Annual Groundwater Monitoring Report

Southwestern Electric Power Company
H. W. Pirkey Power Plant
East Bottom Ash Pond CCR Management Unit
CN600126767; RN100214287

Registration No: CCR104

Hallsville, Texas

January 31, 2023

Prepared by:
American Electric Power Service Corporation
1 Riverside Plaza
Columbus, Ohio 43215

Page Table of Contents T II. Groundwater Monitoring Well Locations and Identification Numbers.......4 III. IV. Groundwater Quality Data and Static Water Elevation Data, With Flow Rate and Direction and V. VI. Alternate Source Demonstration 6 VII. Discussion About Transition Between Monitoring Requirements or Alternate Monitoring VIII. Other Information Required......6 IX. X. A Projection of Key Activities for the Upcoming Year......7 **Appendix 1-** Groundwater Data Tables and Figures **Appendix 2-** Statistical Analyses **Appendix 3-** Alternative Source Demonstrations **Appendix 4-** Field Sheets **Appendix 5-** Analytical Reports

Abbreviations:

ASD - Alternate Source Demonstration

CCR – Coal Combustion Residual

GWPS - Groundwater protection standards

SSI - Statistically Significant Increase

SSL - Statistically Significant Level

TCEQ – Texas Commission on Environmental Quality

I. Overview

This Annual Groundwater Monitoring Report (Report) has been prepared to report the status of activities for the preceding year at the East Bottom Ash Pond (EBAP) CCR unit at Pirkey Power Plant. Southwestern Electric Power Company is wholly-owned subsidiary of American Electric Power Company (AEP). The Texas Commission on Environmental Quality's (TCEQ's) CCR rules require that he Annual Groundwater Monitoring Report be posted to the operating record for the preceding year no later than January 31, 2023.

In general, the following activities were completed:

- At the start of the current annual reporting period, the EBAP was operating under the Assessment monitoring program.
- At the end of the current annual reporting period, the EBAP was operating under the Assessment monitoring program.
- The EBAP initiated an assessment monitoring program on April 3, 2018.
- Groundwater samples were collected for AD-2, AD-4, AD-12, AD-18, AD-31, and AD-32 in March, May, and November 2021 and analyzed for Appendix III and Appendix IV constituents, as specified in 30 TAC §352.941 or §352.951et seq and AEP's Groundwater Sampling and Analysis Plan (2021).
- Groundwater data underwent various validation tests, including tests for completeness, valid values, transcription errors, and consistent units.
- Data and statistical analysis not available for the previous reporting period indicates that during the 2nd semi-annual 2021 sampling event (November 2021):

The following Appendix IV parameters exceeded established groundwater protection standards:

- Lithium at AD-31 and AD-32
- o Cobalt at AD-2, AD-31 and AD-32

The following Appendix III parameters exceeded background:

- o Boron at AD-2 and AD-32
- o Calcium at AD-32
- o Chloride at AD-2, AD-31 and AD-32
- o pH at AD-2 and AD-31
- o Sulfate at AD-2, AD-31, and AD-32
- o TDS concentrations at AD-2, AD-31, and AD-32

- A successful ASDs for the Appendix IV parameters that exceeded the GWPS for the 2nd semi-annual 2021 was certified on June 16, 2022 and submitted to TCEQ June 16, 2022 for approval.
- During the 1st semi-annual sampling event held in June 2022:

The following Appendix IV parameters exceeded established groundwater protection standards:

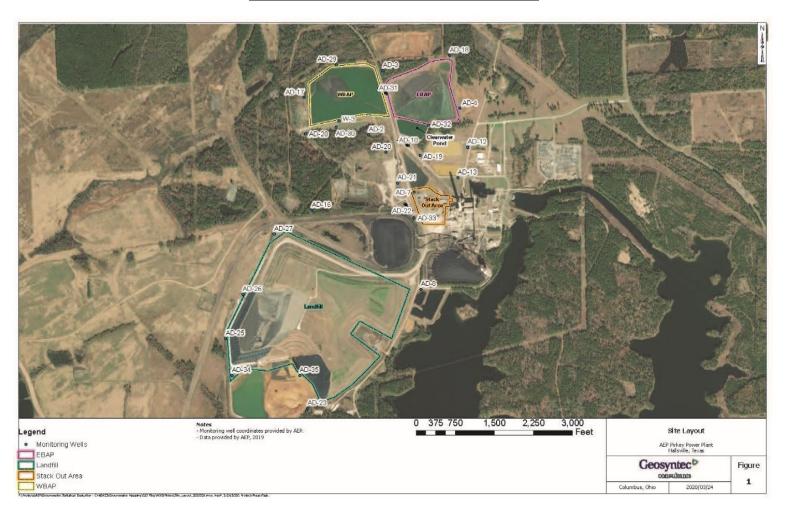
- o Lithium at AD-31 and AD-32
- o Cobalt at AD-2, AD-31, and AD-32

The following Appendix III parameters exceeded background:

- o Boron at AD-2 and AD-32
- o Calcium at AD-2 and AD-32
- o Chloride at AD-2, AD-31, and AD-32
- o Sulfate at AD-2, AD-31, and AD-32
- o TDS concentrations at AD-2, AD-31, and AD-32
- A successful ASD for the Appendix IV parameters that exceeded the GWPS 1st semiannual 2022 was certified January 25, 2023 and submitted to TCEQ January 25, 2023 for approval.
- The 2nd semi-annual event (November 2022) data are still undergoing statistical analysis.
- Because an alternate source for the SSL(s) was identified, but no alternate source for the SSI(s) was identified, EBAP remained in Assessment Monitoring.
- A statistical process in accordance with 30 TAC §352.931 to evaluate groundwater data was updated, certified, and posted to AEP's CCR website in 2021 titled: AEP's Statistical Analysis Plan (Geosyntec 2021). The statistical process was guided by USEPA's Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance ("Unified Guidance," USEPA, 2009).

The major components of this annual report, to the extent applicable at this time, are presented in sections that follow:

- A map, aerial photograph or a drawing showing the CCR management unit(s), all groundwater monitoring wells and monitoring well identification numbers;
- All of the monitoring data collected, including the rate and direction of groundwater flow, plus a summary showing the number of samples collected per monitoring well, the dates the samples were collected and whether the sample was collected as part of detection monitoring or assessment monitoring programs (Attached as **Appendix 1**);


- Statistical comparison of monitoring data to determine if there have been SSI(s) or SSL(s) (Attached as **Appendix 2**);
- A discussion of whether any alternate source demonstrations were performed, and the conclusions (Attached as **Appendix 3**);
- A summary of any transition between monitoring programs, or an alternate monitoring frequency, for example the date and circumstances for transitioning from detection monitoring to assessment monitoring, in addition to identifying the constituents detected at a SSI over background concentrations (where applicable);
- Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a statement as to why that happened;
- Other information required to be included in the annual report such as field sheets, analytical reports, etc. (Appendix 4 and 5).

In addition, this report summarizes key actions completed, and where applicable, describes any problems encountered and actions taken to resolve those problems. The report includes a projection of key activities for the upcoming year.

II. Groundwater Monitoring Well Locations and Identification Numbers

The figure that follows depicts the PE-certified groundwater monitoring network, the monitoring well locations and their corresponding identification numbers.

EBA	P Monitoring Wells
Up Gradient	Down Gradient
AD-4	AD-2
AD-12	AD-31
AD-18	AD-32

III. Monitoring Wells Installed or Decommissioned

There were no new groundwater monitoring wells installed or decommissioned during 2022. The network design, as summarized in the *Groundwater Monitoring Network Design Report* (May 25, 2016) and as posted at the CCR website for Pirkey Power Plant's EBAP, did not change. That network design report, viewable on the AEP CCR web site, discusses the facility location, the hydrogeological setting, the hydrostratigraphic units, the uppermost aquifer, downgradient monitoring well locations and the upgradient monitoring well locations.

IV. <u>Groundwater Quality Data and Static Water Elevation Data, With Flow Rate and Direction and Discussion</u>

Appendix 1 contains tables showing the groundwater quality data collected during the establishment of background quality, and during detection and assessment monitoring. Static water elevation data from each monitoring event also are shown in **Appendix 1**, along with the groundwater velocity calculations, groundwater flow direction and potentiometric maps developed after each sampling event.

The sampling event conducted March 2022 satisfies the requirement of 40 CFR 257.95(b)/30 TAC 352.951.

V. Statistical Evaluation of 2022 Events

Appendix 2 contains the statistical analysis report(s).

Data and statistical analysis not available for the previous reporting period indicates that during the 2nd semi-annual 2021 sampling event (November 2021):

The following Appendix IV parameters exceeded established groundwater protection standards:

- o Lithium at AD-31 and AD-32
- Cobalt at AD-2, AD-31 and AD-32

The following Appendix III parameters exceeded background:

- o Boron at AD-2 and AD-32
- o Calcium at AD-32
- o Chloride at AD-2, AD-31 and AD-32
- o pH at AD-2 and AD-31
- o Sulfate at AD-2, AD-31, and AD-32
- o TDS concentrations at AD-2, AD-31, and AD-32

During the 1st semi-annual sampling event held in June 2022:

The following Appendix IV parameters exceeded established groundwater protection standards:

- o Lithium at AD-31 and AD-32
- o Cobalt at AD-2, AD-31, and AD-32

The following Appendix III parameters exceeded background:

- o Boron at AD-2 and AD-32
- o Calcium at AD-2 and AD-32
- o Chloride at AD-2, AD-31, and AD-32
- o Sulfate at AD-2, AD-31, and AD-32
- o TDS concentrations at AD-2, AD-31, and AD-32

The 2nd semi-annual event (November 2022) data are still undergoing statistical analysis.

VI. <u>Alternate Source Demonstration</u>

A successful ASDs for the Appendix IV parameters that exceeded the GWPS for the 2nd semi-annual 2021 was certified on June 16, 2022 and submitted to TCEQ June 16, 2022 for approval.

A successful ASD for the Appendix IV parameters that exceeded the GWPS for the 1st semi-annual 2022 was certified January 25, 2023 and submitted to TCEQ January 25, 2023 for approval.

The successful ASDs are found in **Appendix 3**.

Because an alternate source for the SSL(s) was identified, but no alternate source for the SSI(s) was identified, EBAP remained in Assessment Monitoring.

VII. <u>Discussion About Transition Between Monitoring Requirements or Alternate</u> <u>Monitoring Frequency</u>

The EBAP will remain in assessment monitoring unless all Appendix III and IV parameters are below background values for two consecutive monitoring events (return to detection monitoring) as prescribed by 30 TAC §352.951(c). If an Appendix IV parameter exceeds its respective GWPS and an ASD is determined not to be satisfactory to the executive director, an assessment of corrective measures will be undertaken as required by 30 TAC §352.961.

Regarding defining an alternate monitoring frequency, the groundwater velocity and monitoring well production are high enough at this facility that no modification to the semiannual assessment monitoring frequency is needed.

VIII. Other Information Required

As required by the CCR assessment monitoring rules in 30 TAC §352.951, sampling all CCR wells for the required Appendix III and IV parameters was completed in 2022.

IX. <u>Description of Any Problems Encountered in 2022 and Actions Taken</u>

No significant problems were encountered. The low flow sampling effort went smoothly and the schedule was met to support the annual groundwater report preparation covering the year 2022 groundwater monitoring activities.

X. A Projection of Key Activities for the Upcoming Year

Key activities for next year include:

- Assessment monitoring sampling will be conducted;
- Complete the statistical evaluation of the second semi-annual groundwater monitoring event that took place in November 2022;
- Conduct the annual groundwater sampling event for all constituents listed in appendix III and IV as required by 30 TAC 352.951;
- Perform statistical analysis on the sampling results for the Appendix III and Appendix IV parameters as required by 30 TAC 352.951;
- Conduct ASD(s) if GWPSs are exceeded;
- Responding to any new data received in light of CCR rule requirements;
- Preparation of the next annual groundwater report.

APPENDIX 1- Groundwater Data Tables and Figures

Figures and Tables follow, showing the groundwater monitoring data collected, the rate and direction of groundwater flow, and a summary showing the number of samples collected per monitoring well. The dates that the samples were collected also is shown.

Table 1 - Groundwater Data Summary: AD-2 Pirkey - EBAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/11/2016	Background	1.27	1.43	28	< 0.083 U1	4.4	68	238
7/14/2016	Background	1.34	1.38	28	< 0.083 U1	4.2	71	216
9/7/2016	Background	1.3	2.65	20	< 0.083 U1	4.2	49	216
10/13/2016	Background	1.48	1.29	31	< 0.083 U1	3.6	67	230
11/14/2016	Background	1.36	1.44	28	< 0.083 U1	3.9	72	240
1/12/2017	Background	1.48	1.6	30	< 0.083 U1	3.9	94	244
3/1/2017	Background	1.62	1.28	28	< 0.083 U1	4.1	80	262
4/11/2017	Background	1.65	1.71	50	< 0.083 U1	4.0	88	254
8/24/2017	Detection	1.46	2.06	24	< 0.083 U1	4.3	64	200
12/21/2017	Detection	1.38	2.92	24	< 0.083 U1		64	206
3/22/2018	Assessment	1.99	1.97	30	< 0.083 U1	4.2	105	220
8/21/2018	Assessment	2.14	1.65	46	< 0.083 U1	4.7	130	312
2/28/2019	Assessment	2.25	1.96	31.8	0.1 J1	3.5	129	384
5/22/2019	Assessment	2.17	2.19	29.6	0.1 J1	4.0	137	316
8/12/2019	Assessment	2.16	3.30	28.4	0.1 J1	4.6	128	306
3/11/2020	Assessment	2.78	2.50	29.7	0.14	4.0	178	374
6/3/2020	Assessment	2.44	2.44	29.3	0.15	4.6	174	387
11/2/2020	Assessment	2.62	1.99	29.2	0.11	3.9	158	347
3/9/2021	Assessment	2.76	2.48	30.2	0.23	4.0	209	450
5/25/2021	Assessment	2.78	2.7	29.8	0.22	3.6	215	430
11/16/2021	Assessment	2.62	2.63	29.2	0.15	3.4	200	410
3/29/2022	Assessment	3.02	3.13	31.4	0.20	3.9	241	460 L1
6/21/2022	Assessment	3.26	3.4	29.7	0.21	4.0	259	490
11/15/2022	Assessment	2.83	2.80	30.5	0.21	4.0	259	480

Notes:

mg/L: milligrams per liter

SU: standard unit

L1: The associated laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) recovery was outside acceptance limits.

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

^{- -:} Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit. In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

Table 1 - Groundwater Data Summary: AD-2 Pirkey - EBAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/11/2016	Background	< 0.93 U1	< 1.05 U1	38	0.514594 J1	< 0.07 U1	< 0.23 U1	10	1.446	< 0.083 U1	< 0.68 U1	< 0.00013 U1	0.098	< 0.29 U1	2.08256 J1	< 0.86 U1
7/14/2016	Background	< 0.93 U1	< 1.05 U1	38	0.46511 J1	< 0.07 U1	0.401928 J1	11	0.723	< 0.083 U1	< 0.68 U1	0.051	0.068	0.862706 J1	< 0.99 U1	< 0.86 U1
9/7/2016	Background	< 0.93 U1	< 1.05 U1	39	0.439699 J1	< 0.07 U1	0.493592 J1	10	1.489	< 0.083 U1	< 0.68 U1	0.048	0.675	< 0.29 U1	< 0.99 U1	1.26444 J1
10/13/2016	Background	< 0.93 U1	< 1.05 U1	39	0.40165 J1	< 0.07 U1	0.885421 J1	11	2.65	< 0.083 U1	< 0.68 U1	0.052	0.048	< 0.29 U1	1.3807 J1	< 0.86 U1
11/14/2016	Background	< 0.93 U1	< 1.05 U1	34	0.367353 J1	< 0.07 U1	< 0.23 U1	10	2.121	< 0.083 U1	< 0.68 U1	0.048	0.154	< 0.29 U1	1.23147 J1	< 0.86 U1
1/12/2017	Background	< 0.93 U1	< 1.05 U1	37	0.376129 J1	< 0.07 U1	< 0.23 U1	10	1.656	< 0.083 U1	< 0.68 U1	0.052	0.093	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/1/2017	Background	< 0.93 U1	< 1.05 U1	37	0.413652 J1	< 0.07 U1	< 0.23 U1	10	1.267	< 0.083 U1	< 0.68 U1	0.051	0.037	< 0.29 U1	< 0.99 U1	< 0.86 U1
4/11/2017	Background	< 0.93 U1	< 1.05 U1	37	0.435396 J1	< 0.07 U1	0.243798 J1	11	0.807	< 0.083 U1	< 0.68 U1	0.052	0.028	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/22/2018	Assessment	< 0.93 U1	< 1.05 U1	33.28	0.45 J1	< 0.07 U1	< 0.23 U1	12.43	1.053	< 0.083 U1	< 0.68 U1	0.05379	0.042	< 0.29 U1	1.61 J1	< 0.86 U1
8/21/2018	Assessment	< 0.01 U1	0.52	29.0	0.428	0.06	0.406	13.6	1.059	< 0.083 U1	0.338	0.0479	0.02 J1	0.06 J1	1.1	0.096
2/28/2019	Assessment	0.02 J1	0.53	26.1	0.5 J1	0.06	0.1 J1	13.9	1.261	0.1 J1	0.355	0.0591	0.027	< 0.4 U1	1.5	< 0.1 U1
5/22/2019	Assessment	< 0.4 U1	< 0.6 U1	25.6	< 0.4 U1	< 0.2 U1	< 0.8 U1	15.5	0.832	0.1 J1	< 0.4 U1	0.0542	0.063	< 8 U1	0.9 J1	< 0.1 U1
8/12/2019	Assessment	< 0.02 U1	0.35	22.8	0.402	0.06	0.292	13.0	1.812	0.1 J1	0.288	0.0560	0.044	< 0.4 U1	0.8	0.1 J1
3/11/2020	Assessment	< 0.02 U1	0.52	21.9	0.499	0.08	0.247	17.7	0.1882	0.14	0.600	0.0476	0.056	4.37	1.5	0.1 J1
6/3/2020	Assessment	< 0.02 U1	0.45	19.7	0.474	0.07	0.243	16.5	1.412	0.15	0.389	0.0464	0.085	< 0.4 U1	1.5	0.1 J1
11/2/2020	Assessment	< 0.02 U1	0.41	21.5	0.463	0.07	0.254	16.9	0.961	0.11	0.435	0.0490	0.037	< 0.4 U1	1.3	0.1 J1
3/9/2021	Assessment	< 0.02 U1	0.68	19.6	0.564	0.09	0.280	20.2	0.681	0.23	0.517	0.0473	0.074	< 0.1 U1	2.3	0.1 J1
5/25/2021	Assessment	< 0.02 U1	0.55	18.9	0.541	0.094	0.38	21.7	1.16	0.22	0.46	0.0483	0.057	< 0.1 U1	1.68	0.09 J1
11/16/2021	Assessment	< 0.02 U1	0.62	19.2	0.575	0.078	0.37	21.2	1.69	0.15	0.51	0.0539	0.049	< 0.1 U1	1.75	0.11 J1
3/29/2022	Assessment	< 0.04 U1	0.82	18.2	0.75	0.102	0.90	22.7	1.76	0.20	0.5	0.0653	0.092	< 0.2 U1	2.7	0.10 J1
6/21/2022	Assessment	< 0.1 U1	2.0	17.5	0.85	0.11	0.5 J1	25.7	1.87	0.21	0.6 J1	0.0688	0.244	< 0.5 U1	2.7	0.3 J1
11/15/2022	Assessment	< 0.02 U1	0.40	16.8	0.561	0.086	0.43	19.6	1.41	0.21	0.60	0.0556	0.058	< 0.1 U1	1.28	0.11 J1

Notes:

 $\mu g/L$: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

^{- -:} Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit. In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

Table 1 - Groundwater Data Summary: AD-4 Pirkey - EBAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/11/2016	Background	0.02	1.63	4	< 0.083 U1	5.4	23	148
7/14/2016	Background	0.02	2.32	4	< 0.083 U1	4.9	20	157
9/8/2016	Background	0.02	2.37	5	< 0.083 U1	4.9	20	136
10/13/2016	Background	0.03	2.87	6	< 0.083 U1	4.1	19	164
11/15/2016	Background	0.04	2.71	5	< 0.083 U1	4.3	19	152
1/12/2017	Background	0.03	2.94	5	< 0.083 U1	4.8	18	148
3/1/2017	Background	0.03	2.86	4	< 0.083 U1	4.7	18	148
4/10/2017	Background	0.04	1.91	5	< 0.083 U1	4.4	21	140
8/24/2017	Detection	0.06229	2.04	5	< 0.083 U1	4.6	20	94
3/22/2018	Assessment	0.0331	1.41	3	< 0.083 U1	4.8	23	132
8/21/2018	Assessment	0.018	2.38	7	< 0.083 U1	4.8	21	158
2/28/2019	Assessment	0.021	1.57	3.56	0.11	4.9	22.9	192
5/23/2019	Assessment	0.021	1.71	3.31	0.15	5.0	24.6	150
8/14/2019	Assessment	< 0.02 U1	1.97	6.22	0.12	5.5	21.7	146
3/11/2020	Assessment	< 0.02 U1	1.46	3.42	0.13	5.4	24.2	166
6/3/2020	Assessment	0.02 J1	1.72	3.65	0.14	5.4	24.7	168
11/4/2020	Assessment	0.02 J1	2.33	3.66	0.05 J1	4.9	18.7	162
3/9/2021	Assessment	0.02 J1	1.72	3.63	0.12	5.2	21.5	146
5/25/2021	Assessment	0.032 J1	1.7	3.60	0.14	4.6	22.6	150
11/16/2021	Assessment	0.012 J1	2.13	3.94	< 0.02 U1	4.3	17.2	130
3/29/2022	Assessment	0.019 J1	1.84	3.80	0.08	4.9	22.2	140 L1
6/21/2022	Assessment	0.020 J1	2.51	3.92	0.05 J1	4.4	20.5	160
11/16/2022	Assessment	0.019 J1	2.25	4.14	< 0.02 U1	4.7	16.6	130

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

- -: Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

L1: The associated laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) recovery was outside acceptance limits.

Table 1 - Groundwater Data Summary: AD-4 Pirkey - EBAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/11/2016	Background	< 0.93 U1	3.95918 J1	75	1	0.133362 J1	0.396808 J1	8	0.729	< 0.083 U1	< 0.68 U1	0.013	0.00891 J1	< 0.29 U1	1.79183 J1	< 0.86 U1
7/14/2016	Background	< 0.93 U1	8	127	1	< 0.07 U1	3	9	4.271	< 0.083 U1	< 0.68 U1	0.041	0.037	< 0.29 U1	1.73546 J1	1.87362 J1
9/8/2016	Background	< 0.93 U1	5	123	1	0.111076 J1	2	8	0.193	< 0.083 U1	< 0.68 U1	0.04	0.01151 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
10/13/2016	Background	< 0.93 U1	11	183	0.830588 J1	< 0.07 U1	7	7	2.381	< 0.083 U1	< 0.68 U1	0.034	0.01005 J1	< 0.29 U1	1.60451 J1	0.868603 J1
11/15/2016	Background	< 0.93 U1	< 1.05 U1	114	0.53145 J1	< 0.07 U1	0.446412 J1	6	1.072	< 0.083 U1	< 0.68 U1	0.035	0.01268 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
1/12/2017	Background	< 0.93 U1	< 1.05 U1	149	0.406228 J1	< 0.07 U1	0.305795 J1	4.5062 J1	2.599	< 0.083 U1	< 0.68 U1	0.03	0.01146 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/1/2017	Background	< 0.93 U1	< 1.05 U1	131	0.354085 J1	< 0.07 U1	< 0.23 U1	4.45689 J1	1.089	< 0.083 U1	< 0.68 U1	0.033	0.01224 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
4/10/2017	Background	< 0.93 U1	< 1.05 U1	94	0.915299 J1	0.0796 J1	0.240917 J1	8	0.684	< 0.083 U1	< 0.68 U1	0.047	0.00554 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/22/2018	Assessment	< 0.93 U1	< 1.05 U1	66.74	1.15	0.26 J1	< 0.23 U1	9.39	1.283	< 0.083 U1	< 0.68 U1	0.05374	< 0.005 U1	< 0.29 U1	1.99 J1	< 0.86 U1
8/21/2018	Assessment	< 0.01 U1	1.30	121	0.400	0.02 J1	0.198	4.43	1.331	< 0.083 U1	0.098	0.0294	0.005 J1	< 0.02 U1	0.04 J1	0.096
2/28/2019	Assessment	< 0.02 U1	0.26	70.5	0.9 J1	0.01 J1	0.1 J1	6.92	0.818	0.11	0.106	0.0513	< 0.005 U1	< 0.4 U1	0.03 J1	< 0.1 U1
5/23/2019	Assessment	< 0.4 U1	< 0.6 U1	61.7	0.5 J1	< 0.2 U1	1 J1	7.86	0.5173	0.15	< 0.4 U1	0.0516	< 0.005 U1	< 8 U1	< 0.6 U1	< 0.1 U1
8/14/2019	Assessment	< 0.02 U1	0.17	73.5	1.04	< 0.01 U1	0.08 J1	6.52	0.833	0.12	0.06 J1	0.0484	< 0.005 U1	< 0.4 U1	0.04 J1	< 0.1 U1
3/11/2020	Assessment	< 0.02 U1	1.16	69.0	0.965	< 0.01 U1	0.1 J1	7.89	0.2327	0.13	0.06 J1	0.0415	< 0.002 U1	< 0.4 U1	< 0.03 U1	< 0.1 U1
6/3/2020	Assessment	< 0.02 U1	0.52	67.9	0.527	< 0.01 U1	0.2 J1	7.15	0.87	0.14	0.06 J1	0.0380	< 0.002 U1	< 0.4 U1	< 0.03 U1	< 0.1 U1
11/4/2020	Assessment	0.03 J1	5.30	124	0.922	0.03 J1	0.433	4.40	1.45	0.05 J1	0.402	0.0274	0.008	< 0.4 U1	0.1 J1	0.1 J1
3/9/2021	Assessment	< 0.02 U1	0.30	87.9	0.679	0.01 J1	0.2 J1	6.50	0.576	0.12	< 0.05 U1	0.0331	0.002 J1	< 0.1 U1	< 0.09 U1	0.06 J1
5/25/2021	Assessment	< 0.02 U1	0.13	80.7	0.489 M1	0.012 J1	0.24	6.86	0.83	0.14	< 0.05 U1	0.0335 M1	< 0.002 U1	< 0.1 U1	< 0.09 U1	0.06 J1
11/16/2021	Assessment	< 0.02 U1	0.25	122 M1, P3	0.280	0.022	0.28	3.08	1.60	< 0.02 U1	< 0.05 U1	0.0211	0.015	< 0.1 U1	< 0.09 U1	0.08 J1
3/29/2022	Assessment	< 0.02 U1	1.10	93.2	0.641	0.010 J1	0.31	6.16	1.15	0.08	0.07 J1	0.0383	0.017	< 0.1 U1	< 0.09 U1	0.07 J1
6/21/2022	Assessment	< 0.02 U1	0.30	124	0.407	0.021	0.46	4.10	1.31	0.05 J1	< 0.05 U1	0.0220	0.004 J1	< 0.1 U1	< 0.09 U1	0.09 J1
11/16/2022	Assessment	< 0.02 U1	0.21	128	0.195	0.019 J1	0.44	3.00	0.40	< 0.02 U1	< 0.05 U1	0.0212	0.005	< 0.1 U1	< 0.09 U1	0.10 J1

Notes:

μg/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit. In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

M1: The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.

P3: The precision on the matrix spike duplicate (MSD) was above acceptance limits.

[·] Not analyza

Table 1 - Groundwater Data Summary: AD-12 Pirkey - EBAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/11/2016	Background	0.03	0.362	5	< 0.083 U1	4.4	4	94
7/13/2016	Background	0.03	0.26	6	< 0.083 U1	3.1	4	75
9/7/2016	Background	0.04	0.343	6	< 0.083 U1	3.9	7	63
10/12/2016	Background	0.03	0.271	7	1	3.4	8	92
11/14/2016	Background	0.04	0.331	8	< 0.083 U1	2.6	6	80
1/11/2017	Background	0.03	0.315	7	< 0.083 U1	4.8	6	76
2/28/2017	Background	0.04	0.434	5	< 0.083 U1	3.6	4	50
4/11/2017	Background	0.05	0.299	6	0.2565 J1	4.7	7	72
8/23/2017	Detection	0.0495	0.245	6	0.213 J1	4.8	6	52
3/21/2018	Assessment	0.01397	0.269	5	< 0.083 U1	4.2	3	< 2 U1
8/20/2018	Assessment	0.017	0.338	10	< 0.083 U1	4.4	4	94
2/27/2019	Assessment	0.03 J1	0.4 J1	6.08	0.09	5.2	3.6	36
5/21/2019	Assessment	0.020	0.3 J1	6.30	0.09	4.1	4.0	80
8/12/2019	Assessment	< 0.02 U1	0.278	7.24	0.06 J1	4.9	2.6	90
3/10/2020	Assessment	0.02 J1	0.3 J1	6.08	0.10	4.9	3.7	62
6/2/2020	Assessment	< 0.02 U1	0.2 J1	5.63	0.10	4.0	3.9	91
11/2/2020	Assessment	0.03 J1	0.3 J1	4.65	0.08	4.3	3.3	74
3/8/2021	Assessment	0.01 J1	0.2 J1	6.46	0.11	4.1	3.8	68
5/24/2021	Assessment	0.032 J1	0.2 J1	5.54	0.12	4.2	5.46	70
11/15/2021	Assessment	0.012 J1	0.28	8.03	0.07	3.5	2.90	90
3/28/2022	Assessment	0.021 J1	0.20	6.10	0.07	3.9	3.80	60 L1
6/20/2022	Assessment	0.042 J1	0.32	7.59	0.09	4.3	4.81	80
11/15/2022	Assessment	0.013 J1	0.36	8.03	0.08	4.7	3.39	70

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

- -: Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

L1: The associated laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) recovery was outside acceptance limits.

Table 1 - Groundwater Data Summary: AD-12 Pirkey - EBAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/11/2016	Background	< 0.93 U1	< 1.05 U1	26	0.219521 J1	< 0.07 U1	0.710981 J1	1.58207 J1	0.2073	< 0.083 U1	< 0.68 U1	< 0.00013 U1	< 0.005 U1	< 0.29 U1	1.73953 J1	< 0.86 U1
7/13/2016	Background	< 0.93 U1	< 1.05 U1	23	0.190337 J1	< 0.07 U1	0.68835 J1	1.29444 J1	2.909	< 0.083 U1	< 0.68 U1	0.008	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
9/7/2016	Background	< 0.93 U1	< 1.05 U1	30	0.232192 J1	< 0.07 U1	0.353544 J1	1.66591 J1	0.881	< 0.083 U1	< 0.68 U1	0.01	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
10/12/2016	Background	< 0.93 U1	< 1.05 U1	27	0.149553 J1	< 0.07 U1	0.529033 J1	1.56632 J1	0.257	1	< 0.68 U1	0.012	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
11/14/2016	Background	< 0.93 U1	< 1.05 U1	28	0.152375 J1	< 0.07 U1	0.32826 J1	1.47282 J1	0.767	< 0.083 U1	< 0.68 U1	0.013	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
1/11/2017	Background	< 0.93 U1	< 1.05 U1	23	0.126621 J1	< 0.07 U1	0.650158 J1	1.09495 J1	1.536	< 0.083 U1	< 0.68 U1	0.01	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
2/28/2017	Background	< 0.93 U1	< 1.05 U1	26	0.149219 J1	< 0.07 U1	0.325811 J1	1.29984 J1	0.416	< 0.083 U1	< 0.68 U1	0.009	< 0.005 U1	< 0.29 U1	< 0.99 U1	0.994913 J1
4/11/2017	Background	< 0.93 U1	< 1.05 U1	24	0.159412 J1	< 0.07 U1	0.416007 J1	1.33344 J1	0.3895	0.2565 J1	< 0.68 U1	0.008	0.01364 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/21/2018	Assessment	< 0.93 U1	< 1.05 U1	25.82	0.16 J1	< 0.07 U1	1.05	1.49 J1	0.784	< 0.083 U1	< 0.68 U1	0.00722	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
8/20/2018	Assessment	< 0.01 U1	0.11	27.8	0.159	0.01 J1	0.330	1.72	1.128	< 0.083 U1	0.089	0.0143	< 0.005 U1	0.04 J1	0.1	0.04 J1
2/27/2019	Assessment	< 0.4 U1	< 0.6 U1	22.5	< 0.4 U1	< 0.2 U1	< 0.8 U1	1.37	0.225	0.09	< 0.4 U1	0.00688	< 0.005 U1	< 8 U1	< 0.6 U1	< 2 U1
5/21/2019	Assessment	< 0.4 U1	< 0.6 U1	21.7	< 0.4 U1	< 0.2 U1	< 0.8 U1	1.15	0.201	0.09	< 0.4 U1	0.00576	< 0.005 U1	< 8 U1	< 0.6 U1	< 0.1 U1
8/12/2019	Assessment	< 0.02 U1	0.07 J1	23.8	0.154	< 0.01 U1	0.204	1.30	0.237	0.06 J1	0.08 J1	0.00829	< 0.005 U1	< 0.4 U1	0.2 J1	< 0.1 U1
3/10/2020	Assessment	< 0.02 U1	0.09 J1	21.7	0.139	0.01 J1	0.2 J1	1.21	3.0706	0.10	0.09 J1	0.00547	< 0.002 U1	< 0.4 U1	0.2	< 0.1 U1
6/2/2020	Assessment	< 0.02 U1	0.09 J1	19.0	0.132	< 0.01 U1	0.208	1.02	0.799	0.10	0.09 J1	0.00505	< 0.002 U1	< 0.4 U1	0.3	< 0.1 U1
11/2/2020	Assessment	0.05 J1	0.09 J1	18.9	0.122	< 0.01 U1	0.204	1.04	0.929	0.08	0.09 J1	0.00510	< 0.002 U1	< 0.4 U1	0.3	< 0.1 U1
3/8/2021	Assessment	< 0.02 U1	0.07 J1	22.9	0.150	0.007 J1	0.2 J1	1.19	0.214	0.11	0.07 J1	0.00570	< 0.002 U1	< 0.1 U1	0.2 J1	< 0.04 U1
5/24/2021	Assessment	< 0.02 U1	0.08 J1	23.1	0.136	0.005 J1	0.24	1.19	0.60	0.12	0.07 J1	0.00500	< 0.002 U1	< 0.1 U1	0.31 J1	< 0.04 U1
11/15/2021	Assessment	< 0.02 U1	0.05 J1	26.5	0.148	0.01 J1	0.30	1.38	1.76	0.07	0.07 J1	0.0110	< 0.002 U1	< 0.1 U1	0.10 J1	< 0.04 U1
3/28/2022	Assessment	< 0.02 U1	0.09 J1	20.2	0.127	0.009 J1	0.35	1.01	0.76	0.07	0.09 J1	0.00604	< 0.002 U1	< 0.1 U1	0.33 J1	< 0.04 U1
6/20/2022	Assessment	< 0.02 U1	0.08 J1	24.2	0.135	0.008 J1	0.63	1.35	0.63	0.09	0.08 J1	0.00949	< 0.002 U1	< 0.1 U1	0.16 J1	< 0.04 U1
11/15/2022	Assessment	< 0.02 U1	0.06 J1	30.6	0.153	0.007 J1	0.45	1.59	1.46	0.08	0.08 J1	0.0119	< 0.002 U1	< 0.1 U1	0.23 J1	< 0.04 U1

Notes:

μg/L: micrograms per liter mg/L: milligrams per liter pCi/L: picocuries per liter

Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

- -: Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit. In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

Table 1 - Groundwater Data Summary: AD-18 Pirkey - EBAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/10/2016	Background	0.01	0.548	8	< 0.083 U1	4.5	7	108
7/14/2016	Background	0.01	0.409	8	< 0.083 U1	4.7	7	116
9/8/2016	Background	0.01	0.343	8	< 0.083 U1	4.7	8	110
10/13/2016	Background	0.02	0.56	7	< 0.083 U1	4.1	10	124
11/15/2016	Background	0.02	0.59	7	< 0.083 U1	4.4	7	134
1/12/2017	Background	0.01	0.415	7	< 0.083 U1	4.7	10	128
3/1/2017	Background	0.01	0.224	6	< 0.083 U1	4.1	7	108
4/10/2017	Background	0.01	0.304	7	< 0.083 U1	4.1	8	102
8/24/2017	Detection	0.0278	0.435	8	< 0.083 U1	4.9	8	68
3/22/2018	Assessment	0.01642	0.292	6	< 0.083 U1	5.4	6	100
8/21/2018	Assessment	0.012	0.321	10	< 0.083 U1	5.1	8	118
2/28/2019	Assessment	< 0.02 U1	0.490	8.19	0.02 J1	5.0	6.1	84
5/23/2019	Assessment	0.013	0.684	8.82	0.02 J1	5.2	10.6	104
8/13/2019	Assessment	< 0.02 U1	0.647	8.49	0.01 J1	5.2	6.6	90
3/11/2020	Assessment	< 0.02 U1	0.3 J1	7.34	0.02 J1	4.4	6.1	90 J1
6/3/2020	Assessment	< 0.02 U1	0.2 J1	8.30	0.03 J1	4.5	6.3	119
11/3/2020	Assessment					4.4		
11/4/2020	Assessment	< 0.02 U1	0.2 J1	6.30	0.02 J1		6.3	100
3/9/2021	Assessment	0.009 J1	0.2 J1	6.61	0.02 J1	4.5	6.6	113
5/25/2021	Assessment	0.021 J1	0.3	7.16	0.02 J1	4.4	7.46	100 P1
11/16/2021	Assessment					3.9		
11/17/2021	Assessment	0.01 J1	0.20	5.99	< 0.02 U1		6.23	100
3/29/2022	Assessment	0.009 J1	0.24	5.26	< 0.02 U1	4.4	7.31	140 L1
6/22/2022	Assessment	< 0.009 U1	1.49	5.20	< 0.02 U1	4.6	6.47	110
11/16/2022	Assessment	0.011 J1	0.19	4.94	< 0.02 U1	4.5	6.55	90

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

- -: Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

L1: The associated laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) recovery was outside acceptance limits.

P1: The precision between duplicate results was above acceptance limits.

Due to limited groundwater volume, pH values for some sampling events were collected the day prior to collection of analytical samples.

Table 1 - Groundwater Data Summary: AD-18 Pirkey - EBAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/10/2016	Background	< 0.93 U1	< 1.05 U1	157	0.262755 J1	0.109247 J1	1	1.82932 J1	0.847	< 0.083 U1	< 0.68 U1	0.004	0.01536 J1	< 0.29 U1	1.71074 J1	< 0.86 U1
7/14/2016	Background	< 0.93 U1	3.77261 J1	139	0.243326 J1	< 0.07 U1	3	2.16037 J1	3.264	< 0.083 U1	< 0.68 U1	0.02	0.064	0.41347 J1	2.45009 J1	< 0.86 U1
9/8/2016	Background	< 0.93 U1	< 1.05 U1	115	0.226343 J1	< 0.07 U1	0.779959 J1	1.09947 J1	1.105	< 0.083 U1	< 0.68 U1	0.019	0.03	< 0.29 U1	< 0.99 U1	< 0.86 U1
10/13/2016	Background	< 0.93 U1	< 1.05 U1	112	0.192611 J1	< 0.07 U1	0.631027 J1	2.24885 J1	1.161	< 0.083 U1	< 0.68 U1	0.026	0.01416 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
11/15/2016	Background	< 0.93 U1	< 1.05 U1	94	0.107171 J1	< 0.07 U1	0.724569 J1	1.66054 J1	1.486	< 0.083 U1	< 0.68 U1	0.017	0.029	< 0.29 U1	< 0.99 U1	< 0.86 U1
1/12/2017	Background	< 0.93 U1	< 1.05 U1	99	0.169196 J1	< 0.07 U1	0.411433 J1	1.62881 J1	0.976	< 0.083 U1	< 0.68 U1	0.026	0.01887 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/1/2017	Background	< 0.93 U1	< 1.05 U1	99	0.105337 J1	< 0.07 U1	0.572874 J1	0.976724 J1	0.468	< 0.083 U1	< 0.68 U1	0.017	0.01086 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
4/10/2017	Background	< 0.93 U1	< 1.05 U1	105	0.130316 J1	< 0.07 U1	0.967681 J1	0.98157 J1	0.648	< 0.083 U1	< 0.68 U1	0.019	0.0096 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/22/2018	Assessment	< 0.93 U1	< 1.05 U1	97.75	0.09 J1	< 0.07 U1	< 0.23 U1	0.97 J1	0.942	< 0.083 U1	< 0.68 U1	0.01647	0.006 J1	< 0.29 U1	1.53 J1	< 0.86 U1
8/21/2018	Assessment	0.02 J1	1.01	99.8	0.129	0.02 J1	0.809	1.18	1.108	< 0.083 U1	0.280	0.0175	0.014 J1	0.08 J1	0.2	0.060
2/28/2019	Assessment	< 0.4 U1	< 0.6 U1	106	< 0.4 U1	< 0.2 U1	< 0.8 U1	1.11	0.615	0.02 J1	0.7 J1	0.0177	0.009 J1	< 8 U1	< 0.6 U1	< 2 U1
5/23/2019	Assessment	< 0.4 U1	< 0.6 U1	131	< 0.4 U1	< 0.2 U1	< 0.8 U1	1.47	0.492	0.02 J1	< 0.4 U1	0.0209	0.009 J1	< 8 U1	< 0.6 U1	< 0.1 U1
8/13/2019	Assessment	< 0.02 U1	0.45	100	0.118	0.02 J1	0.212	1.25	0.473	0.01 J1	0.2 J1	0.0183	0.023 J1	< 0.4 U1	0.09 J1	< 0.1 U1
3/11/2020	Assessment	< 0.02 U1	0.09 J1	97.1	0.09 J1	0.01 J1	0.1 J1	0.948	4.813	0.02 J1	< 0.05 U1	0.0134	0.003 J1	< 0.4 U1	0.05 J1	< 0.1 U1
6/3/2020	Assessment	< 0.02 U1	0.22	100	0.1 J1	0.01 J1	0.2 J1	0.950	0.728	0.03 J1	0.06 J1	0.0132	0.007	< 0.4 U1	0.09 J1	< 0.1 U1
11/4/2020	Assessment	< 0.02 U1	0.29	89.3	0.08 J1	0.01 J1	0.1 J1	0.917	1.169	0.02 J1	0.06 J1	0.0128	0.028	< 0.4 U1	0.2 J1	< 0.1 U1
3/9/2021	Assessment	< 0.02 U1	0.28	88.7	0.09 J1	0.01 J1	0.271	0.827	0.331	0.02 J1	0.08 J1	0.0131	0.006	< 0.1 U1	0.1 J1	< 0.04 U1
5/25/2021	Assessment	< 0.02 U1	0.42	103	0.088	0.014 J1	0.55	0.964	0.77	0.02 J1	0.15 J1	0.0127	0.014	< 0.1 U1	0.13 J1	0.05 J1
11/17/2021	Assessment	< 0.02 U1	0.19	82.2	0.078	0.011 J1	0.31	0.801	1.91	< 0.02 U1	< 0.05 U1	0.0124	0.030	< 0.1 U1	0.11 J1	< 0.04 U1
3/29/2022	Assessment	0.02 J1	1.55	90.1	0.106	0.01 J1	1.40	0.842	2.01	< 0.02 U1	0.53	0.0137	0.021	< 0.1 U1	0.38 J1	0.05 J1
6/22/2022	Assessment	< 0.02 U1	0.30	79.3	0.073	0.012 J1	0.47	0.790	0.73	< 0.02 U1	0.11 J1	0.0108	< 0.007 U1	< 0.1 U1	0.14 J1	< 0.04 U1
11/16/2022	Assessment	< 0.02 U1	0.25	77.4	0.071	0.009 J1	0.54	0.723	1.61	< 0.02 U1	0.08 J1	0.0125	0.018	< 0.1 U1	0.12 J1	< 0.04 U1

Notes:

μg/L: micrograms per liter mg/L: milligrams per liter pCi/L: picocuries per liter

Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

- -: Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit. In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

Table 1 - Groundwater Data Summary: AD-31 Pirkey - EBAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/11/2016	Background	0.08	10.4	18	< 0.083 U1	4.5	63	286
7/13/2016	Background	0.03	4.27	18	< 0.083 U1	3.5	66	245
9/7/2016	Background	0.03	3.47	18	< 0.083 U1	3.7	60	260
10/12/2016	Background	0.04	4.41	18	< 0.083 U1	4.0	62	276
11/14/2016	Background	0.04	4.7	18	< 0.083 U1	3.2	66	266
1/11/2017	Background	0.03	4.43	19	< 0.083 U1	4.4	79	252
2/28/2017	Background	0.04	3.89	14	< 0.083 U1	3.6	68	212
4/11/2017	Background	0.04	3.64	16	< 0.083 U1	3.6	69	252
8/23/2017	Detection	0.01752	2.24	18	< 0.083 U1	4.5	52	228
12/21/2017	Detection			20	< 0.083 U1		58	224
3/22/2018	Assessment	0.04078	3.11	16	< 0.083 U1	4.5	76	260
8/21/2018	Assessment	0.022	2.86	25	< 0.083 U1	4.9	72	274
2/28/2019	Assessment	0.03 J1	2.77	18.8	0.1 J1	5.0	74.8	74
5/23/2019	Assessment	0.021	3.29	18.7	0.13	5.1	79.9	240
8/12/2019	Assessment	< 0.02 U1	2.86	21.6	0.16	4.1	70.0	250
3/10/2020	Assessment	0.03 J1	2.80	21.7	0.14	3.5	74.6	246
6/2/2020	Assessment	0.02 J1	2.92	22.1	0.16	4.2	81.4	288
11/2/2020	Assessment	0.03 J1	2.76	21.2	0.13	3.7	77.8	268
3/8/2021	Assessment	0.02 J1	2.69	18.5	0.17	3.8	81.1	279
5/24/2021	Assessment	0.026 J1	3.0	18.1	0.17	3.6	86.4	130
11/16/2021	Assessment	0.024 J1	2.68	20.1	0.13	2.8	76.6	250
3/28/2022	Assessment	0.026 J1	2.75	21.8	0.13	3.4	80.8	260 L1
6/20/2022	Assessment	0.028 J1	2.65	23.2	0.14 J1	3.5	89.0	270
11/15/2022	Assessment	0.035 J1	2.63	24.3	0.14	4.3	79.1	250

Notes:

mg/L: milligrams per liter

SU: standard unit

In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

L1: The associated laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) recovery was outside acceptance limits.

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

^{- -:} Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

Table 1 - Groundwater Data Summary: AD-31 Pirkey - EBAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/11/2016	Background	< 0.93 U1	93	712	10	0.858875 J1	212	50	7.32	< 0.083 U1	57	0.077	1.797	0.893978 J1	1.84045 J1	< 0.86 U1
7/13/2016	Background	< 0.93 U1	3.41559 J1	69	1	< 0.07 U1	10	11	3.38	< 0.083 U1	< 0.68 U1	0.096	0.32	0.316083 J1	1.11301 J1	< 0.86 U1
9/7/2016	Background	< 0.93 U1	4.34007 J1	88	2	< 0.07 U1	15	11	2.345	< 0.083 U1	< 0.68 U1	0.094	0.284	< 0.29 U1	< 0.99 U1	< 0.86 U1
10/12/2016	Background	< 0.93 U1	6	76	1	< 0.07 U1	14	11	3.88	< 0.083 U1	1.54023 J1	0.097	0.347	< 0.29 U1	< 0.99 U1	< 0.86 U1
11/14/2016	Background	< 0.93 U1	11	125	2	0.174662 J1	30	14	3.202	< 0.083 U1	3.93298 J1	0.096	0.523	0.401556 J1	1.03392 J1	< 0.86 U1
1/11/2017	Background	< 0.93 U1	3.92088 J1	77	1	< 0.07 U1	12	10	2.725	< 0.083 U1	< 0.68 U1	0.093	0.384	< 0.29 U1	< 0.99 U1	1.01921 J1
2/28/2017	Background	< 0.93 U1	< 1.05 U1	44	0.998308 J1	< 0.07 U1	3	9	2.684	< 0.083 U1	< 0.68 U1	0.09	0.138	< 0.29 U1	< 0.99 U1	< 0.86 U1
4/11/2017	Background	< 0.93 U1	3.31744 J1	73	1	0.0944 J1	12	11	3.521	< 0.083 U1	< 0.68 U1	0.097	0.333	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/22/2018	Assessment	< 0.93 U1	3.32 J1	70.83	1.24	0.12 J1	9.62	11.12	2.955	< 0.083 U1	< 0.68 U1	0.09732	1.389	< 0.29 U1	1.98 J1	< 0.86 U1
8/21/2018	Assessment	0.02 J1	1.92	57.7	0.729	0.06	2.39	9.29	4.13	< 0.083 U1	1.41	0.0556	1.112	0.24	2.5	0.113
2/28/2019	Assessment	< 0.4 U1	< 0.6 U1	33.1	1 J1	< 0.2 U1	< 0.8 U1	9.38	3.156	0.1 J1	< 0.4 U1	0.0864	0.01 J1	< 8 U1	< 0.6 U1	< 2 U1
5/23/2019	Assessment	< 0.4 U1	< 0.6 U1	37.9	0.9 J1	< 0.2 U1	< 0.8 U1	10.3	3.40	0.13	< 0.4 U1	0.0928	0.057	< 8 U1	< 0.6 U1	< 0.1 U1
8/12/2019	Assessment	< 0.02 U1	0.53	35.0	0.850	0.06	0.365	8.69	2.196	0.16	0.325	0.0875	1.027	< 0.4 U1	0.4	< 0.1 U1
3/10/2020	Assessment	< 0.02 U1	0.27	34.8	0.835	0.07	0.357	9.56	3.814	0.14	0.260	0.0669	0.183	< 0.4 U1	0.4	< 0.1 U1
6/2/2020	Assessment	< 0.02 U1	0.21	32.7	0.868	0.06	0.292	9.62	2.656	0.16	0.2 J1	0.0682	0.046	< 0.4 U1	0.4	< 0.1 U1
11/2/2020	Assessment	< 0.02 U1	0.26	34.0	1.10	0.07	0.2 J1	11.2	3.02	0.13	0.211	0.0895	0.144	< 0.4 U1	0.3	0.1 J1
3/8/2021	Assessment	< 0.02 U1	0.22	33.6	0.857	0.07	0.282	9.78	1.697	0.17	0.218	0.0664	0.095	< 0.1 U1	0.4	0.08 J1
5/24/2021	Assessment	< 0.02 U1	0.23	33.2	0.723	0.066	0.41	10.4	1.60	0.17	0.20	0.0638	0.059	0.1 J1	0.28 J1	0.09 J1
11/16/2021	Assessment	< 0.02 U1	0.26	32.1	0.801	0.063	0.39	9.18	3.39	0.13	0.34	0.0648	1.790	< 0.1 U1	0.33 J1	0.08 J1
3/28/2022	Assessment	< 0.02 U1	0.26	32.8	0.854	0.068	0.51	9.14	2.41	0.13	0.29	0.0687	0.103	< 0.1 U1	0.38 J1	0.09 J1
6/20/2022	Assessment	< 0.02 U1	0.42	34.1	1.03	0.071	0.59	9.61	4.60	0.14 J1	0.35	0.0844	0.089	< 0.1 U1	0.33 J1	0.08 J1
11/15/2022	Assessment	< 0.02 U1	0.30	35.8	0.863	0.066	0.74	9.41	3.81	0.14	0.34	0.0681	0.610	< 0.1 U1	0.38 J1	0.10 J1

Notes:

μg/L: micrograms per liter mg/L: milligrams per liter pCi/L: picocuries per liter

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

- -: Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit. In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

Table 1 - Groundwater Data Summary: AD-32 Pirkey - EBAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/11/2016	Background	0.708	7.41	12	< 0.083 U1	4.3	124	206
7/13/2016	Background	5.23	33.9	32	0.67 J1	3.3	461	835
9/7/2016	Background	5.78	37.4	35	< 0.083 U1	3.1	479	884
10/12/2016	Background	4.26	27.1	29	0.8585 J1	3.3	430	720
11/14/2016	Background	5.52	35.9	34	0.7468 J1	3.0	621	922
1/11/2017	Background	5.05	40	35	< 0.083 U1	3.9	683	894
2/28/2017	Background	2.73	18.4	19	< 0.083 U1	3.1	285	490
4/11/2017	Background	1.46	11	15	0.4468 J1	3.2	200	372
8/23/2017	Detection	0.716	7.15	14	1.962	4.3	115	288
12/21/2017	Detection	2.56	17.1	22	0.5932 J1		324	504
3/21/2018	Assessment	0.628	6.32	15	< 0.083 U1	4.1	113	288
8/21/2018	Assessment	2.45	17.8	28	< 0.083 U1	3.9	321	548
2/28/2019	Assessment	0.679	6.62	17.5	0.40	3.2	121	222
5/21/2019	Assessment	0.555	5.35	18.6	0.31	3.2	105	292
8/12/2019	Assessment	1.77	13.3	24.9	0.67	4.0	228	448
8/16/2019	Assessment	1.92	14.6	26.1	0.83		273	522
3/10/2020	Assessment	0.656	6.84	20.5	0.39	3.7	117	286
6/2/2020	Assessment	0.557	5.75	24.1	0.41	3.9	93.6	327
11/2/2020	Assessment	4.04	34.3	36.2	1.40	3.4	690	1,070
3/8/2021	Assessment	2.87	34.2	33.5	1.08	3.5	714	1,020
5/24/2021	Assessment	2.11	21.7	25.4	1.25	3.3	452	340
11/15/2021	Assessment	1.70	16.8	24.3	0.78	2.8	334	580
3/28/2022	Assessment	0.773	8.05	25.2	0.44	3.1	157	330 L1
6/20/2022	Assessment	0.909	7.25	30.6	0.42	3.0	147	320
11/15/2022	Assessment	1.26	12.0	22.7	0.49	4.0	244	450

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

L1: The associated laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) recovery was outside acceptance limits.

^{- -:} Not analyzed

Table 1 - Groundwater Data Summary: AD-32 Pirkey - EBAP Appendix IV Constituents

Collection Date	Monitoring Program	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/11/2016	Background	< 0.93 U1	3.77019 J1	35	3	0.293016 J1	5	27	2.501	< 0.083 U1	< 0.68 U1	0.016	0.925	< 0.29 U1	< 0.99 U1	< 0.86 U1
7/13/2016	Background	< 0.93 U1	13	58	8	0.729634 J1	18	74	6.41	0.67 J1	< 0.68 U1	0.119	13.916	0.76212 J1	3.88793 J1	< 0.86 U1
9/7/2016	Background	< 0.93 U1	3.25886 J1	35	8	0.601583 J1	6	70	4.846	< 0.083 U1	< 0.68 U1	0.111	1.68	< 0.29 U1	< 0.99 U1	1.09263 J1
10/12/2016	Background	< 0.93 U1	10	50	7	0.589066 J1	15	65	17.32	0.8585 J1	< 0.68 U1	0.972	7.285	< 0.29 U1	1.93488 J1	< 0.86 U1
11/14/2016	Background	< 0.93 U1	6	37	9	0.78793 J1	8	75	3.731	0.7468 J1	< 0.68 U1	0.114	3.624	< 0.29 U1	< 0.99 U1	1.078 J1
1/11/2017	Background	< 0.93 U1	6	37	7	0.602157 J1	9	69	4.342	< 0.083 U1	< 0.68 U1	0.115	7.202	< 0.29 U1	< 0.99 U1	0.991051 J1
2/28/2017	Background	< 0.93 U1	4.56273 J1	30	5	0.389491 J1	5	45	4.001	< 0.083 U1	< 0.68 U1	0.095	7.927	< 0.29 U1	2.53854 J1	< 0.86 U1
4/11/2017	Background	< 0.93 U1	< 1.05 U1	26	4	0.440252 J1	3	35	4.32	0.4468 J1	< 0.68 U1	0.095	2.755	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/21/2018	Assessment	< 0.93 U1	3.05 J1	41.25	3.17	0.55 J1	5.38	25.8	4.922	< 0.083 U1	< 0.68 U1	0.103	6.4	< 0.29 U1	2.18 J1	< 0.86 U1
8/21/2018	Assessment	0.01 J1	4.81	17.2	3.70	0.47	0.646	43.5	6.01	< 0.083 U1	0.714	0.0689	2.649	0.04 J1	15.0	0.238
2/28/2019	Assessment	< 0.4 U1	2 J1	28.9	3.34	0.2 J1	2 J1	25.0	4.67	0.40	< 0.4 U1	0.0919	1.135	< 8 U1	3 J1	< 2 U1
5/21/2019	Assessment	< 0.4 U1	0.8 J1	35.6	2.77	0.3 J1	1 J1	23.5	5.37	0.31	0.4 J1	0.0897	1.371	< 8 U1	1 J1	0.2 J1
8/12/2019	Assessment	< 0.02 U1	3.43	38.5	3.65	0.40	1.70	33.7	5.70	0.67	0.996	0.0964	4.127	< 0.4 U1	7.3	0.2 J1
8/16/2019	Assessment	< 0.1 U1	2.77	27.9	4.88	0.46	0.5 J1	40.4		0.83	0.6 J1	0.103		< 2 U1	7.8	< 0.5 U1
3/10/2020	Assessment	< 0.02 U1	0.88	28.7	2.51	0.30	0.379	23.9	5.741	0.39	0.343	0.0711	1.70	< 0.4 U1	2.6	0.2 J1
6/2/2020	Assessment	< 0.02 U1	0.98	31.9	2.35	0.25	0.675	20.8	4.445	0.41	0.405	0.0696	3.97	< 0.4 U1	2.3	0.2 J1
11/2/2020	Assessment	0.02 J1	6.29	22.0	8.90	0.79	1.17	74.0	8.88	1.40	1.23	0.0987	1.40	< 0.4 U1	25.3	0.4 J1
3/8/2021	Assessment	< 0.02 U1	5.54	18.5	5.78	0.66	0.754	61.9	3.701	1.08	0.970	0.0618	1.07	< 0.1 U1	22.2	0.3 J1
5/24/2021	Assessment	< 0.02 U1	2.39	16.9	3.96 M1	0.529	0.71	50.5	5.38	1.25	0.52	0.0629 M1	0.800	< 0.1 U1	9.21	0.21
11/15/2021	Assessment	< 0.02 U1	2.39	22.5	3.90	0.452	0.75	39.9	4.60	0.78	0.52	0.0698	1.400	< 0.1 U1	7.70	0.25
3/28/2022	Assessment	< 0.02 U1	1.05	30.0	2.89	0.323	0.60	25.1	5.90	0.44	0.38	0.0731	1.900	< 0.1 U1	3.42	0.17 J1
6/20/2022	Assessment	< 0.02 U1	1.81	32.3	3.28	0.318	0.68	27.2	13.87	0.42	0.43	0.0923	2.700	< 0.1 U1	2.67	0.17 J1
11/15/2022	Assessment	< 0.02 U1	1.73	24.4	3.77	0.404	0.82	34.8	5.28	0.49	0.66	0.0812	1.500	< 0.1 U1	5.95	0.24

Notes:

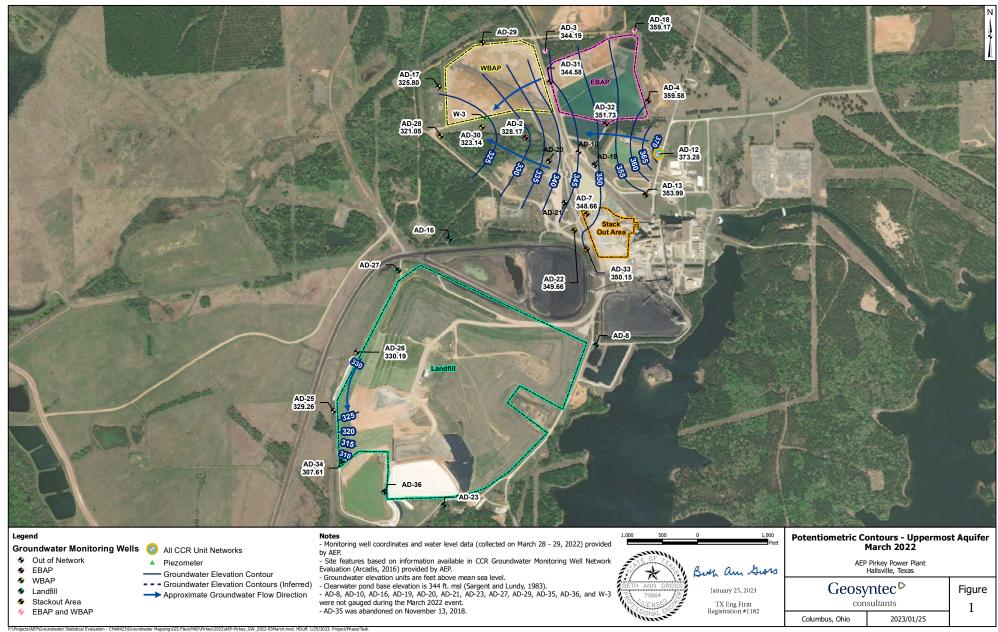
μg/L: micrograms per liter mg/L: milligrams per liter pCi/L: picocuries per liter

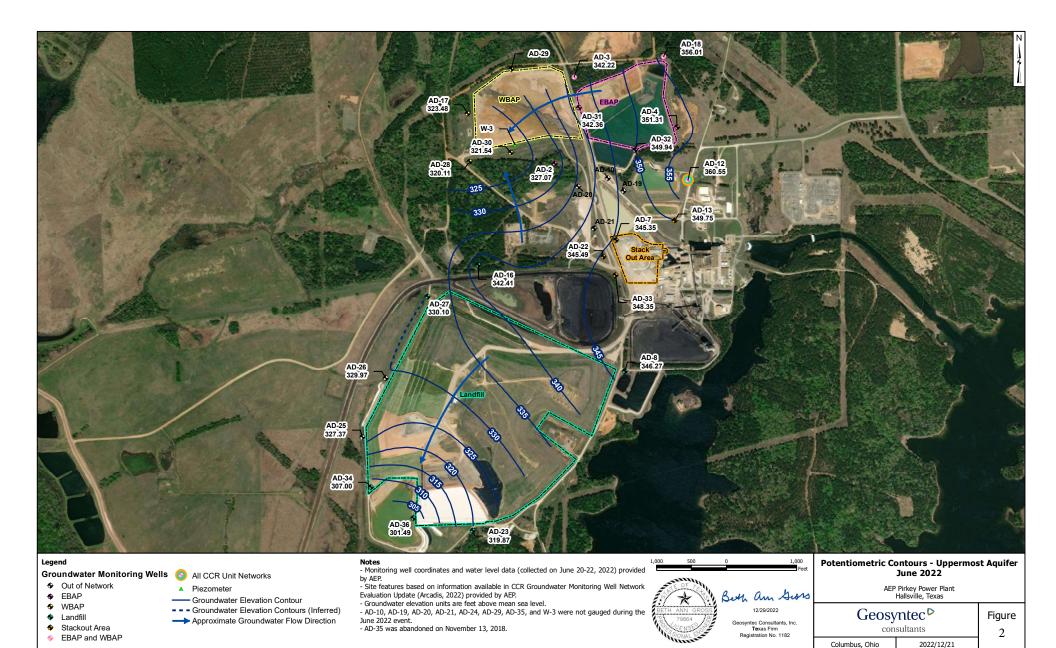
<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

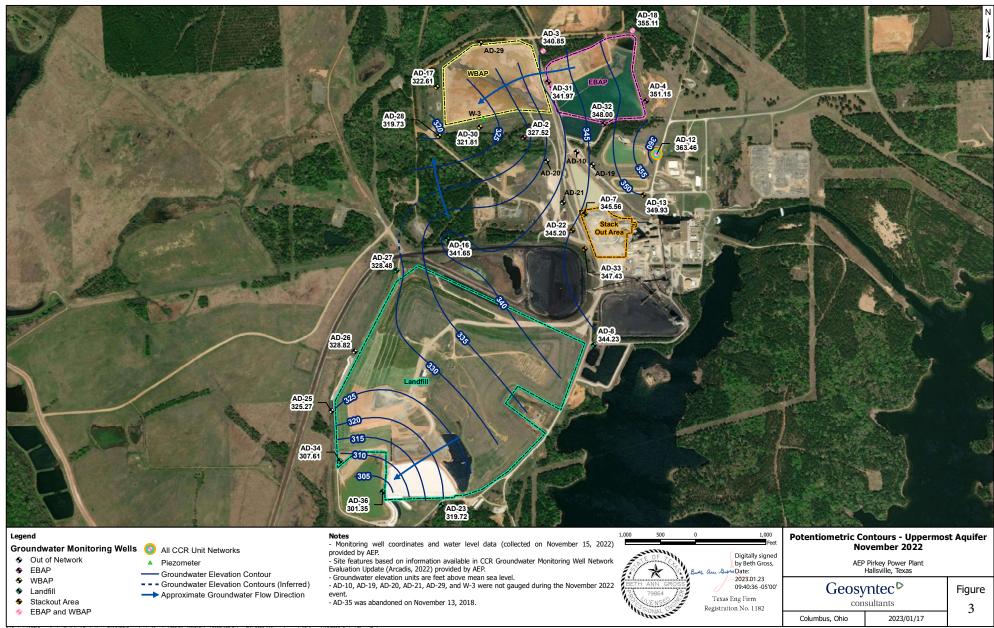
- -: Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit. In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

M1: The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.


