mg/L		0.3	0.1	CRJ	02/08/2018	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4		222	mg/L		0.5	0.2	CRJ	02/08/2018	EPA 300.1-1997, Rev. 1.0
Northeastern Plant									
AD-11									Welsh Plant
Sample Number:	180447-005			Date Col	lected:	01/18/2	2018 10:42	Da	ate Received: 2/7/2018
Parameter		Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Sulfate, SO4		377	mg/L		2	1	TEA	02/07/2018	EPA 300.1-1997, Rev. 1.0

Location: Shreveport Chemical Laboratory

Report Date: 2/8/2018

AD-13										Welsh Plant
Sample Number:	180447-006			Date Col	lected:	01/18/2	2018 11:37	Da	te Received:	2/7/2018
Parameter		Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method	
Sulfate, SO4		383	mg/L		2	1	TEA	02/07/2018	EPA 300.1-199	7, Rev. 1.0
Welsh Plant										
AD-14										Welsh Plant
Sample Number:	180447-007			Date Col	lected:	01/18/2	2018 11:12	Da	te Received:	2/7/2018
Parameter		Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method	
Chloride, Cl		6.43	mg/L		0.06	0.02	TEA	02/07/2018	EPA 300.1-199	7, Rev. 1.0
Welsh Plant										
AD-16										Welsh Plant
Sample Number:	180447-008			Date Col	lected:	01/18/2	2018 12:12	Da	te Received:	2/7/2018
				Data						
Parameter		Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method	
Parameter Sulfate, SO4			Units mg/L	Qual	RL 0.1	MDL 0.04	Analysis By TEA	Analysis Date/Time 02/07/2018	Method EPA 300.1-199	7, Rev. 1.0

Welsh Plant

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Davillonova

Dave Conover, Chemist PrincipalEmail dpconover@aep.comTel. 614-836-4219Fax 614-836-4168Audinet 210-4219

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

CHAIN OF CUSTODY

OPCO/PROJECT NAME	NAME		FAX NO.				An	Analvsis Requested	Jested		
AEPW	-SCL / N	AEPW-SCL / Northeastern PP CCR		318-673-3839		υ.				<u> </u>	ç
	Sandr	Sandra Wallace		318-673-3802		°		ر د ر			イナナのメ
	contact person	berson			0 מ	1	0	(
DATE	TIME	SAMPLE SOURCE & DESCRIPTION	PTION	SAMPLE I.D.			e d	e t			
22-Jan-18	14:00	MW-6D		212939	1		×	×			
22-Jan-18	15:00	SP-2		212943	1	×					
22-Jan-18	14:20	SP-10		212944	1	×	×	x			
22-Jan-18	14:40	SP-11		212945	-	×	×	×			
										2.11	
<	0										
RELINQUISHED BY SIGN	Le Our	5 216/18/1336	RECEIVED BY								
RETINGUISHED B	N (SIGN)	<i>p</i> DATE/TIME	RECEIVED BY		×						
RECEIVED FOR LABORATORY	ABORATOR	10	81-60-20	10:01							

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

CHAIN OF CUSTODY

OPCO/PROJECT NAME	NAME	FA	FAX NO					Analysis Dogusotod		Γ
AF	PW-SCI	AFPW-SCL / Welsh PP CCR		318-673-3839		U				
Ĩ						<u>ب</u> -	ທ ⊐			
	Sand	Sandra Wallace		318-673-3802		- 0	-			
	contact person	person					- m			
DATE	TIME	SAMPLE SOURCE & DESCRIPTION	NO	SAMPLE I.D.	A OF B CONTAINERS	5 0 S	e e	 		
18-Jan-18	10:42	AD-11		212798	-		×			
18-Jan-18	11:37	AD-13		212799	/		×			
18-Jan-18	11:12	AD-14		212800		×				
18-Jan-18	12:12	AD-16		212801			×			
2										
V	01							 		
REMNQUISHED BY (BIRGH)	V Perru	26/18/338	RECEIVED BY							
NAELINGUISHER:	W (SIGN)	DATE/TIME	RECEIVED BY							
RECEIVED FOR LABORATORY	ABORATOR	20-02-07-18	(L	10:25						

Form SOP-7102 Sample Receipt Form Rev.6, 11/30/15

MEP WATER & WASTE SAMPLE RECEIPT FORM

	Package Type	Delivery Type
	Cooler Box Bag Envelope	PONY UPS FedEX USPS
		Other
	Plant/Customer_Northeaster	Number of Plastic Containers:
	Opened By	Number of Glass Containers:
		Number of Mercury Containers:
11		or N/A Initial:on ice / no ice
#		D - If No, specify each deviation:
		Comments
	Was Chain of Custody received?	Comments
	Requested turnaround:	If RUSH, who was notified?
	pH (15 min) Cr ⁺⁶ (pres) NO ₂ or N (24 hr)	NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
	Was COC filled out properly?	Comments
	Were samples labeled properly?	Comments
	Were correct containers used?	
	Was pH checked & Color Coding done?	/N or N/A Initial & Date: M 02.07-18
	Yes: By whom & when: (See Prep Book)	
	Is sample filtration requested? Y K N	Comments (See Prep Book)
	Person Contacted:	
	Lab ID#ROYY 7 Initial &	Date & Time :
		ents:
	Reviewed by 120	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Sample Receipt Form SOP-7102

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37591 Date Received: 05/03/2018	Co P	ntact: Jill hone: (31	⊃ - Environme Parker-Witt 8) 673-3816	ntal (JP-W)	Fax:	502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 216017 Cust Sample ID: MW-2D Sample Desc.: Coal Combusti	Loc)2/2018 theastern Pow	ver Plant	By: H Matrix: \			
Metals (216017)				1				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00212	mg/L	0.00093	1	EPA 6010B 1996	05/31/2018 4:09	J	JDB
Arsenic	0.03715	mg/L	0.00105	1	EPA 6010B 1996	05/31/2018 4:09		JDB
Barium	0.00962	mg/L	0.00015	1	EPA 6010B 1996	05/31/2018 4:09		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	05/31/2018 4:09	U	JDB
Boron	10.5	mg/L	0.014	1:50	EPA 6010B 1996	05/30/2018 20:12		JDB
Cadmium	0.0003	mg/L	0.00007	1	EPA 6010B 1996	05/31/2018 4:09	J	JDB
Calcium	7.52	mg/L	0.0096	1	EPA 6010B 1996	05/31/2018 4:09		JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	05/31/2018 4:09	U	JDB
Cobalt	0.00036	mg/L	0.00014	1	EPA 6010B 1996	05/31/2018 4:09	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	05/31/2018 4:09	U	JDB
Lithium	0.0006	mg/L	0.00013	1	EPA 6010B 1996	05/31/2018 4:09	J	JDB
Mercury	0.000046	mg/L	0.000005	1	EPA 7470A 1994	05/17/2018 13:42		LNM
Molybdenum	0.588	mg/L	0.00029	1	EPA 6010B 1996	05/31/2018 4:09		JDB
Selenium	0.08277	mg/L	0.00099	1	EPA 6010B 1996	05/31/2018 4:09		JDB
Thallium	0.0011	mg/L	0.00086	1	EPA 6010B 1996	05/31/2018 4:09	J	JDB
Water (216017)			-					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	14	mg/L	0.219	1	EPA 300.0	05/16/2018 23:48		GB
Fluoride	2.028	mg/L	0.083	1	EPA 300.0	05/16/2018 23:48		GB
Solids, Total Dissolved (TDS)	1206	mg/L	2	1	SM 2540 C-2011	05/07/2018 10:00		LBH
Sulfate	628	mg/L	0.140	1:10	EPA 300.0	05/17/2018 0:07		GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37591 Date Received: 05/03/2018	Co	ntact: Jill I	P - Environme Parker-Witt 3) 673-3816	ntal (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 216018 Cust Sample ID: MW-3D Sample Desc.: Coal Combustion	Loc		2/2018 heastern Pow	ver Plant	By: Matrix:			
Metals (216018)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	05/31/2018 4:14	U	JDB
Arsenic	0.00138	mg/L	0.00105	1	EPA 6010B 1996	05/31/2018 4:14	J	JDB
Barium	0.107	mg/L	0.00015	1	EPA 6010B 1996	05/31/2018 4:14		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	05/31/2018 4:14	U	JDB
Boron	1.08	mg/L	0.00028	1	EPA 6010B 1996	05/31/2018 4:14		JDB
Cadmium	0.00009	mg/L	0.00007	1	EPA 6010B 1996	05/31/2018 4:14	J	JDB
Calcium	127	mg/L	0.48	1:50	EPA 6010B 1996	05/30/2018 20:17		JDB
Chromium	0.00024	mg/L	0.00023	1	EPA 6010B 1996	05/31/2018 4:14	J	JDB
Cobalt	0.00104	mg/L	0.00014	1	EPA 6010B 1996	05/31/2018 4:14	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	05/31/2018 4:14	U	JDB
Lithium	0.01568	mg/L	0.00013	1	EPA 6010B 1996	05/31/2018 4:14		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	05/17/2018 13:50	U	LNM
Molybdenum	0.00293	mg/L	0.00029	1	EPA 6010B 1996	05/31/2018 4:14	J	JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	05/31/2018 4:14	U	JDB
Thallium	< 0.00086	mg/L	0.00086	1	EPA 6010B 1996	05/31/2018 4:14	U	JDB
Water (216018)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	13	mg/L	0.219	1	EPA 300.0	05/17/2018 0:26		GB
Fluoride	0.757	mg/L	0.083	1	EPA 300.0	05/17/2018 0:26	U	GB
Solids, Total Dissolved (TDS)	736	mg/L	2	1	SM 2540 C-2011	05/07/2018 10:00		LBH
Sulfate	196	mg/L	0.140	1:10	EPA 300.0	05/17/2018 0:45		GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37591 Date Received : 05/03/2018	Co	ntact: Jill	⊃ - Environme Parker-Witt 8) 673-3816	ntal (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 216019 Cust Sample ID: MW-4D Sample Desc.: Coal Combustion	Loc)2/2018 theastern Pow	ver Plant	By: Matrix:			
Metals (216019)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00405	mg/L	0.00093	1	EPA 6010B 1996	05/31/2018 4:30	J	JDB
Arsenic	0.0023	mg/L	0.00105	1	EPA 6010B 1996	05/31/2018 4:30	J	JDB
Barium	0.171	mg/L	0.00015	1	EPA 6010B 1996	05/31/2018 4:30		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	05/31/2018 4:30	U	JDB
Boron	1.21	mg/L	0.00028	1	EPA 6010B 1996	05/31/2018 4:30		JDB
Cadmium	0.00014	mg/L	0.00007	1	EPA 6010B 1996	05/31/2018 4:30	J	JDB
Calcium	192	mg/L	0.48	1:50	EPA 6010B 1996	05/30/2018 20:22		JDB
Chromium	0.00137	mg/L	0.00023	1	EPA 6010B 1996	05/31/2018 4:30		JDB
Cobalt	0.00236	mg/L	0.00014	1	EPA 6010B 1996	05/31/2018 4:30	J	JDB
Lead	0.00147	mg/L	0.00068	1	EPA 6010B 1996	05/31/2018 4:30	J	JDB
Lithium	0.00533	mg/L	0.00013	1	EPA 6010B 1996	05/31/2018 4:30		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	05/17/2018 14:12	U	LNM
Molybdenum	0.00674	mg/L	0.00029	1	EPA 6010B 1996	05/31/2018 4:30		JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	05/31/2018 4:30	U	JDB
Thallium	0.00119	mg/L	0.00086	1	EPA 6010B 1996	05/31/2018 4:30	J	JDB
Water (216019)			-					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	22	mg/L	0.219	1	EPA 300.0	05/17/2018 1:04		GB
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	05/17/2018 1:04	U	GB
Solids, Total Dissolved (TDS)	984	mg/L	2	1	SM 2540 C-2011	05/07/2018 10:00		LBH
Sulfate	328	mg/L	0.140	1:10	EPA 300.0	05/17/2018 1:22		GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37591 Date Received: 05/03/2018	Co P	ntact: Jill hone: (31	⊃ - Environme Parker-Witt 8) 673-3816	ental (JP-W)	Fax:	502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 216020 Cust Sample ID: MW-5D Sample Desc.: Coal Combusti	Loc)2/2018 theastern Pov	ver Plant	By: Matrix:	KM Water		
Metals (216020)								
Parameter	Value	Unit		Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00291	mg/L	0.00093	1	EPA 6010B 1996	05/31/2018 4:57	J	JDB
Arsenic	0.00124	mg/L	0.00105	1	EPA 6010B 1996	05/31/2018 4:57	J	JDB
Barium	0.127	mg/L	0.00015	1	EPA 6010B 1996	05/31/2018 4:57		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	05/31/2018 4:57	U	JDB
Boron	0.476	mg/L	0.00028	1	EPA 6010B 1996	05/31/2018 4:57		JDB
Cadmium	0.00036	mg/L	0.00007	1	EPA 6010B 1996	05/31/2018 4:57	J	JDB
Calcium	132	mg/L	0.48	1:50	EPA 6010B 1996	05/30/2018 20:27		JDB
Chromium	0.00059	mg/L	0.00023	1	EPA 6010B 1996	05/31/2018 4:57	J	JDB
Cobalt	0.00114	mg/L	0.00014	1	EPA 6010B 1996	05/31/2018 4:57	J	JDB
Lead	0.00101	mg/L	0.00068	1	EPA 6010B 1996	05/31/2018 4:57	J	JDB
Lithium	0.01243	mg/L	0.00013	1	EPA 6010B 1996	05/31/2018 4:57		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	05/17/2018 14:20	U	LNM
Molybdenum	0.00133	mg/L	0.00029	1	EPA 6010B 1996	05/31/2018 4:57	J	JDB
Selenium	0.00135	mg/L	0.00099	1	EPA 6010B 1996	05/31/2018 4:57	J	JDB
Thallium	0.00125	mg/L	0.00086	1	EPA 6010B 1996	05/31/2018 4:57	J	JDB
Water (216020)			- II.			I		
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	25	mg/L	0.219	1	EPA 300.0	01/17/2018 1:41		GB
Fluoride	0.703	mg/L	0.083	1	EPA 300.0	05/17/2018 1:41	J	GB
Solids, Total Dissolved (TDS)	636	mg/L	2	1	SM 2540 C-2011	05/07/2018 10:00		LBH
Sulfate	126	mg/L	0.140	1:10	EPA 300.0	05/17/2018 2:00		GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37591 Date Received: 05/03/2018	Co	ntact: Jill	⊃ - Environme Parker-Witt 8) 673-3816	ental (JP-W)	Fax: (502 N. Allen Avenue Shreveport, LA 71101 318) 673-3960		
AEP Sample ID : 216021 Cust Sample ID: MW-6D Sample Desc.: Coal Combusti	Loc)2/2018 theastern Pov	ver Plant	By: K Matrix: V			
Metals (216021)						Γ	I	
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00132	mg/L	0.00093	1	EPA 6010B 1996	05/31/2018 5:02	J	JDB
Arsenic	0.00238	mg/L	0.00105	1	EPA 6010B 1996	05/31/2018 5:02	J	JDB
Barium	0.07224	mg/L	0.00015	1	EPA 6010B 1996	05/31/2018 5:02		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	05/31/2018 5:02	U	JDB
Boron	3.52	mg/L	0.014	1:50	EPA 6010B 1996	05/30/2018 20:32		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	05/31/2018 5:02	U	JDB
Calcium	173	mg/L	0.48	1:50	EPA 6010B 1996	05/30/2018 20:32		JDB
Chromium	0.00151	mg/L	0.00023	1	EPA 6010B 1996	05/31/2018 5:02		JDB
Cobalt	0.00182	mg/L	0.00014	1	EPA 6010B 1996	05/31/2018 5:02	J	JDB
Lead	0.00129	mg/L	0.00068	1	EPA 6010B 1996	05/31/2018 5:02	J	JDB
Lithium	0.01975	mg/L	0.00013	1	EPA 6010B 1996	05/31/2018 5:02		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	05/17/2018 14:23	U	LNM
Molybdenum	0.09145	mg/L	0.00029	1	EPA 6010B 1996	05/31/2018 5:02		JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	05/31/2018 5:02	U	JDB
Thallium	0.00102	mg/L	0.00086	1	EPA 6010B 1996	05/31/2018 5:02	J	JDB
Water (216021)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	31	mg/L	0.219	1	EPA 300.0	05/17/2018 2:19		GB
Fluoride	0.806	mg/L	0.083	1	EPA 300.0	05/17/2018 2:19	J	GB
Solids, Total Dissolved (TDS)	1062	mg/L	2	1	SM 2540 C-2011	05/07/2018 10:00		LBH
Sulfate	406	mg/L	0.140	1:10	EPA 300.0	05/17/2018 2:38		GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37591 Date Received: 05/03/2018	Co	ntact: Jill	⊃ - Environme Parker-Witt 8) 673-3816	ental (JP-W)	Fax: (502 N. Allen Avenue Shreveport, LA 71101 318) 673-3960		
AEP Sample ID : 216022 Cust Sample ID: MW-12D Sample Desc.: Coal Combustion	Loc)2/2018 theastern Pov	ver Plant	By: K Matrix: V			
Metals (216022)							I	
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	05/31/2018 5:07	U	JDB
Arsenic	0.00156	mg/L	0.00105	1	EPA 6010B 1996	05/31/2018 5:07	J	JDB
Barium	0.121	mg/L	0.00015	1	EPA 6010B 1996	05/31/2018 5:07		JDB
Beryllium	0.00013	mg/L	0.00002	1	EPA 6010B 1996	05/31/2018 5:07	J	JDB
Boron	8.63	mg/L	0.014	1:50	EPA 6010B 1996	05/30/2018 20:37		JDB
Cadmium	0.0008	mg/L	0.00007	1	EPA 6010B 1996	05/31/2018 5:07	J	JDB
Calcium	184	mg/L	0.48	1:50	EPA 6010B 1996	05/30/2018 20:37		JDB
Chromium	0.00795	mg/L	0.00023	1	EPA 6010B 1996	05/31/2018 5:07		JDB
Cobalt	0.00352	mg/L	0.00014	1	EPA 6010B 1996	05/31/2018 5:07	J	JDB
Lead	0.00703	mg/L	0.00068	1	EPA 6010B 1996	05/31/2018 5:07		JDB
Lithium	0.00841	mg/L	0.00013	1	EPA 6010B 1996	05/31/2018 5:07		JDB
Mercury	0.000013	mg/L	0.000005	1	EPA 7470A 1994	05/17/2018 14:25	J	LNM
Molybdenum	0.693	mg/L	0.00029	1	EPA 6010B 1996	05/31/2018 5:07		JDB
Selenium	0.0045	mg/L	0.00099	1	EPA 6010B 1996	05/31/2018 5:07	J	JDB
Thallium	< 0.00086	mg/L	0.00086	1	EPA 6010B 1996	05/31/2018 5:07	U	JDB
Water (216022)			- II.			T		-
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	17	mg/L	0.219	1	EPA 300.0	05/17/2018 3:53		GB
Fluoride	2.199	mg/L	0.083	1	EPA 300.0	05/17/2018 3:53		GB
Solids, Total Dissolved (TDS)	1044	mg/L	2	1	SM 2540 C-2011	05/07/2018 10:00		LBH
Sulfate	541	mg/L	0.140	1:10	EPA 300.0	05/17/2018 4:12		GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37591 Date Received: 05/03/2018	Co	ntact: Jill I	⊃ - Environme Parker-Witt 8) 673-3816	ntal (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 216023 Cust Sample ID: MW-13D Sample Desc.: Coal Combustion	Loc)2/2018 theastern Pow	ver Plant	By: Matrix:			
Metals (216023)			-	1				_
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	05/31/2018 5:12	U	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	05/31/2018 5:12	U	JDB
Barium	0.04884	mg/L	0.00015	1	EPA 6010B 1996	05/31/2018 5:12		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	05/31/2018 5:12	U	JDB
Boron	1.08	mg/L	0.00028	1	EPA 6010B 1996	05/31/2018 5:12		JDB
Cadmium	0.00013	mg/L	0.00007	1	EPA 6010B 1996	05/31/2018 5:12	J	JDB
Calcium	172	mg/L	0.48	1:50	EPA 6010B 1996	05/30/2018 20:42		JDB
Chromium	0.0008	mg/L	0.00023	1	EPA 6010B 1996	05/31/2018 5:12	J	JDB
Cobalt	0.00161	mg/L	0.00014	1	EPA 6010B 1996	05/31/2018 5:12	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	05/31/2018 5:12	U	JDB
Lithium	0.02997	mg/L	0.00013	1	EPA 6010B 1996	05/31/2018 5:12		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	05/17/2018 14:28	U	LNM
Molybdenum	0.01238	mg/L	0.00029	1	EPA 6010B 1996	05/31/2018 5:12		JDB
Selenium	0.01193	mg/L	0.00099	1	EPA 6010B 1996	05/31/2018 5:12		JDB
Thallium	< 0.00086	mg/L	0.00086	1	EPA 6010B 1996	05/31/2018 5:12	U	JDB
Water (216023)			- L					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	5	mg/L	0.219	1	EPA 300.0	05/17/2018 5:08		GB
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	05/17/2018 5:08	U	GB
Solids, Total Dissolved (TDS)	1064	mg/L	2	1	SM 2540 C-2011	05/08/2018 14:00		JTD
Sulfate	354	mg/L	0.140	1:10	EPA 300.0	05/17/2018 5:27		GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37591 Date Received : 05/03/2018	Co	ntact: Jill I	P - Environmer Parker-Witt 8) 673-3816	ntal (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 216024 Cust Sample ID: DUP Sample Desc.: Coal Combustion	Loc		2/2018 heastern Pow	er Plant	By: Matrix:			
Metals (216024)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	05/31/2018 5:18	U	JDB
Arsenic	0.00111	mg/L	0.00105	1	EPA 6010B 1996	05/31/2018 5:18	J	JDB
Barium	0.109	mg/L	0.00015	1	EPA 6010B 1996	05/31/2018 5:18		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	05/31/2018 5:18	U	JDB
Boron	1.01	mg/L	0.00028	1	EPA 6010B 1996	05/31/2018 5:18		JDB
Cadmium	0.0001	mg/L	0.00007	1	EPA 6010B 1996	05/31/2018 5:18	J	JDB
Calcium	124	mg/L	0.48	1:50	EPA 6010B 1996	05/30/2018 20:57		JDB
Chromium	0.0007	mg/L	0.00023	1	EPA 6010B 1996	05/31/2018 5:18	J	JDB
Cobalt	0.00127	mg/L	0.00014	1	EPA 6010B 1996	05/31/2018 5:18	J	JDB
Lead	0.0008	mg/L	0.00068	1	EPA 6010B 1996	05/31/2018 5:18	J	JDB
Lithium	0.01516	mg/L	0.00013	1	EPA 6010B 1996	05/31/2018 5:18		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	05/17/2018 14:31	U	LNM
Molybdenum	0.00259	mg/L	0.00029	1	EPA 6010B 1996	05/31/2018 5:18	J	JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	05/31/2018 5:18	U	JDB
Thallium	< 0.00086	mg/L	0.00086	1	EPA 6010B 1996	05/31/2018 5:18	U	JDB
Water (216024)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	12	mg/L	0.219	1	EPA 300.0	05/17/2018 6:24		GB
Fluoride	0.783	mg/L	0.083	1	EPA 300.0	05/17/2018 6:24	J	GB
Solids, Total Dissolved (TDS)	728	mg/L	2	1	SM 2540 C-2011	05/08/2018 14:00		JTD
Sulfate	214	mg/L	0.140	1:10	EPA 300.0	05/17/2018 7:58		GB

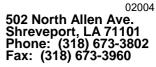
Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37591 Date Received: 05/03/2018	Co	ntact: Jill	P - Environme Parker-Witt 8) 673-3816	ental (JP-W)	Address: Fax:	502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 216025 Cust Sample ID: Equipment Blank Sample Desc.: Coal Combustion F		ation: No	02/2018 rtheastern Pov	ver Plant	By: Matrix:			
Metals (216025)	I							
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00419	mg/L	0.00093	1	EPA 6010B 1996	05/31/2018 5:33	J	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	05/31/2018 5:33	U	JDB
Barium	< 0.00015	mg/L	0.00015	1	EPA 6010B 1996	05/31/2018 5:33	U	JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	05/31/2018 5:33	U	JDB
Boron	0.05525	mg/L	0.00028	1	EPA 6010B 1996	05/31/2018 5:33		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	05/31/2018 5:33	U	JDB
Calcium	< 0.0096	mg/L	0.0096	1	EPA 6010B 1996	05/31/2018 5:33	U	JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	05/31/2018 5:33	U	JDB
Cobalt	< 0.00014	mg/L	0.00014	1	EPA 6010B 1996	05/31/2018 5:33	U	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	05/31/2018 5:33	U	JDB
Lithium	< 0.00013	mg/L	0.00013	1	EPA 6010B 1996	05/31/2018 5:33	U	JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	05/17/2018 14:34	U	LNM
Molybdenum	0.00055	mg/L	0.00029	1	EPA 6010B 1996	05/31/2018 5:33	J	JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	05/31/2018 5:33	U	JDB
Thallium	< 0.00086	mg/L	0.00086	1	EPA 6010B 1996	05/31/2018 5:33	U	JDB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960


Report Date Re	ID : 37591 eceived: 05/03/2018	Contact:	Company:SEP - Environmental (JP-W)Address:502 N. Allen AvenueContact:Jill Parker-WittShreveport, LA 71101Phone:(318) 673-3816Fax:(318) 673-3960									
		* Quality			ntrol Data ne as reported	l analytical	results					
		Quality	Blank		Standard	a unurj trour		Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
5/31/2018	Antimony	216019.2	0.005019	0.8	0.8273685	103.4	0.8	0.8112554	101.4		0.2	JDB
5/31/2018	Antimony	216009.1	0.004033	0.8	0.8267759	103.3	0.8	0.7874176	98.4		0.1	JDB
5/31/2018	Antimony	215157.1	0.004033	0.8	0.8267759	103.3	0.8	0.8258387	103.2		0.4	JDB
5/31/2018	Arsenic	216019.2	<0.00105	0.8	0.8200254	102.5	0.8	0.8072418	100.9		0.2	JDB
5/31/2018	Arsenic	216009.1	0.001417	0.8	0.8260430	103.3	0.8	0.7852755	98.2		0.6	JDB
5/31/2018	Arsenic	215157.1	0.001417	0.8	0.8260430	103.3	0.8	0.8173489	102.2		0.9	JDB
5/31/2018	Barium	215157.1	<0.00015	0.2	0.2125247	106.3	0.2	0.2033549	101.7		0.6	JDB
5/31/2018	Barium	216019.2	<0.00015	0.2	0.2102812	105.1	0.2	0.1997377	99.9		0.1	JDB
5/31/2018	Barium	216009.1	<0.00015	0.2	0.2125247	106.3	0.2	0.1943424	97.2		1.6	JDB
5/31/2018	Beryllium	216019.2	< 0.00002	0.2	0.2060517	103.0	0.2	0.2050819	102.5		0.5	JDB
5/31/2018	Beryllium	216009.1	< 0.00002	0.2	0.2085850	104.3	0.2	0.2006993	100.3		0.3	JDB
5/31/2018	Beryllium	215157.1	< 0.00002	0.2	0.2085850	104.3	0.2	0.2067083	103.4		0.2	JDB
5/30/2018	Boron	215129.1	0.005183	0.3	0.30363	101.2	0.3	0.3087853	102.9		0.3	JDB
5/31/2018	Boron	216019.2	0.044382	0.3	0.2990235	99.7	15	18.631447	124.2		3.9	JDB
5/31/2018	Cadmium	216019.2	< 0.00007	0.2	0.2046035	102.3	0.2	0.1975905	98.8		0.3	JDB
5/31/2018	Cadmium	216009.1	<0.00007	0.2	0.2059064	103.0	0.2	0.1951314	97.6		0.4	JDB
5/31/2018	Cadmium	215157.1	<0.00007	0.2	0.2059064	103.0	0.2	0.2041354	102.1		0.5	JDB
5/30/2018	Calcium	216019.2	<0.48	1	1.0248191	102.5	50	59.200167	118.4		0.2	JDB
5/30/2018	Calcium	215129.1	0.052046	1	0.96387	96.4	1	0.93694	93.7		1.3	JDB
5/16/2018	Chloride			20	18.1	90.5						GB
5/16/2018	Chloride	216024	<0.219	20	18.3	91.5	50	66	132.0		0.0	GB
5/16/2018	Chloride		<0.219									GB
5/17/2018	Chloride		<0.219									GB
5/17/2018	Chloride	216024	<0.219	20	18.3	91.5	50	66	132.0		0.0	GB
5/17/2018	Chloride			20	18.1	90.5						GB
5/31/2018	Chromium	216019.2	<0.00023	0.4	0.4052233	101.3	0.4	0.4002418	100.1		0.6	JDB
5/31/2018	Chromium	216009.1	<0.00023	0.4	0.4088557	102.2	0.4	0.3885853	97.1		0.2	JDB
5/31/2018	Chromium	215157.1	<0.00023	0.4	0.4088557	102.2	0.4	0.4045946	101.1		0.1	JDB
5/31/2018	Cobalt	215157.1	<0.00014	0.2	0.2044290	102.2	0.2	0.2020274	101.0		0.0	JDB
5/31/2018	Cobalt	216009.1	<0.00014	0.2	0.2044290	102.2	0.2	0.192514	96.3		0.4	JDB
5/31/2018	Cobalt	216019.2	<0.00014	0.2	0.202216	101.1	0.2	0.198529	99.3		0.9	JDB
5/16/2018	Fluoride	216024	<0.083	10	11	110.0	20	25.92	129.6		0.0	GB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 10 of 11

Analysis Report

Report Date Re	ID : 37591 cceived: 05/03/2018	Contac	/: SEP - E t: Jill Park e: (318) 67	er-Witt	ntal (JP-W)		Ac	Sh	2 N. Allen Avenue areveport, LA 7110 18) 673-3960)1	
5/16/2018	Fluoride		<0.083								GB
5/16/2018	Fluoride			10	11	110.0					GB
5/17/2018	Fluoride			10	11	110.0					GB
5/17/2018	Fluoride		<0.083								GB
5/17/2018	Fluoride	216024	<0.083	10	11	110.0	20	25.92	129.6	0.0	GB
5/31/2018	Lead	216009.1	<0.00068	1	1.0164545	101.6	1	0.9594413	95.9	0.3	JDB
5/31/2018	Lead	215157.1	<0.00068	1	1.0164545	101.6	1	1.0046001	100.5	0.2	JDB
5/31/2018	Lead	216019.2	<0.00068	1	1.0087892	100.9	1	0.9835240	98.4	0.3	JDB
5/31/2018	Lithium	216019.2	<0.00013	0.2	0.2062583	103.1	0.2	0.215069	107.5	0.4	JDB
5/31/2018	Lithium	216009.1	<0.00013	0.2	0.2059778	103.0	0.2	0.2166713	108.3	0.5	JDB
5/31/2018	Lithium	215157.1	<0.00013	0.2	0.2059778	103.0	0.2	0.2089146	104.5	0.3	JDB
5/17/2018	Mercury	216018.2	<0.00000	0.001	0.0008679	86.8	0.001	0.0009932	99.3	4.5	LNM
5/17/2018	Mercury	216008.1	<0.00000	0.001	0.00099	99.0	0.001	0.0009596	96.0	2.6	LNM
5/31/2018	Molybdenum	216019.2	0.000525	0.2	0.2015659	100.8	0.2	0.2012397	100.6	0.1	JDB
5/31/2018	Molybdenum	215157.1	0.000361	0.2	0.2031598	101.6	0.2	0.2014463	100.7	0.2	JDB
5/31/2018	Molybdenum	216009.1	0.000361	0.2	0.2031598	101.6	0.2	0.195156	97.6	0.3	JDB
5/31/2018	Selenium	216009.1	0.001072	2	2.0125011	100.6	2	1.9585120	97.9	0.3	JDB
5/31/2018	Selenium	215157.1	0.001072	2	2.0125011	100.6	2	2.0058802	100.3	0.8	JDB
5/31/2018	Selenium	216019.2	0.001851	2	2.0135684	100.7	2	1.9745820	98.7	0.2	JDB
5/7/2018	Solids, Total Dissolved (TDS)	216021	<2	101.67	106	104.3	2214	2178	98.4	1.7	LBH
5/8/2018	Solids, Total Dissolved (TDS)	216023	<2	101.67	106	104.3	2140	2124	99.3	0.8	JTD
5/17/2018	Sulfate		<0.140								GB
5/17/2018	Sulfate	216024	<0.140	20	18	90.0	50	46	92.0	8.4	GB
5/17/2018	Sulfate			20	18	90.0					GB
5/31/2018	Thallium	215157.1	0.001182	0.4	0.4102024	102.6	0.4	0.4039268	101.0	0.7	JDB
5/31/2018	Thallium	216019.2	0.000868	0.4	0.4064212	101.6	0.4	0.3913926	97.8	0.1	JDB
5/31/2018	Thallium	216009.1	0.001182	0.4	0.4102024	102.6	0.4	0.3745872	93.6	0.2	JDB

Code Code Description

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

U Analyte concentration below MDL.

ndra D. Wallace Laboratory Manager

12-Jul-18 Report Date

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 11 of 11

5/3/18 1:35			1. 1/10/17	webort, Rev.	ina - Shre	R) Samol		tion Residu	Combus	rd for Coa	Form COC-04. AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shrevebort, Rev. 1, 1/10/17
Date/Time:			Received in Laboratory by:	Received in L		Date/Time:	Date/			Company:	Relinquished by
Date/Time:				Received by:		Date/Time:	Date/			Company:	Relinquished by:
Date/Time:				Received by:	1323	Date/Time: 05/03/18	Date/		ACIE	Company CACIF	Relinquished by:
										ıts:	Special Instructions/QC Requirements & Comments:
									ı sample.	every 10t	* Six 1L Bottles must be collected for Radium for every 10th sample.
	4	-	F4	4	field	F= filter in field	; F	ther	аОН; 6= О	INO3; 5=N.	Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other
							-				
21/025				×		<u> </u>	٤	G	1215	5/2/2018	EQUIPMENT BLANK
216024.1-266024.2		×		×		2	GW	G	940	5/2/2018	DUP
2/6027.1 - 216023.		×		×		2	GW	G	1130	5/2/2018	MW-13D
216022.1-216022.		×		×		2	GW	G	1140	5/2/2018	MW-12D
2/6021.1 - 216021.		×		×		/ 2	GW	G	1010	5/2/2018	MW-6D
216020.1 - 216020-		×		×		2	GW	G	1105	5/2/2018	MW-5D
216019.1-216019.		×		×		2	GW	G	920	5/2/2018	MW-4D
21608.1-216018.		×		×		2	GW	G	940	5/2/2018	MW-3D
214017.1-214017.		×		×		2	GW	G	1035	5/2/2018	MW-2D
Sample Specific Notes:	Ra-226, Ra	TDS, F, CI,	dissolved Fe	B, Ca, Sb, As Cd, Cr, Co, P Mo, Se, TL	Sampler(s) Init	# of Cont.	o, Matrix	Sample Type (C=Comp, G=Grab)	Sample Time	Sample Date	Sample Identification
	-228	SO4	and Mn	, Ba, Be, b, Li, Hg,	tials						Sampler(s): Kenneth McDonald
Wotz;	Three (six every 10(h*) 1 L bottles, pH<2, HNO3	1 L bottle, 0-6C PH	Field-filter 500 mL bottle, then pH<2, HNO3	500 mL bottle, pH<2, HNO3		ır Days) Wells)	Calenda	Analysis Turnaround Time (in Calendar Days) Routine (28 days for Monitoring Wells)	Turnarour utine (28 c	Analysis Rc	Project Name: Northeastern PP CCR Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816
COC/Order #:	Date:	_	_	tact:	Site Contact:						Jonathan Barnhill (318-673-3803) Contacts: John Davis (318-673-3811)
		CR)	Program: Coal Combustion Residuals (CCR)	bustion R	pal Com	ram: Co	Progr				Shreveport, LA 71101
PAR			Chain of Custody Record	ustody	of Cu	hain	0				Shreveport Chemical Laboratory (SCL)

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

Container Type **Delivery Type** Ice Chest Action Pak PCB Mailer Bottle UPS FEDEX US Mail Shuttle Bag Walk in Other Other Tracking # Client Parker Sample Matrix 1:11 **Received By** Water DGA PCB Oil Oil Soil 07Z **Received Date** 5/3/18 **Open Date** 5/2 Solid Liquid Other Project I.D. **Container Temp** Read 2 Thermometer Serial #F04103 **Correction Factor** Were samples received on ice? NO + 1.2 YES Corrected Temp 3.2 Did container arrive in good condition? YES NO Was sample documentation received? YES NO Was documentation filled out properly? YES NO Were samples labeled properly? ES NO Were correct containers used? YES NO Were the pH's of samples appropriately checked? (YES) NO Total number of sample containers Was any corrective action taken? NO Person Contacted Date & Time Comments

PROJECT RECEIPT FORM

Sample ID	Analysis	рН	Preservative Added / Lot #
MW-2D	Metals	12	/
MW-3D			/
MW-4P			/
MW-SD			/
MW-60			/
MW-12D			
MW-13P			
Dup			/
Equip Blank	Y	\checkmark	/
V \			/
			/
			//
			/
			//
		·	/
			//
	s		//
			/
			/
			/