Table 1: Residence Time Calculation Summary Pirkey East Bottom Ash Pond


			2022	2-03	2022	2-06	202	2-11
CCR Management Unit	Monitoring Well	Well Diameter (inches)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)
	AD-2 ^[2]	4.0	27.4	4.4	26.0	4.7	23.9	5.1
_	AD-4 ^[1]	4.0	11.1	10.9	16.3	7.5	9.3	13.0
East Bottom Ash	AD-12 ^[1]	4.0	36.4	3.3	21.6	5.6	22.8	5.3
Pond	AD-18 ^[1]	2.0	11.3	5.4	10.4	5.9	11.0	5.5
1 3114	AD-31 ^[2]	2.0	24.9	2.4	23.7	2.6	23.6	2.6
	AD-32 ^[2]	2.0	16.5	3.7	15.8	3.9	12.9	4.7


Notes:

[1] - Background Well

[2] - Downgradient Well

APPENDIX 2- Statistical Analyses

The reports summarizing the statistical evaluation follow.

STATISTICAL ANALYSIS SUMMARY EAST BOTTOM ASH POND H.W. Pirkey Power Plant Hallsville, Texas

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

engineers | scientists | innovators

941 Chatham Lane Suite 103 Columbus, Ohio 43221

> March 18, 2022 CHA8500

TABLE OF CONTENTS

SECTION 1	l Execut	tive Summary	1
SECTION 2	2 East B	ottom Ash Pond Evaluation	2-1
2.1	Data V	Validation & QA/QC	2-1
2.2	Statist	ical Analysis	2-1
	2.2.1	Establishment of GWPSs	2-1
	2.2.2	Evaluation of Potential Appendix IV SSLs	2-2
	2.2.3	Establishment of Appendix III Prediction Limits	2-2
	2.2.4	Evaluation of Potential Appendix III SSIs	2-3
2.3	Conclu	usions	2-4
SECTION 3	Refere	ences	3-1

LIST OF TABLES

Table 1	Groundwater Data Summary
Table 2	Appendix IV Groundwater Protection Standards
Table 3	Appendix III Data Summary

LIST OF ATTACHMENTS

Attachment A Certification by Qualified Professional Engineer
Attachment B Statistical Analysis Output

LIST OF ACRONYMS AND ABBREVIATIONS

AEP American Electric Power

ASD Alternative Source Demonstration

CCR Coal Combustion Residuals

CCV Continuing Calibration Verification

EBAP East Bottom Ash Pond

GWPS Groundwater Protection Standard

LCL Lower Confidence Limit

LFB Laboratory Fortified Blanks

LPL Lower Prediction Limit

LRB Laboratory Reagent Blanks

MCL Maximum Contaminant Level

NELAP National Environmental Laboratory Accreditation Program

PQL Practical Quantitation Limit

QA Quality Assurance

QC Quality Control

SSI Statistically Significant Increase

SSL Statistically Significant Level

SU Standard Units

TCEQ Texas Commission of Environmental Quality

TDS Total Dissolved Solids

UPL Upper Prediction Limit

UTL Upper Tolerance Limit

SECTION 1

EXECUTIVE SUMMARY

In accordance with the Texas Commission on Environmetal Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (Title 30 Chapter 352, "CCR rule"), groundwater monitoring has been conducted at the East Bottom Ash Pond (EBAP), an existing CCR unit at the H.W. Pirkey Power Plant located in Hallsville, Texas. Recent groundwater monitoring results were compared to site-specific groundwater protection standards (GWPSs) to identify potential exceedances.

Based on detection monitoring conducted in 2017 and 2018, statistically significant increases (SSIs) over background were concluded for boron, calcium, chloride, total dissolved solids (TDS), and sulfate at the EBAP. An alternative source was not identified at the time, so the EBAP initiated assessment monitoring in 2018. GWPSs were set in accordance with § 352.951(b) and a statistical evaluation of the assessment monitoring data was conducted. During 2021, sampling events for both Appendix III parameters and Appendix IV parameters, as required by § 352.951(a), were completed in March and May. During the May 2021 assessment monitoring event, statistically significant levels (SSLs) were observed for cobalt and lithium (Geosyntec, 2021a). In accordance with § 352.951(e), an alternative source demonstration (ASD) was successfully completed (Geosyntec, 2021b); thus, the unit remained in assessment monitoring. One assessment monitoring event was conducted at the EBAP in November 2021 in accordance with § 352.951(a). The results of the November 2021 assessment event are documented in this report.

Prior to conducting the statistical analyses, the groundwater data underwent several validation tests, including those for completeness, sample tracking accuracy, transcription errors, and consistent use of measurement units. No data quality issues were identified which would impact data usability.

The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. GWPSs were re-established for the Appendix IV parameters. Confidence intervals were calculated for Appendix IV parameters at the compliance wells to assess whether SSLs of Appendix IV parameters were present above the GWPS. SSLs were identified for cobalt and lithium. Thus, either the unit will move to an assessment of corrective measures or an ASD will be conducted to evaluate if the unit can remain in assessment monitoring. Certification of the selected statistical methods by a qualified professional engineer is documented in Attachment A.

SECTION 2

EAST BOTTOM ASH POND EVALUATION

2.1 Data Validation & QA/QC

During the assessment monitoring program, one set of samples was collected for analysis from the background and compliance wells to meet the requirements of § 352.951(a) in November 2021. Samples from November 2021 were analyzed for all Appendix III and Appendix IV parameters. A summary of data collected during this assessment monitoring event is presented in Table 1.

Chemical analysis was completed by an analytical laboratory certified by the National Environmental Laboratory Accreditation Program (NELAP). Quality assurance and quality control (QA/QC) samples completed by the analytical laboratory included the use of laboratory reagent blanks (LRBs), continuing calibration verification (CCV) samples, and laboratory fortified blanks (LFBs).

The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.9.6.32 statistics software. The export file was checked against the analytical data for transcription errors and completeness. No QA/QC issues were noted which would impact data usability.

2.2 Statistical Analysis

Statistical analyses for the EBAP were conducted in accordance with the November 2021 *Statistical Analysis Plan* (Geosyntec, 2021c). Time series plots and results for all completed statistical tests are provided in Attachment B.

The data obtained in November 2021 were screened for potential outliers. No outliers were identified for this event.

2.2.1 Establishment of GWPSs

A GWPS was established for each Appendix IV parameter in accordance with the *Statistical Analysis Plan* (Geosyntec, 2021c). The established GWPS was determined to be the greater value of the background concentration and the maximum contaminant level (MCL) for each Appendix IV parameter. To determine background concentrations, an upper tolerance limit (UTL) was calculated using pooled data from the background wells collected during the background monitoring and assessment monitoring events. Tolerance limits were calculated parametrically with 95% coverage and 95% confidence for chromium, combined radium, and lithium. Non-parametric tolerance limits were calculated for arsenic, barium, beryllium, cobalt, and mercury due to apparent non-normal distributions and for antimony, cadmium, fluoride, lead, molybdenum,

selenium, and thallium due to a high non-detect frequency. Tolerance limits and the final GWPSs are summarized in Table 2.

2.2.2 Evaluation of Potential Appendix IV SSLs

A confidence interval was constructed for each Appendix IV parameter at each compliance well. Confidence limits were generally calculated parametrically ($\alpha = 0.01$); however, non-parametric confidence limits were calculated in some cases (e.g., when the data did not appear to be normally distributed or when the non-detect frequency was too high). An SSL was concluded if the lower confidence limit (LCL) exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). Calculated confidence limits are shown in Attachment B.

The following SSLs were identified at the Pirkey EBAP:

- The LCL for cobalt exceeded the GWPS of 0.00940 mg/L at AD-2 (0.0100 mg/L), AD-31 (0.00956 mg/L), and AD-32 (0.025 mg/L).
- The LCL for lithium exceeded the GWPS of 0.0550 mg/L at AD-31 (0.0664 mg/L) and AD-32 (0.0781 mg/L).

As a result, the Pirkey EBAP will either move to an assessment of corrective measures or an ASD will be conducted to evaluate if the unit can remain in assessment monitoring.

2.2.3 Establishment of Appendix III Prediction Limits

Upper prediction limits (UPLs) were previously established for all Appendix III parameters following the background monitoring period. Intrawell tests were used to evaluate potential SSIs for pH, whereas interwell tests were used to evaluate potential SSIs for boron, calcium, chloride, fluoride, sulfate, and TDS. Interwell and intrawell prediction limits are updated periodically during the assessment monitoring period as sufficient data became available.

For the intrawell tests, insufficient data was available to compare against the existing background dataset, and so the prediction limits were not updated for the intrawell tests at this time. The intrawell prediction limits were previously calculated using historical data through June 2020 (Geosyntec, 2021d). The established intrawell prediction limits were used to evaluate potential SSIs for pH.

Prediction limits for the interwell tests were recalculated using data collected during the 2021 assessment monitoring events. New background well data were tested for outliers prior to being added to the background dataset. Background well data were also evaluated for statistically significant trends using the Sen's Slope/Mann-Kendall trend test, and the results are included in Attachment B. The revised interwell prediction limits were used to evaluate potential SSIs for boron, calcium, chloride, fluoride, sulfate, and TDS.

After the revised background set was established, a parametric or non-parametric analysis was selected based on the distribution of the data and the frequency of non-detect data. Estimated results less than the practical quantitation limit (PQL) – i.e., "J-flagged" data – were considered detections and the estimated results were used in the statistical analyses. Non-parametric analyses were selected for datasets with at least 50% non-detect data or datasets that could not be normalized. Parametric analyses were selected for datasets (either transformed or untransformed) that passed the Shapiro-Wilk / Shapiro-Francía test for normality. The Kaplan-Meier non-detect adjustment was applied to datasets with between 15% and 50% non-detect data. For datasets with fewer than 15% non-detect data, non-detect data were replaced with one half of the PQL. The selected analysis (i.e., parametric or non-parametric) and transformation (where applicable) for each background dataset are shown in Attachment B.

Interwell UPLs were updated for boron, calcium, chloride, fluoride, sulfate, and TDS using historical data through November 202. Intrawell UPLs and lower prediction limits (LPLs) were previously calculated for pH using historical data through June 2020 to represent background values. The updated prediction limits are summarized in Table 3. The prediction limits were calculated for a one-of-two retesting procedure; i.e., if at least one sample in a series of two does not exceed the UPL, or in the case of pH, is neither less than the LPL nor greater than the UPL, then it can be concluded that an SSI has not occurred. In practice, where the initial result does not exceed the UPL, or in the case of pH, is neither less than the LPL nor greater than the UPL, a second sample will not be collected. The retesting procedures allow achieving an acceptably high statistical power to detect changes at compliance wells for constituents evaluated using intrawell prediction limits.

2.2.4 Evaluation of Potential Appendix III SSIs

While SSLs were identified for the Appendix IV parameters, a review of the Appendix III results was also completed to assess whether concentrations of Appendix III parameters at the compliance wells exceeded background concentrations.

Data collected during the November 2021 assessment monitoring event from each compliance well were compared to the re-calculated prediction limits to evaluate results above background values. The results from this event and the prediction limits are summarized in Table 3. The following exceedances of the UPLs were noted:

- Boron concentrations exceeded the interwell UPL of 0.0610 mg/L at AD-2 (2.62 mg/L) and AD-32 (1.70 mg/L).
- Calcium concentrations exceeded the interwell UPL of 2.94 mg/L at AD-32 (16.8 mg/L).
- Chloride concentrations exceeded the interwell UPL of 8.97 mg/L at AD-2 (29.2 mg/L), AD-31 (20.1 mg/L), and AD-32 (24.3 mg/L).

- pH values were below the intrawell LPL of 3.5 SU at AD-2 (3.4 SU) and the intrawell LPL of 3.0 SU at AD-31 (2.8 SU).
- Sulfate concentrations exceeded the interwell UPL of 24.7 mg/L at AD-2 (200 mg/L), AD-31 (76.6 mg/L), and AD-32 (334 mg/L).
- TDS concentrations exceeded the interwell UPL of 171 mg/L at AD-2 (410 mg/L), AD-31 (250 mg/L), and AD-32 (580 mg/L).

While the prediction limits were calculated for a one-of-two retesting procedure, SSIs were conservatively assumed if the November 2021 sample was above the UPL or below the LPL. Based on these results, concentrations of Appendix III constituents appear to be above background levels at compliance wells.

2.3 Conclusions

A semi-annual assessment monitoring event was conducted at the EBAP in accordance with the CCR Rule. The laboratory and field data were reviewed prior to statistical analysis, with no QA/QC issues identified that impacted data usability. A review of outliers identified no potential outliers in the November 2021 data. GWPSs were re-established for the Appendix IV parameters. A confidence interval was constructed at each compliance well for each Appendix IV parameter; SSLs were concluded if the entire confidence interval exceeded the GWPS. SSLs were identified for cobalt and lithium. Appendix III parameters were compared to established prediction limits, with exceedances identified for boron, calcium, chloride, pH, sulfate, and TDS.

Based on this evaluation, the Pirkey EBAP CCR unit will either move to an assessment of corrective measures or an ASD will be conducted to evaluate if the unit can remain in assessment monitoring.

SECTION 3

REFERENCES

Geosyntec Consultants, Inc. (Geosyntec). 2021a. Statistical Analysis Summary – East Bottom Ash Pond, Pirkey, Hallsville, Texas. September.

Geosyntec. 2021b. Alternative Source Demonstration - Texas State CCR Rule. Pirkey East Bottom Ash Pond. December.

Geosyntec. 2021c. Statistical Analysis Plan – H.W. Pirkey Power Plant. November.

Geosyntec. 2021d. Statistical Analysis Summary – East Bottom Ash Pond, H.W. Pirkey Plant. March.



Table 1 - Groundwater Data Summary Pirkey Plant - East Bottom Ash Pond

Well ID	AD-2	AD-4	AD-12	AD	-18	AD-31	AD-32	
Well Classification	1	Compliance	Background	Background	Backg	round	Compliance	Compliance
Parameter	Unit	11/16/2021	11/16/2021	11/15/2021	11/16/2021	11/17/2021	11/16/2021	11/15/2021
Antimony	μg/L	0.1 U	0.1 U	0.1 U	-	0.1 U	0.1 U	0.1 U
Arsenic	μg/L	0.62	0.25	0.05 J	-	0.19	0.26	2.39
Barium	μg/L	19.2	122	26.5	-	82.2	32.1	22.5
Beryllium	μg/L	0.575	0.280	0.148	-	0.078	0.801	3.90
Boron	mg/L	2.62	0.012 J	0.012 J	-	0.01 J	0.024 J	1.70
Cadmium	μg/L	0.078	0.022	0.01 J	-	0.011 J	0.063	0.452
Calcium	mg/L	2.63	2.13	0.28	-	0.20	2.68	16.8
Chloride	mg/L	29.2	3.94	8.03	-	5.99	20.1	24.3
Chromium	μg/L	0.37	0.28	0.30	-	0.31	0.39	0.75
Cobalt	μg/L	21.2	3.08	1.38	-	0.801	9.18	39.9
Combined Radium	pCi/L	1.69	1.6	1.76	-	1.91	3.39	4.6
Fluoride	mg/L	0.15	0.06 U	0.07	-	0.06 U	0.13	0.78
Lead	μg/L	0.51	0.2 U	0.07 J	-	0.2 U	0.34	0.52
Lithium	mg/L	0.0539	0.0211	0.0110	ı	0.0124	0.0648	0.0698
Mercury	μg/L	0.049	0.015	0.005 U	ı	0.030	1.790	1.400
Molybdenum	μg/L	0.5 U	0.5 U	0.5 U	ı	0.5 U	0.5 U	0.5 U
Selenium	μg/L	1.75	0.5 U	0.10 J	-	0.11 J	0.33 J	7.70
Sulfate	mg/L	200	17.2	2.90	-	6.23	76.6	334
Thallium	μg/L	0.11 J	0.08 J	0.2 U	ı	0.2 U	0.08 J	0.25
Total Dissolved Solids	mg/L	410	130	90	-	100	250	580
pН	SU	3.4	4.3	3.5	3.9	-	2.8	2.8

Notes:

mg/L: milligrams per liter $\mu g/L$: micrograms per liter

SU: standard unit

pCi/L: picocuries per liter

U: Parameter was not present in concentrations above method detection limit and is reported as the reporting limit

J: Estimated value. Parameter was detected in concentrations below the reporting limit

Due to limited groundwater volume, the pH value for AD-18 was collected the day prior to collection of analytical samples.

Table 2: Appendix IV Groundwater Protection Standards Pirkey Plant - East Bottom Ash Pond

Constituent Name	MCL	Calculated UTL	GWPS
Antimony, Total (mg/L)	0.00600	0.00500	0.00600
Arsenic, Total (mg/L)	0.0100	0.0110	0.0110
Barium, Total (mg/L)	2.00	0.180	2.00
Beryllium, Total (mg/L)	0.00400	0.00200	0.00400
Cadmium, Total (mg/L)	0.00500	0.00100	0.00500
Chromium, Total (mg/L)	0.100	0.00420	0.100
Cobalt, Total (mg/L)	n/a	0.00940	0.00940
Combined Radium, Total (pCi/L)	5.00	3.36	5.00
Fluoride, Total (mg/L)	4.00	1.00	4.00
Lead, Total (mg/L)	n/a	0.00500	0.00500
Lithium, Total (mg/L)	n/a	0.0550	0.0550
Mercury, Total (mg/L)	0.00200	0.0000640	0.00200
Molybdenum, Total (mg/L)	n/a	0.00500	0.00500
Selenium, Total (mg/L)	0.0500	0.00500	0.0500
Thallium, Total (mg/L)	0.00200	0.00200	0.00200

Notes:

MCL = Maximum Contaminant Level

GWPS = Groundwater Protection Standard

Calculated UTL (Upper Tolerance Limit) represents site-specific background values.

Grey cells indicate the GWPS is based on the calculated UTL, which is either higher than the MCL or an MCL does not exist.

Table 3 - Appendix III Data Summary Pirkey Plant - East Bottom Ash Pond

Analyte	Unit	Description	AD-2	AD-31	AD-32			
Analyte	Ollit	Description	11/16/2021	11/16/2021	11/15/2021			
Boron	mg/L	Interwell Background Value (UPL)		0.0610				
DOIOII	mg/L	Analytical Result	2.62	0.024	1.70			
Calcium	mg/L	Interwell Background Value (UPL)		2.94				
Calcium	mg/L	Analytical Result	cal Result 2.63		16.8			
Chloride	mg/L	Interwell Background Value (UPL)		8.97				
Cilioride	mg/L	Analytical Result	29.2	20.1	24.3			
Fluoride	mg/L	Interwell Background Value (UPL)	1.00					
Tuoride	mg/L	Analytical Result	0.15	0.13	0.78			
		Intrawell Background Value (UPL)	4.8	5.3	4.5			
рН	SU	Intrawell Background Value (LPL)	3.5	3.0	2.7			
		Analytical Result	3.4	2.8	2.8			
Sulfate	mg/L	Interwell Background Value (UPL)		24.7				
Sullate	mg/L	Analytical Result	200	76.6	334			
Total Dissolved Solids	mg/L	Interwell Background Value (UPL)	171					
Total Dissolved Solids	mg/L	Analytical Result	410	250	580			

Notes:

UPL: Upper prediction limit LPL: Lower prediction limit

Bold values exceed the background value.

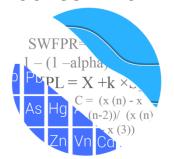
Background values are shaded gray.

ATTACHMENT A Certification by Qualified Professional Engineer

Certification by Qualified Professional Engineer

I certify that the selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Pirkey East Bottom Ash Pond CCR management area and that the requirements of § 352.931(a) have been met.

DAVID ANTHO	ONY MILLER	STATE OF SET
Printed Name of Licen	sed Professional Engineer	DAVID ANTHONY MILLER 112498 CENSED
Dourd Anth Signature	ony Miller	STONAL ENSES
112498	IEXAS	03.19.22


Date

Licensing State

License Number

ATTACHMENT B Statistical Analysis Output

GROUNDWATER STATS CONSULTING

March 8, 2022

Geosyntec Consultants Attn: Ms. Allison Kreinberg 941 Chatham Lane, #103 Columbus, OH 43221

Re: Pirkey EBAP - Assessment Monitoring Event & Background Update 2021

Dear Ms. Kreinberg,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the evaluation of groundwater data and the background update through 2021 for American Electric Power Company's Pirkey EBAP. The analysis complies with the Texas Commission of Environmental Quality rule 30 TAC 352 as well as with the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling at each of the wells below began at Pirkey EBAP for the Coal Combustion Residuals (CCR) program in 2016. The monitoring well network, as provided by Geosyntec Consultants, consists of the following:

Upgradient wells: AD-4, AD-12, and AD-18
 Downgradient wells: AD-2, AD-31, and AD-32

Data were sent electronically, and the statistical analysis was reviewed by Andrew Collins, Project Manager of Groundwater Stats Consulting. The analysis was conducted according to the Statistical Analysis Plan and initial screening evaluation prepared in November 2017 by GSC and approved by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to GSC.

The CCR program consists of the following constituents listed below. The terms "constituent" and "parameter" are interchangeable.

- Appendix III (Detection Monitoring) boron, calcium, chloride, fluoride, pH, sulfate, and TDS
- Appendix IV (Assessment Monitoring) antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Time series and box plots for Appendix III and IV parameters are provided for all wells and constituents, and are used to evaluate concentrations over the entire record (Figures A & B, respectively). A summary of the values identified as outliers in this report and through previous screenings follows this letter. These values are deselected prior to the statistical analysis. All flagged values may also be seen in a lighter font and disconnected symbol on the time series graphs (Figure C).

In earlier analyses, data at all wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix III parameters based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves were provided during the initial background screening and demonstrated that the selected statistical methods for Appendix III parameters comply with the USEPA Unified Guidance recommendations as discussed below. During this analysis, data from all wells were screened for updating Appendix III background statistical limits, which was last performed in January 2021, as described below.

Summary of Statistical Methods:

Based on the original background screening described in the original screening report, the following statistical methods were selected for Appendix III parameters:

- 1) Intrawell prediction limits, combined with a 1-of-2 resample plan for pH
- 2) Interwell prediction limits, combined with a 1-of-2 resample plan for boron, calcium, chloride, fluoride, sulfate, and TDS

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the false positive rate associated with the parametric limits is based on an annual 10% (5% per semi-annual event) as recommended by the EPA Unified Guidance (2009), the false positive rate

associated with the nonparametric limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits.

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects in background, the reporting limit utilized for non-detects is the practical quantification limit (PQL) as reported by the laboratory. For several constituents, the most recent reporting limits are significantly lower than those reported historically. This is a conservative approach for tolerance limits and confidence intervals at this site.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the intrawell case, data for all wells and constituents may be re-evaluated when a minimum of 4 new data points are available to determine whether earlier concentrations are representative of present-day groundwater quality. In the interwell case, prediction limits are updated with upgradient well data following each sampling event after careful screening for any new outliers. In some cases, deselecting the earlier portion of data may be necessary prior to construction of limits so that resulting statistical limits are conservative (lower) from a regulatory perspective and capable of rapidly detecting changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Appendix III Background Update Summaries

January 2021

Proposed background data were originally screened during December 2019. Prior to updating background data sets during the January 2021 background update, pH (which

is evaluated using intrawell methods) at all wells and boron, calcium, chloride, fluoride, sulfate, and TDS (which are evaluated using interwell methods) at upgradient wells were re-evaluated using Tukey's outlier test and visual screening. Tukey's Outlier test did not identify any additional statistical outliers.

The Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through February 2019 to the new compliance samples at each well through June 2020 to evaluate whether the groups are significantly different at the 99% confidence level. A statistically significant difference was identified for pH in well AD-4. However, because this is an upgradient well and limited data are available, the background data were updated to include all data through June 2020.

The Sen's Slope/Mann Kendall trend test was used to evaluate data at upgradient wells for boron, calcium, chloride, fluoride, sulfate and TDS, which are tested using interwell prediction limits, to identify statistically significant increasing or decreasing trends. The results of the trend analyses showed all data are consistent over time. The statistically significant trends noted for boron at well AD-18 and fluoride and wells AD-4 and AD-12 were artificial trends that resulted from estimated values and non-detects, with no detections reported above the practical quantitation limit. No other statistically significant increasing or decreasing trends were noted. Interwell prediction limits, combined with a 1-of-2 resample plan, were updated using all available data through November 2020 from upgradient well for the constituents listed above.

February 2022

During this analysis, upgradient well data through November 2021 were re-screened for the purpose of updating the interwell prediction limits for boron, calcium, chloride, fluoride, sulfate and TDS. Intrawell prediction limits will be updated during the Fall 2022 when sufficient compliance samples are available.

Outlier Analysis

Prior to updating background data, Tukey's outlier test and visual screening were used to evaluate data at all upgradient wells through November 2021, for boron, calcium, chloride, fluoride, sulfate, and TDS (Figure C). Tukey's outlier test on pooled upgradient well data for these constituents did not identify any additional statistical outliers since the last background update; therefore, no new outliers were flagged. Additionally, no changes to previously flagged outliers were made. As mentioned above, flagged data are displayed in a lighter font and as a disconnected symbol on the time series reports, as well as in a

lighter font on the accompanying data pages. A summary of Tukey's test results is included below.

For pH, which uses intrawell prediction limits, values were not re-evaluated for new outliers as these records had insufficient samples for updating background during this evaluation period.

Intrawell – Prediction Limits

Intrawell prediction limits using all historical data through June 2020 combined with a 1-of-2 resample plan, were constructed for pH and a summary of the limits follows this letter (Figure D). As discussed earlier, background data sets for all parameters utilizing intrawell prediction limits will be updated after the Fall 2022 sample event when a minimum of 4 compliance samples are available. A summary table of the limits follows this report.

Interwell – Trend Test Evaluation

The Sen's Slope/Mann Kendall trend test was used to evaluate data at upgradient wells for boron, calcium, chloride, fluoride, sulfate, and TDS, which are tested using interwell prediction limits, to identify statistically significant increasing or decreasing trends (Figure E). The results of the trend analyses showed all data are consistent over time. The statistically significant trends noted for fluoride in wells AD-4, AD-12, and AD-18 were artificial trends that resulted from estimated values and non-detects, with no detections reported above the practical quantitation limit. No other statistically significant increasing or decreasing trends were noted.

Interwell - Prediction Limits

Interwell prediction limits, combined with a 1-of-2 resample plan, were updated using all available data through November 2021 from upgradient wells for the constituents listed above (Figure F). Time series plots were included with the interwell prediction limit graphs to display concentrations at upgradient wells that were used to construct the statistical limits. Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent. A summary table of the updated limits may be found following this letter in the Prediction Limit Summary Table.

Evaluation of Appendix IV Parameters – November 2021

Prior to evaluating Appendix IV parameters, background data are screened through visual screening and Tukey's outlier test on pooled upgradient wells for potential outliers and extreme trending patterns that would lead to artificially elevated statistical limits.

For the current analysis, Tukey's outlier test on pooled upgradient well data did not identify any outliers through November 2021; however, high non-detect values of 0.04 mg/L for molybdenum in upgradient and downgradient wells were flagged in order to construct statistical limits that are conservative (i.e., lower) from a regulatory perspective and represent present-day groundwater quality at this facility.

Additionally, downgradient well data through November 2021 were screened through visual screening using time series graphs. Since the downgradient well data are used to construct confidence intervals, a regulatory conservative approach is taken in that values that are marginally high relative to the rest of the data are retained unless there is particular justification for excluding them. A previously flagged value for selenium in downgradient well AD-32 was unflagged as similar concentrations appeared among more recent observations, and all concentrations for selenium at this site are below the MCL. All flagged values may be seen on the Outlier Summary following this letter (Figure C).

Interwell Upper Tolerance Limits

Interwell upper tolerance limits were used to calculate background limits from all available pooled upgradient well data through November 2021 for Appendix IV parameters to determine the background limit for each constituent (Figure H). For parametric limits a target of 95% confidence and 95% coverage is used. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples.

Groundwater Protection Standards

These limits were compared to the Maximum Contaminant Levels (MCLs) in the Groundwater Protection Standard (GWPS) table following this letter to determine the highest limit for use as the GWPS in the Confidence Interval comparisons (Figure I).

Confidence Intervals

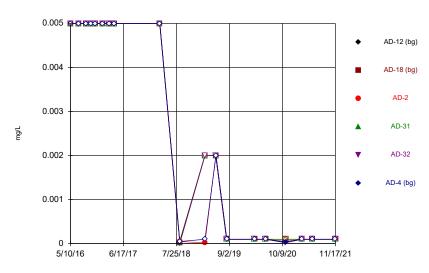
Confidence intervals were then constructed on downgradient wells with data through November 2021 for each of the Appendix IV parameters using the highest limit of either

the MCL or background as discussed above (Figure J). Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard. Complete results of the confidence interval results follow this letter. The following confidence interval exceedances were noted:

Cobalt: AD-2, AD-31, and AD-32

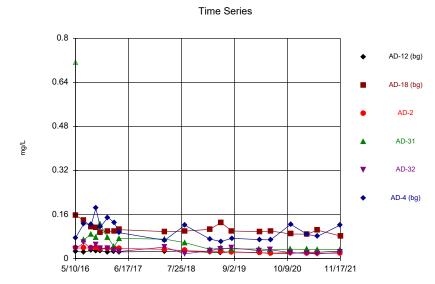
Lithium: AD-31 and AD-32

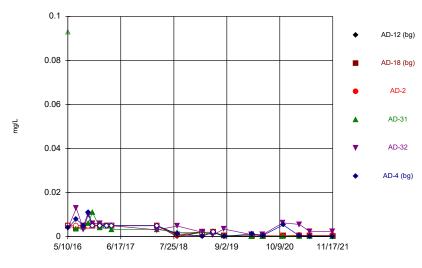
Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Pirkey EBAP. If you have any questions or comments, please feel free to contact me.


For Groundwater Stats Consulting,

Easton Rayner

Groundwater Analyst


Andrew Collins Project Manager


Constituent: Antimony, total Analysis Run 2/21/2022 10:17 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas[™] v.9.6.32 Groundwater Stats Consulting. UG

Constituent: Barium, total Analysis Run 2/21/2022 10:17 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Time Series

Constituent: Arsenic, total Analysis Run 2/21/2022 10:17 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

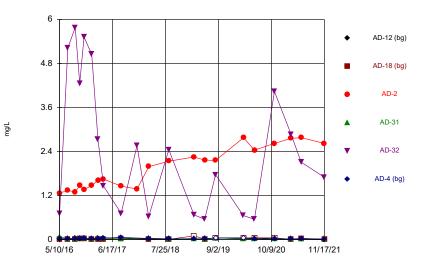
Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

5/10/16

6/17/17

0.011 0.0088 0.0066 0.0044 0.0022 0.0022 0.0022

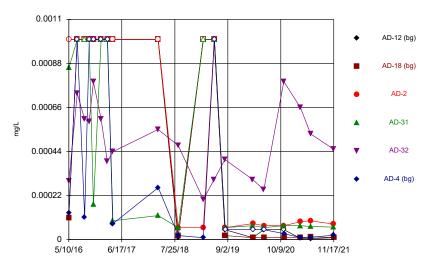
Constituent: Beryllium, total Analysis Run 2/21/2022 10:17 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


9/2/19

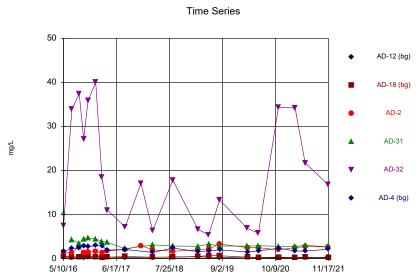
10/9/20

11/17/21

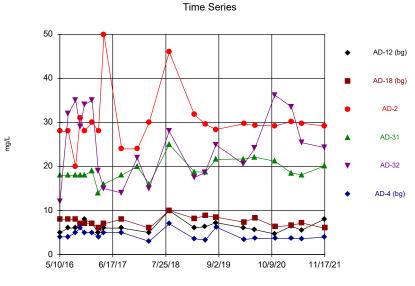
7/25/18


Time Series

Constituent: Boron, total Analysis Run 2/21/2022 10:17 AM


Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

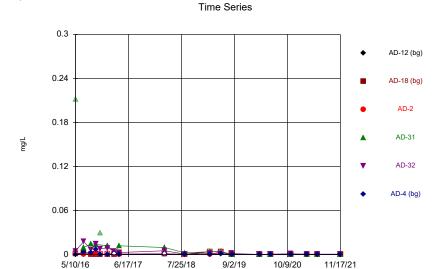
Time Series


Constituent: Cadmium, total Analysis Run 2/21/2022 10:17 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas[™] v.9.6.32 Groundwater Stats Consulting. UG

Constituent: Calcium, total Analysis Run 2/21/2022 10:17 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG



Constituent: Chloride, total Analysis Run 2/21/2022 10:17 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

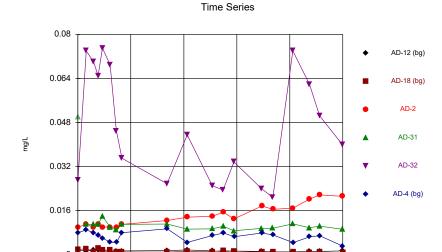
5/10/16

6/17/17

Constituent: Chromium, total Analysis Run 2/21/2022 10:17 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Time Series

20 AD-12 (bg) AD-18 (bg) AD-31 AD-32 AD-4 (bg)


Constituent: Combined Radium 226 + 228 Analysis Run 2/21/2022 10:17 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

9/2/19

10/9/20

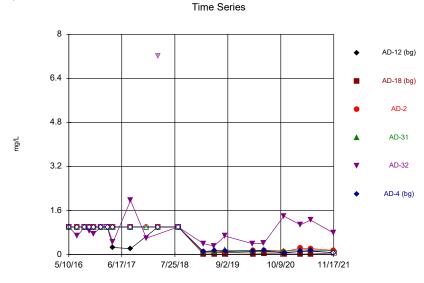
11/17/21

7/25/18

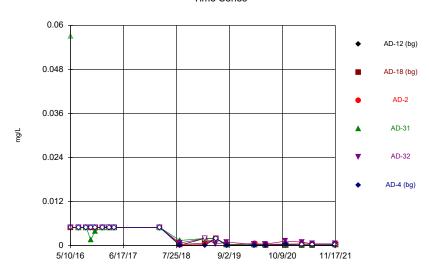
Constituent: Cobalt, total Analysis Run 2/21/2022 10:17 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

9/2/19

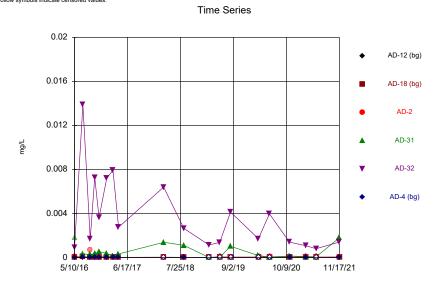
7/25/18

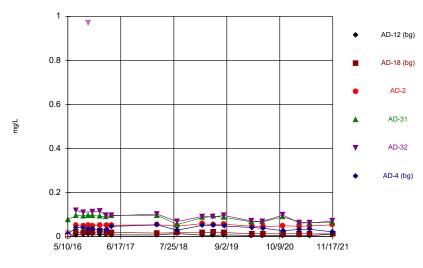

11/17/21

10/9/20

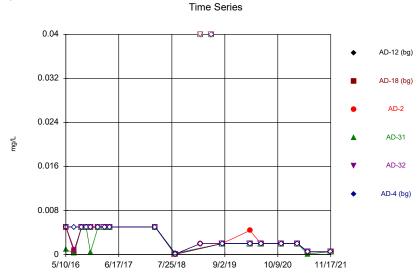

5/10/16

6/17/17

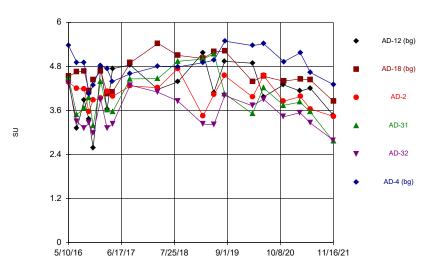

Constituent: Fluoride, total Analysis Run 2/21/2022 10:17 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Constituent: Lead, total Analysis Run 2/21/2022 10:17 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

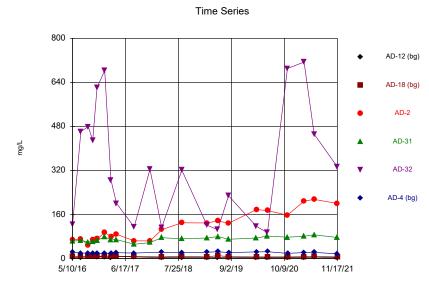
Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

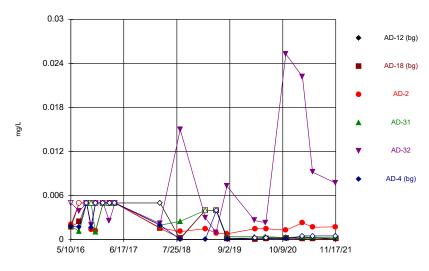

Constituent: Mercury, total Analysis Run 2/21/2022 10:17 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Time Series

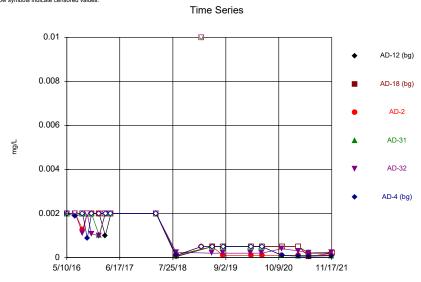

Constituent: Lithium, total Analysis Run 2/21/2022 10:17 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

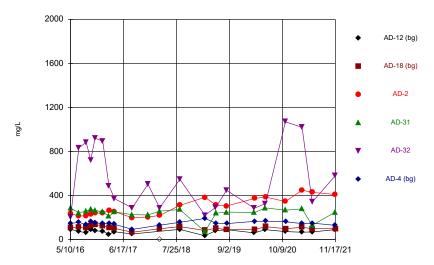

Constituent: Molybdenum, total Analysis Run 2/21/2022 10:17 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Constituent: pH, field Analysis Run 2/21/2022 10:17 AM Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

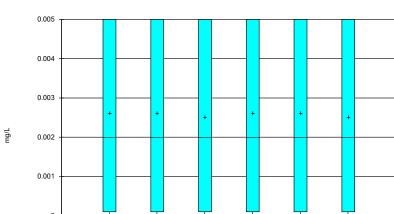
Sanitas[™] v.9.6.32 Groundwater Stats Consulting. UG


Constituent: Sulfate, total Analysis Run 2/21/2022 10:17 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Time Series

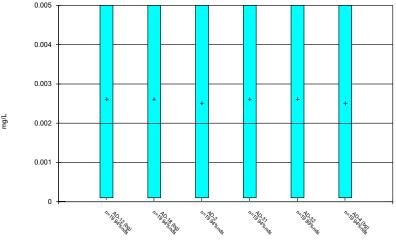

Constituent: Selenium, total Analysis Run 2/21/2022 10:17 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

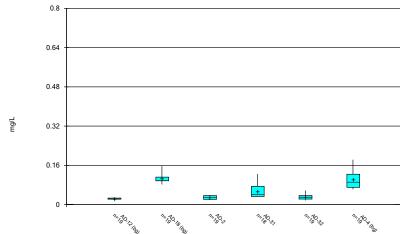


Constituent: Thallium, total Analysis Run 2/21/2022 10:17 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

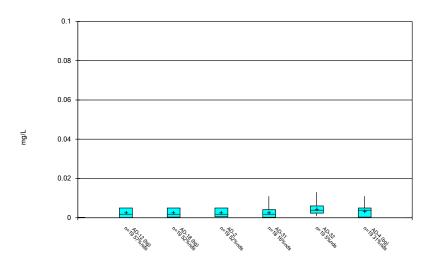
Time Series



Constituent: Total Dissolved Solids Analysis Run 2/21/2022 10:17 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

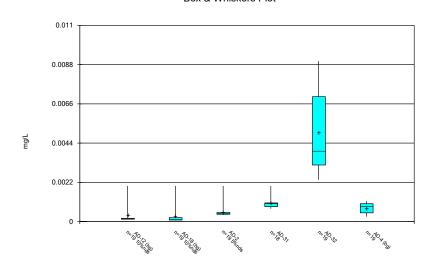

Box & Whiskers Plot

Constituent: Antimony, total Analysis Run 2/21/2022 10:18 AM Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

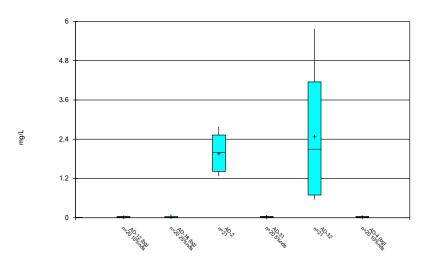


Box & Whiskers Plot

Constituent: Barium, total Analysis Run 2/21/2022 10:18 AM Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

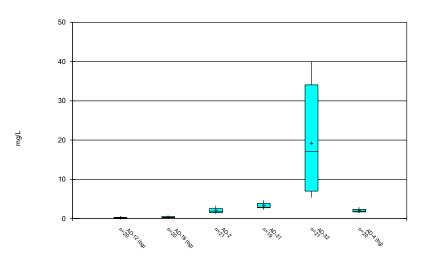

Box & Whiskers Plot

Constituent: Arsenic, total Analysis Run 2/21/2022 10:18 AM Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

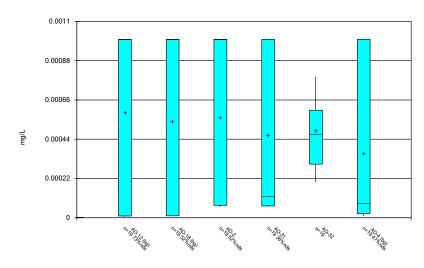

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Beryllium, total Analysis Run 2/21/2022 10:18 AM Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

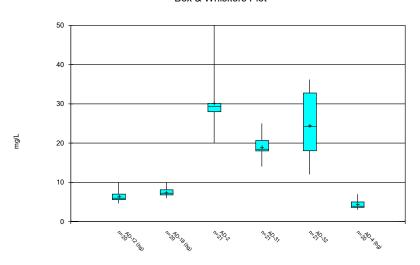

Box & Whiskers Plot

Constituent: Boron, total Analysis Run 2/21/2022 10:18 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

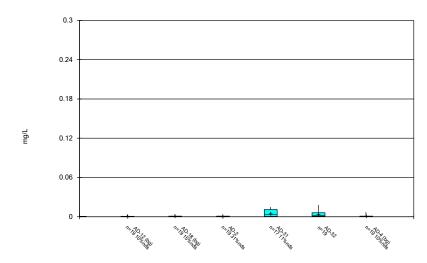

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Calcium, total Analysis Run 2/21/2022 10:18 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

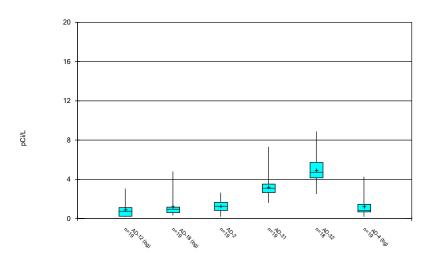

Box & Whiskers Plot

Constituent: Cadmium, total Analysis Run 2/21/2022 10:18 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

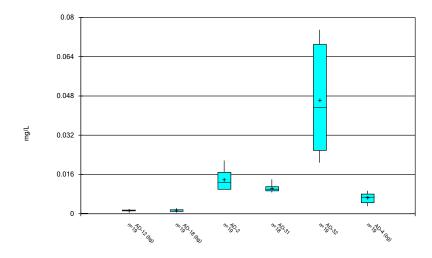

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Chloride, total Analysis Run 2/21/2022 10:18 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

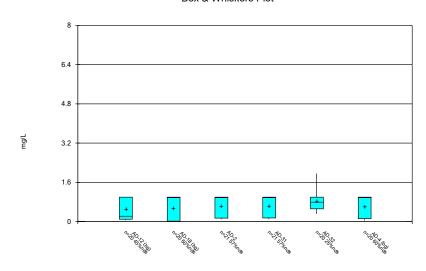

Box & Whiskers Plot

Constituent: Chromium, total Analysis Run 2/21/2022 10:18 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

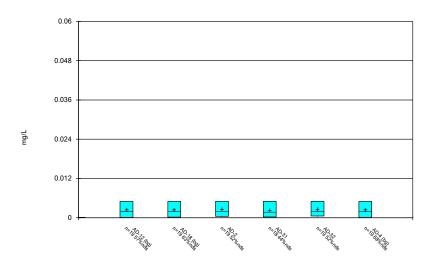

Sanitas[™] v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Combined Radium 226 + 228 Analysis Run 2/21/2022 10:18 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

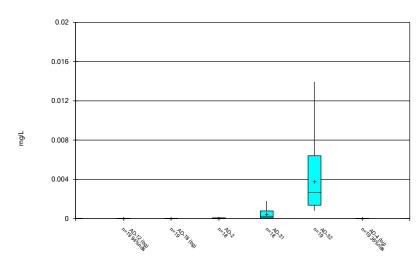

Box & Whiskers Plot

Constituent: Cobalt, total Analysis Run 2/21/2022 10:18 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

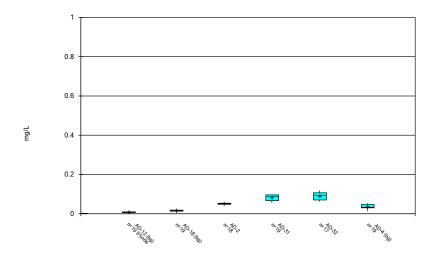

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Fluoride, total Analysis Run 2/21/2022 10:18 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

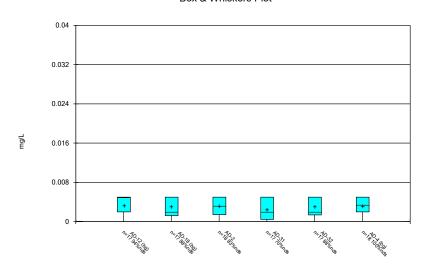

Box & Whiskers Plot

Constituent: Lead, total Analysis Run 2/21/2022 10:18 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

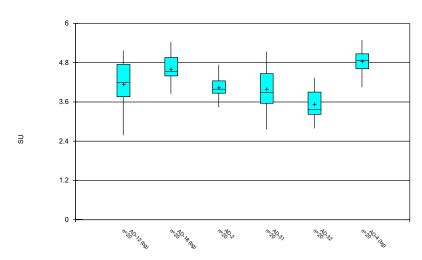

Sanitas[™] v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Mercury, total Analysis Run 2/21/2022 10:18 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

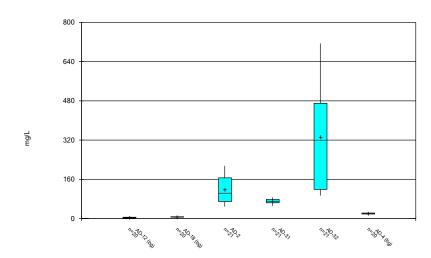

Box & Whiskers Plot

Constituent: Lithium, total Analysis Run 2/21/2022 10:18 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

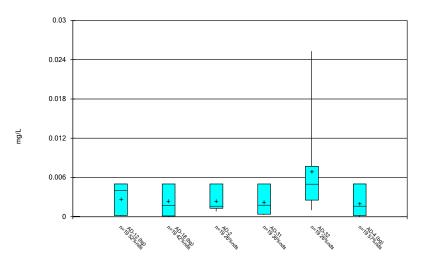

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Molybdenum, total Analysis Run 2/21/2022 10:18 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

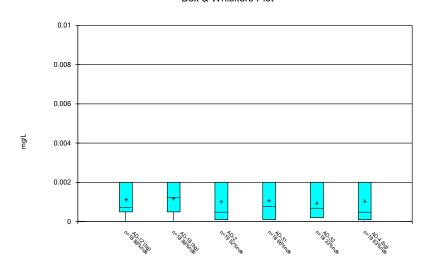

Box & Whiskers Plot

Constituent: pH, field Analysis Run 2/21/2022 10:18 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

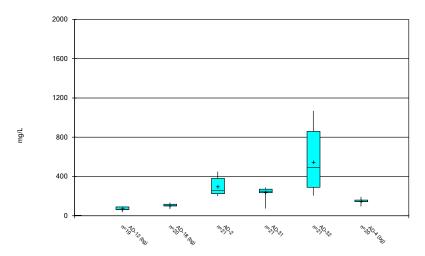

Sanitas[™] v.9.6.32 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Sulfate, total Analysis Run 2/21/2022 10:18 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Box & Whiskers Plot

Constituent: Selenium, total Analysis Run 2/21/2022 10:18 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

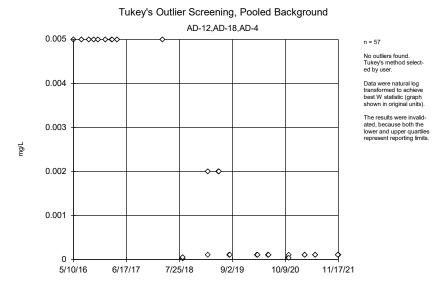
Box & Whiskers Plot

Constituent: Thallium, total Analysis Run 2/21/2022 10:18 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Box & Whiskers Plot

Constituent: Total Dissolved Solids Analysis Run 2/21/2022 10:18 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Outlier Summary

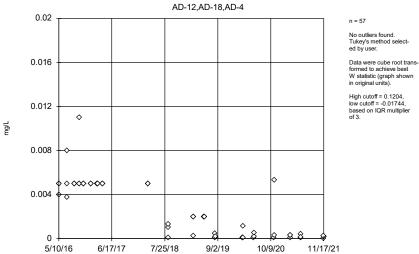

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Printed 2/21/2022, 10:21 AM

		un	nalL) , (n	nalL) sal	(mg/L)	nglL)	u (mg/L) , (ma	L) andii	m 226 + 228	iglL) mall) . (m)	ulL) (malL) (mal
	AD-31 Ars	enic, total (m AD-31 Bar	rium, total (19 AD-31 Be	ng/L) eryllium, total AD-31 Ca	cium, total (AD-31 Ch	romium, tota AD-31 Co	_{al} (mg/L) obalt, total (mg AD-32 Com	bined Raus AD-32 Fluc	ride, total (1. AD-31 Lead	ig/L) d, total (mg/L) AD-2 Lithiun	m, total (me AD-32 Lith	yL) _{nium, total} (mg/L) _{AD-2} Mercury, _{total} (mg/
5/11/2016	0.093 (o)	0.712 (o)	0.01 (o)	10.4 (o)	0.212 (o)				0.057 (o)	<0.001 (o)	0.016 (o)	
9/7/2016												0.000675 (o)
10/12/2016							17.32 (o)				0.972 (o)	
11/14/2016					0.03 (o)							
3/21/2018								7.2 (o)				
2/27/2019												
2/28/2019												
5/21/2019												
5/22/2019												
5/23/2019												

AD-31 Mercury, total (mg/L), total (mg/L), total (mg/L) (mg/L), total (mg/L), AD-12 Molybdenum, total (mg/L), AD-31 Molybdenum, AD-31 Molybden 0.001797 (o) 5/11/2016 9/7/2016 10/12/2016 11/14/2016 3/21/2018 <5 (o) 2/27/2019 <0.04 (o) <0.01 (o) 2/28/2019 <0.04 (o) <0.04 (o) <0.04 (o) <0.01 (o) <0.01 (o) <0.01 (o) 5/21/2019 <0.04 (o) <0.04 (o) <0.04 (o) 5/22/2019 5/23/2019 <0.04 (o) <0.04 (o) <0.04 (o)

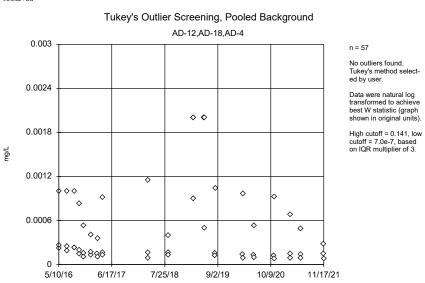
Tukey's Outlier Test - Upgradient Wells - All Results (No Significant)

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Printed 1/31/2022, 4:04 PM Constituent <u>Well</u> Outlier Value(s) Method <u>Alpha</u> Mean Std. Dev. <u>Distribution</u> Normality Test AD-12,AD-18,AD-4 NP NaN 57 0.002582 0.002372 ShapiroFrancia Antimony, total (mg/L) n/a n/a unknown Arsenic, total (mg/L) AD-12,AD-18,AD-4 NP NaN 57 0.00289 0.002561 x^(1/3) ShapiroFrancia No n/a Barium, total (mg/L) AD-12,AD-18,AD-4 No n/a NP NaN 57 0.07748 0.04383 normal ShapiroFrancia AD-12.AD-18.AD-4 NaN 57 0.0004714 0.0005295 ShapiroFrancia Beryllium, total (mg/L) NP No n/a ln(x) Boron, total (mg/L) AD-12,AD-18,AD-4 No n/a NP NaN 60 0.02872 0.0171 ln(x) ShapiroFrancia Cadmium, total (mg/L) AD-12,AD-18,AD-4 No n/a NP NaN 57 0.0004955 0.0004844 In(x) ShapiroFrancia Calcium, total (mg/L) AD-12,AD-18,AD-4 NP NaN 60 0.9223 0.882 ln(x) ShapiroFrancia No n/a AD-12,AD-18,AD-4 NP NaN 60 ShapiroFrancia Chloride, total (mg/L) No n/a 6.07 1.698 normal Chromium, total (mg/L) AD-12,AD-18,AD-4 No n/a NP NaN 57 0.0009263 0.001336 ln(x) ShapiroFrancia Cobalt, total (mg/L) AD-12,AD-18,AD-4 NP NaN 57 0.003076 0.002735 ShapiroFrancia No n/a ln(x) Combined Radium 226 + 228 (pCi/L) 57 AD-12,AD-18,AD-4 No n/a NΡ NaN 1.122 0.9726 ln(x) ShapiroFrancia Fluoride, total (mg/L) AD-12,AD-18,AD-4 No n/a NP NaN 60 0.5588 0.4618 In(x) ShapiroFrancia AD-12.AD-18.AD-4 NP 57 0.002578 0.002365 ShapiroFrancia Lead, total (mg/L) No n/a NaN In(x) AD-12,AD-18,AD-4 NP 0.02051 0.0141 ShapiroFrancia Lithium, total (mg/L) No n/a NaN x^(1/3) Mercury, total (mg/L) AD-12,AD-18,AD-4 No n/a NP NaN 57 0.00001647 0.0000113 x^(1/3) ShapiroFrancia Molybdenum, total (mg/L) 0.006415 AD-12.AD-18.AD-4 NP NaN 57 0.01067 ShapiroFrancia n/a n/a unknown Selenium, total (mg/L) AD-12,AD-18,AD-4 NP NaN 57 0.002357 0.002183 ShapiroFrancia n/a n/a unknown Sulfate, total (mg/L) AD-12,AD-18,AD-4 No n/a NP NaN 60 11.01 7.43 ln(x) ShapiroFrancia Thallium, total (mg/L) AD-12 AD-18 AD-4 NP NaN 57 0.001428 0.001839 ShaniroFrancia n/a n/a unknown Total Dissolved Solids (mg/L) AD-12,AD-18,AD-4 ShapiroFrancia n/a NaN 60 108.6 37.54 normal