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37763 Date Received: 06/01/2018	Company: SEP - Environmental (JP-W) Contact: Jill Parker-Witt Phone: (318) 673-3816 Collected Date: 05/30/2018				Fax:	502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 216844 Cust Sample ID: MW-1D			5/30/2018 Iortheastern Pov	vor Dlant	By: Matrix:			
Sample Desc.: Coal Combustic			Ior measurem For		Watrix.	VValer		
Metals (216844)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00457	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 8:08	J	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 8:08	U	JDB
Barium	0.0181	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 8:08		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 8:08	U	JDB
Boron	1.2	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 8:08		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 8:08	U	JDB
Calcium	135	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 22:11		JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 8:08	U	JDB
Cobalt	0.00036	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 8:08	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 8:08	U	JDB
Lithium	0.05481	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 8:08		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 11:19	U	LNM
Molybdenum	0.01073	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 8:08		JDB
Selenium	0.00311	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 8:08	J	JDB
Thallium	0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 22:11		JDB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37763 Date Received: 06/01/2018	Company: SEP - Environmental (JP-W) Contact: Jill Parker-Witt Phone: (318) 673-3816				Address: Fax:	502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 216845 Cust Sample ID: MW-2D Sample Desc.: Coal Combustio		ation: N	5/30/2018 Iortheastern Pov	ver Plant	By: Matrix:			
Metals (216845)	1							
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00195	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 8:13	J	JDB
Arsenic	0.03461	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 8:13		JDB
Barium	0.02917	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 8:13		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 8:13	U	JDB
Boron	10.1	mg/L	0.014	1:50	EPA 6010B 1996	07/10/2018 22:27		JDB
Cadmium	0.00044	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 8:13	J	JDB
Calcium	19.2	mg/L	0.0096	1	EPA 6010B 1996	07/11/2018 8:13		JDB
Chromium	0.0014	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 8:13		JDB
Cobalt	0.0003	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 8:13	J	JDB
Lead	0.00128	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 8:13	J	JDB
Lithium	0.00125	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 8:13		JDB
Mercury	0.00004	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 11:22		LNM
Molybdenum	0.552	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 8:13		JDB
Selenium	0.07231	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 8:13		JDB
Thallium	0.002	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 22:27		JDB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37763 Date Received: 06/01/2018	Company: SEP - Environmental (JP-W) Contact: Jill Parker-Witt Phone: (318) 673-3816				502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960			
AEP Sample ID: 216846 Cust Sample ID: MW-3D Sample Desc.: Coal Combustion	Loc		0/2018 heastern Pow	ver Plant	By: Matrix:			
Metals (216846)								_
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 8:23	U	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 8:23	U	JDB
Barium	0.281	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 8:23		JDB
Beryllium	0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 8:23	J	JDB
Boron	0.952	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 8:23		JDB
Cadmium	0.00023	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 8:23	J	JDB
Calcium	129	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 22:33		JDB
Chromium	0.00264	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 8:23		JDB
Cobalt	0.00102	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 8:23	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 8:23	U	JDB
Lithium	0.01673	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 8:23		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 11:25	U	LNM
Molybdenum	0.00255	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 8:23	J	JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 8:23	U	JDB
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 22:33	U	JDB
Water (216846)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	13	mg/L	0.219	1	EPA 300.0	06/06/2018 10:43		GB
Fluoride	0.896	mg/L	0.083	1	EPA 300.0	06/06/2018 10:43	J	GB
Solids, Total Dissolved (TDS)	724	mg/L	2	1	SM 2540 C-2011	06/06/2018 9:00		LBH
Sulfate	214	mg/L	0.140	1:10	EPA 300.0	06/06/2018 12:18		GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37763 Date Received: 06/01/2018	Co	ntact: Jill I	P - Environme Parker-Witt 3) 673-3816	ntal (JP-W)	Fax: (502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 216847 Cust Sample ID: MW-4D Sample Desc.: Coal Combusti	Loc		0/2018 heastern Pow	ver Plant	By: K Matrix: V			
Metals (216847)			T	1		1		
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 8:28	U	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 8:28	U	JDB
Barium	0.173	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 8:28		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 8:28	U	JDB
Boron	1.27	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 8:28		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 8:28	U	JDB
Calcium	164	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 22:38		JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 8:28	U	JDB
Cobalt	0.00128	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 8:28	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 8:28	U	JDB
Lithium	0.0033	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 8:28		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 11:27	U	LNM
Molybdenum	0.00491	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 8:28	J	JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 8:28	U	JDB
Thallium	0.00294	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 8:28		JDB
Water (216847)			-			-		
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	20	mg/L	0.219	1	EPA 300.0	06/06/2018 13:33		GB
Fluoride	0.4188	mg/L	0.083	1	EPA 300.0	06/06/2018 13:33	J	GB
Solids, Total Dissolved (TDS)	910	mg/L	2	1	SM 2540 C-2011	06/06/2018 9:00		LBH
Sulfate	279	mg/L	0.140	1:10	EPA 300.0	06/06/2018 13:52		GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37763 Date Received: 06/01/2018	Company: SEP - Environmental (JP-W) Contact: Jill Parker-Witt Phone: (318) 673-3816				502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960			
AEP Sample ID: 216848 Cust Sample ID: MW-5D Sample Desc.: Coal Combustion	Loc		0/2018 heastern Pow	ver Plant	By: Matrix:			
Metals (216848)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 8:34	U	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 8:34	U	JDB
Barium	0.139	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 8:34		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 8:34	U	JDB
Boron	0.468	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 8:34		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 8:34	U	JDB
Calcium	136	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 22:43		JDB
Chromium	0.00153	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 8:34		JDB
Cobalt	0.00131	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 8:34	J	JDB
Lead	0.00109	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 8:34	J	JDB
Lithium	0.01199	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 8:34		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 11:36	U	LNM
Molybdenum	< 0.00029	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 8:34	U	JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 8:34	U	JDB
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 22:43	U	JDB
Water (216848)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	24	mg/L	0.219	1	EPA 300.0	06/06/2018 14:11		GB
Fluoride	0.711	mg/L	0.083	1	EPA 300.0	06/06/2018 14:11	J	GB
Solids, Total Dissolved (TDS)	628	mg/L	2	1	SM 2540 C-2011	06/06/2018 9:00		LBH
Sulfate	113	mg/L	0.140	1:10	EPA 300.0	06/06/2018 14:29		GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37763 Date Received: 06/01/2018	Company: SEP - Environmental (JP-W) Contact: Jill Parker-Witt Phone: (318) 673-3816 Collected Date: 05/30/2018				502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960			
AEP Sample ID : 216849 Cust Sample ID: MW-6D Sample Desc.: Coal Combustion	Loc	ation: Nor	80/2018 theastern Pow	ver Plant	By: Matrix:			
Metals (216849)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 8:39	U	JDB
Arsenic	0.00127	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 8:39	J	JDB
Barium	0.148	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 8:39		JDB
Beryllium	0.00029	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 8:39	J	JDB
Boron	3.35	mg/L	0.014	1:50	EPA 6010B 1996	07/10/2018 22:49		JDB
Cadmium	0.00057	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 8:39	J	JDB
Calcium	269	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 22:49	M4	JDB
Chromium	0.01265	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 8:39		JDB
Cobalt	0.00449	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 8:39	J	JDB
Lead	0.00644	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 8:39		JDB
Lithium	0.02463	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 8:39		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 11:52	U	LNM
Molybdenum	0.07477	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 8:39		JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 8:39	U	JDB
Thallium	0.024	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 22:49		JDB
Water (216849)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	32	mg/L	0.219	1	EPA 300.0	06/06/2018 14:48		GB
Fluoride	0.9218	mg/L	0.083	1	EPA 300.0	06/06/2018 11:48	J	GB
Solids, Total Dissolved (TDS)	1090	mg/L	2	1	SM 2540 C-2011	06/06/2018 9:00		LBH
Sulfate	401	mg/L	0.140	1:10	EPA 300.0	06/06/2018 15:07		GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37763 Date Received : 06/01/2018	Company: SEP - Environmental (JP-W) Contact: Jill Parker-Witt Phone: (318) 673-3816 Collected Date: 05/30/2018				Fax:	502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 216850 Cust Sample ID: MW-7D Sample Desc.: Coal Combusti	Loc	ation: Nor	30/2018 theastern Pow	ver Plant	By: H Matrix: \			
Metals (216850)			-				I	
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.0041	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 9:17	J	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 9:17	U	JDB
Barium	0.03081	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 9:17		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 9:17	U	JDB
Boron	0.84	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 9:17		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 9:17	U	JDB
Calcium	207	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 22:54		JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 9:17	U	JDB
Cobalt	0.00056	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 9:17	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 9:17	U	JDB
Lithium	0.173	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 9:17		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 11:55	U	LNM
Molybdenum	0.01325	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 9:17		JDB
Selenium	0.00226	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 9:17	J	JDB
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 22:54	U	JDB
Water (216850)			-					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	511	mg/L	0.219	1:10	EPA 300.0	06/06/2018 15:45		GB
Fluoride	3.456	mg/L	0.083	1	EPA 300.0	06/06/2018 15:26		GB
Solids, Total Dissolved (TDS)	5912	mg/L	2	1	SM 2540 C-2011	06/06/2018 9:00		LBH
Sulfate	2973	mg/L	0.140	1:100	EPA 300.0	06/25/2018 14:52		GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37763 Date Received: 06/01/2018	Company: SEP - Environmental (JP-W) Contact: Jill Parker-Witt Phone: (318) 673-3816 Collected Date: 05/30/2018				502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960			
AEP Sample ID: 216851 Cust Sample ID: MW-8D Sample Desc.: Coal Combustion	Loc	ation: Nort	0/2018 heastern Pow	ver Plant	By: Matrix:			
Metals (216851)				1				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00283	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 9:22	J	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 9:22	U	JDB
Barium	4.11	mg/L	0.0075	1:50	EPA 6010B 1996	07/10/2018 22:59		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 9:22	U	JDB
Boron	1.31	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 9:22		JDB
Cadmium	0.00105	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 9:22		JDB
Calcium	353	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 22:59		JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 9:22	U	JDB
Cobalt	0.00206	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 9:22	J	JDB
Lead	0.00087	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 9:22	J	JDB
Lithium	1.09	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 9:22		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 11:57	U	LNM
Molybdenum	0.00032	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 9:22	J	JDB
Selenium	0.00196	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 9:22	J	JDB
Thallium	0.025	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 22:59		JDB
Water (216851)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	11942	mg/L	0.219	1:100	EPA 300.0	06/06/2018 17:38		GB
Fluoride	3.314	mg/L	0.083	1:10	EPA 300.0	06/06/2018 17:19		GB
Solids, Total Dissolved (TDS)	384	mg/L	2	1	SM 2540 C-2011	06/06/2018 9:00		LBH
Sulfate	47	mg/L	0.140	1	EPA 300.0	06/06/2018 16:04		GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37763 Date Received: 06/01/2018	Company: SEP - Environmental (JP-W) Contact: Jill Parker-Witt Phone: (318) 673-3816					502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 216852 Cust Sample ID: MW-10D Sample Desc.: Coal Combustion		ation: N	5/30/2018 ortheastern Pov	ver Plant	By: Matrix:			
Metals (216852)						1		
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00247	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 9:27	J	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 9:27	U	JDB
Barium	0.102	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 9:27		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 9:27	U	JDB
Boron	1.15	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 9:27		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 9:27	U	JDB
Calcium	54.9	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 23:05		JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 9:27	U	JDB
Cobalt	0.00061	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 9:27	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 9:27	U	JDB
Lithium	0.451	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 9:27		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 12:00	U	LNM
Molybdenum	0.01972	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 9:27		JDB
Selenium	0.00702	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 9:27		JDB
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 23:05	U	JDB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37763 Date Received: 06/01/2018	Company: SEP - Environmental (JP-W) Contact: Jill Parker-Witt Phone: (318) 673-3816				Address: Fax:	502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 216853 Cust Sample ID: MW-11D Sample Desc.: Coal Combustion		ation: No	/30/2018 ortheastern Pov	ver Plant	By: Matrix:			
Metals (216853)	1		T	1				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 9:44	U	JDB
Arsenic	0.00177	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 9:44	J	JDB
Barium	0.05576	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 9:44		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 9:44	U	JDB
Boron	0.641	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 9:44		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 9:44	U	JDB
Calcium	114	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 23:10		JDB
Chromium	0.0021	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 9:44		JDB
Cobalt	0.00043	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 9:44	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 9:44	U	JDB
Lithium	0.03979	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 9:44		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 12:08	U	LNM
Molybdenum	0.01214	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 9:44		JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 9:44	U	JDB
Thallium	0.0018	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 9:44	J	JDB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37763 Date Received: 06/01/2018	Company: SEP - Environmental (JP-W) Contact: Jill Parker-Witt Phone: (318) 673-3816				502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960			
AEP Sample ID : 216854 Cust Sample ID: MW-12D Sample Desc.: Coal Combustion	Loc		/30/2018 rtheastern Pov	ver Plant	By: h Matrix: \			
Metals (216854)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 9:49	U	JDB
Arsenic	0.00124	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 9:49	J	JDB
Barium	0.07775	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 9:49		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 9:49	U	JDB
Boron	8.35	mg/L	0.014	1:50	EPA 6010B 1996	07/10/2018 23:16		JDB
Cadmium	0.00025	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 9:49	J	JDB
Calcium	89.9	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 23:16		JDB
Chromium	0.00274	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 9:49		JDB
Cobalt	0.00149	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 9:49	J	JDB
Lead	0.00304	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 9:49	J	JDB
Lithium	0.00608	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 9:49		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 12:11	U	LNM
Molybdenum	0.667	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 9:49		JDB
Selenium	0.00388	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 9:49	J	JDB
Thallium	0.0022	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 9:49		JDB
Water (216854)				1 I				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	91	mg/L	0.219	1	EPA 300.0	06/06/2018 17:57		GB
Fluoride	2.379	mg/L	0.083	1	EPA 300.0	06/06/2018 17:57		GB
Solids, Total Dissolved (TDS)	1088	mg/L	2	1	SM 2540 C-2011	06/06/2018 9:00		LBH
Sulfate	542	mg/L	0.140	1:10	EPA 300.0	06/06/2018 18:34		GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37763 Date Received: 06/01/2018	Company: SEP - Environmental (JP-W) Contact: Jill Parker-Witt Phone: (318) 673-3816				502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960			
AEP Sample ID: 216855 Cust Sample ID: MW-13D Sample Desc.: Coal Combustion	Loc		0/2018 heastern Pow	ver Plant	By: Matrix:			
Metals (216855)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 9:55	U	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 9:55	U	JDB
Barium	0.07607	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 9:55		JDB
Beryllium	0.00003	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 9:55	J	JDB
Boron	0.864	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 9:55		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 9:55	U	JDB
Calcium	171	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 23:32		JDB
Chromium	0.00148	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 9:55		JDB
Cobalt	0.00437	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 9:55	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 9:55	U	JDB
Lithium	0.03287	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 9:55		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 12:14	U	LNM
Molybdenum	0.01307	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 9:55		JDB
Selenium	0.01196	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 9:55		JDB
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 23:32	U	JDB
Water (216855)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	6	mg/L	0.219	1	EPA 300.0	06/06/2018 19:12		GB
Fluoride	0.4361	mg/L	0.083	1	EPA 300.0	06/06/2018 19:12	J	GB
Solids, Total Dissolved (TDS)	1068	mg/L	2	1	SM 2540 C-2011	06/06/2018 9:00		LBH
Sulfate	343	mg/L	0.140	1:10	EPA 300.0	06/06/2018 19:49		GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37763 Date Received: 06/01/2018	С	ontact: Jil Phone: (3	EP - Environme Il Parker-Witt 18) 673-3816	ental (JP-W)		Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 216856 Cust Sample ID: MW-14 Sample Desc.: Coal Combustion	Lo		/30/2018 ortheastern Pov	ver Plant	By: Matrix:	KM Water		
Metals (216856)	1 1			1				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 10:00	J	JDB
Arsenic	0.00115	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 10:00	J	JDB
Barium	0.157	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 10:00		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 10:00	U	JDB
Boron	1.47	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 10:00		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 10:00	U	JDB
Calcium	77.1	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 23:37		JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 10:00	U	JDB
Cobalt	0.00329	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 10:00	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 10:00	U	JDB
Lithium	0.361	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 10:00		JDB
Mercury	0.00009	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 12:16	J	LNM
Molybdenum	0.02067	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 10:00		JDB
Selenium	0.00551	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 10:00		JDB
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 23:37	U	JDB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37763 Date Received : 06/01/2018	Co	ntact: Jill	⊃ - Environme Parker-Witt 8) 673-3816	ntal (JP-W)	Fax:	502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 216857 Cust Sample ID: MW-15 Sample Desc.: Coal Combusti	Loc		30/2018 theastern Pow	ver Plant	By: H Matrix: V			
Metals (216857)			-					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 10:05	U	JDB
Arsenic	0.0039	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 10:05	J	JDB
Barium	0.256	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 10:05		JDB
Beryllium	0.00125	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 10:05		JDB
Boron	8.76	mg/L	0.014	1:50	EPA 6010B 1996	07/10/2018 23:42		JDB
Cadmium	0.00038	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 10:05	J	JDB
Calcium	105	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 23:42		JDB
Chromium	0.00661	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 10:05		JDB
Cobalt	0.00261	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 10:05	J	JDB
Lead	0.00518	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 10:05		JDB
Lithium	0.01161	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 10:05		JDB
Mercury	0.000024	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 12:25	J	LNM
Molybdenum	0.551	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 10:05		JDB
Selenium	0.00537	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 10:05		JDB
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 23:42	U	JDB
Water (216857)			-					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	33	mg/L	0.219	1	EPA 300.0	06/06/2018 20:27		GB
Fluoride	2.331	mg/L	0.083	1	EPA 300.0	06/06/2018 20:27		GB
Solids, Total Dissolved (TDS)	1128	mg/L	2	1	SM 2540 C-2011	06/06/2018 9:00		LBH
Sulfate	549	mg/L	0.140	1:10	EPA 300.0	06/06/2018 21:05		GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37763 Date Received: 06/01/2018	Co	ontact: Ji	EP - Environme ill Parker-Witt 318) 673-3816	ental (JP-W)	Address: Fax:	502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 216858 Cust Sample ID: MW-17 Sample Desc.: Coal Combustion		ation: No	5/30/2018 ortheastern Pov	ver Plant	By: Matrix:	KM Water		
Metals (216858)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00161	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 10:21	J	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 10:21	U	JDB
Barium	0.04012	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 10:21		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 10:21	U	JDB
Boron	0.702	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 10:21		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 10:21	U	JDB
Calcium	191	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 23:48		JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 10:21	U	JDB
Cobalt	0.00031	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 10:21	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 10:21	U	JDB
Lithium	0.01139	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 10:21		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 12:33	U	LNM
Molybdenum	0.00838	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 10:21		JDB
Selenium	0.0267	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 10:21		JDB
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 23:48	U	JDB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37763 Date Received: 06/01/2018	Co P	ntact: Jill hone: (31)	P - Environme Parker-Witt 8) 673-3816	ntal (JP-W)	Fax:	502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 216859 Cust Sample ID: Duplicate Land Sample Desc.: Coal Combusti	fill Loc		30/2018 theastern Pow	ver Plant	By: H Matrix: V			
Metals (216859)	1		I	1				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 10:27	U	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 10:27	U	JDB
Barium	0.178	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 10:27		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 10:27	U	JDB
Boron	1.26	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 10:27		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 10:27	U	JDB
Calcium	161	mg/L	0.48	1:50	EPA 6010B 1996	07/10/2018 23:53	M4	JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 10:27	U	JDB
Cobalt	0.0011	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 10:27	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 10:27	U	JDB
Lithium	0.00334	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 10:27		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 12:49	U	LNM
Molybdenum	0.00483	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 10:27	J	JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 10:27	U	JDB
Thallium	0.00289	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 10:27		JDB
Water (216859)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	21	mg/L	0.219	1	EPA 300.0	06/06/2018 21:42	M6	GB
Fluoride	0.411	mg/L	0.083	1	EPA 300.0	06/06/2018 21:42	J	GB
Solids, Total Dissolved (TDS)	916	mg/L	2	1	SM 2540 C-2011	06/06/2018 9:00		LBH
Sulfate	292	mg/L	0.140	1:10	EPA 300.0	06/25/2018 15:30		GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37763 Date Received: 06/01/2018	Conta Pho	act: . ne: (SEP - Environme Jill Parker-Witt (318) 673-3816	ntal (JP-W)	Fax:	502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 216860 Cust Sample ID: Equipment E Sample Desc.: Coal Combu			05/30/2018 Northeastern Pow	ver Plant	By: Matrix:			
Metals (216860)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00115	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 10:54	J	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 10:54	U	JDB
Barium	< 0.00015	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 10:54	U	JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 10:54	U	JDB
Boron	0.05404	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 10:54		JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 10:54	U	JDB
Calcium	0.0106	mg/L	0.0096	1	EPA 6010B 1996	07/11/2018 10:54		JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 10:54	U	JDB
Cobalt	< 0.00014	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 10:54	U	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 10:54	U	JDB
Lithium	< 0.00013	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 10:54	U	JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 12:52	U	LNM
Molybdenum	< 0.00029	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 10:54	U	JDB
Selenium	0.00193	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 10:54	J	JDB
Thallium	< 0.00086	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 10:54	U	JDB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report Date Re	ID : 37763 eceived: 06/01/2018		SEP - Er Jill Parke (318) 67	er-Witt	ntal (JP-W)		Ad	dress: 50 Sh Fax: (31	reveport,	LA 71101		
		* Quality			ntrol Data me as reported	analytical	results					
			Blank		Standard			Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
7/11/2018	Antimony	216829.1	0.002111	0.8	0.7743853	96.8	0.8	0.7694967	96.2		1.8	JDB
7/11/2018	Antimony	216607.1	0.011666	0.8	0.80691	100.9	0.8	0.770316	96.3		1.2	JDB
7/11/2018	Antimony	216839.1	< 0.00093	0.8	0.7840294	98.0	0.8	0.7474474	93.4		0.5	JDB
7/11/2018	Antimony	216849.1	< 0.00093	0.8	0.7840294	98.0	0.8	0.7162960	89.5		1.2	JDB
7/11/2018	Antimony	216859.1	< 0.00093	0.8	0.7863861	98.3	0.8	0.7762676	97.0		0.2	JDB
7/11/2018	Antimony	217438.1	< 0.00093	0.8	0.7863861	98.3	0.8	0.7518081	94.0		1.2	JDB
7/11/2018	Antimony	217448.1	< 0.00093	0.8	0.7833788	97.9	0.8	0.7646954	95.6		1.2	JDB
7/11/2018	Arsenic	216859.1	<0.00105	0.8	0.7609157	95.1	0.8	0.7596461	95.0		1.1	JDB
7/11/2018	Arsenic	216607.1	<0.00105	0.8	0.82209	102.8	0.8	0.7777993	97.2		1.9	JDB
7/11/2018	Arsenic	216829.1	<0.00105	0.8	0.782387	97.8	0.8	0.7688641	96.1		2.1	JDB
7/11/2018	Arsenic	217448.1	<0.00105	0.8	0.7674074	95.9	0.8	0.7729410	96.6		0.4	JDB
7/11/2018	Arsenic	216849.1	<0.00105	0.8	0.7814274	97.7	0.8	0.7282816	91.0		0.2	JDB
7/11/2018	Arsenic	217438.1	<0.00105	0.8	0.7609157	95.1	0.8	0.7475921	93.4		1.0	JDB
7/11/2018	Arsenic	216839.1	<0.00105	0.8	0.7814274	97.7	0.8	0.7482348	93.5		0.5	JDB
7/11/2018	Barium	216829.1	<0.00015	0.2	0.1947964	97.4	0.2	0.1845827	92.3		2.2	JDB
7/11/2018	Barium	216607.1	<0.00015	0.2	0.20727	103.6	0.2	0.1924270	96.2		0.3	JDB
7/11/2018	Barium	217448.1	<0.00015	0.2	0.1989253	99.5	0.2	0.185726	92.9		0.7	JDB
7/11/2018	Barium	217438.1	<0.00015	0.2	0.1993587	99.7	0.2	0.174301	87.2		1.0	JDB
7/11/2018	Barium	216859.1	<0.00015	0.2	0.1993587	99.7	0.2	0.18852	94.3		0.9	JDB
7/11/2018	Barium	216849.1	<0.00015	0.2	0.1970746	98.5	0.2	0.1860327	93.0		1.0	JDB
7/11/2018	Barium	216839.1	<0.00015	0.2	0.1970746	98.5	0.2	0.1812223	90.6		0.6	JDB
7/11/2018	Beryllium	216607.1	< 0.00002	0.2	0.20674	103.4	0.2	0.1968008	98.4		1.3	JDB
7/11/2018	Beryllium	217448.1	< 0.00002	0.2	0.1940919	97.0	0.2	0.1934906	96.7		1.2	JDB
7/11/2018	Beryllium	216829.1	< 0.00002	0.2	0.1942471	97.1	0.2	0.1962412	98.1		1.8	JDB
7/11/2018	Beryllium	216839.1	<0.00002	0.2	0.1940796	97.0	0.2	0.1927375	96.4		0.3	JDB
7/11/2018	Beryllium	216849.1	< 0.00002	0.2	0.1940796	97.0	0.2	0.1873301	93.7		0.2	JDB
7/11/2018	Beryllium	217438.1	< 0.00002	0.2	0.1940843	97.0	0.2	0.1922127	96.1		1.5	JDB
7/11/2018	Beryllium	216859.1	<0.00002	0.2	0.1940843	97.0	0.2	0.1945641	97.3		0.8	JDB
7/10/2018	Boron	216849.1	0.111559	0.3	0.2377648	79.3	0.3	0.2329567	77.7		0.8	JDB
7/11/2018	Boron	217448.1	0.068451	0.3	0.2803750	93.5	0.3	0.2338	77.9		0.1	JDB
7/11/2018	Boron	216859.1	0.044220	0.3	0.2766036	92.2	0.3	0.2715733	90.5		1.1	JDB
7/11/2018	Boron	216597.2	0.002614	0.3	0.29955	99.9	0.3	0.287187	95.7		2.6	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 18 of 21

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

	ceived: 06/01/2018	Contac Phone	t: Jill Park e: (318) 67	er-Witt	ntal (JP-W)		Ac	Fax: (3 ⁻	2 N. Allen ireveport, I 18) 673-39	_A 71101	
7/11/2018	Cadmium	216849.1	<0.00007	0.2	0.1944529	97.2	0.2	0.1806458	90.3	0.3	JDB
7/11/2018	Cadmium	216607.1	<0.00007	0.2	0.20786	103.9	0.2	0.1958449	97.9	1.2	JDB
7/11/2018	Cadmium	216839.1	<0.00007	0.2	0.1944529	97.2	0.2	0.1925503	96.3	0.4	JDB
7/11/2018	Cadmium	216859.1	<0.00007	0.2	0.1929989	96.5	0.2	0.188907	94.5	0.9	JDB
7/11/2018	Cadmium	217438.1	<0.00007	0.2	0.1929989	96.5	0.2	0.1909662	95.5	1.5	JDB
7/11/2018	Cadmium	217448.1	<0.00007	0.2	0.192313	96.2	0.2	0.1923029	96.2	1.2	JDB
7/11/2018	Cadmium	216829.1	<0.00007	0.2	0.1957450	97.9	0.2	0.1938799	96.9	1.9	JDB
7/10/2018	Calcium	216849.1	<0.48	1	0.9410564	94.1				0.3	JDB
7/10/2018	Calcium	216859.1	<0.48	1	0.9037201	90.4				1.1	JDB
7/11/2018	Calcium	217448.1	<0.48	1	0.9132641	91.3				0.4	JDB
7/11/2018	Calcium	216597.2	<0.0096	1	1.01517	101.5	1	0.940655	94.1	2.2	JDB
6/6/2018	Chloride						50	48	96.0	8.3	GB
6/6/2018	Chloride		<0.219								GB
6/6/2018	Chloride	216846		20	18.1	90.5	50	68	136.0	0.0	GB
6/6/2018	Chloride	216859	<0.219	20	18.4	92.0	50	73	146.0	0.0	GB
6/6/2018	Chloride						50	45	90.0	0.0	GB
7/11/2018	Chromium	217448.1	<0.00023	0.4	0.3790240	94.8	0.4	0.3807842	95.2	1.2	JDB
7/11/2018	Chromium	216607.1	<0.00023	0.4	0.40533	101.3	0.4	0.3840149	96.0	1.3	JDB
7/11/2018	Chromium	216829.1	<0.00023	0.4	0.3823525	95.6	0.4	0.3856683	96.4	1.9	JDB
7/11/2018	Chromium	216839.1	<0.00023	0.4	0.3813157	95.3	0.4	0.3769947	94.2	0.4	JDB
7/11/2018	Chromium	216849.1	<0.00023	0.4	0.3813157	95.3	0.4	0.3663764	91.6	0.1	JDB
7/11/2018	Chromium	217438.1	<0.00023	0.4	0.3798332	95.0	0.4	0.3749093	93.7	1.5	JDB
7/11/2018	Chromium	216859.1	<0.00023	0.4	0.3798332	95.0	0.4	0.3793229	94.8	0.8	JDB
7/11/2018	Cobalt	216829.1	<0.00014	0.2	0.1923129	96.2	0.2	0.1914518	95.7	2.1	JDB
7/11/2018	Cobalt	217438.1	<0.00014	0.2	0.1937297	96.9	0.2	0.1871922	93.6	1.3	JDB
7/11/2018	Cobalt	216607.1	<0.00014	0.2	0.20521	102.6	0.2	0.1938551	96.9	1.6	JDB
7/11/2018	Cobalt	217448.1	< 0.00014	0.2	0.1928593	96.4	0.2	0.1864234	93.2	1.3	JDB
7/11/2018	Cobalt	216859.1	<0.00014	0.2	0.1937297	96.9	0.2	0.1911424	95.6	0.9	JDB
7/11/2018	Cobalt	216849.1	<0.00014	0.2	0.1930186	96.5	0.2	0.1832919	91.6	0.2	JDB
7/11/2018	Cobalt	216839.1	< 0.00014	0.2	0.1930186	96.5	0.2	0.1875445	93.8	0.5	JDB
6/6/2018	Fluoride	216828	< 0.083	10	10	100.0	10	10	100.0	9.4	GB
6/6/2018	Fluoride		<0.083								GB
6/6/2018	Fluoride			10	11	110.0					GB
6/6/2018	Fluoride			10	10	100.0					GB
6/6/2018	Fluoride	216846	<0.083	10	11	110.0	10	9.8	98.0	0.0	GB
7/11/2018	Lead	216839.1	< 0.00068	1	0.9682329	96.8	1	0.9390272	93.9	0.4	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 19 of 21

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report Date Re	ID : 37763 aceived: 06/01/2018	Contact	: SEP - E :: Jill Park :: (318) 67	er-Witt	ntal (JP-W)		Ac			LA 71101		
7/11/2018	Lead	216829.1	<0.00068	1	0.9724599	97.2	1	0.9687459	96.9		1.9	JDB
7/11/2018	Lead	216849.1	<0.00068	1	0.9682329	96.8	1	0.9115634	91.2		0.5	JDB
7/11/2018	Lead	216859.1	<0.00068	1	0.9628089	96.3	1	0.9529827	95.3		0.9	JDB
7/11/2018	Lead	217438.1	< 0.00068	1	0.9628089	96.3	1	0.9349115	93.5		1.6	JDB
7/11/2018	Lead	217448.1	<0.00068	1	0.9668009	96.7	1	0.947151	94.7		1.1	JDB
7/11/2018	Lead	216607.1	<0.00068	1	1.0379	103.8	1	0.9737756	97.4		1.3	JDB
7/11/2018	Lithium	216849.1	< 0.00013	0.2	0.2006665	100.3	0.2	0.20681	103.4		0.4	JDB
7/11/2018	Lithium	216607.1	< 0.00013	0.2	0.20529	102.6	0.2	0.2014402	100.7		1.3	JDB
7/11/2018	Lithium	216839.1	< 0.00013	0.2	0.2006665	100.3	0.2	0.2114136	105.7		0.1	JDB
7/11/2018	Lithium	216859.1	<0.00013	0.2	0.2031312	101.6	0.2	0.2094512	104.7		0.3	JDB
7/11/2018	Lithium	217438.1	<0.00013	0.2	0.2031312	101.6	0.2	0.2139790	107.0		1.2	JDB
7/11/2018	Lithium	217448.1	<0.00013	0.2	0.2009675	100.5	0.2	0.2102503	105.1		0.3	JDB
7/11/2018	Lithium	216829.1	< 0.00013	0.2	0.1975821	98.8	0.2	0.2088078	104.4		1.9	JDB
6/6/2018	Mercury	216858.1	<0.00000	0.001	0.0009016	90.2	0.001	0.0008205	82.1		4.9	LNM
6/6/2018	Mercury	216838.1	<0.00000	0.001	0.00094	94.0	0.001	0.0008853	88.5		0.3	LNM
6/6/2018	Mercury	216848.1	<0.00000	0.001	0.000875	87.5	0.001	0.0008819	88.2		15.3	LNM
6/6/2018	Mercury	216828.1	<0.00000	0.001	0.00094	94.0	0.001	0.0008283	82.8		2.2	LNM
7/11/2018	Molybdenum	216849.1	<0.00029	0.2	0.1905412	95.3	0.2	0.1843829	92.2		0.5	JDB
7/11/2018	Molybdenum	216607.1	<0.00029	0.2	0.20379	101.9	0.2	0.1916946	95.8		1.0	JDB
7/11/2018	Molybdenum	216839.1	<0.00029	0.2	0.1905412	95.3	0.2	0.1867393	93.4		1.2	JDB
7/11/2018	Molybdenum	216859.1	<0.00029	0.2	0.1906861	95.3	0.2	0.1931350	96.6		1.0	JDB
7/11/2018	Molybdenum	217438.1	<0.00029	0.2	0.1906861	95.3	0.2	0.1700057	85.0		1.0	JDB
7/11/2018	Molybdenum	217448.1	<0.00029	0.2	0.1895818	94.8	0.2	0.1953099	97.7		1.0	JDB
7/11/2018	Molybdenum	216829.1	<0.00029	0.2	0.1908355	95.4	0.2	0.1943824	97.2		1.9	JDB
7/11/2018	Selenium	217448.1	<0.00099	2	1.9079876	95.4	2	1.8855788	94.3		1.5	JDB
7/11/2018	Selenium	216607.1	0.001565	2	1.98493	99.2	2	1.8985007	94.9		1.6	JDB
7/11/2018	Selenium	217438.1	<0.00099	2	1.9186359	95.9	2	1.6210683	81.1		4.8	JDB
7/11/2018	Selenium	216829.1	0.001256	2	1.8985201	94.9	2	1.8805748	94.0		1.8	JDB
7/11/2018	Selenium	216839.1	<0.00099	2	1.9077373	95.4	2	1.8568667	92.8		0.2	JDB
7/11/2018	Selenium	216849.1	<0.00099	2	1.9077373	95.4	2	1.8317404	91.6		0.8	JDB
7/11/2018	Selenium	216859.1	<0.00099	2	1.9186359	95.9	2	1.8739280	93.7		0.8	JDB
6/6/2018	Solids, Total Dissolved (TDS)	216859	<2	99.33	106	106.7	2152	2114	98.2		0.7	LBH
6/6/2018	Sulfate		<0.140									GB
6/6/2018	Sulfate			20	18	90.0						GB
6/6/2018	Sulfate	216846		20	18	90.0	50	52	104.0		0.0	GB
6/25/2018	Sulfate			20	17.3	86.5						GB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 20 of 21

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report Date Re	ID : 37763 ceived: 06/01/2018	Company: Contact: Phone:		er-Witt	ntal (JP-W)		A	Sh	2 N. Allen Avenue areveport, LA 71101 18) 673-3960		
6/25/2018	Sulfate		<0.140								GB
6/25/2018	Sulfate	216859		20	17.2	86.0	50	51	102.0	0.3	GB
7/10/2018	Thallium	216607.1	<0.043	0.4	0.41188	103.0	0.4	0.3833643	95.8	0.6	JDB
7/10/2018	Thallium	216829.1	<0.043	0.4	0.385064	96.3	0.4	0.3749285	93.7	1.4	JDB
7/10/2018	Thallium	216849.1	<0.043	0.4	0.3845709	96.1	0.4	0.3579218	89.5	0.1	JDB
7/11/2018	Thallium	216859.1	<0.00086	0.4	0.386014	96.5	0.4	0.3752547	93.8	1.1	JDB
7/11/2018	Thallium	217438.1	<0.00086	0.4	0.386014	96.5	0.4	0.359684	89.9	1.6	JDB
7/11/2018	Thallium	217448.1	<0.043	0.4	0.386145	96.5	0.4	0.3536909	88.4	1.0	JDB
7/11/2018	Thallium	216839.1	<0.00086	0.4	0.3845709	96.1	0.4	0.3594548	89.9	0.1	JDB

Code Code Description

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

M4 The analysis of the spiked sample required a dilution such that the spike recovery calculation does not provide useful information. The associated blank spike recovery was acceptable.

M6 Matrix spike recovery was high.

U Analyte concentration below MDL.

Sandra D. Wallace

Laboratory Manager

13-Jul-18

Report Date

											6-1-18
Shreveport Chemical Laboratory (SCL) 502 N. Allen Ave.				Cha	ain of	f Cu	stody	Chain of Custody Record	0		NA NA
Shreveport, LA 71101			_	Program:		Comb	ustion R	Coal Combustion Residuals (CCR)	CCR)		
Jonathan Barnhill (318-673-3803) Contacts: John Davis (318-673-3811)						Site Contact:	lot:			Date:	For Lab Use Only: COC/Order #:
Project Name: Northeastern PP CCR	Analysis T	urnaround	Analysis Turnaround Time (in Calendar Days)	lendar Day	(s/			Field-filter 500 mL		Three (six every	 Mint 12
Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816							PH<2, HNO3	bottle, then pH<2, HNO3	bottle, Cool, 0-6C	10th") 1 L bottles, bH<2. HNO3	 (n. stin
Sampler(s): Kenneth McDonald	Z	eed results	Need results by July 18, 2018	2018			Ba, Be, b, Li, Hg,	and Mn	SO4	•228	
ŵ			Sample Type			ler(s) Init	r, Co, P	olved Fe	, F, CI,	26, Ra	
Sample Identification	Sample Date	Sample Time	(C=Comp, G=Grab)	Matrix 0	# of Cont.		B, Ca Cd, C Mo, S	disso	TDS	Ra-2	Sample Specific Notes:
MW-1D	5/30/2018	1312	G	GW			×				216944
MW-2D	5/30/2018	1342	G	GW	<u>→</u>		×				216845
MW-3D	5/30/2018	1422	G	GW	2		×		×		 216846.1-216846.2
MW-4D	5/30/2018	1437	G	GW	2		×		×		216847.1-216847.2
MW-5D	5/30/2018	1326	G	GW	2		×		×		216848.1-216848.2
MW-6D	5/30/2018	1409	G	GW	N		×		×		216849.1-216842.2
MW-7D	5/30/2018	1451	G	GW	2		×		×		216 850.1 - 216 850-2
MW-8D	5/30/2018	1512	G	GW	2		×		×		216851.1 - 216851-2-
MW-10D	5/30/2018	1137	G	GW	<u> </u>		×				216852
MW-11D	5/30/2018	1200	G	GW			×				 214853
MW-12D	5/30/2018	1223	G	GW	N	-	×		×		216854.1-216854.2
MW-13D	5/30/2018	1242	G	GW	2		×		×		216855. 1-216855. 2-
Preservation Used: 1= lce, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	INO3; 5=NaC)H; 6= Oth	ler		filter in field	-	4	F4	1	4	
* Six 1L Bottles must be collected for Radium for every 10th sample	every 10th s	sample.									
ns/QC Requirements & Comm	its:	****Ne	****Need results by July 18, 2018***	ov July 1	8, 2018**	*					
Relinquished by WAW	Company: EAUIr	Able		Date/Time:	81	KOR R	Received by:				Date/Time:
Relinquished by:	Company:			Date/Time:	μ.	R	Received by:				Date/Time:
Relinquished by:	Company:			Date/Time:	, in	R	eceived in L	Received in Laboratory by:		N ¹ 555	Date/Time: 601/18 (009
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	rd for Coal C	Combustio	n Residual	(CCR) S	ampling -	- Shrev	eport, Rev.	. 1, 1/10/17			

Shreveport Chemical Laboratory (SCL)				<u>с</u>	in ic	of Ci	ietodv	Chain of Custody Record	2				
502 N. Allen Ave.				(1							
Shreveport , LA 71101	Č.			rograr	n: Co	al Com	bustion R	Program: Coal Combustion Residuals (CCR)	CCR)	Data.			Earlish Hea Only.
Contacts: John Davis (318-673-3811)						Site Contact:	tact:			Date:	-	1	COC/Order #
Project Name: Northeastern PP CCR	Analysis T	urnaround	Analysis Turnaround Time (in Calendar Days)	lendar D	ays)		500 mL	Field-filter 500 mL	Ê	Three (six everv			Coloritano 2
Contact Name: Jill Parker-Witt								bottle, then		10th*) 1			1.00. 211.
Contact Phone: 318-673-3816							HNO3	HNO3	0-6C	pH<2, HNO3	\vdash	+	C
Sampler(s): Kenneth McDonald	Ne	ed results	Need results by July 18, 2018	2018		s	3a, Be, Li, Hg,	nd Mn	04	28			
			Sample			er(s) Initia	, Sb, As, r, Co, Pb e, TL	olved Fe a	, F, CI, S	26, Ra-/			
Sample Identification	Sample Date	Sample Time	(C=Comp, G=Grab)	Matrix	# of Cont.	Sampl	B, Ca Cd, C Mo, S	disso	TDS	Ra-2			Sample Specific Notes:
MW-14	5/30/2018	1258	G	GW			×						216826
MW-15	5/30/2018	1357	G	GW	2		×		×				216857.1-216857.2
MW-17	5/30/2018	1417	G	GW	<u> </u>		×				-		316828
Duplicate Landfill	5/30/2018	1437	G	GW	N		×		×				216857.1-216859.2
Equipment Blank Landfill	5/30/2018	1549	G	٤	<u> </u>		×				-		216860
											\vdash	\vdash	
											+		
Preservation Used: 1= lce, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	NO3; 5=NaC)H; 6= Oth	er	; F= f	F= filter in field	eld	4	F4	-	4			
* Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th s	ample.											
Special Instructions/QC Requirements & Comments:	lts:	****Ne	****Need results by July 18, 2018***	by July	18, 2018	1							
Relinquished by:	Company Company	1014		Date/Tin	Date/Time: 00/01/18 /008		Received by:						Date/Time:
Relinquished by:	Company:			Date/Time	ne:		Received by:	.,					Date/Time:
Relinquished by: Company: Date/Time: Received in Laboratory Form COC-04 AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreeport Rev. 1. 1/10/17 1/10/17	Company:	ombustio	n Residual	Date/Time:	ne:	a - Shra	Received in	Received in Laboratory by:	Shur	Noso			baterTime: 6///8/09
Form CUC-04. AEP Chain of Custody (CUC) Recor		omousilo	n Kesiquai	CCCK 1			Vebort. Kev	. 1. 1/10/1/					

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type		Delivery Type	
Ice Chest Bag Action Pak PCB Mailer Bottle	UPS	FEDEX US Mail Walk in Shutt	le
Other	Othe		
	Tracking #	nt erent (1997)	_
Client NE	-	Sample Matrix	
Received By 3M	DGA	PCB Oil Water Oil Soi	1
Received Date			
Open Date	- Solid	Liquid Other	
Container Temp Read 3.5°	L	Project I.D. <u>37763</u>	
Correction Factor			
	Were sa	mples received on ice? YES NO	
Corrected Temp	-		
Did container arrive in good condition?	YÊS	NO	
		3	
Was sample documentation received?	YES	NO	
	\bigcup		
Was documentation filled out properly?	YES	NO	
	J		
Were samples labeled properly?	ALC	NO	
were samples labeled property:			
Mana contrainers used	(C)		
Were correct containers used?	YES	NO	
	(1)		
Were the pH's of samples appropriately checked?	YES	NO metals pt. LL	
77	\smile		
Total number of sample containers	_		
	\bigcap		
Was any corrective action taken?	NO	Person Contacted	
	\sim	Date & Time	<u> </u>
Comments			

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37913 Date Received: 06/28/2018	Company: SEP - Environmental (JP-W) Contact: Jill Parker-Witt Phone: (318) 673-3816				Address: 502 N. Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960				
AEP Sample ID : 217443 Cust Sample ID: MW-4D Sample Desc.: MW-4D		d Date: 06/2 cation: Nort			By: KM Matrix: Water				
Metals (217443)			T	1		1		1	
Parameter	Value	Unit		Dil./Conc.	Method	Analysis Date/Time	Codes	Tech	
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 12:04	U	JDB	
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 12:04	U	JDB	
Barium	0.167	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 12:04		JDB	
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 12:04	U	JDB	
Boron	1.16	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 12:04		JDB	
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 12:04	U	JDB	
Calcium	177	mg/L	0.48	1:50	EPA 6010B 1996	07/11/2018 0:41	U	JDB	
Chromium	0.00193	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 12:04		JDB	
Cobalt	0.00182	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 12:04	J	JDB	
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 12:04	U	JDB	
Lithium	0.00491	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 12:04		JDB	
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	07/06/2018 10:37	U	LNM	
Molybdenum	0.00464	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 12:04	J	JDB	
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 12:04	U	JDB	
Thallium	0.00294	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 12:04		JDB	
Water (217443)			-			-			
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech	
Chloride	20	mg/L	0.219	1	EPA 300.0	07/12/2018 0:04		GB	
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	07/12/2018 0:04	U	GB	
Solids, Total Dissolved (TDS)	882	mg/L	2	1	SM 2540 C-2011	07/02/2018 15:30		LBH	
Sulfate	258	mg/L	0.140	1:10	EPA 300.0	07/12/2018 1:57		GB	

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37913 Date Received: 06/28/2018	C	ontact: Jill	P - Environme Parker-Witt 8) 673-3816	ental (JP-W)		Address: 502 N. Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960					
AEP Sample ID : 217444 Cust Sample ID: MW-5D Sample Desc.: MW-5D		d Date: 06/2 cation: Nor	27/2018 theastern PP			By: KM Matrix: Water					
Metals (217444)											
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech			
Antimony	0.0025	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 12:20	J	JDB			
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 12:20	U	JDB			
Barium	0.126	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 12:20		JDB			
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 12:20	U	JDB			
Boron	0.478	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 12:20		JDB			
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 12:20	U	JDB			
Calcium	134	mg/L	0.48	1:50	EPA 6010B 1996	07/11/2018 0:47		JDB			
Chromium	0.0008	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 12:20	J	JDB			
Cobalt	0.00063	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 12:20	J	JDB			
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 12:20	U	JDB			
Lithium	0.01208	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 12:20		JDB			
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	07/06/2018 10:40	U	LNM			
Molybdenum	0.00096	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 12:20	J	JDB			
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 12:20	U	JDB			
Thallium	0.002	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 12:20		JDB			
Water (217444)	L. II		II.					1			
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech			
Chloride	26	mg/L	0.219	1	EPA 300.0	07/12/2018 3:50		GB			
Fluoride	0.7487	mg/L	0.083	1	EPA 300.0	07/12/2018 3:50	J	GB			
Solids, Total Dissolved (TDS)	658	mg/L	2	1	SM 2540 C-2011	07/02/2018 15:30		LBH			
Sulfate	122	mg/L	0.140	1:10	EPA 300.0	07/12/2018 4:28		GB			

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37913 Date Received : 06/28/2018	Company: SEP - Environmental (JP-W) Contact: Jill Parker-Witt Phone: (318) 673-3816				Address: 502 N. Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960						
AEP Sample ID : 217445 Cust Sample ID: MW-10D Sample Desc.: MW-10D		Collected Date: 06/27/2018 Location: Northeastern PP				By: KM Matrix: Water					
Metals (217445)	1		I			1					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech			
Antimony	0.00174	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 12:37	J	JDB			
Arsenic	0.00159	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 12:37	J	JDB			
Barium	0.131	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 12:37		JDB			
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 12:37	U	JDB			
Boron	1.16	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 12:37		JDB			
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 12:37	U	JDB			
Calcium	52.5	mg/L	0.48	1:50	EPA 6010B 1996	07/11/2018 0:52		JDB			
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 12:37	U	JDB			
Cobalt	0.00101	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 12:37	J	JDB			
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 12:37	U	JDB			
Lithium	0.461	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 12:37		JDB			
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	07/06/2018 10:43	U	LNM			
Molybdenum	0.0162	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 12:37		JDB			
Selenium	0.00503	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 12:37		JDB			
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/11/2018 0:52	U	JDB			

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37913 Date Received: 06/28/2018	C	ontact: Jill	P - Environme Parker-Witt 8) 673-3816	ental (JP-W)	Fax:	Address: 502 N. Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960					
AEP Sample ID : 217446 Cust Sample ID: MW-12D Sample Desc.: MW-12D		d Date: 06/2 cation: Nor	27/2018 theastern PP		By: k Matrix: \						
Metals (217446)						1					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech			
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 12:42	U	JDB			
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 12:42	U	JDB			
Barium	0.03618	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 12:42		JDB			
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 12:42	U	JDB			
Boron	8.45	mg/L	0.014	1:50	EPA 6010B 1996	07/11/2018 0:57		JDB			
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 12:42	U	JDB			
Calcium	74.9	mg/L	0.48	1:50	EPA 6010B 1996	07/11/2018 0:57		JDB			
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 12:42	U	JDB			
Cobalt	0.00039	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 12:42	J	JDB			
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 12:42	U	JDB			
Lithium	0.00541	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 12:42		JDB			
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	07/06/2018 10:45	U	LNM			
Molybdenum	0.666	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 12:42		JDB			
Selenium	0.00155	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 12:42	J	JDB			
Thallium	0.00199	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 12:42	J	JDB			
Water (217446)				I							
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech			
Chloride	17	mg/L	0.219	1	EPA 300.0	07/12/2018 5:25		GB			
Fluoride	1.988	mg/L	0.083	1	EPA 300.0	07/12/2018 5:25		GB			
Solids, Total Dissolved (TDS)	1070	mg/L	2	1	SM 2540 C-2011	07/02/2018 15:30		LBH			
Sulfate	586	mg/L	0.140	1:10	EPA 300.0	07/12/2018 6:21		GB			

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37913 Date Received: 06/28/2018	Company: SEP - Environmental (JP-W) Contact: Jill Parker-Witt Phone: (318) 673-3816				Fax:	Address: 502 N. Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960					
AEP Sample ID : 217447 Cust Sample ID: MW-13D Sample Desc.: MW-13D			06/27/2018 Northeastern PP			By: KM Matrix: Water					
Metals (217447)				1							
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech			
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 12:48	U	JDB			
Arsenic	0.00113	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 12:48	J	JDB			
Barium	0.119	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 12:48		JDB			
Beryllium	0.00012	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 12:48	J	JDB			
Boron	1.35	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 12:48		JDB			
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 12:48	U	JDB			
Calcium	212	mg/L	0.48	1:50	EPA 6010B 1996	07/11/2018 1:03		JDB			
Chromium	0.00374	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 12:48		JDB			
Cobalt	0.00496	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 12:48	J	JDB			
Lead	0.00184	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 12:48	J	JDB			
Lithium	0.02781	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 12:48		JDB			
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	07/06/2018 10:54	U	LNM			
Molybdenum	0.02456	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 12:48		JDB			
Selenium	0.01011	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 12:48		JDB			
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/11/2018 1:03	U	JDB			

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37913 Date Received: 06/28/2018	Company: SEP - Environmental (JP-W) Contact: Jill Parker-Witt Phone: (318) 673-3816				Address: 502 N. Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960						
AEP Sample ID : 217448 Cust Sample ID: MW-14 Sample Desc.: MW-14		Collected Date: 06/27/2018 Location: Northeastern PP				By: KM Matrix: Water					
Metals (217448)	1 1		I								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech			
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 12:53	U	JDB			
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 12:53	U	JDB			
Barium	0.161	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 12:53		JDB			
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 12:53	U	JDB			
Boron	1.56	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 12:53		JDB			
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 12:53	U	JDB			
Calcium	71	mg/L	0.48	1:50	EPA 6010B 1996	07/11/2018 1:08	M4	JDB			
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 12:53	U	JDB			
Cobalt	0.00314	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 12:53	J	JDB			
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 12:53	U	JDB			
Lithium	0.378	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 12:53		JDB			
Mercury	0.000006	mg/L	0.000005	1	EPA 7470A 1994	07/06/2018 11:10	J	LNM			
Molybdenum	0.02016	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 12:53		JDB			
Selenium	0.00435	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 12:53	J	JDB			
Thallium	0.042	mg/L	0.043	1:50	EPA 6010B 1996	07/11/2018 1:08		JDB			

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37913 Date Received : 06/28/2018	Company: SEP - Environmental (JP-W) Contact: Jill Parker-Witt Phone: (318) 673-3816				Address: 502 N. Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960						
AEP Sample ID : 217449 Cust Sample ID: MW-17 Sample Desc.: MW-17		Collected Date: 06/27/2018 Location: Northeastern PP				By: KM Matrix: Water					
Metals (217449)	1		Γ								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech			
Antimony	0.00257	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 13:31	J	JDB			
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 13:31	U	JDB			
Barium	0.04152	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 13:31		JDB			
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 13:31	U	JDB			
Boron	0.715	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 13:31		JDB			
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 13:31	U	JDB			
Calcium	205	mg/L	0.48	1:50	EPA 6010B 1996	07/11/2018 1:14		JDB			
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 13:31	U	JDB			
Cobalt	0.00075	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 13:31	J	JDB			
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 13:31	U	JDB			
Lithium	0.01282	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 13:31		JDB			
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	07/06/2018 11:18	U	LNM			
Molybdenum	0.00794	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 13:31		JDB			
Selenium	0.01246	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 13:31		JDB			
Thallium	0.00163	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 13:31	J	JDB			

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37913 Date Received: 06/28/2018	C	ontact: Jill F Phone: (318	3) 673-3816	ntal (JP-W)	Address: 502 N. Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960				
AEP Sample ID : 217450 Cust Sample ID: Duplicate Sample Desc.: Duplicate		d Date: 06/2 cation: Nort			By: K Matrix: V				
Metals (217450)				I					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech	
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 13:36	U	JDB	
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 13:36	U	JDB	
Barium	0.166	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 13:36		JDB	
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 13:36	U	JDB	
Boron	1.11	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 13:36		JDB	
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 13:36	U	JDB	
Calcium	170	mg/L	0.48	1:50	EPA 6010B 1996	07/11/2018 1:19		JDB	
Chromium	0.00165	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 13:36		JDB	
Cobalt	0.00135	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 13:36	J	JDB	
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 13:36	U	JDB	
Lithium	0.00475	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 13:36		JDB	
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	07/06/2018 11:26	U	LNM	
Molybdenum	0.00485	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 13:36	J	JDB	
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 13:36	U	JDB	
Thallium	0.00351	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 13:36		JDB	
Water (217450)									
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech	
Chloride	20	mg/L	0.219	1	EPA 300.0	07/12/2018 7:36		GB	
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	07/12/2018 7:36	U	GB	
Solids, Total Dissolved (TDS)	886	mg/L	2	1	SM 2540 C-2011	07/02/2018 15:30		LBH	
Sulfate	241	mg/L	0.140	1:110	EPA 300.0	07/12/2018 8:14		GB	

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37913 Date Received: 06/28/2018	Company: SEP - Environmental (JP-W) Contact: Jill Parker-Witt Phone: (318) 673-3816			ental (JP-W)	Address: 502 N. Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960				
AEP Sample ID : 217451 Cust Sample ID: Equipment Blank Sample Desc.: Equipment Blank		d Date: 06/2 cation: Nor	27/2018 theastern PP		By: KM Matrix: Water				
Metals (217451)			I	1		1			
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech	
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB	
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB	
Barium	< 0.00015	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB	
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB	
Boron	0.06304	mg/L	0.00028	1	EPA 6010B 1996	07/11/2018 13:41		JDB	
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB	
Calcium	0.0106	mg/L	0.0096	1	EPA 6010B 1996	07/11/2018 13:41		JDB	
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB	
Cobalt	< 0.00014	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB	
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB	
Lithium	< 0.00013	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB	
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	07/06/2018 11:29	U	LNM	
Molybdenum	< 0.00029	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB	
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB	
Thallium	< 0.00086	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 13:41	U	JDB	

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report Date Re	ID : 37913 eceived: 06/28/2018	Contact:	Jill Parke	er-Witt	ntal (JP-W)		SEP - Environmental (JP-W)Address:502 N. Allen AvenueJill Parker-WittShreveport, LA 71101(318) 673-3816Fax:(318) 673-3960							
		* Quality			ntrol Data ne as reported	l analytical	results							
			Blank		Standard			Spike		Surrogate	Duplicate %	-		
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech		
7/11/2018	Antimony	217438.1	< 0.00093	0.8	0.7863861	98.3	0.8	0.7518081	94.0		1.2	JDB		
7/11/2018	Antimony	216607.1	0.011666	0.8	0.80691	100.9	0.8	0.770316	96.3		1.2	JDB		
7/11/2018	Antimony	216829.1	0.002111	0.8	0.7743853	96.8	0.8	0.7694967	96.2		1.8	JDB		
7/11/2018	Antimony	216839.1	< 0.00093	0.8	0.7840294	98.0	0.8	0.7474474	93.4		0.5	JDB		
7/11/2018	Antimony	216859.1	< 0.00093	0.8	0.7863861	98.3	0.8	0.7762676	97.0		0.2	JDB		
7/11/2018	Antimony	217448.1	< 0.00093	0.8	0.7833788	97.9	0.8	0.7646954	95.6		1.2	JDB		
7/11/2018	Antimony	216849.1	< 0.00093	0.8	0.7840294	98.0	0.8	0.7162960	89.5		1.2	JDB		
7/11/2018	Arsenic	216607.1	<0.00105	0.8	0.82209	102.8	0.8	0.7777993	97.2		1.9	JDB		
7/11/2018	Arsenic	216829.1	<0.00105	0.8	0.782387	97.8	0.8	0.7688641	96.1		2.1	JDB		
7/11/2018	Arsenic	216839.1	<0.00105	0.8	0.7814274	97.7	0.8	0.7482348	93.5		0.5	JDB		
7/11/2018	Arsenic	216849.1	<0.00105	0.8	0.7814274	97.7	0.8	0.7282816	91.0		0.2	JDB		
7/11/2018	Arsenic	216859.1	<0.00105	0.8	0.7609157	95.1	0.8	0.7596461	95.0		1.1	JDB		
7/11/2018	Arsenic	217438.1	<0.00105	0.8	0.7609157	95.1	0.8	0.7475921	93.4		1.0	JDB		
7/11/2018	Arsenic	217448.1	<0.00105	0.8	0.7674074	95.9	0.8	0.7729410	96.6		0.4	JDB		
7/11/2018	Barium	216849.1	<0.00015	0.2	0.1970746	98.5	0.2	0.1860327	93.0		1.0	JDB		
7/11/2018	Barium	217448.1	<0.00015	0.2	0.1989253	99.5	0.2	0.185726	92.9		0.7	JDB		
7/11/2018	Barium	216859.1	<0.00015	0.2	0.1993587	99.7	0.2	0.18852	94.3		0.9	JDB		
7/11/2018	Barium	217438.1	<0.00015	0.2	0.1993587	99.7	0.2	0.174301	87.2		1.0	JDB		
7/11/2018	Barium	216607.1	<0.00015	0.2	0.20727	103.6	0.2	0.1924270	96.2		0.3	JDB		
7/11/2018	Barium	216839.1	<0.00015	0.2	0.1970746	98.5	0.2	0.1812223	90.6		0.6	JDB		
7/11/2018	Barium	216829.1	<0.00015	0.2	0.1947964	97.4	0.2	0.1845827	92.3		2.2	JDB		
7/11/2018	Beryllium	217448.1	< 0.00002	0.2	0.1940919	97.0	0.2	0.1934906	96.7		1.2	JDB		
7/11/2018	Beryllium	217438.1	< 0.00002	0.2	0.1940843	97.0	0.2	0.1922127	96.1		1.5	JDB		
7/11/2018	Beryllium	216859.1	< 0.00002	0.2	0.1940843	97.0	0.2	0.1945641	97.3		0.8	JDB		
7/11/2018	Beryllium	216849.1	< 0.00002	0.2	0.1940796	97.0	0.2	0.1873301	93.7		0.2	JDB		
7/11/2018	Beryllium	216839.1	< 0.00002	0.2	0.1940796	97.0	0.2	0.1927375	96.4		0.3	JDB		
7/11/2018	Beryllium	216829.1	< 0.00002	0.2	0.1942471	97.1	0.2	0.1962412	98.1		1.8	JDB		
7/11/2018	Beryllium	216607.1	< 0.00002	0.2	0.20674	103.4	0.2	0.1968008	98.4		1.3	JDB		
7/11/2018	Boron	217448.1	0.068451	0.3	0.2803750	93.5	0.3	0.2338	77.9		0.1	JDB		
7/11/2018	Boron	216859.1	0.044220	0.3	0.2766036	92.2	0.3	0.2715733	90.5		1.1	JDB		
7/11/2018	Boron	216597.2	0.002614	0.3	0.29955	99.9	0.3	0.287187	95.7		2.6	JDB		
7/11/2018	Cadmium	216839.1	< 0.00007	0.2	0.1944529	97.2	0.2	0.1925503	96.3		0.4	JDB		

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 10 of 13

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report Date Re	ID : 37913 ceived: 06/28/2018	Contact	SEP - Ei Jill Parke (318) 67	er-Witt	ntal (JP-W)		A		2 N. Allen Av reveport, LA 8) 673-3960	71101	
7/11/2018	Cadmium	216829.1	<0.00007	0.2	0.1957450	97.9	0.2	0.1938799	96.9	1.9	JDB
7/11/2018	Cadmium	216859.1	<0.00007	0.2	0.1929989	96.5	0.2	0.188907	94.5	0.9	JDB
7/11/2018	Cadmium	217438.1	<0.00007	0.2	0.1929989	96.5	0.2	0.1909662	95.5	1.5	JDB
7/11/2018	Cadmium	217448.1	<0.00007	0.2	0.192313	96.2	0.2	0.1923029	96.2	1.2	JDB
7/11/2018	Cadmium	216607.1	<0.00007	0.2	0.20786	103.9	0.2	0.1958449	97.9	1.2	JDB
7/11/2018	Cadmium	216849.1	<0.00007	0.2	0.1944529	97.2	0.2	0.1806458	90.3	0.3	JDB
7/11/2018	Calcium	217448.1	<0.48	1	0.9132641	91.3				0.4	JDB
7/11/2018	Calcium	216597.2	<0.0096	1	1.01517	101.5	1	0.940655	94.1	2.2	JDB
7/12/2018	Chloride		<0.219								GB
7/12/2018	Chloride			20	19	95.0					GB
7/12/2018	Chloride	217443	<0.219	20	20	100.0	50	52	104.0	0.0	GB
7/11/2018	Chromium	216829.1	< 0.00023	0.4	0.3823525	95.6	0.4	0.3856683	96.4	1.9	JDB
7/11/2018	Chromium	217448.1	<0.00023	0.4	0.3790240	94.8	0.4	0.3807842	95.2	1.2	JDB
7/11/2018	Chromium	217438.1	< 0.00023	0.4	0.3798332	95.0	0.4	0.3749093	93.7	1.5	JDB
7/11/2018	Chromium	216859.1	< 0.00023	0.4	0.3798332	95.0	0.4	0.3793229	94.8	0.8	JDB
7/11/2018	Chromium	216839.1	< 0.00023	0.4	0.3813157	95.3	0.4	0.3769947	94.2	0.4	JDB
7/11/2018	Chromium	216607.1	< 0.00023	0.4	0.40533	101.3	0.4	0.3840149	96.0	1.3	JDB
7/11/2018	Chromium	216849.1	< 0.00023	0.4	0.3813157	95.3	0.4	0.3663764	91.6	0.1	JDB
7/11/2018	Cobalt	216849.1	< 0.00014	0.2	0.1930186	96.5	0.2	0.1832919	91.6	0.2	JDB
7/11/2018	Cobalt	217448.1	<0.00014	0.2	0.1928593	96.4	0.2	0.1864234	93.2	1.3	JDB
7/11/2018	Cobalt	217438.1	<0.00014	0.2	0.1937297	96.9	0.2	0.1871922	93.6	1.3	JDB
7/11/2018	Cobalt	216859.1	<0.00014	0.2	0.1937297	96.9	0.2	0.1911424	95.6	0.9	JDB
7/11/2018	Cobalt	216839.1	<0.00014	0.2	0.1930186	96.5	0.2	0.1875445	93.8	0.5	JDB
7/11/2018	Cobalt	216607.1	<0.00014	0.2	0.20521	102.6	0.2	0.1938551	96.9	1.6	JDB
7/11/2018	Cobalt	216829.1	<0.00014	0.2	0.1923129	96.2	0.2	0.1914518	95.7	2.1	JDB
7/12/2018	Fluoride		<0.083								GB
7/12/2018	Fluoride			10	10	100.0					GB
7/12/2018	Fluoride	217443	<0.083	10	10	100.0	10	10	100.0	0.0	GB
7/11/2018	Lead	217438.1	<0.00068	1	0.9628089	96.3	1	0.9349115	93.5	1.6	JDB
7/11/2018	Lead	217448.1	<0.00068	1	0.9668009	96.7	1	0.947151	94.7	1.1	JDB
7/11/2018	Lead	216849.1	<0.00068	1	0.9682329	96.8	1	0.9115634	91.2	0.5	JDB
7/11/2018	Lead	216839.1	<0.00068	1	0.9682329	96.8	1	0.9390272	93.9	0.4	JDB
7/11/2018	Lead	216607.1	<0.00068	1	1.0379	103.8	1	0.9737756	97.4	1.3	JDB
7/11/2018	Lead	216829.1	<0.00068	1	0.9724599	97.2	1	0.9687459	96.9	1.9	JDB
7/11/2018	Lead	216859.1	<0.00068	1	0.9628089	96.3	1	0.9529827	95.3	0.9	JDB
7/11/2018	Lithium	216859.1	< 0.00013	0.2	0.2031312	101.6	0.2	0.2094512	104.7	0.3	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 11 of 13

Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report Date Re	ID : 37913 eceived: 06/28/2018	Contac	: SEP - E : Jill Park : (318) 67	er-Witt	ntal (JP-W)		A			LA 71101	
7/11/2018	Lithium	216849.1	< 0.00013	0.2	0.2006665	100.3	0.2	0.20681	103.4	0.4	JDB
7/11/2018	Lithium	216839.1	< 0.00013	0.2	0.2006665	100.3	0.2	0.2114136	105.7	0.1	JDB
7/11/2018	Lithium	216829.1	<0.00013	0.2	0.1975821	98.8	0.2	0.2088078	104.4	1.9	JDB
7/11/2018	Lithium	216607.1	< 0.00013	0.2	0.20529	102.6	0.2	0.2014402	100.7	1.3	JDB
7/11/2018	Lithium	217448.1	< 0.00013	0.2	0.2009675	100.5	0.2	0.2102503	105.1	0.3	JDB
7/11/2018	Lithium	217438.1	< 0.00013	0.2	0.2031312	101.6	0.2	0.2139790	107.0	1.2	JDB
7/6/2018	Mercury	217437.1	0.000007	0.001	0.001	100.0	0.001	0.0009169	91.7	3.8	LNM
7/6/2018	Mercury	217447.1	<0.00000	0.001	0.0010197	102.0	0.001	0.0010343	103.4	11.7	LNM
7/11/2018	Molybdenum	217448.1	<0.00029	0.2	0.1895818	94.8	0.2	0.1953099	97.7	1.0	JDB
7/11/2018	Molybdenum	216607.1	<0.00029	0.2	0.20379	101.9	0.2	0.1916946	95.8	1.0	JDB
7/11/2018	Molybdenum	216829.1	<0.00029	0.2	0.1908355	95.4	0.2	0.1943824	97.2	1.9	JDB
7/11/2018	Molybdenum	216839.1	<0.00029	0.2	0.1905412	95.3	0.2	0.1867393	93.4	1.2	JDB
7/11/2018	Molybdenum	216849.1	<0.00029	0.2	0.1905412	95.3	0.2	0.1843829	92.2	0.5	JDB
7/11/2018	Molybdenum	217438.1	<0.00029	0.2	0.1906861	95.3	0.2	0.1700057	85.0	1.0	JDB
7/11/2018	Molybdenum	216859.1	<0.00029	0.2	0.1906861	95.3	0.2	0.1931350	96.6	1.0	JDB
7/11/2018	Selenium	216859.1	<0.00099	2	1.9186359	95.9	2	1.8739280	93.7	0.8	JDB
7/11/2018	Selenium	216839.1	<0.00099	2	1.9077373	95.4	2	1.8568667	92.8	0.2	JDB
7/11/2018	Selenium	216849.1	<0.00099	2	1.9077373	95.4	2	1.8317404	91.6	0.8	JDB
7/11/2018	Selenium	216607.1	0.001565	2	1.98493	99.2	2	1.8985007	94.9	1.6	JDB
7/11/2018	Selenium	217438.1	<0.00099	2	1.9186359	95.9	2	1.6210683	81.1	4.8	JDB
7/11/2018	Selenium	217448.1	<0.00099	2	1.9079876	95.4	2	1.8855788	94.3	1.5	JDB
7/11/2018	Selenium	216829.1	0.001256	2	1.8985201	94.9	2	1.8805748	94.0	1.8	JDB
7/2/2018	Solids, Total Dissolved (TDS)	217443	<2	99.33	106	106.7	2834	2754	97.2	2.3	LBH
7/12/2018	Sulfate	217443	<0.00086	20	17.2	86.0	50	54	108.0	0.0	GB
7/12/2018	Sulfate			20	17.2	86.0					GB
7/12/2018	Sulfate		<0.140								GB
7/11/2018	Thallium	217438.1	<0.00086	0.4	0.386014	96.5	0.4	0.359684	89.9	1.6	JDB
7/11/2018	Thallium	216859.1	<0.00086	0.4	0.386014	96.5	0.4	0.3752547	93.8	1.1	JDB
7/11/2018	Thallium	216839.1	<0.00086	0.4	0.3845709	96.1	0.4	0.3594548	89.9	0.1	JDB
7/11/2018	Thallium	217448.1	<0.043	0.4	0.386145	96.5	0.4	0.3536909	88.4	1.0	JDB

Code Code Description

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

M4 The analysis of the spiked sample required a dilution such that the spike recovery calculation does not provide useful information. The associated blank spike recovery was acceptable.

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

02004

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

02004

Analysis Report

 Report ID
 : 37913

 Date Received:
 06/28/2018

Company: SEP - Environmental (JP-W) Contact: Jill Parker-Witt Phone: (318) 673-3816

Address:	502 N. Allen Avenue
	Shreveport, LA 71101
Fax:	(318) 673-3960

U Analyte concentration below MDL.

Sandra D. Wallace Laboratory Manager

13-Jul-18 Report Date

Relinquished by: Company: Date/Time: Received in L	Relinquished by: Company:	Relinquished by: KAMA Company AGUA	ons/QC Requirements & Comm	* Six 1L Bottles must be collected for Radium for every 10th sample.	Preservation Used: 1= lce, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other			EQUIPMENT BLANK 6/27/2018 1430	DUPLICATE 6/27/2018 1105	MW-17 6/27/2018 1020	MW-14 6/27/2018 1410	MW-13D 6/27/2018 1335	MW-12D 6/27/2018 1315	MW-10D 6/27/2018 1210	MW-5D 6/27/2018 930	MW-4D 6/27/2018 1105	Sample Identification Date Time G	Sampler(s): Kenneth McDonald	Contact Phone: 318-673-3816	No.	Contacts: John Davis (318-673-3803) Contacts: John Davis (318-673-3811)	Shreveport , LA 71101	502 N. Allen Ave.
Date	Date				. F			G W	G GW	G GW	G GW	G GW	G GW	G GW	G GW	G GW	Sample Type (C=Comp, G=Grab) Matrix		or Monitoring	ıe (in Calenda		Prog	_
Date/Time:	Date/Time:	Date/Time; 06/28/18			F= filter in field				V 2	V 1	-	V 1	V 2	1	V 2	V 2	# of Cont.		Wells)	ar Days)		ram: Co	Jian
- Sha		// 30 F			field												Sampler(s) Init	tials		,	Site Contact:	al Com	
Received in	Received by:	Received by:			4			×	×	×	×	×	×	×	×	×	B, Ca, Sb, As Cd, Cr, Co, P Mo, Se, TL	i, Ba, Be, b, Li, Hg,	pH<2, HNO3	· · ·	tact:	bustion F	Anoter
Received in Laboratory by:					F4												dissolved Fe	and Mn	PH<2, HNO3	Field-filter 500 mL bottle, then		Program: Coal Combustion Residuals (CCR)	
Ŷ.					1		<i>.</i>		×				×		×	×	TDS, F, CI,	SO4	Cool, 0-6C			(CCR)	2
					4												Ra-226, Ra	-228	L bottles, pH<2, HNO3	Three (six every 10th*) 1	Date:		
																						612	der
Date/Time:	Date/Time:	Date/Time:						212451	254618	219449	Shh61C	Chh 61C	3/24/6	544618	217444	LAS# 217443	Sample Specific Notes:		<1110	CoC#	For Lab Use Only: COC/Order #:		0118

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type		Delivery Type
Ice Chest Bag Action Pak PCB Mailer Bottle	UPS	FEDEX US Mail Walk in Shuttle
Other	Other	r
	Tracking #	2-11-1-2-11 (A
Client J: II Parker - Wilt Received By 570 Received Date 6/28/118 Open Date	DGA Solid	Sample Matrix PCB Oil Water Oil Soil Liquid Other
Container Temp Read <u>3</u> Correction Factor Corrected Temp <u>4.7</u>	– Were sa	Project I.D
Did container arrive in good condition?	TES	NO
Was sample documentation received?	YES	NO
Was documentation filled out properly?	YES	NO
Were samples labeled properly?	YES	NO
Were correct containers used?	YES	NO
Were the pH's of samples appropriately checked?	YES	N N
Total number of sample containers	-	
Was any corrective action taken?	NO	Person Contacted Date & Time
Comments		
<u> </u>		

Location: Northeastern Station

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Report Date: 8/14/2018

MW-4D							
Sample Number:	182223-001		Date Coll	ected: 06/	27/2018 11:05	D	ate Received: 7/3/2018
Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	0.72	pCi/L	0.15	0.47	ttp	8/10/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.524	pCi/L	0.081	0.084	jls	7/30/2018	SW-846 9315-1986,Rev. 0
The carrier recovery	y is outside the esta	blished ran	ge of 30-110%.				
MW-5D							
Sample Number:	182223-002		Date Coll	ected: 06/	27/2018 09:30	Da	ate Received: 7/3/2018
Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	1.99	pCi/L	0.15	0.42	ttp	8/10/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.522	pCi/L	0.080	0.086	jls	7/30/2018	SW-846 9315-1986,Rev. 0
The carrier recovery	y is outside the esta	blished ran	ge of 30-110%.				
MW-12D							
Sample Number:	182223-003		Date Coll	ected: 06/	27/2018 13:15	D	ate Received: 7/3/2018
Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	1.05	pCi/L	0.17	0.53	ttp	8/10/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.281	pCi/L	0.074	0.12	jls	7/30/2018	SW-846 9315-1986,Rev. 0

*The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "onesigma" which has the same units of measurement as the result.

Muhael & Oklinger

Michael Ohlinger, ChemistEmail msohlinger@aep.comTel.Fax 614-836-4168Aud

Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Chain of Custody Record	70
hain of Custody Reco	Ľ.
hain of Custody R	
hain of Custody R	0
hain of Custody R	0
hain of Custody R	ă
hain of Custody I	~
hain of Custody	
hain of Custod	
hain of Cu	
hain of Cu	77
hain of Cu	Ä
hain of Cu	
hain of Cu	10
hain of Cu	<u>.</u>
hain of C	
hain of (
hain of	
hain o	Line -
hain (
	\mathbf{v}
	<u> </u>
	12
$\mathbf{\nabla}$	
	$\mathbf{\nabla}$

Dolan Chemical Laboratory (DCL) 4001 Bixby Road

Groveport, Ohio 43125			2	Progr	am: C	Program: Coal Combustion Residuals (CCR)	ustion R	esiduals	(CCR)				
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)					Si	Site Contact:				Date:		For Lab Use Only: COC/Order #:	Ise Only:
Project Name: Northeastern PP CCR						250	250 mL	Three		40 ml Glace	Eisirt-filtar Eisirt-filtar		r
Contact Name: Jill Parker-Witt	Analysis	lurnaround	Analysis Turnaround Time (in Calendar Days)	endar Da	/s)	P H				vial or 250 mL PTFE lined	250 mL bottle, then	103	18233 0
Contact Phone: 318-673-3816	© Rou	ine (28 day	 Routine (28 days for Monitoring Wells) 	ing Wells	0	H		PH<2, HNO3		ottle, HCL**, pH<2	pH<2, HNO3		
Sampler(s): Kenneth McDonald						,s8 ,sA			sO4, SO4,				
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) Init B, Ca, Li, Sb, Be, Cd, Cr, C	Mo, Se, TL and Va, K, M	Ra-226, Ra	and Br, Alk	бң	bəvlossib I bəvlossib	Sample Specific Notes:	cific Notes:
MW-4D	6/27/2018	1105	υ		9			×					
MW-5D	6/27/2018	930	σ	ВW	e			×					
MW-12D	6/27/2018	1315	U	ВW	m			×					
						_	_						
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	103; 5=NaOH	; 6= Other		; F = fitter in field	in field	,	4	4	1	2	F 4		
* Six 1L Bottles must be collected for Radium for every 10th sample. ** HCI must be Trace Metal Grade for Mercury analysis when samples cannot be delivered to the laboratory within 48 hours of sampling.	every 10th sa ysis when sa	mple. mples can	not be deliv	ered to	the labo	ratory withi	n 48 hours	s of sampl	.bu				
Special Instructions/QC Requirements & Comments:	:5												
Relinquished by: XXX	Company AGL F	⁴ 61 F		Date/Time:		1400 Recei	Received by:					Date/Time:	
Relinquished by:	Company:			Date/Tim	äj	Recei	Received by:					Date/Time:	
Relinquished by:	Company:			Date/Time:		Recei	ved in Lab	Received in Laboratory by:	Bei	3		Date/Time: 21/3/2018	1445
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Dolan, Rev. 2, 11/02/16	d for Coal Co	mbustion	Residual (C	CR) Sar	npling - I	Jolan, Rev.	2, 11/02/1	9					

Form SOP-7102 Sample Receipt Form Rev.6. 11/30/15

MEP WATER & WASTE SAMPLE RECEIPT FORM

F	Package Type	Delivery Type
	Cooler Box Bag Envelope	PONY UPS FedEX USPS
		Other
	Plant/Customer Northcashin	Number of Plastic Containers:
	Opened By	Number of Glass Containers:
	Date/Time 7/3/2018 1440	
11		o(N/A)Initial:on ice(/ no ice)
Ŧ) - If No, specify each deviation:
	Was container in good condition? 🕎 N	Comments
	Was Chain of Custody received?	Comments
	- 1	If RUSH , who was notified?
		IO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
	Was COC filled out properly? 🔗 N	Comments
	Were samples labeled properly?	Comments
	Were correct containers used? Y/N	
	Was pH checked & Color Coding done?(Y	N or N/A Initial & Date: <u>JWB 7/3/2019</u>
	- Was Add'l Preservative needed? Y /NIf	Yes: By whom & when: (See Prep Book)
	Is sample filtration requested? Y /	Comments (See Prep Book)
	Was the customer contacted? If Yes:	Person Contacted:
	Lab ID#/82223 Initial &	Date & Time :
	1 - 1/2	nts:
	Ma	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Sample Receipt Form SOP-7102

Location: Northeastern Station

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Report Date: 9/5/2018

MW-4D							
Sample Number:	182698-001		Date Coll	ected: 07/	31/2018 09:10	Da	ate Received: 8/9/2018
Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	0.691	pCi/L	0.16	0.52	jls	8/27/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.815	pCi/L	0.13	0.14	jls	8/30/2018	SW-846 9315-1986,Rev. 0
MW-5D							
Sample Number:	182698-002		Date Coll	ected: 07/	31/2018 08:30	D	ate Received: 8/9/2018
Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	2.2	pCi/L	0.19	0.57	jls	8/27/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.676	pCi/L	0.094	0.088	jls	8/30/2018	SW-846 9315-1986,Rev. 0
MW-12D							
Sample Number:	182698-003		Date Coll	ected: 07/	31/2018 09:40	Da	ate Received: 8/9/2018
Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radiochemistry*	Result 0.299	Units pCi/L	UNC* (+ / -) 0.14	MDA* 0.48	Analysis By jls	Analysis Date/Time 8/27/2018	Method SW-846 9320-2014,Rev. 1.0

*The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "onesigma" which has the same units of measurement as the result.

Michael & Ollingen

Michael Ohlinger, ChemistEmail msohlinger@aep.comTel.Fax 614-836-4168Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Record	
Custody	
Chain of	

Dolan Chemical Laboratory (DCL) 4001 Bixby Road

Groveport, Ohio 43125 Michael Ohinner (614-836-4184)				Progr	am: C	Program: Coal Combustion Residuals (CCR)	ustion Re	siduals	(CCR)	Dato.		de l'act	I I no Onliss
Contacts: Dave Conover (614-836-4219)					5			-	-	- 1000	~	COC/Order #:	Jui Lab Use Oliny.
Project Name: Northeastern PP CCR						250		Three (six everv 2	1 L + 250 mL	40 mL Glass	Field-filter		
-	Analysis 1	Turnaround	Analysis Turnaround Time (in Calendar Days)	endar Da	(s)	g E	bottle, 11 t			PTFE lined	250 mL bottle, then	182698	99
Contact Phone: 318-673-3816	• Rout	ine (28 day	 Routine (28 days for Monitoring Wells) 	ing Wells		Ŧ	-		0-60	pH<2	HN03		2
Sampler(s): Kenneth McDonald						,68 ,2A ,	6 [,] Sr		(alinity				
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G≃Grab)	Matrix	# of Cont.	Sampler(s) Inii B, Ca, Li, Sb, Be, Cd, Cr, C	Be, Cd, Cr, C Mo, Se, TL and Va, K, M	Ra-226, Ra	and Br, All	6H	bəvlozzib I bəvlozzib	Sample S	Sample Specific Notes:
MW-4D	7/31/2018	910	U	δ	9			×					
MW-5D	7/31/2018	830	U	ß	<i>ო</i>			×					
MW-12D	7/31/2018	940	U	GW	m			×					
						:							
						_							
								_					
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	103; 5=NaOH	I; 6= Other		.; F = filter in field	in field		4	4	1	2	F 4		
* Six 1L Bottles must be collected for Radium for every 10th sample. ** HCI must be Trace Metal Grade for Mercury analysis when samples cannot be delivered to the laboratory within 48 hours of sampling.	very 10th sa /sis when sa	mple. mples can	not be deli	/ered to	the labo	ratory with	in 48 hours	of sampli	.bu				
Special Instructions/QC Requirements & Comments:	::												
Relinquished by: WMM	Company: E461 F	A61 F		Date/Time: 08/07//8	eile M	iyoo Rece	Received by:					Date/Time:	
Relinquished by: V	Company:			Date/Time:		Rece	Received by:					Date/Time:	
Relinquished by:	Company:			Date/Time:	iii iii	Rece	Received in Laboratory by	oratory by	Pehr			Date/Time: 2010	1445
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Dolan, Rev. 2, 11/02/16	I for Coal Co	mbustion	Residual (C	CR) San	- build	Dolan, Rev.	2, 11/02/16						

AP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FEDEX USPS
	CCR Other
Plant/Customer_NO-THEC	Number of Plastic Containers:
Opened By <u>M</u>	Number of Glass Containers:
	Number of Mercury Containers:
	Y / N or N/A Initial:on ice / no ice
	-06-19) - If No, specify each deviation:
	// N Comments
Requested turnaround:	N Comments If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) N	$NO_2 \text{ or } NO_3 (48 \text{ hr}) \text{ ortho-PO}_4 (48 \text{ hr}) \text{ Hg-diss (pres)}$
(24 hr)	(48 hr)
Was COC filled out properly?	N Comments
Were samples labeled properly?	N Comments
Were correct containers used?	N Comments
Was pH checked & Color Coding do	one RYN or N/A Initial & Date: 450/703 8-9-1
- Was Add'l Preservative needed?	Y N If Yes: By whom & when: (See Prep Book)
Is sample filtration requested?	Y / N Comments (See Prep Book)
	If Yes: Person Contacted:
	Initial & Date & Time :
Logged by JLB	Comments:
Reviewed by MSO	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Sample Receipt Form SOP-7102

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 38097 Date Received: 08/01/2018	Company: SEP - Environmental (JP-W) Contact: Jill Parker-Witt Phone: (318) 673-3816				502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960			
AEP Sample ID : 218133 Cust Sample ID: MW-4D Sample Desc.: Coal Combusti	Loc		/31/2018 rtheastern P.P		By: K Matrix: \			
Metals (218133)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	Q18	mg/L	0.00093	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Arsenic	Q18	mg/L	0.00105	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Barium	Q18	mg/L	0.00015	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Beryllium	Q18	mg/L	0.00002	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Boron	Q18	mg/L	0.00028	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cadmium	Q18	mg/L	0.00007	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Calcium	Q18	mg/L	0.0096	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Chromium	Q18	mg/L	0.00023	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cobalt	Q18	mg/L	0.00014	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lead	Q18	mg/L	0.00068	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lithium	Q18	mg/L	0.00013	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	08/03/2018 10:26	U	LNM
Molybdenum	Q18	mg/L	0.00029	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Selenium	Q18	mg/L	0.00099	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Thallium	Q18	mg/L	0.00086	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Water (218133)				· ·				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	31	mg/L	0.219	1	EPA 300.0	08/08/2018 13:49		GB
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	08/08/2018 13:49	U	GB
Solids, Total Dissolved (TDS)	856	mg/L	2	1	SM 2540 C-2011	08/03/2018 16:00		LBH
Sulfate	294	mg/L	0.140	1:10	EPA 300.0	08/08/2018 14:45		GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 38097 Date Received: 08/01/2018	Co	ntact: Jill	P - Environmen Parker-Witt 8) 673-3816	tal (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 218134 Cust Sample ID: MW-5D Sample Desc.: Coal Combusti	Loc		31/2018 theastern P.P.		By: Matrix:			
Metals (218134)	1		1			1		
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	Q18	mg/L	0.00093	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Arsenic	Q18	mg/L	0.00105	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Barium	Q18	mg/L	0.00015	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Beryllium	Q18	mg/L	0.00002	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Boron	Q18	mg/L	0.00028	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cadmium	Q18	mg/L	0.00007	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Calcium	Q18	mg/L	0.0096	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Chromium	Q18	mg/L	0.00023	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cobalt	Q18	mg/L	0.00014	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lead	Q18	mg/L	0.00068	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lithium	Q18	mg/L	0.00013	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	08/03/2018 10:34	U	LNM
Molybdenum	Q18	mg/L	0.00029	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Selenium	Q18	mg/L	0.00099	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Thallium	Q18	mg/L	0.00086	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Water (218134)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	30	mg/L	0.219	1	EPA 300.0	08/08/2018 15:23		GB
Fluoride	0.8769	mg/L	0.083	1	EPA 300.0	08/08/2018 15:23	J	GB
Solids, Total Dissolved (TDS)	628	mg/L	2	1	SM 2540 C-2011	08/03/2018 16:00		LBH
Sulfate	662	mg/L	0.140	1:10	EPA 300.0	08/08/2018 17:35		GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 38097 Date Received: 08/01/2018	Co P	ntact: Jill hone: (318	⊃ - Environmer Parker-Witt 8) 673-3816	ntal (JP-W)	Fax:	502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 218135 Cust Sample ID: MW-12D Sample Desc.: Coal Combustion	Loc		31/2018 theastern P.P.		By: Matrix:	KM Water		
Metals (218135)			1					
Parameter	Value	Unit		Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	Q18	mg/L	0.00093	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Arsenic	Q18	mg/L	0.00105	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Barium	Q18	mg/L	0.00015	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Beryllium	Q18	mg/L	0.00002	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Boron	Q18	mg/L	0.00028	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cadmium	Q18	mg/L	0.00007	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Calcium	Q18	mg/L	0.0096	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Chromium	Q18	mg/L	0.00023	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cobalt	Q18	mg/L	0.00014	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lead	Q18	mg/L	0.00068	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lithium	Q18	mg/L	0.00013	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	08/03/2018 10:42	U	LNM
Molybdenum	Q18	mg/L	0.00029	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Selenium	Q18	mg/L	0.00099	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Thallium	Q18	mg/L	0.00086	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Water (218135)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	22	mg/L	0.219	1	EPA 300.0	08/08/2018 16:01		GB
Fluoride	2.6173	mg/L	0.083	1	EPA 300.0	08/08/2018 16:01		GB
Solids, Total Dissolved (TDS)	1034	mg/L	2	1	SM 2540 C-2011	08/03/2018 16:00		LBH
Sulfate	662	mg/L	0.140	1:10	EPA 300.0	08/08/2018 17:35		GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 38097 Date Received: 08/01/2018	Con	tact: Ji	EP - Environme ill Parker-Witt 318) 673-3816	ntal (JP-W)	Address: Fax:	502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 218136 Cust Sample ID: MW-14 Sample Desc.: Coal Combustio			7/31/2018 lortheastern P.P.		By: Matrix:			
Metals (218136)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	Q18	mg/L	0.00093	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Arsenic	Q18	mg/L	0.00105	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Barium	Q18	mg/L	0.00015	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Beryllium	Q18	mg/L	0.00002	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Boron	Q18	mg/L	0.00028	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cadmium	Q18	mg/L	0.00007	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Calcium	Q18	mg/L	0.0096	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Chromium	Q18	mg/L	0.00023	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cobalt	Q18	mg/L	0.00014	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lead	Q18	mg/L	0.00068	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lithium	Q18	mg/L	0.00013	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Mercury	0.00008	mg/L	0.000005	1	EPA 7470A 1994	08/03/2018 10:45	J	LNM
Molybdenum	Q18	mg/L	0.00029	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Selenium	Q18	mg/L	0.00099	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Thallium	Q18	mg/L	0.00086	1	EPA 6010B 1996	08/01/2018 10:04		Q18

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 38097 Date Received: 08/01/2018	Con Ph	tact: . one: (SEP - Environme Jill Parker-Witt 318) 673-3816	ental (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 218137 Cust Sample ID: MW-17 Sample Desc.: Coal Combustion			7/31/2018 Iortheastern P.P		By: Matrix:			
Metals (218137)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	Q18	mg/L	0.00093	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Arsenic	Q18	mg/L	0.00105	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Barium	Q18	mg/L	0.00015	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Beryllium	Q18	mg/L	0.00002	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Boron	Q18	mg/L	0.00028	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cadmium	Q18	mg/L	0.00007	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Calcium	Q18	mg/L	0.0096	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Chromium	Q18	mg/L	0.00023	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cobalt	Q18	mg/L	0.00014	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lead	Q18	mg/L	0.00068	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lithium	Q18	mg/L	0.00013	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	08/03/2018 10:48	U	LNM
Molybdenum	Q18	mg/L	0.00029	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Selenium	Q18	mg/L	0.00099	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Thallium	Q18	mg/L	0.00086	1	EPA 6010B 1996	08/01/2018 10:04		Q18

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 38097 Date Received: 08/01/2018	Co	ntact: Jill	P - Environmei Parker-Witt 8) 673-3816	ntal (JP-W)	Fax:	502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 218138 Cust Sample ID: Duplicate Sample Desc.: Coal Combusti	Loc		31/2018 theastern P.P.		By: Matrix:	KM Water		
Metals (218138)	1		1					
Parameter	Value	Unit		Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	Q18	mg/L	0.00093	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Arsenic	Q18	mg/L	0.00105	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Barium	Q18	mg/L	0.00015	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Beryllium	Q18	mg/L	0.00002	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Boron	Q18	mg/L	0.00028	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cadmium	Q18	mg/L	0.00007	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Calcium	Q18	mg/L	0.0096	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Chromium	Q18	mg/L	0.00023	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cobalt	Q18	mg/L	0.00014	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lead	Q18	mg/L	0.00068	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lithium	Q18	mg/L	0.00013	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	08/03/2018 10:50	U	LNM
Molybdenum	Q18	mg/L	0.00029	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Selenium	Q18	mg/L	0.00099	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Thallium	Q18	mg/L	0.00086	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Water (218138)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	30	mg/L	0.219	1	EPA 300.0	08/08/2018 16:38		GB
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	08/08/2018 16:38	U	GB
Solids, Total Dissolved (TDS)	860	mg/L	2	1	SM 2540 C-2011	08/03/2018 16:00		LBH
Sulfate	292	mg/L	0.140	1:10	EPA 300.0	08/08/2018 17:54		GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 38097 Date Received: 08/01/2018	Cont	act: Jill	⊃ - Environme Parker-Witt 8) 673-3816	ntal (JP-W)	Address: Fax:	502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 218139 Cust Sample ID: Equipment Blank Sample Desc.: Coal Combustion R			31/2018 theastern P.P.		By: Matrix:			
Metals (218139)				I I				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	Q18	mg/L	0.00093	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Arsenic	Q18	mg/L	0.00105	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Barium	Q18	mg/L	0.00015	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Beryllium	Q18	mg/L	0.00002	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Boron	Q18	mg/L	0.00028	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cadmium	Q18	mg/L	0.00007	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Calcium	Q18	mg/L	0.0096	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Chromium	Q18	mg/L	0.00023	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cobalt	Q18	mg/L	0.00014	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lead	Q18	mg/L	0.00068	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lithium	Q18	mg/L	0.00013	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	08/03/2018 10:53	U	LNM
Molybdenum	Q18	mg/L	0.00029	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Selenium	Q18	mg/L	0.00099	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Thallium	Q18	mg/L	0.00086	1	EPA 6010B 1996	08/01/2018 10:04		Q18

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Date Re	eceived: 08/01/2018		Jill Parke (318) 67 Qu	3-3816	ntrol Data			Sh Fax: (31		LA 71101 960		
		* Quality	control units	s are the sar	ne as reported	analytical	results					
Dete	Demonster	0	Blank		Standard			Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
8/8/2018	Chloride	218155	<0.219	20	20	100.0	20	11	55.0		0.0	GB
8/8/2018	Chloride		<0.219									GB
8/8/2018	Chloride			20	20	100.0						GB
8/8/2018	Fluoride	218155	<0.083	10	11	110.0	10	10	100.0		0.0	GB
8/8/2018	Fluoride		<0.083									GB
8/8/2018	Fluoride			10	11	110.0						GB
8/3/2018	Mercury	218132.1	<0.00000	0.001	0.0008533	85.3	0.001	0.0010354	103.5		10.6	LNM
8/3/2018	Solids, Total Dissolved (TDS)	218133	<2	95.33	102	107.0	2212	2168	98.0		1.9	LBH
8/8/2018	Sulfate	218155	<0.140	20	18	90.0	20	11	55.0		0.0	GB
8/8/2018	Sulfate		<0.140									GB
8/8/2018	Sulfate			20	18	90.0						GB

Code Description Code

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

U Analyte concentration below MDL.

Jandra D. Wallace

Laboratory Manager

11-Oct-18 Report Date

													Job 8-1-18
Shreveport Chemical Laboratory (SCL)				Ch	ain	of C	ustody	Chain of Custody Record	Q				
Shreveport, LA 71101			σ	Program:		al Corr	Ibustion F	Coal Combustion Residuals (C	CCR)				
Jonathan Barnhill (318-673-3803) Contacts: John Davis (318-673-3811)						Site Contact:	itact:			Date:			For Lab Use Only: COC/Order #:
Project Name: Northeastern PP CCR							500 mL	Field-filter 500 mL		Three (six every			1. # .n
Contact Name: Jill Parker-Witt	Analysis Tu	urnaround	Analysis Turnaround Time (in Calendar Days)	endar Da	ays)			bottle, then pH<2.	bottle,	10th*) 1		_	1902 11,0111
· · ·	Routi	ine (28 day	Routine (28 days for Monitoring Wells)	ring Wel	lls)		HNO3	HNO3	0-6C	pH<2, HNO3	\vdash		(11)0
Sampler(s): Kenneth McDonald						ials	, Ba, Be, b, Li, Hg,	and Mn	SO4	-228			
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) Ini	B, Ca, Sb, As Cd, Cr, Co, P Mo, Se, TL	dissolved Fe	TDS, F, CI,	Ra-226, Ra			Sample Specific Notes:
MW-4D	7/31/2018	910	G	GW	2		×		×		\vdash		218137.1-218133.2
MW-5D	7/31/2018	830	G	GW	2		×		×				218134.1 - 248134-2-
MW-12D	7/31/2018	940	G	GW	N		×		×				218135.1-2.18135. 2
MW-14	7/31/2018	810	G	GW	<u> </u>		×						218136
MW-17	7/31/2018	850	G	GW	_		×						26137
DUPLICATE	7/31/2018	910	G	GW	N		×		×				219139,1-218138.7
EQUIPMENT BLANK	7/31/2018	1000	G	GW	<u> </u>		×				+		218139
											+		
											-		
											-		
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	NO3; 5=NaO	H; 6= Oth	er	_; F= fi	F= filter in field	ield	4	F4	-	4			
* Six 1L Bottles must be collected for Radium for every 10th sample	every 10th s	ample.											
Special Instructions/QC Requirements & Comments:	ŝ			1									
Relinquished by:	Company: CAGUE	JU96		Date/Time: 08/01/19		1003	Received by						Date/Time: 8////8/10:04
Relinquished by:	Company:			Date/Time:	ne:		Received by:						Date/Time:
Relinquished by:	Company:			Date/Time:	ne:		Received in	Received in Laboratory by:					Date/Time:
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	d for Coal C	ombustio	n Residual	(CCR) \$	Samplin	g - Shre	eveport, Rev	v. 1, 1/10/17	13				

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type		C	elivery Type)	
Ice Chest Bag Action Pak PCB Mailer Bottle	UPS	FEDEX	US Mail	Walk in	Shuttle
Other	Othe	r			
	Tracking #		9		
Client lill Parker - Witt		S	ample Matri	x	
Received By	DGA	PCB Oil	Water	Oil	Soil
Received Date 8/11/8	_				
Open Date	- Solid	Liquid	Other_		
Container Temp Read Correction Factor	– Were sa	Project I.D.	<u>3809</u>	7 YES	– NO
Corrected Temp	-				
Did container arrive in good condition? (YES	NO			
Was sample documentation received?	YES	NO	n - Thi		
Was documentation filled out properly?	YES	NO			
Were samples labeled properly?	YES	NO			
Were correct containers used?	VES	NO			
Were the pH's of samples appropriately checked?	YES	NO			
Total number of sample containers	_	ž			
Was any corrective action taken?	NO	Person Cor Date & Tim	-		
Comments					
1991-1997-1997 (1997-1997-1997-1997-1997-1997-1997-1997					

Sample ID	Analysis	рН	Preservative Added / Lot #
MW-4D	Metals	22	/
MW-SD			//
MW-12D			/
MW-14			J
MW-17			J
Duplicate			J
Equipment Black	V		//
<u> </u>			//
			/
			//
		()	/
			/
			//
			/
9- <u></u>			/
			/
			/
	1		/
			/

.

.