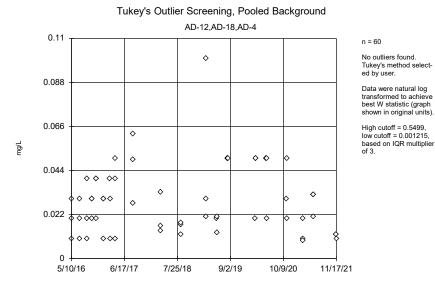

Constituent: Antimony, total Analysis Run 1/31/2022 4:02 PM View: AIII + AIV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 . UG

Tukey's Outlier Screening, Pooled Background AD-12,AD-18,AD-4 0.2 n = 57 No outliers found. Tukey's method select-0 ed by user. 0.16 Ladder of Powers transformations did not im- \Diamond prove normality; analysis run on raw data. \Diamond \Diamond High cutoff = 0.3573. low cutoff = -0.222, based 0.12 $\Diamond \Diamond \Diamond$ on IQR multiplier of 3. \Diamond \Diamond ♦ ♦ ******* \Diamond \Diamond 0.08 \Diamond \Diamond \Diamond 0.04 \[♦]♦♦♦ \Diamond \diamond \diamond \Diamond \Diamond \Diamond \Diamond 5/10/16 6/17/17 7/25/18 9/2/19 10/9/20 11/17/21


Constituent: Barium, total Analysis Run 1/31/2022 4:02 PM View: AllI + AIV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Tukey's Outlier Screening, Pooled Background



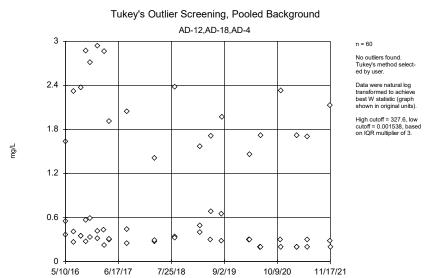
Constituent: Arsenic, total Analysis Run 1/31/2022 4:02 PM View: AIII + AIV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 . UG

Constituent: Beryllium, total Analysis Run 1/31/2022 4:02 PM View: AllI + AlV Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Constituent: Boron, total Analysis Run 1/31/2022 4:02 PM View: AllI + AIV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

⋄∞∞⋄∞ \Diamond **\$** No outliers found. Tukey's method selected by user. 0.00088 Data were natural log transformed to achieve best W statistic (graph shown in original units). 0.00066 High cutoff = 213.4, low cutoff = 7.8e-11, based on IQR multiplier of 3. mg/L 0.00044 \Diamond 0.00022 \Diamond \Diamond **\$** Λ 5/10/16 6/17/17 7/25/18 9/2/19 10/9/20 11/17/21

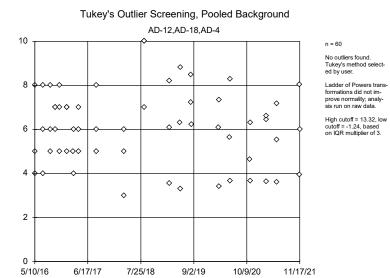

Constituent: Cadmium, total Analysis Run 1/31/2022 4:02 PM View: AllI + AlV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Tukey's Outlier Screening, Pooled Background

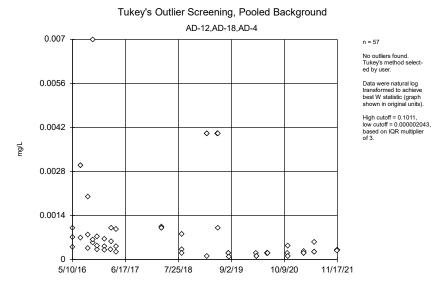
AD-12,AD-18,AD-4

n = 57

Sanitas™ v.9.6.32 . UG



Constituent: Calcium, total Analysis Run 1/31/2022 4:02 PM View: AlII + AIV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.32 . UG

mg/L

0.0011

Constituent: Chloride, total Analysis Run 1/31/2022 4:02 PM View: AllI + AlV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Constituent: Chromium, total Analysis Run 1/31/2022 4:02 PM View: AIII + AIV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 . UG

 $\Diamond \Diamond$

\$

6/17/17

80

♦♦

♦

00

0

5/10/16

 \Diamond

7/25/18

Tukey's Outlier Screening, Pooled Background AD-12,AD-18,AD-4 5 \Diamond No outliers found. Tukey's method selected by user. Data were natural log transformed to achieve best W statistic (graph shown in original units). \Diamond High cutoff = 22.57, low \Diamond cutoff = 0.02916, based on IQR multiplier of 3. \Diamond \Diamond 2

Constituent: Combined Radium 226 + 228 Analysis Run 1/31/2022 4:02 PM View: AllI + AlV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

9/2/19

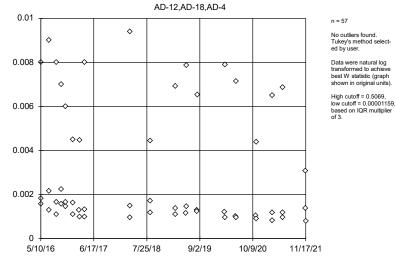
 \Diamond

♦

 \Diamond \Diamond

8

\$


11/17/21

00

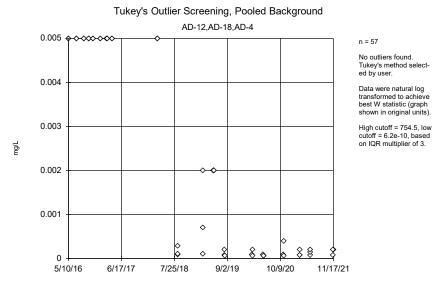
8

10/9/20

Tukey's Outlier Screening, Pooled Background

Constituent: Cobalt, total Analysis Run 1/31/2022 4:02 PM View: AllI + AIV

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

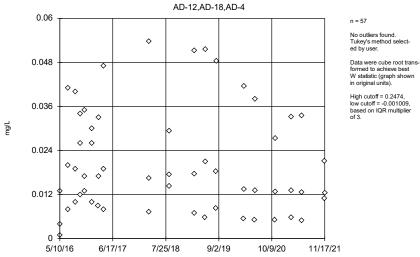

Sanitas™ v.9.6.32 . UG

mg/L

mg/L

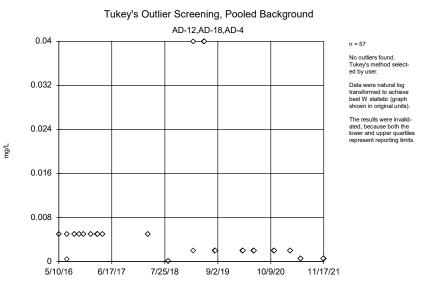
Tukey's Outlier Screening, Pooled Background AD-12,AD-18,AD-4 1 0000000 n = 60 No outliers found. Tukev's method selected by user. 0.8 Data were natural log transformed to achieve best W statistic (graph shown in original units) High cutoff = 1372, low cutoff = 0.00006561, based on IQR multiplier of 3. 0.6 0.4 \Diamond 0.2 \Diamond $\mathop{\diamond}\limits_{\Diamond} \mathop{\diamond}\limits_{\Diamond}$ \$ \$ 8 0 0 5/10/16 6/17/17 7/25/18 9/2/19 10/9/20 11/17/21

Constituent: Fluoride, total Analysis Run 1/31/2022 4:02 PM View: Alll + AlV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

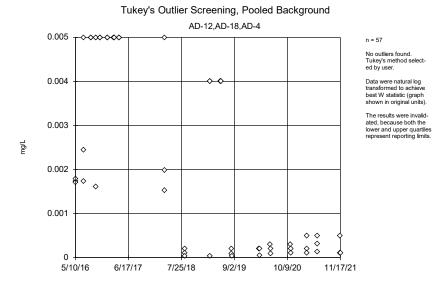


Constituent: Lead, total Analysis Run 1/31/2022 4:02 PM View: AlII + AIV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 . UG Tukey's Outlier Screening, Pooled Background AD-12,AD-18,AD-4 0.00007 n = 57 No outliers found. \Diamond Tukev's method selected by user. 0.000056 Data were cube root transformed to achieve best W statistic (graph shown in original units). High cutoff = 0.0002435 low cutoff = -0.000003399, 0.000042 based on IQR multiplier **\$**_**\$** 0.000028 \Diamond $\Diamond \longleftrightarrow \Diamond \Diamond$ 000 \Diamond 0.000014 **♦**♦ \Diamond \Diamond \Diamond 8 0 \Diamond 5/10/16 6/17/17 7/25/18 9/2/19 10/9/20 11/17/21


Constituent: Mercury, total Analysis Run 1/31/2022 4:02 PM View: AIII + AIV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

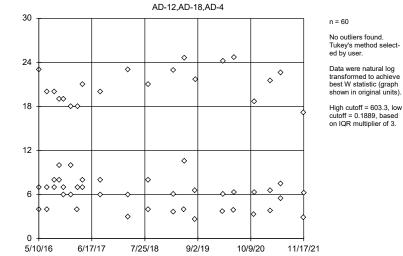
Tukey's Outlier Screening, Pooled Background



Constituent: Lithium, total Analysis Run 1/31/2022 4:02 PM View: AIII + AIV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 . UG

Constituent: Molybdenum, total Analysis Run 1/31/2022 4:02 PM View: AllI + AlV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP



Constituent: Selenium, total Analysis Run 1/31/2022 4:02 PM View: AllI + AIV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 . UG Tukey's Outlier Screening, Pooled Background AD-12,AD-18,AD-4 0.01 n = 57 No outliers found. Tukey's method selected by user. 0.008 Data were natural log transformed to achieve best W statistic (graph shown in original units). The results were invalidated, because both the 0.006 lower and upper quartiles represent reporting limits. mg/L 0.004 **>**8∞∞ 0.002 \Diamond \Diamond **\$** \Diamond \Diamond 5/10/16 6/17/17 7/25/18 9/2/19 10/9/20 11/17/21

Constituent: Thallium, total Analysis Run 1/31/2022 4:03 PM View: AllI + AlV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Tukey's Outlier Screening, Pooled Background

Constituent: Sulfate, total Analysis Run 1/31/2022 4:03 PM View: AllI + AIV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Tukey's Outlier Screening, Pooled Background

Sanitas™ v.9.6.32 . UG

mg/L

200

160

120

80

40

0

5/10/16

mg/L

AD-12,AD-18,AD-4 n = 60 \Diamond No outliers found. Tukey's method selected by user. ♦ Ladder of Powers trans- $\diamond_{\diamond \diamond}$ formations did not im-♦ ♦ prove normality; analysis run on raw data. \Diamond \Diamond \Diamond High cutoff = 326, low \Diamond cutoff = -101, based on IQR multiplier of 3. \Diamond \Diamond \Diamond \Diamond \Diamond 0 \Diamond \Diamond \Diamond \Diamond \Diamond Δ \Diamond \Diamond 0 0 \Diamond

Constituent: Total Dissolved Solids Analysis Run 1/31/2022 4:03 PM View: AIII + AIV Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

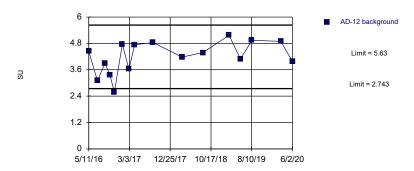
9/2/19

10/9/20

11/17/21

0

7/25/18

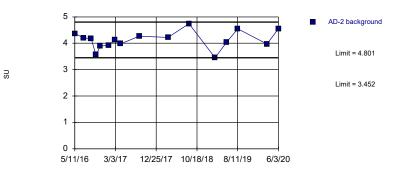

6/17/17

Intrawell Prediction Limits

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Printed 1/31/2022, 4:06 PM

Constituent	<u>Well</u>	Upper Lir	n.Lower Lir	n.Date	Observ.	Sig. Bg	N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	n Alpha	Method
pH, field (SU)	AD-12	5.63	2.743	n/a	1 future	n/a 16	4.186	0.7328	0	None	No	0.001253	Param Intra 1 of 2
pH, field (SU)	AD-18	5.521	3.859	n/a	1 future	n/a 16	4.69	0.4218	0	None	No	0.001253	Param Intra 1 of 2
pH, field (SU)	AD-2	4.801	3.452	n/a	1 future	n/a 16	4.126	0.3424	0	None	No	0.001253	Param Intra 1 of 2
pH, field (SU)	AD-31	5.314	2.956	n/a	1 future	n/a 16	4.135	0.5986	0	None	No	0.001253	Param Intra 1 of 2
pH, field (SU)	AD-32	4.507	2.69	n/a	1 future	n/a 16	3.598	0.4612	0	None	No	0.001253	Param Intra 1 of 2
pH, field (SU)	AD-4	5.676	4.049	n/a	1 future	n/a 16	4.863	0.4128	0	None	No	0.001253	Param Intra 1 of 2

Prediction Limit Intrawell Parametric, AD-12 (bg)



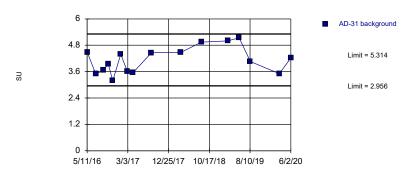
Background Data Summary: Mean=4.186, Std. Dev.=0.7328, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.944, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: pH, field Analysis Run 1/31/2022 4:05 PM View: AIII Intrawell
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 . UG

Background Data Summary: Mean=4.126, Std. Dev.=0.3424, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9726, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Parametric, AD-18 (bg)



Background Data Summary: Mean=4.69, Std. Dev.=0.4218, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9561, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: pH, field Analysis Run 1/31/2022 4:05 PM View: AIII Intrawell
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 . UG


Prediction Limit Intrawell Parametric, AD-31

Background Data Summary: Mean=4.135, Std. Dev.=0.5986, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9464, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Sanitas™ v.9.6.32 . UG

Prediction Limit Intrawell Parametric, AD-32

Background Data Summary: Mean=3.598, Std. Dev.=0.4612, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8891, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: pH, field Analysis Run 1/31/2022 4:05 PM View: AIII Intrawell
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 . UG

Prediction Limit Intrawell Parametric, AD-4 (bg)

Background Data Summary: Mean=4.863, Std. Dev.=0.4128, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9444, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: pH, field Analysis Run 1/31/2022 4:05 PM View: AIII Intrawell Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Trend Test - Significant Results

	Pirkey E	EBAP Client: Geosynte	c Data: Pi	key EBAP	Printed	1/20/202	2, 10:04	AM			
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Fluoride, total (mg/L)	AD-12 (bg)	-0.1502	-102	-81	Yes	20	45	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	AD-18 (bg)	-0.186	-88	-81	Yes	20	60	n/a	n/a	0.01	NP
Eluorido total (ma/l.)	AD 4 (ba)	0.1916	102	04	Voc	20	60	n/a	n/a	0.01	ND

Trend Test - All Results

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Printed 1/20/2022, 10:04 AM <u>Well</u> Constituent Slope Calc. <u>Critical</u> Sig. N <u>%NDs</u> <u>Normality</u> <u>Xform</u> <u>Alpha</u> Method -0.001355 Boron, total (mg/L) AD-12 (bg) -26 20 0.01 NP -81 No 10 n/a n/a Boron, total (mg/L) AD-18 (bg) 0.0013 48 81 No 20 25 0.01 NP Boron, total (mg/L) AD-4 (bg) 0 -9 -81 No 20 10 n/a n/a 0.01 NP Calcium, total (mg/L) -0.01512 -58 20 0.01 NP -81 0 AD-12 (bg) No n/a n/a Calcium, total (mg/L) AD-18 (bg) -0.03684 -67 -81 No 20 0.01 NP -0.1155 Calcium, total (mg/L) AD-4 (bg) -45 -81 No 20 0 n/a n/a 0.01 NP Chloride, total (mg/L) 0.01392 20 0.01 NP AD-12 (bg) 13 81 No 0 n/a n/a Chloride, total (mg/L) AD-18 (bg) -0.08945 -19 -81 No 20 n/a 0.01 n/a Chloride, total (mg/L) AD-4 (bg) -0.09339 -45 -81 No 20 0 n/a n/a 0.01 NP 20 Fluoride, total (mg/L) AD-12 (bg) -0.1502 -102 -81 Yes 45 n/a n/a 0.01 NP AD-18 (bg) -0.186 -88 -81 Yes 20 60 0.01 Fluoride, total (mg/L) n/a n/a Fluoride, total (mg/L) AD-4 (bg) -0.1816 -103 -81 Yes 20 60 n/a n/a 0.01 NP -0.3331 NP Sulfate, total (mg/L) AD-12 (bg) -80 -81 20 0 0.01 No n/a n/a Sulfate, total (mg/L) AD-18 (bg) -0.1591 -48 -81 No 0.01 n/a Sulfate, total (mg/L) AD-4 (bg) 0.4493 31 81 No 20 0 n/a n/a 0.01 NP -0.5248 No 0.01 NP Total Dissolved Solids (mg/L) -74 19 0 AD-12 (bg) -14 n/a n/a Total Dissolved Solids (mg/L) AD-18 (bg) -2.575 -52 -81 No 20 0 n/a n/a 0.01 NP

3

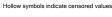
81

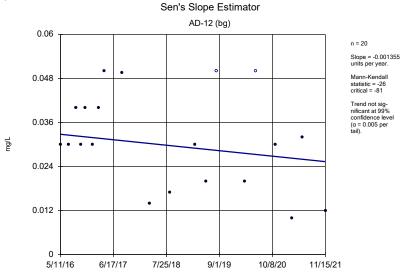
No 20

0

n/a

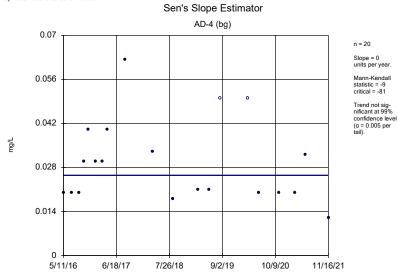
n/a

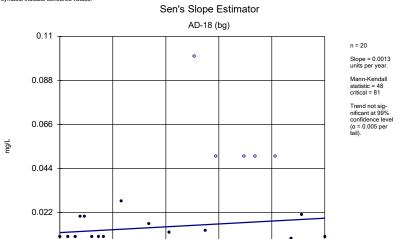

0.01


NP

Total Dissolved Solids (mg/L)

AD-4 (bg)


Sanitas™ v.9.6.32 . UG


Constituent: Boron, total Analysis Run 1/20/2022 10:02 AM View: AIII Interwell Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values.

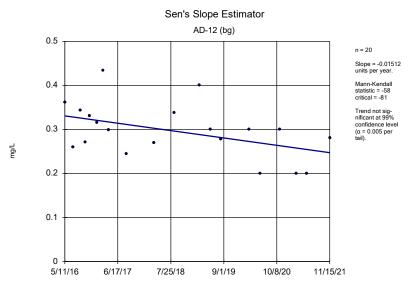
Constituent: Boron, total Analysis Run 1/20/2022 10:02 AM View: AlII Interwell Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 . UG

Constituent: Boron, total Analysis Run 1/20/2022 10:02 AM View: AllI Interwell Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

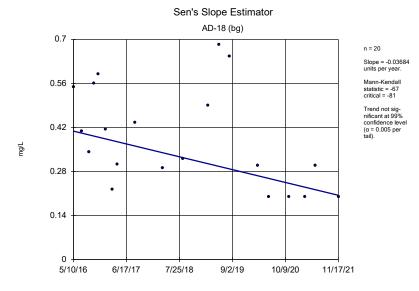
9/2/19

10/9/20

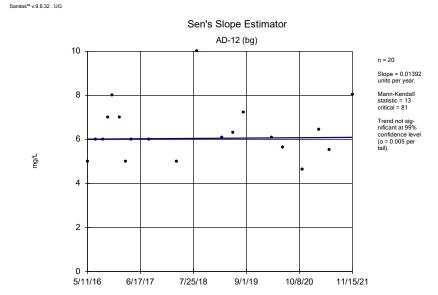

11/17/21

7/25/18

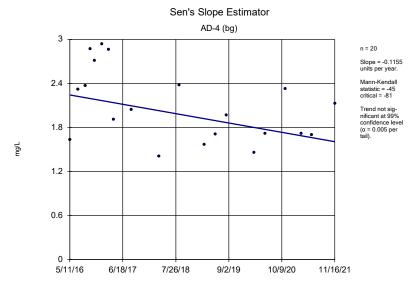
6/17/17


5/10/16

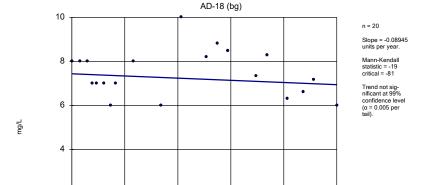
Sanitas™ v.9.6.32 . UG



Constituent: Calcium, total Analysis Run 1/20/2022 10:02 AM View: AllI Interwell Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.32 . UG Sanitas™ v.9.6.32 . UG

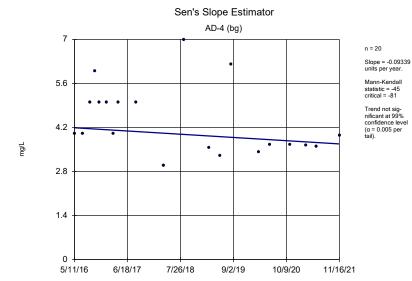
Constituent: Calcium, total Analysis Run 1/20/2022 10:02 AM View: AllI Interwell Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP



Constituent: Chloride, total Analysis Run 1/20/2022 10:03 AM View: AIII Interwell
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Constituent: Calcium, total Analysis Run 1/20/2022 10:02 AM View: AllI Interwell Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

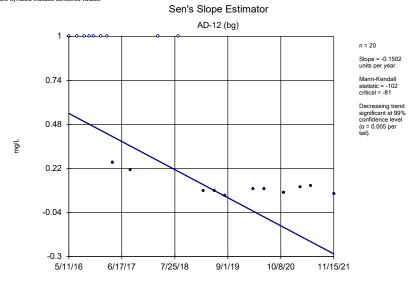
Sen's Slope Estimator



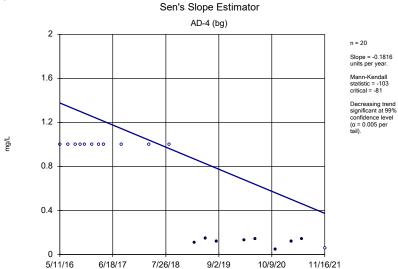
Sanitas™ v.9.6.32 . UG


2

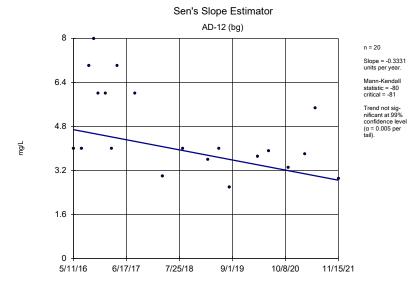
0
5/10/16 6/17/17 7/25/18 9/2/19 10/9/20 11/17/21

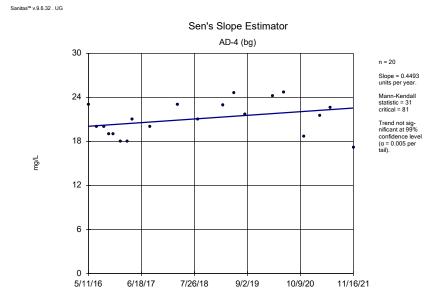

Constituent: Chloride, total Analysis Run 1/20/2022 10:03 AM View: AllI Interwell Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Constituent: Chloride, total Analysis Run 1/20/2022 10:03 AM View: AllI Interwell
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

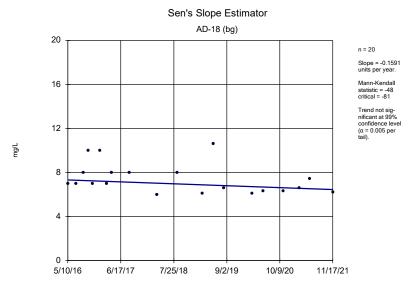


Constituent: Fluoride, total Analysis Run 1/20/2022 10:03 AM View: AllI Interwell
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

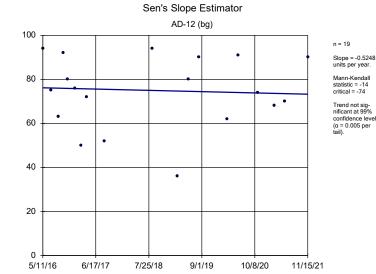

Constituent: Fluoride, total Analysis Run 1/20/2022 10:03 AM View: AllI Interwell Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP



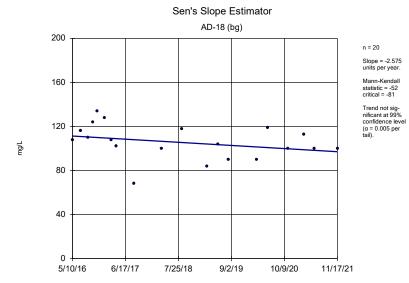
Constituent: Fluoride, total Analysis Run 1/20/2022 10:03 AM View: AllI Interwell Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.32 . UG

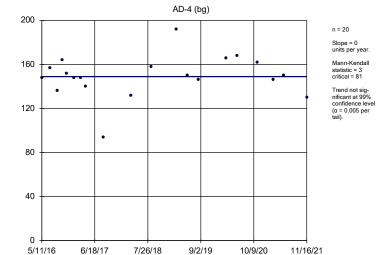
Constituent: Sulfate, total Analysis Run 1/20/2022 10:03 AM View: AllI Interwell Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Constituent: Sulfate, total Analysis Run 1/20/2022 10:03 AM View: AlII Interwell Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Constituent: Sulfate, total Analysis Run 1/20/2022 10:03 AM View: AIII Interwell Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP



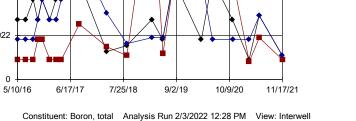
mg/L


Constituent: Total Dissolved Solids Analysis Run 1/20/2022 10:03 AM View: AllI Interwell Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas** v.9.6.32 . UG

Constituent: Total Dissolved Solids Analysis Run 1/20/2022 10:03 AM View: AllI Interwell Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

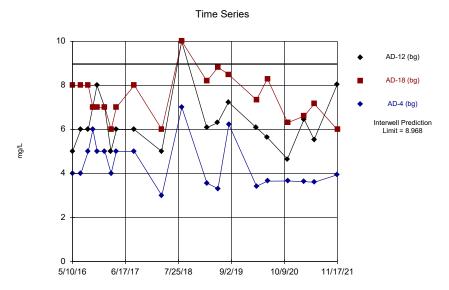
Sen's Slope Estimator


mg/L

Intrerwell Prediction Limits Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Printed 1/20/2022, 10:07 AM

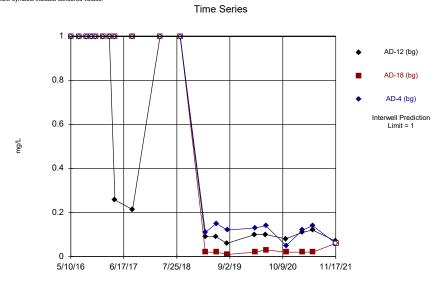
Constituent Well Upper Lim. Date $\underline{\mathsf{Observ.}} \quad \underline{\mathsf{Sig.}} \ \underline{\mathsf{Bg}} \ \underline{\mathsf{N}} \ \underline{\mathsf{Bg}} \ \underline{\mathsf{Mean}} \quad \underline{\mathsf{Std.}} \ \underline{\mathsf{Dev.}} \qquad \underline{\mathsf{\%NDs}} \quad \underline{\mathsf{ND}} \ \underline{\mathsf{Adj.}}$ Transform Alpha Method 3 future n/a 60 0.2953 0.05767 15 Boron, total (mg/L) n/a 0.06102 n/a x^(1/3) 0.002505 Param Inter 1 of 2 None Calcium, total (mg/L) 2.94 3 future n/a 60 n/a n/a 0.0005253 NP Inter (normality) 1 of 2 Chloride, total (mg/L) 8.968 n/a 3 future n/a 60 6.07 1.698 n/a 0 None No 0.002505 Param Inter 1 of 2 3 future n/a 60 n/a n/a 55 n/a 3 future n/a 60 n/a n/a 0 n/a 3 future n/a 59 110.4 35.29 0 None n/a 0.0005253 NP Inter (NDs) 1 of 2 Fluoride, total (mg/L) n/a 1 n/a n/a Sulfate, total (mg/L) 24.7 n/a n/a 0.0005253 NP Inter (normality) 1 of 2 No 170.6 n/a Total Dissolved Solids (mg/L) 0.002505 Param Inter 1 of 2 n/a

Time Series

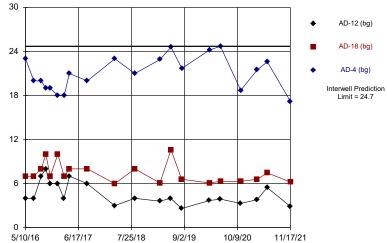

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

AD-12 (bg) AD-18 (bg) 2.4 AD-4 (bg) Interwell Prediction Limit = 2.94 1.8 mg/L 1.2 5/10/16 6/17/17 7/25/18 11/17/21 9/2/19 10/9/20

Time Series


Constituent: Calcium, total Analysis Run 2/3/2022 12:28 PM View: Interwell Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

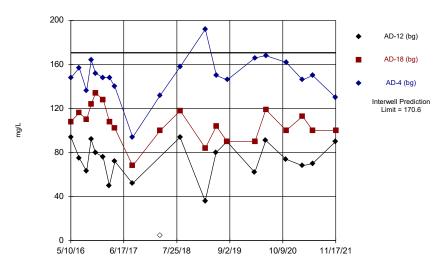
Constituent: Chloride, total Analysis Run 2/3/2022 12:28 PM View: Interwell Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Fluoride, total Analysis Run 2/3/2022 12:28 PM View: Interwell Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

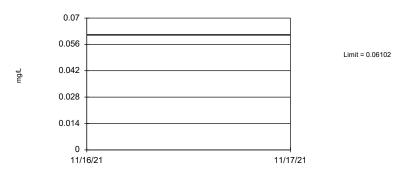
Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

mg/L



Time Series

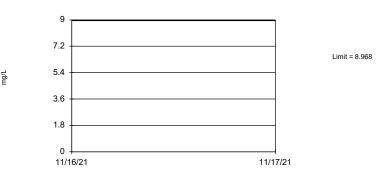
Constituent: Sulfate, total Analysis Run 2/3/2022 12:28 PM View: Interwell Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

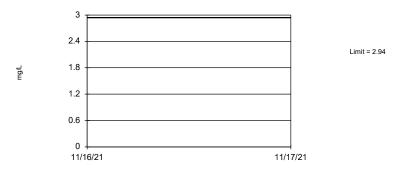
Constituent: Total Dissolved Solids Analysis Run 2/3/2022 12:28 PM View: Interwell Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Prediction Limit Interwell Parametric



Background Data Summary (based on cube root transformation): Mean=0.2953, Std. Dev.=0.05767, n=60, 15% NDs. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9465, critical = 0.945. Kappa = 1.706 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Assumes 3 future values.

Constituent: Boron, total Analysis Run 1/20/2022 10:06 AM View: AllI Interwell Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.32 . UG

Prediction Limit Interwell Parametric

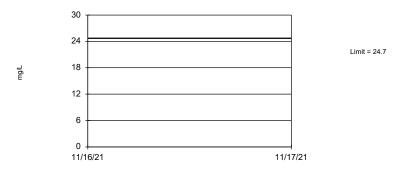
Background Data Summary: Mean=6.07, Std. Dev.=1.698, n=60. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9764, critical = 0.945. Kappa = 1.706 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Assumes 3 future values.

Prediction Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data be non-normal at the 0.01 alpha level. Limit is highest of 60 background values. Annual per-constituent alpha = 0.003148. Individual comparison alpha = 0.003248. Individual comparison alpha = 0.003248. Individual comparison alpha = 0.003248.

Constituent: Calcium, total Analysis Run 1/20/2022 10:06 AM View: AllI Interwell
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

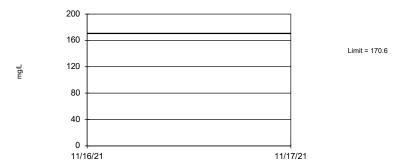
Sanitas™ v.9.6.32 . UG


Prediction Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 60 background values. 55% NDs. Annual per-constituent alpha = 0.003148. Individual comparison alpha = 0.0005253 (1 of 2). Assumes 3 future values.

Sanitas™ v.9.6.32 . UG

Prediction Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 60 background values. Annual per-constituent alpha = 0.003148. Individual comparison alpha = 0.0005253 (1 of 2). Assumes 3 future values.

Constituent: Sulfate, total Analysis Run 1/20/2022 10:06 AM View: AIII Interwell Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 . UG

Prediction Limit Interwell Parametric

Background Data Summary: Mean=110.4, Std. Dev.=35.29, n=59. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9826, critical = 0.945. Kappa = 1.708 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Assumes 3 future values.

Upper Tolerance Limits

Client: Geosyntec Data: Pirkey EBAP Printed 2/21/2022, 10:26 AM %NDs ND Adj. Constituent Well Upper Lim. Lower Lim. Date Observ. Sig. Bg N Bg Mean Std. Dev. <u>Transform</u> <u>Alpha</u> Method 0.005 n/a 57 94.74 n/a Antimony, total (mg/L) n/a n/a n/a n/a n/a n/a 0.05373 NP Inter(NDs) 0.011 NP Inter(normality) Arsenic, total (mg/L) n/a n/a n/a n/a n/a 57 n/a 47.37 n/a 0.05373 Barium, total (mg/L) n/a 0.183 n/a 57 0 0.05373 NP Inter(normality) n/a n/a n/a n/a n/a n/a n/a Beryllium, total (mg/L) n/a 0.002 n/a n/a n/a 57 n/a 7.018 n/a 0.05373 NP Inter(normality) 0.05373 Cadmium, total (mg/L) n/a 0.001 n/a n/a n/a n/a 57 n/a n/a 57.89 n/a n/a NP Inter(NDs) Chromium, total (mg/L) n/a 0.004192 n/a n/a 57 -7.62 1.058 12.28 None In(x) 0.05 Inter Cobalt, total (mg/L) 0.00939 0.05373 NP Inter(normality) n/a 0 n/a n/a n/a n/a n/a 57 n/a n/a n/a Combined Radium 226 + 228 (pCi/L) n/a 3.357 n/a n/a 57 0.9721 0.2589 None x^(1/3) 0.05 Fluoride, total (mg/L) 55 0.04607 NP Inter(NDs) n/a n/a n/a n/a n/a 60 n/a n/a n/a n/a Lead, total (mg/L) 0.005 n/a 57 63.16 n/a 0.05373 NP Inter(NDs) Lithium, total (mg/L) n/a 0.05477 n/a 57 0.1348 0.04894 1.754 None 0.05 n/a n/a n/a sqrt(x) Mercury, total (mg/L) 0.000064 n/a 57 43.86 0.05373 NP Inter(normality) 0.06944 NP Inter(NDs) Molybdenum, total (mg/L) 0.005 94.23 n/a n/a n/a n/a n/a n/a 52 n/a n/a n/a Selenium, total (mg/L) 0.005 n/a 57 50.88 n/a 0.05373 NP Inter(NDs)

80

n/a

0.05954

n/a

NP Inter(NDs)

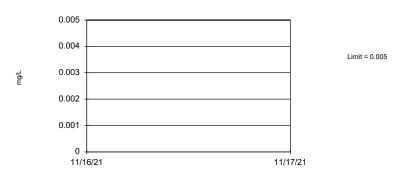
Thallium, total (mg/L)

0.002

n/a

n/a

n/a

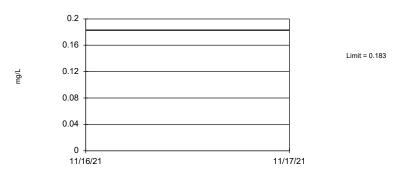

n/a 55

n/a

n/a

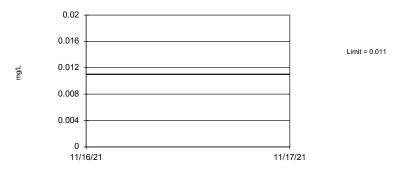
n/a

Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 57 background values. 94.74% NDs. 92.88% coverage at alpha=0.01; 94.73% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha=0.05373.

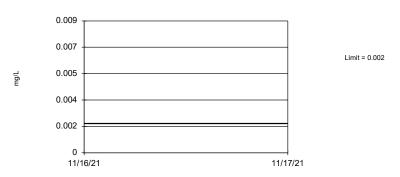
Constituent: Antimony, total Analysis Run 2/21/2022 10:25 AM View: Upper Tolerance Limits
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

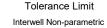
Tolerance Limit Interwell Non-parametric

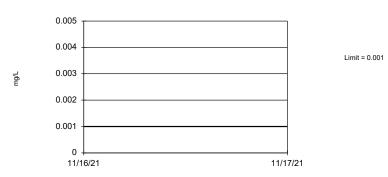
Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 57 background values. 92.38% coverage at alpha=0.01; 94.73% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.05373.

Tolerance Limit Interwell Non-parametric



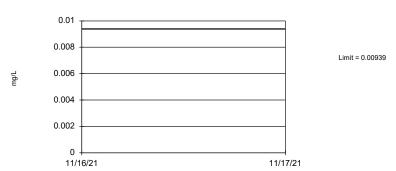
Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 57 background values. 47.37% NDs. 92.38% coverage at alpha=0.01; 94.73% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.05373.


Constituent: Arsenic, total Analysis Run 2/21/2022 10:25 AM View: Upper Tolerance Limits
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

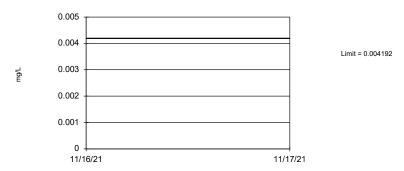
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 57 background values. 7.018% NDs. 92.38% coverage at alpha=0.01; 94.73% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.05373.



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 57 background values. 57.89% NDs. 92.88% coverage at alpha=0.01; 94.73% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.05373.

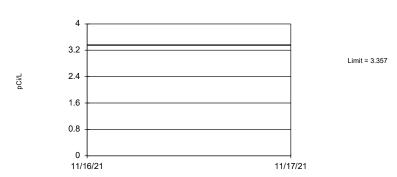
Constituent: Cadmium, total Analysis Run 2/21/2022 10:25 AM View: Upper Tolerance Limits
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Tolerance Limit Interwell Non-parametric

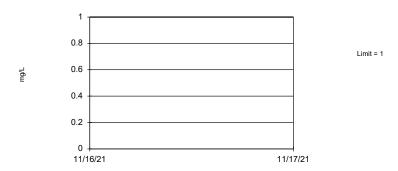
Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 57 background values. 92.38% coverage at alpha=0.01; 94.73% coverage at alpha=0.05. Report alpha = 0.05373.

Tolerance Limit Interwell Parametric



95% coverage. Background Data Summary (based on natural log transformation): Mean=-7.62, Std. Dev.=1.058, n=57, 12.28% NDs. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9462, critical = 0.944. Report alpha = 0.05.

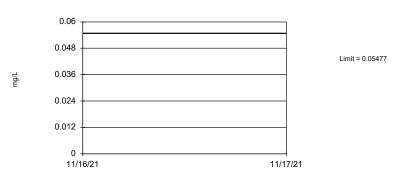
Constituent: Chromium, total Analysis Run 2/21/2022 10:25 AM View: Upper Tolerance Limits
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Tolerance Limit Interwell Parametric

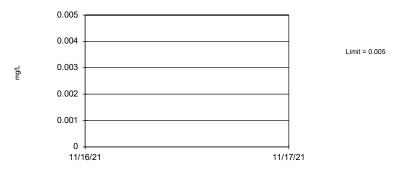
95% coverage. Background Data Summary (based on cube root transformation): Mean=0.9721, Std. Dev.=0.2589, n=57. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9514, critical = 0.944. Report alpha = 0.05.

Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 60 background values. 55% NDs. 92.77% coverage at alpha=0.01; 95.12% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.04607.

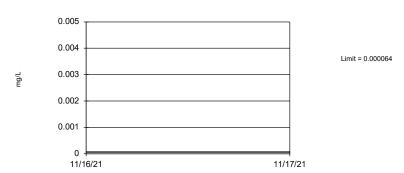
Constituent: Fluoride, total Analysis Run 2/21/2022 10:25 AM View: Upper Tolerance Limits
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Tolerance Limit Interwell Parametric

95% coverage. Background Data Summary (based on square root transformation): Mean=0.1348, Std. Dev.=0.04894, n=57, 1.754% NDs. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9741, critical = 0.944. Report alpha = 0.05.

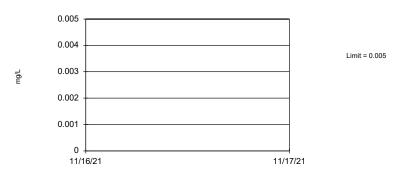
Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 57 background values. 63.16% NDs. 92.38% coverage at alpha=0.01; 94.73% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.05373.

Constituent: Lead, total Analysis Run 2/21/2022 10:25 AM View: Upper Tolerance Limits
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

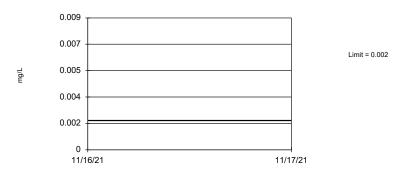
Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG


Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 57 background values. 43.86% NDs. 92.38% coverage at alpha=0.01; 94.73% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.05373.

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

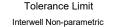
Tolerance Limit
Interwell Non-parametric

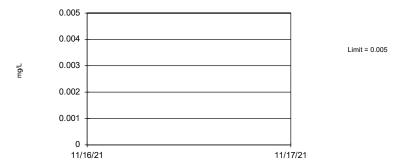


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 52 background values. 94.23% NDs. 91.6% coverage at alpha=0.01; 94.34% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.06944.

Constituent: Molybdenum, total Analysis Run 2/21/2022 10:25 AM View: Upper Tolerance Limits
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG


Tolerance Limit
Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 55 background values. 80% NDs. 91.99% coverage at alpha=0.01; 94.73% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.05954.

Constituent: Thallium, total Analysis Run 2/21/2022 10:25 AM View: Upper Tolerance Limits
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 57 background values. 50.88% NDs. 92.38% coverage at alpha=0.01; 94.73% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.05373.

Constituent: Selenium, total Analysis Run 2/21/2022 10:25 AM View: Upper Tolerance Limits
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

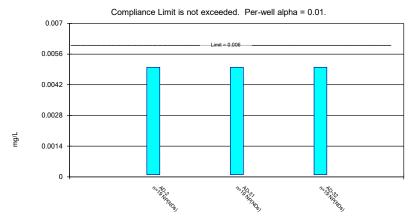
PIRKEY EBAP GWPS											
Background											
Constituent Name	MCL	Limit	GWPS								
Antimony, Total (mg/L)	0.006	0.005	0.006								
Arsenic, Total (mg/L)	0.01	0.011	0.011								
Barium, Total (mg/L)	2	0.18	2								
Beryllium, Total (mg/L)	0.004	0.002	0.004								
Cadmium, Total (mg/L)	0.005	0.001	0.005								
Chromium, Total (mg/L)	0.1	0.0042	0.1								
Cobalt, Total (mg/L)	n/a	0.0094	0.0094								
Combined Radium, Total (pCi/L)	5	3.36	5								
Fluoride, Total (mg/L)	4	1	4								
Lead, Total (mg/L)	n/a	0.005	0.005								
Lithium, Total (mg/L)	n/a	0.055	0.055								
Mercury, Total (mg/L)	0.002	0.000064	0.002								
Molybdenum, Total (mg/L)	n/a	0.005	0.005								
Selenium, Total (mg/L)	0.05	0.005	0.05								
Thallium, Total (mg/L)	0.002	0.002	0.002								

^{*}Grey cell indicates Background Limit is higher than MCL

^{*}MCL = Maximum Contaminant Level

^{*}GWPS = Groundwater Protection Standard

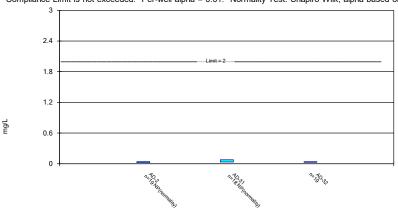
Confidence Intervals - Significant Results


		Pirkey E	BAP Client:	Geosyntec	Data: F	Pirkey	EBAP Print	ted 3/8/2022, 2:45	PM				
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	ND Adj.	Transform	Alpha	Method
Cobalt, total (mg/L)	AD-2	0.0177	0.01	0.0094	Yes	19	0.01398	0.00402	0	None	No	0.01	NP (normality)
Cobalt, total (mg/L)	AD-31	0.01097	0.009564	0.0094	Yes	18	0.01031	0.001234	0	None	In(x)	0.01	Param.
Cobalt, total (mg/L)	AD-32	0.07	0.025	0.0094	Yes	19	0.04645	0.02014	0	None	No	0.01	NP (normality)
Lithium, total (mg/L)	AD-31	0.096	0.0664	0.055	Yes	19	0.08312	0.01417	0	None	No	0.01	NP (normality)
Lithium, total (mg/L)	AD-32	0.1023	0.07805	0.055	Yes	17	0.09016	0.01933	0	None	No	0.01	Param.

Confidence Intervals - All Results

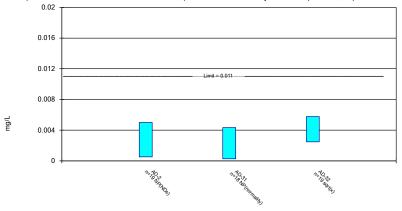
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Printed 3/8/2022, 2:45 PM

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	N	<u>Mean</u>	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Antimony, total (mg/L)	AD-2	0.005	0.0001	0.006	No	19	0.002514	0.00246	94.74	None	No	0.01	NP (NDs)
Antimony, total (mg/L)	AD-31	0.005	0.0001	0.006	No	19	0.002617	0.002392	94.74	None	No	0.01	NP (NDs)
Antimony, total (mg/L)	AD-32	0.005	0.0001	0.006	No	19	0.002612	0.002397	89.47	None	No	0.01	NP (NDs)
Arsenic, total (mg/L)	AD-2	0.005	0.00052	0.011	No	19	0.002717	0.002251	52.63	None	No	0.01	NP (NDs)
Arsenic, total (mg/L)	AD-31	0.00434	0.00026	0.011	No	18	0.002679	0.002798	16.67	None	No	0.01	NP (normality)
Arsenic, total (mg/L)	AD-32	0.005777	0.002471	0.011	No	19	0.004429	0.003084	5.263	None	sqrt(x)	0.01	Param.
Barium, total (mg/L)	AD-2	0.038	0.0197	2	No	19	0.02929	0.007937	0	None	No	0.01	NP (normality)
Barium, total (mg/L)	AD-31	0.076	0.0332	2	No	18	0.05483	0.02633	0	None	No	0.01	NP (normality)
Barium, total (mg/L)	AD-32	0.03841	0.0258	2	No	19	0.03211	0.01077	0	None	No	0.01	Param.
Beryllium, total (mg/L)	AD-2	0.000541	0.000402	0.004	No	19	0.0005426	0.0003579	5.263	None	No	0.01	NP (normality)
Beryllium, total (mg/L)	AD-31	0.0011	0.000835	0.004	No	18	0.00105	0.0003686	0	None	No	0.01	NP (normality)
Beryllium, total (mg/L)	AD-32	0.006048	0.003558	0.004	No	19	0.005002	0.002272	0	None	x^(1/3)	0.01	Param.
Cadmium, total (mg/L)	AD-2	0.001	0.00007	0.005	No	19	0.0005612	0.0004753	52.63	None	No	0.01	NP (NDs)
Cadmium, total (mg/L)	AD-31	0.001	0.000063	0.005	No	19	0.0004614	0.0004583	36.84	None	No	0.01	NP (normality)
Cadmium, total (mg/L)	AD-32	0.0005964	0.0003861	0.005	No	19	0.0004913	0.0001795	0	None	No	0.01	Param.
Chromium, total (mg/L)	AD-2	0.0004183	0.0002377	0.1	No	19	0.0007156	0.0008603	31.58	Kaplan-Meier	ln(x)	0.01	Param.
Chromium, total (mg/L)	AD-31	0.012	0.000357	0.1	No	17	0.005194	0.005536	11.76	None	No	0.01	NP (normality)
Chromium, total (mg/L)	AD-32	0.005587	0.001321	0.1	No	19	0.00443	0.005039	0	None	x^(1/3)	0.01	Param.
Cobalt, total (mg/L)	AD-2	0.0177	0.01	0.0094	Yes	19	0.01398	0.00402	0	None	No	0.01	NP (normality)
Cobalt, total (mg/L)	AD-31	0.01097	0.009564	0.0094	Yes	18	0.01031	0.001234	0	None	ln(x)	0.01	Param.
Cobalt, total (mg/L)	AD-32	0.07	0.025	0.0094	Yes	19	0.04645	0.02014	0	None	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	AD-2	1.609	0.9456	5	No	19	1.277	0.5661	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	AD-31	3.76	2.515	5	No	19	3.215	1.209	0	None	x^(1/3)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	AD-32	5.798	4.154	5	No	18	4.976	1.359	0	None	No	0.01	Param.
Fluoride, total (mg/L)	AD-2	1	0.14	4	No	21	0.6333	0.435	57.14	None	No	0.01	NP (NDs)
Fluoride, total (mg/L)	AD-31	1	0.14	4	No	21	0.6329	0.4347	57.14	None	No	0.01	NP (NDs)
Fluoride, total (mg/L)	AD-32	0.9578	0.4886	4	No	20	0.8484	0.4021	25	Kaplan-Meier	No	0.01	Param.
Lead, total (mg/L)	AD-2	0.005	0.000389	0.005	No	19	0.002679	0.002291	52.63	None	No	0.01	NP (NDs)
Lead, total (mg/L)	AD-31	0.005	0.000218	0.005	No	18	0.002369	0.002132	44.44	None	No	0.01	NP (normality)
Lead, total (mg/L)	AD-32	0.005	0.00052	0.005	No	19	0.002795	0.00218	52.63	None	No	0.01	NP (NDs)
Lithium, total (mg/L)	AD-2	0.05308	0.04887	0.055	No	18	0.05097	0.003476	0	None	No	0.01	Param.
Lithium, total (mg/L)	AD-31	0.096	0.0664	0.055	Yes	19	0.08312	0.01417	0	None	No	0.01	NP (normality)
Lithium, total (mg/L)	AD-32	0.1023	0.07805	0.055	Yes	17	0.09016	0.01933	0	None	No	0.01	Param.
Mercury, total (mg/L)	AD-2	0.00007557	0.00004	0.002	No	18	0.00006	0.00003245	0	None	sqrt(x)	0.01	Param.
Mercury, total (mg/L)	AD-31	0.0006349	0.0001347	0.002	No	18	0.0004578	0.0005189	0	None	sqrt(x)	0.01	Param.
Mercury, total (mg/L)	AD-32	0.004793	0.001691	0.002	No	19	0.003755	0.00342	0	None	x^(1/3)	0.01	Param.
Molybdenum, total (mg/L)	AD-2	0.005	0.0008627	0.005	No	18	0.003127	0.001945	83.33	None	No	0.01	NP (NDs)
Molybdenum, total (mg/L)	AD-31	0.005	0.0004016	0.005	No	17	0.002497	0.002021	70.59	None	No	0.01	NP (NDs)
Molybdenum, total (mg/L)	AD-32	0.005	0.0007621	0.005	No	17	0.003047	0.001988	88.24	None	No	0.01	NP (NDs)
Selenium, total (mg/L)	AD-2	0.005	0.001231	0.05	No	19	0.002402	0.001633	26.32	None	No	0.01	NP (normality)
, (3)	AU-Z												
Selenium, total (mg/L)	AD-31	0.005	0.0004	0.05	No	19	0.002315	0.002	36.84	None	No	0.01	NP (normality)
				0.05 0.05	No No	19 19		0.002 0.006779	36.84 26.32	None Kaplan-Meier		0.01	NP (normality) Param.
Selenium, total (mg/L)	AD-31	0.005	0.0004			19							, ,,,
Selenium, total (mg/L) Selenium, total (mg/L)	AD-31 AD-32	0.005 0.007738	0.0004 0.002381	0.05	No	19 19	0.006903	0.006779	26.32	Kaplan-Meier	x^(1/3)	0.01	Param.
Selenium, total (mg/L) Selenium, total (mg/L) Thallium, total (mg/L)	AD-31 AD-32 AD-2	0.005 0.007738 0.002	0.0004 0.002381 0.0001	0.05 0.002	No No	19 19 18	0.006903 0.001003	0.006779 0.0009146	26.32 52.63 66.67	Kaplan-Meier None	x^(1/3) No	0.01	Param. NP (NDs)


Non-Parametric Confidence Interval

Constituent: Antimony, total Analysis Run 3/8/2022 2:43 PM View: Confidence Intervals
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

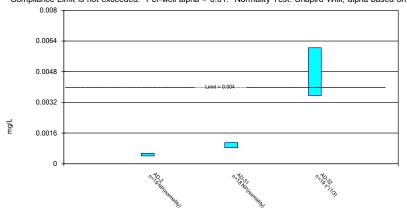
Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Barium, total Analysis Run 3/8/2022 2:43 PM View: Confidence Intervals
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

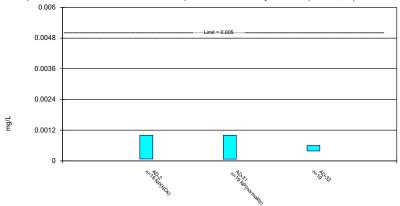
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Arsenic, total Analysis Run 3/8/2022 2:43 PM View: Confidence Intervals Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

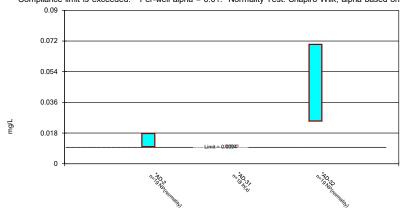
Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

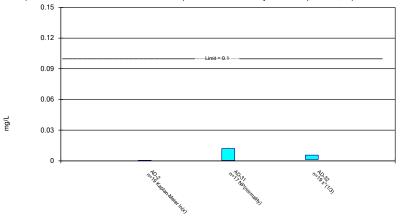
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Cadmium, total Analysis Run 3/8/2022 2:43 PM View: Confidence Intervals Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

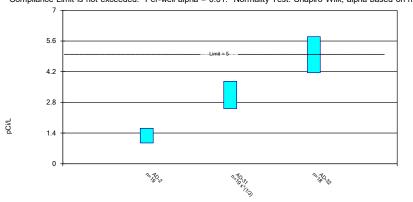
Parametric and Non-Parametric (NP) Confidence Interval


Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Cobalt, total Analysis Run 3/8/2022 2:43 PM View: Confidence Intervals Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

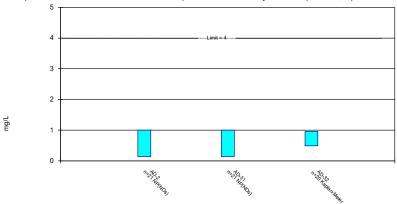
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Chromium, total Analysis Run 3/8/2022 2:43 PM View: Confidence Intervals Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

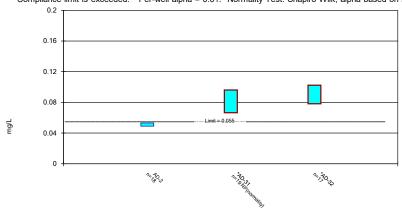
Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG


Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

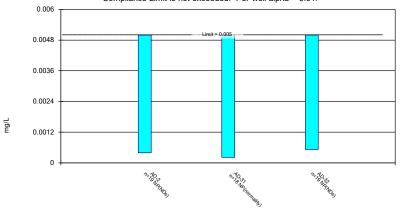
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Fluoride, total Analysis Run 3/8/2022 2:43 PM View: Confidence Intervals Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

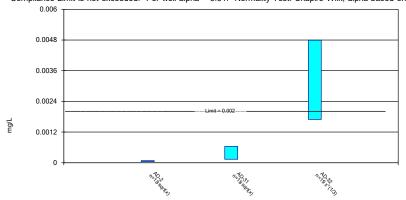
Parametric and Non-Parametric (NP) Confidence Interval


Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Lithium, total Analysis Run 3/8/2022 2:43 PM View: Confidence Intervals
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

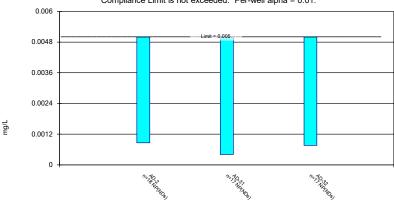
Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.



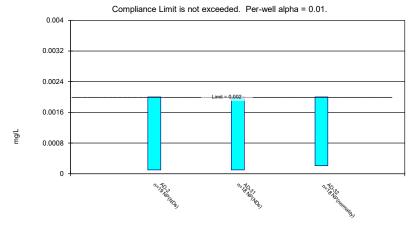
Constituent: Lead, total Analysis Run 3/8/2022 2:43 PM View: Confidence Intervals
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG


Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

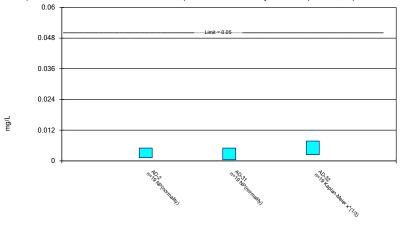
Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG


Non-Parametric Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01.

Constituent: Molybdenum, total Analysis Run 3/8/2022 2:43 PM View: Confidence Intervals
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval



Constituent: Thallium, total Analysis Run 3/8/2022 2:43 PM View: Confidence Intervals
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Selenium, total Analysis Run 3/8/2022 2:43 PM View: Confidence Intervals
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

500 West Wilson Bridge Road, Suite 250 Worthington, Ohio 43085 PH 614.468.0415 FAX 614.468.0416 www.geosyntec.com

January 11, 2023

David Miller American Electric Power 1 Riverside Plaza Columbus, Ohio 43215

Subject: October 2022 Assessment Monitoring Report Revisions

Pirkey East Bottom Ash Pond (EBAP)

Dear Mr. Miller:

Geosyntec Consultants, Inc. (Geosyntec) has revised the attached Statistical Analysis Summary report for the H.W. Pirkey Power Plant's East Bottom Ash Pond (EBAP), which summarizes the statistical analysis of the March and June 2022 groundwater sampling results collected in accordance with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR Rule").

The Statistical Analysis Summary report was previously certified on October 27, 2022, which was within 90 days of issuance of the analytical laboratory reports for the June 2022 groundwater sampling event. Following certification, the analytical laboratory reports were reissued with amended matrix spike precision calculations. The data quality review memorandum, which was provided as Attachment B of the certified Statistical Analysis Summary report, has been updated to reflect the reissued analytical laboratory reports. A record of revisions is provided with the updated data quality review memorandum as Attachment B of the compiled Statistical Analysis Summary report attached to this cover letter. There are no other changes to the previously certified report, as the conclusions of the data quality review memorandum were unaffected and no changes to the statistical analysis were required.

Sincerely,

Allison Kreinberg, Project Manager

Attachment A: Statistical Analysis Summary, East Botttom Ash Pond (EBAP). H.W. Pirkey Power Plant,

Hallsville, Texas. October 2022.

STATISTICAL ANALYSIS SUMMARY EAST BOTTOM ASH POND H.W. Pirkey Power Plant Hallsville, Texas

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

engineers | scientists | innovators

500 W. Wilson Bridge Road Suite 250 Worthington, Ohio 43085

> October 27, 2022 CHA8500B

TABLE OF CONTENTS

SECTION 1	Executive Summary		1
		aluation	
2.1	Data Validation & QA/QC	Z	2-1
2.2	Statistical Analysis		2-1
	2.2.1 Evaluation of Pote	ential Appendix IV SSLs	2-1
	2.2.2 Evaluation of Pote	ential Appendix III SSIs	2-2
2.3	Conclusions		2-3
SECTION 3	References		3-1

LIST OF TABLES

Table 1	Groundwater Data Summary
Table 2	Appendix IV Groundwater Protection Standards
Table 3	Appendix III Data Summary

LIST OF ATTACHMENTS

Attachment A	Certification by Qualified Professional Engineer
Attachment B	Data Quality Review Memorandum
Attachment C	Statistical Analysis Output

LIST OF ACRONYMS AND ABBREVIATIONS

AEP American Electric Power

ASD Alternative Source Demonstration

CCR Coal Combustion Residuals

CCV Continuing Calibration Verification

CFR Code of Federal Regulations

EBAP East Bottom Ash Pond

GWPS Groundwater Protection Standard

LCL Lower Confidence Limit

LFB Laboratory Fortified Blanks

LPL Lower Prediction Limit

LRB Laboratory Reagent Blanks

MCL Maximum Contaminant Level

NELAP National Environmental Laboratory Accreditation Program

QA Quality Assurance

QC Quality Control

SSI Statistically Significant Increase

SSL Statistically Significant Level

SU Standard Units

TCEQ Texas Commission on Environmental Quality

TDS Total Dissolved Solids

UPL Upper Prediction Limit

UTL Upper Tolerance Limit

SECTION 1

EXECUTIVE SUMMARY

In accordance with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR rule"), groundwater monitoring has been conducted at the East Bottom Ash Pond (EBAP), an existing CCR unit at the Pirkey Power Plant located in Hallsville, Texas. Recent groundwater monitoring results were compared to site-specific groundwater protection standards (GWPSs) to identify potential exceedances.

Based on detection monitoring conducted in 2017 and 2018, statistically significant increases (SSIs) over background were concluded for boron, calcium, chloride, total dissolved solids (TDS), and sulfate at the EBAP. An alternative source was not identified at the time, so assessment monitoring was initiated and GWPSs were set in accordance with § 352.951(b). Two assessment monitoring events were conducted at the EBAP in March and June 2022 in accordance with § 352.951(a). The results of these assessment events are documented in this report.

The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. Confidence intervals were calculated for Appendix IV parameters at the compliance wells to assess whether Appendix IV parameters were present at an SSL above previously established GWPS. SSLs were identified for cobalt and lithium. Thus, either the unit will move to an assessment of corrective measures or an ASD will be conducted to evaluate if the unit can remain in assessment monitoring. Certification of the selected statistical methods by a qualified professional engineer is documented in Attachment A.

SECTION 2

EAST BOTTOM ASH POND EVALUATION

2.1 Data Validation & QA/QC

During the assessment monitoring program, two sets of samples (March 2022 and June 2022) were collected for analysis from each background and compliance well to meet the requirements of § 352.951(a). Samples from both sampling events were analyzed for all Appendix III and Appendix IV parameters. A summary of data collected during these assessment monitoring events are presented in Table 1.

Chemical analysis was completed by an analytical laboratory certified by the National Environmental Laboratory Accreditation Program (NELAP). Quality assurance and quality control (QA/QC) samples completed by the analytical laboratory included the use of laboratory reagent blanks (LRBs), continuing calibration verification (CCV) samples, and laboratory fortified blanks (LFBs).

A data quality review was completed to assess if the data met the objectives outlined in TCEQ Draft Technical Guidance No. 32 related to groundwater sampling and analysis (TCEQ, 2020). The data were determined usable for supporting project objectives, as documented in the review memorandum provided in Attachment B. The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.9.6.32 statistics software. The export file was checked against the analytical data for transcription errors and completeness.

2.2 <u>Statistical Analysis</u>

Statistical analyses for the EBAP were conducted in accordance with the November 2021 *Statistical Analysis Plan* (Geosyntec, 2021). Time series plots and results for all completed statistical tests are provided in Attachment C. The data obtained in March and June 2022 were screened for potential outliers. No outliers were identified for these events.

2.2.1 Evaluation of Potential Appendix IV SSLs

A confidence interval was constructed for each Appendix IV parameter at each compliance well. Confidence limits were generally calculated parametrically (α = 0.01); however, non-parametric confidence limits were calculated in some cases (e.g., when the data did not appear to be normally distributed or when the non-detect frequency was too high). An SSL was concluded if the lower confidence limit (LCL) exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). Calculated confidence limits are shown in Attachment C. The calculated confidence limits were compared to the GWPSs provided in Table 2. The GWPSs were established as either

the greater value of the background concentration calculated during a previous statistical analysis (Geosyntec, 2022) or the maximum contaminant level (MCL).

The following SSLs were identified at the Pirkey EBAP:

- The LCL for cobalt exceeded the GWPS of 0.00939 mg/L at AD-2 (0.0122 mg/L), AD-31 (0.00953 mg/L), and AD-32 (0.0323 mg/L).
- The LCL for lithium exceeded the GWPS of 0.0548 mg/L at AD-31 (0.0771 mg/L) and AD-32 (0.0785 mg/L).

As a result, the Pirkey EBAP will either move to an assessment of corrective measures or an alternative source demonstration will be conducted to evaluate if the unit can remain in assessment monitoring.

2.2.2 Evaluation of Potential Appendix III SSIs

While SSLs were identified, a review of the Appendix III results were also completed to assess whether concentrations of Appendix III parameters at the compliance wells exceeded background concentrations.

Data collected during the June 2022 assessment monitoring event from each compliance well were compared to previously established prediction limits to evaluate results above background values. The results from this event and the prediction limits are summarized in Table 3. The following exceedances of the upper prediction limits (UPLs) were noted:

- Boron concentrations exceeded the interwell UPL of 0.0610 mg/L at AD-2 (3.26 mg/L) and AD-32 (0.909 mg/L).
- Calcium concentrations exceeded the interwell UPL of 2.94 mg/L at AD-2 (3.4 mg/L) and AD-32 (7.25 mg/L).
- Chloride concentrations exceeded the interwell UPL of 8.97 mg/L at AD-2 (29.7 mg/L), AD-31 (23.2 mg/L), and AD-32 (30.6 mg/L).
- Sulfate concentrations exceeded the interwell UPL of 24.7 mg/L at AD-2 (259 mg/L), AD-31 (89.0 mg/L), and AD-32 (147 mg/L).
- TDS concentrations exceeded the interwell UPL of 171 mg/L at AD-2 (490 mg/L), AD-31 (270 mg/L), and AD-32 (320 mg/L).

While the prediction limits were calculated for a one-of-two retesting procedure, SSIs were conservatively assumed if the June 2022 sample was above the UPL or below the lower prediction limit (LPL). Based on these results, concentrations of Appendix III constituents appear to be above background concentrations.

2.3 Conclusions

An annual and semi-annual assessment monitoring event were conducted in accordance with the CCR Rule. The laboratory and field data were reviewed prior to statistical analysis, with no QA/QC issues identified that prevented data usage. A review of outliers identified no potential outliers in the March and June 2022 data. A confidence interval was constructed at each compliance well for each Appendix IV parameter; SSLs were concluded if the entire confidence interval exceeded the GWPS. SSLs were identified for cobalt, and lithium. Appendix III parameters were compared to calculated prediction limits, with exceedances identified for boron, calcium, chloride, sulfate, and TDS.

Based on this evaluation, the Pirkey EBAP CCR unit will either move to an assessment of corrective measures or an ASD will be conducted to evaluate if the unit can remain in assessment monitoring.


SECTION 3

REFERENCES

Geosyntec Consultants (Geosyntec). 2021. Statistical Analysis Plan – H.W. Pirkey Plant. November.

Geosyntec. 2022. Statistical Analysis Summary – East Bottom Ash Pond, H.W. Pirkey Plant. March.

Texas Commission on Environmental Quality (TCEQ). 2020. Draft Technical Guidance No. 32. Coal Combustion Residuals Groundwater Monitoring and Corrective Action. May.

Table 1 - Groundwater Data Summary Pirkey Plant - East Bottom Ash Pond

Well II	D	AI)-2	Al	D-4	AD)-12	AD	AD-18)-31	AD)-32
Classifica	tion	Comp	liance	Backg	ground	Backg	ground	Background		Comp	oliance	Compliance	
Parameter	Unit	3/29/2022	6/21/2022	3/29/2022	6/21/2022	3/28/2022	6/20/2022	3/29/2022	6/21/2022	3/28/2022	6/20/2022	3/28/2022	6/20/2022
Antimony	μg/L	0.2 U1	0.5 U1	0.1 U1	0.1 U1	0.1 U1	0.1 U1	0.02 J1	0.1 U1	0.1 U1	0.1 U1	0.1 U1	0.1 U1
Arsenic	μg/L	0.82	2.0	1.10	0.30	0.09 J1	0.08 J1	1.55	0.30	0.26	0.42	1.05	1.81
Barium	μg/L	18.2	17.5	93.2	124	20.2	24.2	90.1	79.3	32.8	34.1	30.0	32.3
Beryllium	μg/L	0.75	0.85	0.641	0.407	0.127	0.135	0.106	0.073	0.854	1.03	2.89	3.28
Boron	mg/L	3.02	3.26	0.019 J1	0.020 J1	0.021 J1	0.042 J1	0.009 J1	0.05 U1	0.026 J1	0.028 J1	0.773	0.909
Cadmium	μg/L	0.102	0.11	0.010 J1	0.021	0.009 J1	0.008 J1	0.01 J1	0.012 J1	0.068	0.071	0.323	0.318
Calcium	mg/L	3.13	3.4	1.84	2.51	0.20	0.32	0.24	1.49	2.75	2.65	8.05	7.25
Chloride	mg/L	31.4	29.7	3.80	3.92	6.10	7.59	5.26	5.20	21.8	23.2	25.2	30.6
Chromium	μg/L	0.90	0.5 J1	0.31	0.46	0.35	0.63	1.40	0.47	0.51	0.59	0.60	0.68
Cobalt	μg/L	22.7	25.7	6.16	4.10	1.01	1.35	0.842	0.790	9.14	9.61	25.1	27.2
Combined Radium	pCi/L	1.76	1.87	1.15	1.31	0.76	0.63	2.01	0.73	2.41	4.6	5.9	13.87
Fluoride	mg/L	0.20	0.21	0.08	0.05 J1	0.07	0.09	0.06 U1	0.06 U1	0.13	0.14 J1	0.44	0.42
Lead	μg/L	0.5	0.6 J1	0.07 J1	0.2 U1	0.09 J1	0.08 J1	0.53	0.11 J1	0.29	0.35	0.38	0.43
Lithium	mg/L	0.0653	0.0688	0.0383	0.0220	0.00604	0.00949	0.0137	0.0108	0.0687	0.0844	0.0731	0.0923
Mercury	μg/L	0.092	0.244	0.017	0.004 J1	0.005 U1	0.005 U1	0.021	0.02 U1	0.103	0.089	1.900	2.700
Molybdenum	μg/L	1 U1	2.5 U1	0.5 U1	0.5 U1	0.5 U1	0.5 U1	0.5 U1	0.5 U1	0.5 U1	0.5 U1	0.5 U1	0.5 U1
Selenium	μg/L	2.7	2.7	0.5 U1	0.5 U1	0.33 J1	0.16 J1	0.38 J1	0.14 J1	0.38 J1	0.33 J1	3.42	2.67
Sulfate	mg/L	241	259	22.2	20.5	3.80	4.81	7.31	6.47	80.8	89.0	157	147
Thallium	μg/L	0.10 J1	0.3 J1	0.07 J1	0.09 J1	0.2 U1	0.2 U1	0.05 J1	0.2 U1	0.09 J1	0.08 J1	0.17 J1	0.17 J1
Total Dissolved Solids	mg/L	460 L1	490	140 L1	160	60 L1	80	140 L1	110	260 L1	270	330 L1	320
pН	SU	3.91	3.96	4.94	4.4	3.85	4.25	4.4	4.61	3.41	3.45	3.12	3.03

Notes:

μg/L: micrograms per liter mg/L: milligrams per liter pCi/L: picocuries per liter SU: standard unit

U1: Non-detect value. For statistical analysis, parameters which were not detected were replaced with the reporting limit.

J1: Estimated value. Parameter was detected in concentrations below the reporting limit.

L1: The associated laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) recovery was outside acceptance limits.

Table 2: Appendix IV Groundwater Protection Standards Pirkey Plant - East Bottom Ash Pond

Constituent Name	MCL	Calculated UTL	GWPS
Antimony, Total (mg/L)	0.00600	0.00500	0.00600
Arsenic, Total (mg/L)	0.0100	0.0110	0.0110
Barium, Total (mg/L)	2.00	0.183	2.00
Beryllium, Total (mg/L)	0.00400	0.00200	0.00400
Cadmium, Total (mg/L)	0.00500	0.00100	0.00500
Chromium, Total (mg/L)	0.100	0.00419	0.100
Cobalt, Total (mg/L)	n/a	0.00939	0.00939
Combined Radium, Total (pCi/L)	5.00	3.36	5.00
Fluoride, Total (mg/L)	4.00	1.00	4.00
Lead, Total (mg/L)	n/a	0.00500	0.00500
Lithium, Total (mg/L)	n/a	0.0548	0.0548
Mercury, Total (mg/L)	0.00200	0.0000640	0.00200
Molybdenum, Total (mg/L)	n/a	0.00500	0.00500
Selenium, Total (mg/L)	0.0500	0.00500	0.0500
Thallium, Total (mg/L)	0.00200	0.00200	0.00200

Notes:

MCL = Maximum Contaminant Level

GWPS = Groundwater Protection Standard

Calculated UTL (Upper Tolerance Limit) represents site-specific background values.

Grey cells indicate the GWPS is based on the calculated UTL, which is either higher than the MCL or an MCL does not exist.

Table 3: Appendix III Data Summary Pirkey - East Bottom Ash Pond

Analyte	Unit	Description	AD-2	AD-31	AD-32		
Analyte	Oiiit	Description	6/21/2022	6/20/2022	6/20/2022		
Boron	mg/L	Interwell Background Value (UPL)	0.0610				
Doron	mg/L	Analytical Result	3.26	0.028	0.909		
Calcium	mg/L	Interwell Background Value (UPL)	2.94				
Calcium	mg/L	Analytical Result	3.4	2.65	7.25		
Chloride	ma/I	Interwell Background Value (UPL)		8.97			
Chloride	mg/L	Analytical Result	29.7	23.2	30.6		
Fluoride	mg/L	Interwell Background Value (UPL)	1.00				
Tuonac	mg/L	Analytical Result	0.21	0.14	0.42		
		Intrawell Background Value (UPL)	4.8	5.3	4.5		
рН	SU	Intrawell Background Value (LPL)	3.5	3.0	2.7		
		Analytical Result	4.0	3.5	3.0		
Sulfate	mg/L	Interwell Background Value (UPL)		24.7			
Sullate	mg/L	Analytical Result	259	89.0	147		
Total Dissolved Solids	ma/I	Interwell Background Value (UPL)		171			
Total Dissolved Solids	mg/L	Analytical Result	490	270	320		

Notes:

UPL: Upper prediction limit LPL: Lower prediction limit

Bold values exceed the background value.

Background values are shaded gray.

ATTACHMENT A Certification by Qualified Professional Engineer

Certification by Qualified Professional Engineer

I certify that the selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Pirkey East Bottom Ash Pond CCR management area and that the requirements of § 352.931(a) have been met.

DAVID ANTHONY MILLER

Printed Name of Licensed Professional Engineer

Signature

112498 License Number TEXAS

Licensing State

10.27.22

Date

ATTACHMENT B Data Quality Review Memorandum Revision 1 - January 2023

ATTACHMENT B

DATA QUALITY REVIEW – H.W. PIRKEY POWER PLANT JUNE 2022 SAMPLING EVENT MEMORANDUM RECORD OF REVISIONS

Revision 1 (January 2023)

- The introductory text was updated to note that the laboratory reports for the sample data groups (SDGs) discussed in this memorandum were reissued in December 2022 with amended matrix spike (MS) precision calculations.
- For the second bullet point, regarding equipment blank detections, the text was amended to note that a high bias for groundwater chromium results may occur in multiple, not all, samples.
- The low matrix spike duplicate (MSD) recovery for beryllium in the sample "Duplicate 1" was added to the discussion of MS and MSD issues associated with SDG 222015.
- The relative percent difference (RPD) for sodium between the MS and MSD associated with sample 'AD-2' on SDG 222015 is no longer outside the acceptable range. This text was removed.
- The RPDs for calcium, lithium, magnesium, and sodium between the MS and MSD associated with sample 'Duplicate-1' on SDG 222015 are no longer outside the acceptable range. This text was removed.
- The RPD for calcium and sodium associated with the sample 'AD-8' on SDG 222016 are no longer outside the acceptable range. This text was removed.

500 West Wilson Bridge Road, Suite 250 Worthington, Ohio 43085 PH 614.468.0415 FAX 614.468.0416 www.geosyntec.com

Memorandum

Date: January 11, 2023

To: David Miller (AEP)

Copies to: Leslie Fuerschbach (AEP)

From: Allison Kreinberg (Geosyntec)

Subject: Data Quality Review – H.W. Pirkey Power Plant

June 2022 Sampling Event – Revision 1

This memorandum summarizes the findings of a data quality review for groundwater samples collected at the H.W. Pirkey Power Plant, located in Pittsburg, Texas in June 2022. The groundwater samples were collected to comply with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR Rule"). The groundwater samples were analyzed for 40 CFR 257 Appendix III and IV constituents, plus additional constituents collected to support site evaluation efforts.

The following sample data groups (SDGs) were associated with the June 2022 sampling event and are reviewed in this memorandum:

- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 221988
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 221989
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 221990
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 221991
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 222015
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 222016

The laboratory reports for these SDGs were reissued in December 2022 with amended matrix spike precision calculations. The data included in the revised laboratory reports associated with these

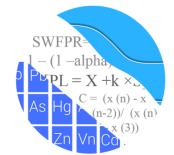
SDGs were reviewed to assess if they met the objectives outlined in TCEQ Draft Technical Guideline No. 32¹ prior to submittal of this data to TCEQ.

The following data quality issues were identified:

- As reported in SDG 221989, the sample "AD-3" submitted for total dissolved solids (TDS) analysis via method SM2540C was analyzed out of hold time. The "AD-3" TDS results should be considered estimated.
- As reported in SDG 222015, chromium and cobalt were detected in the equipment blank sample "Equipment Blank" collected on 6/20/2022. The detected chromium concentration in the equipment blank (0.41 µg/L) was higher than the detected values for chromium in multiple groundwater samples, which could result in high bias for all groundwater chromium results. The cobalt equipment blank detection was less than 10% of the detected values in the groundwater samples and would not result in a high bias.
- As reported in SDG 221988 and SDG 221989, the relative percent difference (RPD) for fluoride concentrations from parent sample "AD-13" and duplicate sample "Duplicate-1" was 24%. The "AD-13" fluoride results should be considered estimated.
- As reported in SDG 2221989, the RPD for TDS (11.5%) in the laboratory duplicate was above the acceptable limit of 10%. The associated sample ("AD-3") was flagged P1: the precision between duplicate results was above acceptance limits. The "AD-3" TDS results should be considered estimated.
- As reported in SDG 222015, the following matrix spike (MS) or matrix spike duplicate (MSD) recovery issues were observed:
 - The MSD recovery for sodium (-30.9%) associated with sample "AD-2" was below the acceptable range of 75-125%. The associated sample (AD-2) was flagged M1: the associated MS or MSD recovery was outside acceptance limits. The "AD-2" sodium results should be considered estimated. Sodium is not a regulated Appendix III or IV constituent.
 - O The MS recovery for cobalt (69.7%) and lithium (54%) associated with sample "AD13" were below the acceptable range of 75-125%. The associated sample (AD-13) was flagged M1: the associated MS or MSD recovery was outside

-

¹ TCEQ. 2020. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action Draft Technical Guidance No. 32. May.


acceptance limits. The "AD-13" cobalt and lithium results should be considered estimated.

- O The MSD recovery (72%) for beryllium associated with sample "Duplicate-1", which was collected from well AD-13, was below the acceptable range of 75-125%. The MS recovery (62.6%) for calcium was below the acceptable range of 75-125%. The MS recovery (5.81%) and MSD recovery (53.9%) for cobalt were below the acceptable range of 75-125%. The MS recovery (-3.26%) and MSD recovery (-49.7%) for lithium were below the acceptable range of 75-125%. The MS recovery (32.4%) and MSD recovery (52.1%) for magnesium were below the acceptable range of 75-125%. The MS recovery (71.5%) and MSD recovery (54.3%) for sodium were below the acceptable range of 75-125%. The 'Duplicate-1" beryllium, calcium, cobalt, lithium, magnesium, and sodium results should be considered estimated. Magnesium and sodium are not regulated Appendix III or IV constituents.
- As reported in SDG 222015, the RPD for radium-226 (25.5%) in the laboratory duplicate was above the acceptable limit of 25%. The "AD-13" radium-226 results should be considered estimated.
- As reported in SDG 222016, the MS recovery (49.2%) and MSD recovery (63.5%) for calcium associated with sample "AD-8" were below the acceptable range of 75-125%. The MS recovery for sodium (70.1%) was below the acceptable range of 75-125%. The MS recovery (62.6%) and MSD recovery (72.2%) were below the acceptable range of 75-125%. The associated sample (AD-8) was flagged M1: the associated MS or MSD recovery was outside acceptance limits. The "AD-8" calcium, sodium, and strontium results should be considered estimated. Sodium and strontium are not regulated Appendix III or Appendix IV constituents.

Based on these findings, the majority of the data reported in these SDGs are considered accurate and complete. Although the QC failures mentioned above will result in some limitations of data use since the affected results are considered estimated or have elevated reporting limits, the data are considered usable for supporting project objectives.

ATTACHMENT C Statistical Analysis Output

GROUNDWATER STATS CONSULTING

August 25, 2022

Geosyntec Consultants Attn: Ms. Allison Kreinberg 500 W. Wilson Bridge Road, Ste. #250 Worthington, OH 43085

Re: Pirkey East Bottom Ash Pond

Assessment Monitoring Event – March & June 2022

Dear Ms. Kreinberg,

Groundwater Stats Consulting (GSC), formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the evaluation of groundwater data from the March and June 2022 sample events for American Electric Power Company's Pirkey East Bottom Ash Pond (EBAP). The analysis complies with the Texas Commission of Environmental Quality rule 30 TAC 352 as well as with the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling at each of the wells below began at Pirkey EBAP for the Coal Combustion Residual (CCR) program in 2016. The monitoring well network, as provided by Geosyntec Consultants, consists of the following:

Upgradient wells: AD-4, AD-12, and AD-18
 Downgradient wells: AD-2, AD-31, and AD-32

Data were sent electronically, and the statistical analysis was conducted according to the Statistical Analysis Plan and screening evaluation prepared by GSC and approved by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to GSC. The statistical analysis was reviewed by Kristina Rayner, Senior Statistician and Founder of Groundwater Stats Consulting.

The CCR program consists of the following Assessment monitoring constituents:

 Appendix IV (Assessment Monitoring) – antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Time series graphs for Appendix IV parameters are provided for all wells and are used to evaluate concentrations over the entire record (Figure A). Additionally, box plots are included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells. Values in background, which have previously been flagged as outliers, may be seen in a lighter font and disconnected symbol on the graphs. Additionally, a summary of flagged values follows this letter (Figure C).

Summary of Statistical Methods

Assessment monitoring for Appendix IV parameters involves the comparison of a confidence interval for each parameter at downgradient wells against the corresponding Groundwater Protection Standard (GWPS). The GWPS is determined for each parameter as the highest limit of the Maximum Contaminant Levels (MCLs) or background limits determined from tolerance limits constructed from pooled upgradient well data.

Prior to computing tolerance limits on upgradient well data or confidence intervals on downgradient well data, the distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric tolerance limits and confidence intervals as appropriate, based on the following criteria.

- No statistical analyses are required on wells and analytes containing 100% non-detects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects in background, the reporting limit utilized for non-detects is the practical quantification limit (PQL) as reported by the laboratory. For several constituents, the most recent reporting limits are significantly lower than those reported historically. This is a conservative approach for tolerance limits and confidence intervals at this site.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean

- and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric tolerance limits are used on data containing greater than 50% nondetects.

Background Update – Conducted in March 2022

Outlier Analysis

Prior to evaluating Appendix IV parameters, background data are screened through visual screening and Tukey's outlier test for potential outliers and extreme trending patterns that would lead to artificially elevated statistical limits. High outliers are also 'cautiously' flagged in the downgradient wells when they are clearly much different from the rest of the data. This is intended to be a regulatory conservative approach in that it will reduce the variance and thus reduce the width of parametric confidence intervals, although it will also reduce the mean and thus lower the entire interval. The intent is to better represent the actual downgradient mean. Flagging high outliers should have no effect on the lower limit of nonparametric confidence intervals.

Tukey's outlier test on pooled upgradient well data did not identify any outliers through November 2021; however, high non-detect values of 0.04 mg/L for molybdenum in upgradient and downgradient wells were flagged in order to construct statistical limits that are conservative (i.e., lower) from a regulatory perspective and represent present-day groundwater quality at this facility.

Additionally, downgradient well data through November 2021 were screened through visual screening using time series graphs. Since the downgradient well data are used to construct confidence intervals, a regulatory conservative approach is taken in that values that are marginally high relative to the rest of the data are retained unless there is particular justification for excluding them. A previously flagged value for selenium in downgradient well AD-32 was unflagged as similar concentrations appeared among more recent observations, and all concentrations for selenium at this site are below the MCL. All flagged values may be seen on the Outlier Summary following this letter (Figure C).

Interwell Upper Tolerance Limits

Interwell upper tolerance limits were established in Fall 2021 using all available pooled upgradient well data for each Appendix IV parameter through November 2021 (Figure D). GWPS will be updated during the Fall 2022. When data followed a normal or transformed-normal distribution, parametric tolerance limits were used to calculate background limits

for Appendix IV parameters with a target of 95% confidence and 95% coverage. Nonparametric tolerance limits are constructed when data do not follow a normal or transformed-normal distribution or when there are greater than 50% non-detects. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples.

Groundwater Protection Standards

Background limits were compared to the Maximum Contaminant Levels (MCLs) in the Groundwater Protection Standard (GWPS) table following this letter to determine the highest limit for use as the GWPS in the Confidence Interval comparisons (Figure E).

Evaluation of Appendix IV Parameters – March and June 2022

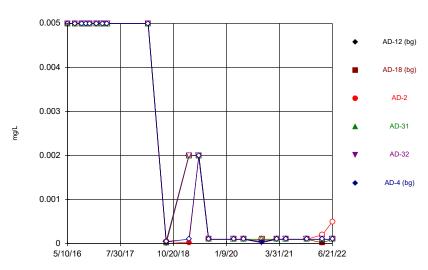
Confidence intervals were then constructed on downgradient wells with data through June 2022 for each of the Appendix IV parameters using either parametric or nonparametric intervals depending on the data distribution and percentage of non-detects, similar to the logic used to construct tolerance limits as discussed above (Figure F). Each confidence interval was compared with the corresponding GWPS from Figure E. Only when the entire confidence interval is above the GWPS is the well/constituent pair considered to exceed its respective standard. Both a tabular summary and graphical presentation of the confidence interval results follow this letter. Exceedances were noted for the following well/constituent pairs:

• Cobalt: AD-2, AD-31, and AD-32

Lithium: AD-31 and AD-32

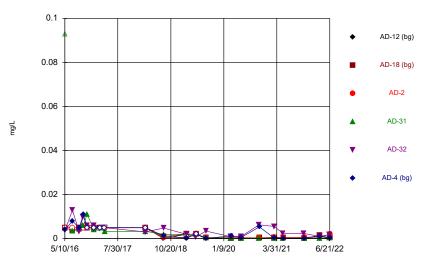
Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Pirkey EBAP. If you have any questions or comments, please feel free to contact us.

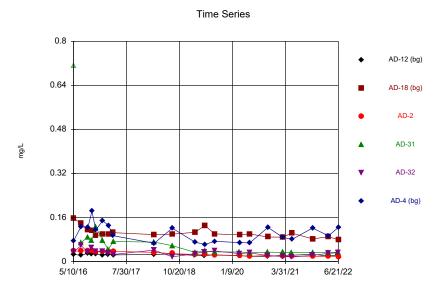
For Groundwater Stats Consulting,


Andrew T. Collins

Project Manager

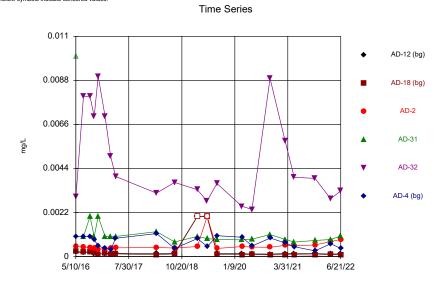
Kristina L. Rayner Senior Statistician


Kristina Rayner

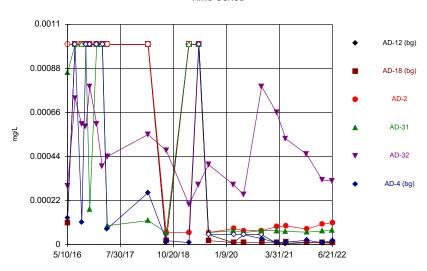

Constituent: Antimony, total Analysis Run 8/25/2022 7:11 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Time Series

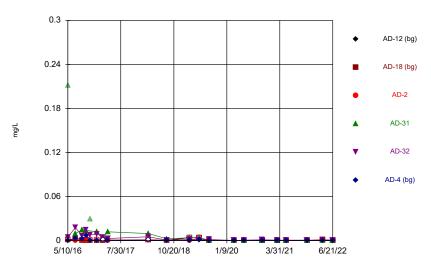
Constituent: Arsenic, total Analysis Run 8/25/2022 7:11 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

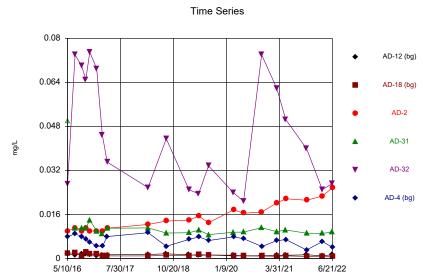

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Constituent: Barium, total Analysis Run 8/25/2022 7:11 AM

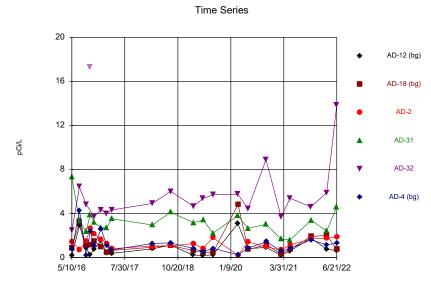

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

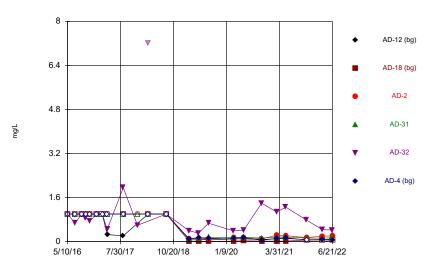

Constituent: Beryllium, total Analysis Run 8/25/2022 7:11 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Constituent: Cadmium, total Analysis Run 8/25/2022 7:11 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

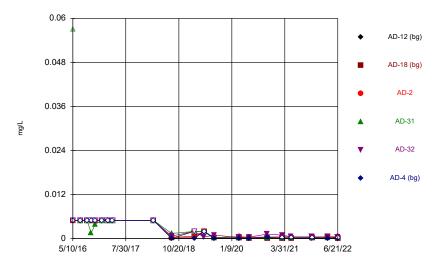
Time Series

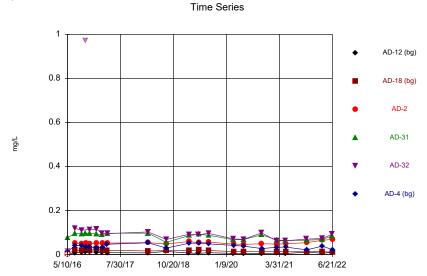

Constituent: Chromium, total Analysis Run 8/25/2022 7:11 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas[™] v.9.6.35 Groundwater Stats Consulting. UG


Constituent: Cobalt, total Analysis Run 8/25/2022 7:11 AM Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

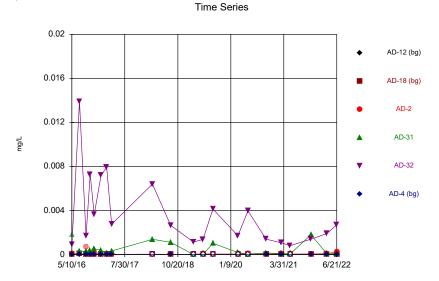
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Constituent: Combined Radium 226 + 228 Analysis Run 8/25/2022 7:11 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

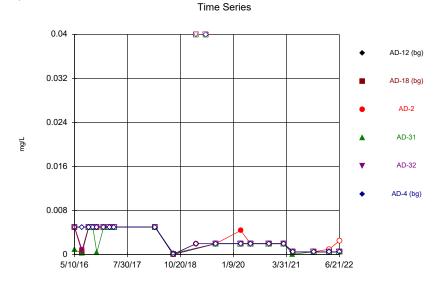

Constituent: Fluoride, total Analysis Run 8/25/2022 7:11 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Time Series

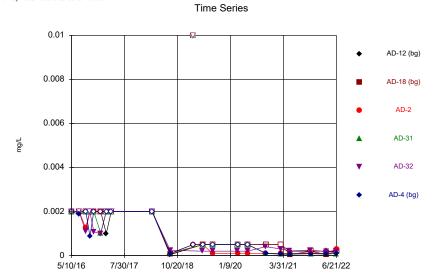
Constituent: Lead, total Analysis Run 8/25/2022 7:11 AM Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Lithium, total Analysis Run 8/25/2022 7:11 AM

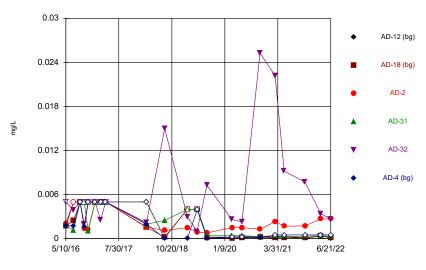

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

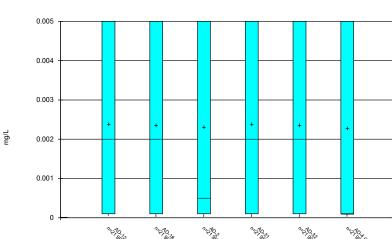
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Mercury, total Analysis Run 8/25/2022 7:11 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

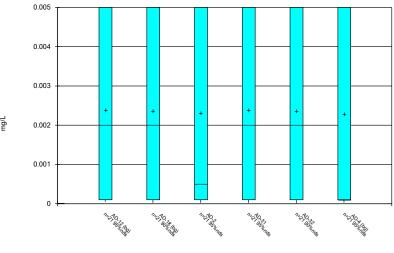
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Molybdenum, total Analysis Run 8/25/2022 7:11 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Thallium, total Analysis Run 8/25/2022 7:11 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

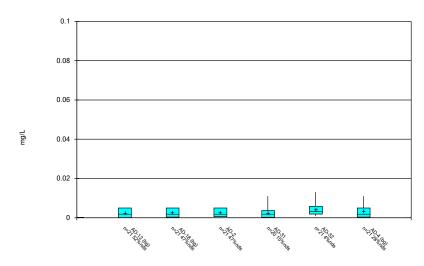
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Selenium, total Analysis Run 8/25/2022 7:11 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Box & Whiskers Plot

Constituent: Antimony, total Analysis Run 8/25/2022 7:13 AM Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP



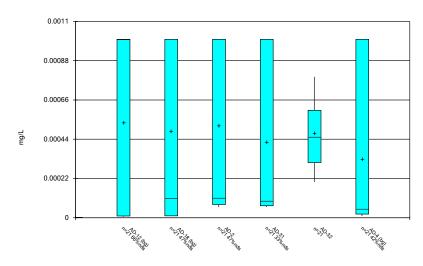
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Box & Whiskers Plot 0.64 0.48 0.32 0.16 1 2 TO 4 (Ba) 1370 1570

Constituent: Barium, total Analysis Run 8/25/2022 7:13 AM Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

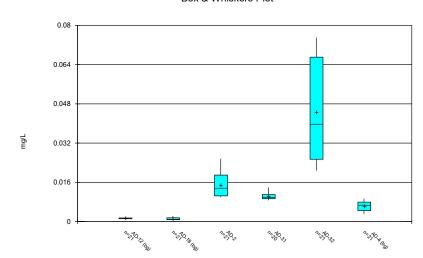
Box & Whiskers Plot

Constituent: Arsenic, total Analysis Run 8/25/2022 7:13 AM Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

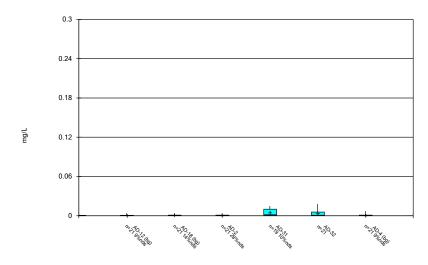

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Beryllium, total Analysis Run 8/25/2022 7:13 AM Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

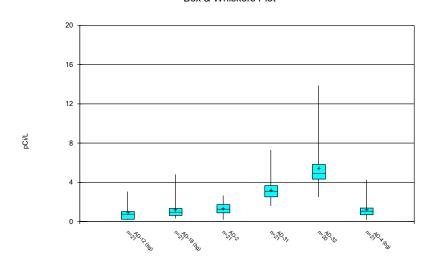

Box & Whiskers Plot

Constituent: Cadmium, total Analysis Run 8/25/2022 7:13 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

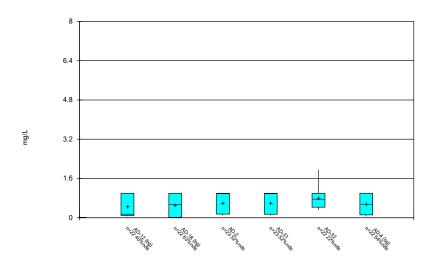

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Cobalt, total Analysis Run 8/25/2022 7:13 AM Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

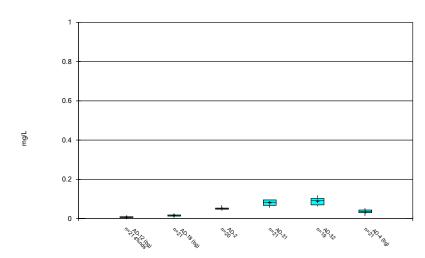

Box & Whiskers Plot

Constituent: Chromium, total Analysis Run 8/25/2022 7:13 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

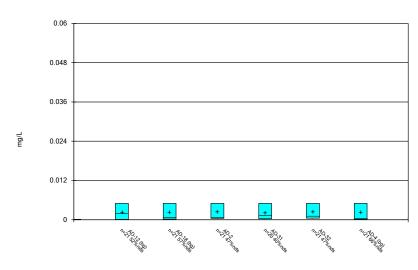
Box & Whiskers Plot

Constituent: Combined Radium 226 + 228 Analysis Run 8/25/2022 7:13 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Box & Whiskers Plot

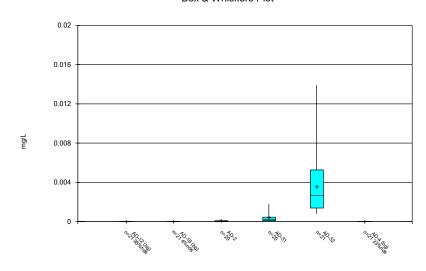
Constituent: Fluoride, total Analysis Run 8/25/2022 7:13 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas[™] v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

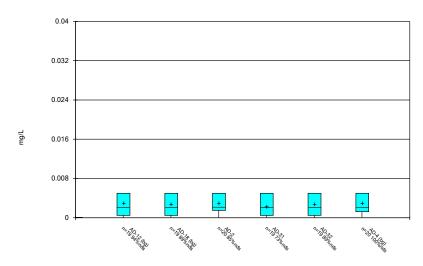
Constituent: Lithium, total Analysis Run 8/25/2022 7:14 AM

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Box & Whiskers Plot

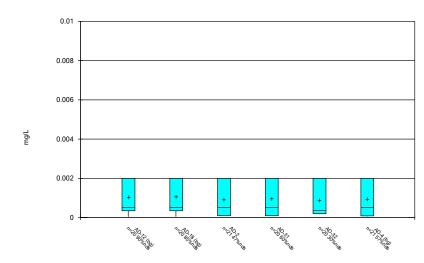
Constituent: Lead, total Analysis Run 8/25/2022 7:13 AM Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

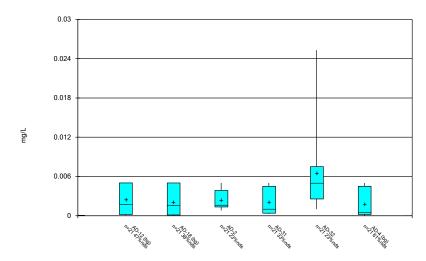
Constituent: Mercury, total Analysis Run 8/25/2022 7:14 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Molybdenum, total Analysis Run 8/25/2022 7:14 AM Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Thallium, total Analysis Run 8/25/2022 7:14 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Selenium, total Analysis Run 8/25/2022 7:14 AM
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Outlier Summary

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Printed 8/25/2022, 7:27 AM

		(mall)	1 (ma/L)	loter (mg	in latal (III			226 + 22 (mg/l	-) . (mall-)	1/mall 1/mall
	AD-31 Arser	nic, total (mg/L) AD-31 Bariu	m, total (mg/L) AD-31 Bery	llium, total (mg AD-31 Chro	/L) mium, total (m AD-31 Coba	g/L) _{alt, total (mg/L)} AD-32 Com	bined Radium AD-32 Fluor	ide, total (113 AD-31 Lead	-) I, total (mg/L) AD-2 Lithiun	n, total (mg/L) AD-32 Lithium, total (mg/L)
5/11/2016	0.093 (o)	0.712 (o)	0.01 (o)	0.212 (o)	0.05 (o)			0.057 (o)	<0.001 (o)	0.016 (o)
9/7/2016										
10/12/2016						17.32 (o)				0.972 (o)
11/14/2016				0.03 (o)						
3/21/2018							7.2 (o)			
2/27/2019										
2/28/2019										
5/21/2019										
5/22/2019										
5/23/2019										
	AD-2 Mercu	_{ry, total} (mg/L) AD-31 Merc	ury, total (mg/l AD-12 Moly	.) bdenum, total (AD-18 Moly	(mg/L) bdenum, total AD-2 Moly ^b	(mg/L) denum, total (r AD-31 Moly	ng/L) _{Ib} denum, total (AD-32 Moly	(mg/L) bdenum, total AD-4 Molyb	(mg/L) denum, total (m AD-12 Thalli	ng/L) ium, total (mg/L) AD-18 Thallium, total (mg/L
5/11/2016	AD-2 Mercu	_{ry, total} (mg/L) _{AD-31} Merc 0.001797 (o		o) bdenum, total (AD-18 Moly)	(mg/L) bdenum, total AD-2 Molyb	(mg/L) denum, total (r AD-31 Moly	ng/L) bdenum, total (AD-32 Moly/	(mg/L) bdenum, total (AD-4 Molyb	(mg/L) denum, total (n AD-12 Thalli	ng/L) uum, total (mg/L) AD-18 Thallium, total (mg/L
	AD-2 ^{Mercu}	0.001797 (o		.) bdenum, total AD-18 Moly	(mg/L) bdenum, total AD-2 Molyb	(mg/L) denum, total (r AD-31 Moly	ngIL) _{Ib} denum, total (AD-32 Moly	(mg/L) bdenum, total i AD-4 Molyb	(mg/L) denum, total (n AD-12 Thalli	ng/L) ium, total (mg/L) AD-18 Thallium, total (mg/L
9/7/2016		0.001797 (o		.) bdenum, total (AD-18 Moly	(mg/L) bdenum, total AD-2 Molyb	(mg/L) denum, total (r AD-31 Moly	nglL) Ibdenum, total AD-32 Moly	(mg/L) bdenum, total AD-4 Molyb	(mg/L) denum, total (n AD-12 Thalli	ng/L) hum, total (mg/L) AD-18 Thallium, total (mg/L
9/7/2016 10/12/2016		0.001797 (o		.) bdenum, total (AD-18 Moly)	(mg/L) bdenum, total AD-2 Molyb	(mg/L) denum, total (r AD-31 Moly	ng(L) bdenum, total (AD-32 Moly)	(mg/L) bdenum, total AD-4 Molyb	(mg/L) denum, total (n AD-12 Thalli	ng/L) ium, total (mg/L) AD-18 Thallium, total (mg/L
9/7/2016 10/12/2016 11/14/2016		0.001797 (o		.) bdenum, total (AD-18 Moly)	(mg/L) bdenum, total AD-2 Molyb	(mg/L) denum, total (r AD-31 Moly	ng(L) bdenum, total (AD-32 Moly)	(mg/L) bdenum, total AD-4 Molyb	(mg/L) denum, total (n AD-12 Thalli	ng/L) lum, total (mg/L) AD-18 Thallium, total (mg/L
5/11/2016 9/7/2016 10/12/2016 11/14/2016 3/21/2018 2/27/2019		0.001797 (o		.) bdenum, total (AD-18 Moly)	(mg/L) bdenum, total AD-2 Molyb	(mg/L) denum, total (r AD-31 Moly	ng(L) bdenum, total (AD-32 Moly)	(mg/L) bdenum, total AD-4 Molyb	(mg/L) denum, total (n AD-12 Thalli AO-40 (o)	ng/L) lum, total (mg/L) AD-18 Thallium, total (mg/L
9/7/2016 10/12/2016 11/14/2016 3/21/2018 2/27/2019		0.001797 (o)	obdenum, total (bdenum, total (AD-18 Moly) AD-18 Moly)	(mg/L) bdenum, total AD-2 Molyb	(mg/L) denum, total (r AD-31 Moly AD-36 (o)	ng/L) hdenum, total (AD-32 Moly AO-32 Moly	(mg/L) bdenum, total AD-4 Molyb		ng/L) lum, total (mg/L) AD-18 Thallium, total (mg/L AO-18 (mg/L) AD-18 (mg/L)
9/7/2016 10/12/2016 11/14/2016 3/21/2018		0.001797 (o)		(mg/L) bdenum, total AD-2 Molyb			(mg/L) bdenum, total AD-4 Molyb		
9/7/2016 10/12/2016 11/14/2016 3/21/2018 2/27/2019 2/28/2019		0.001797 (o	<0.04 (o)		(mg/L) bdenum, total hD-2 Molyb AD-2 Molyb		<0.04 (o)	(mg/L) bdenum, total AD-4 Molyb		

AD-31 Thailium, total (mg/L) AD-32 Thailium, total (mg/L)

5/11/2016
9/7/2016
10/12/2016
11/14/2016
3/21/2018
2/27/2019
2/28/2019 <0.01 (o) <0.01 (o)
5/21/2019
5/22/2019
5/23/2019

Upper Tolerance Limits

Client: Geosyntec Data: Pirkey EBAP Printed 2/21/2022, 10:26 AM %NDs ND Adj. Constituent Well Upper Lim. Lower Lim. Date Observ. Sig. Bg N Bg Mean Std. Dev. <u>Transform</u> <u>Alpha</u> Method 0.005 n/a 57 94.74 n/a Antimony, total (mg/L) n/a n/a n/a n/a n/a n/a 0.05373 NP Inter(NDs) 0.011 NP Inter(normality) Arsenic, total (mg/L) n/a n/a n/a n/a n/a 57 n/a 47.37 n/a 0.05373 Barium, total (mg/L) n/a 0.183 n/a 57 0 0.05373 NP Inter(normality) n/a n/a n/a n/a n/a n/a n/a Beryllium, total (mg/L) n/a 0.002 n/a n/a n/a 57 n/a 7.018 n/a 0.05373 NP Inter(normality) 0.05373 Cadmium, total (mg/L) n/a 0.001 n/a n/a n/a n/a 57 n/a n/a 57.89 n/a n/a NP Inter(NDs) Chromium, total (mg/L) n/a 0.004192 n/a n/a 57 -7.62 1.058 12.28 None In(x) 0.05 Inter Cobalt, total (mg/L) 0.00939 0.05373 NP Inter(normality) n/a 0 n/a n/a n/a n/a n/a 57 n/a n/a n/a Combined Radium 226 + 228 (pCi/L) n/a 3.357 n/a n/a 57 0.9721 0.2589 None x^(1/3) 0.05 Fluoride, total (mg/L) 55 0.04607 NP Inter(NDs) n/a n/a n/a n/a n/a 60 n/a n/a n/a n/a Lead, total (mg/L) 0.005 n/a 57 63.16 n/a 0.05373 NP Inter(NDs) Lithium, total (mg/L) n/a 0.05477 n/a 57 0.1348 0.04894 1.754 None 0.05 n/a n/a n/a sqrt(x) Mercury, total (mg/L) 0.000064 n/a 57 43.86 0.05373 NP Inter(normality) 0.06944 NP Inter(NDs) Molybdenum, total (mg/L) 0.005 94.23 n/a n/a n/a n/a n/a n/a 52 n/a n/a n/a Selenium, total (mg/L) 0.005 n/a 57 50.88 n/a 0.05373 NP Inter(NDs)

80

n/a

0.05954

n/a

NP Inter(NDs)

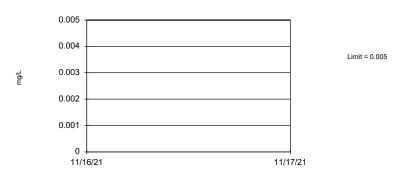
Thallium, total (mg/L)

0.002

n/a

n/a

n/a

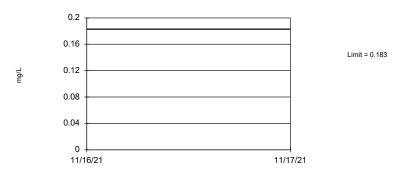

n/a 55

n/a

n/a

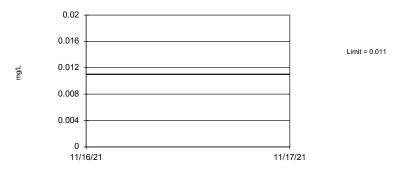
n/a

Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 57 background values. 94.74% NDs. 92.88% coverage at alpha=0.01; 94.73% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.05373.

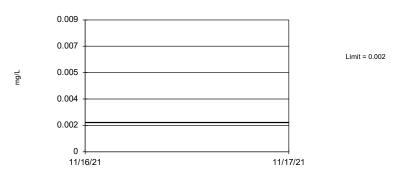
Constituent: Antimony, total Analysis Run 2/21/2022 10:25 AM View: Upper Tolerance Limits
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

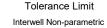
Tolerance Limit Interwell Non-parametric

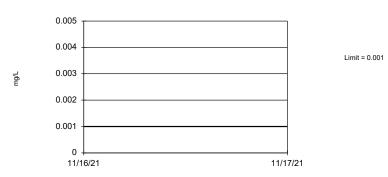
Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 57 background values. 92.38% coverage at alpha=0.01; 94.73% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.05373.

Tolerance Limit Interwell Non-parametric



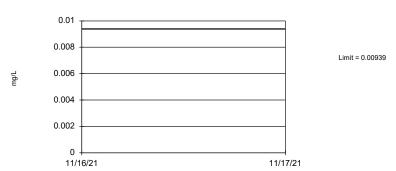
Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 57 background values. 47.37% NDs. 92.38% coverage at alpha=0.01; 94.73% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.05373.


Constituent: Arsenic, total Analysis Run 2/21/2022 10:25 AM View: Upper Tolerance Limits
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

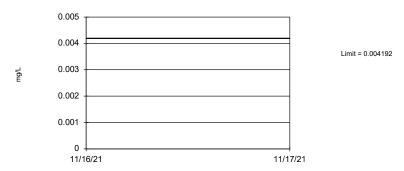
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 57 background values. 7.018% NDs. 92.38% coverage at alpha=0.01; 94.73% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.05373.



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 57 background values. 57.89% NDs. 92.88% coverage at alpha=0.01; 94.73% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.05373.

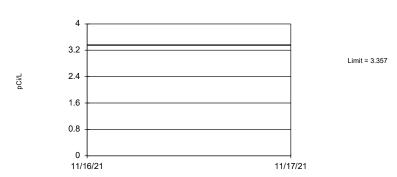
Constituent: Cadmium, total Analysis Run 2/21/2022 10:25 AM View: Upper Tolerance Limits
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Tolerance Limit Interwell Non-parametric

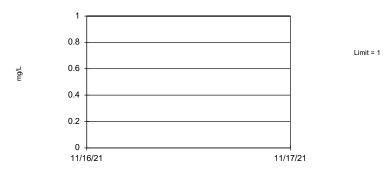
Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 57 background values. 92.38% coverage at alpha=0.01; 94.73% coverage at alpha=0.05. Report alpha = 0.05373.

Tolerance Limit Interwell Parametric



95% coverage. Background Data Summary (based on natural log transformation): Mean=-7.62, Std. Dev.=1.058, n=57, 12.28% NDs. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9462, critical = 0.944. Report alpha = 0.05.

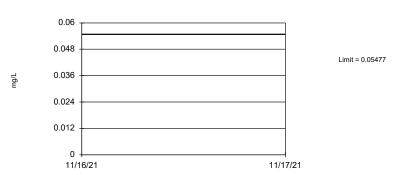
Constituent: Chromium, total Analysis Run 2/21/2022 10:25 AM View: Upper Tolerance Limits
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Tolerance Limit Interwell Parametric

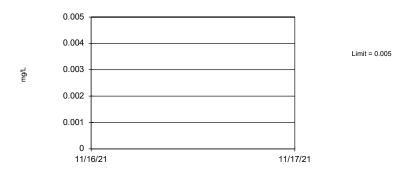
95% coverage. Background Data Summary (based on cube root transformation): Mean=0.9721, Std. Dev.=0.2589, n=57. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9514, critical = 0.944. Report alpha = 0.05.

Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 60 background values. 55% NDs. 92.77% coverage at alpha=0.01; 95.12% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.04607.

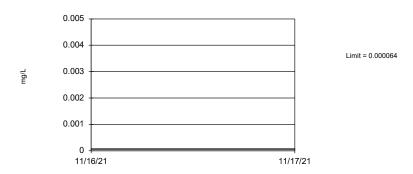
Constituent: Fluoride, total Analysis Run 2/21/2022 10:25 AM View: Upper Tolerance Limits
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Tolerance Limit Interwell Parametric

95% coverage. Background Data Summary (based on square root transformation): Mean=0.1348, Std. Dev.=0.04894, n=57, 1.754% NDs. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9741, critical = 0.944. Report alpha = 0.05.

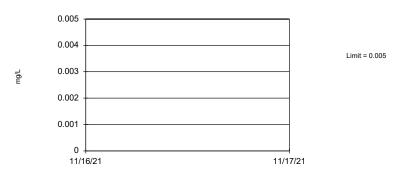
Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 57 background values. 63.16% NDs. 92.38% coverage at alpha=0.01; 94.73% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.05373.

Constituent: Lead, total Analysis Run 2/21/2022 10:25 AM View: Upper Tolerance Limits
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

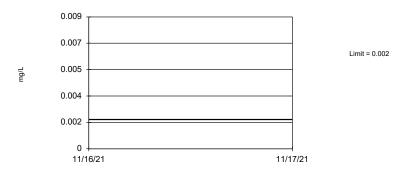
Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG


Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 57 background values. 43.86% NDs. 92.38% coverage at alpha=0.01; 94.73% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha=0.05373.

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

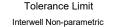
Tolerance Limit
Interwell Non-parametric

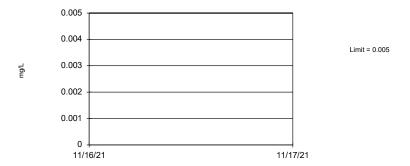


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 52 background values. 94.23% NDs. 91.6% coverage at alpha=0.01; 94.34% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.06944.

Constituent: Molybdenum, total Analysis Run 2/21/2022 10:25 AM View: Upper Tolerance Limits
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG


Tolerance Limit
Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 55 background values. 80% NDs. 91.99% coverage at alpha=0.01; 94.73% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.05954.

Constituent: Thallium, total Analysis Run 2/21/2022 10:25 AM View: Upper Tolerance Limits
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 57 background values. 50.88% NDs. 92.38% coverage at alpha=0.01; 94.73% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.05373.

Constituent: Selenium, total Analysis Run 2/21/2022 10:25 AM View: Upper Tolerance Limits
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

PIRKEY EBAP GWPS										
	Background									
Constituent Name	MCL	Limit	GWPS							
Antimony, Total (mg/L)	0.006	0.005	0.006							
Arsenic, Total (mg/L)	0.01	0.011	0.011							
Barium, Total (mg/L)	2	0.18	2							
Beryllium, Total (mg/L)	0.004	0.002	0.004							
Cadmium, Total (mg/L)	0.005	0.001	0.005							
Chromium, Total (mg/L)	0.1	0.0042	0.1							
Cobalt, Total (mg/L)	n/a	0.0094	0.0094							
Combined Radium, Total (pCi/L)	5	3.36	5							
Fluoride, Total (mg/L)	4	1	4							
Lead, Total (mg/L)	n/a	0.005	0.005							
Lithium, Total (mg/L)	n/a	0.055	0.055							
Mercury, Total (mg/L)	0.002	0.000064	0.002							
Molybdenum, Total (mg/L)	n/a	0.005	0.005							
Selenium, Total (mg/L)	0.05	0.005	0.05							
Thallium, Total (mg/L)	0.002	0.002	0.002							

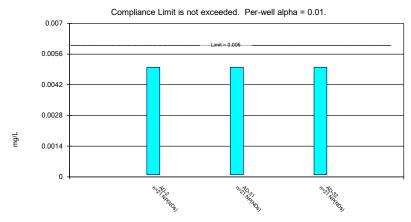
^{*}Grey cell indicates Background Limit is higher than MCL

^{*}MCL = Maximum Contaminant Level

^{*}GWPS = Groundwater Protection Standard

Confidence Intervals - Significant Results

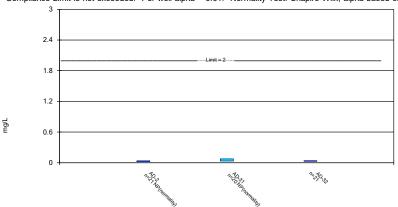
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Printed 8/25/2022, 7:29 AM


Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	Mean	Std. Dev.	%NDs	ND Adj.	Transform	n <u>Alpha</u>	Method
Cobalt, total (mg/L)	AD-2	0.01767	0.01224	0.0094	Yes	21	0.01495	0.004922	0	None	No	0.01	Param.
Cobalt, total (mg/L)	AD-31	0.01085	0.009532	0.0094	Yes	20	0.01021	0.001204	0	None	sqrt(x)	0.01	Param.
Cobalt, total (mg/L)	AD-32	0.05381	0.03232	0.0094	Yes	21	0.04451	0.02006	0	None	sqrt(x)	0.01	Param.
Lithium, total (mg/L)	AD-31	0.0909	0.07714	0.055	Yes	21	0.08249	0.01381	0	None	x^3	0.01	Param.
Lithium, total (mg/L)	AD-32	0.1003	0.07846	0.055	Yes	19	0.08938	0.01865	0	None	No	0.01	Param.