MW-4D

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Location: Northeastern Station

Report Date: 10/11/2018

Water Analysis

Sample Number:	182919-001	D	Date Col	llected:	07/31/2	018 09:10	Da	te Received: 8/23/2018
Parameter	Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.05	ug/L		0.05	0.01	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.25	ug/L		0.05	0.01	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Barium, Ba	173	ug/L		0.1	0.02	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.01	ug/L	J	0.02	0.004	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Boron, B	1.04	mg/L		0.005	0.001	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.04	ug/L		0.02	0.005	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	196	mg/L		0.02	0.004	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	< 0.007	ug/L	U	0.05	0.007	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.521	ug/L		0.02	0.004	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.130	ug/L		0.02	0.004	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00315	mg/L		0.0002	0.00006	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	4.59	ug/L		0.1	0.02	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.2	ug/L		0.1	0.03	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.02	ug/L	J	0.05	0.01	GES	09/26/2018 18:31	EPA 200.8-1994, Rev. 5.4

MW-5D

Sample Number: 182919-002

Date Collected: 07/31/2018 08:30

Date Received: 8/23/2018

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.16 ug/L		0.05	0.01	GES	09/26/2018 18:36	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.27 ug/L		0.05	0.01	GES	09/26/2018 18:36	EPA 200.8-1994, Rev. 5.4
Barium, Ba	143 ug/L		0.1	0.02	GES	09/26/2018 18:36	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.103 ug/L		0.02	0.004	GES	09/26/2018 18:36	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.21 ug/L		0.02	0.005	GES	09/26/2018 18:36	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.355 ug/L		0.05	0.007	GES	09/26/2018 18:36	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.482 ug/L		0.02	0.004	GES	09/26/2018 18:36	EPA 200.8-1994, Rev. 5.4
Lead, Pb	1.43 ug/L		0.02	0.004	GES	09/26/2018 18:36	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	1.21 ug/L		0.1	0.02	GES	09/26/2018 18:36	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.4 ug/L		0.1	0.03	GES	09/26/2018 18:36	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.02 ug/L	J	0.05	0.01	GES	09/26/2018 18:36	EPA 200.8-1994, Rev. 5.4
Boron, B	0.491 mg/L		0.005	0.002	DAM	09/20/2018 11:10	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	142 mg/L		0.02	0.005	DAM	09/20/2018 11:10	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0.011 mg/L		0.001	0.0002	DAM	09/20/2018 11:10	SW-846 6010C-2007, Rev. 3.0

Location: Northeastern Station

Report Date: 10/11/2018

Date Received: 8/23/2018

MW-12D

Sample Number: 182919-003

		Data				
Parameter	Result Units	Qual RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.11 ug/L	0.05	0.01	GES	09/26/2018 18:41	EPA 200.8-1994, Rev. 5.4
Arsenic, As	3.00 ug/L	0.05	0.01	GES	09/26/2018 18:41	EPA 200.8-1994, Rev. 5.4
Barium, Ba	42.0 ug/L	0.1	0.02	GES	09/26/2018 18:41	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.053 ug/L	0.02	0.004	GES	09/26/2018 18:41	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.07 ug/L	0.02	0.005	GES	09/26/2018 18:41	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.414 ug/L	0.05	0.007	GES	09/26/2018 18:41	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.674 ug/L	0.02	0.004	GES	09/26/2018 18:41	EPA 200.8-1994, Rev. 5.4
Lead, Pb	2.32 ug/L	0.02	0.004	GES	09/26/2018 18:41	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	818 ug/L	0.1	0.02	GES	09/26/2018 18:41	EPA 200.8-1994, Rev. 5.4
Selenium, Se	1.7 ug/L	0.1	0.03	GES	09/26/2018 18:41	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.106 ug/L	0.05	0.01	GES	09/26/2018 18:41	EPA 200.8-1994, Rev. 5.4
Boron, B	8.72 mg/L	0.00	5 0.002	DAM	09/20/2018 11:13	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	108 mg/L	0.02	0.005	DAM	09/20/2018 11:13	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0.006 mg/L	0.00	1 0.0002	DAM	09/20/2018 11:13	SW-846 6010C-2007, Rev. 3.0
Lithium, Li	0.006 mg/L	0.00	0.0002	DAM	09/20/2018 11:13	SVV-846 6010C-2007, Rev. 3.0

Date Collected: 07/31/2018 09:40

MW-14

Sample Number:	182919-004	Date Co	ollected:	07/31/2018 08:10		Date Received: 8/23/2018	
Parameter	Result Uni	Data s Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	1.35 ug/L		0.05	0.01	GES	09/26/2018 18:46	EPA 200.8-1994, Rev. 5.4
Arsenic, As	0.58 ug/L		0.05	0.01	GES	09/26/2018 18:46	EPA 200.8-1994, Rev. 5.4
Barium, Ba	172 ug/L		0.1	0.02	GES	09/26/2018 18:46	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.029 ug/L		0.02	0.004	GES	09/26/2018 18:46	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.18 ug/L		0.02	0.005	GES	09/26/2018 18:46	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	< 0.007 ug/L	U	0.05	0.007	GES	09/26/2018 18:46	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	2.63 ug/L		0.02	0.004	GES	09/26/2018 18:46	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.037 ug/L		0.02	0.004	GES	09/26/2018 18:46	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	27.8 ug/L		0.1	0.02	GES	09/26/2018 18:46	EPA 200.8-1994, Rev. 5.4
Selenium, Se	3.5 ug/L		0.1	0.03	GES	09/26/2018 18:46	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.05 ug/L	J	0.05	0.01	GES	09/26/2018 18:46	EPA 200.8-1994, Rev. 5.4
Boron, B	1.50 mg/	<u> </u>	0.005	0.002	DAM	09/20/2018 11:16	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	68.0 mg/	<u> </u>	0.02	0.005	DAM	09/20/2018 11:16	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0.362 mg/	<u> </u>	0.001	0.0002	DAM	09/20/2018 11:16	SW-846 6010C-2007, Rev. 3.0

Location: Northeastern Station

Report Date: 10/11/2018

Date Received: 8/23/2018

MW-17

Sample Number: 182919-005

•								
Parameter	Result	Unito	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Farameter	Result	Units	Quai	RL	WDL	Analysis By	Analysis Date/ Time	Method
Antimony, Sb	0.28	ug/L		0.05	0.01	GES	09/26/2018 18:51	EPA 200.8-1994, Rev. 5.4
Arsenic, As	0.28	ug/L		0.05	0.01	GES	09/26/2018 18:51	EPA 200.8-1994, Rev. 5.4
Barium, Ba	39.5	ug/L		0.1	0.02	GES	09/26/2018 18:51	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.005	ug/L	J	0.02	0.004	GES	09/26/2018 18:51	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.10	ug/L		0.02	0.005	GES	09/26/2018 18:51	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	< 0.007	ug/L	U	0.05	0.007	GES	09/26/2018 18:51	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	1.84	ug/L		0.02	0.004	GES	09/26/2018 18:51	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.056	ug/L		0.02	0.004	GES	09/26/2018 18:51	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	8.66	ug/L		0.1	0.02	GES	09/26/2018 18:51	EPA 200.8-1994, Rev. 5.4
Selenium, Se	5.4	ug/L		0.1	0.03	GES	09/26/2018 18:51	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.057	ug/L		0.05	0.01	GES	09/26/2018 18:51	EPA 200.8-1994, Rev. 5.4
Boron, B	0.843	mg/L		0.005	0.002	DAM	09/20/2018 11:31	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	234	mg/L		0.02	0.005	DAM	09/20/2018 11:31	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0.017	mg/L		0.001	0.0002	DAM	09/20/2018 11:31	SW-846 6010C-2007, Rev. 3.0

Date Collected: 07/31/2018 08:50

Duplicate

Sample Number: 1829	19-006	Date Co	llected:	07/31/2018 09:10		Date Received: 8/23/2018	
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.06 ug/L		0.05	0.01	GES	09/26/2018 18:56	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.27 ug/L		0.05	0.01	GES	09/26/2018 18:56	EPA 200.8-1994, Rev. 5.4
Barium, Ba	180 ug/L		0.1	0.02	GES	09/26/2018 18:56	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.02 ug/L	J	0.02	0.004	GES	09/26/2018 18:56	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.05 ug/L		0.02	0.005	GES	09/26/2018 18:56	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.03 ug/L	J	0.05	0.007	GES	09/26/2018 18:56	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.620 ug/L		0.02	0.004	GES	09/26/2018 18:56	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.206 ug/L		0.02	0.004	GES	09/26/2018 18:56	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	4.71 ug/L		0.1	0.02	GES	09/26/2018 18:56	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.2 ug/L		0.1	0.03	GES	09/26/2018 18:56	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.02 ug/L	J	0.05	0.01	GES	09/26/2018 18:56	EPA 200.8-1994, Rev. 5.4
Boron, B	1.01 mg/L		0.005	0.002	DAM	09/20/2018 11:34	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	163 mg/L		0.02	0.005	DAM	09/20/2018 11:34	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0.007 mg/L		0.001	0.0002	DAM	09/20/2018 11:34	SW-846 6010C-2007, Rev. 3.0

Report Date: 10/11/2018

Equipment Blank

Sample Number:	182919-007		Date Co	llected:	07/31/2	2018 10:00	Da	te Received: 8/23/2018
Parameter	Resul	t Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	< 0.0	1 ug/L	U	0.05	0.01	GES	09/26/2018 19:01	EPA 200.8-1994, Rev. 5.4
Arsenic, As	< 0.0	1 ug/L	U	0.05	0.01	GES	09/26/2018 19:01	EPA 200.8-1994, Rev. 5.4
Barium, Ba	0.0	3 ug/L	J	0.1	0.02	GES	09/26/2018 19:01	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.004	1 ug/L	U	0.02	0.004	GES	09/26/2018 19:01	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.00	5 ug/L	U	0.02	0.005	GES	09/26/2018 19:01	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	< 0.007	7 ug/L	U	0.05	0.007	GES	09/26/2018 19:01	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.0	1 ug/L	J	0.02	0.004	GES	09/26/2018 19:01	EPA 200.8-1994, Rev. 5.4
Lead, Pb	< 0.004	1 ug/L	U	0.02	0.004	GES	09/26/2018 19:01	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	0.1	7 ug/L		0.1	0.02	GES	09/26/2018 19:01	EPA 200.8-1994, Rev. 5.4
Selenium, Se	< 0.03	3 ug/L	U	0.1	0.03	GES	09/26/2018 19:01	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.0	1 ug/L	U	0.05	0.01	GES	09/26/2018 19:01	EPA 200.8-1994, Rev. 5.4
Boron, B	0.034	4 mg/L		0.005	0.002	DAM	09/20/2018 11:38	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	0.029	9 mg/L		0.02	0.005	DAM	09/20/2018 11:38	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0.002	2 mg/L		0.001	0.0002	DAM	09/20/2018 11:38	SW-846 6010C-2007, Rev. 3.0

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Muhael & Ollinge

Michael Ohlinger, ChemistEmail msohlinger@aep.comTel.Fax 614-836-4168Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)				Cna Program:		of Cust	Chain of Custody Record gram: Coal Combustion Residuals (CCR)	c ord als (CCR				
				1		Site Contact:			Date:		For Lab Use Only: COC/Order #:	
Project Name: Northeastern PP CCR						250 mL	L Three (six every	- 1 L -	40 mL Glass	in the second		
Contact Name: Jill Parker-Witt	Analysis Tu	Irnaround	Analysis Turnaround Time (in Calendar Days)	lendar Da)	(s/	DOTTIE,		Lotine	PTFE lined	250 mL	0000	
Contact Phone: 318-673-3816	C Routir	ne (28 day:	Routine (28 days for Monitoring Wells)	ring Wells	(;	HNO3	3 pH<2, HNO3		bottle, HCL**, pH<2	bottle, then pH<2, HNO3	10701	
Sampler(s) Kenneth McDonald						,98 ,68	528					
San Sample Identification	Sample	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	C # 2 ⊈ 2amplet(s) Initi	B, Ca, Sb, As, Cd, Cr, Co, Pt	Se, TI Fa-226, Ra-	10, F. CL.	бң	1 bəvlozzib VI bəvlozzib	Sample Specific Notes	
	7/31/2018	1(υ	ß	-	×						
MW-5D	7/31/2018	830	σ	GW	-	×						
MW-12D 7/31	7/31/2018	940	υ	GW	-	×						
MW-14 7/31	7/31/2018	810	ŋ	GW	-	×						
MW-17 7/31	7/31/2018	850	ŋ	GW	-	×						
DUPLICATE 7/31	7/31/2018	910	9	GW	-	×						
EQUIPMENT BLANK 7/3	7/31/2018	1000	თ	GW		×						
												,
Preservation Used: 1= ce. 2= HCI: 3= H2SO4: 4=HN03: 5=NaOH: 6= Other	5=NaOH:	6= Other		: F = filter in	r in field	4	4	-	2	F 4		
* Six 1L Bottles must be collected for Radium for every 10th sample. ** HCI must be Trace Metal Grade for Mercury analysis when samples cannot be delivered to the laboratory within 48 hours of sampling	y 10th san when san	nple. nples can	not be deli	vered to	the labor	tory within	48 hours of sa	mpling.				
Special Instructions/QC Requirements & Comments:												
	Company			Date/Time:		Received by:	1 by:				Date/Time:	
- Jourul	K-+			8-02-8	500							
Kelloquished by:	Company:			Date/Time:	ö	Received by:	d by:				Date/Time:	
Relinquished by:	Company:			Date/Time:	6	Receiver	Received in haboratory by:	PV: N	B	× W	Date/Time: 2 1 2 1 7 11	3500

Form SOP-7102 Sample Receipt Form Rev.6, 11/30/15

MATER & WASTE SAMPLE RECEIPT FORM

ĺ	Package Type	Delivery Type
	Cooler Box Bag Envelope	
		Other
	Plant/Customer Shilveport Luk	Number of Plastic Containers:
	Opened By MSD	Number of Glass Containers:
		Number of Mercury Containers:
11	Were all temperatures within 0-6°C? Y / N	or N/A Initial:on ice / 160 ica
Ħ		<u>9</u>) - If No, specify each deviation:
		Comments
	Requested turnaround:	Comments If RUSH , who was notified?
		NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
	Was COC filled out properly?	Comments
	Were samples labeled properly?	Comments
	Were correct containers used?	Comments
	Was pH checked & Color Coding done?	N or N/A Initial & Date:
	- Was Add'l Preservative needed? Y IN	if Yes: By whom & when: (See Prep Book)
	Is sample filtration requested? Y	Comments (See Prep Book)
	Was the customer contacted? If Yes:	Person Contacted:
		: Date & Time :
		snis:
	Reviewed by	

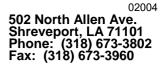
REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Dolan Chemical Laboratory

Scipple Receipt Folia SOP-7182

Analysis Report

Report ID : 38260 Date Received: 08/30/2018	Co	ontact: Jill	P - Environme Parker-Witt 8) 673-3816	ental (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 218925 Cust Sample ID: MW-4D Sample Desc.: Coal Combustion	Collected Loc	Date: 08/3 ation: Nor	,	wer Plant	By: Matrix:	КМ		
Metals (218925)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	0.000007	mg/L	0.000005	1	EPA 7470A 1994	09/14/2018 10:38	J	LNM
Water (218925)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	29	mg/L	0.219	1	EPA 300.0	10/04/2018 14:23	H1	GB
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	10/04/2018 14:23	H1,U	GB
Solids, Total Dissolved (TDS)	886	mg/L	2	1	SM 2540 C-2011	09/04/2018 16:15		JTD
Sulfate	267	mg/L	0.140	1:10	EPA 300.0	10/04/2018 14:42	H1	GB
AEP Sample ID : 218926 Cust Sample ID: MW-5D Sample Desc.: Coal Combustion	Loc		30/2018 theastern Pov	ver Plant	By: Matrix:			
Metals (218926)							-	-
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	0.00006	mg/L	0.000005	1	EPA 7470A 1994	09/14/2018 10:41	J	LNM
Water (218926)			ł	1		÷		
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	30	mg/L	0.219	1	EPA 300.0	10/04/2018 15:01	H1	GB
Fluoride	0.7931	mg/L	0.083	1	EPA 300.0	10/04/2018 15:01	H1,J	GB
Solids, Total Dissolved (TDS)	648	mg/L	2	1	SM 2540 C-2011	09/04/2018 16:15		JTD
Sulfate	130	mg/L	0.140	1:10	EPA 300.0	10/04/2018 15:20	H1	GB
			00			0.0.0.2010.0120		


Analysis Report

Report ID : 38260 Date Received: 08/30/2018	Co	npany: SEF ontact: Jill I Phone: (318		ental (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 218927 Cust Sample ID: MW-12D Sample Desc.: Coal Combustion	Lo		0/2018 theastern Pov	ver Plant	By: Matrix:			
Metals (218927)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/14/2018 10:49	U	LNM
Water (218927)			_					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	21	mg/L	0.219	1	EPA 300.0	10/04/2018 15:38	H1	GB
Fluoride	2.3093	mg/L	0.083	1	EPA 300.0	10/04/2018 15:38	H1	GB
Solids, Total Dissolved (TDS)	1050	mg/L	2	1	SM 2540 C-2011	09/04/2018 16:15		JTD
Sulfate	590	mg/L	0.140	1:10	EPA 300.0	10/04/2018 15:57	H1	GB
AFP Sample ID · 218928	Collecter		50/2018		Bv•	KM		
AEP Sample ID : 218928 Cust Sample ID: MW-14 Sample Desc.: Coal Combustion Metals (218928)	Lo		theastern Pov	ver Plant	By: Matrix:			
Cust Sample ID: MW-14 Sample Desc.: Coal Combustion	Lo	cation: Nort	theastern Pov	ver Plant Dil./Conc.			Codes	Tech
Cust Sample ID: MW-14 Sample Desc.: Coal Combustion Metals (218928)	Loc on Residuals (CCR	cation: Nort	theastern Pov		Matrix:	Water	Codes U	Tech LNM
Cust Sample ID: MW-14 Sample Desc.: Coal Combustion Metals (218928) Parameter	Loc on Residuals (CCR Value < 0.000005 Collected Loc	Unit mg/L Date: 08/3 cation: Nort	beastern Pov Det. Limit	Dil./Conc.	Matrix: Method	Water Analysis Date/Time 09/14/2018 11:06 KM		
Cust Sample ID: MW-14 Sample Desc.: Coal Combustion Metals (218928) Parameter Mercury AEP Sample ID : 218929 Cust Sample ID: Duplicate	Loc on Residuals (CCR Value < 0.000005 Collected Loc on Residuals (CCR	Unit mg/L d Date: 08/3 cation: Nort	beastern Pov Det. Limit 0.000005 0/2018 beastern Pov	Dil./Conc. 1 ver Plant	Matrix: Method EPA 7470A 1994 By: Matrix:	Water Analysis Date/Time 09/14/2018 11:06 KM Water	U	LNM
Cust Sample ID: MW-14 Sample Desc.: Coal Combustion Metals (218928) Parameter Mercury AEP Sample ID : 218929 Cust Sample ID: Duplicate Sample Desc.: Coal Combustion	Loc on Residuals (CCR Value < 0.000005 Collected Loc on Residuals (CCR	Unit mg/L Date: 08/3 cation: Nort	Det. Limit 0.000005 0/2018 theastern Pov	Dil./Conc.	Matrix: Method EPA 7470A 1994 By: Matrix: Method	Water Analysis Date/Time 09/14/2018 11:06 KM Water Analysis Date/Time	U Codes	LNM
Cust Sample ID: MW-14 Sample Desc.: Coal Combustion Metals (218928) Parameter Mercury AEP Sample ID : 218929 Cust Sample ID: Duplicate Sample Desc.: Coal Combustion Metals (218929)	Loc on Residuals (CCR Value < 0.000005 Collected Loc on Residuals (CCR	Unit mg/L d Date: 08/3 cation: Nort	beastern Pov Det. Limit 0.000005 0/2018 beastern Pov	Dil./Conc. 1 ver Plant	Matrix: Method EPA 7470A 1994 By: Matrix:	Water Analysis Date/Time 09/14/2018 11:06 KM Water	U	LNM
Cust Sample ID: MW-14 Sample Desc.: Coal Combustion Metals (218928) Parameter Mercury AEP Sample ID : 218929 Cust Sample ID: Duplicate Sample Desc.: Coal Combustion Metals (218929) Parameter Mercury Water (218929)	Loc on Residuals (CCR Value < 0.000005 Collected Loc on Residuals (CCR Value < 0.000005	Unit mg/L d Date: 08/3 cation: Nort cation: Nort cation: Nort	Det. Limit 0.000005 30/2018 theastern Pov Det. Limit 0.000005	Dil./Conc. 1 ver Plant Dil./Conc. 1	Matrix: Method EPA 7470A 1994 By: Matrix: Method EPA 7470A 1994	Water Analysis Date/Time 09/14/2018 11:06 KM Water Analysis Date/Time 09/18/2018 9:35	U Codes U	LNM Tech LNM
Cust Sample ID: MW-14 Sample Desc.: Coal Combustion Metals (218928) Parameter Mercury AEP Sample ID : 218929 Cust Sample ID: Duplicate Sample Desc.: Coal Combustion Metals (218929) Parameter Mercury Water (218929) Parameter	Loo on Residuals (CCR Value < 0.000005 Collected Loo on Residuals (CCR Value < 0.000005	Unit mg/L d Date: 08/3 cation: Nort cation: Nort d Unit mg/L	Det. Limit 0.000005 0/2018 theastern Pov Det. Limit 0.000005	Dil./Conc. 1 ver Plant Dil./Conc. 1 Dil./Conc.	Matrix: Method EPA 7470A 1994 By: Matrix: Matrix: EPA 7470A 1994 EPA 7470A 1994	Water Analysis Date/Time 09/14/2018 11:06 KM Water Analysis Date/Time 09/18/2018 9:35 Analysis Date/Time Analysis Date/Time	U Codes U Codes	LNM Tech LNM
Cust Sample ID: MW-14 Sample Desc.: Coal Combustion Metals (218928) Parameter Mercury AEP Sample ID : 218929 Cust Sample ID: Duplicate Sample Desc.: Coal Combustion Metals (218929) Parameter Mercury Water (218929)	Loc on Residuals (CCR Value < 0.000005 Collected Loc on Residuals (CCR Value < 0.000005	Unit mg/L d Date: 08/3 cation: Nort cation: Nort cation: Nort	Det. Limit 0.000005 0/2018 theastern Power Det. Limit 0.000005 Det. Limit 0.000005 Det. Limit 0.219	Dil./Conc. 1 ver Plant Dil./Conc. 1 Dil./Conc. 1	Matrix: Method EPA 7470A 1994 By: Matrix: Matrix: EPA 7470A 1994 EPA 7470A 1994	Water Analysis Date/Time 09/14/2018 11:06 KM Water Analysis Date/Time 09/18/2018 9:35 Analysis Date/Time 10/04/2018 16:16	U Codes U Codes H1	LNM Tech LNM Tech GB
Cust Sample ID: MW-14 Sample Desc.: Coal Combustion Metals (218928) Parameter Mercury AEP Sample ID : 218929 Cust Sample ID: Duplicate Sample Desc.: Coal Combustion Metals (218929) Parameter Mercury Water (218929) Parameter	Loo on Residuals (CCR Value < 0.000005 Collected Loo on Residuals (CCR Value < 0.000005	Unit mg/L d Date: 08/3 cation: Nort cation: Nort d Unit mg/L	Det. Limit 0.000005 0/2018 theastern Pov Det. Limit 0.000005	Dil./Conc. 1 ver Plant Dil./Conc. 1 Dil./Conc.	Matrix: Method EPA 7470A 1994 By: Matrix: Matrix: EPA 7470A 1994 EPA 7470A 1994 Method	Water Analysis Date/Time 09/14/2018 11:06 KM Water Analysis Date/Time 09/18/2018 9:35 Analysis Date/Time Analysis Date/Time	U Codes U Codes	LNM Tech LNM
Cust Sample ID: MW-14 Sample Desc.: Coal Combustion Metals (218928) Parameter Mercury AEP Sample ID : 218929 Cust Sample ID: Duplicate Sample Desc.: Coal Combustion Metals (218929) Parameter Mercury Water (218929) Parameter Chloride	Loc on Residuals (CCR Value < 0.000005 Collected Loc on Residuals (CCR Value < 0.000005	Unit mg/L Unit Date: 08/3 cation: Nort Dunit mg/L Unit mg/L	Det. Limit 0.000005 0/2018 theastern Power Det. Limit 0.000005 Det. Limit 0.000005 Det. Limit 0.219	Dil./Conc. 1 ver Plant Dil./Conc. 1 Dil./Conc. 1	Matrix: Method EPA 7470A 1994 By: Matrix: Matrix: EPA 7470A 1994 EPA 7470A 1994	Water Analysis Date/Time 09/14/2018 11:06 KM Water Analysis Date/Time 09/18/2018 9:35 Analysis Date/Time 10/04/2018 16:16	U Codes U Codes H1	LNM Tech LNM Tech GB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Analysis Report

	ceived: 08/30/2018		Contact: Phone:	Jill Par (318) 6	ker-Witt 373-3816	ntal (JP-W)		Ad	S Fax: (3	318) 673-3	LA 71101		
Cust Sa	mple ID:218930 ample ID: Equipment Blank le Desc.: Coal Combustion	L			2018 astern Pow	er Plant		I	By: KN Matrix: W				
Metals (21	8930)											1	
Parameter		Value	Uni	t C	Det. Limit	Dil./Conc.		Method		Analysis	Date/Time	Codes	Tech
Mercury		< 0.000005	5 mg/l	L (0.000005	1	EPA	A 7470A 1	994	09/14/2	018 11:14	U	LNM
	1		* Quality of		Quality Con	ntrol Data ne as reported Standard	analytical r	esults	Spike		Surrogate	Duplicate %	
Date Parameter Sample ID Value * Value * Recovery* % Value * Recovery* %													
10/4/2018	Chloride	21	8987	<0.219	20	23	115.0	20	22	110.0		0.0	GB
10/4/2018	Chloride			<0.219									GB
10/4/2018	Fluoride	21	8897	<0.083	10	10	100.0	10	10	100.0		0.0	GB
10/4/2018	Fluoride			<0.083									GB
9/14/2018	Mercury	21	8927.2	<0.00000	0.001	0.00097	97.0	0.001	0.0009754	97.5		0.5	LNM
9/14/2018	Mercury	21	8890.1	<0.00000	0.001	0.0008940	89.4	0.001	0.0010291	102.9		0.6	LNM
9/18/2018	Mercury	21	8929.2	<0.00000	0.001	0.00108	108.0	0.001	0.0009299	93.0		2.3	LNM
9/18/2018	Mercury	21	8910.2	<0.00000	0.001	0.0008968	89.7	0.001	0.0010450	104.5		12.7	LNM
9/18/2018	Mercury	21	8900.1	<0.00000	0.001	0.00108	108.0	0.001	0.0011062	110.6		4.1	LNM
9/4/2018	Solids, Total Dissolved (TDS)	21	8926	<2	94	102	108.5	2824	2760	97.7		3.3	JTD
10/4/2018	Sulfate	21	8897	<0.140	20	19	95.0	20	20	100.0		0.0	GB
10/4/2018	Sulfate			<0.140									GB

Code Code Description

H1 Sample analysis performed past holding time

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

U Analyte concentration below MDL.

ndra D. Wallace Laboratory Manager

05-Oct-18

Report Date

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 3 of 3

Ц
8
4
ώ
ī
2

_
Ω
ž
Ξ.
0
-h
C
S
0
0
<
λ
P
0
9
ġ

Shreveport Chemical Laboratory (SCL) 502 N. Allen Ave.				<u>C</u>	lain (of C	ustody	Chain of Custody Record	đ					
Shreveport, LA 71101				rogra	n: Cos	al Com	Ibustion F	Program: Coal Combustion Residuals (CCR)	CCR)	In-ta-			T T-E IIAA Oales	
Contacts: John Davis (318-673-3803) Lohn Davis (318-673-3811)						Site Contact:							COC/Order #	
Project Name: Northeastern PP CCR							500 mL	Field-filter 500 mL	-	Three (six every			Nont in	
Contact Name: Jill Parker-Witt	Analysis T	urnaround	Analysis Turnaround Time (in Calendar Days)	alendar D	ays)			bottle, then	bottle,	10th*) 1			ant verille	_
	@ Rou	line (28 da	Routine (28 days for Monitoring Wells)	oring We	lls)		HNO3	HNO3	0-6C	pH<2, HNO3	-		000 100	1
Sampler(s): Kenneth McDonald		Ţ	9	9/14/18	~	ils		and Mn	SO4	228				
			Sample			(s) Initia	/	ed Fe	⁼, CI, \$	6, Ra-				
Sample Identification	Sample Date	Sample Time	<u> </u>	Matrix	# of Cont.	Sampler	Mercur	dissolv	TDS, I	Ra-22			Sample Specific Notes:	
MW-4D	8/30/2018	830	G	GW	2		×		×				218925,1-21982-2	
MW-5D	8/30/2018	815	۵	GW	, N		×		×				218926.1-218926.2	
MW-12D	8/30/2018	845	G	GW	N		×		×		┢		218927. 218927.2	
MW-14	8/30/2018	800	G	GW	<u> </u>		×				-		118928	
DUPLICATE	8/30/2018	830	G	GW	N		×		×		+		218729.1-218929.2	
EQUIPMENT BLANK	8/30/2018	900	G	GW			×				╞		218930	
											+			
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other_	NO3; 5=NaC)H; 6= Ott	her	_; F= f	F= filter in field	leld	4	F4	1	4				
Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th s	sample.												
Special Instructions/QC Requirements & Comments:	ŝ													
Relinquished by: KAM	Company:	ACIE		Date/Time: 08/30/18	s/ 81/	32	Received by:					0	Date/Time:	
Relinquished by:	Company:			Date/Time:	ne:		Received by:						Date/Time:	
Relinquished by:	Company:			Date/Time:	ne:		Redeived in	deived in Latoratory by:					850/14 1552	
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. Worldwit	rd for Coal C	combustic	on Residua	II (CCR)	Samplin	ig - Shre	veport, Rev	Mound.						

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type			Delivery Type)	
(Yce Chest) Bag Action Pak PCB Mailer Bottle	UPS	FEDEX	US Mail	Walk in	Shuttle
	Other	• 			
	Tracking #		Π.		
Client JIII Parker,	-		Sample Matri		
Received By Received Date	DGA	PCB Oil	Watér	Oil	Soil
Open Date	Solid	Liquid	Other		
Container Temp Read	_	Project I.	в. <u>382(</u>	10	1
Correction Factor $\frac{1}{2}$ Corrected Temp $\frac{1}{2}$	_ Were sa	mples recei	ved on ice?	YES	NO
Did container arrive in good condition?	YEB	NO			
Was sample documentation received?	VES	NO	<u></u>		
Was documentation filled out properly?	VES	NO			1
Were samples labeled properly?	YES	NO			
Were correct containers used?	YES	NO			
Were the pH's of samples appropriately checked?	(YES)	NO			
Total number of sample containers0	-				
Was any corrective action taken?	NO	Person Co Date & Ti			
Comments					

Sample ID	Analysis	рН	Preservative Added / Lot #
jmw-4D	Ag	62	/
mw-5D			/
MW-12D			
Mw-14			/
- Dup Blank			
Blank		¥	
			/
		<u> </u>	//
5			/
(#)			//
			/
]
			/
			//
			//
			/
31 -	20 m		

1

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station

MW-4D

Report Date: 10/1/2018

Sample Number: 1	83093-001		Date Co	llected:	08/30/2	018 08:30	Da	te Received: 9/5/2018
Parameter	Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.10	ug/L		0.05	0.01	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.60	ug/L		0.05	0.01	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Barium, Ba	163	ug/L		0.1	0.02	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.049	ug/L		0.02	0.004	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.11	ug/L		0.02	0.005	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.551	ug/L		0.05	0.007	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.807	ug/L		0.02	0.004	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.804	ug/L		0.02	0.004	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	4.48	ug/L		0.1	0.02	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.3	ug/L		0.1	0.03	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.02	ug/L	J	0.05	0.01	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Boron, B	1.26	mg/L		0.005	0.001	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	183	mg/L		0.02	0.004	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00296	mg/L		0.0002	0.00006	GES	09/20/2018 02:28	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	0.453	pCi/L	0.19	0.63	jls	9/24/2018	SW-846 9320-2014,Rev. 1.0
The LFBD spike recov	very is outside th	e established	range of 75-125%. A	ll other QC ass	ociated with this ba	atch is acceptable.	
Radium-226	0.459	pCi/L	0.094	0.14	jls	9/27/2018	SW-846 9315-1986,Rev. 0
T I			6.0.0.4.4.0.0/				

The carrier recovery is outside the established range of 30-110%.

Report Date: 10/1/2018

MW-5D

Sample Number: 183093-002

Date Collected: 08/30/2018 08:15

Date Received: 9/5/2018

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.10	ug/L		0.05	0.01	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Arsenic, As	0.98	ug/L		0.05	0.01	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Barium, Ba	111	ug/L		0.1	0.02	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.076	ug/L		0.02	0.004	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.10	ug/L		0.02	0.005	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.518	ug/L		0.05	0.007	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.300	ug/L		0.02	0.004	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.706	ug/L		0.02	0.004	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	1.24	ug/L		0.1	0.02	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.3	ug/L		0.1	0.03	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.04	ug/L	J	0.05	0.01	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Boron, B	0.520	mg/L		0.005	0.001	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	158	mg/L		0.02	0.004	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0112	mg/L		0.0002	0.00006	GES	09/20/2018 03:13	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	2.17	pCi/L	0.18	0.50	jls	9/24/2018	SW-846 9320-2014,Rev. 1.0
The LFBD spike recov	very is outside th	e established	range of 75-125%. A	ll other QC ass	sociated with this ba	tch is acceptable.	
Radium-226	0.736	pCi/L	0.12	0.13	jls	9/27/2018	SW-846 9315-1986,Rev. 0

Report Date: 10/1/2018

EPA 200.8-1994, Rev. 5.4

MW-12D

Sample Number: 183093-003

Date Collected: 08/30/2018 08:45 Date Received: 9/5/2018 Data Parameter **Result Units** RL MDL Analysis Date/Time Method Qual Analysis By Antimony, Sb 0.20 ug/L 0.05 0.01 GES 09/20/2018 03:18 EPA 200.8-1994, Rev. 5.4 0.05 0.01 GES Arsenic, As 3.39 ug/L 09/20/2018 03:18 EPA 200.8-1994, Rev. 5.4 0.1 0.02 GES Barium, Ba 65.8 ug/L 09/20/2018 03:18 EPA 200.8-1994, Rev. 5.4 0.02 0.004 GES Beryllium, Be 0.097 ug/L 09/20/2018 03:18 EPA 200.8-1994, Rev. 5.4 Cadmium, Cd 0.31 ug/L 0.02 0.005 GES 09/20/2018 03:18 EPA 200.8-1994, Rev. 5.4 Chromium, Cr 1.82 ug/L 0.05 0.007 GES 09/20/2018 03:18 EPA 200.8-1994, Rev. 5.4 Cobalt. Co 2.17 ug/L 0.02 0.004 GES 09/20/2018 03:18 EPA 200.8-1994, Rev. 5.4 Lead. Pb 5.43 ug/L 0.02 0.004 GES 09/20/2018 03:18 EPA 200.8-1994, Rev. 5.4 Molybdenum, Mo 872 ug/L 0.1 0.02 GES 09/20/2018 03:18 EPA 200.8-1994. Rev. 5.4 Selenium. Se 3.1 ug/L 0 1 0.03 GES 09/20/2018 03:18 EPA 200.8-1994, Rev. 5.4 Thallium, Tl 0.241 ug/L 0.05 0.01 GES 09/20/2018 03:18 EPA 200.8-1994, Rev. 5.4 Boron, B 9.71 mg/L 0.005 0.001 GES 09/20/2018 03:18 EPA 200.8-1994, Rev. 5.4 Calcium. Ca 141 mg/L 0.02 0.004 GES 09/20/2018 03:18 EPA 200.8-1994, Rev. 5.4

0.00006

GES

09/20/2018 03:18

Lithium, Li 0.00396 mg/L U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry* Result Units UNC* (+ / -) MDA* Analysis Date/Time Method Analysis By 2.35 0.48 Radium-228 pCi/L 0.17 jls 9/24/2018 SW-846 9320-2014, Rev. 1.0 The LFBD spike recovery is outside the established range of 75-125%. All other QC associated with this batch is acceptable. Radium-226 0.787 pCi/L 0.10 9/27/2018 SW-846 9315-1986, Rev. 0 0.12 ils

0.0002

The carrier recovery is outside the established range of 30-110%.

MW-14

Report Date: 10/1/2018

Sample Number:	183093-004		Date Co	llected:	08/30/2	2018 08:00	Da	te Received: 9/5/2018
Parameter	Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	1.61	ug/L		0.05	0.01	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Arsenic, As	0.57	ug/L		0.05	0.01	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Barium, Ba	153	ug/L		0.1	0.02	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.034	ug/L		0.02	0.004	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.21	ug/L		0.02	0.005	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.286	ug/L		0.05	0.007	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	1.71	ug/L		0.02	0.004	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Lead, Pb	1.06	ug/L		0.02	0.004	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	31.7	ug/L		0.1	0.02	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Selenium, Se	2.2	ug/L		0.1	0.03	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.03	ug/L	J	0.05	0.01	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Boron, B	2.09	mg/L		0.005	0.001	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	181	mg/L		0.02	0.004	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.380	mg/L		0.0002	0.00006	GES	09/20/2018 03:23	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Duplicate

Report Date: 10/1/2018

Daphoato								
Sample Number:	183093-005		Date Co	llected:	08/30/2	018 08:30	Da	te Received: 9/5/2018
Parameter	Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.10	ug/L		0.05	0.01	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.69	ug/L		0.05	0.01	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Barium, Ba	166	ug/L		0.1	0.02	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.060	ug/L		0.02	0.004	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.14	ug/L		0.02	0.005	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.549	ug/L		0.05	0.007	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.821	ug/L		0.02	0.004	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.831	ug/L		0.02	0.004	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	4.96	ug/L		0.1	0.02	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.3	ug/L		0.1	0.03	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.03	ug/L	J	0.05	0.01	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Boron, B	1.22	mg/L		0.005	0.001	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	189	mg/L		0.02	0.004	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00349	mg/L		0.0002	0.00006	GES	09/20/2018 03:28	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Report Date: 10/1/2018

Equipment Blank

Sample Number:	183093-006		Date Co	llected:	08/30/2	018 09:00	Da	te Received: 9/5/2018
Parameter	Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	< 0.01	ug/L	U	0.05	0.01	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Arsenic, As	< 0.01	ug/L	U	0.05	0.01	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Barium, Ba	0.03	ug/L	J	0.1	0.02	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.004	ug/L	U	0.02	0.004	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.005	ug/L	U	0.02	0.005	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.03	ug/L	J	0.05	0.007	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.007	ug/L	J	0.02	0.004	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Lead, Pb	< 0.004	ug/L	U	0.02	0.004	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	0.28	ug/L		0.1	0.02	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Selenium, Se	< 0.03	ug/L	U	0.1	0.03	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.01	ug/L	J	0.05	0.01	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Boron, B	0.021	mg/L		0.005	0.001	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	< 0.004	mg/L	U	0.02	0.004	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4
Lithium, Li	< 0.00006	mg/L	U	0.0002	0.00006	GES	09/20/2018 03:33	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

*The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "onesigma" which has the same units of measurement as the result.

Muhael & Ollinge

Michael Ohlinger, ChemistEmail msohlinger@aep.comTel.Fax 614-836-4168Aud

Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Dolan Chemical Laboratory (DCL) 4001 Bixby Road				ပ်	ain	of Cu	stody	Chain of Custody Record				
Groveport, Ohio 43125				rogran	n: Co	al Comb	ustion R	Program: Coal Combustion Residuals (CCR)	CR)			
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)					0	Site Contact:	ict:			Date:	For Lab Use Only: COC/Order #:	
Project Name: Northeastern PP CCR							250 mL	Field-filter 250 mL		Three (six evenu		
Contact Name: Jill Parker-Witt	Analysis	Turnaround	Analysis Turnaround Time (in Calendar Days)	lendar Da	lys)		bottle, pH<2	bottle, then		10th*) 1	 122,021	_
Contact Phone: 318-673-3816	6 Ro	utine (28 da	Routine (28 days for Monitoring Wells)	ing Wells	0	1	HN03	HN03	0-6C	pH<2, HNO3	 5000	
Sampler(s): Kenny McDonald						s	,98 ,68 Li, Mo,	Cr,	04	82		
						lsiti	۹۹, s, E	'pე	s 'I	2- 6		
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G⊏Grab)	Matrix	# of Cont.	Sampler(s) In	B, Ca, Sb, A Cd, Cr, Co, I Se, TL	Mo, Na, Pb, Co, Fe, Ca, Dissolved B	TDS, F, CI	Ra-226, R	Sample Specific Notes:	
MW-4D	8/30/2018	830	U	GW	7		×			×		
MW-5D	8/30/2018	815	σ	GW	4		×			×		
MW-12D	8/30/2018	845	U	GW	4		×			×		
MW-14	8/30/2018	800	IJ	GW	1		×					
DUPLICATE	8/30/2018	830	ი	GW	-		×					
EQUIPMENT BLANK	8/30/2018	006	U	8	-		×					
												-
												-
												-
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3; 5=Na	OH; 6= Ot	her	; F=A	filter in field	ieid	4	F4	1	4		
* Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.										
Special Instructions/QC Requirements & Comments:	nts:											
												_
Relinquished by: ATM	Company:	11		Date/Tin 08/31	00	1400	Received by:				Date/Time:	
Relinquished by:	Company:			Date/Time:	:e:		Received by:				Date/Time:	
Relinquished by:	Company:			Date/Time:	le:		Received in	Received in laboratory by	P.C.		Pate/Time: 9/5/18 3/208m	1
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/1	ord for Coal	Combusti	on Residua	I (CCR)	Samplin	ig - Shrev	eport, Rev	1, 1/10/17				6

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer Not Mostler	Number of Plastic Containers:
Opened By Misgha	
Date/Time 09/05/18 3:00 Pr	
	(N or (N/A) Initial: on ice / no ice
) - If No, specify each deviation:
Was container in good condition? $(/Y)$ /	
	N Comments
0	If RUSH, who was notified?
(24 hr)	or NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	N Comments
Were samples labeled properly?	N Comments
Were correct containers used?	
Was pH checked & Color Coding done	N or N/A Initial & Date: 1/16-14 9/05/18
	NIf Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y /	Comments (See Prep Book)
Was the customer contacted? If Y	es: Person Contacted:
Lab ID# 183093 Initia	al & Date & Time :
Con	nments:
Reviewed by <u>AB</u>	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

10/25/2018 Fluoride

AEP ANALYTICAL CHEMISTRY SERVICES

Analysis Report

Report Date Re	ID : 38529 ceived: 10/17/2018	Contact	: SEP - E : Jill Parl : (318) 6	ker-Witt	ntal (JP-W)		Ado	S	02 N. Allen hreveport, 18) 673-39	LA 71101		
Cust Sa	mple ID:219921 ample ID: MW-15 Ie Desc.: Coal Combustion Res			2018 astern Pow	er Plant		Γ	By: KN Matrix: W				
Water (219	921)											
Parameter	,	Value Ur	it D	Det. Limit	Dil./Conc.		Method		Analysis	Date/Time	Codes	Tech
Fluoride		2.27 mg	/L	0.083	1		EPA 300.0		10/25/2	2018 9:17		GB
		* Quality		Quality Con	ntrol Data ne as reported	analytical 1	results					
			Blank		Standard			Spike		0	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
10/25/2018	Fluoride	220179	<0.083	10	10	100.0	10	10.4	104.0		0.0	GB
10/25/2018	Fluoride		<0.083									GB

10

Sandra D. Wallace

Laboratory Manager

10.2

102.0

30-Oct-18

Report Date

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

GB

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling-Shreveport, Rev. 1, 1/10/17	Relinquished by:	Relinquished by:	Kut v v	Special instructions/uc Requirements & Comments:	* Six 1L Bottles must be collected for Radium for every 10th sample.							MW-15	Sample Identification	Sampler(s): Kenneth McDonald	Project Name: Northeastern PP CCR Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816	Contacts: John Davis (318-673-3803) Contacts: John Davis (318-673-3811)	Shreveport , LA 71101	Shreveport Chemical Laboratory (SCL) 502 N. Allen Ave.
for Coal Combust	Company:	Company:	Company: FAGI K	**RUSH - 14 day turnaround	very 10th sample.	103; 5=NaOH; 6= 0						10/15/2018 1240	Sample Sample Date Time	RusH	Analysis Turnaround Time (in Calendar Days)			
on Residual (1 - 14		ther						G	Sample Type (C=Comp, G=Grab)	Ŧ	nd Time (in Cal			
CCR) Samplin	Date/Time:	Date/Time:	Date/Time: 10/17/19 12	day tu	7	; F= filter in field						 GW 1	#of Matrix Cont.		endar Days)		Prog	Chain
g-Shre			12:02	rna		ield							Sampler(s) Ini	tials		Site Contact:	am: C	of C
veport, Rev.	Received in Laboratory by:	Received by:	Received by:	roun		4							Mercury		500 mL bottle, pH<2, HNO3	itact:	Program: CCR Fluoride Only	Chain of Custody Record
1, 1/10/17	aboratory by			d - RL		F4							dissolved Fe	and Mn	Field-filter 500 mL bottle, then pH<2, HNO3		de Only	Recor
	.1			USH**		1			×.			×	Fluoride		1 L bottle, 0-6C			<u>a</u>
				**		4		-					Ra-226, Ra	-228	Three (six every 10th*) 1 L bottles, pH<2, HNO3	Date:	8/171101	SA
							_										110	5
	Da	Da	Da				-		12			 8.				0	8	5
	Date/Time: ////////////2:/03	Date/Time:	Date/Time:									126210	Sample Specific Notes:		PES8E# 2013	For Lab Use Only: COC/Order #:		

SHREVEPORT CHEMICAL LABORATORY

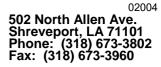
502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type		De	elivery Typ	e	
Cree Chest Bag Action Pak PCB Mailer Bottle	UPS Other	FEDEX	US Mail	Walk in	Shuttle
	Tracking #				
Client J:11 Parker - Witt		Sa	mple Matr	rix	
Received By	- DGA	PCB Oil	Water	Oil	Soil
Received Date 10/17/18 Open Date	- Solid	Liquid	Other		
Container Temp Read	-	Project I.D	3852	29	
Correction Factor Corrected Temp	Were sa	mples received	on ice?	YES	10
Did container arrive in good condition?	YES	NO			
Was sample documentation received?	YES	NO			1.47.5
Was documentation filled out properly?	YES	<u>NO</u>			
Were samples labeled properly?	YES	NO			
Were correct containers used?	YES	NO			
Were the pH's of samples appropriately checked?	YES	NONIA			
Total number of sample containers	-	-		ai.	
Was any corrective action taken?	NO	Person Cont Date & Time			
Comments					

Analysis Report

Report ID : 38393 Date Received: 09/20/2018	C	npany: SEP ontact: Jill F Phone: (318	Parker-Witt	ental (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 219436 Cust Sample ID: MW-4D Sample Desc.: Coal Combusiton	Lo	d Date: 09/1 cation: Nort R)		ver Plant	By: H Matrix: M			
Metals (219436)			1					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/28/2018 10:21	U	LNM
Water (219436)			-	1 1				-
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	31	mg/L	0.219	1	EPA 300.0	09/26/2018 12:31		GB
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	09/26/2018 12:31	U	GB
Solids, Total Dissolved (TDS)	884	mg/L	2	1	SM 2540 C-2011	09/24/2018 9:45		LBH
Sulfate	260	mg/L	0.140	1:10	EPA 300.0	09/26/2018 12:50		GB
AEP Sample ID : 219437 Cust Sample ID: MW-5D Sample Desc.: Coal Combusiton	Lo	d Date: 09/1 cation: Nort		ver Plant	By: Matrix: \			
Metals (219437)			-	1 1				-
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/28/2018 10:37	U	LNM
Water (219437)			-	1 1				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	30	mg/L	0.219	1	EPA 300.0	09/26/2018 13:09		GB
Fluoride	0.7519	mg/L	0.083	1	EPA 300.0	09/26/2018 13:09	J	GB
Solids, Total Dissolved (TDS)	662	mg/L	2	1	SM 2540 C-2011	09/24/2018 9:45		LBH
Sulfate	134	mg/L	0.140	1:10	EPA 300.0	09/26/2018 13:28		GB


Analysis Report

Report ID : 38393 Date Received : 09/20/2018	Co	ontact: Jill	P - Environme Parker-Witt 8) 673-3816	ental (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 219438 Cust Sample ID: MW-12D Sample Desc.: Coal Combusit	Lo		19/2018 theastern Pov	ver Plant	By: Matrix:			
Metals (219438)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	0.000012	mg/L	0.000005	1	EPA 7470A 1994	09/28/2018 10:40	J	LNM
Water (219438)			-			-		
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	21	mg/L	0.219	1	EPA 300.0	09/26/2018 13:47		GB
Fluoride	2.8416	mg/L	0.083	1	EPA 300.0	09/26/2018 13:47		GB
Solids, Total Dissolved (TDS)	1052	mg/L	2	1	SM 2540 C-2011	09/24/2018 9:45		LBH
Sulfate	582	mg/L	0.140	1:10	EPA 300.0	09/26/2018 14:24		GB
AEP Sample ID : 219439 Cust Sample ID: MW-17 Sample Desc.: Coal Combusit Metals (219439)	Lo		theastern Pov	ver Plant	By: Matrix:			
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/28/2018 10:48	U	LNM
AEP Sample ID : 219440 Cust Sample ID: Duplicate Sample Desc.: Coal Combusit	Lo		19/2018 theastern Pov	ver Plant	By: Matrix:			
Metals (219440)							<u> </u>	
Parameter	Value	Unit		Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/28/2018 10:51	U	LNM
Water (219440)	Malua	11	Det Lineit		Mathad	Analusia Data/Tima	Ocales	Teel
Parameter	Value	Unit		Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	31	mg/L	0.219	1	EPA 300.0	09/26/2018 15:02		GB
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	09/26/2018 15:02	U	GB
Solids, Total Dissolved (TDS)	870	mg/L	2	1	SM 2540 C-2011	09/24/2018 9:45		LBH
Sulfate	263	mg/L	0.140	1:10	EPA 300.0	09/26/2018 15:21		GB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Analysis Report

6.9

2.6

0.0

LNM

LBH

GB

GB

GB

Report ID : Date Received:	38393 09/20/2018	Conta	ny: SEP - act: Jill Pa ne: (318)		ntal (JP-W)		Ade	S	02 N. Allen hreveport, 18) 673-39	LA 71101		
	: 219441 D: Equipment Blank .: Coal Combusiton			2018 eastern Pow	er Plant		I	By: KN Matrix: W				
Metals (219441)												
Parameter		Value	Unit	Det. Limit	Dil./Conc.		Method		Analysis	Date/Time	Codes	Tech
Mercury		< 0.000005 r	mg/L	0.000005	1	EP	A 7470A 1	994	09/28/2	018 10:53	U	LNM
		* Qua		Quality Co		analytical	results					
			Blank		Standard			Spike		Surrogate	Duplicate %	
Date	Parameter	Sample	ID Value	* Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
9/26/2018 Chloride		219573	<0.219									
9/26/2018 Chloride			<0.219									GB

0.001

94

18

20

Code Code Description

Mercury

Sulfate

Sulfate

Sulfate

9/28/2018

9/24/2018

9/26/2018

9/26/2018

9/26/2018

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

219436.2

219360

219573

< 0.00000

<0.140

<0.140

<0.140

<2

U Analyte concentration below MDL.