Confidence Intervals - All Results

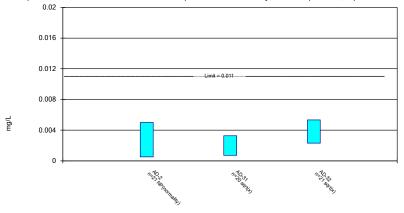
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Printed 8/25/2022, 7:29 AM

		Pirkey Ei			ta: Piri	key E	BAP Printe	a 8/25/2022, 7:25					
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	N	<u>Mean</u>	Std. Dev.	%NDs	ND Adj.	Transforr	n <u>Alpha</u>	Method
Antimony, total (mg/L)	AD-2	0.005	0.0001	0.006	No	21	0.002308	0.002424	95.24	None	No	0.01	NP (NDs)
Antimony, total (mg/L)	AD-31	0.005	0.0001	0.006	No	21	0.002377	0.002392	95.24	None	No	0.01	NP (NDs)
Antimony, total (mg/L)	AD-32	0.005	0.0001	0.006	No	21	0.002373	0.002396	90.48	None	No	0.01	NP (NDs)
Arsenic, total (mg/L)	AD-2	0.005	0.00052	0.011	No	21	0.002593	0.002179	47.62	None	No	0.01	NP (normality)
Arsenic, total (mg/L)	AD-31	0.003272	0.0007249	0.011	No	20	0.002445	0.002743	15	None	sqrt(x)	0.01	Param.
Arsenic, total (mg/L)	AD-32	0.005323	0.002297	0.011	No	21	0.004143	0.003064	4.762	None	sqrt(x)	0.01	Param.
Barium, total (mg/L)	AD-2	0.037	0.0196	2	No	21	0.0282	0.00828	0	None	No	0.01	NP (normality)
Barium, total (mg/L)	AD-31	0.073	0.0332	2	No	20	0.05269	0.02576	0	None	No	0.01	NP (normality)
Barium, total (mg/L)	AD-32	0.03766	0.02637	2	No	21	0.03201	0.01023	0	None	No	0.01	Param.
Beryllium, total (mg/L)	AD-2	0.000564	0.0004137	0.004	No	21	0.0005671	0.0003486	4.762	None	No	0.01	NP (normality)
Beryllium, total (mg/L)	AD-31	0.00103	0.00085	0.004	No	20	0.001039	0.0003514	0	None	No	0.01	NP (normality)
Beryllium, total (mg/L)	AD-32	0.005818	0.003512	0.004	No	21	0.004819	0.002232	0	None	sqrt(x)	0.01	Param.
Cadmium, total (mg/L)	AD-2	0.001	0.00007	0.005	No	21	0.0005178	0.0004713	47.62	None	No	0.01	NP (normality)
Cadmium, total (mg/L)	AD-31	0.001	0.000066	0.005	No	21	0.0004241	0.0004504	33.33	None	No	0.01	NP (normality)
Cadmium, total (mg/L)	AD-32	0.0005731	0.0003769	0.005	No	21	0.000475	0.0001779	0	None	No	0.01	Param.
Chromium, total (mg/L)	AD-2	0.0004668	0.0002605	0.1	No	21	0.0007141	0.0008186	28.57	Kaplan-Meier	ln(x)	0.01	Param.
Chromium, total (mg/L)	AD-31	0.01	0.000357	0.1	No	19	0.004706	0.005421	10.53	None	No	0.01	NP (normality)
Chromium, total (mg/L)	AD-32	0.004899	0.001204	0.1	No	21	0.004069	0.004914	0	None	x^(1/3)	0.01	Param.
Cobalt, total (mg/L)	AD-2	0.01767	0.01224	0.0094	Yes	21	0.01495	0.004922	0	None	No	0.01	Param.
Cobalt, total (mg/L)	AD-31	0.01085	0.009532	0.0094	Yes	20	0.01021	0.001204	0	None	sqrt(x)	0.01	Param.
Cobalt, total (mg/L)	AD-32	0.05381	0.03232	0.0094	Yes	21	0.04451	0.02006	0	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	AD-2	1.638	1.019	5	No	21	1.328	0.5612	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	AD-31	3.785	2.577	5	No	21	3.242	1.202	0	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	AD-32	6.245	4.206	5	No	20	5.467	2.368	0	None	ln(x)	0.01	Param.
Fluoride, total (mg/L)	AD-2	1	0.15	4	No	23	0.5961	0.4327	52.17	None	No	0.01	NP (NDs)
Fluoride, total (mg/L)	AD-31	1	0.14	4	No	23	0.5896	0.4386	52.17	None	No	0.01	NP (NDs)
Fluoride, total (mg/L)	AD-32	0.909	0.476	4	No	22	0.8103	0.4018	22.73	Kaplan-Meier	No	0.01	Param.
Lead, total (mg/L)	AD-2	0.005	0.000435	0.005	No	21	0.002476	0.002266	47.62	None	No	0.01	NP (normality)
Lead, total (mg/L)	AD-31	0.005	0.00026	0.005	No	20	0.002164	0.002113	40	None	No	0.01	NP (normality)
Lead, total (mg/L)	AD-32	0.005	0.00043	0.005	No	21	0.002567	0.00219	47.62	None	No	0.01	NP (normality)
Lithium, total (mg/L)	AD-2	0.0542	0.048	0.055	No	20	0.05258	0.005968	0	None	No	0.01	NP (normality)
Lithium, total (mg/L)	AD-31	0.0909	0.07714	0.055	Yes	21	0.08249	0.01381	0	None	x^3	0.01	Param.
Lithium, total (mg/L)	AD-32	0.1003	0.07846	0.055	Yes	19	0.08938	0.01865	0	None	No	0.01	Param.
Mercury, total (mg/L)	AD-2	0.00009033	0.00004268	0.002	No	20	0.0000708	0.00005153	0	None	sqrt(x)	0.01	Param.
Mercury, total (mg/L)	AD-31	0.0005645	0.0001282	0.002	No	20	0.0004216	0.0005033	0	None	sqrt(x)	0.01	Param.
Mercury, total (mg/L)	AD-32	0.004709	0.001779	0.002	No	21	0.003616	0.003276	0	None	sqrt(x)	0.01	Param.
Molybdenum, total (mg/L)	AD-2	0.005	0.001	0.005	No	20	0.00299	0.001903	85	None	No	0.01	NP (NDs)
Molybdenum, total (mg/L)	AD-31	0.005	0.0004016	0.005	No	19	0.002287	0.002007	73.68	None	No	0.01	NP (NDs)
Molybdenum, total (mg/L)	AD-32	0.005	0.0005	0.005	No	19	0.002779	0.002039	89.47	None	No	0.01	NP (NDs)
Selenium, total (mg/L)	AD-2	0.001706	0.001176	0.05	No	21	0.00243	0.001552	23.81	Kaplan-Meier	ln(x)	0.01	Param.
Selenium, total (mg/L)	AD-31	0.004	0.00038	0.05	No	21	0.002128	0.001987	33.33	None	No	0.01	NP (normality)
Selenium, total (mg/L)	AD-32	0.007193	0.002484	0.05	No	21	0.006535	0.006536	23.81	Kaplan-Meier	x^(1/3)	0.01	Param.
Thallium, total (mg/L)	AD-2	0.002	0.0001	0.002	No	21	0.0009267	0.0009012	47.62	None	No	0.01	NP (normality)
Thallium, total (mg/L)	AD-31	0.002	0.00009	0.002	No	20	0.0009826	0.0008822	60	None	No	0.01	NP (NDs)
Thallium, total (mg/L)	AD-32	0.002	0.0002	0.002	No	20	0.000885	0.0008048	30	None	No	0.01	NP (normality)
													• • • • • • • • • • • • • • • • • • • •


Non-Parametric Confidence Interval

Constituent: Antimony, total Analysis Run 8/25/2022 7:27 AM View: Confidence Intervals
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

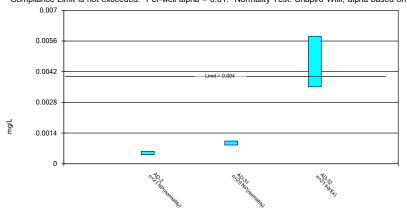
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Barium, total Analysis Run 8/25/2022 7:27 AM View: Confidence Intervals
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

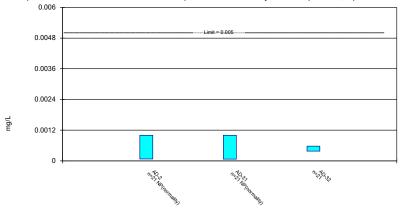
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Arsenic, total Analysis Run 8/25/2022 7:27 AM View: Confidence Intervals
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

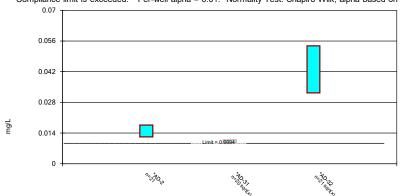
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

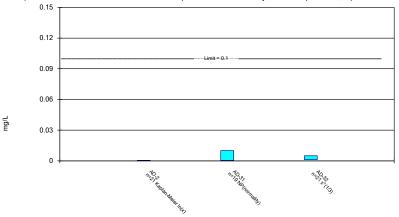
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Cadmium, total Analysis Run 8/25/2022 7:27 AM View: Confidence Intervals
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

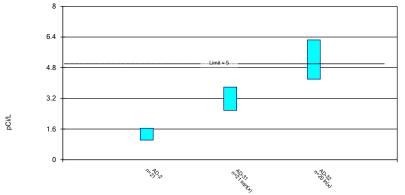
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Parametric Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

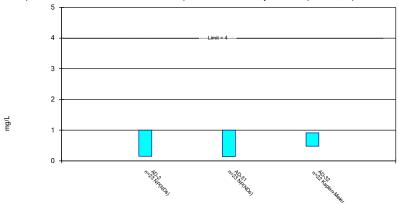
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Chromium, total Analysis Run 8/25/2022 7:27 AM View: Confidence Intervals
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

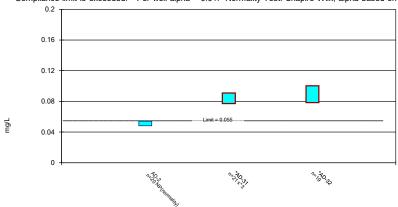
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

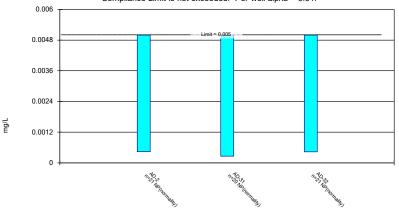
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Fluoride, total Analysis Run 8/25/2022 7:28 AM View: Confidence Intervals
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

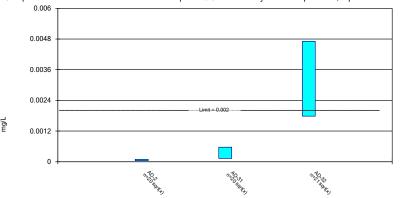
Parametric and Non-Parametric (NP) Confidence Interval


Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Lithium, total Analysis Run 8/25/2022 7:28 AM View: Confidence Intervals
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.



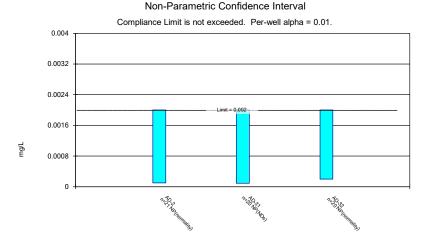
Constituent: Lead, total Analysis Run 8/25/2022 7:28 AM View: Confidence Intervals
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

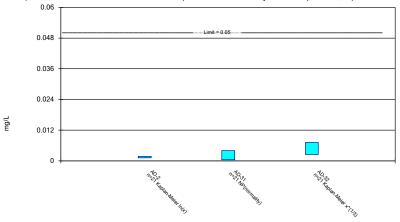

Compliance Limit is not exceeded. Per-well alpha = 0.01. 0.004 0.0036 0.0024 0.0012

Non-Parametric Confidence Interval

Constituent: Molybdenum, total Analysis Run 8/25/2022 7:28 AM View: Confidence Intervals
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

N. S. Village

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG



Constituent: Thallium, total Analysis Run 8/25/2022 7:28 AM View: Confidence Intervals
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Selenium, total Analysis Run 8/25/2022 7:28 AM View: Confidence Intervals
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Memorandum

Date: January 20, 2023

To: David Miller (AEP)

Copies to: Leslie Fuerschbach (AEP)

From: Allison Kreinberg (Geosyntec)

Subject: Data Quality Review – H.W. Pirkey Power Plant

November 2022 Sampling Event

This memorandum summarizes the findings of a data quality review for groundwater samples collected at the H.W. Pirkey Power Plant, located in Pittsburg, Texas in November 2022. The groundwater samples were collected to comply with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR Rule"). The groundwater samples were analyzed for 40 CFR 257 Appendix III and IV constituents, plus additional constituents collected to support site evaluation efforts.

The following sample data groups (SDGs) were associated with the November 2022 sampling event and are reviewed in this memorandum:

- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223647
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223649
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223664
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223668

The laboratory reports for SDGs 223647 and 223649 were reissued in December 2022 with amended matrix spike precision calculations. The data included in the revised laboratory reports associated with these SDGs were reviewed to assess if they met the objectives outlined in TCEQ Draft Technical Guideline No. 32¹ prior to submittal of this data to TCEQ.

¹ TCEQ. 2020. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action Draft Technical Guidance No. 32. May.

Data Quality Review – Pirkey November 2022 Data January 20, 2023 Page 2

The following data quality issues were identified:

- As reported in SDG 223664, chromium, cobalt, and molybdenum were detected in the equipment blank sample "Equipment Blank" collected on 11/16/2022. The detected chromium concentration in the equipment blank (0.47 μg/L) was more than 10% of the detected values in the groundwater samples, which could result in high bias for all groundwater chromium results. The detected cobalt concentration in the equipment blank (0.143 μg/L) was more than 10% of the detected value in sample "AD-18" (0.723 μg/L), which could result in high bias in the "AD-18" cobalt results. The estimated molybdenum concentration in the equipment blank (0.2 μg/L) was more than 10% of the detected value in sample "Duplicate-2" (0.2 μg/L), which could result in high bias in the "Duplicate-2" molybdenum results. Molybdenum was not detected in the other groundwater samples.
- As reported in SDG 223649, the relative percent difference (RPD) for sulfate concentrations from parent sample "AD-36" and duplicate sample "Landfill Duplicate" was 86%. The "AD-36" sulfate results should be considered estimated.
- As reported in SDG 223664, the following matrix spike (MS) and matrix spike duplicate (MSD) recovery for sodium (160% and 223%, respectively) associated with sample "AD-2" was above the acceptable range of 75-125%. The MS recovery for sodium (50.4%) associated with sample "AD-30" was below the acceptable range of 75-125%. The associated samples ("AD-2" and "AD-30") were flagged M1: the associated MS or MSD recovery was outside acceptance limits. The "AD-2" and "AD-30" sodium results should be considered estimated. Sodium is not a regulated Appendix III or IV constituent.
- As reported in SDG 223664, the RPD for radium-226 (52.5%) in the laboratory duplicate was above the acceptable limit of 25%. The "AD-12" radium-226 result was flagged P1: the precision between duplicate results was above acceptance limits. The "AD-12" radium-226 results should be considered estimated.

Based on these findings, the majority of the data reported in these SDGs are considered accurate and complete. Although the QC failures mentioned above will result in some limitations of data use since the affected results are considered estimated or have elevated reporting limits, the data are considered usable for supporting project objectives.

APPENDIX 3- Alternate Source Demonstrations

Alternate source demonstrations are included in this appendix. Alternate sources are sources or reasons that explain that statistically significant increases over background or statistically significant levels above the groundwater protection standard are not attributable to the CCR unit.

ALTERNATIVE SOURCE DEMONSTRATION REPORT TEXAS STATE CCR RULE

H.W. Pirkey Power Plant East Bottom Ash Pond Hallsville, Texas

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

engineers | scientists | innovators

941 Chatham Lane, Suite 103 Columbus, OH 43221

June 2022

CHA8495

TABLE OF CONTENTS

SECTION 1	Introduction and Summary1-1
1.1	CCR Rule Requirements1-1
1.2	Demonstration of Alternative Sources1-2
SECTION 2	Alternative Source Demonstration2-1
2.1	Regional Geology/Site Hydrogeology2-1
2.2	Proposed Alternative Source2-1
	2.2.1 Cobalt2-2
	2.2.2 Lithium
2.3	Sampling Requirements2-5
SECTION 3	Conclusions and Recommendations3-1
SECTION 4	References 4-1
	TABLES
Table 1	
Table 1 Table 2	TABLES Summary of Key Cobalt Analytical Data Soil Cobalt Data
Table 2 Table 3	Summary of Key Cobalt Analytical Data Soil Cobalt Data X-Ray Diffraction Results
Table 2 Table 3 Table 4	Summary of Key Cobalt Analytical Data Soil Cobalt Data X-Ray Diffraction Results Summary of Key Lithium Analytical Data
Table 2 Table 3 Table 4 Table 5	Summary of Key Cobalt Analytical Data Soil Cobalt Data X-Ray Diffraction Results Summary of Key Lithium Analytical Data Soil Lithium Data
Table 2 Table 3 Table 4	Summary of Key Cobalt Analytical Data Soil Cobalt Data X-Ray Diffraction Results Summary of Key Lithium Analytical Data
Table 2 Table 3 Table 4 Table 5	Summary of Key Cobalt Analytical Data Soil Cobalt Data X-Ray Diffraction Results Summary of Key Lithium Analytical Data Soil Lithium Data
Table 2 Table 3 Table 4 Table 5 Table 6	Summary of Key Cobalt Analytical Data Soil Cobalt Data X-Ray Diffraction Results Summary of Key Lithium Analytical Data Soil Lithium Data Calculated Site-Specific Partition Coefficients FIGURES
Table 2 Table 3 Table 4 Table 5 Table 6	Summary of Key Cobalt Analytical Data Soil Cobalt Data X-Ray Diffraction Results Summary of Key Lithium Analytical Data Soil Lithium Data Calculated Site-Specific Partition Coefficients FIGURES Potentiometric Contours – Uppermost Aquifer November 2021
Table 2 Table 3 Table 4 Table 5 Table 6 Figure 1 Figure 2	Summary of Key Cobalt Analytical Data Soil Cobalt Data X-Ray Diffraction Results Summary of Key Lithium Analytical Data Soil Lithium Data Calculated Site-Specific Partition Coefficients FIGURES Potentiometric Contours – Uppermost Aquifer November 2021 Aqueous Cobalt Distribution
Table 2 Table 3 Table 4 Table 5 Table 6 Figure 1 Figure 2 Figure 3	Summary of Key Cobalt Analytical Data Soil Cobalt Data X-Ray Diffraction Results Summary of Key Lithium Analytical Data Soil Lithium Data Calculated Site-Specific Partition Coefficients FIGURES Potentiometric Contours – Uppermost Aquifer November 2021 Aqueous Cobalt Distribution Cobalt Distribution in Soil
Table 2 Table 3 Table 4 Table 5 Table 6 Figure 1 Figure 2	Summary of Key Cobalt Analytical Data Soil Cobalt Data X-Ray Diffraction Results Summary of Key Lithium Analytical Data Soil Lithium Data Calculated Site-Specific Partition Coefficients FIGURES Potentiometric Contours – Uppermost Aquifer November 2021 Aqueous Cobalt Distribution

ATTACHMENTS

Attachment A Geologic Cross-Section A-A'

Attachment B SB-2 Boring Log

Attachment C SB-2 Boring Photographic Log

Attachment D SEM/EDS Analysis

Attachment E Certification by a Qualified Professional Engineer

LIST OF ACRONYMS

AEP American Electric Power

ASD Alternative Source Demonstration

CCR Coal Combustion Residuals

EBAP East Bottom Ash Pond

EDS Energy Dispersive Spectroscopic Analyzer

EPRI Electric Power Research Institute

GSC Groundwater Stats Consulting, LLC

GWPS Groundwater Protection Standard

LCL Lower Confidence Limit

MCL Maximum Contaminant Level

QA Quality Assurance

QC Quality Control

SEM Scanning Electron Microscopy

SPLP Synthetic Precipitation Leaching Profile

SSL Statistically Significant Level

TAC Texas Administrative Code

TCEQ Texas Commission on Environmental Quality

UTL Upper Tolerance Limit

USEPA United States Environmental Protection Agency

VAP Vertical Aquifer Profiling

WBAP West Bottom Ash Pond

XRD X-Ray Diffraction

SECTION 1

INTRODUCTION AND SUMMARY

This Alternative Source Demonstration (ASD) report has been prepared to address statistically significant levels (SSLs) for cobalt and lithium in the groundwater monitoring network at the H.W. Pirkey Plant East Bottom Ash Pond (EBAP), located in Hallsville, Texas, following the second semi-annual assessment monitoring event of 2021.

The H.W. Pirkey Plant has four coal combustion residuals (CCR) storage units regulated by the Texas Commission on Environmental Quality (TCEQ) under Registration No. CCR104, including the EBAP (Figure 1). The EBAP is also registered as a surface impoundment under TCEQ Industrial and Hazardous Waste Solid Waste Registration No. 33240. In November 2021, a semi-annual assessment monitoring event was conducted at the EBAP in accordance with 30 TAC §352.951(a). The monitoring data were submitted to Groundwater Stats Consulting, LLC (GSC) for statistical analysis. Groundwater protection standards (GWPSs) were established for each Appendix IV parameter in accordance with the statistical analysis plan developed for the unit (Geosyntec, 2020a) and the United States Environmental Protection Agency's (USEPA's) Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance (Unified Guidance; USEPA, 2009). The GWPS for each parameter was established as the greater of either the background concentration or, for constituents with a maximum contaminant level (MCL), the MCL. To determine background concentrations, an upper tolerance limit (UTL) was calculated using pooled data from the background wells collected during the background monitoring and assessment monitoring events.

Confidence intervals were re-calculated for the Appendix IV parameters at the compliance wells to assess whether these parameters were present at a statistically significant level (SSL) above the GWPSs. An SSL was concluded if the lower confidence limit (LCL) of a parameter exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). The following SSLs were identified at the Pirkey EBAP (Geosyntec, 2022):

- The LCLs for cobalt exceeded the GWPS of 0.0094 mg/L at AD-2 (0.0100 mg/L), AD-31 (0.00956 mg/L), and AD-32 (0.0250 mg/L).
- The LCL for lithium exceeded the GWPS of 0.0550 mg/L at AD-31 (0.0664 mg/L) and AD-32 (0.0781 mg/L).

No other SSLs were identified.

1.1 CCR Rule Requirements

TCEQ regulations regarding assessment monitoring programs for CCR landfills and surface impoundments (TCEQ, 2020a) provide owners and operators with the option to make an ASD when an SSL is identified (30 TAC §352.951(e)):

... In making a demonstration under this subsection, the owner or operator must, within 90 days of detecting a statistically significant level above the groundwater protection standard of any constituent listed in Appendix IV adopted by reference in §352.1431 of this title, submit a report prepared and certified in accordance with §352.4 of this title (relating to Engineering and Geoscientific Information) to the executive director, and any local pollution agency with jurisdiction that has requested to be notified, demonstrating that a source other than a CCR unit caused the exceedance or that the exceedance resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

Pursuant to 30 TAC §352.951(e), Geosyntec Consultants, Inc. (Geosyntec) has prepared this ASD report to document that the SSLs identified for cobalt and lithium are from a source other than the EBAP.

1.2 <u>Demonstration of Alternative Sources</u>

An evaluation was completed to assess possible alternative sources to which the identified SSLs could be attributed. Alternative sources were identified amongst five types, based on methodology provided by EPRI (2017):

- ASD Type I: Sampling Causes;
- ASD Type II: Laboratory Causes;
- ASD Type III: Statistical Evaluation Causes;
- ASD Type IV: Natural Variation; and
- ASD Type V: Alternative Sources.

A demonstration was conducted to show that the SSLs identified for cobalt and lithium were based on a Type IV cause and not by a release from the Pirkey EBAP.

SECTION 2

ALTERNATIVE SOURCE DEMONSTRATION

The TCEQ CCR Rule allows the owner or operator 90 days from the determination of an SSL to demonstrate that a source other than the CCR unit caused the SSL. Descriptions of the regional geology and site hydrogeology and the methodology used to evaluate the SSLs and the proposed alternative source are described below.

2.1 Regional Geology/Site Hydrogeology

The EBAP is positioned on an outcrop of the Eocene-age Recklaw Formation, which consists predominantly of clay and fine-grained sand (Arcadis, 2016). The Recklaw Formation is underlain by the Carrizo Sand, which crops out in the topographically lower southern portion of the plant. The Carrizo Sand consists of fine to medium grained sand interbedded with silt and clay.

The EBAP monitoring well network monitors groundwater within the Uppermost Aquifer, which was defined by Arcadis (2016) as very fine to fine grained clayey and silty sand with an average thickness of approximately 15 feet. Geologic cross-section A-A' from the EBAP Groundwater Monitoring Well Network Report (Arcadis, 2016) shows the subsurface geometry of the Uppermost Aquifer (indicated on the figure as clayey silty sand, tan to gray) underlying the EBAP and the West Bottom Ash Pond (WBAP). This figure is provided as **Attachment A**. **Attachment A** demonstrates lateral continuity of the Uppermost Aquifer spanning the entire length of the EBAP.

Groundwater flow direction in the area of the EBAP is west-southwesterly (**Figure 1**). Seasonal variability in groundwater flow has not been observed since the monitoring well network was installed. Groundwater flow through the Uppermost Aquifer contains a hydraulic gradient of approximately 0.01 feet per foot. The EBAP monitoring well network consists of upgradient monitoring wells AD-4, AD-12, and AD-18, and compliance wells AD-2, AD-31, and AD-32, all of which are screened within the Uppermost Aquifer.

2.2 Proposed Alternative Source

An initial review of site geochemistry, site historical data, and laboratory quality assurance/quality control (QA/QC) data did not identify alternative sources for cobalt and lithium due to Type I (sampling), Type II (laboratory), Type III (statistical evaluation), or Type V (anthropologic) issues. Groundwater sampling, laboratory analysis, and statistical evaluations were generally completed in accordance with 30 TAC §352.931 and the draft TCEQ guidance for groundwater monitoring (TCEQ, 2020b). As described below, the SSLs have been attributed to natural variation associated with the underlying geology, which is a Type IV (natural variation) issue.

2.2.1 Cobalt

Previous ASDs for cobalt at the EBAP provided evidence that cobalt is present in the aquifer geologic media at the site and that the observed cobalt concentrations were due to natural variation (Geosyntec, 2019a; Geosyntec, 2019b; Geosyntec, 2020b; Geosyntec, 2020c; Geosyntec, 2021a; Geosyntec, 2021b) of native geogenic sources. The previous ASDs demonstrated how the EBAP was not a source for cobalt in downgradient groundwater, based on observed concentrations of cobalt both in the ash material and in leachate from Synthetic Precipitation Leaching Procedure (SPLP) analysis (SW-846 Test Method 1312, [USEPA, 1994]) of the ash material. Cobalt was not detected in the SPLP ash leachate above the reporting limit of 0.01 mg/L, which is lower than the average concentrations observed at the wells of interest (Table 1).

Surface water samples were collected from the EBAP and West Bottom Ash Pond (WBAP) to characterize the total cobalt concentrations. Cobalt was detected in a sample collected on June 2, 2020 from the EBAP at an estimated concentration of 0.000080 mg/L (Table 1). Sampling of the EBAP was attempted again in November 2020 but was unsuccessful as the EBAP did not contain free water at the time of the sampling event. A sample was collected from the WBAP as a surrogate for the EBAP sample. Cobalt was detected at a concentration of 0.000501 mg/L in this WBAP surrogate sample (Table 1). The EBAP and WBAP receive the same process water, with the use of each pond dependent on available freeboard and cleaning schedule; thus, there is a basis for the equivalency of these two surface water samples. No changes to material handling or plant operations have occurred which would change the anticipated cobalt concentrations in the ponds since these samples were collected. These concentrations are lower than all reported cobalt concentrations for in network wells from the most recent sampling event and over an order of magnitude lower than the average concentration in groundwater at the wells of interest (Table 1; Figure 2). Thus, the EBAP is not the likely source of cobalt at AD-2, AD-31, and AD-32.

As noted in the previous ASDs, soil samples collected across the site, including from locations near the EBAP, identified cobalt in the aquifer solids at varying concentrations. SB-2 was advanced in the vicinity of AD-2 in April 2020 to re-log the geology at AD-2 and collect samples for laboratory analysis of total metals and mineralogy. The SB-2 field boring log, which was generated by Auckland Consulting LLC, is provided as Attachment B. Cobalt was detected at SB-2 at concentrations of 9.45 milligrams per kilogram (mg/kg) at 25-27 feet below ground surface (bgs) and 19.2 mg/kg at 31-33 feet bgs (Table 2). These cobalt concentrations are greater than the concentration of cobalt present in the bottom ash (Table 1). Both samples correlate to the depth of the monitoring well screen of AD-2 (20-40 feet bgs), indicating that naturally occurring cobalt is present in aquifer solids within the AD-2 screened interval. Cobalt was also identified in the aquifer solids at varying concentrations at other locations throughout the site, with the highest value of 23.5 mg/kg reported at AD-41, which is upgradient of the EBAP (Figure 3).

In addition to the analysis of total cobalt, soil samples were submitted for mineralogical analysis to determine the mineral composition of soils near the EBAP. X-ray diffraction (XRD) analysis of soils from SB-2 identified pyrite (an iron sulfide) in samples collected at 25-27 feet bgs and 31-33 feet bgs at concentrations up to 7% by weight (Figure 3). Cobalt is known to undergo isomorphic substitution for iron in crystalline iron minerals such as pyrite due to their similar ionic radii of approximately 1.56 angstroms (Å) for iron vs. 1.52 Å for cobalt (Clementi and Raimondi, 1963; Krupka and Serne, 2002; Hitzman et al., 2017). The presence of iron-bearing minerals in soil near the EBAP constitutes a potential source of naturally occurring cobalt.

The aquifer solids at SB-2 are distinctly red in color at shallow depths, as illustrated in the photolog of soil cores provided in Attachment C. While shallow samples were not collected for mineralogical analysis, red color in soils is often associated with the presence of oxidized ironbearing minerals such as hematite and goethite. The red color of the soil suggests the presence of iron oxide and hydroxide minerals within the shallow depth interval. The alteration of pyrite to these iron oxide and hydroxide minerals under oxidizing conditions is also a well-understood phenomenon, including in formations in east Texas (Senkayi et al., 1986; Dixon et al., 1982). It is likely that the pyrite alteration process is resulting in the release of isomorphically substituted cobalt from the pyrite crystal structure as it undergoes oxidative transformation to iron oxide/hydroxide minerals.

As described in the previous ASDs, vertical aquifer profiling (VAP) was used to collect groundwater samples from upgradient locations B-2 and B-3 during the soil boring and sample collection process (Geosyntec, 2019b). A groundwater sample was also collected from AD-32, an existing well within the EBAP groundwater monitoring network. Solid phases within these groundwater samples were separated and submitted for analysis of chemical composition. For the VAP samples, separation was completed using a centrifuge due to the high abundance of suspended solids. For the groundwater sample at AD-32, the sample was filtered using a 1.5micron filter. Based on total metals analysis, cobalt was identified both in the centrifuged solid material collected from upgradient VAP location B-3 [VAP-B3-(40-45)] and in the material retained on the filter after processing groundwater from permanent monitoring wells B-2 and B-3 (Table 2). The concentrations of cobalt in the solid material retained after filtration were comparable to the bulk soil samples collected from the same locations.

The solid sample [VAP-B3-(40-45)] was submitted for mineralogical analysis via XRD and scanning electron microscopy (SEM) using an energy dispersive spectroscopic analyzer (EDS). The XRD results identified pyrite as approximately 3% of the solid phase (Table 3). Pyrite was identified during SEM/EDS analysis of lignite which is mined immediately adjacent to the site. Logging completed while the VAP boring was advanced identified coal at several intervals, including 45 and 48 feet bgs (Figure 4). Furthermore, SEM/EDS of both centrifuged solid samples [VAP-B3-(40-45) and VAP-B3-(50-55)] identified pyrite in backscattered electron micrographs by the distinctive framboidal morphology (Harris et al., 1981; Sawlowicz, 2000). Major peaks representing iron and sulfur were identified in the EDS spectrum, which further support the identification of pyrite (Attachment D). While cobalt was not identified in the EDS spectrum, it is likely present at concentrations below the detection limit.

The EBAP was not identified as the source of cobalt at wells in the EBAP network based on the low concentrations of cobalt in the pond itself. Cobalt in the EBAP network groundwater is believed to be a result of natural variability within the aquifer. Naturally occurring cobalt is known to substitute for iron in iron-bearing minerals. The presence of iron sulfide pyrite and iron oxides/hydroxides hematite and goethite have been confirmed at AD-2 and across the Site. The weathering of pyritic minerals to iron oxide/hydroxide minerals may be resulting in the release of cobalt into groundwater from the crystal structure of these aquifer minerals.

2.2.2 Lithium

Previous ASDs for lithium at the EBAP attributed the observed lithium exceedances to variations in lithium associated with the suspended native aquifer solids that likely originate from naturally occurring lignite present in these soils. These native lithium-containing aquifer solids are ubiquitous in the aquifer based on the presence of lithium at upgradient locations and in the solid phase (Geosyntec, 2019b; Geosyntec, 2020b; Geosyntec, 2020c; Geosyntec, 2021a; Geosyntec, 2021b). Data gathered in support of the prior ASDs and recent results provide additional evidence that the observed lithium concentrations at AD-31 and AD-32 are naturally occurring and are due to natural variation in the aquifer (Type IV ASD).

As discussed in Section 2.1.1, surface water samples were collected directly from the EBAP and WBAP. Lithium was detected in the June 2, 2020 EBAP sample at a concentration of 0.0295 mg/L, which is comparable to the concentration of 0.0274 mg/L reported for the WBAP water on November 4, 2020 (**Figure 5, Table 4**). The mobile fraction identified in the bottom ash by SPLP was even lower, with an estimated lithium concentration of 0.011 mg/L. These concentrations are lower than the average lithium concentrations at AD-31 (0.0824 mg/L) and AD-32 (0.0863 mg/L) (**Table 4**). Thus, the EBAP is not the source of lithium at AD-31 and AD-32.

Groundwater samples collected from upgradient wells B-2 and B-3 in November 2021 had total lithium concentrations of 0.0554 mg/L and 0.0871 mg/L, respectively; the reported concentration at B-3 is greater than both the GWPS of 0.0590 mg/L and the concentrations of lithium observed at AD-31 and AD-32 (**Figure 5**). Because B-2 and B-3 were installed at locations upgradient to and unimpacted by site activities, these lithium concentrations suggest that dissolved lithium is naturally present at concentrations above the GWPS across the site at variable concentrations, and not limited to AD-31 and AD-32. It is noted that B-2 and B-3 are not part of the monitoring network for the EBAP, and as such the lithium concentrations in groundwater from these wells are not considered in calculating the GWPS for the CCR unit.

As described in Section 2.1.1, groundwater samples were collected from B-2, B-3, and AD-32 and filtered to separate solids. Groundwater was also collected from a VAP boring (VAP-B3-(40-45)) and centrifuged to separate solids. Lithium was detected in the solid material separated from these groundwater samples at concentrations comparable to bulk soil at all locations, providing evidence that the particulates captured during groundwater sampling contain lithium (**Table 5**).

2.2.2.1 Calculated Partition Coefficients

A previous ASD for lithium at the EBAP discussed proposed lithium mobility in groundwater due to desorption from clay minerals associated with naturally occurring lignite material. This mechanism was posited as the source of lithium in both upgradient and downgradient wells at the

EBAP (Geosyntec, 2019b). Previously completed XRD analysis of centrifuged solid material samples (VAP-B3-(40-45)) found that clay minerals, including kaolinite, smectite, and illite/mica, made up at least 60% of the aquifer solid (**Table 3**). SEM/EDS analysis also identified the presence of silicon, aluminum, and oxygen, all of which are components of clay minerals (**Attachment D**). The backscattered electron micrographs of these samples also identified clay particles by morphology. The largest clay particles (> 5 μm) are likely kaolinite, while smectite and illite dominate the smaller size fraction. These clay minerals, particularly smectite and illite, are known to retain cations such as lithium via incorporation into the octahedral layer of the mineral structure and through cation exchange processes.

Mass measurements and total metal concentrations in the solid materials separated from the groundwater samples during filtration and the filtered groundwater concentrations were used to calculate partition coefficients values (K_d) for lithium, potassium, and sodium. Details about the K_d calculation are provided in the previous ASD (Geosyntec, 2019b). K_d values for groundwater and particulates collected from wells B-2, B-3, and AD-32 were comparable to literature K_d values reported for organic-rich media such as bogs and peat beds (Sheppard et al., 2009; Sheppard et al., 2011), providing further evidence that lithium mobility in site groundwater is similar to other sites with organic-rich soils (**Table 6**). Additionally, the calculated K_d values for Pirkey soils were consistent with the literature, with potassium having the highest K_d (greatest affinity for sorption) and sodium the lowest K_d (least affinity for sorption). Furthermore, the values are similar for groundwater from all three wells, suggesting a universal mechanism controlling lithium, sodium, and potassium mobility in groundwater. Since the site-specific Kd values were calculated, lithium concentrations at the wells of interest have remained consistent, suggesting that the clay mineralogy mechanism is still controlling lithium groundwater concentrations (**Figure 6**).

These multiple lines of evidence show that elevated lithium concentrations at AD-31 and AD-32 are not due to a release from the EBAP, and instead can be attributed to natural variation (Type IV ASD). This variation appears related to the distribution of clay fractions associated with lignite materials in the soil aquifer material.

2.3 **Sampling Requirements**

As the ASD presented above supports the position that the identified SSLs are not due to a release from the Pirkey EBAP, the unit will remain in the assessment monitoring program. Groundwater at the unit will continue to be sampled for Appendix IV parameters on a semiannual basis.

SECTION 3

CONCLUSIONS AND RECOMMENDATIONS

The preceding information serves as the ASD prepared in accordance with 30 TAC §352.951(e) and supports the position that the SSLs for cobalt and lithium identified during assessment monitoring in November 2021 were not due to a release from the EBAP. The identified SSLs should instead be attributed to natural variation in the underlying geology. Therefore, no further action is warranted, and the Pirkey EBAP will remain in the assessment monitoring program. Certification of this ASD by a qualified professional engineer is provided in **Attachment E.**

SECTION 4

REFERENCES

- Arcadis, 2016. East Bottom Ash Pond CCR Groundwater Monitoring Well Network Evaluation. H.W. Pirkey Power Plant. May.
- Clementi, E., and Raimdoni, D. L. 1963. Atomic screening constants from SCF functions. *J. Chem. Phys.*, 38, 2686.
- Dixon, J.B., Hossner, L.R., Senkayi, A.L., and Egashira, K. 1982. Mineral properties of lignite overburden as they relate to mine spoil reclamation. In: J.A. Kittrick, D.S. Fanning, L. R. Hossner, editors, Acid Sulfate Weathering, *SSSA Spec. Publ. 10*. SSSA, Madison, WI. p. 169-191.
- EPRI, 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites, 3002010920. October.
- Geosyntec Consultants, 2019a. Alternative Source Demonstration Federal CCR Rule. H.W. Pirkey Power Plant. East Bottom Ash Pond. Hallsville, Texas. April.
- Geosyntec Consultants, 2019b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. September.
- Geosyntec, 2020a. Statistical Analysis Plan Revision 1. October.
- Geosyntec Consultants, 2020b. Alternative Source Demonstration Report Federal CCR Rule. H. W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. April.
- Geosyntec Consultants, 2020c. Alternative Source Demonstration Report Federal CCR Rule. H. W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. December.
- Geosyntec Consultants, 2021a. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. May.
- Geosyntec Consultants, 2021b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. December.
- Geosyntec Consultants, 2022. Statistical Analysis Summary East Bottom Ash Pond. H.W. Pirkey Plant. Hallsville, Texas. March.
- Harris, L.A, Kenik, E.A., and Yust, C.S. 1981. Reactions in pyrite framboids induced by electron beam heating in a HVEM. *Scanning Electron Microscopy*, 1, web.

- Hitzman, M.W., Bookstrom, A.A., Slack, J.F., and Zientek, M.L., 2017. Cobalt Styles of Deposits and the Search for Primary Deposits. USGS Open File Report 2017-1155.
- Krupka, K.M. and Serne, R.J., 2002. Geochemical Factors Affecting the Behavior of Antimony, Cobalt, Europium, Technetium, and Uranium in Vadose Sediments. Pacific Northwest National Lab, PNNL-14126. December.
- Sawlowicz, Z. 2000. Framboids: From Their Origin to Application. Pr. Mineral. (Mineralogical Transactions), 88, web.
- Senkayi, A.L., Dixon, J.B., and Hossner, L.R. 1986. Todorokite, goethite, and hematite: alteration products of siderite in East Texas lignite overburden. *Soil Science*, 142, 36-43.
- Sheppard, S., Long, J., Sanipelli, B., and Sohlenius, G. 2009. Solid/Liquid Partition Coefficients (K_d) for Selected Soil and Sediments at Forsmark and Laxemar-Simpevarp. R-09-27. Swedish Nuclear Fuel and Waste Management Co. March.
- Sheppard, S., Sohlenius, G., Omberg, L.G., Borgiel, M., Grolander, S., and Nordén, S. 2011. Solid/Liquid Partition Coefficients (K_d) and Plant/Soil Concentration Ratios (CR) for Selected Soil, Tills, and Sediments at Forsmark. R-11-24. Swedish Nuclear Fuel and Waste Management Co. R-11-24. November.
- TCEQ, 2020a. Title 30, Part 1, Chapter 352: Coal Combustion Residuals Waste Management, May 22.
- TCEQ, 2020b. Coal Combustion Residuals Groundwater Monitoring and Corrective Action Draft Technical Guideline No. 32. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action. Waste Permits Division. May.
- United States Environmental Protection Agency (USEPA), 1994. Method 1312 Synthetic Precipitation Leaching Procedure, Revision 0, September 1994, Final Update to the Third Edition of the Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, EPA publication SW-846.
- USEPA, 1996. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures. EPA 540/S-95/504. April.
- USEPA, 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance, EPA 530/R-09/007. March.

Table 1: Summary of Key Cobalt Analytical Data East Bottom Ash Pond - H.W. Pirkey Plant

Sample	Sample Date	Unit	Cobalt Concentration
Bottom Ash (Solid Material)	2/11/2019	mg/kg	6.1
SPLP Leachate of Bottom Ash	2/11/2019	mg/L	< 0.01
EBAP Pond Water	6/2/2020	mg/L	0.000080
WBAP Pond Water	11/4/2020	mg/L	0.000501
AD-2 - Average	May 2016 - November 2021	mg/L	0.0149
AD-31 - Average	May 2016 - November 2021	mg/L	0.0121
AD-32 - Average	May 2016 - November 2021	mg/L	0.0450

Notes:

mg/kg - milligram per kilogram

mg/L - milligram per liter

J - Estimated value. Result is less than the reporting limit but greater than or equal to the method detection limit.

A sample was collected from the WBAP on 11/4/2020 as a surrogate for the EBAP, as the EBAP did not contain free water. The same process water is stored in both the WBAP and EBAP.

Average values were calculated using all cobalt data collected under 40 CFR 257 Subpart D, excluding any identified outliers.

Table 2: Soil Cobalt Data East Bottom Ash Pond - H.W. Pirkey Plant

Location ID	Location	Sample Depth (ft bgs)	Cobalt (mg/kg)			
	Bulk					
AD 2	EDAD Notes als	25-27	9.45			
AD-2	Bulk Soil Samples EBAP Network 25-27 9.45 31-33 19.2					
AD-18	EDAD Notwork	8	3.60			
AD-16	EDAF Network	22	9.45 19.2 3.60 2.90 1.90 0.83 1.70 9.10 <1.0 23.5 1.90 2.36 3.62 10.30 7.21 3.11 1.30 0.59 1.11			
AD-31	FRAD Network	12	1.90			
AD-31	EDAI NELWOIK	26	0.83			
AD-32	FRAD Network	11	1.70			
AD-32	EDAI Network	20-25	9.10			
		15	< 1.0			
AD-41	Upgradient	35	23.5			
		95	1.90			
		10	2.36			
		16	3.62			
B-2	Upgradient	71	10.30			
		82	7.21			
		87	3.11			
		10	1.30			
B-3	Upgradient	20	0.59			
		97	1.11			
	Solid Material I	Retained After Filtration				
AD-32	EBAP Network	13-33	5.4			
B-2	Upgradient	38-48	4.3			
B-3	Upgradient	29-34	12.0			
D-3	Opgradient	VAP 40-45	18.0			

Notes:

mg/kg- milligram per kilogram

ft bgs - feet below ground surface

For AD-XX locations, samples were collected from additional boreholes advanced in the immediate area of the location identified by the well ID. Samples were not collected from the cuttings of the borings advanced for well installation. Samples for B-2 and B-3 locations were collected from cores removed from the borehole during well lithology logging.

Depths for samples collected after filtration represent the screened interval for the permanent well where the sample was collected.

Table 3: X-Ray Diffraction Results East Bottom Ash Pond - H. W. Pirkey Plant

Constituent	VAP-B3-(40-45)
Quartz	15
Plagioclase Feldspar	0.5
Orthoclase	ND
Calcite	ND
Dolomite	ND
Siderite	0.5
Goethite	ND
Hematite	2
Pyrite	3
Kaolinite	42
Chlorite	4
Illite/Mica	6
Smectite	12
Amorphous	15

Notes:

Results given in units of relative % abundance

ND: Not detected

VAP-B3-(40-45) is the centrifuged solid material from the groundwater sample collected at that interval.

Table 4: Summary of Key Lithium Analytical Data East Bottom Ash Pond - H.W. Pirkey Plant

Sample	Sample Date	Unit	Lithium Concentration
Bottom Ash (Solid Material)	2/11/2019	mg/kg	0.82 J
SPLP Leachate of Bottom Ash	2/11/2019	mg/L	0.011 J
EBAP Pond Water	6/2/2020	mg/L	0.0295
*WBAP Pond Water	11/4/2020	mg/L	0.0274
AD-31 - Average	May 2016 - November 2021	mg/L	0.0817
AD-32 - Average	May 2016 - November 2021	mg/L	0.1231

Notes:

mg/kg - milligram per kilogram

mg/L - milligram per liter

Average lithium values for monitoring wells AD-31 and AD-32 were calculated using all lithium data collected under 40 CFR 257 Subpart D, excluding statistically identified outliers.

- J Estimated value. Result is less than the reporting limit but greater than or equal to the method detection limit.
- * A sample was collected from the WBAP on 11/4/2020 as a surrogate for the EBAP, as the EBAP did not contain free water. The same process water is stored in both the WBAP and EBAP.

Table 5: Soil Lithium Data East Bottom Ash Pond - H.W. Pirkey Plant

Location ID	Sample Depth (ft bgs)	Lithium (mg/kg)
	Bulk Soil Sample	
AD-32*	11	0.53
AD-32	20-25	1.60
	10	5.30
B-2	16	3.97
B-2	71	7.42
	87	13.10
	10	3.64
B-3	20	2.59
	97	11.10
Lignite	N/A	2.9 J
Solid	l Material Retained After Filtr	ation
AD-32*	13-33	9.8 J
B-2	38-48	6.5 J
B-3	29-34	7.8 J
D-3	VAP 40-45	13.0

Notes:

J - estimated value

mg/kg- milligram per kilogram

ft bgs - feet below ground surface

 \ast - AD-32 samples were collected from a seperate borehole advanced near monitoring well AD-32

Depths for samples collected after filtration represent the screened interval for the permanent well where the sample was collected

VAP - vertical aquifer profiling

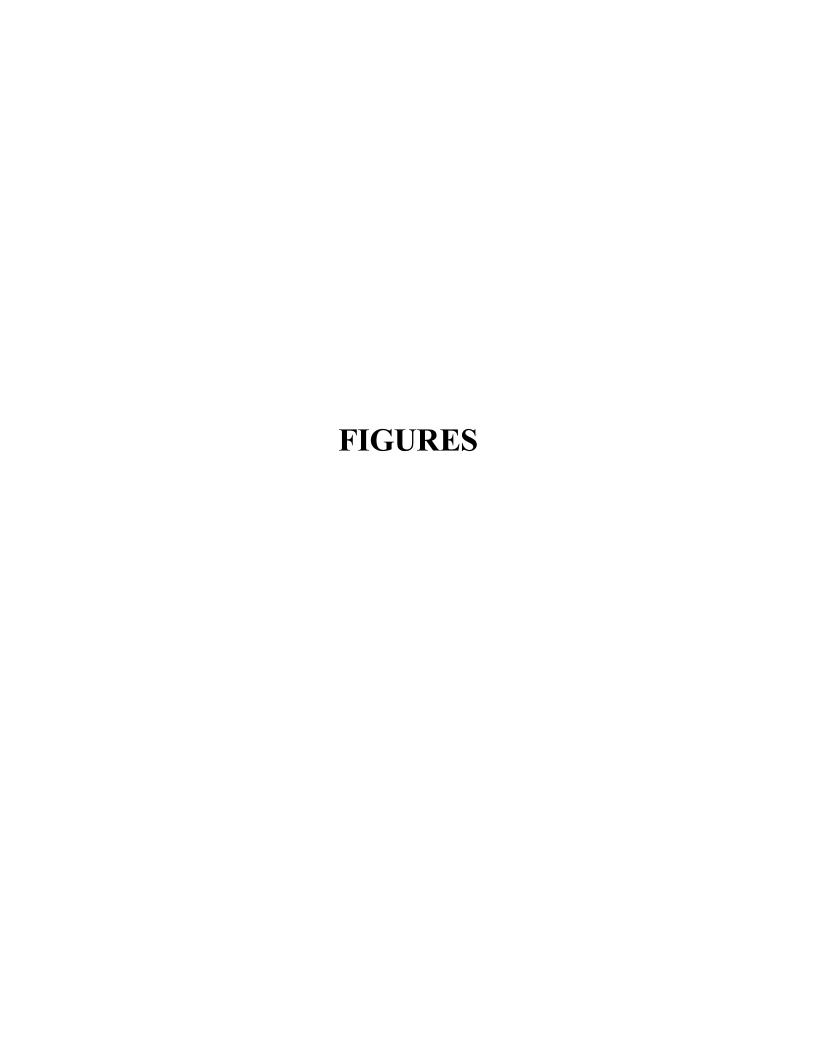
Table 6: Calculated Site-Specific Partition Coefficients
Pirkey Plant - East Bottom Ash Pond

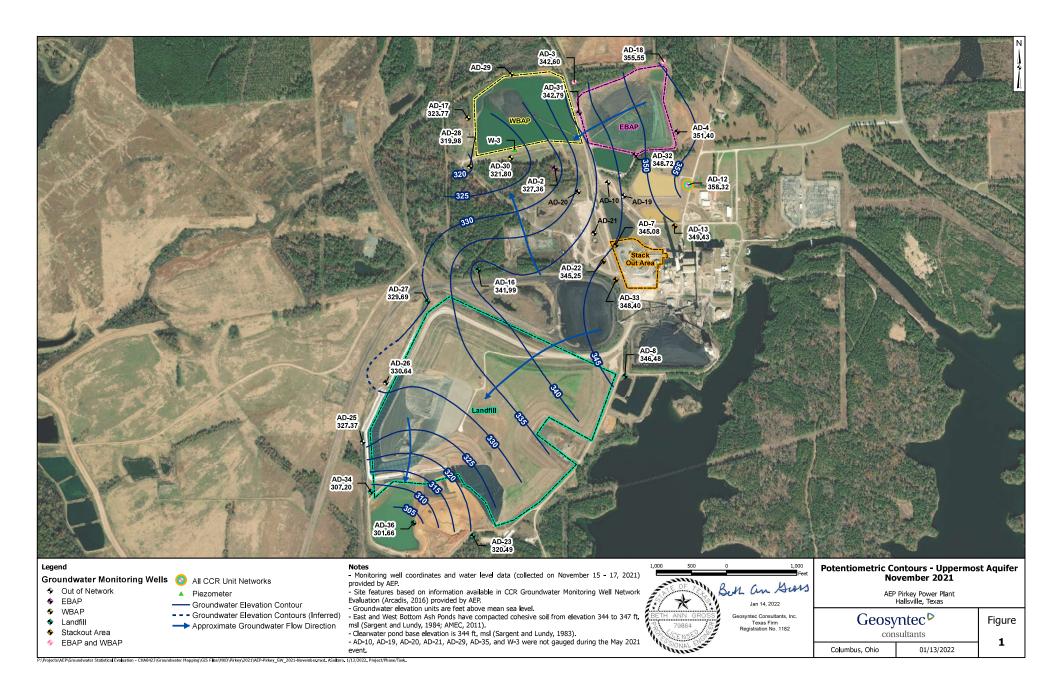
Source		B-2	Literature Value				
Unit	mg/L	mg/L mg/kg L/kg L/kg					
Element	Aqueous Phase	Adsorbed	Kd	Kd			
Li	0.081	6.5	80	43-370			
K	2.6	1100	423	42-1200			
Na	14	130	9	5.2-82			

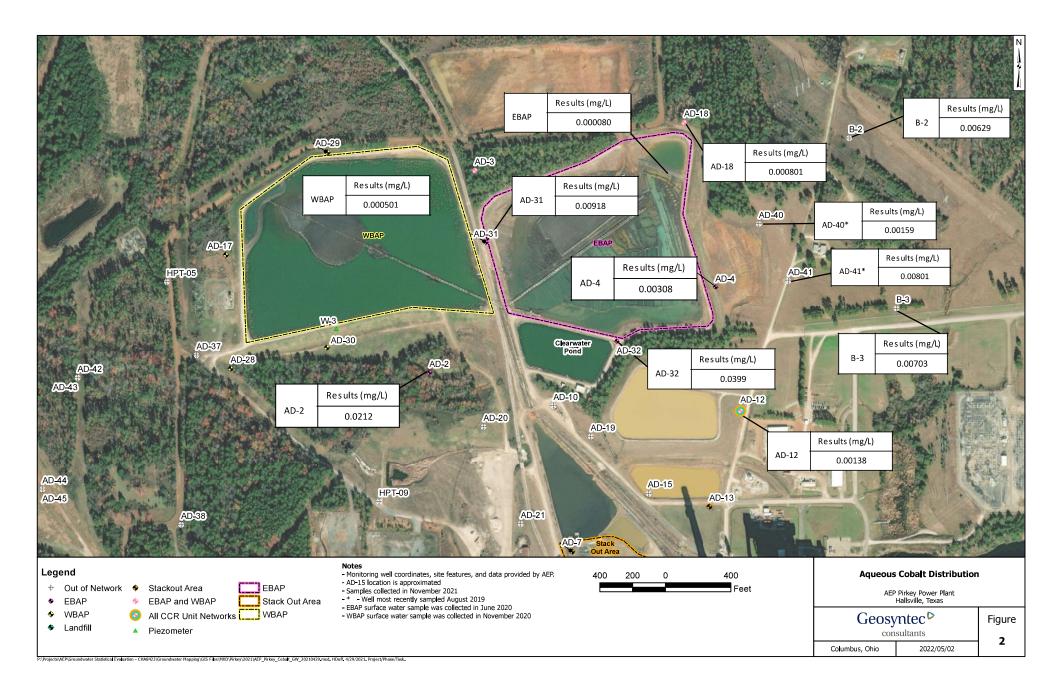
Source		B-3		Literature Value
Unit	mg/L mg/kg L/kg		L/kg	
Element	Aqueous Phase	Adsorbed	Kd	Kd
Li	0.097	7.8	80	43-370
K	2.9	1100	379	42-1200
Na	32	240	8	5.2-82

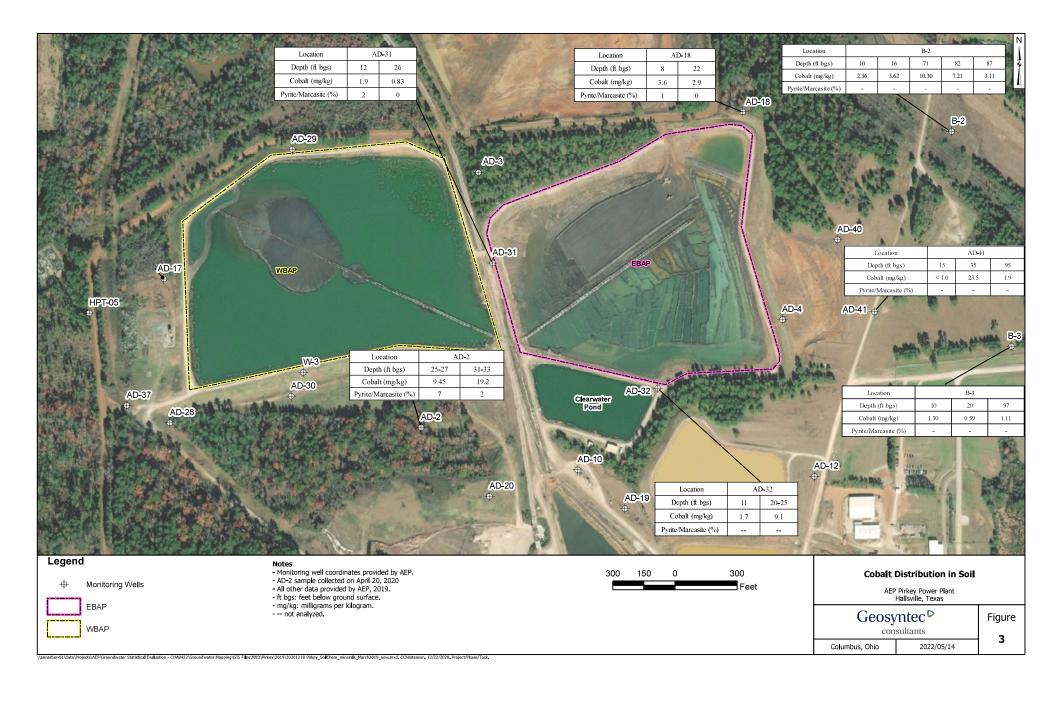
Source		AD-32*		Literature Value
Unit	mg/L	mg/kg	L/kg	L/kg
Element	Aqueous Phase	Adsorbed	Kd	Kd
Li	0.11	9.8	89	43-370
K	3.9	1800	462	42-1200
Na	57	220	4	5.2-82

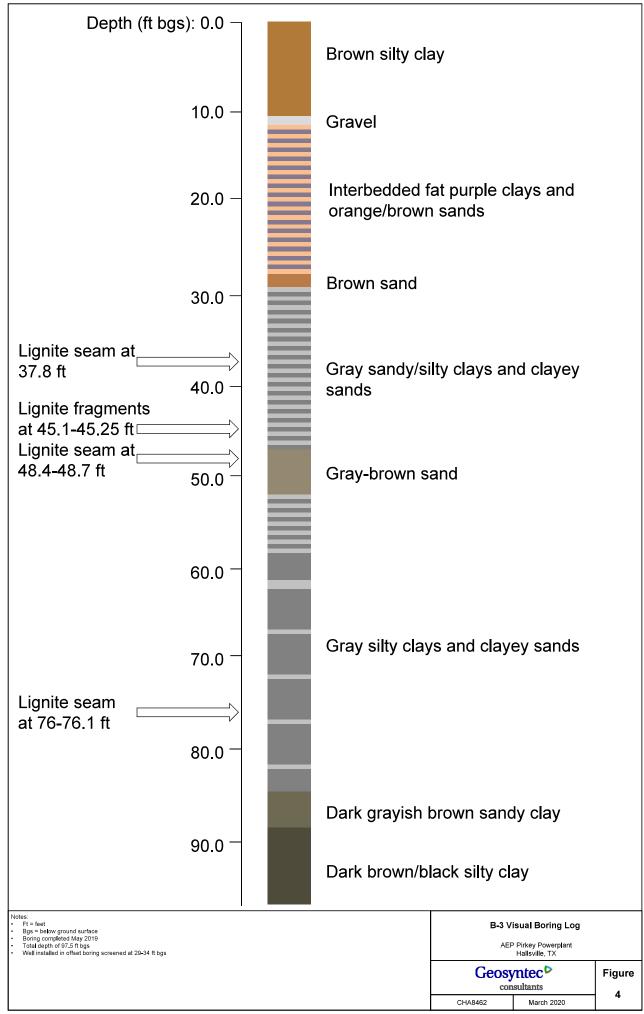
Notes:

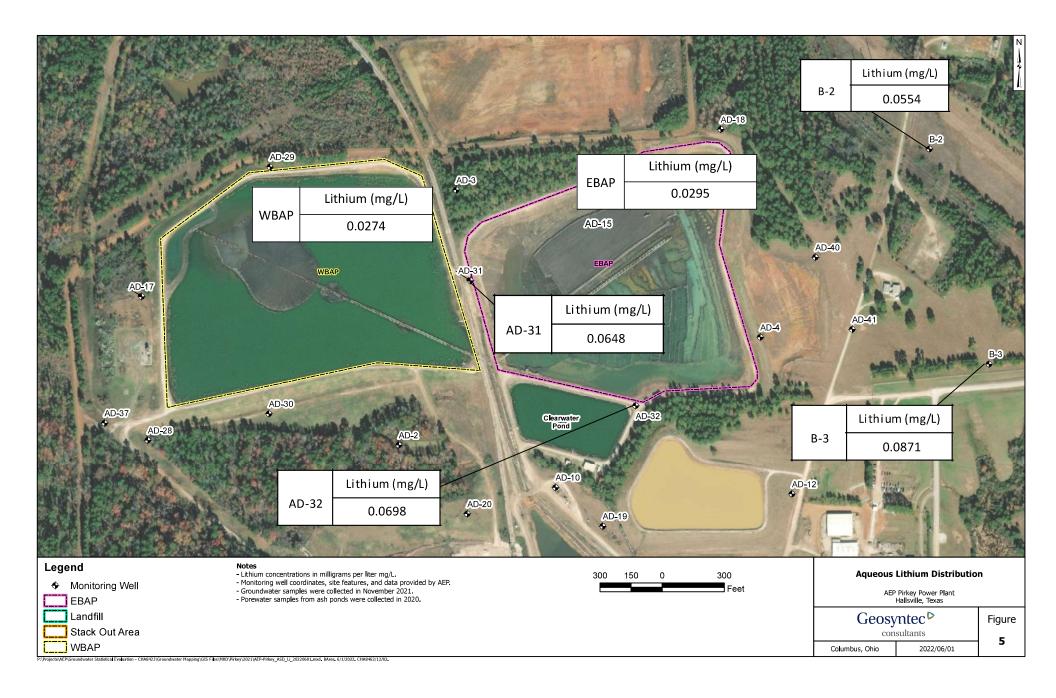

mg/L: milligrams per liter mg/kg: milligrams per kilogram

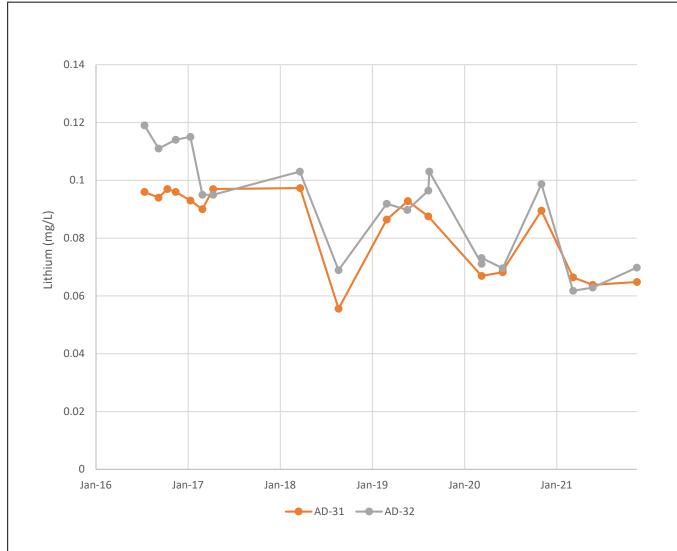

L/kg: liters per kilogram Kd: partition coefficient


Adsorbed values are total metals concentrations reported by USEPA Method 6010B.