Solids, Total Dissolved (TDS)

Sandra D. Wallace

Laboratory Manager

0.00087

100

18

18

87.0

106.4

100.0

90.0

0.001

2768

20

0.0007912

2754

20

79.1

99.5

100.0

05-Nov-18 Report Date

				2	5	2	いかつれて		2				
Shreveport Chemical Laboratory (SCL) 502 N. Allen Ave.				ŝ			Anoter		2			^	8-20-18
Shreveport, LA 71101			P	Program:		al Com	bustion R	Coal Combustion Residuals (CCR)	CCR)	7		0	
Jonathan Barnhill (318-673-3803) Contacts: John Davis (318-673-3811)						Site Contact:	tact:			Uate:]	COC/Order #:
Project Name: Northeastern PP CCR							500 mL	Field-filter 500 mL	جب حب	Three (six every			Mr.H202 93
Contact Name: Jill Parker-Witt	Analysis Ti	urnaround	Analysis Turnaround Time (in Calendar Days)	lendar D	ays)		рН<2,	then pH<2,	Cool,	10th ⁻) 1 L bottles,			Cuc /0/ ··
Contact Phone: 318-673-3816	Rout	ine (28 day	Routine (28 days for Monitoring Wells)	oring We	lls)			HNO3	0-6C	pH<2, HNO3	+	+	
Sampler(s): Kenneth McDonald						als		and Mn	SO4	-228			
	Sample	Sample	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) Ini	Mercury	dissolved Fe	TDS, F, CI,	Ra-226, Ra			Sample Specific Notes:
MW-40	9/19/2018			GW	2		×		×			2	219476.1-219436.2
MW-5D	9/19/2018	1232	G	GW	2		×		×		$\left \right $	20	219437.1-2194372
MW-12D	9/19/2018	1107	G	GW	N		×		×			2	211438.1-214438.2
MW-17	9/19/2018	1402	G	GW			×					2	219439
DUPLICATE	9/19/2018	1336	G	GW	N		×		×			6	227440-1-219440.2
EQUIPMENT BLANK	9/19/2018	1420	G	GW	-		×						209441
												_	
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3; 5=Na	OH; 6= 01	ther	 ⁼	filter in field	field	4	F4	1	4			
* Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.											
Special Instructions/QC Requirements & Comments:	nts:												
Relinquished by:	Company A614	ACIF	and the second	Date/Ti	Date/Time: 18 1332	1352	Received by:	Ϋ́.				D	Date/Time:
Relinquished by:	Company:		i	Date/Time:	me:		Received by:	×				D	Date/Time:
Relinquished by:	Company:			Date/Time:	me:		Received in		by:				Date/Time: 9/20/178 13:38
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling -	ord for Coal	Combusti	ion Residu	al (CCR) Sampl	ing - Sh	Shreveport, Rev.	ev. 1, 1/10/17	7				

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. Shreveport, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type			Delivery Type	9	
Ice Chest Bag Action Pak PCB Mailer Bottle	UPS	FEDEX	US Mail	Walk in	Shuttle
Other	Othe	۲			
	Tracking #	ŧ			
Client J:11 Parker - Witt	6 6 6 6		Sample Matri	ix	
Received By	DGA	PCB Oil	Water	Oil	Soil
Received Date <u>9/20/18</u>	-				
Open Date	Solid	Liquid	Other .		
Container Temp Read Z Thermometer Senal #F04103		Project I.	3839	13	
Correction Factor <u>+1.2</u> Corrected Temp <u>3.2</u>	Were sa	amples receiv	ved on ice? (TES	NO
Did container arrive in good condition?	YES	NO		-	
Was sample documentation received?	YES	NO			
Was documentation filled out properly?	YËS	NO			
Were samples labeled properly?	YES	NO			
Were correct containers used?	TES	NO			
Were the pH's of samples appropriately checked?	TES	NO			
Total number of sample containers)				
Was any corrective action taken?	NO	Person Co Date & Ti			
Comments		ai le st		2 3	

Sample ID	Analysis	рН	Preservative Added / Lot #
MW- 40	Mellury	12	//
MW-SD			/
MW-120			//
MW10-17			//
Dup			//
Equip Blank	Ľ.	V	//
· ·			/
			/
			/
			/
			/
			/
			/
			/
			J
			///
and the second s			/

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station

MW-4D

Report Date: 11/8/2018

Sample Number: 183323-001	l	Date Co	ollected:	09/19/2	018 13:36	Da	ate Received: 9/24/2018
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.04 ug/L	J	0.1	0.02	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.20 ug/L		0.1	0.03	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Barium, Ba	177 ug/L		0.1	0.02	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.02 ug/L	J	0.1	0.02	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.03 ug/L	J	0.05	0.01	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.273 ug/L		0.2	0.04	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.551 ug/L		0.05	0.02	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.595 ug/L		0.1	0.02	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	3.71 ug/L		2	0.4	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.2 ug/L		0.2	0.03	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1 ug/L	U	0.5	0.1	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Boron, B	1.13 mg/L		0.005	0.0009	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	174 mg/L		0.02	0.003	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00289 mg/L		0.0002	0.00001	GES	09/28/2018 05:21	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	3.46	pCi/L	0.30	0.88	jls	10/30/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.45	pCi/L	0.11	0.17	jls	10/31/2018	SW-846 9315-1986,Rev. 0

The sample and duplicate result is below the critical value of 0.95 pCi/L. This resulted in the RPD exceeding 25% between the two results.

Report Date: 11/8/2018

MW-5D

Sample Number: 183323-002

Date Collected: 09/19/2018 12:32

Date Received: 9/24/2018

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.13	ug/L		0.1	0.02	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.18	ug/L		0.1	0.03	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Barium, Ba	118	ug/L		0.1	0.02	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.08	ug/L	J	0.1	0.02	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.09	ug/L		0.05	0.01	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.745	ug/L		0.2	0.04	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.336	ug/L		0.05	0.02	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.720	ug/L		0.1	0.02	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	2	ug/L	J	2	0.4	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.4	ug/L		0.2	0.03	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1	ug/L	U	0.5	0.1	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Boron, B	0.444	mg/L		0.005	0.0009	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	156	mg/L		0.02	0.003	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0107	mg/L		0.0002	0.00001	GES	09/28/2018 05:26	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	4.85	pCi/L	0.25	0.65	jls	10/30/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.313	pCi/L	0.091	0.16	jls	10/31/2018	SW-846 9315-1986,Rev. 0

Report Date: 11/8/2018

MW-12D

Sample Number: 183323-003

Date Collected: 09/19/2018 11:07

Date Received: 9/24/2018

		Data					
Parameter	Result Uni	its Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.36 ug/	۲L	0.1	0.02	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Arsenic, As	4.67 ug/	۲L	0.1	0.03	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Barium, Ba	82.6 ug/	۲L	0.1	0.02	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.1 ug/	′L J	0.1	0.02	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.33 ug/	۲L	0.05	0.01	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	2.03 ug/	۲L	0.2	0.04	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	1.57 ug/	۲L	0.05	0.02	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Lead, Pb	5.18 ug/	۲L	0.1	0.02	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	828 ug/	۲L	2	0.4	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Selenium, Se	2.9 ug/	۲L	0.2	0.03	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.2 ug/	′L J	0.5	0.1	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Boron, B	9.02 mg	/L	0.005	0.0009	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	110 mg	/L	0.02	0.003	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00410 mg	/L	0.0002	0.00001	GES	09/28/2018 05:31	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	3.77	pCi/L	0.23	0.60	jls	10/30/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.647	pCi/L	0.11	0.12	jls	10/31/2018	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the established range of 30-110%.

Report Date: 11/8/2018

MW-17

Sample Number: 183323-004

Date Collected: 09/19/2018 14:02

Date Received: 9/24/2018

			Data					
Parameter Re	ult U	Jnits	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	.20 u	ıg/L		0.1	0.02	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Arsenic, As	.27 u	ıg/L		0.1	0.03	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Barium, Ba	6.7 u	ıg/L		0.1	0.02	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Beryllium, Be < (.02 u	ıg/L	U	0.1	0.02	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	.07 u	ıg/L		0.05	0.01	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Chromium, Cr < (.04 u	ıg/L	U	0.2	0.04	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	.98 u	ıg/L		0.05	0.02	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Lead, Pb	.06 u	ıg/L	J	0.1	0.02	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	.62 u	ıg/L		2	0.4	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Selenium, Se	4.4 u	ıg/L		0.2	0.03	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Thallium, Tl <	0.1 u	ıg/L	U	0.5	0.1	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Boron, B 0.	767 n	ng/L		0.005	0.0009	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	330 n	ng/L		0.02	0.003	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4
Lithium, Li 0.0	121 n	ng/L		0.0002	0.00001	GES	09/28/2018 05:36	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Report Date: 11/8/2018

Duplicate

Sample Number: 183323-005

Date Collected: 09/19/2018 13:36

Date Received: 9/24/2018

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.04 ug/L	J	0.1	0.02	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.27 ug/L		0.1	0.03	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Barium, Ba	187 ug/L		0.1	0.02	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.02 ug/L	U	0.1	0.02	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.02 ug/L	J	0.05	0.01	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.346 ug/L		0.2	0.04	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.576 ug/L		0.05	0.02	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.246 ug/L		0.1	0.02	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	3.97 ug/L		2	0.4	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.2 ug/L		0.2	0.03	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1 ug/L	U	0.5	0.1	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Boron, B	1.10 mg/L		0.005	0.0009	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	187 mg/L		0.02	0.003	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00277 mg/L		0.0002	0.00001	GES	10/09/2018 17:59	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Report Date: 11/8/2018

Equipment Blank

Sample Number: 183323-006

Date Collected: 09/19/2018 14:20

Date Received: 9/24/2018

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	< 0.02 ug/L	U	0.1	0.02	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Arsenic, As	< 0.03 ug/L	U	0.1	0.03	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Barium, Ba	0.06 ug/L	J	0.1	0.02	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.02 ug/L	U	0.1	0.02	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.01 ug/L	U	0.05	0.01	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	< 0.04 ug/L	U	0.2	0.04	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	< 0.02 ug/L	U	0.05	0.02	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Lead, Pb	< 0.02 ug/L	U	0.1	0.02	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	< 0.4 ug/L	U	2	0.4	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Selenium, Se	< 0.03 ug/L	U	0.2	0.03	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1 ug/L	U	0.5	0.1	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Boron, B	0.030 mg/L		0.005	0.0009	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	0.02 mg/L	J	0.02	0.003	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00002 mg/L	J	0.0002	0.00001	GES	09/28/2018 05:46	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

*The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "onesigma" which has the same units of measurement as the result.

Muhael & Olling

Michael Ohlinger, ChemistEmail msohlinger@aep.comTel.Fax 614-836-4168Aud

Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

rd
eco
Ř
dy
sto
Cu
of
ain
Che
-

Dolan Chemical Laboratory (DCL)				Chi	ain of	Custoc	Chain of Custody Record	q		
Groveport, Ohio 43125			æ	rogram	: Coal C	ombustior	Program: Coal Combustion Residuals (CCR)	(CCR)		
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)					Site	Site Contact:			Date:	For Lab Use Only: COC/Order #:
Project Name: Northeastern PP CCR Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816	Analysis T	urmaround tine (28 da)	Analysis Turnaround Time (in Calendar Days) Routine (28 days for Monitoring Wells) 	lendar Da	, sk	250 mL bottle, pH≺2, HNO3	Field-filter 250 mL bottle, then pH<2, HNO3	1 L bottle, Cool, 0-6C	Three (six every 10th*) 1 L bottles, pH<2, HNO3	 183323
Sampler(s): Kenny McDonald					sleit) q' C''	70S	1-228	
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	Sampler(s) Ini C # Sampler(s) Ini	B, Ca, Sb, As Cd, Cr, Co, P Mo, Se, TL	, No, Na, Pb, S Ba, Be, Ca, C Co, Fe, K, Li, Mo, Na, Pb, S	TDS, F, CI,	Ra-226, Ra	Sample Specific Notes:
MW-4D	9/19/2018	1336	υ	GW	7	×			×	
MW-5D	9/19/2018	1232	Ð	GW	4	×			×	
MW-12D	9/19/2018	1107	U	GW	4	×			×	
21-WM	9/19/2018	1402	υ	GW		×				
DUPLICATE	9/19/2018	1336	υ	GW		×				
EQUIPMENT BLANK	9/19/2018	1420	U	W	-	×				
	_									
				_						
					+					
					_					
					-					
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	=HNO3; 5=Na	OH; 6= Ot	her	۲. ۳	; F= filter in field	4 4	F4	1	4	
* Six 1L Bottles must be collected for Radium for every 10th sample.	or every 10th	sample.								2
Special Instructions/QC Requirements & Comments:	ents:									
Kuru	Company A614	614		Date/Tim 09/20/	Date/Time: 09/20/6 /40 0		J E	j	XQ	DaterTipe: 24-18 2:40
Relinquished by:	Company:			Date/Time:	ä	Received by:	by:			Date/Time:
Relinquished by:	Company:			Date/Time:		Received	Received in Laboratory by:	oy:		Date/Time:

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

Form SOP-7102 Sample Receipt Form Rev.6, 11/30/15

AEP WATER & WAS	TE SAMPLE RECEIPT FORM
Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer Northlaskn 7	Number of Plastic Containers:
Opened By	Number of Glass Containers:
Date/Time 9.24-18 3:2:40	Number of Mercury Containers:
Were all temperatures within 0-6°C? Y / N	N/A Initial: SMon ice / no ice
(IR Gun Ser# <u>1707790</u> 3Expir. <u>17719</u>)	- If No, specify each deviation:
Was container in good condition	Comments The cooher was throug Gway, A
	Comments
Requested turnaround: Lott	If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) NO ₂ or NO (24 hr)	D ₃ (48 hr) ortho-PO₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	Comments
Were samples labeled properly?	Comments
Were correct containers used?	Comments
Was pH checked & Color Coding done Y	N or N/A Initial & Date: $1509-24-(8)$
	es: By whom & when: (See Prep Book)
Is sample filtration requested? Y	Comments (See Prep Book)
Was the customer contacted? If Yes: F	Person Contacted:
Lab ID# [8 3323 Initial & Da	ate & Time :
Comment	stor The cooker had a broken
Logged by hand	In and was thrown along the
Reviewed by M50	reason.

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Dolan Chemical Laboratory

Sample Receipt Form SOP-7102

10/25/2018 Fluoride

AEP ANALYTICAL CHEMISTRY SERVICES

Analysis Report

Report Date Re	ID : 38529 ceived: 10/17/2018	: SEP - E : Jill Parl : (318) 6	ker-Witt	ntal (JP-W)		Ado	S	02 N. Allen hreveport, 18) 673-39	LA 71101					
Cust Sa	mple ID:219921 ample ID: MW-15 Ie Desc.: Coal Combustion Res			018 astern Pow	er Plant		Γ	By: KN Matrix: W						
Water (219921)														
Parameter	,	Value Un	it D	Det. Limit Dil./Conc. Method Analysis Date/Ti							Codes	Tech		
Fluoride		2.27 mg	/L	0.083	1		EPA 300.0		10/25/2	2018 9:17		GB		
		* Quality			ntrol Data ne as reported	analytical	results							
			Blank		Standard			Spike		0	Duplicate %			
Date	Parameter	Sample ID	Value *	* Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech		
10/25/2018	Fluoride	220179	<0.083	10	10	100.0	10	10.4	104.0		0.0	GB		
10/25/2018	Fluoride		<0.083									GB		

10

Sandra D. Wallace

Laboratory Manager

10.2

102.0

30-Oct-18

Report Date

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

GB

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling-Shreveport, Rev. 1, 1/10/17	Relinquished by:	Relinquished by:	Kut n w	Special histractions/acc requirements of comments:	* Six 1L Bottles must be collected for Radium for every 10th sample.							MW-15	Sample Identification	Sampler(s): Kenneth McDonald	Project Name: Northeastern PP CCR Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816	Jonatrian Barnnill (318-673-3803) Contacts: John Davis (318-673-3811)	Shreveport, LA 71101	Shreveport Chemical Laboratory (SCL) 502 N. Allen Ave.
for Coal Combust	Company:	Company:	Company: FAGIF	**RUSH - 14 day turnaround	very 10th sample.	103; 5=NaOH; 6= 0						10/15/2018 1240	Sample Sample Date Time	RusH	Analysis Turnaround Time (in Calendar Days)			
ion Residual (0	0		1 - 14		ther						G	Sample Type (C=Comp, G=Grab)	Ŧ	nd Time (in Cale			
CCR) Samplin	Date/Time:	Date/Time:	Date/Time: 10/17/19 12	day tu		; F= filter in field						GW 1	#of Matrix Cont.		andar Days)		Progr	Chain
g-Shre			12:02	rna		eld							Sampler(s) Ini	tials		Site Contact:	am: C	of Cu
veport, Rev.	Received in Laboratory by:	Received by:	Received by:	roun		4							Mercury		500 mL bottle, pH<2, HNO3	itact:	Program: CCR Fluoride Only	Chain of Custody Record
1, 1/10/17	aboratory by			d - RL		F4							dissolved F	e and Mn	Field-filter 500 mL bottle, then pH<2, HNO3		de Only	Recor
				USH**		1			×.			×	Fluoride		1 L bottle, Cool, 0-6C			đ
8				**		4		-					Ra-226, Ra	n-228	Three (six every 10th*) 1 L bottles, pH<2, HNO3	Date:	8/17130	SA
							_		 		 _						71/0	5
		D	0						0	_	_	8.		_			8	5
	Date/Time:	Date/Time:	Date/Time:									126312	Sample Specific Notes:		PES8E# 00)	For Lab Use Only: COC/Order #:		

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type		De	elivery Typ	e	
Cree Chest Bag Action Pak PCB Mailer Bottle	UPS Other	FEDEX	US Mail	Walk in	Shuttle
	Tracking #				
Client J:11 Parker - Witt		Sa	mple Matr	rix	
Received By	- DGA	PCB Oil	Water	Oil	Soil
Received Date 10/17/18 Open Date	- Solid	Liquid	Other		
Container Temp Read	-	Project I.D	3852	29	
Correction Factor Corrected Temp	Were sa	mples received	on ice?	YES	10
Did container arrive in good condition?	YES	NO			
Was sample documentation received?	YES	NO			1.47.5
Was documentation filled out properly?	YES	<u>NO</u>			
Were samples labeled properly?	YES	NO			
Were correct containers used?	YES	NO			
Were the pH's of samples appropriately checked?	YES	NONIA			
Total number of sample containers	-	-		ai.	
Was any corrective action taken?	NO	Person Cont Date & Time			
Comments					

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 38595 Date Received: 10/24/2018	Co	ntact: Jill F	P - Environme Parker-Witt 8) 673-3816	ental (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 220156 Cust Sample ID: MW-3D Sample Desc.: Coal Combustion	Loc		2/2018 theastern Pov	ver Plant	By: H Matrix: M			
Water (220156)			1				1	
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	14.89	mg/L	0.219	1	EPA 300.0	10/26/2018 10:52		GB
Fluoride	1.09	mg/L	0.083	1	EPA 300.0	10/26/2018 10:52		GB
Solids, Total Dissolved (TDS)	702	mg/L	2	1	SM 2540 C-2011	10/26/2018 15:30		JTD
Sulfate	210.57	mg/L	0.140	1:10	EPA 300.0	10/26/2018 11:11		GB
Water (220157)	Value	11	Det Limit		Mathad	An aluaia Data/Tima	Carles	Teel
Parameter	Value	Unit	Det. Limit		Method	Analysis Date/Time	Codes	Tech
Chloride	31.68	mg/L	0.219	1	EPA 300.0	10/26/2018 11:30		GB
Fluoride	1.28	mg/L	0.083	1	EPA 300.0	10/26/2018 11:30		GB
Solids, Total Dissolved (TDS)	1152	mg/L	2	1	SM 2540 C-2011	10/26/2018 15:30		JTD
Sulfate	471.81	mg/L	0.140	1:10	EPA 300.0	10/26/2018 11:49		GB
AEP Sample ID : 220158 Cust Sample ID: MW-7D Sample Desc.: Coal Combustion	Loc		2/2018 theastern Pov	ver Plant	By: Matrix: \			
Water (220158)				,			1	
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	568.00	mg/L	0.219	1:10	EPA 300.0	10/26/2018 12:27		GB
Fluoride	0.9527	mg/L	0.083	50	EPA 300.0	10/26/2018 12:08	J	GB
		-						
Solids, Total Dissolved (TDS)	5844	mg/L	2	1	SM 2540 C-2011	10/26/2018 15:30		JTD

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 38595 Date Received: 10/24/2018	Co	ontact: Jill F	P - Environme Parker-Witt 8) 673-3816	ental (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 220159 Cust Sample ID: MW-8D Sample Desc.: Coal Combustio	Loc		22/2018 theastern Pov	ver Plant	By: Matrix:			
Water (220159)								
Parameter	Value	Unit	Det. Limit		Method	Analysis Date/Time	Codes	Tech
Chloride	11680.46	mg/L	0.219	1:100	EPA 300.0	10/26/2018 14:20		GB
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	10/26/2018 12:46	U	GB
Solids, Total Dissolved (TDS)	20896	mg/L	2	1	SM 2540 C-2011	10/26/2018 15:30		JTD
Sulfate	48.41	mg/L	0.140	1	EPA 300.0	10/26/2018 12:46		GB
AEP Sample ID : 220160 Cust Sample ID: MW-9D Sample Desc.: Coal Combustio	Loc		22/2018 theastern Pov	ver Plant	By: Matrix:			
Water (220160) Parameter	Value	Unit	Det Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	106	mg/L	0.219	1	EPA 300.0	10/26/2018 14:38	Coues	GB
Fluoride	0.600	mg/L	0.083	1	EPA 300.0	10/26/2018 14:38	J	GB
Solids, Total Dissolved (TDS)	1258	mg/L	2	1	SM 2540 C-2011	10/26/2018 15:30		JTD
Sulfate	519.42	mg/L	0.140	1:100	EPA 300.0	10/26/2018 14:57		GB
AEP Sample ID : 220161 Cust Sample ID: MW-15 Sample Desc.: Coal Combustio	Loc		22/2018 theastern Pov	ver Plant	By: Matrix:			
Water (220161)	Value		Det Limit		Mathad	Analysia Data/Time	Contac	Teel
Parameter	Value	Unit	Det. Limit		Method	Analysis Date/Time	Codes	Tech
Chloride	46.81	mg/L	0.219	1	EPA 300.0	10/26/2018 15:16	 	GB
Fluoride	2.17	mg/L	0.083	1	EPA 300.0	10/26/2018 15:16		GB
Solids, Total Dissolved (TDS) Sulfate	1082 549.46	mg/L	2 0.140	1	SM 2540 C-2011	10/26/2018 15:30		JTD GB
		mg/L		1:10	EPA 300.0	10/26/2018 15:35		

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 38595 Date Received : 10/24/2018	С	ontact:	SEP - Environme Jill Parker-Witt (318) 673-3816	ntal (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 220162 Cust Sample ID: Duplicate - Landf Sample Desc.: Coal Combustion	ill Lo	cation:	10/22/2018 Northeastern Pov	ver Plant	By: H Matrix: N			
Water (220162)					-			
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	16.36	mg/L	0.219	1	EPA 300.0	10/26/2018 16:13		GB
Fluoride	1.13	mg/L	0.083	10	EPA 300.0	10/26/2018 16:13		GB
Solids, Total Dissolved (TDS)	722	mg/L	. 2	1	SM 2540 C-2011	10/26/2018 15:30		JTD
Sulfate	241.48	mg/L	0.140	1:10	EPA 300.0	10/26/2018 17:47		GB
	· /		Quality Co	ntrol Data				

		* Quality			ntrol Data ne as reported	analytical	results					
			Blank		Standard			Spike		Surrogate	Duplicate %	,
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
10/26/2018	Chloride	220162.1	<0.219	20	22.8	114.0	20	21	105.0		11.5	GB
10/26/2018	Chloride		<0.219									GB
10/26/2018	Chloride			20	22.4	112.0						GB
10/26/2018	Fluoride	220162.1	<0.083	10	10.58	105.8	10	11.5	115.0		1.8	GB
10/26/2018	Fluoride		<0.083									GB
10/26/2018	Fluoride			10	11.03	110.3						GB
10/26/2018	Solids, Total Dissolved (TDS)	220156.1	<2	99.33	106	106.7	2802	2810	100.3		0.3	JTD
10/26/2018	Sulfate	220162.1	<0.140	20	18.8	94.0	50	62.2	124.4		2.2	GB
10/26/2018	Sulfate		<0.140									GB
10/26/2018	Sulfate			20	18.6	93.0						GB

Code Code Description

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

U Analyte concentration below MDL.

Sandra D. Wallace

Laboratory Manager

07-Nov-18 Report Date

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 3 of 3

Date/Time: 10/24/18 16:25		· ····	in Laboratory by	Received in	2	Date/Time:	Date		Ý.	Company:	Relinquished by: Company: Date/Time: Received in Laboratory to pathematical structure Form COC-04. AFP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Samplino - Shreumont, Rev. 1. 1/10/17 Form COC-04. AFP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Samplino - Shreumont, Rev. 1. 1/10/17
Date/Time:			7	Received by:		Date/Time:	Date		Y:	Company:	Relinquished by:
Date/Time:				Received by:	1625	Date/Time: 10/24/18	Date		Company: CAGIF	Compan	Relinquished by:
				a.						nts:	Special Instructions/QC Requirements & Comments:
								le.	om samp	r every 1	SIX 1L Bottles must be collected for Radium for every 10th sample.
	4		F4	4	field	F= filter in field		= Other	NaOH; 6	INO3; 5=	Preservation Used: 1= ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other
						-	-	-	-		
							-				
							+				
2 2064		×				N 1	GW	0 G	18 840	10/22/2018	DUPLICATE - LANDFILL
191066		×					GW	G	18 940	10/22/2018	MW-15
091066		×				1	GW	0 G	18 920	10/22/2018	MW-9D
151088		×				1	GW	0 0	18 1040	10/22/2018	MW-8D
351066		×				× 1	GW	00 G	18 1100	10/22/2018	MW-7D
220157		×					GW	G	18 900	10/22/2018	MW-6D
220156		×				N 1	GW	0 G		10/22/2018	MW-3D
Sample Specific Notes:	Ra-226, Ra	TDS. F, CI,	dissolved F	Мегсигу	Sampler(s) Ini	trix Cont.	ole e mp, ab) Matrix	Sample Type (C=Comp, 1e G=Grab)	e Sample Time	Sample Date	Sample Identification
	a-228	, SO4	e and Mn	3	tials						Sampler(s): Kenneth McDonald
5658E4200)	Three (six every 10th*) 1 L bottles, pH<2, HNO3	1 L bottle, Cool, 0-6C	Field-filter 500 mL bottle, then pH<2, HNO3	500 mL bottle, pH<2, HNO3		lar Days) 3 Wells)	in Calend	Analysis Turnaround Time (in Calendar Days) © Routine (28 days for Monitoring Wells)	sis Turnar Routine (2	Analy	Project Name: Northeastern PP CCR Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816
COC/Order #	Date:			ntact:	Site Contact:						Contacts: John Davis (318-673-3811)
8/1	10/25	CCR)	Coal Combustion Residuals (CCR)	nbustion f	oal Con	Program: C	Prog				502 N. Allen Ave. Shreveport , LA 71101
		ז	Chain of Custody Record	inetody) f C	Chain	-			_	Shreveport Chemical Laboratory (SCL)

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

Г

PROJECT RECEIPT FORM

Container Type		D	elivery Type	1	
Ice Chest Bag Action Pak PCB Mailer Bottle	UPS	FEDEX	US Mail	Walk in	Shuttle
Other	Othe	er			
	Tracking #	ŧ			
Client J:11 Parker With		Sa	mple Matrix	ĸ	
Received By	DGA	PCB Oil	Water	Oil	Soil
Received Date 10/24/18					
Open Date	Solid	Liquid	Other_		
Container Temp Read	_	Project I.D.	3859	15	_
Correction Factor	Were sa	amples receive	d on ice?	TES	NO
Did container arrive in good condition?	YES	NO			
Was sample documentation received?	TES	NO			
Was documentation filled out properly?	YES	NO			
Were samples labeled properly?	YES	NO			
Were correct containers used?	YES	NO			
Were the pH's of samples appropriately checked?	YES	No NIA			
Total number of sample containers		2			
Was any corrective action taken?	NO	Person Con Date & Time	_		
Comments					
1888					

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station

Report Date: 11/16/2018

Sample Number: 183735-001		Date Co	llected:	10/22/2	2018 08:40	Da	te Received: 10/30/2018
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	1.02 mg/L		0.02	0.005	GES	11/14/2018 15:32	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	142 mg/L		0.1	0.02	GES	11/14/2018 15:32	EPA 200.8-1994, Rev. 5.4

MW-6D

MW-3D

Sample Number: 183735-002	Da	ate Collected:	10/22/2	018 09:00	Da	te Received: 10/30/2018
Parameter		Data Qual RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	4.34 mg/L	0.02	0.005	GES	11/14/2018 15:37	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	237 mg/L	0.1	0.02	GES	11/14/2018 15:37	EPA 200.8-1994, Rev. 5.4

MW-7D

Sample Number: 183735	-003	Date Co	llected:	10/22/2	2018 11:00	Da	te Received: 10/30/2018
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	1.10 mg/L		0.02	0.005	GES	11/14/2018 15:42	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	357 mg/L		0.1	0.02	GES	11/14/2018 15:42	EPA 200.8-1994, Rev. 5.4

MW-8D

Sample Number: 183735-004		Date Col	lected:	10/22/2	2018 10:40	Da	te Received: 10/30/2018
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	1.75 mg/L		0.1	0.02	GES	11/14/2018 15:47	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	1290 mg/L		0.4	0.06	GES	11/14/2018 15:47	EPA 200.8-1994, Rev. 5.4

MW-9D

Sample Number: 183735-00	5	Date Col	lected:	10/22/2	2018 09:20	Da	ate Received: 10/30/2018
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	7.19 mg/L		0.02	0.005	GES	11/14/2018 15:52	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	199 mg/L		0.1	0.02	GES	11/14/2018 15:52	EPA 200.8-1994, Rev. 5.4

Report Date: 11/16/2018

MW-15									
Sample Number:	183735-006			Date Co	lected:	10/22/2	018 09:40	Da	ate Received: 10/30/2018
Parameter		Result L	Jnits	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B		8.90 r	ng/L		0.02	0.005	GES	11/14/2018 15:57	EPA 200.8-1994, Rev. 5.4
Calcium, Ca		250 r	ng/L		0.1	0.02	GES	11/14/2018 15:57	EPA 200.8-1994, Rev. 5.4
Duplicate - Land	dfill								
Sample Number:	183735-007			Date Co	lected:	10/22/2	018 08:40	Da	ate Received: 10/30/2018
Sample Number:	183735-007			Date Col	llected:	10/22/2	2018 08:40	Da	ate Received: 10/30/2018
Sample Number: Parameter	183735-007	Result U	Jnits		RL	10/22/2 MDL	2018 08:40 Analysis By	Da Analysis Date/Time	ate Received: 10/30/2018 Method
-	183735-007	Result L 0.985 r		Data					
Parameter	183735-007		ng/L	Data	RL	MDL	Analysis By	Analysis Date/Time	Method
Parameter Boron, B		0.985 r	ng/L	Data	RL 0.02	MDL 0.005	Analysis By GES	Analysis Date/Time	Method EPA 200.8-1994, Rev. 5.4
Parameter Boron, B Calcium, Ca		0.985 r	ng/L	Data Qual	RL 0.02 0.1	MDL 0.005 0.02	Analysis By GES	Analysis Date/Time 11/14/2018 16:02 11/14/2018 16:02	Method EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.015 mg/L		0.005	0.0009	GES	11/14/2018 16:06	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	0.005 mg/L	J	0.02	0.003	GES	11/14/2018 16:06	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Muhael & Ollinger

Michael Ohlinger, ChemistEmail msohlinger@aep.comTel.Fax 614-836-4168Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station

Report Date: 11/16/2018

Sample Number: 183735-001		Date Co	llected:	10/22/2	2018 08:40	Da	ate Received: 10/30/2018
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	1.02 mg/L		0.02	0.005	GES	11/14/2018 15:32	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	142 mg/L		0.1	0.02	GES	11/14/2018 15:32	EPA 200.8-1994, Rev. 5.4

MW-6D

MW-3D

Sample Number: 183735-002		Date Co	llected:	10/22/2	2018 09:00	Da	te Received: 10/30/2018
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	4.34 mg/L		0.02	0.005	GES	11/14/2018 15:37	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	237 mg/L		0.1	0.02	GES	11/14/2018 15:37	EPA 200.8-1994, Rev. 5.4

MW-7D

Sample Number: 183	3735-003	Date Co	llected:	10/22/2	2018 11:00	Da	te Received: 10/30/2018
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	1.10 mg/L		0.02	0.005	GES	11/14/2018 15:42	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	357 mg/L		0.1	0.02	GES	11/14/2018 15:42	EPA 200.8-1994, Rev. 5.4

MW-8D

Sample Number: 183735-004		Date Coll	ected:	10/22/2	2018 10:40	Da	te Received: 10/30/2018
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	1.75 mg/L		0.1	0.02	GES	11/14/2018 15:47	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	1290 mg/L		0.4	0.06	GES	11/14/2018 15:47	EPA 200.8-1994, Rev. 5.4

MW-9D

Sample Number: 183735-005	i -	Date Co	llected:	10/22/2	2018 09:20	Da	te Received: 10/30/2018
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	7.19 mg/L		0.02	0.005	GES	11/14/2018 15:52	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	199 mg/L		0.1	0.02	GES	11/14/2018 15:52	EPA 200.8-1994, Rev. 5.4

Report Date: 11/16/2018

MW-15								
Sample Number:	183735-006		Date Co	llected:	10/22/2	2018 09:40	Da	ate Received: 10/30/2018
Parameter		Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B		8.90 mg/L		0.02	0.005	GES	11/14/2018 15:57	EPA 200.8-1994, Rev. 5.4
Calcium, Ca		250 mg/L		0.1	0.02	GES	11/14/2018 15:57	EPA 200.8-1994, Rev. 5.4
Duplicate - Land	dfill							
Sample Number:	183735-007		Date Co	llected:	10/22/2	2018 08:40	Da	ate Received: 10/30/2018
-	183735-007		Data					
Sample Number: Parameter	183735-007	Result Units	Data	RL	10/22/2 MDL	2018 08:40 Analysis By	Da Analysis Date/Time	
-	183735-007	Result Units	Data Qual					
Parameter	183735-007		Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Parameter Boron, B		0.985 mg/L	Data Qual	RL 0.02	MDL 0.005	Analysis By GES	Analysis Date/Time	Method EPA 200.8-1994, Rev. 5.4
Parameter Boron, B Calcium, Ca		0.985 mg/L	Data Qual	RL 0.02 0.1	MDL 0.005 0.02	Analysis By GES	Analysis Date/Time 11/14/2018 16:02 11/14/2018 16:02	Method EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.015 mg/L		0.005	0.0009	GES	11/14/2018 16:06	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	0.005 mg/L	J	0.02	0.003	GES	11/14/2018 16:06	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Muhael & Ollinger

Michael Ohlinger, ChemistEmail msohlinger@aep.comTel.Fax 614-836-4168Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport. Ohio 43125				Ch	ain o	of Cus	tody etion R	Chain of Custody Record			
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)					Sit	Site Contact:				Date:	For Lab Use Only: COC/Order #:
Project Name: Northeastern PP CCR Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816	Analysis 6 Rou	Turnarounc Jtine (28 da	Analysis Turnaround Time (in Calendar Days) © Routine (28 days for Monitoring Wells)	endar Da ing Wells	(sh	2 9 9 7	250 mL bottle, t pH<2, HNO3	Field-filter 250 mL bottle, then pH<2, HNO3	1 L bottle, Cool, 0-6C	Three (six every 10th*) L bottles, pH<2, HNO3	 183735
Sampler(s): Kenny McDonald						alsit		, Sb, As, , Mg, Mn, , Mg, Mn,	\$0\$	¥-228	
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G≅Grab)	Matrix	# of Cont.	ini (z)ıelqms2	Boron, Calci	Dissolved B, Ba, Be, Ca, C Co, Fe, K, Li, Mo, Na, Pb, S	TDS, F, CI,	52.6, R	Sample Specific Notes:
MW-3D	10/22/2018	840	U	GW	-		×				
MW-6D	10/22/2018	006	U	GW	-		×				
DT-WM	10/22/2018	1100	U	GW	÷		×				
MW-8D	10/22/2018	1040	U	GW	-		×				
D6-WM	10/22/2018	920	U	GW	-		×				
MW-15	10/22/2018	940	U	GW	-		×				
DUPLICATE - LANDFILL	10/22/2018	840	U	GW	-		×				
EQUIPMENT BLANK	10/22/2018	1120	U	>	-		×				
										-	
5											
					-						
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	INO3; 5=Na	0H; 6= Ot		. F= fil	; F= filter in field	p	4	F4	-	4	
* Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th	sample.				a.					
Special Instructions/QC Requirements & Comments:	its:										
Relinquished by: WT M	Company: 64616	4616		Date/Time; 0 /24/8 /	e: //8/1400		Received by:				Date/Time:
Relinquished by:	Company:			Date/Time:		Re	Received by:				Date/Time:
Relinquished by:	Company:			Date/Time:		Re	ceived in J	Received in Laboratory by:	200	Series Contraction	Date/Time: 10/20/18 2:30PM
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	rd for Coal	Combusti	on Residual	(CCR) S	ampling	- Shrevep	ort, Rev.	1, 1/10/17		0	

Form SOP-7102 Sample Receipt Form Rev.6, 11/30/15

AEP WATER & WASTE SAMPLE RECEIPT FORM

μ

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FEDEX USPS
\sim	Other
Plant/Customer Northeus from	Number of Plastic Containers:
Opened By MSU	Number of Glass Containers:
	Number of Mercury Containers:
Were all temperatures within 0-6°C? Y / N	or N/A Initial:on ice / no ice
) - If No, specify each deviation:
	Comments
Was Chain of Custody received? ¥/ N	Comments
Requested turnaround:	
pH (15 min) Cr [⊷] (pres) NO ₂ or N (24 hr)	O ₃ (48 hr) ortho-PO₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	Comments
Were samples labeled properly? 🕜 N	Comments
Were correct containers used? 🔞 / N	Comments
Was pH checked & Color Coding done? 🕅 /	N or N/A Initial & Date: JB 10/30/2018
- Was Add'l Preservative needed? Y / N If Y	es: By whom & when: (See Prep Book)
Is sample filtration requested? Y / M	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID#	ate & Time :
Logged by March	S:
Reviewed by	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AE	P	AE	EP ANA			IEMISTR s Report		RVICE	S			Shrevep Phone:	502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960	
Report Date Re	ID : 38807 eceived: 11/29/2018	C	Contact:	Jill Pa		ntal (JP-W)		A		S	02 N. Aller hreveport, 318) 673-3	LA 71101		
Cust Sa	mple ID:220948 ample ID: MW-3D ole Desc.: Coal Combustion		ted Date: Location:		2018 eastern P.P.					By: KN 'ix: W				
Water (220	•	[I		[]							1	
Parameter	•	Value	Uni	t [Det. Limit	Dil./Conc.		Metho	d		Analysis	Date/Time	Codes	Tech
Fluoride		0.64	8 mg/	L	0.083	1		EPA 300	0.0		12/04/2	018 16:27	J	GB
Cust Sa	mple ID:220949 ample ID: MW-6D ole Desc.: Coal Combustion		ted Date: Location:		2018 eastern P.P.					By: KN fix: W				
Water (220)949)													
Parameter		Value	Uni	t I	Det. Limit	Dil./Conc.		Metho	d		Analysis	Date/Time	Codes	Tech
Fluoride		0.84	4 mg/	L	0.083	1		EPA 300	0.0		12/04/2	018 17:04	J	GB
			* Quality			ntrol Data me as reported	analytical	results						
				Blank		Standard	•		S	pike		Surrogate	Duplicate %	b
Date	Parameter		Sample ID	Value	* Value *	Recovery*	%	Value	* Re	covery*	* %	% Recovery	Difference	
12/4/2018	Fluoride	2	20840	<0.083	10	10	100.0	10		10.1	101.0		0.0	GB
12/4/2018	Fluoride			<0.083										GB