Literature values represent maximum and minimum values for the parameter as reported in Sheppard et al, 2009 (Table 4-1, all sites) and Sheppard et al, 2011 (Table 3-3 cultivated peat and wetland peat only).

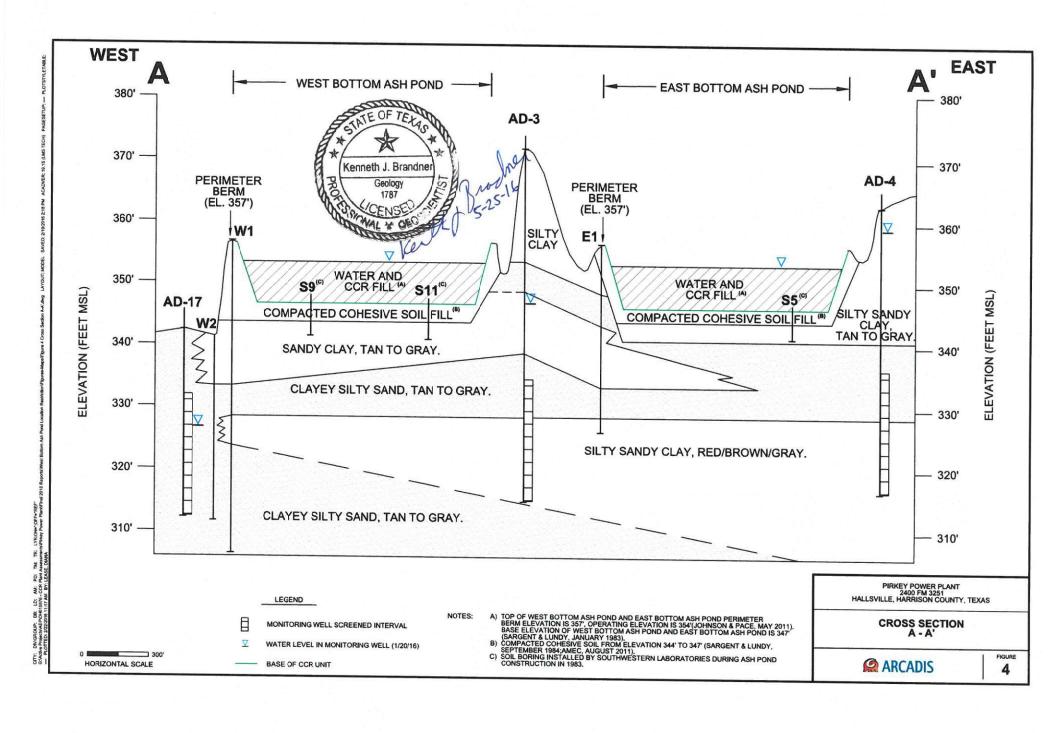

^{* -} AD-32 samples were collected from a separate borehole advanced near monitoring well AD-32





Notes: Lithium time series diagram compliance wells AD-31 and AD-32. Data collected as part of state groundwater monitoring program requirements.

Lithium Time Series GraphPirkey EBAP


Figure 6

Columbus, Ohio

June 2022

ATTACHMENT A Geologic Cross-Section A-A'

Document Path: 21GISPROJECTS1 FNVAEPUPIKAN PlantMXD/Figure 3 - Ste Lawrett and Most Lawretter

ATTACHMENT B SB-2 Boring Log

	S & SAND		-2		ESIVE SOILS - C	Bubr /	Part	ELEV	MATERIALS	DA	TE	DADJ	10010	CTERTICS
VLo V Lo L MDe N De I	loose led. Dense	0- 4 4-10 10-30 30-50 >50	Vsc So Mst St VSt	DNSISTENCY D Very Soft Soft Stiff Stiff Very Stiff Hard	PENETROMETER		COLORS Light Br Brown Dark Bk Black Grey Bl Blue Tan Gr Grenn Red Y Yellow ish.Reddish.WhWhite MALERIALS C1 Clay, Clayer Si Sailt, Silty Sa Sand, Sandy Ls Limestone Gr Gravel SiS Siltstone SS Sandstone Sh Shale, Shales		FFine MMediu CoCoarse SiSilty		ine dedium coarse	Calc Calcareous Lig Lignite		
The T	F T.		S			STRAT	UM DES	CRIPTION			ANDA	ARD	z	
ASSIGNMENT ASSIGNMENT	Recovery	DEPTH	SAMPLE	CONDITION OR CONSISTENCY	COLOR	MATERIALS OR ADJECTIVES	PREDOMINATE MATERIAL	CHARACTE OR MODIFICA		SEAT - 6"	1st - 6"	2nd - 6"	UNIFIED SOIL CLASSIFICATION	N - VALUE OR HAND
6-5	2' Rec	0		0-81	Br. H. Rd Br	Si	Sa	Silly Sand +	some clay,					
5-10	2.5' Rec		-	- 1	11.8d.Br			track roothair					moist	10.5
2-10			-		A.Ka.DI			the same of the last of the la	less than 1/4"	NI	-		MOIST	(6-16
10-15	4'RK	- Z		8-148	Lt. Rd Fr. Rd	SASi	CI	Clay-son	Edind and s	1/4			moist	10-
		-	-		Br, Gray	100		clayer san	The state of the s	ede	1			-
			-	,				The second secon	race iton one	9/10	_	,51	A CO	5 5797A
15-20	2' Rec	115		145	RLAN YILW.	Si,a	50	51Hx9 Kland -8	some sand	ela	3		V·mais	tto
			-	391	Br. Gray			and ironst		65	11		moist	(15
20-25	* No Re	ģ.	1		11/20 157	-	> (- centertet say	d segus in	51	4)	VIMBIS	-(20-
25-30	2.5 R	C			Gray - DKS	my ~		-gravel trenev	tel saw sa	ne	25	16	") sat, 9	-25'-
		-	H		DK. BL	2/)	M	- coverted au	and the latest state of th	cen	iew	90	1,0/24	nr
					(2-5			7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	titu sat can	100	Alla .	12"	- MOIST	277
0. 25	2/0							e 27"		333				
30-35	3'800		H		Contract of the Contract of th	C. Fall	*	- sat silty sa				1	Sat !	30,5
					17			* some u.f. a	WDSUM Chi	stal	Sir	de	exsand	32
2511	4' Rec	00		-0 11	1164	- 016	01	hetupen s	et sand ska	NUS	(25	-42	y v,n	16154
20-40	TRA	01	H	31-70	4. Gray, 6	vay US	Si	Chayey saidy	Soft I da	,0	291	146	10000	- (29
					10	192			1		21.1	0 10	Mala	131
			H					BOT. RHO'						

			H									-		
	-		H					#25-27	collecteda	1019	-	1		
								*31-331					1	
			-		/				,					- 10
			H											

* GPS: 32,416522, -94,49032 (12'E')
3.5'N
of AB-2/MW-2

ATTACHMENT C SB-2 Boring Photographic Log

GEOSYNTEC CONSULTANTS Photographic Record

Geosyntec consultants

Client: AEP Project Number: CHA8495

Site Name: Pirkey East Bottom Ash Pond Site Location: Hallsville, Texas

Photograph 1

Date: 4/21/2020

Direction: N/A

Comments:

0-5 foot interval of SB-2.

Photograph 2

Date: 4/21/2020

Direction: N/A

Comments:

5-10 foot interval of

SB-2.

1

GEOSYNTEC CONSULTANTS Photographic Record

Geosyntec consultants

Client: AEP Project Number: CHA8495

Site Name: Pirkey East Bottom Ash Pond Site Location: Hallsville, Texas

Photograph 3

Date: 4/21/2020

Direction: N/A

Comments:

10-15 foot interval of

SB-2.

Photograph 4

Date: 4/21/2020

Direction: N/A

Comments:

15-20 foot interval of SB-2. Recovery of this interval was limited.

GEOSYNTEC CONSULTANTS Photographic Record

Geosyntec consultants

Client: AEP Project Number: CHA8495

Site Name: Pirkey East Bottom Ash Pond Site Location: Hallsville, Texas

Photograph 5

Date: 4/21/2020

Direction: N/A

Comments:

20-25 foot interval of SB-2. Recovery of this interval was limited.

Photograph 6

Date: 4/21/2020

Direction: N/A

Comments:

25-30 foot interval of SB-2. Very little of this interval was recovered. A color change was observed from red to dark brown/black. A sample was collected from this interval.

GEOSYNTEC CONSULTANTS

Photographic Record

Geosyntec consultants

Client: AEP Project Number: CHA8495

Site Name: Pirkey East Bottom Ash Pond Site Location: Hallsville, Texas

Photograph 9

Date: 4/21/2020

Direction: N/A

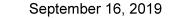
Comments:

30-35 foot interval of SB-2. Very little of this interval was recovered.. A sample was collected from this interval.

Photograph 10

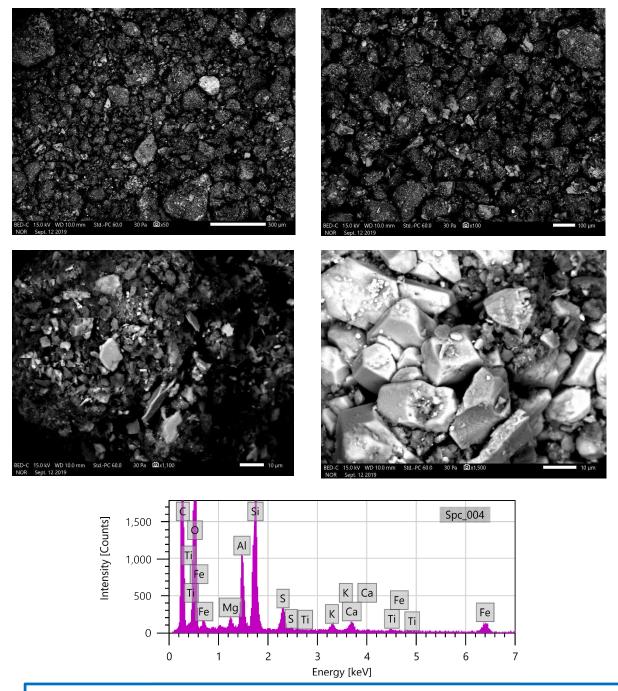
Date: 4/21/2020

Direction: N/A

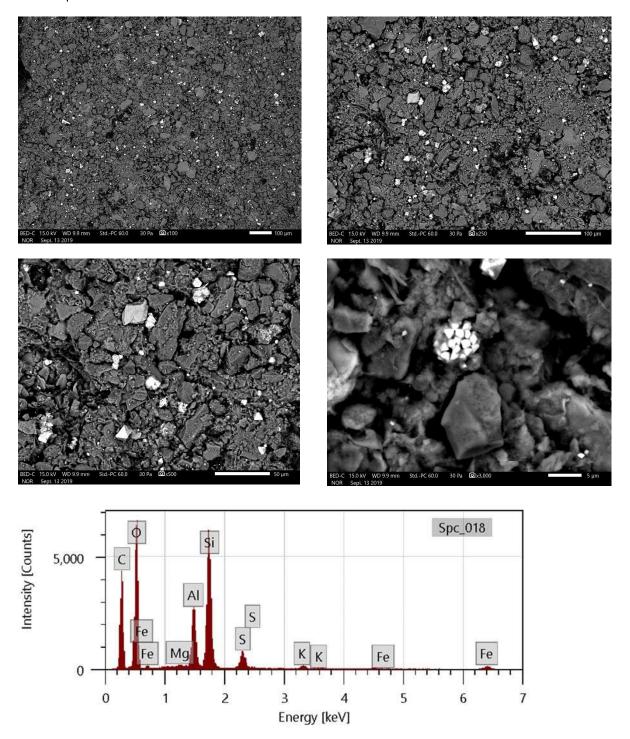

Comments:

35-40 foot interval of

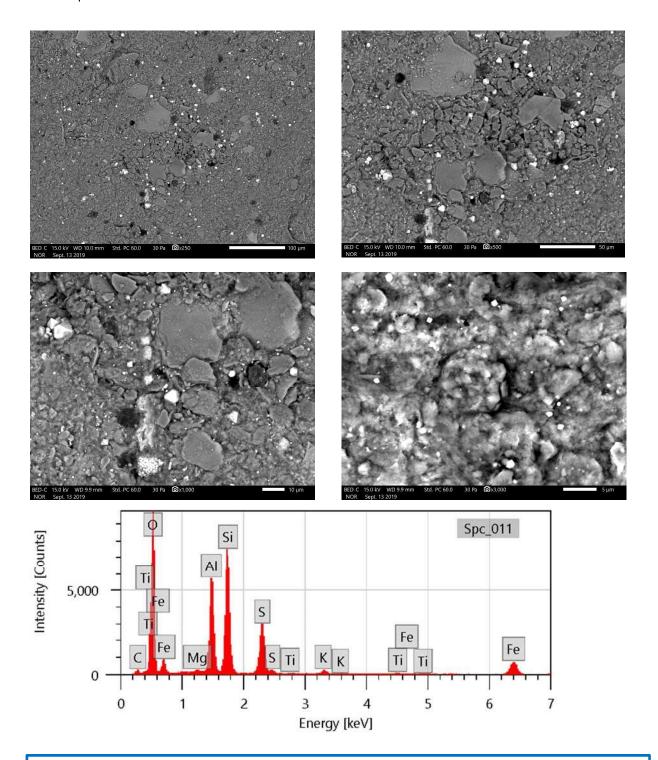
SB-2



ATTACHMENT D SEM/EDS Analysis



Dr. Bruce Sass 941 Chatham Lane, Suite 103, Columbus, OH 43221 via Email: <u>BSass@geosyntec.com</u>



Lignite. Backscattered electron micrographs show the sample at 100X, 1,100X, and 1,500X. EDS spectrum at bottom is an area scan of the region shown in top right micrograph. Bright particles are mostly quartz and feldspar. Major peaks for carbon, oxygen, silicon, and aluminum suggest coal and clay.

Sample VAP B3 40-45. Backscattered electron micrographs show the sample at 100X, 250X, 500X, and 3000X. EDS spectrum at bottom is an area scan of the region shown at 500X. Bright particles are pyrite (framboid in bottom right micrograph). Major peaks for carbon, oxygen, silicon, and aluminum suggest coal and clay.

Sample VAP B3 50-55. Backscattered electron micrographs show the sample at 250X, 500X, 1000X, and 3000X. EDS spectrum at bottom is an area scan of the region shown at 3000X. Bright particles are mostly pyrite (framboid in bottom left micrograph); occasional particles of Fe-Ti oxide are detected. Major peaks for oxygen, silicon, and aluminum suggest clay. Large blocky particles are mostly quartz, feldspar, and clay.

ATTACHMENT E Certification by a Qualified Professional Engineer

CERTIFICATION BY A QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected and above described alternative source demonstration is appropriate for evaluating the groundwater monitoring data for the Pirkey East Bottom Ash Pond CCR management area and that the requirements of 30 TAC § 352.951(e) have been met.

Beth Ann Gross

Signature

Printed Name of Licensed Professional Engineer

Buth am Gross

Geosyntec Consultants 2039 Centre Pointe Blvd, Suite 103 Tallahassee, Florida 32308

Texas Registered Engineering Firm No. F-1182

79864 Texas

Licensing State License Number

June 16,2022 Date

CHA8495/Pirkey EBAP ASD Geosyntec Consultants

ALTERNATIVE SOURCE DEMONSTRATION REPORT TEXAS STATE CCR RULE

H.W. Pirkey Power Plant East Bottom Ash Pond Hallsville, Texas

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

engineers | scientists | innovators

500 West Wilson Bridge Road, Suite 250 Worthington, OH 43085

January 2023

CHA8495

TABLE OF CONTENTS

SECTION 1	Introduction and Summary1-1			
1.1	CCR Rule Requirements1-1			
1.2	Demonstration of Alternative Sources1-2			
SECTION 2	Alternative Source Demonstration2-1			
2.1	EBAP Design and Construction2-1			
2.2	Regional Geology/Site Hydrogeology2-1			
2.3	Proposed Alternative Source			
	2.3.1 Cobalt			
	2.3.2 Lithium			
2.4	Sampling Requirements2-6			
SECTION 3	Conclusions and Recommendations			
SECTION 4	References 4-1			
	TABLES			
Table 1	TABLES Summary of Key Cobalt Analytical Data			
Table 1 Table 2				
Table 2 Table 3	Summary of Key Cobalt Analytical Data Soil Cobalt Data X-Ray Diffraction Results			
Table 2 Table 3 Table 4	Summary of Key Cobalt Analytical Data Soil Cobalt Data X-Ray Diffraction Results Summary of Key Lithium Analytical Data			
Table 2 Table 3 Table 4 Table 5	Summary of Key Cobalt Analytical Data Soil Cobalt Data X-Ray Diffraction Results Summary of Key Lithium Analytical Data Soil Lithium Data			
Table 2 Table 3 Table 4	Summary of Key Cobalt Analytical Data Soil Cobalt Data X-Ray Diffraction Results Summary of Key Lithium Analytical Data			
Table 2 Table 3 Table 4 Table 5	Summary of Key Cobalt Analytical Data Soil Cobalt Data X-Ray Diffraction Results Summary of Key Lithium Analytical Data Soil Lithium Data			

ATTACHMENTS

Attachment A Geologic Cross-Section A-A'

Attachment B SB-2 Boring Log

Attachment C SB-2 Boring Photographic Log

Attachment D SEM/EDS Analysis

Attachment E Certification by a Qualified Professional Engineer

LIST OF ACRONYMS

ASD Alternative Source Demonstration

BGS Below Ground Surface

CCR Coal Combustion Residuals

EBAP East Bottom Ash Pond

EDS Energy Dispersive Spectroscopic Analyzer

EPRI Electric Power Research Institute

GSC Groundwater Stats Consulting, LLC

GWPS Groundwater Protection Standard

LCL Lower Confidence Limit

MCL Maximum Contaminant Level

QA Quality Assurance

QC Quality Control

SEM Scanning Electron Microscopy

SPLP Synthetic Precipitation Leaching Profile

SSL Statistically Significant Level

TAC Texas Administrative Code

TCEQ Texas Commission on Environmental Quality

UTL Upper Tolerance Limit

USEPA United States Environmental Protection Agency

VAP Vertical Aquifer Profiling

WBAP West Bottom Ash Pond

XRD X-Ray Diffraction

SECTION 1

INTRODUCTION AND SUMMARY

This Alternative Source Demonstration (ASD) report has been prepared to address statistically significant levels (SSLs) for cobalt and lithium in the groundwater monitoring network at the H.W. Pirkey Plant East Bottom Ash Pond (EBAP), located in Hallsville, Texas, following the first semiannual assessment monitoring event of 2022. The H.W. Pirkey Plant has four coal combustion residuals (CCR) storage units regulated by the Texas Commission on Environmental Quality (TCEQ) under Registration No. CCR104, including the EBAP (**Figure 1**).

In June 2022, a semiannual assessment monitoring event was conducted at the EBAP in accordance with 30 TAC §352.951(a). The monitoring data were submitted to Groundwater Stats Consulting, LLC (GSC) for statistical analysis. Groundwater protection standards (GWPSs) were established for each Appendix IV parameter in accordance with the statistical analysis plan developed for the unit (Geosyntec, 2020a) and the United States Environmental Protection Agency's (USEPA's) Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance (Unified Guidance; USEPA, 2009). The GWPS for each parameter was established as the greater of either the background concentration or, for constituents with a maximum contaminant level (MCL), the MCL. To determine background concentrations, an upper tolerance limit (UTL) was calculated using pooled data from the background wells collected during the background monitoring and assessment monitoring events.

Confidence intervals were re-calculated for the Appendix IV parameters at the compliance wells to assess whether these parameters were present at an SSL above the GWPSs. An SSL was concluded if the lower confidence limit (LCL) of a parameter exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). The following SSLs were identified at the Pirkey EBAP (Geosyntec, 2022a):

- The LCLs for cobalt exceeded the GWPS of 0.00939 mg/L at AD-2 (0.0122 mg/L), AD-31 (0.00953 mg/L), and AD-32 (0.0323 mg/L).
- The LCL for lithium exceeded the GWPS of 0.0548 mg/L at AD-31 (0.0771 mg/L) and AD-32 (0.0785 mg/L).

No other SSLs were identified.

1.1 CCR Rule Requirements

TCEQ regulations regarding assessment monitoring programs for CCR landfills and surface impoundments (TCEQ, 2020a) provide owners and operators with the option to make an ASD when an SSL is identified (30 TAC §352.951(e)):

... In making a demonstration under this subsection, the owner or operator must, within 90 days of detecting a statistically significant level above the groundwater protection standard of any constituent listed in Appendix IV adopted by reference in §352.1431 of this title, submit a report prepared and certified in accordance with §352.4 of this title (relating to Engineering and Geoscientific Information) to the executive director, and any local pollution agency with jurisdiction that has requested to be notified, demonstrating that a source other than a CCR unit caused the exceedance or that the exceedance resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

Pursuant to 30 TAC §352.951(e), Geosyntec Consultants, Inc. (Geosyntec) has prepared this ASD report to document that the SSLs identified for cobalt and lithium in the groundwater monitoring network for the EBAP are from a source other than the EBAP.

1.2 <u>Demonstration of Alternative Sources</u>

An evaluation was completed to assess possible alternative sources to which the identified SSLs could be attributed. Alternative sources were identified amongst five types, based on methodology provided by EPRI (2017):

- ASD Type I: Sampling Causes;
- ASD Type II: Laboratory Causes;
- ASD Type III: Statistical Evaluation Causes;
- ASD Type IV: Natural Variation; and
- ASD Type V: Alternative Sources.

A demonstration was conducted to show that the SSLs identified for cobalt and lithium were based on a Type IV cause and not by a release from the Pirkey EBAP.

SECTION 2

ALTERNATIVE SOURCE DEMONSTRATION

The TCEQ CCR rules allow the owner or operator 90 days from the determination of an SSL to demonstrate that a source other than the CCR unit caused the SSL. Descriptions of the EBAP design and construction, regional geology and site hydrogeology, methodology used to evaluate the SSLs, and proposed alternative source are described below.

2.1 **EBAP Design and Construction**

The EBAP is a 31.5-acre CCR surface impoundment located at the north end of the Pirkey Plant, immediately east of the West Bottom Ash Pond (WBAP) (Figure 1). It was constructed while the Pirkey Plant was being developed in 1983 and 1984 and placed into operation in 1985 to receive bottom ash and economizer ash sluiced from the Plant boiler. Bottom ash and economizer ash are periodically excavated from the EBAP and removed via truck to either the on-site landfill or sold for offsite beneficial re-use.

The EBAP was developed by excavating part of its' perimeter into native soils to create an embankment height of approximately 4 feet, constructing compacted clay perimeter embankments, and constructing a compacted clay liner over the base of the pond (Arcadis, 2016). Multiple lithological borings advanced following installation of the clay liner confirm that at least 6 feet of clay is present below the base of the EBAP (Arcadis, 2016). The bottom elevation of the EBAP is approximately 347 feet above mean sea level, and the elevation of the top of the pond embankment is approximately 357 feet above mean sea level. The unit was designed to have a maximum storage capacity of 188 acre-feet.

2.2 Regional Geology/Site Hydrogeology

CHA8495/Pirkey EBAP ASD

The EBAP is positioned on an outcrop of the Eocene-age Recklaw Formation, which consists predominantly of clay and fine-grained sand (Arcadis, 2016). The Recklaw Formation is underlain by the Carrizo Sand, which crops out in the topographically lower southern portion of the plant. The Carrizo Sand consists of fine to medium grained sand interbedded with silt and clay.

The EBAP monitoring well network monitors groundwater within the Uppermost Aquifer, which was defined by Arcadis (2016) as very fine to fine grained clayey and silty sand with an average thickness of approximately 15 feet. Geologic cross-section A-A' from the EBAP Groundwater Monitoring Well Network Report (Arcadis, 2016) shows the subsurface geometry of the Uppermost Aquifer (indicated on the figure as clayey silty sand, tan to gray) underlying the EBAP and the WBAP. This figure is provided as Attachment A. Attachment A demonstrates lateral continuity of the Uppermost Aquifer spanning the entire length of the EBAP.

Groundwater flow direction in the area of the EBAP is west-southwesterly (Figure 1). Seasonal variability in groundwater flow has not been observed since the monitoring well network was

Geosyntec Consultants

installed. Groundwater flow through the Uppermost Aquifer occurs at a hydraulic gradient of approximately 0.01 feet per foot. The EBAP monitoring well network consists of upgradient monitoring wells AD-4, AD-12, and AD-18, and compliance wells AD-2, AD-3, AD-31, and AD-32, all of which are screened within the Uppermost Aquifer.

2.3 **Proposed Alternative Source**

An initial review of site geochemistry, site historical data, and laboratory quality assurance/quality control (QA/QC) data did not identify alternative sources for cobalt and lithium due to Type I (sampling), Type II (laboratory), Type III (statistical evaluation), or Type V (anthropologic) issues. Groundwater sampling, laboratory analysis, and statistical evaluations were generally completed in accordance with 30 TAC §352.931 and the draft TCEQ guidance for groundwater monitoring (TCEQ, 2020b). As described below, the SSLs have been attributed to natural variation associated with the underlying geology, which is a Type IV (natural variation) issue.

2.3.1 Cobalt

Previous ASDs for cobalt at the EBAP provided evidence that cobalt is present in the aquifer geologic media at the site and that the observed cobalt concentrations in groundwater were due to natural variation of native geogenic sources (Geosyntec, 2019a; Geosyntec, 2019b; Geosyntec, 2020b; Geosyntec, 2020c; Geosyntec, 2021a; Geosyntec, 2021b; Geosyntec, 2022b). The previous ASDs demonstrated how the EBAP was not a source for cobalt in downgradient groundwater, based on observed concentrations of cobalt both in the ash material and in leachate from Synthetic Precipitation Leaching Procedure (SPLP) analysis (SW-846 Test Method 1312, [USEPA, 1994]) of the ash material. Cobalt was not detected in the most recent SPLP ash leachate sample, collected in 2019, above the reporting limit of 0.01 mg/L, which is lower than the average concentrations observed at the wells of interest (**Table 1**). No changes to material handling or plant operations have occurred which would change the anticipated cobalt concentrations in the pond since this sample was collected.

Cobalt was detected at a concentration of 0.00128 mg/L in a June 2022 surface water sample collected from the EBAP to characterize the total cobalt concentrations (**Table 1**). This concentration is lower than the reported cobalt concentrations for multiple in network wells from the June 2022 sampling event, including the upgradient monitoring wells AD-4 (0.0041 mg/L; **Figure 2**) and AD-12 (0.00135 mg/L; **Figure 2**). The EBAP sample was also found to be approximately an order of magnitude lower than the average concentration in groundwater at the wells of interest (**Table 1**). Thus, the EBAP is not the likely source of cobalt at AD-2, AD-31, and AD-32.

As noted in the previous ASDs, soil samples collected across the site, including from locations near the EBAP, identified cobalt in the aquifer solids at concentrations ranging from 0.59 - 23.5 milligrams per kilogram (mg/kg) with the highest value reported at AD-41, which is upgradient of the EBAP (**Figure 3**). SB-2 was advanced in the vicinity of AD-2 in April 2020 to re-log the geology at AD-2 and collect samples for laboratory analysis of total metals and mineralogy. The

SB-2 field boring log, which was generated by Auckland Consulting LLC, is provided as **Attachment B**. Cobalt was detected at SB-2 at concentrations of 9.45 mg/kg at 25-27 feet below ground surface (bgs) and 19.2 mg/kg at 31-33 feet bgs (**Table 2**). These cobalt concentrations are greater than the concentration of cobalt present in the bottom ash (6.1 mg/kg; **Table 1**). Both samples correlate to the depth of the monitoring well screen of AD-2 (20-40 feet bgs), indicating that naturally occurring cobalt is present in aquifer solids within the AD-2 screened interval.

In addition to the analysis of total cobalt, soil samples were submitted for mineralogical analysis to determine the mineral composition of soils near the EBAP. X-ray diffraction (XRD) analysis of soils from SB-2 identified pyrite (an iron sulfide) in samples collected at 25-27 feet bgs and 31-33 feet bgs at concentrations up to 7% by weight (**Figure 3**). Cobalt is known to undergo isomorphic substitution for iron in crystalline iron minerals such as pyrite due to their similar ionic radii of approximately 1.56 angstroms (Å) for iron vs. 1.52 Å for cobalt (Clementi and Raimondi, 1963; Krupka and Serne, 2002; Hitzman et al., 2017). The presence of iron-bearing minerals in soil near the EBAP constitutes a potential source of naturally occurring cobalt.

The aquifer solids at SB-2 are distinctly red in color at shallow depths, as illustrated in the photolog of soil cores provided in **Attachment C**. While shallow samples were not collected for mineralogical analysis, red color in soils is often associated with the presence of oxidized iron-bearing minerals such as hematite and goethite. The red color of the soil suggests the presence of iron oxide and hydroxide minerals within the shallow depth interval. The alteration of pyrite to these iron oxide and hydroxide minerals under oxidizing conditions is also a well-understood phenomenon, including in formations in east Texas (Senkayi et al., 1986; Dixon et al., 1982). It is likely that the pyrite weathering process is resulting in the release of isomorphically substituted cobalt from the pyrite crystal structure as it undergoes oxidative transformation to iron oxide/hydroxide minerals.

As described in the previous ASDs, vertical aquifer profiling (VAP) was used to collect groundwater samples from upgradient locations B-2 and B-3 during the soil boring and sample collection process (Geosyntec, 2019b). A groundwater sample was also collected from AD-32, one of the existing compliance-wells within the EBAP groundwater monitoring network where a cobalt SSL was identified. Solid phase materials within these groundwater samples were separated and submitted for analysis of chemical composition. For the VAP samples, separation was completed using a centrifuge due to the high abundance of suspended solids. For the groundwater sample at AD-32, the sample was filtered using a 1.5-micron filter. Based on total metals analysis, cobalt was identified both in the centrifuged solid material collected from upgradient VAP location B-3 [VAP-B3-(40-45)] and in the material retained on the filter after processing groundwater from permanent monitoring wells B-2 and B-3 (Table 2). The concentrations of cobalt in the solid material retained after filtration were comparable to the bulk soil samples collected from the same locations.

The solid sample [VAP-B3-(40-45)] was submitted for mineralogical analysis via XRD and scanning electron microscopy (SEM) using an energy dispersive spectroscopic analyzer (EDS).

The XRD results identified pyrite as approximately 3% of the solid phase (**Table 3**). Pyrite was identified during SEM/EDS analysis of lignite which is mined immediately adjacent to the site. Logging completed while the VAP boring was advanced identified coal at several intervals, including 45 and 48 feet bgs (**Figure 4**). Furthermore, SEM/EDS of both centrifuged solid samples [VAP-B3-(40-45) and VAP-B3-(50-55)] identified pyrite in backscattered electron micrographs by the distinctive framboidal morphology (Harris et al., 1981; Sawlowicz, 2000). Major peaks representing iron and sulfur were identified in the EDS spectrum, which further support the identification of pyrite (**Attachment D**). While cobalt was not identified in the EDS spectrum, it is likely present at concentrations below the detection limit.

The EBAP was not identified as the source of cobalt at wells in the EBAP network based on the low concentrations of cobalt in the pond itself and the ubiquity of naturally occurring cobalt, especially in soil and groundwater samples upgradient from the EBAP. Cobalt in the EBAP network groundwater is believed to be a result of natural variability within the aquifer. Naturally occurring cobalt is known to substitute for iron in iron-bearing minerals. The presence of iron sulfide (as pyrite) and iron oxides/hydroxides hematite and goethite have been confirmed at AD-2 and across the Site. The weathering of pyritic minerals to iron oxide/hydroxide minerals may be resulting in the release of cobalt into groundwater from the crystal structure of these aquifer minerals.

2.3.2 Lithium

Previous ASDs for lithium at the EBAP attributed the observed lithium exceedances to variations in lithium associated with the suspended native aquifer solids that likely originate from naturally occurring lignite present in these soils. These native lithium-containing aquifer solids are ubiquitous in the aquifer based on the presence of both solid-phase and dissolved lithium at upgradient locations (Geosyntec, 2019b; Geosyntec, 2020b; Geosyntec, 2020c; Geosyntec, 2021a; Geosyntec, 2021b; Geosyntec, 2022b). Data gathered in support of the prior ASDs and recent results provide additional evidence that the observed lithium groundwater concentrations at AD-31 and AD-32 are naturally occurring and are due to natural variation in the aquifer (Type IV ASD).

As discussed in Section 2.3.1, a surface water sample was collected directly from the EBAP in June 2022. Lithium was detected in the June 2022 EBAP sample at a concentration of 0.0463 mg/L (**Figure 5, Table 4**). The labile fraction identified in the bottom ash by SPLP from a February 2019 sample was even lower, with an estimated (J-flagged) lithium concentration of 0.011 mg/L. These concentrations are below the average lithium concentrations at AD-31 (0.0819 mg/L) and AD-32 (0.0859 mg/L) (**Table 4**). Thus, the EBAP is not the likely source of lithium at AD-31 and AD-32.

Groundwater samples collected from upgradient wells B-2 and B-3 in March 2022 had total lithium concentrations of 0.0574 mg/L and 0.0734 mg/L, respectively. The reported concentration at B-3 is greater than the GWPS of 0.0590 mg/L and only slightly lower than the concentrations

of lithium observed at AD-31 and AD-32 (**Figure 5**). Because B-2 and B-3 were installed at locations upgradient to and unimpacted by site activities, these lithium concentrations suggest that dissolved lithium is naturally present at concentrations above the GWPS across the site at variable concentrations, and not limited to AD-31 and AD-32. It is noted that B-2 and B-3 are not part of the monitoring network for the EBAP, and as such the lithium concentrations in groundwater from these wells are not considered in calculating the GWPS for the CCR unit.

As described in Section 2.3.1, groundwater samples were collected from B-2, B-3, and AD-32 and filtered to separate solids. Groundwater was also collected from a VAP boring (VAP-B3-(40-45)) and centrifuged to separate solids. Lithium was detected in the solid material separated from these groundwater samples at concentrations comparable to bulk soil at all locations, providing evidence that the particulates captured during groundwater sampling contain lithium (**Table 5**).

2.3.2.1 Calculated Partition Coefficients

A previous ASD for lithium at the EBAP discussed lithium mobility in groundwater due to desorption from cation exchange complexes associated with clay minerals within naturally occurring lignite material. This mechanism was posited as the source of lithium in both upgradient and downgradient wells at the EBAP (Geosyntec, 2019b). Previously completed XRD analysis of centrifuged solid material samples (VAP-B3-(40-45)) found that clay minerals, including kaolinite, smectite, and illite/mica, made up at least 60% of the aquifer solid (**Table 3**). SEM/EDS analysis also identified the presence of silicon, aluminum, and oxygen, all of which are components of clay minerals (**Attachment D**). The backscattered electron micrographs of these samples also identified clay particles by morphology. The largest clay particles (> 5 μm) are likely kaolinite, while smectite and illite dominate the smaller size fraction. These clay minerals, particularly smectite and illite, are known to retain cations such as lithium via incorporation into the octahedral layer of the mineral structure and through cation exchange processes.

Mass measurements and total metal concentrations in the solid materials separated from the groundwater samples during filtration and the filtered groundwater concentrations were used to calculate partition coefficients values (K_d) for lithium, potassium, and sodium. Details about the K_d calculation are provided in the previous ASD (Geosyntec, 2019b). K_d values for groundwater and particulates collected from wells B-2, B-3, and AD-32 were comparable to literature K_d values reported for organic-rich media such as bogs and peat beds (Sheppard et al., 2009; Sheppard et al., 2011), providing further evidence that lithium mobility in site groundwater is similar to other sites with organic-rich soils (**Table 6**). Additionally, the calculated K_d values for Pirkey soils were consistent with the literature, with potassium having the highest K_d (greatest affinity for sorption) and sodium the lowest K_d (least affinity for sorption). Furthermore, the values are similar for groundwater from all three wells, suggesting a universal mechanism controlling lithium, sodium, and potassium mobility in groundwater.

These multiple lines of evidence show that elevated lithium concentrations at AD-31 and AD-32 are likely not due to a release from the EBAP, and instead can be attributed to natural variation

(Type IV ASD). This variation appears related to the distribution of clay fractions associated with lignite materials in the soil aquifer material.

2.4 **Sampling Requirements**

As the ASD presented above supports the position that the identified SSLs are not due to a release from the Pirkey EBAP, the unit will remain in the assessment monitoring program. Groundwater at the unit will continue to be sampled for Appendix IV parameters on a semiannual basis.

SECTION 3

CONCLUSIONS AND RECOMMENDATIONS

The preceding information serves as the ASD prepared in accordance with 30 TAC §352.951(e) and supports the position that the SSLs for cobalt and lithium identified during assessment monitoring in June 2022 were not due to a release from the EBAP. The identified SSLs should instead be attributed to natural variation in the underlying geology. Therefore, no further action is warranted, and the Pirkey EBAP will remain in the assessment monitoring program. Certification of this ASD by a qualified professional engineer is provided in **Attachment E.**

January 2023

SECTION 4

REFERENCES

- Arcadis, 2016. East Bottom Ash Pond CCR Groundwater Monitoring Well Network Evaluation. H.W. Pirkey Power Plant. May.
- Arcadis, 2022. Landfill CCR Groundwater Monitoring Well Network Evaluation. H.W. Pirkey Power Plant. January.
- Clementi, E., and Raimdoni, D. L. 1963. Atomic screening constants from SCF functions. *J. Chem. Phys.*, 38, 2686.
- Dixon, J.B., Hossner, L.R., Senkayi, A.L., and Egashira, K. 1982. Mineral properties of lignite overburden as they relate to mine spoil reclamation. In: J.A. Kittrick, D.S. Fanning, L. R. Hossner, editors, Acid Sulfate Weathering, *SSSA Spec. Publ. 10*. SSSA, Madison, WI. p. 169-191.
- EPRI, 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites. 3002010920. October.
- Geosyntec Consultants, 2019a. Alternative Source Demonstration Federal CCR Rule. H.W. Pirkey Power Plant. East Bottom Ash Pond. Hallsville, Texas. April.
- Geosyntec Consultants, 2019b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. September.
- Geosyntec, 2020a. Statistical Analysis Plan Revision 1. October.
- Geosyntec Consultants, 2020b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. April.
- Geosyntec Consultants, 2020c. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. December.
- Geosyntec Consultants, 2021a. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. May.
- Geosyntec Consultants, 2021b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. December.
- Geosyntec Consultants, 2022a. Statistical Analysis Summary East Bottom Ash Pond. H.W. Pirkey Plant. Hallsville, Texas. October.

- Geosyntec Consultants, 2022b. Alternative Source Demonstration Report Texas State CCR Rule. H.W. Pirkey Power Plant, East Bottom Ash Pond. Hallsville, Texas, June.
- Harris, L.A, Kenik, E.A., and Yust, C.S. 1981. Reactions in pyrite framboids induced by electron beam heating in a HVEM. *Scanning Electron Microscopy*, 1, web.
- Hitzman, M.W., Bookstrom, A.A., Slack, J.F., and Zientek, M.L., 2017. Cobalt Styles of Deposits and the Search for Primary Deposits. USGS Open File Report 2017-1155.
- Krupka, K.M. and Serne, R.J., 2002. Geochemical Factors Affecting the Behavior of Antimony, Cobalt, Europium, Technetium, and Uranium in Vadose Sediments. Pacific Northwest National Lab, PNNL-14126. December.
- Sawlowicz, Z. 2000. Framboids: From Their Origin to Application. Pr. Mineral. (Mineralogical Transactions), 88, web.
- Senkayi, A.L., Dixon, J.B., and Hossner, L.R. 1986. Todorokite, goethite, and hematite: alteration products of siderite in East Texas lignite overburden. *Soil Science*, 142, 36-43.
- Sheppard, S., Long, J., Sanipelli, B., and Sohlenius, G. 2009. Solid/Liquid Partition Coefficients (K_d) for Selected Soil and Sediments at Forsmark and Laxemar-Simpevarp. R-09-27. Swedish Nuclear Fuel and Waste Management Co. March.
- Sheppard, S., Sohlenius, G., Omberg, L.G., Borgiel, M., Grolander, S., and Nordén, S. 2011. Solid/Liquid Partition Coefficients (K_d) and Plant/Soil Concentration Ratios (CR) for Selected Soil, Tills, and Sediments at Forsmark. R-11-24. Swedish Nuclear Fuel and Waste Management Co. R-11-24. November.
- TCEQ, 2020a. Title 30, Part 1, Chapter 352: Coal Combustion Residuals Waste Management, May 22.
- TCEQ, 2020b. Coal Combustion Residuals Groundwater Monitoring and Corrective Action Draft Technical Guideline No. 32. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action. Waste Permits Division. May.
- USEPA, 1994. Method 1312 Synthetic Precipitation Leaching Procedure, Revision 0, September 1994, Final Update to the Third Edition of the Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, EPA publication SW-846.
- USEPA, 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance. EPA 530/R-09/007. March.

Table 1: Summary of Key Cobalt Analytical Data East Bottom Ash Pond - H.W. Pirkey Plant

Sample	Sample Date	Unit	Cobalt Concentration
Bottom Ash (Solid Material)	2/11/2019	mg/kg	6.1
SPLP Leachate of Bottom Ash	2/11/2019	mg/L	< 0.01
EBAP Pond Water	6/24/2022	mg/L	0.00128
AD-2 - Average	May 2016 - June 2022	mg/L	0.0140
AD-31 - Average	May 2016 - June 2022	mg/L	0.0123
AD-32 - Average	May 2016 - June 2022	mg/L	0.0431

Notes:

mg/kg - milligram per kilogram

mg/L - milligram per liter

SPLP - Synthetic Precipitation Leaching Procedure

Average values were calculated using all cobalt data collected under 40 CFR 257 Subpart D, excluding any identified outliers.

Table 2: Soil Cobalt Data East Bottom Ash Pond - H.W. Pirkey Plant

Location ID	Location	Sample Depth (ft bgs)	Cobalt (mg/kg)		
Bulk Soil Samples					
AD 2		25-27	9.45		
AD-2	EBAP Network	31-33	19.2		
AD-18	EBAP Network	8	3.60		
AD-16	EDAP Network	22	2.90		
AD-31	EBAP Network	12	1.90		
AD-31	EDAF Network	26	0.83		
AD-32	EBAP Network	11	1.70		
AD-32	EDAF Network	20-25	9.10		
		15	< 1.0		
AD-41	Upgradient	35	23.5		
		95	1.90		
		10	2.36		
		16	3.62		
B-2	Upgradient	71	10.30		
		82	7.21		
		87	3.11		
		10	1.30		
B-3	Upgradient	20	0.59		
		97	1.11		
Solid Material Retained After Filtration					
AD-32	EBAP Network	13-33	5.4		
B-2	Upgradient	38-48	4.3		
B-3	Ungradient	29-34	12.0		
D-3	Upgradient	VAP 40-45	18.0		

Notes:

mg/kg- milligram per kilogram

ft bgs - feet below ground surface

For AD-XX locations, samples were collected from additional boreholes advanced in the immediate area of the location identified by the well ID. Samples were not collected from the cuttings of the borings advanced for well installation. Samples for B-2 and B-3 locations were collected from cores removed from the borehole during well lithology logging.

Depths for samples collected after filtration represent the screened interval for the permanent well where the sample was collected.

Table 3: X-Ray Diffraction Results East Bottom Ash Pond - H. W. Pirkey Plant

Constituent	VAP-B3-(40-45)
Quartz	15
Plagioclase Feldspar	0.5
Orthoclase	ND
Calcite	ND
Dolomite	ND
Siderite	0.5
Goethite	ND
Hematite	2
Pyrite	3
Kaolinite	42
Chlorite	4
Illite/Mica	6
Smectite	12
Amorphous	15

Notes:

Results given in units of relative % abundance

ND: Not detected

VAP-B3-(40-45) is the centrifuged solid material from the groundwater sample collected at that interval.

Table 4: Summary of Key Lithium Analytical Data East Bottom Ash Pond - H.W. Pirkey Plant

Sample	Sample Date	Unit	Lithium Concentration
Bottom Ash (Solid Material)	2/11/2019	mg/kg	0.82 J
SPLP Leachate of Bottom Ash	2/11/2019	mg/L	0.011 J
EBAP Pond Water	6/24/2022	mg/L	0.0463
AD-31 - Average	May 2016 - June 2022	mg/L	0.0819
AD-32 - Average	May 2016 - June 2022	mg/L	0.0859

Notes:

mg/kg - milligram per kilogram

mg/L - milligram per liter

Average lithium values for monitoring wells AD-31 and AD-32 were calculated using all lithium data collected under 40 CFR 257 Subpart D, excluding statistically identified outliers.

J - Estimated value. Result is less than the reporting limit but greater than or equal to the method detection limit.

Table 5: Soil Lithium Data East Bottom Ash Pond - H.W. Pirkey Plant

Location ID	Sample Depth (ft bgs)	Lithium (mg/kg)				
	Bulk Soil Sample					
AD-32*	11	0.53				
AD-32	20-25	1.60				
	10	5.30				
B-2	16	3.97				
B-2	71	7.42				
	87	13.10				
	10	3.64				
B-3	20	2.59				
	97	11.10				
Lignite	N/A	2.9 J				
Solid Material Retained After Filtration						
AD-32*	13-33	9.8 J				
B-2	38-48	6.5 J				
B-3	29-34	7.8 J				
D-3	VAP 40-45	13.0				

Notes:

J - estimated value

mg/kg- milligram per kilogram

ft bgs - feet below ground surface

 \ast - AD-32 samples were collected from a seperate borehole advanced near monitoring well AD-32

Depths for samples collected after filtration represent the screened interval for the permanent well where the sample was collected

VAP - vertical aquifer profiling

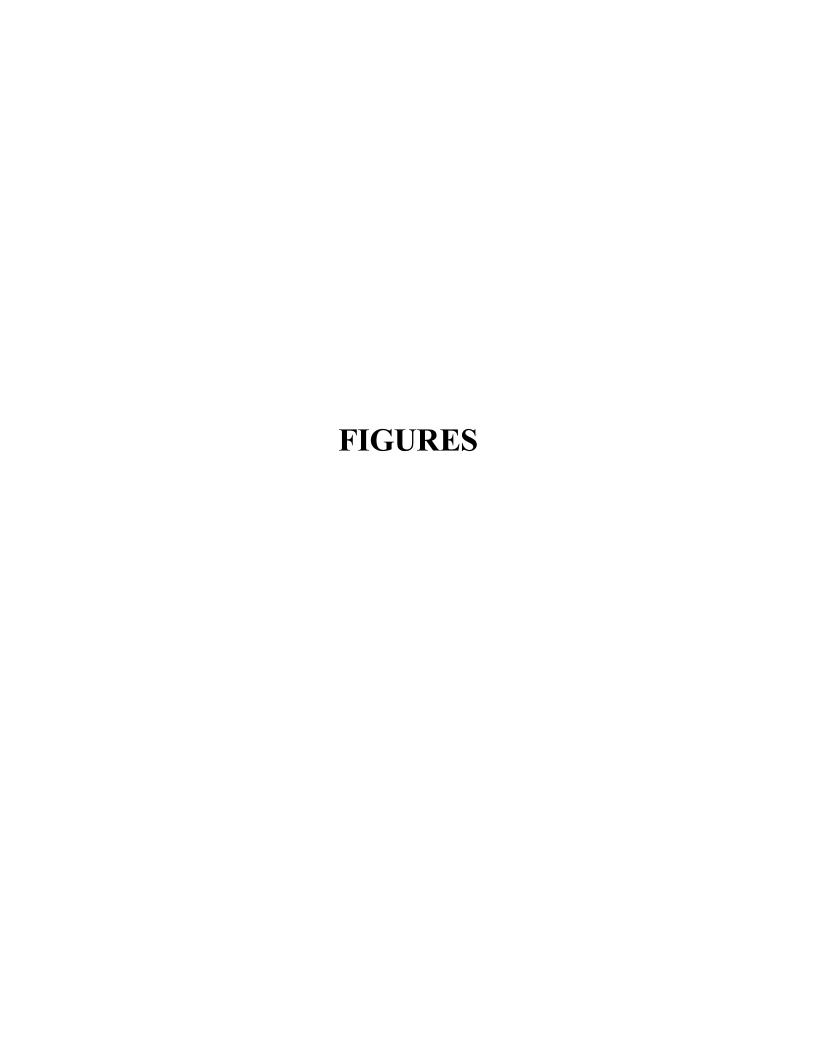
Table 6: Calculated Site-Specific Partition Coefficients
Pirkey Plant - East Bottom Ash Pond

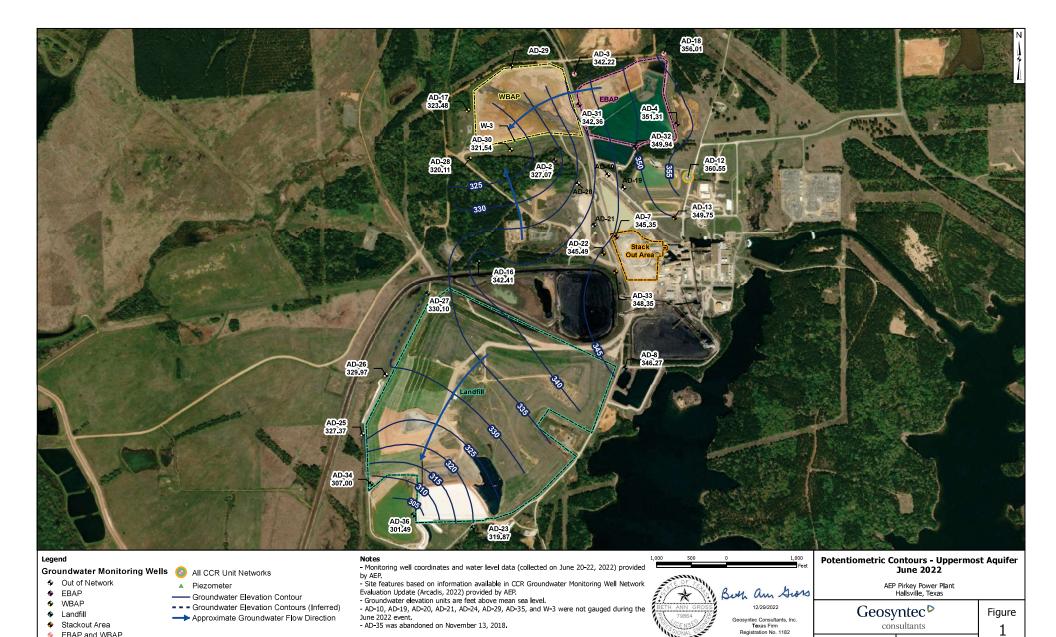
Source	B-2			Literature Value
Unit	mg/L	mg/kg	L/kg	L/kg
Element	Aqueous Phase	Adsorbed	Kd	Kd
Li	0.081	6.5	80	43-370
K	2.6	1100	423	42-1200
Na	14	130	9	5.2-82

Source	B-3		Literature Value	
Unit	mg/L	mg/kg	L/kg	L/kg
Element	Aqueous Phase	Adsorbed	Kd	Kd
Li	0.097	7.8	80	43-370
K	2.9	1100	379	42-1200
Na	32	240	8	5.2-82

Source		AD-32*		Literature Value
Unit	mg/L	mg/kg	L/kg	L/kg
Element	Aqueous Phase	Adsorbed	Kd	Kd
Li	0.11	9.8	89	43-370
K	3.9	1800	462	42-1200
Na	57	220	4	5.2-82

Notes:

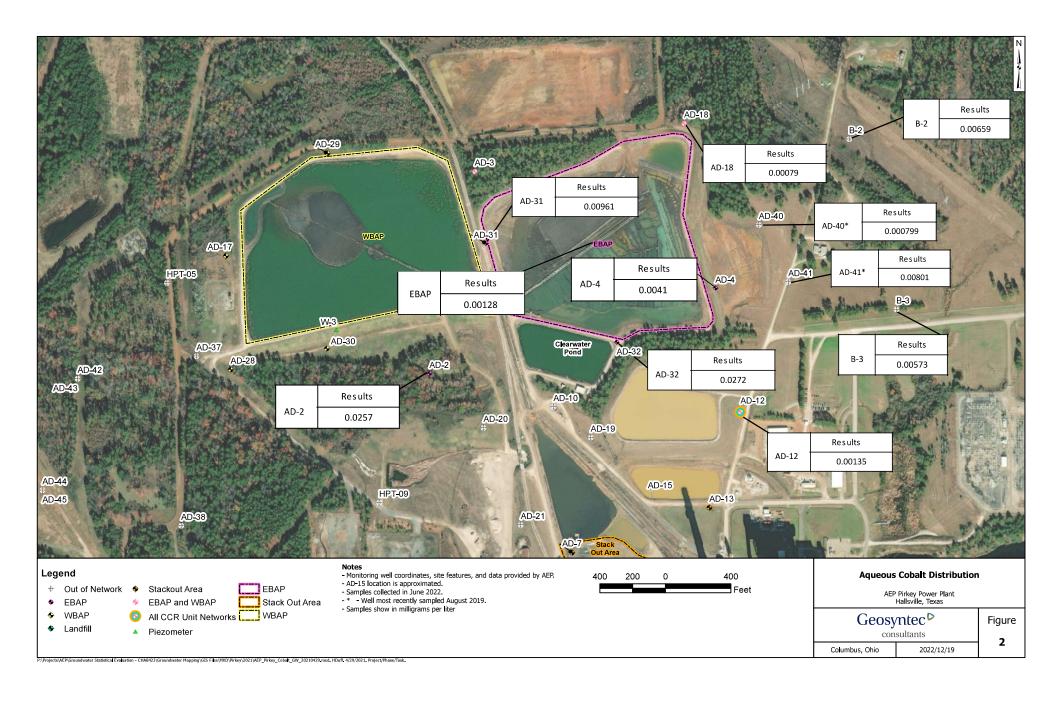

mg/L: milligrams per liter mg/kg: milligrams per kilogram

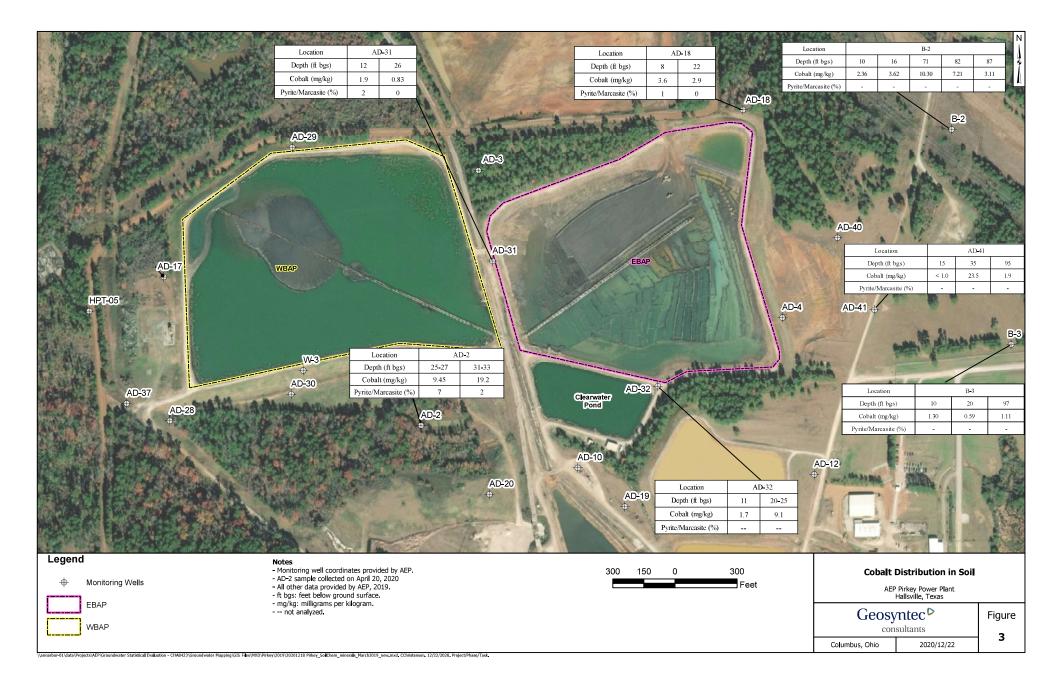

L/kg: liters per kilogram Kd: partition coefficient

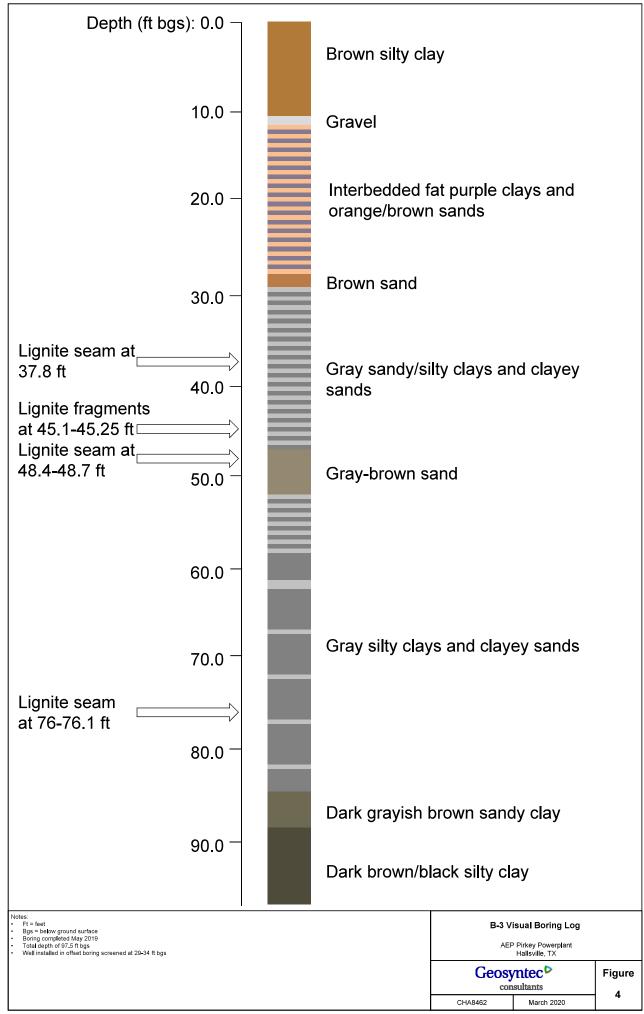
Adsorbed values are total metals concentrations reported by USEPA Method 6010B.

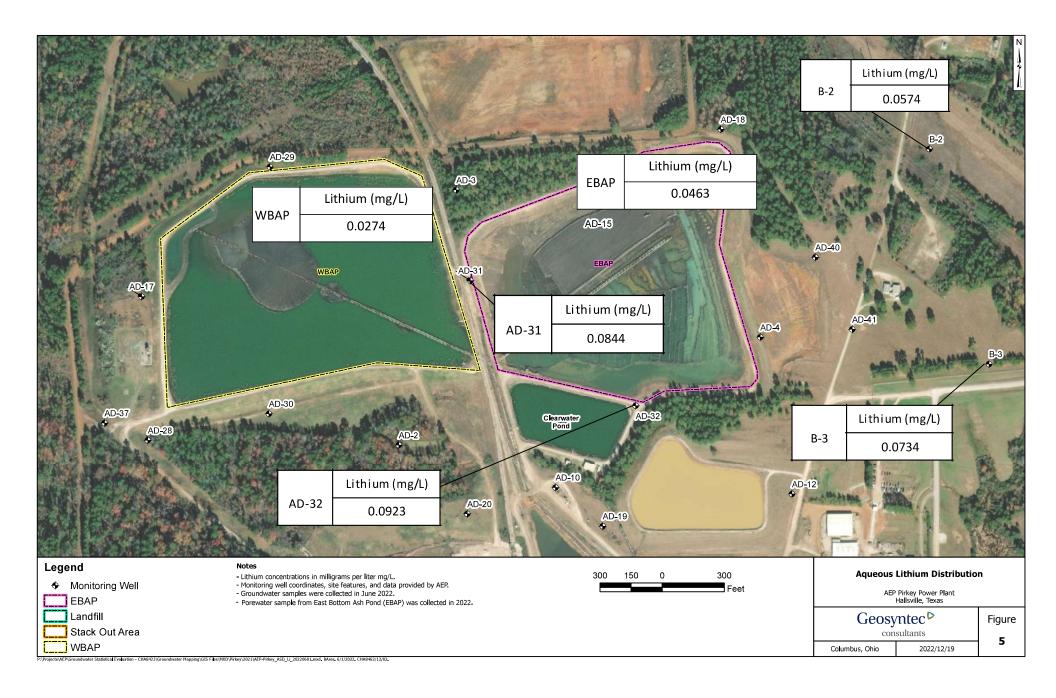
Literature values represent maximum and minimum values for the parameter as reported in Sheppard et al, 2009 (Table 4-1, all sites) and Sheppard et al, 2011 (Table 3-3 cultivated peat and wetland peat only).

^{* -} AD-32 samples were collected from a separate borehole advanced near monitoring well AD-32

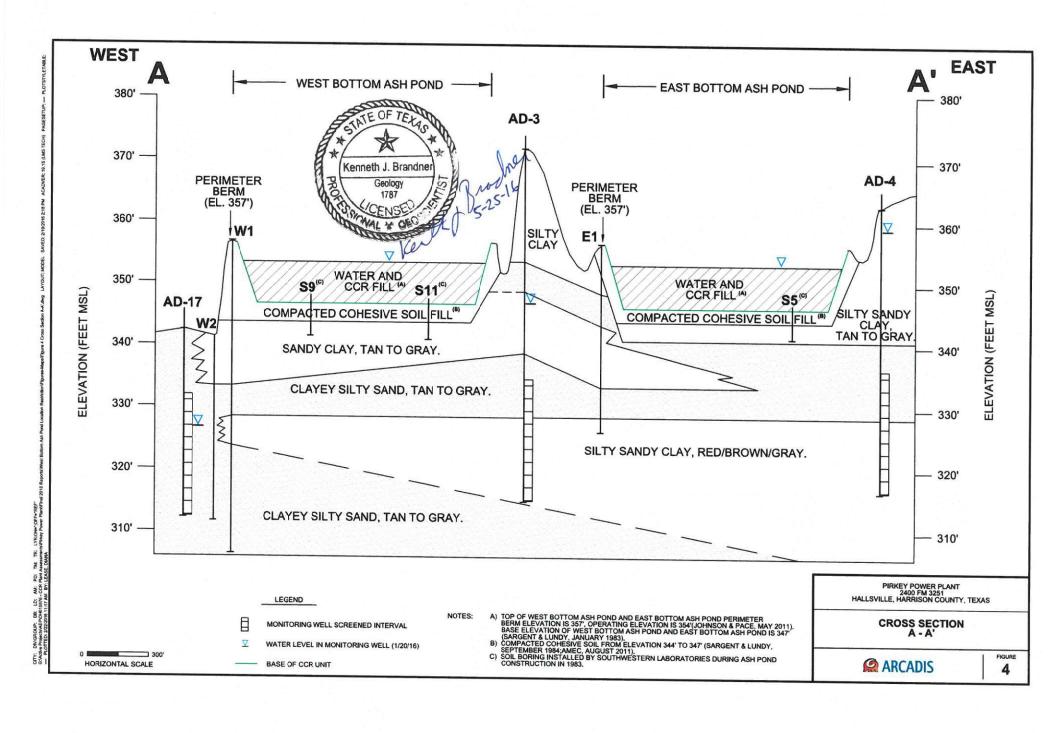





Columbus, Ohio


2022/12/21

EBAP and WBAP



ATTACHMENT A Geologic Cross-Section A-A'

Document Path: 21GISPROJECTS1 FNVAEPUPIKAN PlantMXD/Figure 3 - Ste Lawrett and Most Lawretter

ATTACHMENT B SB-2 Boring Log

	ATION 'S & SAND		-2		ESIVE SOILS - C	Bubr /	Part	ELEV	MATERIALS	DA	TE	DADJ	10010	CTERTICS
VLo I Lo I MDe I De I	Med. Dense	0- 4 4-10 10-30 30-50 >50	Vsc So Mst St VSt	DNSISTENCY D Very Soft Soft Stiff Stiff Very Stiff Hard	0 - 0.25 0.25 - 0.5 0.5 - 1.0 1.0 - 2.0	2 2 - 4 - 8 - 15 -	4 G 8 T 15 R	Light Br. Brown Dark Bk Black Grey Bl Blue Tan Gr Grenn Red Y Yellow sh.Reddish.WhWhite	Cl Clay, Clayer Si Silt, Silty Sa Sand, Sandy Ls Limestone Gr Gravel SiS Siltstone SS Sandstone Sh Shale, Shale		FF MN	ine dedium coarse	Calc C	alcareous ignite rganic aminate lickenside lightly
The T	NO.	F T.	S			STRAT	UM DES	CRIPTION			ANDA	ARD	z	
ASSIGNMENT ASSIGNMENT	Recovery	DEPTH	SAMPLE	CONDITION OR CONSISTENCY	COLOR	MINOR MATERIALS OR ADJECTIVES	PREDOMINATE MATERIAL	CHARACTE OR MODIFICA		SEAT - 6"	1st - 6"	2nd - 6"	UNIFIED SOIL CLASSIFICATION	N - VALUE OR HAND
6-5	2' Rec	0		0-81	Br. H. Rd Br	Si	Sa	Silly Sand +	since clay,					
5-10	2.5' Rec		-	- 1	11.8d.Br			track roothair					moist	10.5
2-10			-		A.Ka.DI			the same of the last of the la	less than 1/4"	N	-		MOIST	(6-10
10-15	4' RK	- Z .		8-148	Lt. Rd St. Rd	SASi	CI	Clay-som	Edind and s	1/4	2		moist	10-
		-	-		Br, Gray	100		clayer san	The state of the s	edle	1			-
	,		-	,				The second secon	race iton one	9/10	_	51	AP C	
15-20	2'Rec	145		145	RLAN YILW.	Si,a	50	51Hx9 Kland -8	some sand	Ela	3		V·mais	tto
				391	Br. Gray			and ironst		65	11		moist	(15
20-25	* No Re		1		11/20 157	-	> (- centertet say	d segus in	51	4)	VIMBIS	-(20-
25-30	2.5 R	C			Gray - DKS	my ~		-gravel tremer	tel saw sa	ne	25	16	") sat, 9	-25'-
			H		195.8F	2/)	M	daver self	and the latest designation of the latest des	æn	iews	90	142/24	nr
					(21-3	-		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	titu sat can	150	4W	12"	- MOIST	277
30-35	3'800		H					e 27"						
20-35	SIE		H		ATTEN A	KERN	*	- sat silty sa				>	Sat.	32.
					17			* some u.f. a	WDSUM Chi	stal	Sir	de	exsand	22
2511	4'REC	00	H	-0.14	1164	- 010	01	hetween s	of sand ska	MS	(25	-42	y v.n	16154
20-40	TRA	01		31-70	4. Gray, 6	vay Up	Si	Chayey saidy	Soft I da	,0	391	046	1000	- (29
		-							1			10	11,5110	101
								S.T. CHO'						
											-	-		
		-	H					#25-27	collecteda	1019		1		-
								*31-331					1	
					/				,					4
	1000		H											

* GPS: 32,416522, -94,49032 (12'E')
3.5'N
of AB-2/MW-2

ATTACHMENT C SB-2 Boring Photographic Log

Geosyntec consultants

Client: AEP Project Number: CHA8495

Site Name: Pirkey East Bottom Ash Pond Site Location: Hallsville, Texas

Photograph 1

Date: 4/21/2020

Direction: N/A

Comments:

0-5 foot interval of SB-2.

Photograph 2

Date: 4/21/2020

Direction: N/A

Comments:

5-10 foot interval of

SB-2.

1

Geosyntec consultants

Client: AEP Project Number: CHA8495

Site Name: Pirkey East Bottom Ash Pond Site Location: Hallsville, Texas

Photograph 3

Date: 4/21/2020

Direction: N/A

Comments:

10-15 foot interval of

SB-2.

Photograph 4

Date: 4/21/2020

Direction: N/A

Comments:

15-20 foot interval of SB-2. Recovery of this interval was limited.

Geosyntec consultants

Client: AEP Project Number: CHA8495

Site Name: Pirkey East Bottom Ash Pond Site Location: Hallsville, Texas

Photograph 5

Date: 4/21/2020

Direction: N/A

Comments:

20-25 foot interval of SB-2. Recovery of this interval was limited.

Photograph 6

Date: 4/21/2020

Direction: N/A

Comments:

25-30 foot interval of SB-2. Very little of this interval was recovered. A color change was observed from red to dark brown/black. A sample was collected from this interval.

Geosyntec consultants

Client: AEP Project Number: CHA8495

Site Name: Pirkey East Bottom Ash Pond Site Location: Hallsville, Texas

Photograph 9

Date: 4/21/2020

Direction: N/A

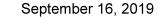
Comments:

30-35 foot interval of SB-2. Very little of this interval was recovered.. A sample was collected from this interval.

Photograph 10

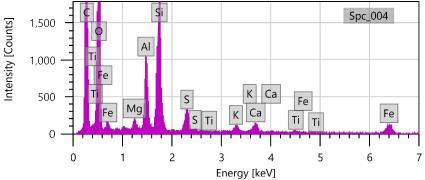
Date: 4/21/2020

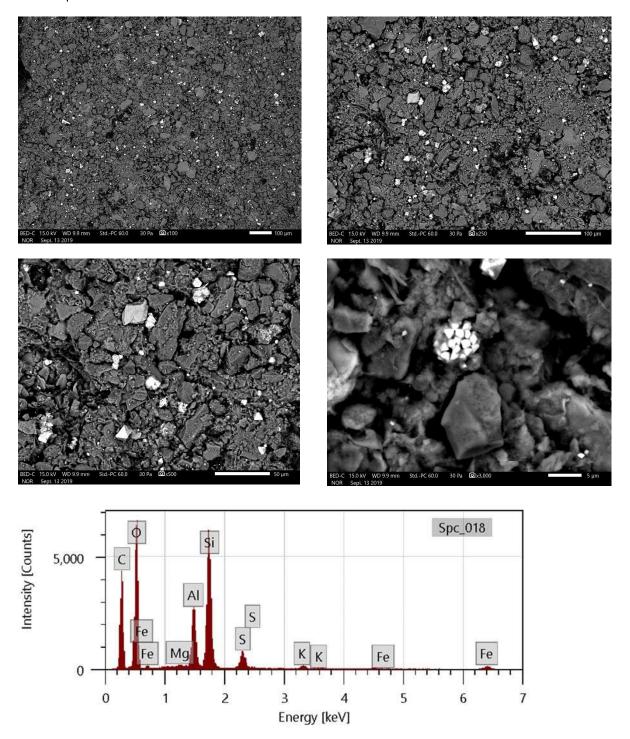
Direction: N/A


Comments:

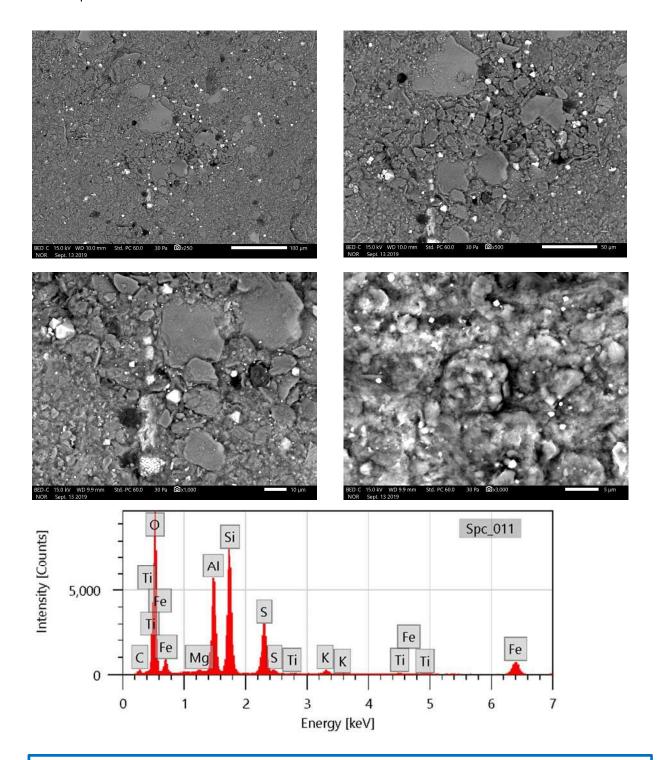
35-40 foot interval of

SB-2


ATTACHMENT D SEM/EDS Analysis


via Email: BSass@geosyntec.com

Dr. Bruce Sass 941 Chatham Lane, Suite 103, Columbus, OH 43221



Lignite. Backscattered electron micrographs show the sample at 100X, 1,100X, and 1,500X. EDS spectrum at bottom is an area scan of the region shown in top right micrograph. Bright particles are mostly quartz and feldspar. Major peaks for carbon, oxygen, silicon, and aluminum suggest coal and clay.

Sample VAP B3 40-45. Backscattered electron micrographs show the sample at 100X, 250X, 500X, and 3000X. EDS spectrum at bottom is an area scan of the region shown at 500X. Bright particles are pyrite (framboid in bottom right micrograph). Major peaks for carbon, oxygen, silicon, and aluminum suggest coal and clay.

Sample VAP B3 50-55. Backscattered electron micrographs show the sample at 250X, 500X, 1000X, and 3000X. EDS spectrum at bottom is an area scan of the region shown at 3000X. Bright particles are mostly pyrite (framboid in bottom left micrograph); occasional particles of Fe-Ti oxide are detected. Major peaks for oxygen, silicon, and aluminum suggest clay. Large blocky particles are mostly quartz, feldspar, and clay.

ATTACHMENT E Certification by a Qualified Professional Engineer

CERTIFICATION BY A QUALIFIED PROFESSIONAL ENGINEER

I certify that the above described alternative source demonstration is appropriate for evaluating the groundwater monitoring data for the Pirkey East Bottom Ash Pond CCR management area and that the requirements of 30 TAC § 352.951(e) have been met.

Beth Ann Gross Printed Name of L	icensed Professional Engineer	BETH ANN GROSS
Both am	Digitally signed by Beth Gross, Date: 2023.01.25 16:50:32 -05'00'	79864 E CENSE SIONAL ENGRA
Signature		
		Geosyntec Consultants 2039 Centre Pointe Blvd, Suite 103 Tallahassee, Florida 32308
		Texas Registered Engineering Firm No. F-1182
79864	Texas	January 25, 2023

Date

Licensing State

License Number

APPENDIX 4- Field Reports

CCR Groundwater Monitoring Well Inspection Form

Facility: PINMM PP		Sampling Period: MARCH 2022	
Sampling Contractor: FAGUE	ENTRUNMETAL	Signature:	

Well No.	Well Locked	Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Housing, and Pad in Good Shape	Well Properly Labeled	Well cap present	Comments	
AD-13	V	\checkmark	\checkmark	V	✓	V	V		
A0-22	V	V	V	V	\checkmark	V	/		
A0-33	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	V	V		
AP-7	V	\checkmark	V	V		V	V	CORRESION; CASING HARD TO OPEN	
B-3				V	V		/	NOLOCK	
Ap-18	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	√		-
AD-34	V	V	\checkmark	\checkmark		\checkmark	V	HIMGE BRIHEN	-
AD-17	\checkmark		✓			\checkmark	/	000 100 100 0	
AD-Z	V	\checkmark	\checkmark	V	\checkmark		V		
AD-4					V	\checkmark	J	NO LOCK LIMITEP ACCESS	ESPECIALLY WHEN WET

<u>Instructions:</u> Complete form and submit to AEP Environmental Services with Field Data. Place check mark for items that are satisfactory. Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

CCR Groundwater Monitoring Well Inspection Form

Facility:	Pilloy	Sampling Period: March 2022
Sampling Contractor:	Essle Env	Signature: Part M

Well No.	Well Locked	Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Housing, and Pad in Good Shape	Well Properly Labeled	Well cap present	Medal Coved Wen'+ Clife
B-Z							~	-no label
AD-12			/			labeled as	/	No ribel
AD-32	✓			/	/		/	
413			/		/	/	_	
AD-30	0	_	_		/		~	
25.0A	1	/		_	/	_		
25.CA	<u> </u>	1				J	1	overgrown
85. ap				/			U	3,000
40-3	/	/	/			labeled as mw-3	/	access not maintained
								overslawn
						,		

<u>Instructions:</u> Complete form and submit to AEP Environmental Services with Field Data. Place check mark for items that are satisfactory. Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

Facility Name	PAHONA
Sample by	Kinny Mi Donald
Depth to water feet (TOC)	T. (Den Aco

Depth to water, feet (TOC) | 15,87 | Measured Total Depth, feet (TOC) | 40,36

Sample Location ID	A11 2
	110-2
Depth to water date	12/78/23

Time	bilization Data Water Depth	Flow Rate				-	THE RESERVE THE PERSON NAMED IN COLUMN 1		i d
108 113 118 123	(from TOC) 6(2 4) 16,30 16,32	(mL/min) 220 227 220 270	pH (S.U.) 3,97 3,95 3,90	Spec Cond (μS/cm) 6 5 8 6 6 6 6 75 6 75	Turbidity (N.T.U) 0.0 0.0 0.0	D.O. (mg/L) 6(2) 4(2) 4(3) 4(3)	ORP (mV) 445 449 454 456	Temperature (°C) 21,17 21,20 21,29 21,31	
		1							
					165			***	

Total volume purged	
Sample appearance	Citan
Sample time	1125
Sample date	02/20/22

Facility Name	DV
Sample by	Pilkey
Depth to water, feet (TOC)	TISHT H-MILTA
Measured Total Depth, feet (

Sample Location ID	AD-03	
Depth to water date	3-7(-)7	

136 31 5	TOC) (mL/min) 5	(S.U.) 4.42 4.58 4.66 4.71	(µS/cm) }	Turbidity (N.T.U) \$7,5 \$8.7 \$4.6 \$25.4	D.O. (mg/L) 4.78 C.49 O.40	ORP (mV) 272 225 2-2	Temperature (°C) 2(16) 2(16) 2(130) 2(25) 2(12)	
46 32.0	7 3-0		161	25.6	0.32	166	21.17	
				,500				

Total volume purged	
Sample appearance	(0 : 1
Sample time	114
Sample date	2.24.77

Facility Name	Pinkos DO
Sample by	
	Kimy Mc DonAid

Depth to water, feet (TOC)	
Measured Total Depth, feet (TOC)	1,2
4000cmc and 400cm	47.29

Sample Location ID	XI a st
i	HD-4
Depth to water date	No. 10

Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.) 4 , 84	Spec Cond (µS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature	
204	7,44	178	4,90 4,92 4,93 4,94	98 95 94	92al 42,4 41,7 41,7	7,59 3,72 3,67 3,68	402 400 394 394	23,74 22,86 22,83 22,83	
	3				40,6	3.63	395	22,79	
						,		E s	
								** .	

Total volume purged	
Sample appearance	SUGHTIM TURBID
Sample time	1216
Sample date	12/20/22

Facility Name	Vahon 10
Sample by	PIANOT PP
	MENNY MODERAL

The same of the sa	
Depth to water, feet (TOC)	
Measured Total Depth, feet (TOC)	14.13
4 CONTROL OF THE CONT	41.98

Sample Location ID	A0-7
Depth to water date	
open to water date	03/28/22

Time	Water Depth (from TOC)	Flow Rate	рН	Spec Cond	Turbidity	OCINI DE CONTROL DE CO	THE REAL PROPERTY AND ADDRESS OF THE PARTY AND	The state of the s		
133	14.31	(mL/min) 152	(S.U.) 3, 67	(μS/cm)	(N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature	T	
43	14.76	152	3,64	327	3,6	6.31	1151	(°C)	-	
48	14,91	152	3.60	334	3:2	3,02	496	23,59		
			31.00	336	0.0	2,87	437	23,52		
		1 1 1						02130		-
		1								
		."		8						-
		,								
										- 0
	3	,								
					,-					+
				*						

Total volume purged	
Sample appearance	(1/00
Sample time	o the
Sample date	03/20/22

Pilley
Mitt Hamilton
8.71

AD-12	
111	
	AD-13

Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (µS/cm)	Turbidity	D.O.	ORP	Temperature	
155	9.45	300 300 300	4.20 3.42 3.85	47	(N.T.U) 2. (1. 2	(mg/L) 3.48 3.67	(mV) 2145	(°C)	
						3.10	259	21,14	
		L							

Total volume purged	
Sample appearance	
Sample time	Ulc.V
Sample date)) ())

Facility Name	Dia ti
Sample by	PIRKOT PP
	Kinny Mi DONALD
Depth to water, feet (To	00

Depth to water, feet (TOC)	1.0
Measured Total Depth, feet (TOC)	10,77
	40,70

Sample Location ID	A1 17
Donth	110-13
Depth to water date	03/28/22

Time	Water Depth	Flow Rate	рН	Spec Cond	CO DECICE CONTRACTOR C	-	CHICAGO CHICAGO CONTRACTOR CONTRA		*
08/6 0821 826 0831 836	(from TOC) 10.95 11.06 11.14 11.20 11.26	(mL/min) 180 180 180 180 180	(S.U.) 5.24 5.25 5.25 5.25 5.25	Spec Cond (µS/cm) 399 393 384 379 377	Turbidity (N.T.U) 261 255 217 206 208	D.O. (mg/L) 014 2.83 3.7 5 6 5 2	ORP (mV) 294 290 236 232 229	Temperature (°C) 20,35 20,37 20,37 20,37 20,39	
		j							- 1
					Pro-				

To the state of th
the state of
BROWN
0338

Facility Name	0.0
Sample by	PIRMOY PP
	RETURNS on DONALD

Depth to water, feet (TOC)	
Measured Total Depth, feet (TOC)	20,29
- Tar Deptit, feet (TOC)	73.00
ACTION DESCRIPTION OF THE PROPERTY OF THE PROP	22,02

Sample Location ID	AD-17
Depth to water date	10 17
septific water date	03/29/22

008 013 018 023	Water Depth (from TOC) 20,37 20,40 20,40 20,41	Flow Rate (mL/min) 2 / 6 2 / 6 2 / 6 2 / 6	pH (S.U.) 4.16 4.16 4.15	Spec Cond (µS/cm) 98	Turbidity (N.T.U)	D.O. (mg/L) 8124 2169	ORP (mV) 429 429	Temperature (°C) 21,63 21,54	
		210	4,13	98	11,2	7,66	939	21,68	

Total volume purged	
Sample appearance	1 1 km.
Sample time	UVITA
Sample date	1025

· • · · · · .

Facility Name	P 14 000 Ad
Sample by	Kinny McDonard
Depth to water, feet (TOC)	

Measured Total Depth, feet (TOC)

Depth to water

Sample Location ID A D-18

Depth to water date 0 1/28/27

Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН	Spec Cond	Turbidity	D.O.		With the state of	Marine Marine Constitution of the Constitution	
257	6,54	100	(S.U.) 4,25 4,40	(μS/cm) 153	(N.T.U) 60.3	(mg/L)	ORP (mV)	Temperature (°C) 20,98		
					0 2.0	3.75	382	20186		
				WON 14 H	old water I					
	T.									
			tikes							
			·							- /
					,					

Total volume purged	
Sample appearance	BROWN TINT
Sample time	0936
Sample date	03/20/22

Facility Name	
Sample by	FIRMON PP
эаттые ву	Minny Mc PonAc
1.	t then the

Denth to water 6	
Depth to water, feet (TOC)	0 60
Measured Total Depth, feet (TOC)	8183
Total Depth, feet (TOC)	77 71
	56,10
Company of the Compan	

Sample Location ID	AD-ZZ
Denth to wet	
Depth to water date	03/28/22

Purge	Stabilization Data

	Time Water D (from T)9(8 9(9) 923 9928 10:0	(mL/min) 5 200	pH Spec Cond (μS/cm) 4.25 957 4.27 966 4.25 971	Turbidity (N.T.U) (N.T.U) (N.T.U) (N.T.U)	D.O. (mg/L) 6:49 1:97 2:01	ORP (mV) 342 3/1 307 301	Temperature (°C) 20.82 20.76 21.05 21.09	
							· · · · · · · · · · · · · · · · · · ·	<i>y</i>

Total volume purged	
Sample appearance	(1400
Sample time	D A 26
Sample date	0735

DUPLICATE-1

Facility Name	01	
Sample by	Piller	
	19 At Hanilly	

Dil	
Depth to water, feet (TOC)	
NA - 1	7 7
Measured Total Depth, feet (TOC)	1103
epair, reet (TOC)	77.20
	2/13/
James Charles and	

Sample Location ID	(10. 37	
	AD CO	
Depth to water date	** * *	

Time 14 15 15 15 15 15 15 15	bilization Data Water Depth (from TOC) 8, 15 8, 43 8, 56 8, 65	Flow Rate (mL/min) 12c 12c 12c 12c	pH (S.U.) 3.22 3.22 3.24	Spec Cond (µS/cm) GZU 470 873	Turbidity (N.T.U) 15.9 23.5 7.2	D.O. (mg/L)	ORP (mV) 245 212	Temperature (°C) 21.77 21.62	
	1.	(20	3:25	911	8.4	035	286	21.87	
									7
Character	me purged		No. 17 Control	- ADMINISTRA					

Total volume purged	
Sample appearance	Close
Sample time	la 7
Sample date	2-25-22

. .

irlery
Just Hamilton
6

42.79

Sample Location ID	An => 8
Donth to	
Depth to water date	3-25-50

ime	bilization Data Water Depth	Flow Rate	рН			· ·	Ortocompensor conference (Constitution of	The College of the Co	
55	(from TOC) 15, 48 15, 74 15, 64 16, 15 16, 24 14, 33	(mL/min) 3=c 3=c 3oc 3oc 3oc	(S.U.) 3.30 3.15 3.14 3.01 3.01	Spec Cond (μS/cm)	Turbidity (N.T.U) 21.7 48.5 44.5 36.7 1).2	D.O. (mg/L) 1/2 & 0/65 0/65 0/54 0/58 0/58	ORP (mV) \$-\forall 29 = 25 (25 \dots 50 = 30 for 6	Temperature (°C) 22.33 21.48 21.88 21.85 21.85	
	a.								
			* # # # # # # # # # # # # # # # # # # #					j .	
		T.		20					1
					199				

Total volume purged	
Sample appearance	alaa a
Sample time	- CIERL
Sample date	3-25-23

Landfill

acility Name	D
ample by	illey
	Matt Henilton

Depth to water, feet (TOC)	
Measured Total Depth, feet (TOC)	18.35
recti Deptil, reet (TOC)	15.86
CONCERNO SECURIOR CONTRACTOR CONT	30.)

ANDO
11203

Time	Water Depth (from TOC)	Flow Rate	- Hq	Spec Cond	Tunkidi		HELDON GOLDEN CONTROL OF THE PARTY OF THE PA	MACHINE STREET, W.C. Commission of the Commissio		
027	18.81	(mL/min) 220 220	(S.U.) 3.66	(μS/cm)	Turbidity (N.T.U) 3 . ≩	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
32	18.81	2.20	3.68	118	2.1	1.67	273	2/1/8		
						1	287	21.04		
				121						
								i s		
		:								1.0
				· ·	i.e.				(9)	
							3.			

Dup.

Ment

Sample appearance

Sample time Sample date

> 1055 1055

Facility Name	2111
Sample by	1. Icey
Denth to water 6	Trans Ity
Depth to water, feet (TOC)	18.88
Measured Total Depth, feet (TOC)	27,11

Sample Location ID	B11/30
	718 3
Depth to water date	>-28-27

vicasurec	1 Total Depth, feet (TOC)	27	1)1		Depth to wat	er date	3.28.2	
urge Sta	bilization Data	The state of the s				3.0	**	;	
71me 12 3 4 12 3 9 12 3 4 1244	Water Depth (from TOC) G, Co G, o G, o G, o	Flow Rate (mL/min) 220 220 220	pH (S.U.) 3.44 4.00 3.97 3.96	Spec Cond (μS/cm) 53 c 53 s 52 q	Turbidity (N.T.U) 6 13.1 8,2 8,4	D.O. (mg/L) 2.11 1.78 1.74	ORP (mV) 275 270 274	Temperature (°C) 25.9c 23.41 23.35 23.37	
				·					
			13			60			
	A			· ·					
					,				

Total volume purged	
Sample appearance	110
Sample time	17 51
Sample date	3-25-27

Facility Name	
Sample by	Pilley
Donth	Moth/ Henilton
Depth to water, feet (TOC)	16.17
Measured Total Depth, feet (TOC)	37.20

Sample Location ID	10	
	7415-31	
Depth to water date	500	

Time	Water Depth (from TOC) 16.47 16.51 16.51	Flow Rate (mL/min) 20 22 22 22 210	pH (S.U.) 3 40 3 42 3 42 3 41 3 41	Spec Cond (µS/cm) 218 217 211 300 300	Turbidity (N.T.U) 51.4 50.4 31.5 16.7 7.6 7.5	D.O. (mg/L) 1.3189 0.83 0.6475	ORP (mV) 310 200 300 300 300 300 300 300 300 300 30	Temperature (°C) 22.98 23.77 23.68 23.65 23.65	
		į							
			- Court of the Cou						

Total volume purged	The state of the s
Sample appearance	
Sample time	Cless
Sample date	1204
	3-28-22

Facility Name	2)
Sample by	Filley
	Mitt Howilton
Depth to water, feet (TOC)	
Measured Tetal D	7.4

Sample Location ID	Mr. S.
Donth	740 36
Depth to water date	3.28.22

Manage	water, reet (TOC)	SV = 57	7.4-
neasured	Total Depth, feet (TOC)	1, 13
	Sign of the second seco		34.69
urge Sta	bilization Data	Control of the last of the las	
unge sta			
Time	Water Depth	Flow Rate	- pli

Time	Water Depth (from TOC)	Flow Rate	- pH	Spec Cond	SIR SHOW CHARLES AND A CANADA			THE RESERVE OF THE PERSON OF T	
035	7.98 8.03 \$.07 \$.07 \$.08 8.08	(mL/min) 220 220 270 270 270 270 220	(S.U.) 3.27 3.21 3.17 3.15 3.13 3.13 3.12	(µS/cm) 435 444 450 446 446 447 447	Turbidity (N.T.U) 181 67.1 41.5 25.3 12.7 8.2	D.O. (mg/L) 1.23 0.53 0.51 0.51 0.42 0.34	ORP (mV) 3-7 3-7 3-7 3-7 3-7 3-7 3-7 3-7 3-7 3-7	Temperature (°C) 27.71 21.51 21.47 21.34 21.32 21.30	
					700				
	ne purged	CALL THE PARTY OF	-	THE RESIDENCE OF THE PARTY OF T	11		· · · · · · · · · · · · · · · · · · ·		

Total volume purged	
Sample appearance	(12:5
Sample time	Clear.
Sample date	3-2 (-2-

Facility Name	Pakin AA
Sample by	MEMPY ME DOWNER

Depth to water, feet (TOC) 12,22

Measured Total Depth, feet (TOC) 32,50

Sample Location ID	AD-33
Depth to water date	03/28/27

737 042 047 052	Water Depth (from TOC) 12,29 12,30 12,30	Flow Rate (mL/min) 80 80 80	pH (S.U.) 3, 98 3, 98 3, 98 3, 98	Spec Cond (μS/cm) 2 μ	Turbidity (N.T.U) 6,4 6,3 3,5	D.O. (mg/L) 12,45 2,29 2,26	ORP (mV) 375 375 370	Temperature (°C) 22,68 22,61 22,57	
				222	0.3	2,19	367	27,51	
		1						2 ,	-6

Total volume purged		
Sample appearance	CLIAN	
Sample time	1054	
Sample date	13/20/22	

Facility Name	
Sample by	PIRMO PP
	K ENRY MC PENRIA

Depth to water, feet (TOC)	6. 4.5.
Measured Total Depth, feet (TOC)	SURFACE
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	26.05

Sample Location ID	An 74
	110-31
Depth to water date	07/20/27

Time	Water Depth	Flow Rate	- pH	Spec Cond	T. 1.11	CHARLES THE CHARLES THE CHARLES TO CHARLES THE COURT		The state of the s		
0815 820 0825 830 0835	(from TOC) 0.62 0.84 0.92 1.09	(mL/min) 160 160 160 160	(S.U.) 3,61 3,57 3,56 3,555 5,55	(μS/cm) 800 840 870	Turbidity (N.T.U) 3.7 0.0 0.0	D.O. (mg/L) 12.61 6.2.7 1.3.1 1.28	ORP (mV) 4 06 253 3 5 0 3 4 4 3 47	Temperature (°C) 20,66 20,57 20,57 20,59 20,62		
		9								
	1.								-	
										-
								; .		
								-1		
										- e #
					85 g					
					ş**·	×				
			E							-

Total volume purged	
Sample appearance	Clean
Sample time	0 4 2 7
Sample date	13/70/17

AO-34 DUP 0837

Facility Name	Div
Sample by	· (/ley
Depth to water foot (TOC)	1) - pt Itami Ity

Depth to water, feet (TOC)	
Measured Total Depth, feet (TOC)	15.77
- Forth Beptil, Teet (TOC)	51 44
CONTROL DE LA CO	

Sample Location ID	Ren
	13 2
Depth to water date	3-) C-27

Time	bilization Data Water Depth	Flow Rate	l pl		· ·	· ·	Naconomon Company		
547 552 557 02	(from TOC) 16.05 16.14 16.18	(mL/min) 300 300 300 300 300	pH (s.u.) 4.73 4.55 4.55 4.57	Spec Cond (μS/cm) / 6 13 1 13 6 3 6	Turbidity (N.T.U) 18.2 5.4 5.4 5.3	D.O. (mg/L) 3,03 1,43 1,20 1,14	ORP (mV) 21(128 120	Temperature (°C) 20.62 20.15 20.17 20.14	
									.,
							4		

Total volume purged	
Sample appearance	c/e=1
Sample time	6 o Ll
Sample date	2.76.77

Dap-1

Facility Name	
Sample by King M. Parked	C
Depth to water, feet (TOC)	Sample Location ID
Measured Total Depth, feet (TOC) 37, 49	Depth to water date 03/

Purge Stabilization Data Time Water Depth (from TOC) (mL/min) (s.U.) (µs/cm) (N.T.U) (mg/L) (mV) (°c)		d Total Depth, feet (100)	3	7,49	Ĺ	Depth to wate	er date	03/28/2	2	
Time Water Depth (from TOC) (mL/min) (S.U.) (µS/cm) (N.T.U) (ng/L) (mV) (°C) (°C) (12.2) (10.0 S.2) 3.14 32.13 7.58 3.43 2.4.28 (12.4) (12.4) (13.07) (10.0 S.2) 3.07 (10.0 S.2) 3.07 (10.0 S.2) 3.07 (10.0 S.2)	urge Sta	bilization Data			Organization and a second seco		2 1		į.	e .	
WON'T HILD WATER LOUFL WON'T HILD WATER LOUFL	236	(from TOC)	(mL/min) 00	(S.U.) 5,26	(μS/cm)	(N.T.U)	D.O. (mg/L) 7,58 5,17	(mV) 343 352	Temperature (°C)		
					worlt it	Ld WATE	loupl				

Total volume purged	
Sample appearance	SCIENTLY TURRIP
Sample time	1000
Sample date	63/29/27

	× :	N
Facility:	Pilley	Sampling Period:
Sampling Contractor:	Esale	Signature:
Samping Sam		

Well No.	Well Locked	Fastener and Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Protective Cover, Barriers and Pad in Good Shape	Well Properly Labeled	Well Cap Present and Vented*	All wells No Fill No Meep h-le No inside Isbel
AD-12	OD'S		5	5	5	U	5	labeled as MW-12
an-32	5	5	5	5	5	5	5	
40.31	7	5	5	5	5		S	
AD-3c	5	5	5	S	5	5		- No look -access not maintained
B-)	1)	1)	V	V	5	U		- No look -access Not Mantaneo
An. > C				5	5	5	5	
AD-17	5		5	5	5	5	5	-needs weedesting to see p
An. 3	<	5	5	5	5	S	5	
AN->/	5	7	5		S	5	5	-needs New lock
An 25	5		5	5	5	5	5	
Ah-23	5	5	5	5	2	ک	2	
DN-27	5	5	5	_5	S	5	5	

^{*}Not all wells will be vented, especially flush mounted wells. If that is the case, please note "flush mount well" in the comments.

Facility: A PP	PIRMM PP	Sampling Period: Jone 2022
Sampling Contractor:	CALL ENVIRONMENTAL	Signature: Intro

Well No.	Well Locked	Fastener and Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Protective Cover, Barriers and Pad in Good Shape	Well Properly Labeled	Well Cap Present and Vented*	Comments
A0-13	5	5	5	5	u	ч	u	NO WIFF HULF, NO CHANGAR FILL, WELL LABELED MW-13, CAP NUT VENTED
A0-22	5	5	5	5	U	4 0 0	Ч	CAB NOT NOW THE WALL THE INTER
AD-73	5	5	5	Ч	U	V	Y	NET WEED PATTO, NO WELP HOLE IN LABELED INSION NO GRANVLAN FILL, CAPNOT VENTO, NOT LABELED INSION NET VENTO, NO CRANVLAN FILL NO VERTO, NO CRANVLAN FILL COD
A0-7R	5	5	5	S	Ч	V	4	NOT LABRUED , NZ DEF ON DUTSIDE, NO CRANCE ARFILL
AD-2	5	S	5	5	V	U	Ч	NO VEFT HULF, NO CHANVEAN FILL, CAD NOT VENTED, LASTLED AS MW-2, NOT LASTLED INSIDE
AD-7	5	5	5	5	V	V	И	PLS 6
40-4	ØU	# U	B U	ч	u	V	V	NO SOOD WAY TO GET TOWN
AD-18	5	9	5	V	u	И	4	NOT LADMEN INSIGE NO WEED HOLF, APRILLY WAY
6-3	U	u	V	И	Ч	И	U	NOTOCH NO WELL IMPIDE OF NO CHANGE
AD-/6	S	S	5	V	u	И	Ч	EVERGREWN TRAIL; WELL OVERGREWN NO WELP HOLE MY INTERNAL LABEL CAPACT VENTER NOT VENTER
Ap-34	\$ 5	5 4 5	45	805	Ч	V	V	NOT industry were not structed ful nowers
AD-36	5	5	5	9	Ч	ч	4	PAR NOT VENTO WORRANDARTICE
A0-8		5	S	5	V	V	N	CARVED AS MW-8 NO WIM CHONET VENTO

*Not all wells will be vented, especially flush mounted wells. If that is the case, please note "flush mount well" in the comments.

Facility Name	ACP PIANCY PP.
Sample by	Kenny Mi Dennied

5 / (TO 0)	i A-I
Depth to water, feet (TOC)	1619/
Measured Total Depth, feet (TOC)	40,36

Sample Location ID	AD-02	
Depth to water date	06/21/22	

Purge Sta	bilization Data							<u>`</u>	
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (Ŋ.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
0832	17.01	700	4.02	668	16.5	831	475	23,82	
0837	17.13	200	4,00	674	1.8	5.00	475	23.16	
0842	17.21	200	3.96	675	0.0	4,47	475	23.04	
0847	17.28	200	3.96	677	0.0	4,42	476	22.92	
<u> </u>									
	:								
					<u> </u>				· · · ·

Total volume purged	
Sample appearance	CIGAN
Sample time	0849
Sample date) b /21/22

Facility Name	Picker
Sample by	Meth Hamilton

Depth to water, feet (TOC)

Measured Total Depth, feet (TOC)

33.08

57.4(

Sample Location ID	Color Physics Color	110	1	
		(+1)	- 5	
	1/2			

Weasured Total Depth, feet (TOC)	Depth to water date
57.4	0-21-22

(from TO)	ater Denth Flow b.	ato	1	1	*			THE STATE OF THE S	-
	3.51 21° 3.68 22° 3.77 22°	(S.U.) 4.35 4.46 4.34	Spec Cond (µS/cm) 17 40	Turbidity (N.T.U) 41.3 io. §	D.O. (mg/L)	ORP (mV) 274 275	Temperature (°C)		
	3.85 210		90	9-2	1,00	276	24.62		
	1.						7.1		
1									/

Total volume purged	
Sample appearance	(leaf
Sample time	11) 3
Sample date	(2)27

Facility Name	-	Ap	finno1	PP.	
Sample by			KINM	Reported	

Depth to water, feet (TOC) 15,48

Measured Total Depth, feet (TOC) 47, 79

Sample Location ID	BD-4
Depth to water date	1 0 1/2 1/22

Purge Sta	bilization Data									
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
i	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
1017	15.81	160	4.27	127	228	8.21	329	24.82	·	
1022	15,86	160	436	113	2/6	3.17	341	24.63		<u></u>
1027	15.93	160	4,39	110	201	3.0 b	355	24.57		
1032	15.99	160	4.40	108	204	3.02	357	24.51		
@	, [
					<u></u>					
			-							

Total volume purged	
Sample appearance	Cumn
Sample time	1034
Sample date	06/21/22

Facility Name	AEP PINTOPP
Sample by	KINDY MCDERALD

Depth to water, feet (TOC)	17.44
Measured Total Depth, feet (TOC)	41.'98

Sample Location ID	AD-7
Depth to water date	06/21/22

age sta	bilization Data	Flave Parts	nu l	Spec Cond	Turbidity	<u>D</u> .O.	ORP	Temperature		
Time	Water Depth	Flow Rate	pH		i		(mV)	(°C)		
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)		21 02		
0930	18:02	150	3.55	4 10,	2016	9,79	412	76,83		
7935	18.11	150	3,54	406	5,9	12,80	472	26,42		
1940	18.19	150	3,54 1	397	2,6	2.71	472	26.11		
945	18.25	150	3.52	399	$\lceil 0, 0 \rfloor$	7.63	467	25.99		
, ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.50				T	_			
			-							
						 	 			
										
							-			<u> </u>
						 	<u> </u>		 	
						ļ				├
										
										├
										↓
				-						
			 		 					
			<u> </u>		 	 	1			T^{-}

Total volume purged	
Sample appearance	classi
Sample time	0947
Sample date	06/21/22

Facility Name	HEP PIRAMPP
Sample by	Kinny McDonard

Depth to water, feet (TOC)	10.95
Measured Total Depth, feet (TOC)	33.03

Sample Location ID	AD-7R
Depth to water date	06/20/22

Purge Sta	bilization Data									
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
1104	11.01	120	4.56	210	4.1	10,21	383	28:27		
1109	11.02	120	4,59	211	0.0	3.21	360	26,97		
1114	11.05	120	4.58	212	0.0	3.19	351	24.52		
1119	11.11	120	4.57	213	0.0	3.12	3.46	24.25		
				-	-					
									_	
			:							
				amanu						
										:

Total volume purged	
Sample appearance	Cion
Sample time	1/2
Sample date	(16/20/22

Facility Name	AEP PLANOT PP
Sample by	Kerny Middadd

Depth to water, feet (TOC)	1357
Measured Total Depth, feet (TOC) 3/,33

Sample Location ID	A-0-8
	A 1 10 % 10 %
Depth to water date	1 /16/22/2Z

Purge Sta	bilization Data									
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	:	
1154	13.82	160	5.25	334	26,0	9.45	350	27.41		
1159	13.87	160	5.16	735	13.1	2,47	346	26.46		
1204	13.88	160	5,03	337	6.8	2,77	750	26,28		
1209	13.89	160	5.00	337	4.8	2,19	352	26.19		
1214	13.88	160	5.01	337	5,2	2,17	>S 7	26.13		
		<u> </u>								

Total volume purged	·
Sample appearance	Cifan
Sample time	12/6
Sample date	06/22/22

Facility Name	D. J. Z
Sample by	Most Hearity
Depth to water, feet (TOC)	
Measured Total Depth feet (TOC)	21.44

52.00

Measured Total Depth, feet (TOC)

Sample Location ID	AD-12
Depth to water date	4-10-22

Purge Sta	bilization Data			DOMESTIC STREET, STREE					*	
Time \$46 \$45 \$50	Water Depth (from TOC) 21.67 21.78	Flow Rate (mL/min) 3cc 3cc 3cc	pH (S.U.) 4.61 4.30 4.25	Spec Cond (μS/cm) 123 57	Turbidity (N.T.U)	D.O. (mg/L) 3.71 1.63	ORP (mV) 254 242 300	Temperature (°C) 27,28 24,73		
								2 113		
	T ₁									
										7
									0 0	
			1 .							

Total volume purged	
Sample appearance	les C
Sample time	852
Sample date	6:20:27

Facility Name	ALP PIRMON PP
Sample by	Kinny mi De-Ald
Depth to water, feet (TOC)	5.0
Measured Total Depth, feet (TO	ic) 40.70

Sample Location ID	AD-13	
Depth to water date	06/20/22	

Purge Sta	abilization Data								
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
0821	15.22	170	5.79	539	556	17,75	-33	24.29	
0826	12.58	(70	3171	537	321	6.37	-22	24/31	
0831	15.37	70	2168	576	337.	6:30	-8	24.02	
0836	15,48	170	5.48	2 25	300	5,97	-10	24,07	
0841	19,55	170	5.6B	> 3 3	298	5.91	-18	24.08	
<u> </u>									
	L.								
			;						
						<u> </u>			
						<u> </u>			
									1
									-1

Total volume purged	
Sample appearance	BROWN
Sample time	0843
Sample date	06/20/22

Complete Dupulate-11400

Facility Name	APP PIANEY PP
Sample by	Kanny As Dunaed

Depth to water, feet (TOC)

Measured Total Depth, feet (TOC)

7,69

38,29

C defending ID	00.16	
Sample Location ID	FIDE OF	

Depth to water date 06/22/22

urge Sta	bilization Data			Cros Cond	Turbidity	D.O.	ORP	Temperature		
Time	Water Depth	Flow Rate	pH	Spec Cond		(mg/L)	(mV)	(°C)		
Į.	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U) 3.2.2	3,87	421	73.87		
1948	18,01	210	4.57	131		1.97	419	23.91		
7953	18.09	210	4,54	136	28,6		419	23.94	+	
958	18:13	210	4.51	136	27.1	2.03				
003	18:17	210	4,51	136	26.9	2.11	414	23.97		
<u>u • </u>										
						<u></u>				
										_
					 		 			
	<u> </u>			<u> </u>		 				
					 					
					<u> </u>		 	 		
										
									<u> </u>	
								ļ		₩
		 					1			<u> </u>

Total volume purged	
Sample appearance	Clean
Sample time	10.05
Sample date	06/22/22

Facility Name	Piller
Sample by	19-07 Hamilton
	,
Depth to water, feet (TOC)	32.61
Measured Total Depth, feet (TOC)	27.05

75.1

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
A,000000000000000000000000000000000000	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
103	22,76	200	3,75	146	6:7	324	360	26.48	
128	22,7%	200	339	147	7.8	1,09	254.	23.47	
1237	32176	2-0	3.32	145	4.8	0.95	25!	75.65	
1038	22.76	200	3.30	145	3,3	0,69	316	10.25	
									*
- 22									
				*					-

Total volume purged	
Sample appearance	rlear
Sample time	1040
Sample date	6-21-27

Facility Name	HEP PLANM PP
Sample by	Kenny MiDiand
Depth to water, feet (TOC)	7. 41

Measured Total Depth, feet (TOC)

Sample Location ID	ĤĴ-18
Depth to water date	06/2/122

Purge Sta	bilization Data		•							
Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
1108	8.37	102	4.83	58	56,4 18,2	5.28	3/15	25,12		
1113	9.41	102	4.61	5	18,2	3,79	374	24.68		
-				<u>.</u>						
			WON T	Hard WI	TM LEVEL					
						<u> </u>				
		<u> </u>		. <u>-</u>					1	
									<u> </u>	
									<u> </u>	
		[

Total volume purged	
Sample appearance	CUMR
Sample time	.0817
Sample date	06/27/12

Facility Name	Aft finh on PP
Sample by	Klary MDsr4cd

Depth to water, feet (TOC)	13.02
Measured Total Depth, feet (TOC)	32,70

Sample Location ID	A0-22	
Depth to water date	06120/22	

Purge Sta	bilization Data									
	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(,c)		
0936	13,22	164	4,80	766	13,0	8,21	274	27.21		
0941	13.29	164	4,57	778	5.5	3.63	290	26.69		
0946	13,31	164	4,54	787	511	3.59	277	26,75		
1951	13,36	164	4,51	791	4.6	3.52	274	26:71		
						<u> </u>				-
						<u> </u>				
						<u> </u>				
-									_	

Total volume purged	
Sample appearance	cian
Sample time	0953
Sample date	06/20/20

Facility Name	D 1
Sample by	Tilley

Depth to water, feet (TOC)	
Measured Total Depth, feet (TOC)	30.23
. , . (.00)	38.20

Sample Location ID	AN-23
	TIP ES
Depth to water date	/ 22 27

Purge Sta	bilization Data		The state of the s	the state of the s					8
Time 1050 1055 1100 1105 1110 1115	Water Depth (from TOC) 30.45 30.50 30.53 30.53 30.53	Flow Rate (mL/min) 220 220 220 220 220 220 220	pH (S.U.) 3.56 3.58 3.51 3.62 3.62	Spec Cond (μS/cm) 2.3.1 4.4 8.2 7.6 17	Turbidity (N.T.U) 16.2 85.7 55.7 236.8 32.2 32.6	D.O. (mg/L) 2,33 1,53 1,78 1,66 1,61	ORP (mV) 26e 265 266 284 281 288	Temperature (°C) 31.16 26.4 25.44 25.64 25.64	
	1.								
							-		
r r								اس ا	
d d		F							
					100				

Total volume purged	
Sample appearance	White/clandy
Sample time	Mark / Clendy
Sample date	6-22-27

Sample by Mith Hamilton	

A ~ A
9.12

Sample Location ID	
Sample Location ID	AN.25

Time 455 1005 1010	bilization Data Water Depth (from TOC) 9,91 6,95	Flow Rate (mL/min) 120 120 120	pH (S.U.) 3.81 3.83 3.71 3.75	Spec Cond (μS/cm) - & 1 - & 3 - & 3 - & 4 - & 5 - & 5 - & 5	Turbidity (N.T.U) 54.6 32.3 10.1	D.O. (mg/L) 1,45 0,35 0,24 0,22	ORP (mV) 218 208 204	Temperature (°C) 26,00	
							210	28.11	
								1 1	

.

1/2/	
1323:	
-	Ulen'

Facility Name	2
Sample by	Pirkey Hamilia
Depth to water, feet (TOC)	
Measured Total Depth, feet (TOC)	15.28

	Sample Location ID	_
28	Depth to water date (5 =)2 : 2 :	
	0	_

Time 857 6-2 107 112 117	Water Depth (from TOC) 15.61 15.76 15.85	Flow Rate (mL/min) 300 300 300	pH (S.U.) 3.41 3.34 3.23	Spec Cond (μS/cm) 2,050 2,110 2,110	Turbidity (N.T.U) 51.40 59.30	D.O. (mg/L)	ORP (mV) 261 248 245	Temperature (°C) 27.41 25 6	
922	16.15	300	3.25	5/120	28.2 17.5 17.8	4.42	245	24.82 24.75 24.70	
								e e	

Total volume purged	
Sample appearance	Clesf
Sample time	CON
Sample date	6.22-21

Picker
Makt Hamilton

Depth to water, feet (TOC)	12 53
Measured Total Depth, feet (TOC)	1 2
	70.01

Sample Location ID	AD-27	
Depth to water date	6-22-23	

_ '	Water Depth	Flow Rate	-11					
Time 114c 1145 1150	(from TOC)	(mL/min) 300	pH (S.U.) 3.3.7 3.3.3	Spec Cond (μS/cm) 22 \	Turbidity (N.T.U) 87	D.O. (mg/L)	ORP (mV) 312	Temperature (°C) 31.84
1155	22.57	300 300	3.30	230	5.9 5.8	0.43	332	28 55 27.17 27.02
							1	
					1			

Total volume purged	
Sample appearance	Class
Sample time	1157
Sample date	6-22-77

Facility Name	Pilley
Sample by	Matt Hamilia
Depth to water, feet (TOC)	15.29
Measured Total Depth, feet (TOC)	16-5

Sample Location ID	190-28	
Depth to water date	(,) (,) =	

Purge Sta	bilization Data								
<u> </u>	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
944	19.600	220	4.22	103		4.60,	708	26.56	
949	19-68	72-	406	107	3.1	1,76	237	24.30	
954	19.74	220	400	105	13	1.63	245	24.01	
	1 1 6 1		100						
				6					
		*	-						
								THE RESERVE TO THE RE	

Total volume purged	
Sample appearance	Cleed
Sample time	956
Sample date	6-21-27

Facility Name	P. ney
Sample by	Mat Howilly
Depth to water, feet (TOC)	20.48
Measured Total Depth, feet (TOC)	37.15

Sample Location ID	(4)-3
	,

	oilization Data Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP (mV)	Temperature (°C)	
Γime	(from TOC)	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	296	32,00	
1-7	20.46	756	4.15	495 518	48.8	0.97	294	27.38	
117	20151	25	423	520	13.	6.97	297	26.28	
117	21,00	221	417	155	3.2	0.85	3-3	26.05	
155	20100	726	4115	322	3.1	0,81	301	25.99	
1127	7)101	446	1110						
									3
									-
									+
									+

Total volume purged	
Sample appearance	CICIY
Sample time	1124
Sample date	6-222

Facility Name	(1) (1) (1) (1)
Sample by	(d = 1+ 1 d 2 m) 1 L M

DC .	
water, feet (TOC)	No. 70
I Tatal Donth feet (TOC)	32
d Total Depth, feet (TOC)	26

	11.31
Sample Location ID	1411 - 1
	1

Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C) 24,3 } 20,8	
1036	18.77 18.79 18.50	22- 22c 22c 22c	3,47	295 296 262 262	24.6 14.3 7.6 7.5	0,24	216	25.57 25.57 25.57	

Total volume purged	21
Sample appearance	Clevi
Sample time	1043
Sample date	8-20-26

Facility Name	Pirkey
Sample by	11/44 Homilton

Depth to water, feet (TOC)	9.7.4
Measured Total Depth, feet (TOC)	24.15

Sample Location ID	AD 32	
		9
Depth to water date	1-20-27	

	bilization Data Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature		ĺ
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
925	11.71	25.6	3.31	415	82-6	1.14	125	26.89		
934	11 75	220	2.15	451	51.4	0.48	355	24.43		0
936	11.85	550	3.04	410	31.3	0-38	363	24.59		
944	11.57	520	\$ 05	417	9,9	0.31	385	24,45		
949	17.28	250	3.03	413	9.8	0.3-	367	2445		
	11.4	6								
									ŭ.	
						20				
										E:

Total volume purged		
Sample appearance	(le-	
Sample time	951	
Sample date	6.20.23	

Facility Name	ALD PINKET PP.
Sample by	KARY MIDERALD

Depth to water, feet (TOC) 14,02

Measured Total Depth, feet (TOC) 32.50

Sample Location ID	AD-33

Depth to water date 06/20/22

Purge Sta	bilization Data	_							-	
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.Ų.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
1020	14.09	200	4.60	180	9,5	643	323	26.47		
1025	14.10	200	4,44	163	9.3	3,43	297	26.33		
1030	14.11	200	3,39	161	9,3	3.37	294	25.91		
1035	14.13	200	4.37_	158	819	3.31	290	25.87		
				,						
							ļ <u>-</u>			
			ļ <u> </u>							
						-			<u> </u>	
							 		-	
<u> </u>									<u> </u>	
<u> </u>						<u> </u>	<u> </u>			
			_				-		-	
						_	 			
				<u> </u>				<u> </u>		<u> </u>

Total volume purged	
Sample appearance	CLGAN
Sample time	1037
Sample date	00/20/22

Facility Name	AFP PINNOY
Sample by	KINN MIPERALL

Depth to water, feet (TOC)	0.61	
Measured Total Depth, feet (1	OC) 26.05	

Sample Location ID	AD-34
Depth to water date	16/22/27

Purge Sta	bilization Data		<u> </u>	· -		•			
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.) ,	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
1031	1,01	120	3,76	1610	10,4	10,84	457	28.41	
1036	1.10	120	3.70	1650	0.0	2,99	434	27.72	
1041	1,14	170	3,64	1670	3,3	2,87	428	27.49	
1046	1,20	120	3.66	1670	5.6	2,79	423	27.48	
	<u> </u>								
	· · · · · · · · · · · · · · · · · · ·								
				·					
		<u></u>		<u> </u>					
							· -		 <u> </u>
		-						_	
	··· .							 	
				·		_			
					"				
								··· <u></u>	

Total volume purged	
Sample appearance	cum
Sample time	1048
Sample date	06/22/22

Dupucate - 3 1400

Facility Name	HEP PIANOT PP
Sample by	Konny McDonald

Sample Location ID	HD-36	
Depth to water date	06/22/22	

Depth to water, feet (TOC)		7,71	
Measured Total Depth, feet (TOC)	17.10	

Purge Sta	bilization Data									
Times	Water Depth	Flow Rate	рH	Spec Cond	Turbidity	D.O.	ORP	Temperature		
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
1113	7.83	146	4,03	63	62,7	2,87	354	29.71		
1118	7,85	146	4,53	64	24,1	1.87	32.3	29.69		
1123	7.89	146	4.55	64	11,4	1,42	350	29.63		
1128	7.89	146	7,58	64	10.9	1.37	349	29.72		
1133	7.92	146	4,58	<i>U</i> 3	IliZ	1.32	347	29.78	.	
	- 									
					_					

Total volume purged	
Sample appearance	Cum
Sample time	1135
Sample date	06/27/17

Facility Name	Pirited
Sample by	14-14 Hamiltin

Depth to water, feet (TOC)	24.40
Measured Total Depth, feet (TOC)	51.44

Sample Location ID	13.5	
Depth to water date	6-21 -27	

Purge Sta	abilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
823	24.71	300	4.64	166	7.5	5.89	275	25.44	
828	24.78	300	4,52	103	0	415	751	22.51	
433	24.83	300	4.66	151	0	1.13	141	72.27	
838	C4,90	3-0	4.68	125	0	1,07	158	22,11	
				69					
				4					
				•					

Total volume purged	,
Sample appearance	clev
Sample time	840
Sample date	6-21-17

Duplicate

Facility Name	Aprimorph
Sample by	KINNY MIDERALD

Sample Location ID 8_3

Depth to water date 06/21/22

Depth to water, feet (TOC)	16.24	
Measured Total Depth, feet (TOC)	77,49	

Purge Sta	bilization Data	.				 "		<u> </u>		
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (µS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
1142	17.13	106	4.84	246	(N.T.U) 3 \$. Z	8,31	414	22,34	<u> </u>	
1147	18,27	106	4188	248	7.8	2,75	407	23,34 23,73		
				WON'T Ite	d water	lfifl				

Total volume purged	
Sample appearance	Cllock
Sample time	.0851.
Sample date	06/22/22

Facility Name	* # · · · · · · · · · · · · · · · · · ·
Sample by Math Hamilton	Special
Depth to water, feet (TOC)	Sample Location ID EBAD
Measured Total Depth, feet (TOC)	Depth to water date 6-22-22

ime	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond	Turbidity	D.O.	ORP	Tompount	
10			5.02	(μS/cm) 4 46°	(N.T.U) 246	(mg/L)	(mV)	Temperature (°C)	
				1			. 116	27.31	
			r r			*	·		
		n to t							
	1								
								, , , , , , , , , , , , , , , , , , ,	
		10							7

Total volume purged	
Sample appearance	0 1
Sample time	Clardy
Sample date	1-22-22

Facility: Pilley	Sampling Period: Nov 2023
Sampling Contractor: E-4	Signature: Jan Jan

					Lave I Str.			
Well No.	Well	Lock	Well Locked	Access to	Well Casing,	Well	Well cap	Comments
	Locked	Functioning	After Sampling	Well	Housing, and	Properly	present	
				Maintained	Pad in Good	Labeled		3
		45			Shape	050 054440 0000000000 0 540 540		
		. 4						
12. UK	S	51		5	_5	5	5.	
AD-25	5	5	5	5	5	5	5	
AD-23	5	5	5	5	5	9	5	et a
rs-da	5	5	5	5	5	S	5	
AD-32	5	Ś	5	5	5	_5	5	
AD-31	5	5	5	5	5	5	5	
ADIZ	5	5	5	5	5	5	5	
B-2	\$U	U		5	5.	()	5	-No label
AD-28	5	5	5	5	5	5	5	
An-30	5		5	5	5	5	_5	
AD-17	5	5	5	5	5	5	5	
AD-3	5	5	. 5	5	5	5	5	

<u>Instructions:</u> Complete form and submit to AEP Environmental Services with Field Data. Place check mark for items that are satisfactory. Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

Facility:firm PP	Sampling Period: November 2022
Sampling Contractor:	Signature:

Well No.	Well Locked	Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Housing, and Pad in Good Shape	Well Properly Labeled	Well cap present	Comments
AD-34	V	V	V	V		V	V	HINGE BEAR EN
AP-36	V	V	√	V	V	V	v	
AD-8	V	V		\checkmark	V	V	~	
AD-16			/	\checkmark	V	V	/	ritos New LICK
AD-22	\vee	V	V	V	✓	V	V	
A0-13	\checkmark	\checkmark	\checkmark	V	✓	✓	V	
A0-7R	\checkmark	✓	\checkmark	\vee	\checkmark		V	NOLABEL
Ab-2	V	✓	\checkmark	✓	V	V	V	
AD-33	V	√	./	V	V	V	V	
B-3				1	√		V	NO ICCK NOT LASFLYD
AD-18		/		, i		√	V	+ BRUSHCLIANING
A0-7	V	~	\checkmark	\checkmark	J	\checkmark	✓	

<u>Instructions:</u> Complete form and submit to AEP Environmental Services with Field Data. Place check mark for items that are satisfactory. Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

Facility:	Y-	IRAM			Sampling Perio	od:^	OV(-MBIA	2022
Sampling	g Contrac	tor: FA	616		Signature:	LA	And	
Well No.	Well Locked	Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Housing, and Pad in Good Shape	Well Properly Labeled	Well cap present	Comments
AD-4						✓	√	NEEDS WEEDERAM

<u>Instructions:</u> Complete form and submit to AEP Environmental Services with Field Data. Place check mark for items that are satisfactory. Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

Facility Name	Aft PIRMOT PP
Sample by	Kinny Mc Ponned

Depth to water, feet (TOC)	16,52
Measured Total Depth, feet (TOC)	40:36

Sample Location ID	AD-2	
Depth to water date	11/16/27	

Purge Sta	bilization Data								
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O.	ORP	Temperature	
0948	16.71	210	3 97	5 8 l	2,4	(mg/L)	(mV) 280	(°C)	
0953	16.76	210	3,96,	592	1.8	2,54	276	16.28	
0958	16.83	210	3,96	594	11.7	2.46	276	16:39	
1003	16.87	210	3,96	5 95	1.3	2.49	275	16147	
						-111			
	.1								

Total volume purged		
Sample appearance	clinn	
Sample time	1005	
Sample date	11/15/22	

Facility Name	7
Sample by	- lilley
	Tetti Hamilti
Depth to water, feet (TOC)	24.113
Measured Total Depth, feet (TO	()

Sample Location ID	AN-3	
Depth to water date	11/37	

Γime	oilization Data Water Depth (from TOC)	Flow Rate	рН	Spec Cond	Turbidity	-		ACCES IN CASCAGE AND	
133	34 86 34. 19 35.07 35.18	(mL/min) 220 270 220	(S.U.) 5,76 5,84 5,61	(μS/cm) 132 144 148	(N.T.U) 25,4 7,6	D.O. (mg/L) 1.7 1 0.71.	ORP (mV) 243 212	Temperature (°C)	
			3.11	14\	6.4	0.28	186	18.75	,
	3.								
								ad .	
					, pr				

Cark
- (leal
11125

.