10

10

Code Code Description

Fluoride

12/4/2018

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

Laboratory Manager Wallace

100.0

19-Dec-18

Report Date

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 1 of 1

GB

00004

Shreveport Chemical Laboratory (SCL) 502 N. Allen Ave. Shrevenort 1 A 71111	0		Drogram.				stody	Chain of Custody Record				JOB 11-29-18
Jonathan Barnhill (318-673-3803) Contacts: John Davis (318-673-3811)					Sit	Site Contact:	i:			Date:		For Lab Use Only: COC/Order #:
Project Name: Northeastern PP CCR Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816	Analysis T	urnaround Ine (28 da)	Analysis Turnaround Time (In Calendar Days)	ilendar Da pring Well	y s) s)	0	500 mL bottle, pH<2, HNO3	Field-filter 500 mL bottle, then pH<2, HNO3	500 mL bottle, Cool, 0-6C	Three (six every 10th*) 1 L bottles, pH<2, HNO3	herb	Cue # 38807
Sampler(s): Kenneth McDonald								e and Mn		a-228		
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) Init	Mercury	dissolved Fe	Fluoride	Ra-226, Ra		Sample Specific Notes:
MW-3D	11/28/2018	930	G	GW					×			220948
MW-6D	11/28/2018	950	G	GW					×			171066
					-							
					+							
						\vdash						
						_						
					$\left - \right $							
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	1NO3; 5=NaO	H; 6= Oth	er		F= filter in field		4	F4	-1	4		
* Six 1L Bottles must be collected for Radium for every 10th sample	· every 10th s	ample.										
Special Instructions/QC Requirements & Comments:	nts:					1						
Relinquished by:	Company: CAGIF	461K		Date/Time:	0191 8. e:		Received by:					Date/Time:
Relinquished by:	Company:			Date/Time:	ë	Re	Received by:					Date/Time:
Relinquished by:	Company:			Date/Time:	œ	ਨ	ceivedin	Received in Laboratory by:				Date/Time:
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling Spreveport, Rev. 1, 1/10/17	rd for Coal C	ombustio	n Residua	I (CCR) S	ampling	Shreve	port, Rev	1, 1/10/17	Í			10

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. Shreveport, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type		D	elivery Type)	
Ce Chest Bag Action Pak PCB Mailer Bottle	UPS	FEDEX	US Mail	Walk in	Shuttle
Other	Othe	r			
Client Clill Proken With	Tracking #				
Dessived Du	-		imple Matri		0-11
Received By <u>STID</u> Received Date <u>II/24/18</u>	DGA	PCB Oil	Water	Oil	Soil
	-	I facilit	Other		
Open Date	Solid	Liquid	Other _		
Container Temp Read	-	Project I.D.	3880	7	_
Correction Factor <u><i>f</i>/.</u> Corrected Temp	Were sa	mples receive	d on ice? (YES	NO
Did container arrive in good condition?	YES	NO			
Was sample documentation received?	YES	NO			
Was documentation filled out properly?	YES	NO			
Were samples labeled properly?	YES	NO			
Were correct containers used?	ES	NO			
Were the pH's of samples appropriately checked?	YES	NO NIA			
Total number of sample containers	_				·····
Was any corrective action taken?	NO	Person Con Date & Tim	-		
Comments					

Analysis Report

Report ID : 38805 Date Received: 11/29/2018	Co	ontact: Jill	P - Environme Parker-Witt 18) 673-3816	ental (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 220937 Cust Sample ID: MW-4D Sample Desc.: Coal Combustion	Loc		28/2018 rtheastern P.P		By: Matrix:	KM Water		
Metals (220937)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	12/06/2018 14:16	U	LNM
Water (220937)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	27	mg/L	0.219	1	EPA 300.0	12/04/2018 18:38		GB
Fluoride	0.3357	mg/L	0.083	1	EPA 300.0	12/04/2018 18:38	J	GB
Solids, Total Dissolved (TDS)	972	mg/L	2	1	SM 2540 C-2011	12/03/2018 14:18		JTD
Sulfate	295	mg/L	0.140	1:10	EPA 300.0	12/04/2018 18:57		GB
AEP Sample ID : 220938 Cust Sample ID: MW-5D Sample Desc.: Coal Combustion	Loc		28/2018 rtheastern P.P		By: Matrix:	KM Water		
Metals (220938)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	12/06/2018 14:32	U	LNM
Water (220938)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	24	mg/L	0.219	1	EPA 300.0	12/04/2018 19:16		GB
Fluoride	0.371	mg/L	0.083	1	EPA 300.0	12/04/2018 19:16	J	GB
Solids, Total Dissolved (TDS)	614	mg/L	2	1	SM 2540 C-2011	12/03/2018 14:18		JTD
Sulfate	143	mg/L	0.140	1:10	EPA 300.0	12/04/2018 19:35		GB

Analysis Report

Report ID : 38805 Date Received: 11/29/2018	C	ontact: Jill	P - Environme Parker-Witt 8) 673-3816	ental (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 220939 Cust Sample ID: MW-12D Sample Desc.: Coal Combusti	Lo		28/2018 theastern P.P		By: Matrix:			
Metals (220939)	TT							
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	0.00007	mg/L	0.000005	1	EPA 7470A 1994	12/06/2018 14:35	J	LNM
Water (220939)			-	1 1			I	
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	16	mg/L	0.219	1	EPA 300.0	12/04/2018 19:54		GB
Fluoride	2.2238	mg/L	0.083	1	EPA 300.0	12/04/2018 19:54		GB
Solids, Total Dissolved (TDS)	1068	mg/L	2	1	SM 2540 C-2011	12/03/2018 14:18		JTD
Sulfate	570	mg/L	0.140	1:10	EPA 300.0	12/04/2018 20:13		GB
AEP Sample ID : 220940		d Date: 11/2			By:			
Cust Sample ID: Duplicate Sample Desc.: Coal Combusti Metals (220940)	Lo	cation: Nor	theastern P.P		Matrix:			
Cust Sample ID: Duplicate Sample Desc.: Coal Combusti	Lo	cation: Nor					Codes	Tech
Cust Sample ID: Duplicate Sample Desc.: Coal Combusti Metals (220940)	Lo on Residuals (CCF	cation: Nor R)	theastern P.P		Matrix:	Water	Codes U	Tech LNM
Cust Sample ID: Duplicate Sample Desc.: Coal Combusti Metals (220940) Parameter	Lo on Residuals (CCF Value	cation: Nor () Unit	Det. Limit	Dil./Conc.	Matrix: Method	Water Analysis Date/Time		
Cust Sample ID: Duplicate Sample Desc.: Coal Combusti Metals (220940) Parameter Mercury	Lo on Residuals (CCF Value	cation: Nor () Unit	Det. Limit	Dil./Conc.	Matrix: Method	Water Analysis Date/Time		
Cust Sample ID: Duplicate Sample Desc.: Coal Combusti Metals (220940) Parameter Mercury Water (220940)	Lo on Residuals (CCF Value < 0.000005	cation: Nor) Unit mg/L	theastern P.P Det. Limit 0.000005	Dil./Conc. 1	Matrix: Method EPA 7470A 1994	Water Analysis Date/Time 12/06/2018 14:43	U	LNM
Cust Sample ID: Duplicate Sample Desc.: Coal Combusti Metals (220940) Parameter Mercury Water (220940) Parameter	Lo on Residuals (CCF Value < 0.000005	Cation: Nor Unit mg/L Unit	Det. Limit 0.000005	Dil./Conc. 1 Dil./Conc.	Matrix: Method EPA 7470A 1994 Method	Water Analysis Date/Time 12/06/2018 14:43 Analysis Date/Time	U	LNM
Cust Sample ID: Duplicate Sample Desc.: Coal Combusti Metals (220940) Parameter Mercury Water (220940) Parameter Chloride	Lo on Residuals (CCF Value < 0.000005 Value 28	Cation: Nor Unit mg/L Unit mg/L	Det. Limit 0.000005 Det. Limit 0.219	Dil./Conc. 1 Dil./Conc. 1	Matrix: Method EPA 7470A 1994 Method EPA 300.0	Water Analysis Date/Time 12/06/2018 14:43 Analysis Date/Time 12/04/2018 21:47	U Codes	LNM Tech GB
Cust Sample ID: Duplicate Sample Desc.: Coal Combusti Metals (220940) Parameter Mercury Water (220940) Parameter Chloride Fluoride	Lo on Residuals (CCF Value < 0.000005 Value 28 0.2688	Cation: Nor Unit mg/L Unit mg/L mg/L mg/L	Det. Limit 0.000005 Det. Limit 0.219 0.083	Dil./Conc. 1 Dil./Conc. 1 1	Matrix: Method EPA 7470A 1994 Method EPA 300.0 EPA 300.0	Water Analysis Date/Time 12/06/2018 14:43 Analysis Date/Time 12/04/2018 21:47 12/04/2018 21:47	U Codes	LNM Tech GB GB
Cust Sample ID: Duplicate Sample Desc.: Coal Combusti Metals (220940) Parameter Mercury Water (220940) Parameter Chloride Fluoride Solids, Total Dissolved (TDS)	Lo on Residuals (CCF Value < 0.000005 Value 28 0.2688 948 329 Collected nk Lo	Cation: Nor Unit mg/L Unit mg/L mg/L mg/L mg/L d Date: 11/2 cation: Nor	Det. Limit 0.000005 Det. Limit 0.219 0.083 2 0.140	Dil./Conc. 1 Dil./Conc. 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Matrix: Method EPA 7470A 1994 Method EPA 300.0 EPA 300.0 SM 2540 C-2011	Water Analysis Date/Time 12/06/2018 14:43 Analysis Date/Time 12/04/2018 21:47 12/04/2018 21:47 12/03/2018 14:18 12/04/2018 23:21 KM	U Codes	LNM Tech GB GB JTD
Cust Sample ID: Duplicate Sample Desc.: Coal Combusti Metals (220940) Parameter Mercury Water (220940) Parameter Chloride Fluoride Solids, Total Dissolved (TDS) Sulfate AEP Sample ID : 220941 Cust Sample ID: Equipment Blat	Lo on Residuals (CCF Value < 0.000005 Value 28 0.2688 948 329 Collected nk Lo on Residuals (CCF	Cation: Nor Unit mg/L Unit mg/L mg/L mg/L mg/L d Date: 11/2 cation: Nor R)	Det. Limit 0.000005 Det. Limit 0.219 0.083 2 0.140 28/2018 theastern P.P	Dil./Conc. 1 Dil./Conc. 1 1 1 1 1 1 1 1 1 1 1:10	Matrix: Matrix: Method EPA 7470A 1994 Method EPA 300.0 EPA 300.0 SM 2540 C-2011 EPA 300.0 SM 2540 C-2011 EPA 300.0	Water Analysis Date/Time 12/06/2018 14:43 Analysis Date/Time 12/04/2018 21:47 12/04/2018 21:47 12/03/2018 14:18 12/04/2018 23:21	U Codes J	LNM GB GB JTD GB
Cust Sample ID: Duplicate Sample Desc.: Coal Combusti Metals (220940) Parameter Mercury Water (220940) Parameter Chloride Fluoride Solids, Total Dissolved (TDS) Sulfate AEP Sample ID : 220941 Cust Sample ID : Equipment Blai Sample Desc.: Coal Combusti	Lo on Residuals (CCF Value < 0.000005 Value 28 0.2688 948 329 Collected nk Lo	Cation: Nor Unit mg/L Unit mg/L mg/L mg/L mg/L d Date: 11/2 cation: Nor	Det. Limit 0.000005 Det. Limit 0.219 0.083 2 0.140 28/2018	Dil./Conc. 1 Dil./Conc. 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Matrix: Method EPA 7470A 1994 Method EPA 300.0 EPA 300.0 SM 2540 C-2011 EPA 300.0 SM 2540 C-2011 EPA 300.0	Water Analysis Date/Time 12/06/2018 14:43 Analysis Date/Time 12/04/2018 21:47 12/04/2018 21:47 12/03/2018 14:18 12/04/2018 23:21 KM	U Codes	LNM Tech GB GB JTD

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 2 of 3

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

				-	-					•	-	
Report Date Re	ID : 38805 ceived: 11/29/2018	Company: Contact:	Jill Park	er-Witt	ntal (JP-W)		Ad	dress: 50 Sh		n Avenue , LA 71101		
		Phone:	(318) 67	3-3816				Fax: (3 ⁻	18) 673-3	960		
			Q	uality Cor	ntrol Data							
		* Quality			ne as reported	analytical	results					
			Blank		Standard			Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
12/4/2018	Chloride	220840	<0.219	20	16.5	82.5	50	61	122.0		7.0	GB
12/4/2018	Chloride		<0.219		53							GB
12/4/2018	Chloride			20	16.5	82.5						GB
12/4/2018	Fluoride	220840	<0.083	10	10	100.0	10	10.1	101.0		0.0	GB
12/4/2018	Fluoride		<0.083									GB
12/4/2018	Fluoride			10	10	100.0						GB
12/6/2018	Mercury	220947.1	<0.00000	0.001	0.00097	97.0	0.001	0.0009558	95.6		0.7	LNM
12/6/2018	Mercury	220937.1	<0.00000	0.001	0.00097	97.0	0.001	0.0009076	90.8		1.0	LNM
12/3/2018	Solids, Total Dissolved (TDS)		<2	99.33	100	100.7	2802	2806	100.1		12.0	JTD
12/4/2018	Sulfate	220840	<0.140	20	17	85.0						GB
12/4/2018	Sulfate		<0.140									GB
12/4/2018	Sulfate			20	17	85.0						GB

Code Description Code

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

U Analyte concentration below MDL.

Laboratory Manager

19-Dec-18 Report Date

Shreveport Chemical Laboratory (SCL)				Ch	nain	of C	ustody	Chain of Custody Record	đ			Job 11-29-18
502 N. Allen Ave. Shreveport , LA 71101				rograi	m: Co	al Con	ubustion F	Program: Coal Combustion Residuals (CCR)	CCR)			
Jonathan Barnhill (318-673-3803) Contacts: John Davis (318-673-3811)						Site Contact:	ntact:			Date:	CO	For Lab Use Only: COC/Order #:
Project Name: Northeastern PP CCR							500 mL	Field-filter 500 mL	±	Three (six every		no the same
Contact Name: Jill Parker-Witt	Analysis 1	lurnarounc	Analysis Turnaround Time (in Calendar Days)	alendar D)ays)		bottle, pH<2.	bottle, then		10th*) 1		50882 av/11.1
	Rou	tine (28 da	Routine (28 days for Monitoring Wells)	oring We	alls)		HNO3	HNO3	0-6C	L bottles, pH<2, HNO3		(0 c 100
Sampler(s): Kenneth McDonald						ls		រnd Mn	604	228	 	
			Sample			er(s) Initia	ry	lved Fe a	F, CI, S	26, Ra-3		
Sample Identification	Sample Date	Sample Time	(C=Comp, G=Grab)	Matrix	# of Cont.	Sample	Mercu	disso	TDS,	Ra-2		Sample Specific Notes:
MW-4D	11/28/2018	850	G	GW	2		×		×		22	220937.1-220937.2
MW-5D	11/28/2018	1135	G	GW	2		×		×		2	5.1-
MW-12D	11/28/2018	1325	G	GW	2		×		×		2	2-45401-220439-2
DUPLICATE	11/28/2018	850	G	GW	2		×		×			10440.1-220440. Z
EQUIPMENT BLANK	11/28/2018	1500	G	GW	-		×					20941
											-	
											_	
											-	
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	NO3; 5=Na(0H; 6= Ot	her		F= filter in field	field	4	F4	1	4	_	
* Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th	sample.										
Special Instructions/QC Requirements & Comments:	ts:											
Relinquished by: WH MM	Company CA616	A616		Date/Time: 11/29/18/	1/18/	019	Received by:				Date	Date/Time:
Relinquished by:	Company:			Date/Time:	me:		Received by:	7			Date	Date/Time:
Relinquished by:	Company:	C		Date/Time:	me:		Received in	Received in Laboratory by:	Y:		Date	Date/Time:
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Streetsport, Rev. 1, 1/10/17	rd for Coal (Combusti	on Residua	I (CCR)	Sampli	atte-Bu	eveport, Rev	v. 1, 1/10/17				

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type	Delivery Type
Ice Chest Bag Action Pak PCB Mailer Bottle	UPS FEDEX US Mail Walk in Shuttle
Other	Other
	Tracking #
Client Jill Parker-Witt	Sample Matrix
Received By	DGA PCB Oil Water Oil Soil
Received Date ////////////////////////////////////	
Open Date	Solid Liquid Other
Container Temp Read	Project I.D. 38805
Correction Factor 4/. 2	Were samples received on ice? (YES) NO
Corrected Temp	
Did container arrive in good condition?	YES NO
Was sample documentation received?	YES NO
Was documentation filled out properly?	Mes NO
Were samples labeled properly?	YES NO
Were correct containers used?	VES NO
Were the pH's of samples appropriately checked?	VES AND ALA
Total number of sample containers	- 379 -
Was any corrective action taken?	NO Person Contacted Date & Time
Comments	

Sample ID	Analysis	рН	Preservative Added / Lot #
MW-4D	Mercury	<u> </u>	/
A.A			/
MW-121D			
Equipment Blonk	V		/
			//
			/
			//
,	2.		//
			//
			/
		-	/
			/
]
			//
			//
			//
	·		/
			/
			/
	.s		/

.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station

MW-4D

Report Date: 12/28/2018

Sample Number: 184031-0	01	Date Co	llected:	11/28/2	018 08:50	Da	ate Received: 12/3/2018
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	< 0.1 ug/L	U	0.5	0.1	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.31 ug/L		0.5	0.2	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Barium, Ba	171 ug/L		0.5	0.1	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.1 ug/L	U	0.5	0.1	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.06 ug/L	J	0.2	0.05	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.3 ug/L	J	1	0.2	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.677 ug/L		0.2	0.1	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.3 ug/L	J	0.5	0.1	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	8 ug/L	J	10	2	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.2 ug/L	J	1	0.2	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.5 ug/L	U	2	0.5	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Boron, B	1.24 mg/L		0.02	0.005	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	193 mg/L		0.1	0.02	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00378 mg/L		0.001	0.00005	GES	12/17/2018 15:38	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	1.21	pCi/L	0.17	0.53	jls	12/27/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.419	pCi/L	0.087	0.10	jls	12/26/2018	SW-846 9315-1986,Rev. 0

Report Date: 12/28/2018

MW-5D

Sample Number: 184031-002

Date Collected: 11/28/2018 11:35

Date Received: 12/3/2018

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	< 0.1 ug/L	U	0.5	0.1	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.15 ug/L		0.5	0.2	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Barium, Ba	113 ug/L		0.5	0.1	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.1 ug/L	U	0.5	0.1	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.06 ug/L	J	0.2	0.05	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.5 ug/L	J	1	0.2	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.324 ug/L		0.2	0.1	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.4 ug/L	J	0.5	0.1	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	2 ug/L	J	10	2	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.3 ug/L	J	1	0.2	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.5 ug/L	U	2	0.5	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Boron, B	0.612 mg/L		0.02	0.005	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	143 mg/L		0.1	0.02	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0121 mg/L		0.001	0.00005	GES	12/17/2018 15:43	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	1.99	pCi/L	0.16	0.48	jls	12/27/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.403	pCi/L	0.070	0.087	jls	12/26/2018	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the established range of 30-110%.

Report Date: 12/28/2018

MW-12D

Sample Number: 184031-003

Date Collected: 11/28/2018 13:25

Date Received: 12/3/2018

Parameter	Result	Unite	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
i didilietei	Result	Units	Quai		WIDE	Analysis by	Analysis Date/ Time	Metriod
Antimony, Sb	0.3	ug/L	J	0.5	0.1	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Arsenic, As	3.99	ug/L		0.5	0.2	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Barium, Ba	71.7	ug/L		0.5	0.1	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.1	ug/L	J	0.5	0.1	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.33	ug/L		0.2	0.05	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	1.70	ug/L		1	0.2	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.989	ug/L		0.2	0.1	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Lead, Pb	4.12	ug/L		0.5	0.1	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	744	ug/L		10	2	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Selenium, Se	1.9	ug/L		1	0.2	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.5	ug/L	U	2	0.5	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Boron, B	9.69	mg/L		0.02	0.005	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	103	mg/L		0.1	0.02	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00483	mg/L		0.001	0.00005	GES	12/17/2018 15:48	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	1.05	pCi/L	0.15	0.46	jls	12/27/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.436	pCi/L	0.076	0.084	jls	12/26/2018	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the established range of 30-110%.

Duplicate

Report Date: 12/28/2018

Duplicate							
Sample Number: 1840	031-004	Date Co	llected:	11/28/2	018 08:50	Da	ate Received: 12/3/2018
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	< 0.1 ug/L	U	0.5	0.1	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.25 ug/L		0.5	0.2	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Barium, Ba	171 ug/L		0.5	0.1	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.1 ug/L	U	0.5	0.1	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.05 ug/L	J	0.2	0.05	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.3 ug/L	J	1	0.2	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.668 ug/L		0.2	0.1	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.3 ug/L	J	0.5	0.1	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	9 ug/L	J	10	2	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.2 ug/L	J	1	0.2	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.5 ug/L	U	2	0.5	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Boron, B	1.17 mg/L		0.02	0.005	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	201 mg/L		0.1	0.02	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00391 mg/L		0.001	0.00005	GES	12/17/2018 15:53	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Report Date: 12/28/2018

Equipment Blank

Sample Number:	184031-005		Date Co	llected:	11/28/2	018 15:00	Da	ate Received: 12/3/2018
Parameter	Resul	t Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	< 0.0	2 ug/L	U	0.1	0.02	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Arsenic, As	< 0.0	3 ug/L	U	0.1	0.03	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Barium, Ba	0.0	5 ug/L	J	0.1	0.02	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.0	2 ug/L	U	0.1	0.02	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.0	1 ug/L	U	0.05	0.01	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	< 0.0	1 ug/L	U	0.2	0.04	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	< 0.0	2 ug/L	U	0.05	0.02	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Lead, Pb	< 0.0	2 ug/L	U	0.1	0.02	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	< 0.4	1 ug/L	U	2	0.4	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Selenium, Se	< 0.0	3 ug/L	U	0.2	0.03	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.	1 ug/L	U	0.5	0.1	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Boron, B	0.024	1 mg/L		0.005	0.0009	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	0.0	1 mg/L	J	0.02	0.003	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0000	2 mg/L	J	0.0002	0.00001	GES	12/17/2018 15:58	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

*The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "onesigma" which has the same units of measurement as the result.

MW-3D							
Sample Number: 184031-006	;	Date Co	llected:	11/28/2	2018 09:30	Da	ate Received: 12/3/2018
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.964 mg/L		0.02	0.005	GES	12/17/2018 16:03	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Report Date: 12/28/2018

MW-15							
Sample Number: 184031-007		Date Co	llected:	11/28/2	2018 11:00	Da	ate Received: 12/3/2018
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Calcium, Ca	119 mg/L		0.1	0.02	GES	12/17/2018 16:08	EPA 200.8-1994, Rev. 5.4
LI: Analyte was analyzed and not dates	tad at ar above ad	insted Math	and Data	ation Limi			

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

*The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "onesigma" which has the same units of measurement as the result.

Muhael & Olling

Michael Ohlinger, ChemistEmail msohlinger@aep.comTel.Fax 614-836-4168Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125				Ch	ain c	of Cu:	stody ustion R	Chain of Custody Record Program: Coal Combustion Residuals (CCR)	J SCR)					
Contacts: Dave Conover (614-836-4184) Dave Conover (614-836-4219)					ی ت	Site Contact:	÷			Date:			For Lab Use Only: COC/Order #:	
Project Name: Northeastern PP CCR							250 mL	Field-filter 250 mL	-	Three				~
Contact Name: Jill Parker-Witt	Analysis	Turnaround	Analysis Turnaround Time (in Calendar Days)	ilendar Da	(sti			pottle, then		(six every 10th*) 1			2010	
Contact Phone: 318-673-3816	6 Rot	ıtine (28 da	Routine (28 days for Monitoring Wells)	ring Wells	-		PHS2, HNO3	pH<2, HNO3	Cool, 0-6C	L bottles, pH<2, HNO3			100101	
Sampler(s): Kenny McDonald						L		, As, Dr, Tl 5, Mn, 5, Tl	7 ¢	82				
							(qa (s	'əs W' 'PC 'PC	os '	; Z- 6				
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont	Sampler(s) in	B, Ca, Sb, A Cd, Cr, Co, F Se, TL	Dissolved B, Dissolved B, Dissolved B, Dissolved B,	TDS, F, CI	8a-226, Ra			Sample Specific Notes:	ŝ
MW-4D	11/28/2018	850	U	GW	7		×			×				
MW-5D	11/28/2018	1135	U	GW	4		×			×				
MW-12D	11/28/2018	1325	U	GW	4		×			×				
DUPLICATE	11/28/2018	850	U	GW	-		×							
EQUIPMENT BLANK	11/28/2018	1500	ß	GW	-		×							
					_									
											_			
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3; 5=Na(OH; 6= Oth	her	1 F= 11	; F= filter in field	łd	4	F4	1	4				
Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th	sample.												
Special Instructions/QC Requirements & Comments:	nts:													
Relinquished by: NA M	Company: FA61F	AGLF		Date/Time:	e: 1400		Received by:	OND.	O,	\propto			Date/Time: 1.2 - 1、2 - 1 又	11- +S
Relinquished by:	Company:			Date/Time:		R.	Received by:						7	
Relinquished by:	Company:			Date/Time:		R.	sceived in I	Received in Laboratory by:					Date/Time:	
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	rd for Coal C	combustio	n Residua	(CCR) S	ampling	- Shreve	port, Rev.	1, 1/10/17				1		

Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125			Program	Ch 2nd F	ain (of Cu	stody	Chain of Custody Record		OF 3			
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)					S	Site Contact:	ict:		i D	Date:		For Lab Use Only: COC/Order #:	
Project Name: Northeastern PP CCR Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816	Analysis	Turmaround utine (28 da	Analysis Turnaround Time (in Calendar Days) © Routine (28 days for Monitoring Wells)	llendar Da ring Wells) (ski	I	250 mL bottle, pH<2, HNO3	250 mL bottle, pH<2, HNO3	1 L bottle, 0-6C	Three (six every 10th*) L bottles, pH<2, HNO3			
Sampler(s): Kenny McDonald						slsij			70 5	1-228			
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) ini	вокои		TDS, F, CI,	Ra-226, Ra		Sample Specific Notes:	
MW-3D	11/28/2018	930	U	GW	-		×						
MW-15	11/28/2018	1100	U	GW	-			×					
					_								
											_		
					+								
											_		
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	NO3; 5=Nat	DH; 6= Oth	Ter	; F= filter in field	ter in fie	bid	4	F4	-	4			
* Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th	sample.						-					
Special Instructions/QC Requirements & Comments:	ts:												
har al	Company: A61F	19t		Date/Time:	e: 1/8	1400 R	Received by:	90	d'			Date/Time: -0 3 - 1 & 1	141.
Relinquished by:	Company:			Date/Time:			Received by:					Date/Time:	
Relinquished by:	Company:			Date/Time:			Received in I	Received in Laboratory by:				Date/Time:	
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) S	d for Coal (Combustic	n Residual	(CCR) S	ampling	1 - Shrevu	ampling - Shreveport, Rev. 1. 1/10/17	1. 1/10/17					

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

Form SOP-7102 Sample Receipt Form Rev.6, 11/30/15

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type	
Cooler Box Bag Envelope		ISPS
	Other	
Plant/Customer NOTHEGILOL	Number of Plastic Containers:	19
Opened By <u>SH</u>	Number of Glass Containers:	
Date/Time 12-03-18 11:45	Number of Mercury Containers:	
Were all temperatures within 0-6°C? Y/N c	N/A Initial: () Mon	ice / no ice
(IR Gun Ser# <u>) 7077 9 03</u> Expir. (-7-1 9 Was container in good condition? <u>Y</u> / N		
Was Chain of Custody received? Y N Requested turnaround: <u>Robert</u>	Comments	
pH (15 min) Cr^{+6} (pres) NO_2 or NO_2 (24 hr)		
Was COC filled out properly?	Comments	
Were samples labeled properly?	Comments	
	Comments	
Was pH checked & Color Coding done?	N or N/A Initial & Date: 5M	12-03-11
- Was Add'l Preservative needed? Y / W I	Yes: By whom & when:	_ (See Prep Book)
Is sample filtration requested? Y / N	Comments	_ (See Prep Book)
Was the customer contacted? If Yes: I	Person Contacted:	
Lab ID# 184031 Initial & D	ate & Time :	
Logged by	is:	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Sample Receipt Form SOP-7102

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 39067 Date Received: 01/17/2019	Co	ontact: Jill	P - Environme Parker-Witt 8) 673-3816	ental (JP-W)	Fax:	502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 222034 Cust Sample ID: MW-4D Sample Desc.: Coal Combustic	Loc		I5/2019 theastern P P		By: Matrix:	KM Water		
Water (222034)			-	1				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	24.6	mg/L	0.219	1	EPA 300.0	01/18/2019 18:10		GB
Fluoride	0.370	mg/L	0.083	1	EPA 300.0	01/22/2019 13:45	J	GB
Sulfate	417.6	mg/L	0.140	1:10	EPA 300.0	01/18/2019 18:29		GB
AEP Sample ID : 222035	Collected	d Date: 01/1	15/2019			KM		
Cust Sample ID: MW-5D Sample Desc.: Coal Combustic Water (222035)			theastern P P		Matrix:	Water		
			theastern P P		Matrix: Method	Water Analysis Date/Time	Codes	Tech
Sample Desc.: Coal Combustic Water (222035)	on Residuals (CCR	R)	1				Codes	Tech GB
Sample Desc.: Coal Combustic Water (222035) Parameter	on Residuals (CCR	R) Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes J	
Sample Desc.: Coal Combustic Water (222035) Parameter Chloride	on Residuals (CCR Value 24.0	() Unit mg/L	Det. Limit 0.219	Dil./Conc.	Method EPA 300.0	Analysis Date/Time 01/18/2019 18:48		GB
Sample Desc.: Coal Combustic Water (222035) Parameter Chloride Fluoride	Value Value 24.0 0.316 127.6 Collected	Unit mg/L mg/L mg/L d Date: 01/1 cation: Nor	Det. Limit 0.219 0.083 0.140	Dil./Conc. 1 1 1:10	Method EPA 300.0 EPA 300.0 EPA 300.0	Analysis Date/Time 01/18/2019 18:48 01/22/2019 14:03 01/18/2019 19:06 KM		GB GB
Sample Desc.: Coal Combustic Water (222035) Parameter Chloride Fluoride Sulfate AEP Sample ID : 222036 Cust Sample ID: MW-12D	Value Value 24.0 0.316 127.6 Collected	Unit mg/L mg/L mg/L d Date: 01/1 cation: Nor	Det. Limit 0.219 0.083 0.140 15/2019 theastern P P	Dil./Conc. 1 1 1 1 1:10	Method EPA 300.0 EPA 300.0 EPA 300.0 By:	Analysis Date/Time 01/18/2019 18:48 01/22/2019 14:03 01/18/2019 19:06 KM		GB GB GB
Sample Desc.: Coal Combustic Water (222035) Parameter Chloride Fluoride Sulfate AEP Sample ID : 222036 Cust Sample ID: MW-12D Sample Desc.: Coal Combustic	Value Value 24.0 0.316 127.6 Collected	Unit mg/L mg/L mg/L d Date: 01/1 cation: Nor	Det. Limit 0.219 0.083 0.140 15/2019 theastern P P	Dil./Conc. 1 1 1 1 1:10	Method EPA 300.0 EPA 300.0 EPA 300.0 By:	Analysis Date/Time 01/18/2019 18:48 01/22/2019 14:03 01/18/2019 19:06 KM		GB GB
Sample Desc.: Coal Combustic Water (222035) Parameter Chloride Fluoride Sulfate AEP Sample ID : 222036 Cust Sample ID: MW-12D Sample Desc.: Coal Combustic Water (222036)	on Residuals (CCR Value 24.0 0.316 127.6 Collected Loc	Unit mg/L mg/L d Date: 01/1 cation: Nor	Det. Limit 0.219 0.083 0.140 15/2019 theastern P P	Dil./Conc. 1 1 1 1 1:10	Method EPA 300.0 EPA 300.0 EPA 300.0 By: Matrix:	Analysis Date/Time 01/18/2019 18:48 01/22/2019 14:03 01/18/2019 19:06 KM Water	J	GB GB GB
Sample Desc.: Coal Combustic Water (222035) Parameter Chloride Fluoride Sulfate AEP Sample ID : 222036 Cust Sample ID: MW-12D Sample Desc.: Coal Combustic Water (222036) Parameter	on Residuals (CCR Value 24.0 0.316 127.6 Collected Loc on Residuals (CCR	Unit mg/L mg/L mg/L d Date: 01/1 cation: Nor x) Unit	Det. Limit 0.219 0.083 0.140 5/2019 theastern P P	Dil./Conc.	Method EPA 300.0 EPA 300.0 EPA 300.0 By: Matrix: Method	Analysis Date/Time 01/18/2019 18:48 01/22/2019 14:03 01/18/2019 19:06 KM Water	J	GB GB GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

				-	-					-	•	
Report Date Re	ID : 39067 eceived: 01/17/2019	Contact	: Jill Par	rker-Witt	ntal (JP-W)) Address: 502 N. Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960						
		Phone	: (310) (673-3816					,	960		
	mple ID : 222037	Collected Date	: 01/15/2	2019				By: KN				
	ample ID: Duplicate Ile Desc.: Coal Combustion F		: Northe	astern P P			Γ	Matrix: W	ater			
Water (222	2037)											
Parameter		Value Un	it [Det. Limit	Dil./Conc.		Method		Analysis	Date/Time	Codes	Tech
Chloride		24.5 mg	/L	0.219	1		EPA 300.0)	01/18/2	019 20:22		GB
Fluoride		0.335 mg	/L	0.083	1		EPA 300.0)	01/19/2	019 14:41	J	GB
Sulfate		470.5 mg	/L	0.140	1:10		EPA 300.0)	01/18/2	019 20:41		GB
					ntral Data			1				
		* Quality			ntrol Data me as reported		results					
			Blank		Standard		Duplicate %	6				
Date	Parameter	Sample ID	Value	* Value *	Recovery*	%	Value *	Recovery*	· %	% Recovery	Difference	Tech
1/18/2019	Chloride	221959	<0.219	20	20	100.0	20	20	100.0		0.0	GB
1/18/2019	Chloride		<0.219	20	20	100.0						GB
1/18/2019	Chloride		<0.219	20	19	95.0						GB
1/18/2019	Chloride		<0.219									GB
1/22/2019	Fluoride	222046		10	10	100.0					0.0	GB
1/22/2019	Fluoride		<0.083									
1/18/2019	Sulfate	221959	<0.140	20	19	95.0	20	21	105.0		0.0	GB
1/18/2019	Sulfate		<0.140	20	19	95.0						GB

Code Code Description

Sulfate

1/18/2019

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation_Limit (MQL).

<0.140

Laboratory Manager Wallace

28-Jan-19 Report Date

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 2 of 2

GB

Relinquished by: Company.	Relinquished by: KAM Company: CAL	Special Instructions/QC Requirements & Comments:	* Six 1L Bottles must be collected for Radium for every 10th sam	Preservation Used: 1= lce, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; (1/15/19 -112012010	1/15/19 -+++2012012	1/15/19	1/15/2019	œ	Sampler(s): Kenneth McDonald	Project Name: Northeastern PP CCR Contact Name: Jill Parker-Witt Analysis Turna Contact Phone: 318-673-3816 © Routine (Jonathan Barnhill (318-673-3803) Contacts: John Davis (318-673-3811)	Suz N. Allen Ave. Shreveport , LA 71101	Shreveport Chemical Laboratory (SCL)
	suk		ple.	6= Other								300 G	520 G	305 G	300 G			iround Time (in C 28 days for Mon			
Date/Time	Date/Time			; F= fitt				1				GW	GW	GW	GW	Matrix		Calendar Day itoring Wells		Program	Cha
	PY21 PI			er in fie l d									-	1	_		tials) <u>s</u>			lin of C
Received	Received			4												Mercury		500 mL bottle, pH<2, HNO3	ontact:	mbustion	Chain of Custody Record
oy:	oy:			F4												dissolved Fe	e and Mn	Field-filte 500 mL bottle, the pH<2, HNO3		Residuals	y Reco
				1								×	×	×	×	Fluoride, Chloride, S	Sulfate	1 L bottle, Cool, 0-6C		; (CCR)	rd
				4												Ra-226, Ra	ı-228	Three (six every 10th*) 1 L botties, pH<2, HNO3	Date		
Date/Time:	Date/Time:											122037	222036	222035	×20222	Sample Specific Notes:		MC#39067	For Lab Use Only: COC/Order #:		0-81-1 20C
	Company: Date/Time: Received by:	Company: Date/Time: Received by: Company: Company: Date/Time: Received by: Company: Date/Time: Received by:	mpany: Date/Time: 05/117/19 Received by: mpany: Date/Time: Received by:	Impany: Date/Time: 05//17//g Received by: mpany: Date/Time: Received by:	Impany: CAGLE Date/Time: ISY 10th sample. Impany: CAGLE Date/Time: Received by: Impany: Date/Time: Received by:	Impany: CAGLE Date/Time: Received by:	mpany: Date/Time: F= filter in field AGUE Date/Time: Pate/Time: Pate/Time: Received by:	Impany: Date/Time: Peceived by:	Impany. Date/Time: SY9 Received by:	mpany: Date/Time: Peceived by: mpany: Date/Time: Received by:	mpany Cate/Time: F= filter in field 4 F4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	mpany: Conter ; F=filter in field 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 <t< td=""><td>mpany: Current Current F= fitter in field A I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I</td><td>Hendolic 1520 G GW 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <thi< th=""> I I I I I I I I I I I I I I I I I I I I I I I I I I <thi< th=""> I I I I I I I I I I I I I I I I I I I I I I I I I I <thi< td=""><td>Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster</td><td>132019 1600 G GW 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <thi< td=""><td>anple Sample Sample<!--</td--><td>Konseth McDonald Sample Identification Sample Identification Sample Identification NW-10 VIS/M Unsole Timele GC20mp. Nume NW-10 VIS/M Insole GC20mp. Nume NUM-10 VIS/M Insole GC20mp. Nume Sample Identification Num-10 VIS/M Insole GC20mp. Nume GC20mp. Nume Insole Insole</td><td>Intrinsistem PP CCR Angle Turanovni Time (i Calester Day) Somple Touling (2) angle to Monitoring Walks) Somple Touling (2) angle to Monitoring Walks) Somple Touling (2) angle to Monitoring Walks) Somple Time Calester Day (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)</td><td>Summarian Standbarg (Stream) Stream) Stream)</td><td>Simple Manual Year Forgram: Coal Combustion Residuals (CCF) Simple Manual (RE-07.387) Simple Transound Time In Celorade Day Resolution PCCR Simple Transound Time In Celorade Day Resolution (RE-07.387) Simple Time In Celorade Day Resolution (RE-07.387) Simple Time In Celorade Day Resolution (RE-07.387) Simple Time In Celorad</td></td></thi<></td></thi<></thi<></thi<></td></t<>	mpany: Current Current F= fitter in field A I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	Hendolic 1520 G GW 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <thi< th=""> I I I I I I I I I I I I I I I I I I I I I I I I I I <thi< th=""> I I I I I I I I I I I I I I I I I I I I I I I I I I <thi< td=""><td>Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster</td><td>132019 1600 G GW 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <thi< td=""><td>anple Sample Sample<!--</td--><td>Konseth McDonald Sample Identification Sample Identification Sample Identification NW-10 VIS/M Unsole Timele GC20mp. Nume NW-10 VIS/M Insole GC20mp. Nume NUM-10 VIS/M Insole GC20mp. Nume Sample Identification Num-10 VIS/M Insole GC20mp. Nume GC20mp. Nume Insole Insole</td><td>Intrinsistem PP CCR Angle Turanovni Time (i Calester Day) Somple Touling (2) angle to Monitoring Walks) Somple Touling (2) angle to Monitoring Walks) Somple Touling (2) angle to Monitoring Walks) Somple Time Calester Day (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)</td><td>Summarian Standbarg (Stream) Stream) Stream)</td><td>Simple Manual Year Forgram: Coal Combustion Residuals (CCF) Simple Manual (RE-07.387) Simple Transound Time In Celorade Day Resolution PCCR Simple Transound Time In Celorade Day Resolution (RE-07.387) Simple Time In Celorade Day Resolution (RE-07.387) Simple Time In Celorade Day Resolution (RE-07.387) Simple Time In Celorad</td></td></thi<></td></thi<></thi<></thi<>	Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster Answerster	132019 1600 G GW 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <thi< td=""><td>anple Sample Sample<!--</td--><td>Konseth McDonald Sample Identification Sample Identification Sample Identification NW-10 VIS/M Unsole Timele GC20mp. Nume NW-10 VIS/M Insole GC20mp. Nume NUM-10 VIS/M Insole GC20mp. Nume Sample Identification Num-10 VIS/M Insole GC20mp. Nume GC20mp. Nume Insole Insole</td><td>Intrinsistem PP CCR Angle Turanovni Time (i Calester Day) Somple Touling (2) angle to Monitoring Walks) Somple Touling (2) angle to Monitoring Walks) Somple Touling (2) angle to Monitoring Walks) Somple Time Calester Day (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)</td><td>Summarian Standbarg (Stream) Stream) Stream)</td><td>Simple Manual Year Forgram: Coal Combustion Residuals (CCF) Simple Manual (RE-07.387) Simple Transound Time In Celorade Day Resolution PCCR Simple Transound Time In Celorade Day Resolution (RE-07.387) Simple Time In Celorade Day Resolution (RE-07.387) Simple Time In Celorade Day Resolution (RE-07.387) Simple Time In Celorad</td></td></thi<>	anple Sample Sample </td <td>Konseth McDonald Sample Identification Sample Identification Sample Identification NW-10 VIS/M Unsole Timele GC20mp. Nume NW-10 VIS/M Insole GC20mp. Nume NUM-10 VIS/M Insole GC20mp. Nume Sample Identification Num-10 VIS/M Insole GC20mp. Nume GC20mp. Nume Insole Insole</td> <td>Intrinsistem PP CCR Angle Turanovni Time (i Calester Day) Somple Touling (2) angle to Monitoring Walks) Somple Touling (2) angle to Monitoring Walks) Somple Touling (2) angle to Monitoring Walks) Somple Time Calester Day (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)</td> <td>Summarian Standbarg (Stream) Stream) Stream)</td> <td>Simple Manual Year Forgram: Coal Combustion Residuals (CCF) Simple Manual (RE-07.387) Simple Transound Time In Celorade Day Resolution PCCR Simple Transound Time In Celorade Day Resolution (RE-07.387) Simple Time In Celorade Day Resolution (RE-07.387) Simple Time In Celorade Day Resolution (RE-07.387) Simple Time In Celorad</td>	Konseth McDonald Sample Identification Sample Identification Sample Identification NW-10 VIS/M Unsole Timele GC20mp. Nume NW-10 VIS/M Insole GC20mp. Nume NUM-10 VIS/M Insole GC20mp. Nume Sample Identification Num-10 VIS/M Insole GC20mp. Nume GC20mp. Nume Insole Insole	Intrinsistem PP CCR Angle Turanovni Time (i Calester Day) Somple Touling (2) angle to Monitoring Walks) Somple Touling (2) angle to Monitoring Walks) Somple Touling (2) angle to Monitoring Walks) Somple Time Calester Day (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Summarian Standbarg (Stream) Stream) Stream)	Simple Manual Year Forgram: Coal Combustion Residuals (CCF) Simple Manual (RE-07.387) Simple Transound Time In Celorade Day Resolution PCCR Simple Transound Time In Celorade Day Resolution (RE-07.387) Simple Time In Celorade Day Resolution (RE-07.387) Simple Time In Celorade Day Resolution (RE-07.387) Simple Time In Celorad

1

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type		Delivery Type					
Ice Chest Bag Action Pak PCB Mailer Bottle	UPS FEI	DEX US Mail	Walk in	Shuttle			
Other	Other						
	Tracking #						
Client Jill Packer - Witt		Sample Matri					
Received By	– DGA PCI	3 Oil Water	Oil	Soil			
Received Date	_	\bigcirc					
Open Date	Solid Lic	juid Other					
Container Temp Read Correction Factor	_ Proje	ct I.D. <u>31714</u>	7				
+1.2	Were samples	received on ice?	YES	NO			
Corrected Temp	-						
Did container arrive in good condition?	YES <u>NO</u>						
Was sample documentation received?	VES NO						
Was documentation filled out properly?	YES NO			ų			
Were samples labeled properly?	YES NO	<u></u>					
Were correct containers used?	YES <u>NO</u>						
Were the pH's of samples appropriately checked?	YES NO	NIA					
Total number of sample containers $-\frac{L}{2}$	_						
Was any corrective action taken?		on Contacted & Time	5:11	parla W! 1 -19 9:20			
comments The Schaple collect	in dite			5.6. U.			
Was connected By Kenn	revould	on 1/21	119.				

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station

Report Date: 2/6/2019

Sample Number:	190230-001		Date Collected: 01/15/2019 16:00			2019 16:00	Date Received: 1/21/2019		
Parameter		Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method	
Boron, B		1.16 mg/L		0.02	0.005	GES	02/05/2019 17:07	EPA 200.8-1994, Rev. 5.4	
Calcium, Ca		183 mg/L		0.1	0.02	GES	02/05/2019 17:07	EPA 200.8-1994, Rev. 5.4	

MW-5D

MW-4D

Sample Number: 190230-002	D	01/15/2019 18:05 Da			ate Received: 1/21/2019	
Parameter	Result Units	Data Qual RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.540 mg/L	0.005	0.0009	GES	02/04/2019 17:17	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	157 mg/L	0.02	0.003	GES	02/04/2019 17:17	EPA 200.8-1994, Rev. 5.4

MW-12D

Sample Number:	190230-003	Date Collected:			01/15/2019 15:20 E		Da	ate Received: 1/21/2019
Parameter		Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B		9.08 mg/L		0.02	0.005	GES	02/05/2019 17:12	EPA 200.8-1994, Rev. 5.4
Calcium, Ca		68.0 mg/L		0.1	0.02	GES	02/05/2019 17:12	EPA 200.8-1994, Rev. 5.4

Equipment Blank

...

Sample Number:	190230-004		Date Collected:			01/15/2019 16:00 D			te Received: 1/21/2019
Parameter		Result U	nits	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B		0.048 m	ig/L		0.005	0.0009	GES	02/04/2019 17:27	EPA 200.8-1994, Rev. 5.4
Calcium, Ca		0.01 m	ıg/L	J	0.02	0.003	GES	02/04/2019 17:27	EPA 200.8-1994, Rev. 5.4

Duplicate								
Sample Number:	190230-005		Date Co	llected:	01/15/2	2019 18:10	Da	ate Received: 1/21/2019
Parameter		Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B		1.12 mg/L		0.005	0.0009	GES	02/04/2019 17:32	EPA 200.8-1994, Rev. 5.4
Calcium, Ca		201 mg/L		0.02	0.003	GES	02/04/2019 17:32	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Ice was present in all samples upon arrival due to outside temperatures.

Michael & Ollinger

Michael Ohlinger, Chemist Email msohlinger@aep.com Tel. Fax 614-836-4168 Aud

Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Dolan Chemical Laboratory (DCL) 4001 Bixby Road	n <u>. 20</u> 3			ch	ain c	of Cu	stody	Chain of Custody Record				
Michael Ohlinger (614-836-4184)				rogran		oal Combus Site Contact:	ustion K ct:	Program: Coal Combustion Residuals (CCR)	CK)	Date:		For Lab Use Only:
Contacts: Dave Conover (614-836-4219)								-		_	_	COC/Order #
Project Name: Northeastern PP CCR Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816	Analysis	Turnarounc utine (28 da	Analysis Turnaround Time (in Calendar Days) © Routine (28 days for Monitoring Wells)	lendar Da ring Wells	(sk)		250 mL bottle, pH<2, HNO3	Field-filter 250 mL bottle, then pH<2, HNO3	1 L bottle, Cool, 0-6C	Thr ee (six every 10th*) L bottles, pH<2, HNO3		190230
Sampler(s): Kenny McDonald						slai)	un	Sb, As, Dd, Cr, Mg, Mn, Se, Sr, Tl	70 5	8-228		
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# af Cont.	ini (s)ısıqms2	Boron, Calci	Dissolved B, Ba, Be, Ca, C Dissolved B,	TDS, F, CI,	8 <mark>8-</mark> 226, Ra		Sample Specific Notes:
DM-4D	1/15/2019	1600	U	GW	-		×					
MW-5D	1/15/2019	1805	IJ	GW	t		×					
MW-12D	1/15/2019	1520	IJ	GW	+-		×					
DUPLICATE	1/15/2019	1600	U	GW	-		×					
EQUIPMENT BLANK	1/15/2019	1810	U	3			×					
					_							
						+						
								1				
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3; 5=Na	OH; 6= Ot	her	; F= filter in field	ter in fi	ple	4	F4	-	4		
* Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th	sample.										
Special Instructions/QC Requirements & Comments:	nts:											
Relinquished by:	Company:	4		Date/Time: 01/11/19		1400	Received by:					Date/Time:
Relinquished by:	Company:			Date/Time:	i i i i i i i i i i i i i i i i i i i		Received by:	<u>.</u> .				Date/Time:
Relinquished by:	Company:			Date/Time:	÷.		Received in	Received in Abaratoryby:	8	Mar ~		Date/Time: 1/21//19 /2:30,01m
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	rd for Coal	Combusti	on Residua	I (CCR) S	amplin	g - Shrev	eport, Rev	.1, 1/10/17				

Form SOP-7102 Sample Receipt Form Rev.6, 11/30/15

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer_NortLeystorn	Number of Plastic Containers:
Opened By;Mot	Number of Glass Containers:
	Number of Mercury Containers:
	or N/A Initial:on ice / no ice) - If No, specify each deviation:
	Comments
	Comments
Requested turnaround: 28047	If RUSH, who was notified?
1	O₃ (48 hr) ortho-PO₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	Comments
	Comments
Were correct containers used?	Comments
Was pH checked & Color Coding done?	N or N/A Initial & Date: M50 1/21/19
\sim	Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y /	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID#	Date & Time :
Logged by MSD Commen	ts: Due to cultent Weather, Mrs were partially Prozen
Reviewed by	n'arrival.

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Analysis Report

Report ID : 39317 Date Received: 02/28/2019	С	mpany: SEP ontact: Jill F Phone: (318	Parker-Witt 6) 673-3816	ental (JP-W)	Fax:	502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 223097 Cust Sample ID: MW-2D Sample Desc.: Coal Combusti	Lo	d Date: 02/2 cation: North R)		ver Plant	By: / Matrix: `			
Metals (223097)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	0.000028	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 12:10		LNM
Water (223097)			<u>.</u>	· · · ·		-! -		-
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	1218	mg/L	2	1	SM 2540 C-2011	03/02/2019 14:02		JTD
AEP Sample ID : 223098 Cust Sample ID: MW-3D Sample Desc.: Coal Combusti	Lo	d Date: 02/2 cation: North R)		ver Plant	By: H Matrix: V			
Metals (223098)			I					_
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 12:27	U	LNM
Water (223098)	· · ·							
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	700	mg/L	2	1	SM 2540 C-2011	03/02/2019 14:02		JTD
AEP Sample ID : 223099 Cust Sample ID: MW-4D Sample Desc.: Coal Combusti	Lo	d Date: 02/2 cation: North R)		ver Plant	By: H Matrix: `			
Metals (223099)	Value	11:0:4	Det Limit		Mathad	Analysia Data/Tima	Codee	Teeh
Parameter	Value	Unit		Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 12:29	U	LNM
Water (223099)	Velas	11	Det L'mit		Marthaut		0	Tart
Parameter	Value	Unit		Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	696	mg/L	2	1	SM 2540 C-2011	03/02/2019 14:02		JTD

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 1 of 5

Analysis Report

Report ID : 39317 Date Received: 02/28/2019	C	mpany: SEP Contact: Jill F Phone: (318	Parker-Witt 3) 673-3816	ental (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 223100 Cust Sample ID: MW-5D Sample Desc.: Coal Combusti	Lo	d Date: 02/2 cation: North R)		ver Plant	By: } Matrix: `			
Metals (223100)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 13:35	U	LNM
Water (223100)	-			•				-
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	616	mg/L	2	1	SM 2540 C-2011	03/02/2019 16:00		JTD
AEP Sample ID : 223101 Cust Sample ID: MW-6D Sample Desc.: Coal Combusti	Lo	d Date: 02/2 ocation: North R)		ver Plant	By: Matrix:			
Metals (223101)	F		1	<u>, </u>				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	0.000115	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 13:38		LNM
Water (223101)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	1144	mg/L	2	1	SM 2540 C-2011	03/02/2019 16:00		JTD
AEP Sample ID : 223102 Cust Sample ID: MW-7D Sample Desc.: Coal Combusti	Lo	d Date: 02/2 ocation: Nort R)		ver Plant	By: H Matrix: [*]			
Metals (223102)	Value	11	Det Limit		Na stile a st	Analusia Data/Tima	Ocales	Teels
Parameter	Value	Unit		Dil./Conc.	Method	Analysis Date/Time	Codes	
Mercury	0.000006	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 13:41	J	LNM
Water (223102)	Valaa	1114	Det Lie it	D'I (0	M - (1 - 1	Augusta Data (T)	0.1	.
Parameter	Value	Unit		Dil./Conc.	Method	Analysis Date/Time	Codes	
Solids, Total Dissolved (TDS)	4500	mg/L	2	1	SM 2540 C-2011	03/02/2019 16:00		JTD

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 2 of 5

Analysis Report

Report ID : 39317 Date Received: 02/28/2019	C	contact: Jil	EP - Environme Il Parker-Witt 18) 673-3816	ental (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 223103 Cust Sample ID: MW-8D Sample Desc.: Coal Combustion	Lo		2/27/2019 ortheastern Pov	ver Plant	By: Matrix:			
Metals (223103)				1				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 13:44	U	LNM
Water (223103)				+ · · ·				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	17128	mg/L	2	1	SM 2540 C-2011	03/02/2019 14:02		JTD
AEP Sample ID : 223104 Cust Sample ID: MW-9D Sample Desc.: Coal Combustion	Lo		2/27/2019 ortheastern Pov	ver Plant	By: Matrix:			
Metals (223104)			D (I) (5			.	
Parameter	Value	Unit		Dil./Conc.	Method	Analysis Date/Time	Codes	
Mercury	0.000019	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 13:47	J	LNM
Water (223104)								<u> </u>
Parameter	Value	Unit		Dil./Conc.	Method	Analysis Date/Time	Codes	-
Solids, Total Dissolved (TDS)	1174	mg/L	2	1	SM 2540 C-2011	03/02/2019 14:02		JTD
AEP Sample ID : 223105 Cust Sample ID: MW-12D Sample Desc.: Coal Combustion	Lo		2/27/2019 ortheastern Pov	ver Plant	By: Matrix:			
Metals (223105)				1				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 13:50	U	LNM
Water (223105)				1		Γ	r	
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	1014	mg/L	2	1	SM 2540 C-2011	03/02/2019 14:02		JTD

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 3 of 5

Analysis Report

Report ID : 39317 Date Received: 02/28/2019	C	mpany: SEF Contact: Jill F Phone: (318		ntal (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 223106 Cust Sample ID: MW-15 Sample Desc.: Coal Combustion	Lo		27/2019 heastern Pov	ver Plant	By: H Matrix: M			
Metals (223106)								-
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	0.000007	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 13:53	J	LNM
Water (223106)			+	·				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	1046	mg/L	2	1	SM 2540 C-2011	03/02/2019 14:02		JTD
AEP Sample ID : 223107 Cust Sample ID: Duplicate Landfill Sample Desc.: Coal Combustion Metals (223107)	Lc		:7/2019 heastern Pov	ver Plant	By: H Matrix: \			
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 14:02	U	LNM
Water (223107)			1	1 1				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	1072	mg/L	2	1	SM 2540 C-2011	03/02/2019 14:02		JTD
AEP Sample ID : 223108 Cust Sample ID: Equipment Blank	Landfill Lo		:7/2019 heastern Pov	ver Plant	By:			
Sample Desc.: Coal Combustion	Residuals (CC	nj						
Sample Desc.: Coal Combustion Metals (223108)	Residuals (CC	N)						
	Residuals (CC	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report Date Re	ID : 39317 eceived: 02/28/2019		SEP - En Jill Parke (318) 673	er-Witt	ntal (JP-W)		Ad	ldress: 502 Sh Fax: (31	reveport,	LA 71101		
					ntrol Data							
		* Quality	control units	are the san	ne as reported	analytical 1	results					
			Blank		Standard			Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	* Recovery*	%	% Recovery	Difference	Tech
3/6/2019	Mercury	223139.2	<0.00000	0.001	0.0008521	85.2	0.001	0.000892	89.2		2.0	LNM
3/6/2019	Mercury	223107.2	<0.00000	0.001	0.00097	97.0	0.001	0.0009418	94.2		3.4	LNM
3/6/2019	Mercury	223097.2	<0.00000	0.001	0.00097	97.0	0.001	0.0008259	82.6		2.5	LNM
3/2/2019	Solids, Total Dissolved (TDS)	223111	<2	99.33	100	100.7	2806	2794	99.6		3.2	JTD
3/2/2019	Solids, Total Dissolved (TDS)	223110	<2	99.33	98	98.7	2806	2766	98.6		3.4	JTD

Code Code Description

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

U Analyte concentration below MDL.

Samhill nath

Quality Assurance Officer

15-Apr-19 Report Date

Shreveport Chemical Laboratory (SCL)				Ch	ain o	of Cu	istody	Chain of Custody Record	0		0 -	2 H C C
502 N. Allen Ave. Shreveport , LA 71101			P	Program:		l Com	bustion R	Coal Combustion Residuals (CCR)	CCR)		OW	N. 2-28-11
Jonathan Barnhill (318-673-3803) Contacts: John Davis (318-673-3811)						Site Contact:	lact:			Date:	-	For Lab Use Uniy: COC/Order #
Project Name: Northeastern PP CCR							250 mL			Three (six every		Mad anoin
Contact Name: Jill Parker-Witt	Analysis Ti	urnaround	Analysis Turnaround Time (in Calendar Days)	endar Da	iys)		рН<2,	en	Cool,	10th*) 1 L bottles,		(UCn 39711
Contact Phone: 318-673-3816	Rout	ine (28 day	Routine (28 days for Monitoring Wells)	ring Well	s)		HNO3	ů.	0-6C	pH<2, HNO3		
Sampler(s): Kenneth McDonald						ls		and Mn		228		
			Sample			ler(s) Initi	ury	olved Fe		226, Ra		
Sample Identification	Sample Date	Sample Time	(C=Comp, G=Grab)	Matrix	# of Cont.	Sampl	Mercı	diss	TDS	Ra-2		Sample Specific Notes:
MW-2D	2/27/2019	1200	G	GW	2		×		×			223097.1-223097.2
MW-3D	2/27/2019	006	G	GW	2		×		×			223098.1-223028.2
MW-4D	2/27/2019	835	G	GW	2		×		×			223099.1-223099.2
MW-5D	2/27/2019	1225	G	GW	2		×		×			223100.1 223/00.2
MW-6D	2/27/2019	1000	G	GW	2		×		×			
MW-7D	2/27/2019	810	G	GW	N		×		×			223/02-
MW-8D	2/27/2019	1350	G	GW	N		×		×			223103.1 223103.2
MW-9D	2/27/2019	1022	G	GW	N		×		×			223/04.
MW-12D	2/27/2019	1325	۵	GW	N		×		×			223/05.1-223/05.6
MW-15	2/27/2019	1120	G	GW	2		×		×			
DUPLICATE LANDFILL	2/27/2019	835	G	GW	N		×		×			123/07.6-223/07- ~
EQUIPMENT BLANK LANDFILL	2/27/2019	1340	G	۶	_		×					Corrox
Preservation Used: 1= kce, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	INO3; 5=Nac	0H; 6= Oth	er	; F= f	F= filter in field	eld	4	F4		4		
* Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th	sample.										
Special Instructions/QC Requirements & Comments:	nts:											
Relinquished by: WAM	Company:	N6 15		Date/Time; 02/28/9	_	555	Received by:	Y:				Date/Time:
Relinquished by:	Company:			Date/Time:	ne:		Received by:	Y:				Date/Time:
Relinguished by:	Company:			Date/Time:	ne:		Received in	Received in Laboratory by:	1 1			Date/Time: 2/28/14 15:55
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shraveport, Rev. 1, 1/10/17	rd for Coal (Combustic	on Residua	(CCR)	Samplin	Ig - Shu	eveport, Re	v. 1, 1/10/17				

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type		[Delivery Typ	e	
Ice Chest) Bag Action Pak PCB Mailer Bottle	UPS	FEDEX	US Mail	Walk in	Shuttle
Other	Othe	r			
	Tracking #				
Client Jill Parker- Witt			ample Matr	'ix	
Received By STID	DGA	PCB Oil	Water	Oil	Soil
Received Date 2/28/19			\smile		
Open Date	Solid	Liquid	Other		
Container Temp Read	3	Project I.D	. 393	17	
Correction Factor	-	imples receive	ed on ice? (YES)	NO
Corrected Temp 4, z		1			
Did container arrive in good condition?	TES	NO			
Was sample documentation received?	YES	NO			
Was documentation filled out properly?	TES	NO	· · · · · · · · ·		
Were samples labeled properly?	TES	NO	,		
Were correct containers used?	YES	NO			
Were the pH's of samples appropriately checked?	YES	NO			
Total number of sample containers _23					
Was any corrective action taken?	NO	Person Co Date & Tin			
Comments					

Sample ID	Analysis	рН	Preservative Added / Lot #
MW1-212	Mercury	12	/
Mw-3D	/		/
11-1-412			/
Mir-SD			/
MW-6D			/
MW-71)			/
MULSD			/
MW-910			/
MW-1212			/
MW-15			/
Dup fundfill			/
Kyvip Landfill	\checkmark	V	/
			/
			/
			/
			/
	2		/
			/
			/

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station

Report Date: 4/15/2019

Sample Number: 190787-001	I	Date Col	lected:	02/27/2	2019 12:00	Da	ate Received: 3/5/2019
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	16.4 mg/L		0.1	0.03	CRJ	03/22/2019 09:54	EPA 300.1-1997, Rev. 1.0
Fluoride, F	1.56 mg/L		0.2	0.04	CRJ	03/22/2019 09:54	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	612 mg/L		10	2	CRJ	03/21/2019 05:09	EPA 300.1-1997, Rev. 1.0

MW-3D

MW-2D

Sample Number:	190787-002		Date Col	lected:	02/27/2	2019 09:00	Da	te Received: 3/5/2019
Parameter	Resul	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	13.2	2 mg/L		0.1	0.03	CRJ	03/21/2019 20:53	EPA 300.1-1997, Rev. 1.0
Fluoride, F	0.7	mg/L		0.2	0.04	CRJ	03/21/2019 20:53	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	223	3 mg/L		10	2	CRJ	03/21/2019 05:32	EPA 300.1-1997, Rev. 1.0

MW-4D

Sample Number:	190787-003			Date Col	lected:	02/27/2	2019 08:35	Da	ate Received: 3/5/2019
Parameter		Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl		31.2	mg/L		0.1	0.03	MGK	03/21/2019 13:13	EPA 300.1-1997, Rev. 1.0
Fluoride, F		0.30	mg/L		0.2	0.04	MGK	03/21/2019 13:13	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4		463	mg/L		10	2	CRJ	03/21/2019 05:55	EPA 300.1-1997, Rev. 1.0

MW-5D

Sample Number: 190787-	004	Date Coll	ected:	02/27/2	2019 12:25	Da	ate Received: 3/5/2019
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	26.7 mg/L		0.1	0.03	MGK	03/21/2019 13:59	EPA 300.1-1997, Rev. 1.0
Fluoride, F	0.50 mg/L		0.2	0.04	MGK	03/21/2019 13:59	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	153 mg/L		10	2	CRJ	03/21/2019 06:17	EPA 300.1-1997, Rev. 1.0

Report Date: 4/15/2019

Sample Number:	190787-005		Date Col	llected:	02/27/2	2019 10:00	Da	ate Received: 3/5/2019
Parameter	Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	26.9) mg/L		0.1	0.03	MGK	03/21/2019 14:22	EPA 300.1-1997, Rev. 1.0
Fluoride, F	0.89) mg/L		0.2	0.04	MGK	03/21/2019 14:22	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	496	ን mg/L		10	2	CRJ	03/21/2019 07:03	EPA 300.1-1997, Rev. 1.0

MW-7D

MW-6D

Sample Number: 190787-006

Date Collected:	02/27/2019 08:10
-----------------	------------------

Date Received: 3/5/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	385 mg/L		1	0.3	CRJ	03/21/2019 07:26	EPA 300.1-1997, Rev. 1.0
Fluoride, F	1.66 mg/L		0.2	0.04	MGK	03/21/2019 14:45	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	2390 mg/L		10	2	CRJ	03/21/2019 07:26	EPA 300.1-1997, Rev. 1.0

MW-8D

Sample Number:	190787-007			Date Col	lected:	02/27/2	2019 13:50	Da	te Received: 3/5/2019
Parameter		Result U	Inits	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl		9650 m	ng/L		20	8	CRJ	03/21/2019 15:30	EPA 300.1-1997, Rev. 1.0
Fluoride, F		2.28 m	ng/L		0.8	0.2	CRJ	03/21/2019 15:53	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4		43.4 m	ng/L		5	0.8	CRJ	03/21/2019 15:53	EPA 300.1-1997, Rev. 1.0

MW-9D

Sample Number:	190787-008			Date Col	lected:	02/27/2	2019 10:22	Da	te Received: 3/5/2019
Parameter		Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl		28.9	mg/L		0.1	0.03	MGK	03/21/2019 16:41	EPA 300.1-1997, Rev. 1.0
Fluoride, F		0.89	mg/L		0.2	0.04	MGK	03/21/2019 16:41	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4		555	mg/L		10	2	CRJ	03/21/2019 08:15	EPA 300.1-1997, Rev. 1.0

MW-12D

Sample Number:	190787-009			Date Col	lected:	02/27/2	2019 13:25	Da	ate Received: 3/5/2019
Parameter		Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl		16.8	mg/L		0.1	0.03	MGK	03/21/2019 17:04	EPA 300.1-1997, Rev. 1.0
Fluoride, F		2.11	mg/L		0.2	0.04	MGK	03/21/2019 17:04	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4		564	mg/L		10	2	CRJ	03/21/2019 09:00	EPA 300.1-1997, Rev. 1.0

Report Date: 4/15/2019

Sample Number: 1	90787-010	Date Co	ollected:	02/27/2	2019 11:20	Da	ate Received: 3/5/2019
Parameter	Result Un	Data hits Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	24.3 mg	g/L	0.1	0.03	MGK	03/21/2019 17:27	EPA 300.1-1997, Rev. 1.0
Fluoride, F	1.45 mg	g/L	0.2	0.04	MGK	03/21/2019 17:27	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	574 mg	g/L	10	2	CRJ	03/21/2019 09:23	EPA 300.1-1997, Rev. 1.0

Duplicate Landfill

MW-15

Sample Number: 190787-011

Date Collected: 02/27/2019 08:35

Date Received: 3/5/2019

		Data				
Parameter	Result Units	Qual RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	29.9 mg/L	0.1	0.03	MGK	03/21/2019 18:13	EPA 300.1-1997, Rev. 1.0
Fluoride, F	0.30 mg/L	0.2	0.04	MGK	03/21/2019 18:13	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	462 mg/L	10	2	CRJ	03/21/2019 09:46	EPA 300.1-1997, Rev. 1.0

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Muhael & Ollinge

Michael Ohlinger, ChemistEmail msohlinger@aep.comTel.Fax 614-836-4168Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125			а.	Ch	ain o	Chain of Custody Record	ody R tion Res	cord duals (C	CR)				
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)				D	Sit	Site Contact:	3			Date:		For Lab Use Only: COC/Order #:	
Project Name: Northeastern PP CCR						250		Field-filter 250 mL	350 ml	Three (siv evenu	 		
Contact Name: Jill Parker-Witt	Analysis	Turnaround	Analysis Turnaround Time (in Calendar Days)	endar Da	iys)			c		10th*) 1 10th*) 1		100787	-
Contact Phone: 318-673-3816	6 Roi	utine (28 da	Routine (28 days for Monitoring Wells)	ing Wells		ĨŦ	HNO3	PNC5, HNO3	9 9 0	L bottles, pH<2, HNO3	 	10-01	-
Sampler(s): Kenny McDonald							.eA .d	Gr, Mn, g, Mn, Cr, TI	əfate	823	 		
				ŀ			IS '8	26' !' W (1' W	nS	2-е	 		-
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) In	Boron, Calc Dissolved B	Ba, Be, Ca, Co, Fe, K, L Mo, Na, Pb,	Fluoride, Chloride,	К ^{g-} 226, К	 	Sample Specific Notes:	
MW-2D	2/27/2019	1200	U	GW	-				×				
MW-3D	2/27/2019	006	U	GW	-				×				
MW-4D	2/27/2019	835	IJ	GW	-				×				
MW-5D	2/27/2019	1225	9	GW	-				×				_
MW-6D	2/27/2019	1000	g	GW	-				×				
DZ-WM	2/27/2019	810	ს	GW	-				×				_
DR-WM	2/27/2019	1350	U	GW	-				×		 		
D6-WM	2/27/2019	1022	U	GW	-				×		 		
MW-12D	2/27/2019	1325	U	GW	.				×		 		
MW-15	2/27/2019	1120	U	GW	-				×		 		
DUPLICATE LANDFILL	2/27/2019	835	U	GW	-				×				T
					-						 _		
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3; 5=Na	OH; 6= Ot	her	. F= fi	; F= filter in field	p	4	F4	-	4			10 - 10 - 10
* Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.											
Special Instructions/QC Requirements & Comments.	ints:												
Relinquished by AM	Company: CA611	AULF		Date/Time:	51	1400 Rece	Received by:					Date/Time:	T
Relinquished by:	Company:			Date/Time	e:	Rece	Received by:	c J				Date/Time:	
Relinquished by:	Company:			Date/Time:	e:	Rece	ived inta	Received in aboratory by:	B	ly)		Date Time: 19 11:50/to	
Form COC-04. AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shrevebort, Rev. 1, 1/10/17	ord for Coal	Combustic	on Residual	(CCR)	Sampling	- Shrevepo	rt, Rev. 1,	1/10/17	r	1			1

Form SOP-7102 Sample Receipt Form Rev.6, 11/30/15

je,

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FOREX USPS
	Other
Plant/Customer Northeastin	Number of Plastic Containers:
	Number of Glass Containers:
	Number of Mercury Containers:
Were all temperatures within 0-6°C° Y/N (or N/A Initial:ororororororororor
	Comments
Requested turnaround:	Comments If RUSH, who was notified?
	O_3 (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? (Y) N	Comments
Were samples labeled properly? 🕥/ N	Comments
Were correct containers used? (Y) N	Comments
Was pH checked & Color Coding done?	N or N/A Initial & Date: MS/JWB 3/5/19
- Was Add'l Preservative needed? Y 🔊 If Y	res: By whom & when: (See Prep Book)
Is sample filtration requested? Y (N)	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# 190737 Initial & D	ate & Time :
Logged by	s:
/ UVC	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

MW-2D

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station

Report Date: 4/15/2019

Sample Number: 190825-001	C	Date Colle	cted:	02/27/2	2019 12:00	Da	te Received: 3/7/2019
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	9.67 mg/L	(0.02	0.005	GES	04/04/2019 14:38	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	9.26 mg/L		0.1	0.02	GES	04/04/2019 14:38	EPA 200.8-1994, Rev. 5.4
Laboratory Fortified Blank and Laboratory Fortified Blank Duplicate relative percent difference was greater than the quality control limit of 10%.							

MW-3D

Sample Number: 190825-002		Date Co	llected:	02/27/2	2019 09:00	Da	ate Received: 3/7/2019
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.973 mg/L		0.02	0.005	GES	04/04/2019 14:43	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	127 mg/L		0.1	0.02	GES	04/04/2019 14:43	EPA 200.8-1994, Rev. 5.4
Laboratory Fortified Blank and Lab	oratory Fortified Bla	ank Duplic	ate relativ	e percent	difference was	greater than the quality	v control limit of 10%.

MW-4D

Sample Number: 190825-003		Date Co	llected:	02/27/2	2019 08:35	Da	te Received: 3/7/2019
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	1.42 mg/L		0.02	0.005	GES	04/04/2019 14:48	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	187 mg/L		0.1	0.02	GES	04/04/2019 14:48	EPA 200.8-1994, Rev. 5.4
Laboratory Fortified Blank and Lab	oratory Fortified Bl	ank Duplic	ate relativ	e percent	difference was	greater than the guality	control limit of 10%.

MW-5D

Sample Number: 1	90825-004	Date Co	ollected:	02/27/2	2019 12:25	Da	te Received: 3/7/2019	
Parameter	Result U	Data nits Qual	RL	MDL	Analysis By	Analysis Date/Time	Method	
Boron, B	0.531 m	ig/L	0.02	0.005	GES	04/04/2019 14:53	EPA 200.8-1994, Rev. 5.4	
Calcium, Ca	130 m	ig/L	0.1	0.02	GES	04/04/2019 14:53	EPA 200.8-1994, Rev. 5.4	
Laboratory Fortified Blank and Laboratory Fortified Blank Duplicate relative percent difference was greater than the quality control limit of 10%.								

MW-6D

Sample Number: 190825-005		Date Co	llected:	02/27/2	2019 10:00	Da	Date Received: 3/7/2019		
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method		
Boron, B	3.63 mg/L		0.02	0.005	GES	04/04/2019 14:58	EPA 200.8-1994, Rev. 5.4		
Calcium, Ca	360 mg/L		0.1	0.02	GES	04/04/2019 14:58	EPA 200.8-1994, Rev. 5.4		
Laboratory Fortified Blank and La	boratory Fortified Bl	ank Dunlic	ate relativ	e nercen	t difference was	greater than the quality	v control limit of 10%		

Laboratory Fortified Blank and Laboratory Fortified Blank Duplicate relative percent difference was greater than the quality control limit of 10%.

Report Date: 4/15/2019

MW-7D

Sample Number:	190825-006		Date Co	llected:	02/27/2	2019 08:10	Da	ate Received: 3/7/2019
Parameter		Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B		1.00 mg/L		0.02	0.005	GES	04/04/2019 15:03	EPA 200.8-1994, Rev. 5.4
Calcium, Ca		185 mg/L		0.1	0.02	GES	04/04/2019 15:03	EPA 200.8-1994, Rev. 5.4
Laboratory Fortifie	d Blank and Lab	oratory Fortified E	lank Duplic	ate relativ	e percent	t difference was	greater than the qualit	y control limit of 10%.

MW-8D

Sample Number:	190825-007			Date Col	lected:	02/27/2	2019 13:50	Da	te Received: 3/7/2019
Parameter		Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B		1.62	mg/L		0.02	0.005	GES	04/04/2019 15:08	EPA 200.8-1994, Rev. 5.4
Calcium, Ca		788	mg/L		0.1	0.02	GES	04/04/2019 15:08	EPA 200.8-1994, Rev. 5.4
Laboratory Fortified Blank and Laboratory Fortified Blank Duplicate relative percent difference was greater than the quality control limit of 10%.									

MW-9D

Sample Number:	190825-008		Date Col	lected:	02/27/2	2019 10:22	Da	te Received: 3/7/2019
Parameter	Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	6.49	mg/L		0.1	0.02	СТК	04/05/2019 12:02	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	155	mg/L		0.4	0.06	СТК	04/05/2019 12:02	EPA 200.8-1994, Rev. 5.4

MW-12D

Sample Number: 1	90825-009		Date Coll	ected:	02/27/2	2019 13:25	Da	te Received: 3/7/2019
Parameter	Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	8.88	mg/L		0.1	0.02	СТК	04/05/2019 12:07	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	64.7	mg/L		0.4	0.06	СТК	04/05/2019 12:07	EPA 200.8-1994, Rev. 5.4

MW-15

Sample Number: 190825	-010 D	ate Collected:	02/27/2	2019 11:20	Da	te Received: 3/7/2019
Parameter	Result Units	Data Qual RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	8.34 mg/L	0.1	0.02	СТК	04/05/2019 12:12	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	96.9 mg/L	0.4	0.06	CTK	04/05/2019 12:12	EPA 200.8-1994, Rev. 5.4

Duplicate Landfill

Sample Number:	190825-011		Date Co	llected:	02/27/2	2019 08:35	Da	te Received: 3/7/2019
Parameter	Res	ılt Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	1.	45 mg/L		0.02	0.005	GES	04/04/2019 17:21	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	1	98 mg/L		0.1	0.02	GES	04/04/2019 17:21	EPA 200.8-1994, Rev. 5.4

Report Date: 4/15/2019

Equipment Blank Landfill

Sample Number:	190825-012		Date Co	llected:	02/27/2	2019 13:40	Da	ate Received: 3/7/2019
Parameter	F	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B		0.006 mg/L		0.005	0.0009	СТК	04/05/2019 11:57	EPA 200.8-1994, Rev. 5.4
Calcium, Ca		0.01 mg/L	J	0.02	0.003	CTK	04/05/2019 11:57	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Michael & Ollinger

Michael Ohlinger, Chemist

Email msohlinger@aep.com

Fax 614-836-4168

Audinet 8-210-

Tel.

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Dolan Chemical Laboratory (DCL) 4001 Bixby Road				ບົ		f Custo	Chain of Custody Record	cord				
Groveport, Unio 43125 Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)				Program:		oal Combust Site Contact:	Coal Combustion Residuals (CCR) Site Contact:	ials (CCR		Date:		For Lab Use Only: COC/Order #:
Project Name: Northeastern PP CCR						250 mL	mL Field-filter					
Contact Name: Jill Parker-Witt	Analysis ⁻	urnaround	Analysis Turnaround Time (in Calendar Days)	lendar Da	lys)	bottle,	٩		101	ery 1		14,0825
Contact Phone: 318-673-3816	6 Rot	tine (28 day	Routine (28 days for Monitoring Wells)	ing Wells	~	HN03	03 HNO3	22, Cool, 0-6C	I, L bottles, C pH<2, HNO3	es, NO3	_	() ())
Sampler(s): Kenny McDonald							b, As,	, 5ר, דו				
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G≕Grab)	Matrix	# af Cont.	Sampler(s) Initis Boron, Calciui	Dissolved B, S Ba, Be, Ca, Cd	TDS , F, CI, S Mo, Na, Pb, Se Co, Fe, K, Li, N	Ra-226, Ra-			Sample Specific Notes:
MW-2D	2/27/2019	11	U	#	-	\parallel						
DE-WM	2/27/2019	006	U	GW	-	×				-		
MW-4D	2/27/2019	835	U	GW	-	×						
MW-5D	2/27/2019	1225	U	GW	-	×						
MW-6D	2/27/2019	1000	U	GW	-	×						
DT-WM	2/27/2019	810	U	GW	-	×						
MW-8D	2/27/2019	1350	U	GW	-	×						
D6-WM	2/27/2019	1022	U	GW		×						
MW-12D	2/27/2019	1325	U	GW	+-	×						
MW-15	2/27/2019	1120	ს	GW		×						
DUPLICATE LANDFILL	2/27/2019	835	U	GW	~~	×						
EQUIPMENT BLANK LANDFILL	2/27/2019	1340	Ø	×	1	×						
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3; 5=Na(DH; 6= Oth)er	: F= fi	; F= filter in field	d 4	F4	1 1	4			
* Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.										
Special Instructions/QC Requirements & Comments.	ints:											
Relinquished by:	Company:	L		Date/Tin 03/04	Time: 14/19 14	14 (b) Recei	Received by:					Date/Time:
Relinquished by:	Company:			Date/Tin	Time:	Recei	Received by:					Date/Time:
Relinquished by:	Company:			Date/Time:		Recei	Received in Laboratory by:	itory by:	C.A			Date/Time: 03/07/19 11:40

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer Not In Castern PP co	\mathcal{C} Number of Plastic Containers: $/2$
Opened By Mistina	Number of Glass Containers:
Were all temperatures within 0-6°C? Y/N of (IR Gun Ser# 1813574434Expir. 612-20	Number of Mercury Containers: Image: Containers: or N/A Initial: ////////////////////////////////////
Requested turnaround: Roh	Comments If RUSH , who was notified? O₃ (48 hr) ortho-PO₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	Comments
Were samples labeled properly?	Comments
	Comments
Was pH checked & Color Coding done?	N or N/A Initial & Date: 116-14 03/07/19
	Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / N	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# 190825 Initial & C	Date & Time :
Logged by Commer	ts:
Reviewed by MGO	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Dolan Chemical Laboratory

Sample Receipt Form SOP-7102

Page 1 of 1

AE	P	Α	EP ANA		CAL CH Analysis		_	RVICES			Shrevep Phone:	th Allen Av ort, LA 71 (318) 673-3 18) 673-396	101 3802
Report Date Re	ID : 39755 ceived: 05/09/2019	(Contact:	Jill Pa	Environmer rker-Witt 673-3816	ntal (JP-W)		Ade	S	02 N. Allen hreveport, 318) 673-39	LA 71101		
Cust Sa	nple ID:225074 ample ID: MW-6D le Desc.: Coal Combustion				2019 eastern Pow	er Plant		r	By: KN Matrix: W	Л			
Water (225	074)											_	
Parameter		Value	Uni	t	Det. Limit	Dil./Conc.		Method		Analysis	Date/Time	Codes	Tech
Solids, Tota	al Dissolved (TDS)	10	38 mg/	L	2	1	SM	l 2540 C-20	011	05/13/2	019 16:50		GB
			* Quality		Quality Con inits are the sar		analytical 1	results					
				Blank		Standard			Spike		Surrogate	Duplicate %	
Date	Parameter		Sample ID	Value	* Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
5/13/2019	Solids, Total Dissolved (TDS)		225129		1000	876	87.6	2880	2787	96.8		14.9	GB
5/13/2019	Solids, Total Dissolved (TDS)			<2									GB

Barnhill onathan Quality Assurance Officer

05-Jun-19 Report Date

)	•)		1	•	N				
502 N. Allen Ave.				S	an		usiody	Chain of Custody Record		1012	0	2		
Jonathan Barnhill (318-673-3803) Contacts: John Davis (318-673-3811)						Site Contact:	Site Contact:	6		Date:			For Lab Use Only: COC/Order #:	
Project Name: Northeastern PP							250 mL	Field-filter 500 mL	250 mL	Three fsix every			nn th	
Contact Name: Jill Parker-Witt	Analysis Turnaround Time (in Calendar Days)	rnaround	Time (in Ca	lendar D	ays)		pH<2,	bottle, then pH<2,	bottle, Cool,	10th*) 1 L bottles.			556k mm	
Contact Phone: 318-673-3816	Kouu	ne (28 da)	Routine (28 days for Monitoring Wells)	avn Buuc	lls)			HNO3		pH<2, HNO3	+			
Sampler(s): Kenneth McDonald						tials		and Mn		-228				
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) Ini	Mercury	dissolved Fe	TDS	Ra-226, Ra			Sample Specific Notes:	
MW-6D	5/7/2019	1155	G	GW					×				225074	
				i										
											+			
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	NO3; 5=NaO	H; 6= Oth)er	_; F= f	F= filter in field	Teld	4	F4	1	4				
* Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th s	ample.												
Special Instructions/QC Requirements & Comments:	1 fs :													
Relinquished by WAW	Company AUIF	410		Date/Time:	30 /21	9580	Received by:						Date/Time:	
Relinquished by:	Company:			Date/Time:	ne:		Received by:	t					Date/Time;	
Relinquished by: Company: Date/Time: Received in Laboratory by Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17 Received in Laboratory by	Company: rd for Coal C	ombustic	n Residua	Date/Time:	ne: Samplii	rg - Shr	Received in I	Received in Laboratory by:		W ellere			Date/Time: 5-9-19 9:00	
Form CUC-04, AEP Chain of Custody (CUC) Reco	rd for Coal C	ombustic	In Residua	I (CCR)	Samplu	ng - Shri	eveport, Rev	1, 1, 1/10/17						

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type		C	Delivery Type	2		
Ice Chest Bag Action Pak PCB Mailer Bottle	UPS Othe	FEDEX	US Mail	Walk in	Shuttle	Þ
	Tracking #		9 in 1			
Client Jill Wift No Rthensky,			ample Matrix	ĸ		1
Received By SAndrawallere	DGA	PCB Oil	Water	Oil	Soil	
Received Date 5-9-19						
Open Date	Solid	Liquid	Other			_
Container Temp Read Container Temp Read		Project I.D.	3975	5	_	
Correction Factor	Were sa	mples receive	ed on ice?	(ES)	NO	
Corrected Temp		imples receive			NO	
Did container arrive in good condition?	YES	NO				
	(ILS)					ž.
Was sample documentation received?	YES	NO				
	(ILS)	110				-
Was documentation filled out properly?	YES	NO				
						2
Were samples labeled properly?	YES	NO				-
					111	-
Were correct containers used?	VES	NO				2
						2
Were the pH's of samples appropriately checked?	YES	(NO) 1	117			
and here a construct of the strength of the st	120		1 11			
Total number of sample containers						
· · · · · · · · · · · · · · · · · · ·	~					
Was any corrective action taken?	NO	Person Cor	ntacted			
-		Date & Tim				4 2

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station

Report Date: 6/13/2019

MW-3D								
Sample Number:	191627-001		Date Col	lected:	05/07/2	2019 11:20	Da	te Received: 5/10/2019
Parameter		Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B		1.56 mg/L		0.05	0.009	GES	06/04/2019 15:26	EPA 200.8-1994, Rev. 5.4
MW-4D								
Sample Number:	191627-002		Date Col	lected:	05/07/2	2019 10:45	Da	te Received: 5/10/2019
Parameter		Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Sulfate, SO4		419 mg/L		10	2	CRJ	05/21/2019 18:07	EPA 300.1-1997, Rev. 1.0
MW-5D								
Sample Number:	191627-003		Date Col	lected:	05/07/2	2019 12:30	Da	te Received: 5/10/2019
-								
Parameter		Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Parameter Sulfate, SO4		Result Units 158 mg/L		RL 10	MDL 2	Analysis By CRJ	Analysis Date/Time 05/21/2019 18:26	Method EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	191627-004		Qual	10	2		05/21/2019 18:26	
Sulfate, SO4	191627-004		Qual	10	2	CRJ	05/21/2019 18:26 Da	EPA 300.1-1997, Rev. 1.0

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Muhael & Ollinger

Michael Ohlinger, Chemist Email msohlinger@aep.com

Fax 614-836-4168

Audinet 8-210-

Tel.

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Anot ratio Anot ratio Froject Name: Northeastern PP Manaysis Turmaround Th Froject Name: Northeastern PP Analysis Turmaround Th Contact Phone: 318-673-38116 E Sampler(s): Kenny McDonald Analysis Turmaround Th Contact Phone: 318-673-38116 E Sampler (s): Kenny McDonald Sample Sample Identification Sample Sample MW-3D MW-3D Snt2019 1045 MW-4D Snt2019 1045 1120 MW-4D Snt2019 1045 1150 MW-4D Snt2019 <th>Analysis T Analysis T Date Sample Date Sr//2019 5r//2019 5r//2019 sr//2019 to the second of the seco</th> <th>umaround umaround 1120 1120 11230 1155 1155 1155 1155 201 53mple</th> <th>ample Comp, Comp,</th> <th>ilendar Di GGW GGW GGW</th> <th>Program indar Days) ig Wells) ig Wells) ig Wells) if ter in field if ter in field</th> <th>The fold Sampler(s) Initials The fold Sampler(s) Initials</th> <th>Program: 2 of 2 Sampling Site Contact: Site Contact: 250 mL 250 r HNO3 m</th> <th>Program: 2 of 2 Sampling Frogram: 2 of 2 Sampling Site Contact: ar Days bottle, bottle,<!--</th--><th>2 Cool. 250 potter 250</th><th>Date: Bate: 4 4</th><th></th><th>For Lab Use Only: rder #:</th><th>ly:</th></th>	Analysis T Analysis T Date Sample Date Sr//2019 5r//2019 5r//2019 sr//2019 to the second of the seco	umaround umaround 1120 1120 11230 1155 1155 1155 1155 201 53mple	ample Comp, Comp,	ilendar Di GGW GGW GGW	Program indar Days) ig Wells) ig Wells) ig Wells) if ter in field if ter in field	The fold Sampler(s) Initials The fold Sampler(s) Initials	Program: 2 of 2 Sampling Site Contact: Site Contact: 250 mL 250 r HNO3 m	Program: 2 of 2 Sampling Frogram: 2 of 2 Sampling Site Contact: ar Days bottle, bottle, </th <th>2 Cool. 250 potter 250</th> <th>Date: Bate: 4 4</th> <th></th> <th>For Lab Use Only: rder #:</th> <th>ly:</th>	2 Cool. 250 potter 250	Date: Bate: 4 4		For Lab Use Only: rder #:	ly:
white o	Company: Company: Company:	L		Date/Time: 05/09/19 Date/Time:		1 Y 00 R	Received by				Date/Time. Date/Time.	ici ici	
0	Company			Date/Time:	ij	<u> </u>	eceived in	Received in Laboratory by	d d		Date/Time:	61-01-	02:01

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

Form SOP-7102 Sample Receipt Form Rev.6, 11/30/15

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Gooler Box Bag Envelope	PONY UPS FORE USPS
	Other
Plant/Customer Nor Leastern	Number of Plastic Containers:
Opened By MGU 5/10/19	Number of Glass Containers:
Date/Time 5/10/19 10135 Am	Number of Mercury Containers:
Were all temperatures within 0-6°C? W/N	or N/A Initial: on ice / no ice
) - If No, specify each deviation:
\sim	Comments
Was Chain of Custody received? Y N	Comments
	If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) NO₂ or No (24 hr)	O ₃ (48 hr) ortho-PO₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? ()/ N	Comments
Were samples labeled properly? (Y) N	Comments
Were correct containers used?	Comments
Was pH checked & Color Coding done?	N or N/A Initial & Date: 150 5/10/19
- Was Add'l Preservative needed? Y N f	/es: By whom & when: (See Prep Book)
Is sample filtration requested? Y /(N)	Comments (See Prep Book)
Was the customer contacted? If Yes: I	Person Contacted:
Lab ID# I91627 Initial & D	ate & Time :
Logged by	S:
SP	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Sample Receipt Form SOP-7102

Analysis Report

Report ID : 40447 Date Received: 08/29/2019	Co	npany: SEF ontact: Jill F Phone: (318		ental (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 228539 Cust Sample ID: MW-2D Sample Desc.: CCR		I Date: 08/2 ation: Nort	6/2019 heastern PP		By: Matrix:	KM/MH Water		
Water (228539)			1	1				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	12	mg/L	0.219	1	EPA 300.0	09/01/2019 18:41	M6	GB
Fluoride	1.661	mg/L	0.083	1	EPA 300.0	09/01/2019 18:41		GB
Solids, Total Dissolved (TDS)	1236	mg/L	2	1	SM 2540 C-2011	08/29/2019 18:30		JTD
Sulfate	591	mg/L	0.140	1:10	EPA 300.0	09/01/2019 19:56		GB
AEP Sample ID : 228540 Cust Sample ID: MW-3D Sample Desc.: CCR		I Date: 08/2 cation: Nort	6/2019 heastern PP		By: Matrix:	KM/MH Water		
Water (228540)				<u>.</u>				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	12	mg/L	0.219	1	EPA 300.0	09/01/2019 21:12	M6	GB
Fluoride	0.608	mg/L	0.083	1	EPA 300.0	09/01/2019 21:12	J	GB
Solids, Total Dissolved (TDS)	686	mg/L	2	1	SM 2540 C-2011	08/29/2019 18:30	M6	JTD
Sulfate	181	mg/L	0.140	1:10	EPA 300.0	09/01/2019 21:30		GB
AEP Sample ID : 228541 Cust Sample ID: MW-4D Sample Desc.: CCR		I Date: 08/2 cation: Nort	6/2019 heastern PP		By: Matrix:	KM/MH Water		
Water (228541)								
		11 14	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Parameter	Value	Unit	Det. Limit	DII./CONC.	Methou	Analysis Date, Time	•••	
Parameter Chloride	Value 23	mg/L	0.219	1	EPA 300.0	09/01/2019 21:49	M6	GB
Chloride	23	mg/L	0.219	1	EPA 300.0	09/01/2019 21:49	M6	GB

Analysis Report

Report ID : 40447 Date Received: 08/29/2019	Co	ontact: Jill F	P - Environme Parker-Witt 3) 673-3816	ental (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 228542 Cust Sample ID: MW-5D Sample Desc.: CCR		I Date: 08/2 ation: Nort	6/2019 heastern PP		By: Matrix:	KM/MH Water		
Water (228542)	1							
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	24	mg/L	0.219	1	EPA 300.0	09/01/2019 22:26	M6	GB
Fluoride	0.412	mg/L	0.083	1	EPA 300.0	09/01/2019 22:26	J	GB
Solids, Total Dissolved (TDS)	670	mg/L	2	1	SM 2540 C-2011	08/29/2019 18:30		JTD
Sulfate	134	mg/L	0.140	1:10	EPA 300.0	09/01/2019 22:45		GB
AEP Sample ID : 228543 Cust Sample ID: MW-6D Sample Desc.: CCR		I Date: 08/2 cation: Nort	6/2019 heastern PP		By: Matrix:	KM/MH Water		
Water (228543)			-					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	13	mg/L	0.219	1	EPA 300.0	09/01/2019 23:04	M6	GB
Fluoride	0.634	mg/L	0.083	1	EPA 300.0	09/01/2019 23:04	J	GB
Solids, Total Dissolved (TDS)	1044	mg/L	2	1	SM 2540 C-2011	08/29/2019 18:30		JTD
Sulfate	401	mg/L	0.140	1:10	EPA 300.0	09/01/2019 23:23		GB
AEP Sample ID : 228544 Cust Sample ID: MW-9D Sample Desc.: CCR		I Date: 08/2 cation: Nort	6/2019 heastern PP		By: Matrix:	KM/MH Water		
Water (228544)			-					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	24	mg/L	0.219	1	EPA 300.0	09/11/2019 12:48		GB
Fluoride	0.758	mg/L	0.083	1	EPA 300.0	09/11/2019 12:48	J	GB
Solids, Total Dissolved (TDS)	1084	mg/L	2	1	SM 2540 C-2011	08/29/2019 18:30		JTD

Analysis Report

Report ID : 40447 Date Received: 08/29/2019	Co	pany: SEP ontact: Jill F Phone: (318		ental (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID: 228545 Cust Sample ID: MW-12D Sample Desc.: CCR		Date: 08/2 ation: Nort	6/2019 heastern PP		By: Matrix:	KM/MH Water		
Water (228545)			1	1				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	14	mg/L	0.219	1	EPA 300.0	09/11/2019 16:14		GB
Fluoride	1.600	mg/L	0.083	1	EPA 300.0	09/11/2019 16:14		GB
Solids, Total Dissolved (TDS)	1018	mg/L	2	1	SM 2540 C-2011	08/29/2019 18:30		JTD
Sulfate	540	mg/L	0.140	1:10	EPA 300.0	09/11/2019 16:33	M6	GB
AEP Sample ID : 228546 Cust Sample ID: MW-14 Sample Desc.: CCR		Date: 08/2 ation: Nort	6/2019 heastern PP		By: Matrix:	KM/MH Water		
Water (228546)			•	1				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	3117	mg/L	0.219	1:10	EPA 300.0	09/11/2019 18:07		GB
Fluoride	3.066	mg/L	0.083	1:10	EPA 300.0	09/11/2019 18:07		GB
Solids, Total Dissolved (TDS)	6198	mg/L	2	1	SM 2540 C-2011	08/29/2019 18:30		JTD
Sulfate	357	mg/L	0.140	1:10	EPA 300.0	09/11/2019 18:07	M6	GB
AEP Sample ID : 228547 Cust Sample ID: MW-15 Sample Desc.: CCR		Date: 08/2 ation: Nort	6/2019 heastern PP		By: Matrix:	KM/MH Water		
Water (228547)			•	1				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	20	mg/L	0.219	1	EPA 300.0	09/11/2019 18:25		GB
Fluoride	1.252	mg/L	0.083	1	EPA 300.0	09/11/2019 18:25		GB
Solids, Total Dissolved (TDS)	1072	mg/L	2	1	SM 2540 C-2011	08/29/2019 18:30		JTD
Sulfate	587	mg/L	0.140	1:10	EPA 300.0	09/11/2019 18:44	M6	GB

AEP	AEF	PANALY		HEMISTR s Report		Shrevep Phone:	h Allen A ort, LA 71 (318) 673- 8) 673-39	101 -3802
Report ID : 40447 Date Received: 08/29/2019		mpany: SEP Contact: Jill F Phone: (318	Parker-Witt	ental (JP-W)		502 N. Allen Avenue Shreveport, LA 71101 (318) 673-3960		
AEP Sample ID : 228548 Cust Sample ID: Duplicate Landfill Sample Desc.: CCR		d Date: 08/2 ocation: North			By: Matrix:	KM/MH Water		
Water (228548)							-	
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	24	mg/L	0.219	1	EPA 300.0	09/11/2019 19:03		GB
Fluoride	0.198	mg/L	0.083	1	EPA 300.0	09/11/2019 19:03	J	GB
Solids, Total Dissolved (TDS)	850	mg/L	2	1	SM 2540 C-2011	08/29/2019 18:30		JTD
Sulfate	276	mg/L	0.140	1:10	EPA 300.0	09/11/2019 20:37	M6	GB

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report Date Re	ID : 40447 eceived: 08/29/2019	Company: Contact: Phone:		r-Witt	ntal (JP-W)		Ad			LA 71101		
			Qu	ality Co	ntrol Data							
		* Quality c	control units	are the sar	ne as reported	analytical	results					
			Blank		Standard			Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
9/1/2019	Chloride	228539.1		25	23	92.0	25	33	132.0		0.0	GB
9/1/2019	Chloride		<0.219									GB
9/1/2019	Chloride	228531		25	23	92.0	25	25	100.0		0.0	GB
9/11/2019	Chloride	228544.1		25	23	92.0	25	27	108.0		0.0	GB
9/11/2019	Chloride		<0.219									GB
9/11/2019	Chloride	228548.1		25	23	92.0	25	26	104.0		0.0	GB
9/1/2019	Fluoride		<0.083									GB
9/1/2019	Fluoride	228531		6	5.8	96.7	6	5.9	98.3		0.0	GB
9/1/2019	Fluoride	228539.1		6	5.8	96.7	6	6.1	101.7		0.0	GB
9/11/2019	Fluoride	228548.1		6	5.7	95.0	6	6.4	106.7		0.3	GB
9/11/2019	Fluoride		<0.083									GB
9/11/2019	Fluoride	228544.1		6	5.7	95.0	6	5.8	96.7		2.8	GB
8/29/2019	Solids, Total Dissolved (TDS)	228540.1	<2	50	46	92.0	1008	1166	115.7		2.0	JTD
9/1/2019	Sulfate	228539.1		25	23	92.0	50	59	118.0		0.0	GB
9/1/2019	Sulfate	228531		25	23	92.0	25	27	108.0		2.0	GB
9/1/2019	Sulfate		<0.140									GB
9/11/2019	Sulfate	228544.1		25	23	92.0	50	62	124.0		0.6	GB
9/11/2019	Sulfate	228548.1		25	23	92.0	50	58	116.0		0.0	GB
9/11/2019	Sulfate		<0.140									GB

Date Required: 10/12/19

Code Code Description

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

M6 Matrix spike recovery was high.

Quality Assurance Officer

10-Oct-19 Report Date

Relinquished by: Company: Date/Time: Received in Laboratory b Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17 Received in Laboratory b	Relinquished by: Company:	Relinquished by Company:		Special Instructions/QC Requirements & Comments:	* Six 1L Bottles must be collected for Radium for every 10th sample.		DUPLICATE LANDFILL 8/26/2019	MW-15 8/26/2019	MW-14 8/26/2019	MW-12D 8/26/2019	MW-9D 8/26/2019	MW-6D 8/26/2019	MW-5D 8/26/2019	MW-4D 8/26/2019	MW-3D 8/26/2019	MW-2D 8/26/2019	Sample Identification Date	Sampler(s): Kenneth McDonald/Matt Hamilton	Project Name: Northeastern PP CCR Contact Name: Jill Parker-Witt Analys Contact Phone: 318-673-3816	Contacts: Jonathan Barnhill (318-673-3803)	Shreveport Chemical Laboratory (SCL) 502 N. Allen Ave. Shreveport , LA 71101
y: al Combustio		202 LT	***		th sample.	NaOH; 6= Oth	9 1433	9 1525	1600	9 1405	9 1510	9 1500	9 1540	9 1433	9 1444	$\left \right $	Sample Time		Analysis Turnaround Time (In Calendar Days) RESULTS DUE OCTOBER 12	_	200
n Residual						er	G	G	G	G	G	ດ	G	G	G	G	Sample Type (C=Comp, G≖Grab)		Time (in Cal E OCTOB	/	29/14
Date/Time: (CCR) Sarr	Date/Time:	Date/Time:	RESULTS DUE			; F= filter in field	GW 1	GW 1	GW 1	GW 1	GW 1	GW 1	GW 1	GW 1	GW 1	GW 1	Matrix Cont.		endar Days) ER 12		Chai ogram:
pling - Sh		+ 114	DUE			in field									$\left \right $		Sampler(s) Ini	itials		Site Contact:	n of C Coal Cor
Received i	Received by:	Received by:	OCT			4											Mercury		250 mL bottle, pH<2, HNO3	ntact:	nbustion
Received in Laboratory by:	oy:	y:	OCTOBER			F4											dissolved F	e and Mn	Field-filter 500 mL bottle, then pH<2, HNO3		Chain of Custody Record gram: Coal Combustion Residuals (CCR)
5 Y			12			1	×	×	×	×	×	×	×	×	×	×	Chloride, Fluoride, S TDS	Sulfate,	1 L bottle, Cool, 0-6C		rd (CCR)
)ally						4											Ra-226, Ra	a-228	Three (six every 10th*) 1 L bottles, pH<2, HNO3	Date:	
Date/Time: 8-29-19 11:45	Date/Time:	Date/Time:		15			128240	228047	228546	278545	228544	228543	228542	728541	228540	228539	UAC 34- Sample Specific Notes:		Coc 40447	COC/Order #:	

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. Shreveport, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type	Delivery Type							
(Ice Chest) Bag Action Pak PCB Mailer Bottle	UPS	FEDEX US Mail Walk in Shuttle						
Other	Othe	r						
	Tracking #							
Client TUL OAAY OUL	Tracking #							
Client Jill PARKen witt	-	Sample Matrix PCB Oil Water Oil Soil						
Received By <u>SANDRA WANACE</u> Received Date 8-29-19	DGA	PCB Oil Water Oil Soil						
	Solid	Liquid Other						
Open Date <u>8-29-19</u>	-	Liquid Other						
Container Temp Read 3.1	•	Project I.D.						
Correction Factor	14/							
	- vvere sa	mples received on ice? (YES) NO						
1.0								
Did container arrive in good condition? (YES	NO						
	\sim							
Was sample documentation received?	YES	NO						
	<u> </u>							
Was documentation filled out properly? (YÉS	NO						
Were samples labeled properly? (YES'	NO						
Were correct containers used?	(YES)	NO						
	\bigcirc	· · · · · · · · · · · · · · · · · · ·						
Were the pH's of samples appropriately checked?	YES	NONALA						
	-							
Total number of sample containers								
	-							
Was any corrective action taken?	NO	Person Contacted						
······		Date & Time						
Comments								

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station

Report Date: 10/10/2019

Sample Number:	192953-001			Date Col	lected:	08/26/2	2019 15:30	Da	te Received: 9/4/2019
Parameter		Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B		10.7	mg/L		0.2	0.1	KAN	09/23/2019 18:24	EPA 200.8-1994, Rev. 5.4
Calcium, Ca		14.3	mg/L		0.2	0.1	KAN	09/23/2019 18:24	EPA 200.8-1994, Rev. 5.4

MW-3D

MW-2D

Sample Number: 192953-002		Date Col	lected:	08/26/2	2019 14:44	Da	te Received: 9/4/2019
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.979 mg/L		0.2	0.1	KAN	09/23/2019 18:29	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	130 mg/L		0.2	0.1	KAN	09/23/2019 18:29	EPA 200.8-1994, Rev. 5.4

MW-4D

Sample Number:	192953-003		Date Co	llected:	08/26/2	2019 14:33	Da	ate Received: 9/4/2019
Parameter	Re	sult Unit	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.	987 mg/L		0.2	0.1	KAN	09/23/2019 18:34	EPA 200.8-1994, Rev. 5.4
Calcium, Ca		184 mg/L		0.2	0.1	KAN	09/23/2019 18:34	EPA 200.8-1994, Rev. 5.4

MW-5D

Sample Number: 192953-004	Γ	Date Collected:	08/26/2	019 15:40	Da	te Received: 9/4/2019
Parameter	Result Units	Data Qual RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.568 mg/L	0.2	0.1	KAN	09/23/2019 18:40	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	146 mg/L	0.2	0.1	KAN	09/23/2019 18:40	EPA 200.8-1994, Rev. 5.4
The MSD is outside the acceptab	le limit of 75-125%. T	The RPD between	the MS/M	SD exceeds 20 ^o	%.	

MW-6D

Sample Number: 192953-005		Date Co	llected:	08/26/2	2019 15:00	Da	ate Received: 9/4/2019
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	2.88 mg/L		0.2	0.1	KAN	09/23/2019 18:45	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	181 mg/L		0.2	0.1	KAN	09/23/2019 18:45	EPA 200.8-1994, Rev. 5.4

MW-9D

Report Date: 10/10/2019

Sample Number:	192953-006		Date Co	llected:	08/26/2	2019 15:10	Da	te Received: 9/4/2019
Parameter		Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B		6.95 mg/L	Quai	0.2	0.1	KAN	09/23/2019 18:50	EPA 200.8-1994, Rev. 5.4
Calcium, Ca		136 mg/L		0.2	0.1	KAN	09/23/2019 18:50	EPA 200.8-1994, Rev. 5.4 EPA 200.8-1994, Rev. 5.4
		100 mg/L		0.2	0.1		03/23/2013 10:50	LI A 200.0 1304, NOV. 3.4
MW-12D								
Sample Number:	192953-007		Date Co	llected:	08/26/2	2019 14:05	Da	te Received: 9/4/2019
Parameter		Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B		8.90 mg/L		0.2	0.1	KAN	09/23/2019 18:55	EPA 200.8-1994, Rev. 5.4
Calcium, Ca		96.3 mg/L		0.2	0.1	KAN	09/23/2019 18:55	EPA 200.8-1994, Rev. 5.4
		-						
MW-14								
Sample Number:	192953-008		Date Co	llected:	08/26/2	2019 16:00	Da	te Received: 9/4/2019
Parameter		Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B		1.69 mg/L		0.2	0.1	KAN	09/23/2019 19:00	EPA 200.8-1994, Rev. 5.4
Calcium, Ca		110 mg/L		0.2	0.1	KAN	09/23/2019 19:00	EPA 200.8-1994, Rev. 5.4
MW-15								
Sample Number:	192953-009		Date Co	llected:	08/26/2	2019 15:25	Da	te Received: 9/4/2019
Parameter		Describe Marke	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
		Result Units				ranaryone by		
Boron, B		8.28 mg/L		0.2	0.1	KAN	09/23/2019 20:38	EPA 200.8-1994, Rev. 5.4
							-	
		8.28 mg/L		0.2	0.1	KAN	09/23/2019 20:38	EPA 200.8-1994, Rev. 5.4
	1	8.28 mg/L		0.2	0.1	KAN	09/23/2019 20:38	EPA 200.8-1994, Rev. 5.4
Calcium, Ca Dulicate Landfil	l 192953-010	8.28 mg/L		0.2 0.2	0.1 0.1	KAN	09/23/2019 20:38 09/23/2019 20:38	EPA 200.8-1994, Rev. 5.4
Dulicate Landfil		8.28 mg/L	Date Co Data	0.2 0.2	0.1 0.1	KAN KAN 2019 14:33	09/23/2019 20:38 09/23/2019 20:38	EPA 200.8-1994, Rev. 5.4 EPA 200.8-1994, Rev. 5.4
Calcium, Ca Dulicate Landfil Sample Number: Parameter		8.28 mg/L 119 mg/L	Date Co Data	0.2 0.2	0.1 0.1 08/26/2	KAN KAN 2019 14:33	09/23/2019 20:38 09/23/2019 20:38 Da	EPA 200.8-1994, Rev. 5.4 EPA 200.8-1994, Rev. 5.4
Calcium, Ca Dulicate Landfill Sample Number: Parameter Boron, B		8.28 mg/L 119 mg/L Result Units	Date Co Data	0.2 0.2 ollected:	0.1 0.1 08/26/2 MDL	KAN KAN 2019 14:33 Analysis By	09/23/2019 20:38 09/23/2019 20:38 Da Analysis Date/Time	EPA 200.8-1994, Rev. 5.4 EPA 200.8-1994, Rev. 5.4 te Received: 9/4/2019 Method
Calcium, Ca Dulicate Landfill Sample Number: Parameter Boron, B		8.28 mg/L 119 mg/L Result Units 0.956 mg/L	Date Co Data	0.2 0.2 •llected: RL 0.2	0.1 0.1 08/26/2 MDL 0.1	KAN KAN 2019 14:33 Analysis By KAN	09/23/2019 20:38 09/23/2019 20:38 Da Da Analysis Date/Time 09/23/2019 20:43	EPA 200.8-1994, Rev. 5.4 EPA 200.8-1994, Rev. 5.4 te Received: 9/4/2019 Method EPA 200.8-1994, Rev. 5.4
Calcium, Ca Dulicate Landfill Sample Number: Parameter Boron, B	192953-010 k Landfill	8.28 mg/L 119 mg/L Result Units 0.956 mg/L	Date Co Data	0.2 0.2 •llected: RL 0.2	0.1 0.1 08/26/2 MDL 0.1	KAN KAN 2019 14:33 Analysis By KAN	09/23/2019 20:38 09/23/2019 20:38 Date Analysis Date/Time 09/23/2019 20:43 09/23/2019 20:43	EPA 200.8-1994, Rev. 5.4 EPA 200.8-1994, Rev. 5.4 te Received: 9/4/2019 Method EPA 200.8-1994, Rev. 5.4 EPA 200.8-1994, Rev. 5.4
Calcium, Ca Dulicate Landfill Sample Number: Parameter Boron, B Calcium, Ca	192953-010	8.28 mg/L 119 mg/L Result Units 0.956 mg/L	Date Co Data Qual	0.2 0.2 0.2 0.2 0.2 0.2	0.1 0.1 08/26/2 MDL 0.1 0.1	KAN KAN 2019 14:33 Analysis By KAN	09/23/2019 20:38 09/23/2019 20:38 Date Analysis Date/Time 09/23/2019 20:43 09/23/2019 20:43	EPA 200.8-1994, Rev. 5.4 EPA 200.8-1994, Rev. 5.4 te Received: 9/4/2019 Method EPA 200.8-1994, Rev. 5.4
Calcium, Ca Dulicate Landfill Sample Number: Parameter Boron, B Calcium, Ca Equipment Blan	192953-010 k Landfill	8.28 mg/L 119 mg/L Result Units 0.956 mg/L	Date Co Data Qual Date Co Data	0.2 0.2 0.2 0.2 0.2 0.2	0.1 0.1 08/26/2 MDL 0.1 0.1	KAN KAN 2019 14:33 Analysis By KAN KAN	09/23/2019 20:38 09/23/2019 20:38 Date Analysis Date/Time 09/23/2019 20:43 09/23/2019 20:43	EPA 200.8-1994, Rev. 5.4 EPA 200.8-1994, Rev. 5.4 te Received: 9/4/2019 Method EPA 200.8-1994, Rev. 5.4 EPA 200.8-1994, Rev. 5.4
Calcium, Ca Dulicate Landfill Sample Number: Parameter Boron, B Calcium, Ca Equipment Blan Sample Number:	192953-010 k Landfill	8.28 mg/L 119 mg/L Result Units 0.956 mg/L 183 mg/L	Date Co Data Qual Date Co Data	0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.1 0.1 08/26/2 0.1 0.1 0.1	KAN KAN 2019 14:33 Analysis By KAN KAN KAN	09/23/2019 20:38 09/23/2019 20:38 Date/Time 09/23/2019 20:43 09/23/2019 20:43 09/23/2019 20:43	EPA 200.8-1994, Rev. 5.4 EPA 200.8-1994, Rev. 5.4 Method EPA 200.8-1994, Rev. 5.4 EPA 200.8-1994, Rev. 5.4 EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Landfill CCR

Michael & Ollinger

Michael Ohlinger, Chemist Email msohlinger@aep.com Tel. Fax 614-836-4168 Aud

Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125 Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4184) Project Name: Northeastern PP Landfill CCR Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816 Sampler(s): Kenny McDonald/Matt Hamilton MW-2D MW-3D MW-4D	Analysis T RES Date B/26/2019 B/26/2019 B/26/2019	ULTS DU ULTS DU 1530 1444		Program: Program: BER 12 BER 12		Sampler(s) Initials	x x x Boron, Calcium HNO3 PH<2, Boron, Calcium PH<2, Boron, Calcium	And Normalization And Normalization Contact Contact: And Normalization Sampler(s) Initials Site Contact: Stree Contact: Site Contact: Site Contact: Stree Contact: Stree Contact: Site Contact: Sampler(s) Initials PH<2, pH<2, pH<2, pH<2, pH<2, pH<2, pH<2, pH<2, contact: Stree Contact: Sampler(s) Initials Dissolved B, Sb, As, Ba, Be, Ca, Cd, Cr, Co, Fe, K, Li, Mg, Mn, Mo, Na, Pb, Se, Sr, Ti Stree Contact: Stree Contact: Dissolved B, Sb, As, Ba, Be, Ca, Cd, Cr, Co, Fe, K, Li, Mg, Mn, Mo, Na, Pb, Se, Sr, Ti Stree Contact: Stree Contact: Stree Contact: Stree Contact: Stree Contact: Dissolved B, Sb, As, Ba, Be, Ca, Cd, Cr, Co, Fe, K, Li, Mg, Mn, Mo, Na, Pb, Se, Sr, Ti Stree Contact: Stree Contact: Stree Contact: Stree Contact:	vr⊒= ₫	Ra-226, Ra-228	For Lab Use Only: coc/Order #: /q2953 Sample Specific Notes:
MW-2D	8/26/2019	1530	G	GW			×				
MW-3D	8/26/2019	1444	G	GW	-		×				
MW-4D	8/26/2019	1433	G	GW	<u> </u>		×				
MW-5D	8/26/2019	1540	G	GW	-		×				
MW-6D	8/26/2019	1500	G	GW	_		×				
MW-9D	8/26/2019	1510	G	GW	-		×				
MW-12D	8/26/2019	1405	G	GW	<u> </u>		×				
MW-14	8/26/2019	1600	G	GW	-		×				
MW-15	8/26/2019	1525	G	GW	<u> </u>		×				
DUPLICATE LANDFILL	8/26/2019	1433	G	GW	<u> </u>		×				
EQUIPMENT BLANK LANDFILL	8/26/2019	1555	G	GW			×				
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	NO3; 5=NaC	H; 6= Oth	er	_; F=fi	F= filter in field	ield	4	F4	1	4	
* Six 1L Bottles must be collected for Radium for every 10th sample	every 10th s	ample.									
Special Instructions/QC Requirements & Comments:	its:										
**** RE	RESULTS DUE OCTOBER			TOB		12					
Relinquished by:	Company:	- [6		Date/Time: $08/30/4$		1400 F	Received by:				Date/Time:
Relinquished by:	Company:			Date/Time:	ne:		Received by:	, ,			Date/Time:
Relinquished by: Form COC-04, AEP Chain of Custody (COC) Recor	Company: rd for Coal C	ombustio	n Residual	Date/Time:	ne: Samplin	rg - Shrev	Received in	Received in Laboratory by:	J.W.	×	9/4/19 11:50/7M
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/1/	rd for Coal C	ombustio	n Residual	(CCR)	Samplin	ig - Shrev	report, Kev	. 1, 1/10/17			

Form SOP-7102 Sample Receipt Form Rev. 6, 11 30-15

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FUEL USPS
	Other
Plant/Customer Northeastern	Number of Plastic Containers:
Opened By MSD	Number of Glass Containers:
	Number of Mercury Containers:
Were all temperatures within 0-6°C?	Y / N or N/A Initial on ice / no ide
\mathcal{V} (IR Gun Ser#10 1991.02, Expir. 00	<pre>// N Comments</pre>
Requested turnaround	/ N Comments If RUSH , who was notified?
	D₂ or NO₃ (48 hr) <i>ortho</i> -PO₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	
Were samples labeled properly? Y	N Comments No Jules /t. mes on labels
Were correct containers used?	N Comments
Was pH checked & Color Coding don	e? Y/N or N/A Initial & Date JAB/ MGW
	/(N) f Yes: By whom & when: (See Prep Book)
is sample filtration requested? Y	(N Comments (See Prep Book)
Was the customer contacted?	Yes. Person Contacted
Lab ID# 192953	tial & Date & Time
Logged by	omments
Reviewed by SH	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer

#

Sample Receipt Form SOP-7102

ODEQ 2019 Correspondence

RECEIVED TEB 0 4 2019

January 30, 2019

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re: Response to Notice of Deficiency - Alternate Source Demonstration (ASD) – Coal Combustion Residuals (CCR) Landfill Public Service Company of Oklahoma-Northeastern Power Station (NPS) Ash Landfill Rogers County Solid Waste Permit No. 3566010

Dear Ms. Parker-Witt:

The Revised 2017 Annual Groundwater Monitoring Report for the landfill at the Public Service Company of Oklahoma-Northeast Power Station (NPS) contained the initial statistical analysis, dated February 26, 2018, for the detection monitoring program. It utilized interwell statistical analyses for boron and pH but intrawell methods for all other constituents. Statistically significant increases (SSIs) over background were indicated for boron at groundwater monitoring wells MW-6D, MW-9D and MW-15. Oklahoma Administrative Code (OAC) 252:517-9-5(e)(2) allows NPS to demonstrate, within ninety (90) days of detecting an SSI, that a source other than the CCR landfill caused the SSIs over background levels. An alternate source demonstration (ASD) dated May 1, 2018 was submitted by NPS. In the ASD, NPS determined that MW-7D and MW-8D were not appropriate upgradient background wells for statistical analyses due to groundwater mounding at the landfill and elevated salts not reflective of groundwater geochemistry across the site. DEQ agrees that an interwell approach is not currently viable for boron at MW-6D, MW-9D and MW-15 using MW-7D and MW-8D as background wells. The submittal also contained the justification for the use of an intrawell approach when statistically evaluating boron. The previous SSIs were not observed when using the intrawell statistical analyses methods for boron; and the ASD attributed the SSIs to statistical errors and not a release from the landfill.

On August 2, 2018, the Department of Environmental Quality (DEQ) issued a Notice of Deficiency (NOD) for the ASD at the landfill. The NOD requested NPS to conduct an independent study and hydrogeological investigation to identify local geochemical conditions and expected groundwater quality for boron near MW-6D, MW-9D, and MW-15 to justify the intrawell approach. Further, if the intrawell approach could not be justified, then an alternative monitor well location would need to be determined to establish interwell background values for boron.

On October 8, 2018, by email, DEQ received a 30-day time extension request from NPS to complete and submit the hydrogeological investigation to fulfill the NOD. DEQ approved the

please recycle

Ms. Jill Parker-Witt, P.E. American Electric Power – Northeastern Power Station January 30, 2019 Page 2 of 3

time extension and received the completed hydrogeological investigation on October 30, 2018, by email, as part of the Response to the NOD. Additional information was received on January 10, 2019 and January 14, 2019.

DEQ reviewed the NOD Response and provides the following assessment that addresses the ASD conclusions below.

1. Page 1. The geochemical mixing model could not simultaneously replicate the concentrations of boron and other common inorganic species given the low boron concentrations relative to Total Dissolved Solids (TDS) in samples of leachate; therefore, landfill leakage was dismissed as a source of boron in groundwater due to an inability to simulate observed groundwater data using the mixing model.

The inability to replicate the relatively high boron concentrations in MW-6D, MW9D and MW-15 using a simple mixing model to simulate dilution does not prove that the source of boron is not from CCR associated with the landfill. It more likely demonstrates that more complex contaminant transport mechanisms such as chemical reactions and interactions with the aquifer are affecting the boron migration and concentrations in groundwater. The boron in the leachate is of similar magnitude to the concentrations in MW-6D, MW9D and MW-15.

2. Page 2. MW-6D, MW-9D and MW-15 are installed in locations where coal ash had been used as structural fill. Boron is suspected to be leaching from the CCR used as structural fill, rather than CCR that is contained in the Landfill.

OAC 252:517-9-1(d) requires NPS to control the sources of releases to prevent further releases of contaminants into the environment. The source of boron detected in these monitoring wells is CCR.

3. Page 3, 5 and 6. Boron is known to adsorb to bentonite. It is hypothesized that since the start of construction of the slurry wall and grout curtain, boron leached from the CCR and was adsorbed by the bentonite grout. It is proposed that boron is now being released to the deep groundwater and monitor wells (MW-6D, MW-9D and MW-15) as a result of calcium partitioning from the native groundwater to the bentonite clay which then releases adsorbed boron, sodium and interstitial water.

This proposition gives the initial source of the boron as the CCR Landfill. It is now being released to the environment as documented by relatively high boron in MW-6D, MW-9D and MW-15.

DEQ has concluded that the Response provided by NPS does not sufficiently show that the elevated boron concentrations in MW-6D, MW-9D and MW-15 are from a source other than CCR. Therefore, the ASD Response is not accepted and the intrawell approach for evaluating boron in monitor wells MW-6D, MW-9D and MW-15 at the landfill is not considered viable nor

Ms. Jill Parker-Witt, P.E. American Electric Power – Northeastern Power Station January 30, 2019 Page 3 of 3

protective of the environment since the elevated boron there could not be definitively attributed to a non-CCR source. However, DEQ agrees with the ASD in terms of a statistical error related to inappropriate background wells MW -7D and MW-8D.

OAC 252:517-9-5(e)(1) requires NPS, within 90 days of detecting a SSI, to establish an assessment monitoring program. The assessment monitoring program establishes background values and groundwater protection standards (GWPS) in accordance with OAC 252:517-9-6. Since MW-7D and MW-8D are not viable background wells, the GWPS and background values cannot be established; therefore, prior to instituting an assessment monitoring program, a background well representative of the aquifer must be obtained.

A background well for conducting interwell statistical evaluations for boron and establishing GWPS for Appendix B constituents is needed. In the ASD NOD, DEQ gave NPS the option of determining an alternative monitoring well from existing wells at the site, or constructing a new monitoring well to be used as a background monitoring well for interwell statistical analyses. On January 10, 2019, NPS informed DEQ that groundwater monitoring well SP-6 would be used for background monitoring and monthly monitoring would commence this month. A total of eight (8) samples are required to determine background water quality. In an email dated January 11, 2019, DEQ approved the use of SP-6 as a background monitoring well and approved the monthly monitoring to obtain background data. Please add SP-7 as a second background well since it has better water yield, would provide a means to evaluate spatial variation and would provide pooled background data for statistical comparisons to compliance wells.

Please revise the groundwater monitoring network to include SP-6 and SP-7. Also, please revise related groundwater monitoring documents, including the sampling and analysis plan and the statistical analysis plan. Once acquisition of 8 background samples have been completed and approved by DEQ, please conduct the statistical analyses to determine if SSIs over background exist at the landfill. If so, an assessment monitoring plan shall be submitted to DEQ within 90 days. If you have any questions, please contact Ms. Cynthia Hailes, P.E. at (405) 702-5114.

Sincerely,

Hillary Young, P.E.

Chief Engineer Land Protection Division

HY/ckh

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

March 1, 2019

CERTIFIED MAIL RETURN RECEIPT REQUESTED

Ms. Jill Parker-Witt, P.E. American Electric Power – Northeastern Power Station 502 North Allen Avenue Shreveport, LA 71101

Re: Annual CCR Unit Inspection Reports 252:517-13-4 and 252:517-13-5 Public Service Company of Oklahoma - Northeastern Power Station Coal Combustion Residuals Bottom Ash Pond and Landfill Rogers County Solid Waste Permit No. 3566010

Dear Ms. Parker-Witt:

The Department of Environmental Quality (DEQ) received, by email dated January 25, 2019, the notification of the completion of the annual engineering inspections for the Bottom Ash Pond (BAP) and the Ash Landfill (Landfill) at American Electric Power's Public Service Company of Oklahoma- Northeastern Power Station (AEP-NPS).

The notice indicates the inspection reports were placed in the operating record on January 10, 2019 in accordance with Oklahoma Administrative Code (OAC) 252:517-19-1(g). The inspection reports were posted to AEP's publicly accessible internet site as required by OAC 252:517-19-3(g).

Both inspection reports are accepted as submitted. If you have any questions, please contact Ms. Cindy Hailes at (405) 702-5114.

Sincerely,

Hillary Young, P.E. Chief Engineer Land Protection Division

HY/ckh

3

10.0

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

RECEIVED MAR 1 8 2019

March 11, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re: Annual Groundwater Monitoring Report – Landfill Public Service Company of Oklahoma-Northeastern Power Station Ash Landfill Rogers County Solid Waste Permit No. 3566010

Dear Ms. Parker-Witt:

On January 31, 2019, the Department of Environmental Quality (DEQ) received the Annual Groundwater Monitoring Report – Landfill CCR Management Unit (Report) for Northeastern Power Station Landfill (NPS). Field sheets were received by email on March 7, 2019 and analytical reports on March 11, 2019. Oklahoma Administrative Code (OAC) 252:517-9-1(e) requires NPS prepare the annual groundwater monitoring and corrective action report to document the status of the coal combustion residual (CCR) landfill. The Report is to be submitted to DEQ for review and approval per OAC 252:517-9-1(g).

Section II Groundwater Monitoring Well Locations and Identification Numbers on Page 3 of the Report lists the upgradient monitoring wells as MW-7D and MW-8D. The fifteen (15) deep downgradient monitoring wells listed are MW1D-13D and MW14-17. In a letter submitted on May 3, 2018, NPS determined that MW-7D and MW-8D were not appropriate upgradient background wells for statistical analyses due to groundwater mounding at the landfill and elevated salts not reflective of groundwater geochemistry across the site. DEQ agreed with NPS and on January 10, 2019, NPS informed DEQ that groundwater monitoring well SP-6 would be used for background monitoring and monthly monitoring would commence that month. In an email dated January 11, 2019, DEQ approved the use of SP-6 as a background monitoring well and requested NPS add SP-7 as a second background well. Both monitoring wells are currently undergoing monthly background monitoring. Neither SP-6 nor SP-7 are included in the annual report since DEQ did not approve them to commence background monitoring until after December 31, 2018.

Section V Statistical Evaluation of 2018 Events states, "Eight background samples were collected from 4D, 5D, and 12D and analyzed for Appendix A and B constituents. AEP continues to attempt to collect background samples from 1D, 2D, 10D, 11D, 13D, 14, 16, and 17 as these wells do not produce sufficient groundwater volume after allowing the well to recharge for 24 hours." Please continue to collect background samples from these wells. Semi-annual sampling events occurred on May 30, 2018 and October 22, 2019 under the detection monitoring program.

Ms. Jill Parker-Witt, P.E. American Electric Power – Northeastern Power Station March 11, 2019 Page 2 of 2

Table 1 lists the calculated groundwater velocities in MW-3D, MW-6D, MW-7D, MW-8D, MW-9D and MW-15 and the estimated residence time of groundwater within the well. The residence times range from 44 days to 259 days, indicating very slow groundwater movement. Groundwater flow is primarily to the south with indications of mounding.

The statistical analysis presented in this report is for the October 11, 2017 and January 22, 2018 sampling events. The statistical analysis for the May 30, 2018 and October 22, 2018 sampling events was not completed by January 31, 2019 and will be submitted in a separate document. In future annual reports, please provide all laboratory reports and statistical analyses conducted in the year represented by the report. This should include at least the statistical evaluation of the first semi-annual sampling event even if the statistical analyses for the second semi-annual sampling event have not been completed. OAC 252:517-4(i)(2) requires statistical analysis to determine SSI's be completed for samples within 90 days after completing sampling.

The statistical analysis based on the October 11, 2017 and January 22, 2018 sampling events resulted in the statistically significant increase in boron at MW-6D (3.74 mg/L)(4.24 mg/L), MW-9D (7.07 mg/L)(7.43 mg/L) and at MW-15 (9.62 mg/L)(9.16 mg/L). NPS conducted an alternate source demonstration (ASD) that was not accepted by DEQ; however, DEQ approved sampling in SP-6 and SP-7 to determine if they were suitable for use as background monitoring wells. In a letter dated January 30, 2019, DEQ determined that since MW-7D and MW-8D are not viable background wells, the groundwater protection standards and background values cannot be established; therefore, prior to instituting an assessment monitoring program, a background well representative of the aquifer must be obtained.

The Report is accepted as submitted. Please submit the analytical results for SP-6 and SP-7 within 90 days of when AEP completes background sampling. Please include the analyses performed to determine their suitability as background monitoring wells and any statistical re-evaluation of constituent background values and groundwater protection standards. If you have any questions, please contact Ms. Cynthia Hailes, P.E. at (405) 702-5114.

Sincerely,

00 ach Hillary Young, P.È

Chief Engineer Land Protection Division

HY/ckh

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STILT Governor

April 5, 2019

Elizabeth Gunter Counsel for Public Service Company of Oklahoma Public Service Company of Oklahoma 1 Riverside Plaza Columbus, OH 43215

RE: Financial Assurance – Corporate Financial Test Facility: Northeastern Power Station Coal Ash Landfill; Permit Number: 3566010; and Bottom Ash Pond (currently in the permit application process) Rogers County, Oklahoma

Dear Ms. Gunter:

As required by Oklahoma Administrative Code (OAC) 252:517-17-3: Duty to maintain financial assurance, this letter acknowledges that DEQ has received Public Service Company of Oklahoma's (PSO's) 2019 Corporate Financial Test mechanism. PSO is the owner/operator of the Northcastern Power Station Coal Ash Landfill (Landfill), Permit No. 3566016, and the Bottom Ash Pond. The mechanism has been determined to be satisfactory at this time. Importantly however, DEQ may require additional information at any time if it appears PSO no longer satisfies its financial assurance obligation as owner/operator of the Landfill and the Bottom Ash Pond. DEQ reserves any and all rights it has to pursue enforcement actions or proceedings under applicable law with regard to PSO's financial assurance obligations, if the obligations are found to be inadequate.

PSO has certified the following cost estimates are assured through the company's 2019 Corporate Financial Test mechanism dated March 7, 2019:

Bot	tom	Ash	Pond:
-----	-----	-----	-------

-	Closure: Post-Closure: Total:	\$9,393,690 x 3% = \$9,675,501 \$1,189,415 x 3% = \$1,225,097 \$10,900,598
La	ndfill (Permit No. 3	566016):

(1 child 140, 5500010).			0. 5500010).
	-	Closure:	$3,969,964 \times 3\% = 4,089,062$

-	Post-Closure:	\$5,821,984 x 3% = \$5,996,644
-	Total:	\$10,085,706

Thank you for ensuring PSO has met its 2019 financial assurance obligations for the Landfill and Bottom Ash Pond. If you have any questions, please contact Carol Bartlett at (405) 702-5109.

Sincerely. Hillary Young, P.E.

Chief Engineer Land Protection Division

HY/cb

707 NORTH ROBINSON, P.O. BOX 1677, OKLAHOMA CITY, OKLAHOMA 73101-1677

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

June 25, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re: Monitoring Well SP-6 Analysis Report Public Service Company of Oklahoma-Northeastern Power Station Ash Landfill Rogers County Solid Waste Permit No. 3566010

Dear Ms. Parker-Witt:

On March 19, 2019, the Department of Environmental Quality (DEQ) received, by email, the Analysis Report (Report) for Oklahoma Administrative Code (OAC) 252:517 Appendix A anions and mercury in Monitoring Well SP-6 for Northeastern Power Station Landfill (Landfill). The Report was used to determine if SP-6 is acceptable as an upgradient background well for statistical analysis in the Landfill monitoring well network.

In a letter dated April 13, 2018, NPS determined that MW-7D and MW-8D were not appropriate upgradient background wells for statistical analyses due to groundwater mounding at the landfill and elevated salts not reflective of groundwater geochemistry across the site. In an email dated January 11, 2019, DEQ approved SP-6 to commence background monitoring to determine its use as a potential background monitoring well and NPS added SP-7 as a second potential background monitoring well.

SP-6 was sampled on January 16, 2019. Chloride (14,133 mg/L) and TDS (22,956 mg/L) in SP-6 exceeded the concentrations of MW-7D and MW-8D and all downgradient monitoring wells sampled in the October 22, 2018 sampling event.

After reviewing the Report, it appears that SP-6 is not a suitable upgradient background monitoring well for the Landfill. Please submit the analytical results from all samplings from monitoring well SP-7 when complete.

If you have any questions, please contact Ms. Cynthia Hailes, P.E. at (405) 702-5114.

Sincerely,

Hillary Young, P.E

Chief Engineer Land Protection Division

HY/ckh

 \mathbf{O}

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

September 12, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101 RECEIVED SEP 1 6 2018

Re: Monitoring Well SP-6 Mercury and SP-7 Analysis Reports Public Service Company of Oklahoma-Northeastern Power Station Ash Landfill Rogers County Solid Waste Permit No. 3566010

Dear Ms. Parker-Witt:

In a letter dated April 13, 2018, Northeastern Power Station (NPS) determined that MW-7D and MW-8D were not appropriate upgradient background wells for statistical analyses for the NPS Landfill due to groundwater mounding at the Landfill and elevated salts not reflective of groundwater geochemistry across the site. In an email dated January 11, 2019, the Department of Environmental Quality (DEQ) approved SP-6 to commence background monitoring to determine its use as a potential background monitoring well and NPS added SP-7 as a second potential background monitoring well.

On June 25, 2019, DEQ determined that monitoring well SP-6 was not a suitable upgradient background monitoring well. On July 16, 2019, DEQ received, by email, the Analysis Report (Report) for Oklahoma Administrative Code (OAC) 252:517 Appendix A anions and mercury in SP-6 and SP-7. The Report was used to determine if SP-7 is acceptable as an upgradient background well for statistical analysis in the Landfill monitoring well network.

SP-7 was sampled on May 7, 2019. Chloride (30,900 mg/L) and TDS (47,146 mg/L) in SP-7 exceeded the concentrations of MW-7D and MW-8D and all downgradient monitoring wells sampled in the October 22, 2018 sampling event.

After reviewing the Report, it appears that SP-7 is not a suitable upgradient background monitoring well for the Landfill. Please review the site geology and hydrology and submit a plan to find a suitable background monitoring well that is representative of background groundwater quality for the Landfill.

If you have any questions, please contact Ms. Cynthia Hailes, P.E. at (405) 702-5114.

Sincerely,

ear

Hillary Young, P.E. Chief Engineer Land Protection Division

HY/ckh

С.

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

RECEIVED OCT 1 8 2019

October 11, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re: Annual CCR Fugitive Dust Control Report – OAC 252:517-13-1(b)(6) Public Service Company of Oklahoma Northeastern Power Station Ash Landfill and Bottom Ash Pond Rogers County Solid Waste Permit No. 3566010

Dear Ms. Parker-Witt:

On September 12, 2019, the Department of Environmental Quality (DEQ) received the Annual CCR Fugitive Dust Control Report (Report) from Northeastern Power Station (NPS). Oklahoma Administrative Code (OAC) 252:517-13-1(c) requires the Report to be submitted to DEQ and placed in the facility's operating record in accordance with OAC 252:517-19-1(g)(1). The Report has also been placed on the facility's publicly accessible Internet site as required by OAC 252:517-19-1(g)(2). The Landfill is a permitted CCR landfill that accepts CCR generated on-site. The Bottom Ash Pond accepts bottom ash from Unit 3 that is wet sluiced to the surface impoundment for removal and segregation. The permit application for the BAP is currently under review by DEQ.

The Report meets the requirements of OAC 252:517-13-1(c) and is accepted as submitted.

If you have any questions, please contact Ms. Cindy Hailes at (405) 702-5114.

Sincerely,

Hillary Young, P.E. Chief Engineer Land Protection Division

HY/ckh

707 NORTH ROBINSON, P.O. BOX 1677, OKLAHOMA CITY, OKLAHOMA 73101-1677

please recycle

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

December 19, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re: Fugitive Dust Control Plan Revision 4 – OAC 252:517-13-1(b)(6) Public Service Company of Oklahoma Northeastern Power Station Ash Landfill and Bottom Ash Pond Rogers County Solid Waste Permit No. 3566010

Dear Ms. Parker-Witt:

On October 21, 2019, the Department of Environmental Quality (DEQ) received the Fugitive Dust Control Plan Rev. 4 from Northeastern Power Station (NPS). Oklahoma Administrative Code (OAC) 252:517-13-1(b)(6) allows amendment of the written Coal Combustion Residuals (CCR) fugitive dust control plan at any time provided the revised plan is approved by DEQ then placed in the facility's operating record in accordance with OAC 252:517-19-1(g)(1).

The August 2019 revisions are summarized in Appendix E. No regulatory or technical revisions were made.

DEQ accepts the Fugitive Dust Control Plan – Revision 4. Please notify DEQ when the revised Dust Control Plan has been placed in the operating record per OAC 252:517-19-2 (c) and on the facility's publically accessible internet site per OAC 252:517-19-3-(d).

If you have any questions, please contact Ms. Cindy Hailes at (405) 702-5114.

Sincerely, Hillary Young, P.

Chief Engineer Land Protection Division

HY/ckh

G