Facility Name	A (P PINHON PP
Sample by	Kinny MiDonald
Depth to water, feet (TOC)	15.64
Measured Total Depth, feet (TO	c) 47,29

Sample Location ID	AD-4	
Depth to water date	11/16/22	

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1116	15,69	170	4.59	77	1372	4.82	339	19.86	
1121	15.73	170	4.63	フフ	14.3	3.31	330	20,65	
1176	15,99	170	4,65	77	15.9	3,27	330	20:71	
113/	16,03	170	4,68	76	16.2	3,22	329	20,74	
			,					1	

Total volume purged	
Sample appearance	Clean
Sample time	1133
Sample date	11/16/22

Facility Name	AEPPIRKY PP
Sample by	KINNY Mi Dinglo

Depth to water, feet (TOC)	17,23	
Measured Total Depth, feet (TOC)	41.98	

Sample Location ID	A0-7	
Depth to water date	11/11/25	

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S,U,)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	, (°C)	
0853	17.82	160	3,66	424	4,2	3,62	367	16,82	
0858	17.91	160	3.67	474	2.7	2,09	372	17,46	
0903	17.98	1100	3,64	427	3,2	7,03	369	17,51	
0908	18.03	160	3,62	479	5,6	1.97	366	17,57	

Total volume purged		
Sample appearance	CIFAR	
Sample time	0910	
Sample date	11/16/22	

RA MS/MSO

Facility Name	Afr Finney pp
Sample by	Kimmy Mc Pongid

Depth to water, feet (TOC)	10.75	
Measured Total Depth, feet (TOC)	33.03	

Sample Location ID	AD-7R	
Depth to water date	11/15/22	

	bilization Data Water Depth	Flow Rate	ъU	Casa Cand	Totale talta.	D.O.	ODD	-	
Гime		AND DESCRIPTION OF COMPANY OF STREET	pH (G.L.)	Spec Cond	Turbidity	D.O.	ORP	Temperature	
1000	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1859	10.80	126	4.92	244	12,9	612/	142	15,62	
1904	10,81	126	4.89	208	2,4	2,48	151	16:13	
909	10,82	126	4.90	208	2.8	2,46	156	16.18	
914	10.85	126	4,90	208	3,1	2,45	161	16.27	
1					711	. 12	1 4	10.0.	
									-

Total volume purged		
Sample appearance	Cl (man	
Sample time	09/6	
Sample date	11/15/22	

Facility Name	AEP PINNOT PP
Sample by	Kinny McDennel

Depth to water, feet (TOC)	15,61
Measured Total Depth, feet (TOC)	31.33

Sample Location ID	AD-8	

Depth to water date	11/14/22
---------------------	----------

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
0756	15.63	168	4,43	3/0	8,2	3.84	322	19.07	
0955	15.64.	168	4.44	312	7,6	2,13	331	19.19	
1000	15,64	168	4.43	314	7,4	2.09	333	19,22	
1005	15,66	168	4.46	323	6.9	2.14	333	19,76	
					1				

Total volume purged	
Sample appearance	CLIMA
Sample time	1007
Sample date	1/14/22

acility Name	Dist
Sample by	1,1100
·	19 ct (tenille

Depth to water, feet (TOC)	
Measured Total Depth, feet (TOC)	18.53
1 7,1500 (100)	52-0

Sample Location ID	RN-13
	7,516
Depth to water date	11-18-55

1-36 1-36 1-41	Water Depth (from TOC) 18.65 16.57 20.21	Flow Rate (mL/min) 3cs 3cs	pH (S.U.) 4.38 4.56	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L) 2.44	ORP (mV)	Temperature (°C)	
056	20,52	300	4.71	66	30.1	1.83	318 318 320	19.cc 19.17 19.25 14.29	
				· ·					

(7)
1 Pri
11-17:23

Ms/Nsd

Facility Name	AFP PIAHM PP
Sample by	Ktory Mi Denvald

Depth to water, feet (TOC)	14.83
Measured Total Depth, feet (TOC)	40.70

Sample Location ID	AD-13	4)
Depth to water date	11/15/77	

Purge Sta	bilization Data			6					0.00	
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S,U.)	(μS/ˌcm)	(N.T.U)	(mg/L)	(mV)	(°C)		
0804	15.01	180	5.65	400	126	8,21	224	17,21		
0809	15,10	180	5,83	400	88.2	4,63	140	18.06		
08/4	15,21	180	5.81	399	86,4	4,59	131	18,32		
0319	15.33	180	5.81	398	85.1	4.54	124	18.51		
						П				
					4					
	9			14 m						

Total volume purged		
Sample appearance	SUOHTLY TURDIO	
Sample time	0821	
Sample date	11/15/22	

Deplicate-2 Wa + methos only 1400

Facility Name	FIRKITY PP
Sample by	Klong Mi Dina. 8

Depth to water, feet (TOC)	18,40	*
Measured Total Depth, feet (TOC)	38,24	

/	
AD-16	
11/11/73	
	AD-16

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1038	18,62	200	4,26	132	21,7	2,87	3/3	18,14	
1043	18,68	200	4.31	132	19.9	1,94	321	18.71	
1048	18,71	200	4,33	132	19.7	1,94	324	19.02	
1053	18,73	200	4,33	134	18,8	1,90	331	19.13	
							3		

Total volume purged	
Sample appearance	Clim
Sample time	1055
Sample date	11/14/22

Facility Name	P
Sample by	Tiller
10	Matt Itemiltes
Depth to water, feet (TOC)	35.77
Measured Total Depth, feet (TOC)	23.48

33.05

Sample Location ID	21-17
D 11	770.17
Depth to water date	11.1/ \>

Time 1026 1036 1036 1041	Water Depth (from TOC) 23:55 23:6c 23:11	Flow Rate (mL/min) 200 700	pH (S.U.) 487 476	Spec Cond (µS/cm)	Turbidity (N.T.U) 42.7	D.O. (mg/L)	ORP (mV) 7 & 1	Temperature - (°C) - [7.43	
1056	23.62 23.61 23.62	760 760 760	4.85>	165	32.7	1.01	285 285 286 285	14.54	
					, pro				

Total volume purged	
Sample appearance	
Sample time	(16%
Sample date	1) 1/ >-

Facility Name	AEPPIRACT PP	
Sample by	KENNY MIDENALD	

Depth to water, feet (TOC)	8,31
Measured Total Depth, feet (TOC)	28.42

Sample Location ID	AP-18	
Depth to water date	11/10/22	

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	pH	Spec Cond	Turbidity	D.O.	ORP	Temperature	
* 1	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1201	9,27	110	4.37	55	16,5	3.87	332	15.50	
1206	10,42	110	4,46	52	812	2,19	331	1697	
			*	WUN'T HOLD	WATTON	WIL			

Total volume purged	
Sample appearance	clina
Sample time	1013
Sample date	11//6/22

Facility Name	AFPPIRMM PP
Sample by	Ktowy MI DENALD

Depth to water, feet (TOC)	13.31	
Measured Total Depth, feet (TOC)	32,70	

Sample Location ID	AD-22	
Depth to water date	11/41/22	

Purge Sta	bilization Data								and the second second	
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
1114	13.46	160	4.64	769	10.7	4.21	311	17.45		
1119	17,48	160	4.76	767	5,2	2187	300	17.50		
1124	13,49	160	4.77	768	4.8	2.83	295	17.56		
1129	13,51	160	4.77	770	5,5	2,80	292	17,61		

Total volume purged		
Sample appearance	CHAN	
Sample time	1131	
Sample date	11/14/22	

Facility Name	7 11
Sample by	Pitter
	1 with Hamilton
Depth to water, feet (TOC)	3 76
Measured Total Depth, feet (TO	OC) 36-

Sample Location ID	ES-OB	
Devil		
Depth to water date	11-14-23	

1034 1034 1044	Water Depth (from TOC) 30 16 3 3- 13 3-14 3-15	Flow Rate (mL/min)	pH (S.U.) 4-3-2 4-3-8	Spec Cond (µS/cm) Sec 5	Turbidity (N.T.U) 28.8 37(D.O. (mg/L) 7.15	ORP (mV)	Temperature (°C)	
1054	30.65	270	4.43	87 79 71	212 204 36 201 204	5.17 4.58 3.13 3.81	228 231 233	14.62 14.80 14.94 15.07	
	3	:							

Total volume purged		
Sample appearance	4. bid	
Sample time	Turbiq	
Sample date	111/12	
oumpie date	11-14-22	

Facility Name	Dati
Sample by	Pilley D
	MUT HEM. H.
Depth to water, feet (TOC)	1163
Measured Total Depth, feet (TOC)	11.81

Sample Location ID	D75
Depth to water date	
septific water date	11-14-27

744 545 534 955 1004	Water Depth (from TOC) 12.cc 12.08 12.14 12.15	Flow Rate (mL/min) (C) () () () () () () () () () () () () ()	pH (S.U.) 4 & k 4 & c 4 & c	Spec Cond (µS/cm) (PS/cm) (PS/	Turbidity (N.T.U) 17 - 6 21.5 35 - 6 37.1	D.O. (mg/L) 7.04 0.85 0.47 0.65	ORP (mV) 171 . 153 . 153 . 151 . 15c	Temperature (°C) 11.41 13.67 14.43 14.78	
	8								

.

Total volume purged		
Sample appearance	cl-1/	•
Sample time	100 /	
Sample date	11-111-27	

. a

Facility Name	
Sample by	Pitkey Hamilton
Depth to water, feet (TOC)	11 112
Measured Total Depth, feet (TOC)	16.43

Sample Location ID	AN 21
, ,	7411-26
Depth to water date	1) 1/1-7 2
Depth to water date	11-14-27

ge Stabili; ime \$41 \$52 \$57 \$677	Water Depth (from TOC) 16.81 17.21 17.21	Flow Rate (mL/min) 300 300 300 300	pH (S.U.) 3 52 3 78 3 47 3 48	Spec Cond (μS/cm) 2,23c 2,23c 2,23c 2,22c 2,22c 2,22c	Turbidity (N.T.U) 56.1 31.8 31.1 31.2	D.O. (mg/L) 17.06 1.87 0.56 0.70 0.65	ORP (mV) 34c 274 251 243 238	Temperature (°C) 3 e6 4.78 5.23 5.06	

	_
GIERT G G	
1) 1/4-72	
-	clear 909

Facility Name	D. A.
Sample by	Hot Home D.
Depth to water, feet (TOC)	7 4 11
Measured Total Depth, feet (TOC)	67.19

Sample Location ID	ANS
	740.87
Depth to water date	

(177 (177	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (µS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
1137	24.48 24.51 24.56 24.60	3 e 3 e 6 3 e 6 3 e 6 3 e 6 3 e 6 9	3,81	215	24.2 23.5 9.8	3.43 2.26 1.03. 0.87 C.82	3-3 2(1 287 285	13.56 HAME 14.21 14.48 14.55	
	3.								
		3							7

Total volume purged		
Sample appearance	Class	
Sample time	CIEGIT CONTRACTOR OF THE PROPERTY OF THE PROPE	
Sample date	1/-147	

Facility Name	PN
Sample by	Tilled 1
Depth to water, feet (TOC)	Try tag
Measured Total Depth, feet (TOC)	15.67

38.59

Sample Location ID	AN -2 0
Deadin	10 28
Depth to water date	11-16-22

Time	Water Depth (from TOC)	Flow Rate (mL/min) 220 220	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
£36 £41 £45	20.24.	22e 22e 22e 22c	4.43	96 57 67	22.0	2.26	3=8 3=8 3=1	16.53 17.63 17.63 17.62 16.11	
		i							

Total volume purged	
Sample appearance	
Sample time	Citi
Sample date	1/1/22

Facility Name	D
Sample by	1 illey
	Muttl Hamilton
Depth to water, feet (TOC)	
Measured Total Depth, feet (TOC)	15:05
	771

Sample Location ID	A)-30
Dontk	
Depth to water date	17 - 16-2

Γime	Water Depth	Flow Rate	рН	Spec Cond	T	O CONTROL DE COMPOSITOR DE COM	Discould Design of the Company of th		
514 624 625 934 535 644	(from TOC) 20.52 20.65 20.65 20.65	(mL/min) 22c 22c 22c 22c 22c	(S.U.) 4.81 4.48 5.03 5.05	(μS/cm) (μS/cm) (μ17) 516 523 527 525	Turbidity (N.T.U) 247 23.1 22.5 27.7 11.8	D.O. (mg/L) 7.54 1.36 1.25 1.17	ORP (mV) 216 276 216 265 264	Temperature (°C) 4 0 8 8 2 2 4 0 0 16 72 4 75	
				*					

Total volume purged	
Sample appearance	C.P.A
Sample time	GILL
Sample date	11-14

Facility Name	D.
Sample by	Mark 1)
Depth to water, feet (TOC)	10° - 0
Measured Total Depth, feet (TOC)	18.78

Sample Location ID	NA-31
Donthi	
Depth to water date	11-15-21

Purge Stabilization Data

Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond	Turbidity	D.O.	ORP	_		
935	19.03	725	3.99	(μS/cm) 4c7	(N.T.U)	(mg/L)	(mV)	Temperature (°C)		
140	19.12	220	4.74	313	111.	3.81	361	12.13		-
45	15.12	22-	4-26	307	65.5	0.4.6	338	11.7		
55	16.13	220	4.27	3=7	57.2.	0.41	335	17.84		-
000	15:13	220	4.27	301	12.5	0.45	332	18.06		
				3-6	13.3	0.45	331	18.10		
	4									
					,					
									-	,
					40					
			D. Scanding and Section 1			-				

Total volume purged		
Sample appearance	1/24	
Sample time	1067	, , , , , , , , , , , , , , , , , , , ,
Sample date	11-15-27	

Facility Name	ACP FIRM PP	
Sample by	KINNY MI PENNED	

Depth to water, feet (TOC)	14.94	
Measured Total Depth, feet (TOC)	32,50	

Sample Location ID	AP-33	

our to water, reet (TOC)	19,19	Depth to water date	11/15/26	
sured Total Depth, feet (TOC)	32,50			
e Stabilization Data				

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1049	15,00	192	3.97	171	5,6	5,12	312	18,75	
1054	15,01	192	3.97	166	4.8	3,27	306	18,97	
1059	15,01	192	3.98	164	4.3	3.24	302	18.96	
1104	15.02	192	3,96	163	4,5	3.20	297	18,95	
		A							
		El .							
				(0)					

Total volume purged	
Sample appearance	Clfgn
Sample time	1106
Sample date	11/15/22

Facility Name	
Sample by	

Depth to water, feet (TOC)	1: 100
Measured Total Depth, feet (TOC)	11.18
. ,(1.00)	34.65

Sample Location ID	11 33
	MD 3 C
Depth to water date	11.10-53

Time 83 83 84 84 84 84 84 84	bilization Data Water Depth (from TOC) 11.62 1.71 1.77	Flow Rate (mL/min) 220 220 220	pH (S.U.) 3 7 (3 4 2	Spec Cond (µS/cm)	Turbidity (N.T.U) 77.3	D.O. (mg/L)	ORP (mV) 4-1 34 (Temperature (°C)	
\$51 \$56 901	11.84 11.85 11.85	220	3.46	598 597 566 566	34.8	0.58	371 363 359 357	17.74 17.65 17.62	
									,
		The state of the s							

Total volume purged	
Sample appearance	-1 (
Sample time	ि ।
Sample date	11-1-23

Facility Name	AFFRAM FF
Sample by	Ktmn7 MiDonard

Depth to water, feet (TOC)	TOP OF CASING
Measured Total Depth, feet (TOC)	26.05

Sample Location ID	AD-34	
Depth to water date	11/14/22	

ïme	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1805	0.6	124	3.63	1750	3,8	3,62	78	14.94	
807	0.73	124	3,61	1730	611	2,55	98	15.37	
2180	0.88	124	3.59	1720	412	2,54	104	15,40	
7817	0,97	124	3 54	1690	4,5	2,51	106	15.44	
				THE RESERVE OF THE PARTY OF THE					
				-					

Total volume purged	
Sample appearance	CLEAR
Sample time	0819
Sample date	11/14/22

Facility Name	AFR PIRKT PP
Sample by	KLANY MIDERALD

Depth to water, feet (TOC)	7.85	-
Measured Total Depth, feet (TOC)	17,10	

Sample Location ID	AD-36	
Depth to water date	11/14/77	

Water Depth (from TOC) 7, 92 7, 93	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O.	ORP	Temperature		
7.92	150			(NTII)					
		4.18		(14.1.0)	(mg/L)	(mV)	(°C)		
7,93		1110	125	41,2	13,21	184	15,39		
	150	4,39	90	16.8	7.48	177	16,54		
7,93	150	4.41	83	10.1	6,13	169	17,61		
7,95	150	4.45	75	7.6	5.52	170	18,20		
	150		74	7.8	5.52	168	18124		
7.95	150	4.46	72		5,50	168	18.26		
	7,93	7,93 150 7,95 150 7,95 150	7,93 150 4,41 7,95 150 4,45 7,95 150 4,45	7,93 150 4,41 83 7,95 150 4,45 75 7,95 150 4,45 74	7,93 150 4,41 83 10,1 7,95 150 4,45 75 7,6 7,95 150 4,45 74 7,8	7,93 150 4.41 83 10.1 6.13 7,95 150 4.45 75 7.6 5.52 7,95 150 4.45 74 7.8 5.52	7,93 150 4,41 83 10,1 6,13 169 7,95 150 4,45 75 7,6 5,52 170 7,95 150 4,45 74 7,8 5,52 168	7,93 150 4,41 83 10,1 6,13 169 17,61 7,95 150 4,45 75 7,6 5,52 170 18,20 7,95 150 4,45 74 7,8 5,52 168 18,24	7,93 150 4,41 83 10,1 6,13 169 17,6 7,95 150 4,45 75 7,6 5,52 170 18,20 7,95 150 4,45 74 7,8 5,52 168 18,24

Clash
0928
11/14/72

LAND FILL DEPLICATE 1406

acility Name	Philippi
Sample by	1.1/cey
	19. It Iten: Ita

Depth to water, feet (TOC)

Measured Total Depth, feet (TOC)

27(1)

S1(44)

Sample Location ID	R.>
D	P
Depth to water date	11/17/15

1146 1146 1151	Water Depth (from TOC) 27.5 \$ 27.66 27.66	Flow Rate (mL/min)	pH (S.U.) 5 68 5.81	Spec Cond (µS/cm)	Turbidity (N.T.U) (1),4 (4),6 (4),7	D.O. (mg/L)) . \	ORP (mV) > 66	Temperature (°C) 17.77 18.54	
								18.7)	
								2 - 3 - 2	

Total volume purged	
Sample appearance	(- 1)
Sample time	(16:1)
Sample date	11.15.25

Dapil

Facility Name	EL LICITION LA
Sample by	KENNY MEDERALD

Depth to water, feet (TOC)	15,83	
Measured Total Depth, feet (TOC)	37,49	

Sample Location ID	8-3	
Depth to water date	11/15/27	

Purge Sta	bilization Data								
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
1216	16:71	108	4.99	724	11.4	4,11	335	15,82	
1221	17,93	108	5,03	216	611	2,97	314	16,04	
				WOT'T Ito	1 d Warin 1	1 holl			
				0. 1 110	LO VONTULE				

Total volume purged	
Sample appearance	cilm
Sample time	0803
Sample date	11/16/72

APPENDIX 5- Analytical Laboratory Reports

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221004 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-2 Customer Description:

Lab Number: 221004-001 Preparation:

Date Collected: 03/29/2022 12:25 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.31 mg/L	2	0.10	0.02	CRJ	04/05/2022 15:40	EPA 300.1 -1997, Rev. 1.0
Chloride	31.4 mg/L	2	0.04	0.02	CRJ	04/05/2022 15:40	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.20 mg/L	2	0.06	0.02	CRJ	04/05/2022 15:40	EPA 300.1 -1997, Rev. 1.0
Sulfate	241 mg/L	10	2.0	0.3	CRJ	04/05/2022 15:14	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	460 mg/L	1	50	20 L1	SDW	04/01/2022 15:09	SM 2540C-2011

Customer Sample ID: AD-3 Customer Description:

Lab Number: 221004-002 Preparation:

Date Collected: 03/29/2022 12:48 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.07 mg/L	2	0.10	0.02 J1	CRJ	04/05/2022 14:47	EPA 300.1 -1997, Rev. 1.0
Chloride	6.84 mg/L	2	0.04	0.02	CRJ	04/05/2022 14:47	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.21 mg/L	2	0.06	0.02	CRJ	04/05/2022 14:47	EPA 300.1 -1997, Rev. 1.0
Sulfate	34.0 mg/L	2	0.40	0.06	CRJ	04/05/2022 14:47	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units I	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	35 mg/L	1	20	5	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	170 mg/L	1	50	20 L1	SDW	04/01/2022 15:15	SM 2540C-2011

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221004 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-4 Customer Description:

Lab Number: 221004-003 Preparation:

Date Collected: 03/29/2022 13:16 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.16 mg/L	2	0.10	0.02	CRJ	04/05/2022 16:33	EPA 300.1 -1997, Rev. 1.0
Chloride	3.80 mg/L	2	0.04	0.02	CRJ	04/05/2022 16:33	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.08 mg/L	2	0.06	0.02	CRJ	04/05/2022 16:33	EPA 300.1 -1997, Rev. 1.0
Sulfate	22.2 mg/L	2	0.40	0.06	CRJ	04/05/2022 16:33	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	140 mg/L	1	50	20 L1	SDW	04/01/2022 15:15	SM 2540C-2011

Customer Sample ID: AD-7 Customer Description:

Lab Number: 221004-004 Preparation:

Date Collected: 03/28/2022 12:50 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	2.86 mg/L	2	0.10	0.02	CRJ	04/05/2022 18:19	EPA 300.1 -1997, Rev. 1.0
Chloride	40.8 mg/L	2	0.04	0.02	CRJ	04/05/2022 18:19	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.36 mg/L	2	0.06	0.02	CRJ	04/05/2022 18:19	EPA 300.1 -1997, Rev. 1.0
Sulfate	49.9 mg/L	2	0.40	0.06	CRJ	04/05/2022 18:19	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	230 mg/L	1	50	20 L1	SDW	04/01/2022 15:20	SM 2540C-2011

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221004 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-12 Customer Description:

Lab Number: 221004-005 Preparation:

Date Collected: 03/28/2022 11:02 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.05 mg/L	2	0.10	0.02 J1	CRJ	04/05/2022 18:45	EPA 300.1 -1997, Rev. 1.0
Chloride	6.10 mg/L	2	0.04	0.02	CRJ	04/05/2022 18:45	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.07 mg/L	2	0.06	0.02	CRJ	04/05/2022 18:45	EPA 300.1 -1997, Rev. 1.0
Sulfate	3.80 mg/L	2	0.40	0.06	CRJ	04/05/2022 18:45	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	60 mg/L	1	50	20 L1	SDW	04/01/2022 15:20	SM 2540C-2011

Customer Description:

Customer Sample ID: AD-13

Lab Number: 221004-006 Preparation:

Date Collected: 03/28/2022 09:38 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.23 mg/L	2	0.10	0.02	CRJ	04/05/2022 17:26	EPA 300.1 -1997, Rev. 1.0
Chloride	46.5 mg/L	10	0.2	0.1	CRJ	04/05/2022 17:00	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.34 mg/L	2	0.06	0.02	CRJ	04/05/2022 17:26	EPA 300.1 -1997, Rev. 1.0
Sulfate	79.2 mg/L	2	0.40	0.06	CRJ	04/05/2022 17:26	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units D	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	230 mg/L	1	50	20 L1	SDW	04/01/2022 15:21	SM 2540C-2011

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221004 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-17 Customer Description:

Lab Number: 221004-007 Preparation:

Date Collected: 03/29/2022 11:25 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units I	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.16 mg/L	2	0.10	0.02	CRJ	04/05/2022 21:24	EPA 300.1 -1997, Rev. 1.0
Chloride	16.2 mg/L	2	0.04	0.02	CRJ	04/05/2022 21:24	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.26 mg/L	2	0.06	0.02	CRJ	04/05/2022 21:24	EPA 300.1 -1997, Rev. 1.0
Sulfate	6.77 mg/L	2	0.40	0.06	CRJ	04/05/2022 21:24	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	60 mg/L	1	50	20 L1	SDW	04/01/2022 15:21	SM 2540C-2011

Customer Sample ID: AD-18

Lab Number: 221004-008

Date Collected: 03/29/2022 10:36 EDT

Customer Description:

Preparation:

Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units D	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.04 mg/L	2	0.10	0.02 J1	CRJ	04/05/2022 23:10	EPA 300.1 -1997, Rev. 1.0
Chloride	5.26 mg/L	2	0.04	0.02	CRJ	04/05/2022 23:10	EPA 300.1 -1997, Rev. 1.0
Fluoride	<0.02 mg/L	2	0.06	0.02 U1	CRJ	04/05/2022 23:10	EPA 300.1 -1997, Rev. 1.0
Sulfate	7.31 mg/L	2	0.40	0.06	CRJ	04/05/2022 23:10	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS Filterable Residue	140 mg/l	1	50	20 11	SDW	04/01/2022 15:26	SM 2540C-2011

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221004 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-22 Customer Description:

Lab Number: 221004-009 Preparation:

Date Collected: 03/28/2022 10:35 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.42 mg/L	2	0.10	0.02	CRJ	04/05/2022 22:17	EPA 300.1 -1997, Rev. 1.0
Chloride	88.8 mg/L	10	0.2	0.1	CRJ	04/05/2022 21:50	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.96 mg/L	2	0.06	0.02	CRJ	04/05/2022 22:17	EPA 300.1 -1997, Rev. 1.0
Sulfate	385 mg/L	10	2.0	0.3	CRJ	04/05/2022 21:50	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	720 mg/L	2	100	40 L1	SDW	04/01/2022 15:26	SM 2540C-2011

Customer Sample ID: AD-28 Customer Description:

Lab Number: 221004-010 Preparation:

Date Collected: 03/29/2022 11:34 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.06 mg/L	2	0.10	0.02 J1	CRJ	04/06/2022 00:55	EPA 300.1 -1997, Rev. 1.0
Chloride	5.07 mg/L	2	0.04	0.02	CRJ	04/06/2022 00:55	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.68 mg/L	2	0.06	0.02	CRJ	04/06/2022 00:55	EPA 300.1 -1997, Rev. 1.0
Sulfate	28.9 mg/L	2	0.40	0.06	CRJ	04/06/2022 00:55	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	100 mg/L	1	50	20 L1	SDW	04/01/2022 15:38	SM 2540C-2011

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221004 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-30 Customer Description:

Lab Number: 221004-011 Preparation:

Date Collected: 03/28/2022 13:51 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.39 mg/L	2	0.10	0.02	CRJ	04/06/2022 00:03	EPA 300.1 -1997, Rev. 1.0
Chloride	29.5 mg/L	2	0.04	0.02	CRJ	04/06/2022 00:03	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.07 mg/L	2	0.06	0.02	CRJ	04/06/2022 00:03	EPA 300.1 -1997, Rev. 1.0
Sulfate	170 mg/L	10	2.0	0.3	CRJ	04/05/2022 23:36	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 P1, U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	330 mg/L	1	50	20 L1	SDW	04/01/2022 15:38	SM 2540C-2011

Customer Sample ID: AD-31 Customer Description:

Lab Number: 221004-012 Preparation:

Date Collected: 03/28/2022 13:04 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.29 mg/L	2	0.10	0.02	CRJ	04/06/2022 01:22	EPA 300.1 -1997, Rev. 1.0
Chloride	21.8 mg/L	2	0.04	0.02	CRJ	04/06/2022 01:22	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.13 mg/L	2	0.06	0.02	CRJ	04/06/2022 01:22	EPA 300.1 -1997, Rev. 1.0
Sulfate	80.8 mg/L	2	0.40	0.06	CRJ	04/06/2022 01:22	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	260 mg/L	1	50	20 L1	SDW	04/01/2022 15:45	SM 2540C-2011

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221004 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-32 Customer Description:

Lab Number: 221004-013 Preparation:

Date Collected: 03/28/2022 12:07 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	3.87 mg/L	2	0.10	0.02	CRJ	04/06/2022 04:53	EPA 300.1 -1997, Rev. 1.0
Chloride	25.2 mg/L	2	0.04	0.02	CRJ	04/06/2022 04:53	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.44 mg/L	2	0.06	0.02	CRJ	04/06/2022 04:53	EPA 300.1 -1997, Rev. 1.0
Sulfate	157 mg/L	25	5.0	0.8	CRJ	04/06/2022 04:27	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	330 mg/L	1	50	20 L1	SDW	04/01/2022 15:45	SM 2540C-2011

Customer Sample ID: AD-33 Customer Description:

Lab Number: 221004-014 Preparation:

Date Collected: 03/28/2022 11:54 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.24 mg/L	2	0.10	0.02	CRJ	04/06/2022 05:46	EPA 300.1 -1997, Rev. 1.0
Chloride	8.88 mg/L	2	0.04	0.02	CRJ	04/06/2022 05:46	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.30 mg/L	2	0.06	0.02	CRJ	04/06/2022 05:46	EPA 300.1 -1997, Rev. 1.0
Sulfate	67.0 mg/L	2	0.40	0.06	CRJ	04/06/2022 05:46	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	190 mg/L	1	50	20 L1	SDW	04/01/2022 15:50	SM 2540C-2011

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221004 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: Duplicate 1 Customer Description:

Lab Number: 221004-015 Preparation:

Date Collected: 03/28/2022 13:00 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.42 mg/L	2	0.10	0.02	CRJ	04/05/2022 13:55	EPA 300.1 -1997, Rev. 1.0
Chloride	88.0 mg/L	10	0.2	0.1	CRJ	04/06/2022 04:00	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.94 mg/L	2	0.06	0.02	CRJ	04/05/2022 13:55	EPA 300.1 -1997, Rev. 1.0
Sulfate	381 mg/L	10	2.0	0.3	CRJ	04/06/2022 04:00	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	720 mg/L	1	50	20 L1	SDW	04/01/2022 15:50	SM 2540C-2011

Customer Sample ID: Duplicate 2

Lab Number: 221004-016

Date Collected: 03/29/2022 11:55 EDT

Customer Description:

Preparation:

Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.06 mg/L	2	0.10	0.02 J1	CRJ	04/05/2022 13:28	EPA 300.1 -1997, Rev. 1.0
Chloride	5.02 mg/L	2	0.04	0.02	CRJ	04/05/2022 13:28	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.64 mg/L	2	0.06	0.02	CRJ	04/05/2022 13:28	EPA 300.1 -1997, Rev. 1.0
Sulfate	29.1 mg/L	2	0.40	0.06	CRJ	04/05/2022 13:28	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS Filterable Recidue	110 mg/l	1	50	20 11	SDW	04/01/2022 16:23	SM 2540C-2011

221004

Job Comments:

Original report issued 5/11/2022. Report reissued with amended Matrix Spike precision calculations.

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 221004 Customer: Pirkey Power Station Date Reported: 12/27/2022

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

- U1 Not detected at or above method detection limit (MDL).
- L1 The associated laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) recovery was outside acceptance limits.
- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.
- P1 The precision between duplicate results was above acceptance limits.

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Blxby Road Groveport, Ohio 43125

Program: Coal Combustion Residuals (CCR)

からの一般のことのでは、一般の一般のできるとなると、人ところののでは、													The second secon
Contacts: Michael Ohlinger (814-838-4184)						Site Contact:	act:			Date:			For Lab Use Only:
Project Name: Pirkey - CCR								Field-filter		1	vial or E lined ', pH<2	to laiv i benii 3 >Hq.''	22,1004
Contact Name: Leslie Fuerschbach	Analysis	Гигтагоилд	Analysis Turnaround Time (in Calendar Days)	lendar D	(ays)			250 mL	7	(six every	119 .	919 .	
Contact Phone: 318-423-3805	•						pH<2.	pH<2, HNO ₃	Cool,	L bottler, pH<2, HNO ₂	1때 092	260 mL	
Sampler(s): Matt Hamilton Kenny McDonald							, Pb,	,67,0 JT ,68		822-			
Sample identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	Conf.	Sampler(s) Init	B, Ca, Li, Sb, Mo, Se, TL and Na, K, M	Be, Ca, Cr, C Mn, Mo, Pb, 1 Be, Cd, Cr, C Mn, Mo, Pb, 1 Be, Cd, Ch, M	TDS, F, CI, Br, andAlk	87 ,822-87	вн	БН	Sample Specific Notes
AD-2	3/28/2022	1125	ပ	GW					×				
AD-3	3/28/2022	1148	g	GW	1				×				
AD-4	3/29/2022	1216	0	GW	-				×				
, AD-7	3/28/2022	1150	ß	GW	-				×				
AD-12	3/28/2022	1002	0	GW	-				×				
AD-13	3/28/2022	838	ຶ	βW	-				×				
AD-17	3/29/2022	1025	g	βW	-				×				
AD-18	3/29/2022	936	9	βW	-				×				
AD-22	3/28/2022	935	ပ	ΑS	-				×				
AD-28	3/29/2022	1034	ပ	βW	-				×				
AD-30	3/28/2022	1251	G	ΒW	-				×				
Preservation Used: 1= kce, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HN03; 5=N2	10H; 6= 0	ther		filter in field	feld r	4	F4	1	4	2	2	
Six 1L. Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.											

ix 1L Bottles must be collected for Radium for every 10th sa

Special Instructions/QC Requirements & Comments:

TG-32

Relinquished by 7 M Jawy	Company:	Date/Time: 1300 Received by: 3-522		Date/Time
Relinquished by:		Date/Time:	Received by:	Date/Time:
Relinquished by:	Company:	Date/Time:	Received in Laboratory by:	3/31/22 10:15/hm

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shrevebort, Rev. 1, 1/10/17

Chain of Custody Record

Dolan Chemical Laboratory (DCL)					ည်	ain o	f Custo	Chain of Custody Record	cord				í	
4001 Bixby Road								1						
Groveport, Ohio 43125				٥	ogran	n: Coal	Combust	Program: Coal Combustion Residuals (CCR)	ials (CC					
Contacts: Michael Ohlinger (614-836-4184)						Site Contact.	itact:		č.	Date:			For Lal	For Lab Use Only:
Project Name: Pirkey - CCR								Field-filter		, and a	o vial or benii 3 S>Hq.*	s vial or E lined ", pH<2		
Contact Name: Leslie Fuerschbach	Analysis	Furnamound	Analysis Turnaround Time (in Calendar Days)	fendar	Jays)			250 mL bottle, then	1 L bottle,	(six every 10th*)	ata J	AT9 J		
Contact Phone: 318-423-3805							PH<2, HNO,	PH<2, HNO,		L bottles, pH<2, HNO ₃	520 m	320 m		
Sampler(s): Matt Hamilton Kenny McDonald							,04 Pb, 18, g	,0, Fe, Se, TL		822-1				
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	Cont.	ini (a)selgms2	8, Ca, Li, Sb, Be, Cd, Cr, C Mo, Se, TL and Na, K, M	B, Ca, Li, Sb, Mn, Mo, Pb, 1 and Na, K, M	TDS, F, CI, Br, and All	Ra-226, Ra	βН	6 _H	Sample S	Sample Specific Notes:
AD-31	3/26/2022	1204	9	ΜĐ	-				×					
AD-32	3/28/2022	1107	ပ	δW	-				×					
AD-33	3/28/2022	1054	ပ	ΔW	-				×					
DUPLICATE 1	328/2022	1200	ဖ	SW SW	-				×					
DUPLICATE 2	3/29/2022	1055	9	SW	-				×					
The second secon						I								
2.00 (4.00-2)	3.9							2.00000						
Preservation Used: 1= ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3; 5=N	aOH; 6= 0	ther	. F	filter	filter in field	4	F4	1	4	2	2		
Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.												

Special Instructions/QC Requirements & Comments.

TG-32

Relinquished by Burney	Company:	Date/Time: 3.00 Received by:		Date/Time:
Relinquished by:	Company	Date/Time:		Date/Time:
Relinquished by:	Company:	Date/Time	Received in Laboratory by:	3/3/122 10:15 AM
Eneman COC 04 AED Chain of Control (COC) Decord for Coal Combinetion Besides	ord for Coal Combination Begins	CCO Campling	(CCB) Campling - Shrawfood Bay 1 1/10/17	

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling

AEP WATER & WASTE SAMPLE RECEIPT FORM (IR#1)

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY (UPS) FedEX USPS
	Other
Plant/Customer Pukey	Number of Plastic Containers:
Planto-distoring Total Control	received of Flance Containers.
Opened By MGK	Number of Glass Containers:
	1
Date/Time 3/31/22 10:15 AM	Number of Mercury Containers:
1.2	or N/A Initial: M&K on ice no ice
(IR Gun Ser# 210441568, Expir.5/27/2023)	
	Commerits
Was Chain of Custody received? Y/ N	Comments
Requested turneround: Routine	
	iO ₃ (48 hr) artho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out property? (Y) N	Comments
Were samples labeled property? YN	Comments
Were correct containers used? YN	Comments .
Was pH checked & Color Coding done?	VN or N/A Initial & Date: MGK
-	09535.0001 Lab rat pH Cat # LRS -4801 Lot X000RWDG21
- Was Add'i Preservative needed? Y (N)t	FYes: By whom & when:(See Prep Book)
is sample filtration requested? Y / N	Comments(See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
initiai 8	Date & Time :
Lab 10# 221004	• •
Comme	mis: Waiting JAS 3/31/22 EMER
Logged by M 50	= 12 4 12 A2 12 A2 1
Reviewed by 9 Rb	20

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Dolan Chemical Laboratory

Sample Receipt Form SOP-7102

Page I of I

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: х This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. X R1 Field chain-of-custody documentation х R2 Sample identification cross-reference х R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: **R4** (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits х Test reports/summary forms for blank samples R_5 × **R6** Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits х Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits \square **R8** Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates List of method quantitation limits (MQLs) for each analyte for each method and matrix \mathbf{x} R9 X R10 Other problems or anomalies X The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) **Release Statement:** I am responsible for the release of this laboratory data package. This data

package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

used is responsible for releasing this data package and is by signature affirming the above release						
statement is true.	$\alpha \vdash 0 \circ \infty$		1 ,			
Michael Ohlinger	Huhul phly	Chemist	4/11/22			
Name (printed)	Signature	Official Title	Date '			
	/					

responding to rule. The official signing the cover page of the rule-required report in which these data are

Check, if applicable: () This laboratory is an in-house laboratory controlled by the person

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey - CCR

Reviewer Name: Michael Ohlinger

LRC Date: 4/11/22

Laboratory Job Number: 221004

Prep Batch Number(s): QC2204008

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Yes		
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?		
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		N
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?		
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?		
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?		
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	ı	Were RPDs or relative standard deviations within the laboratory QC limits?	No	ER2
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies	, i	
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey - CCR

Reviewer Name: Michael Ohlinger

LRC Date: 4/11/22

Laboratory Job Number: 221004

Prep Batch Number(s): QC2204008

Item¹	Analytes ²	Analytes ² Description				
S1	0, I	Initial calibration (ICAL)				
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA			
	I	Were percent RSDs or correlation coefficient criteria met?	NA			
	I	Was the number of standards recommended in the method used for all analytes?	NA			
	I	Were all points generated between the lowest and highest standard used to calculate the curve?				
	I	Are ICAL data available for all instruments used?	NA			
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA			
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):				
	I	Was the CCV analyzed at the method-required frequency?	Yes			
	I	Were percent differences for each analyte within the method-required QC limits?	Yes			
	I	Was the ICAL curve verified for each analyte?	Yes			
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1		
S 3	0	Mass spectral tuning:				
	I	Was the appropriate compound for the method used for tuning?	NA			
51	I	Were ion abundance data within the method-required QC limits?	NA			
S4	0	Internal standards (IS):				
	I	Were IS area counts and retention times within the method-required QC limits?	NA			
S 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)				
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes			
	I	Were data associated with manual integrations flagged on the raw data?	NA			

Item¹	Analytes ²	Analytes ² Description					
S6	0	Dual column confirmation					
	I	Did dual column confirmation results meet the method-required QC?	NA				
S7	0						
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA				
S8	I	Interference Check Sample (ICS) results:					
	I	Were percent recoveries within method QC limits?	NA				
S9	I	Serial dilutions, post digestion spikes, and method of standard additions					
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA				
S10	0, I	Method detection limit (MDL) studies					
	I.	Was a MDL study performed for each reported analyte? Is the MDL either adjusted or supported by the	Yes				
	I	Yes					
S11	O, I	Proficiency test reports:					
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes				
S12	O, I	Standards documentation					
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes				
S13	O, I	Compound/analyte identification procedures					
	I	Are the procedures for compound/analyte identification documented?	Yes				
S14	O, I	Demonstration of analyst competency (DOC)					
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes				
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes				
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)					
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes				
S16	O, I	Laboratory standard operating procedures (SOPs):					
	I	Are laboratory SOPs current and on file for each method performed?	Yes				

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey - CCR

Reviewer Name: Michael Ohlinger

LRC Date: 4/11/22

Laboratory Job Number: 221004

Prep Batch Number(s): QC2204008

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB<0.5*MQL.
ER2	The duplicate result is above the acceptance criteria.

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:
 This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.
 R1 Field chain-of-custody documentation

R3 Test reports (analytical data sheets) for each environmental sample that includes:
 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003
 NELAC Standard

(b) Dilution factors

N

R₂

(c) Preparation methods(d) Cleanup methods

(e) If required for the project, tentatively identified compounds (TICs)

R4 Surrogate recovery data including:(a) Calculated recovery (%R)

Sample identification cross-reference

(b) The laboratory's surrogate QC limits

R5 Test reports/summary forms for blank samples

R6 Test reports/summary forms for laboratory control samples (LCSs) includes

R6 Test reports/summary forms for laboratory control samples (LCSs) including:

(a) LCS spiking amounts

(b) Calculated %R for each analyte

(c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

(a) Samples associated with the MS/MSD clearly identified

(b) MS/MSD spiking amounts

(c) Concentration of each MS/MSD analyte measured in the parent and spiked samples

(d) Calculated %Rs and relative percent differences (RPDs)

(e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) recovery and precision:

(a) The amount of analyte measured in the duplicate

(b) The calculated RPD

(c) The laboratory's QC limits for analytical duplicates

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix

R10 Other problems or anomalies

The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Tim E. Arnold

Name (printed)

Signature

Practiple Chewist

4/11/22

Official Title

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey - CCR

Reviewer Name: Tim Arnold

LRC Date: 4/11/2022

Laboratory Job Number: 221004

Prep Batch Number(s): QC2204049

Item¹	Analytes ²	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴	
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	Yes	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	
3=	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
1	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey - CCR

Reviewer Name: Tim Arnold

LRC Date: 4/11/2022

Laboratory Job Number: 221004

Prep Batch Number(s): QC2204049

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	0, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²						
S6	0	Dual column confirmation					
	I	Did dual column confirmation results meet the method-required QC?	NA				
S 7	0						
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA				
S8	I	Interference Check Sample (ICS) results:					
	I	Were percent recoveries within method QC limits?	NA				
S 9	I	Serial dilutions, post digestion spikes, and method of standard additions					
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	10			
S10	O, I	Method detection limit (MDL) studies					
	I	Was a MDL study performed for each reported analyte?	Yes				
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes				
S11	O, I	Proficiency test reports:					
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes				
S12	O, I	Standards documentation					
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes				
S13	O, I	Compound/analyte identification procedures					
	I	Are the procedures for compound/analyte identification documented?	Yes				
S14	O, I	Demonstration of analyst competency (DOC)					
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes				
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes				
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)					
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes				
S16	O, I	Laboratory standard operating procedures (SOPs):					
	I	Are laboratory SOPs current and on file for each method performed?	Yes				

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey - CCR

Reviewer Name: Tim Arnold

LRC Date: 4/11/2022

Laboratory Job Number: 221004

Prep Batch Number(s): QC2204049

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< td=""></mql.<>
	100 A
<u></u>	
_	

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

4001 Bixby Road

Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Dolan Chemical Laboratory

Reissued

Customer: Pirkey Power Station Job ID: 221028 Date Reported: 12/22/2022

Customer Sample ID: AD-2 Customer Description:

Lab Number: 221028-001 Preparation:

Date Collected: 03/29/2022 12:25 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result	Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.04	μg/L	2	0.20	0.04 U1	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Arsenic	0.82	μg/L	2	0.20	0.06	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Barium	18.2	μg/L	2	0.4	0.1	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Beryllium	0.75	μg/L	2	0.10	0.01	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Boron	3.02	mg/L	2	0.10	0.02	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Cadmium	0.102	μg/L	2	0.040	0.008	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Calcium	3.13	mg/L	2	0.10	0.04	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Chromium	0.90	μg/L	2	0.40	0.08	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Cobalt	22.7	μg/L	2	0.040	0.006	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Lead	0.5	μg/L	2	0.4	0.1	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Lithium	0.0653	mg/L	2	0.0004	0.0001	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Magnesium	6.51	mg/L	2	0.20	0.04	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Mercury	92	ng/L	2	10	4	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.2	μg/L	2	1.0	0.2 U1	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Potassium	1.36	mg/L	2	0.20	0.04	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Selenium	2.7	μg/L	2	1.0	0.2	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Sodium	103	mg/L	2	0.4	0.1 M1	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Strontium	0.0455	mg/L	2	0.0040	0.0008	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Thallium	0.10	$\mu g/L$	2	0.40	0.08 J1	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.57 pCi/L	0.12	0.15	ST	04/12/2022 10:28	SW-846 9315-1986, Rev. 0
Carrier Recovery	92.3 %					
Radium-228	1.19 pCi/L	0.18	0.54	TTP	04/08/2022 13:57	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	88.3 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-2 Customer Description:
Lab Number: 221028-001-01 Preparation: Dissolved

Date Collected: 03/29/2022 12:25 EDT Date Received: 04/01/2022 12:20 EDT

IVICIAIS							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.04 µg/L	2	0.20	0.04 U1	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Arsenic	0.81 μg/L	2	0.20	0.06	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Barium	18.4 μg/L	2	0.4	0.1	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Beryllium	0.73 μg/L	2	0.10	0.01	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Boron	3.09 mg/L	2	0.10	0.02	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Cadmium	0.097 μg/L	2	0.040	0.008	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Calcium	3.13 mg/L	2	0.10	0.04	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Chromium	1.30 µg/L	2	0.40	0.08	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Cobalt	22.7 μg/L	2	0.040	0.006	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Iron	0.07 mg/L	2	0.04	0.01	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Lead	0.5 μg/L	2	0.4	0.1	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Lithium	0.0649 mg/L	2	0.0004	0.0001	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Magnesium	6.46 mg/L	2	0.20	0.04	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Manganese	0.0859 mg/L	2	0.0020	0.0004	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.2 µg/L	2	1.0	0.2 U1	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Potassium	1.35 mg/L	2	0.20	0.04	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Selenium	2.6 μg/L	2	1.0	0.2	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Sodium	103 mg/L	2	0.4	0.1	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Strontium	0.0455 mg/L	2	0.0040	0.0008	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Thallium	0. 1 3 μg/L	2	0.40	0.08 J1	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221

Audinet: 210-4221

Reissued

Customer: Pirkey Power Station Job ID: 221028 **Date Reported: 12/22/2022**

Customer Sample ID: AD-3 Customer Description:

Lab Number: 221028-002 Preparation:

Date Collected: 03/29/2022 12:48 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Uni	s Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/	_ 1	0.10	0.02 U1	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Arsenic	1.51 µg/	. 1	0.10	0.03	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Barium	68.3 µg/	. 1	0.20	0.05	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Beryllium	0.163 µg/	. 1	0.050	0.007	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Boron	0.059 mg	L 1	0.050	0.009	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012 µg/	. 1	0.020	0.004 J1	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Calcium	6.09 mg	L 1	0.05	0.02	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Chromium	0.40 µg/	. 1	0.20	0.04	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Cobalt	7.88 µg/	_ 1	0.020	0.003	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Lead	0.28 µg/	. 1	0.20	0.05	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Lithium	0.0934 mg	L 1	0.00020	0.00005	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Magnesium	4.69 mg	L 1	0.10	0.02	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/	. 1	5	2 U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/	. 1	0.5	0.1 U1	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Potassium	3.60 mg/	L 1	0.10	0.02	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/	. 1	0.50	0.09 U1	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Sodium	13.2 mg/	L 1	0.20	0.05	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Strontium	0.0434 mg	L 1	0.0020	0.0004	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 µg/	_ 1	0.20	0.04 J1	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.59 pCi/L	0.12	0.14	ST	04/12/2022 10:28	SW-846 9315-1986, Rev. 0
Carrier Recovery	95.2 %					
Radium-228	1.32 pCi/L	0.18	0.54	TTP	04/08/2022 13:57	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	76.9 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-3 Customer Description:
Lab Number: 221028-002-01 Preparation: Dissolved

Date Collected: 03/29/2022 12:48 EDT Date Received: 04/01/2022 12:20 EDT

Metais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Arsenic	0.98 μg/L	1	0.10	0.03	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Barium	65.0 μg/L	1	0.20	0.05	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Beryllium	0.124 μg/L	1	0.050	0.007	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Boron	0.053 mg/L	1	0.050	0.009	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Cadmium	0.014 µg/L	1	0.020	0.004 J1	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Calcium	6.04 mg/L	1	0.05	0.02	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Chromium	0.39 μg/L	1	0.20	0.04	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Cobalt	7.81 µg/L	1	0.020	0.003	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Iron	10.1 mg/L	1	0.020	0.006	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Lithium	0.0934 mg/L	1	0.00020	0.00005	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Magnesium	4.67 mg/L	1	0.10	0.02	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Manganese	0.119 mg/L	1	0.0010	0.0002	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Potassium	3.61 mg/L	1	0.10	0.02	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Sodium	13.1 mg/L	1	0.20	0.05	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Strontium	0.0420 mg/L	1	0.0020	0.0004	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-4 Customer Description:

Lab Number: 221028-003 Preparation:

Date Collected: 03/29/2022 13:16 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Arsenic	1.10 µg/L	1	0.10	0.03	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Barium	93.2 μg/L	1	0.20	0.05	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Beryllium	0.641 µg/L	1	0.050	0.007	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Boron	0.019 mg/L	1	0.050	0.009 J1	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Cadmium	0.010 µg/L	1	0.020	0.004 J1	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Calcium	1.84 mg/L	1	0.05	0.02	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Chromium	0.31 μg/L	1	0.20	0.04	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Cobalt	6. 1 6 µg/L	1	0.020	0.003	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Lead	0.07 μg/L	1	0.20	0.05 J1	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Lithium	0.0383 mg/L	1	0.00020	0.00005	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Magnesium	1.24 mg/L	1	0.10	0.02	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Mercury	1 7 ng/L	1	5	2	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Potassium	2.51 mg/L	1	0.10	0.02	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Sodium	9.25 mg/L	1	0.20	0.05	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Strontium	0.0160 mg/L	1	0.0020	0.0004	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Thallium	0.07 µg/L	1	0.20	0.04 J1	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.54 pCi/L	0.12	0.17	ST	04/12/2022 10:28	SW-846 9315-1986, Rev. 0
Carrier Recovery	89.7 %					
Radium-228	0.61 pCi/L	0.18	0.60	TTP	04/08/2022 13:57	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	90.9 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-4 Customer Description:
Lab Number: 221028-003-01 Preparation: Dissolved

Date Collected: 03/29/2022 13:16 EDT Date Received: 04/01/2022 12:20 EDT

Metais							
Parameter	Result Unit	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/L	1	0.10	0.03 U1	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Barium	94.9 µg/L	1	0.20	0.05	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Beryllium	0.629 μg/L	1	0.050	0.007	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Boron	0.019 mg/l	. 1	0.050	0.009 J1	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Cadmium	0.0 11 μg/L	1	0.020	0.004 J1	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Calcium	1.88 mg/l	. 1	0.05	0.02	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Chromium	0.27 μg/L	1	0.20	0.04	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Cobalt	6.29 µg/L	1	0.020	0.003	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Iron	0.148 mg/l	. 1	0.020	0.006	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Lithium	0.0391 mg/l	. 1	0.00020	0.00005	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Magnesium	1.29 mg/l	. 1	0.10	0.02	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Manganese	0.0570 mg/l	. 1	0.0010	0.0002	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Potassium	2.52 mg/l	. 1	0.10	0.02	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Sodium	9.36 mg/l	. 1	0.20	0.05	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Strontium	0.0162 mg/l	. 1	0.0020	0.0004	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Thallium	0.07 µg/L	1	0.20	0.04 J1	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-7 Customer Description:

Lab Number: 221028-004 Preparation:

Date Collected: 03/28/2022 12:50 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Uni	s Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.04 µg/	_ 2	0.20	0.04 U1	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Arsenic	1.08 µg/	_ 2	0.20	0.06	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Barium	58.8 µg/	_ 2	0.4	0.1	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Beryllium	5.59 µg/	_ 2	0.10	0.01	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Boron	3.78 mg	L 2	0.10	0.02	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Cadmium	0.998 µg/	_ 2	0.040	0.008	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Calcium	4.33 mg	L 2	0.10	0.04	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Chromium	4.78 µg/	_ 2	0.40	0.08	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Cobalt	33.6 µg/	_ 2	0.040	0.006	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Lead	0.8 µg/	_ 2	0.4	0.1	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Lithium	0.0967 mg	L 2	0.0004	0.0001	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Magnesium	7.54 mg	L 2	0.20	0.04	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Mercury	400 ng/	100	500	200 J1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.2 µg/	_ 2	1.0	0.2 U1	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Potassium	2.80 mg	L 2	0.20	0.04	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Selenium	3.5 µg/	_ 2	1.0	0.2	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Sodium	18.3 mg	L 2	0.4	0.1	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Strontium	0.0561 mg	L 2	0.0040	0.0008	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Thallium	0.20 µg/	_ 2	0.40	0.08 J1	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.15 pCi/L	0.19	0.18	ST	04/12/2022 10:28	SW-846 9315-1986, Rev. 0
Carrier Recovery	80.7 %					
Radium-228	3.44 pCi/L	0.24	0.70	TTP	04/08/2022 13:57	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	81.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-7 Customer Description:
Lab Number: 221028-004-01 Preparation: Dissolved

Date Collected: 03/28/2022 12:50 EDT Date Received: 04/01/2022 12:20 EDT

Metais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.04 µg/L	2	0.20	0.04 U1	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Arsenic	1 .05 μg/L	2	0.20	0.06	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Barium	59.2 μg/L	2	0.4	0.1	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Beryllium	5.56 μg/L	2	0.10	0.01	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Boron	3.76 mg/L	2	0.10	0.02	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Cadmium	0.994 μg/L	2	0.040	0.008	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Calcium	4.38 mg/L	2	0.10	0.04	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Chromium	2.35 μg/L	2	0.40	0.08	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Cobalt	33.7 µg/L	2	0.040	0.006	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Iron	0.09 mg/L	2	0.04	0.01	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Lead	0.8 μg/L	2	0.4	0.1	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Lithium	0.0956 mg/L	2	0.0004	0.0001	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Magnesium	7.62 mg/L	2	0.20	0.04	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Manganese	0.0952 mg/L	2	0.0020	0.0004	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Mercury	30 ng/L	10	50	20 J1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.2 µg/L	2	1.0	0.2 U1	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Potassium	2.79 mg/L	2	0.20	0.04	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Selenium	3.6 µg/L	2	1.0	0.2	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Sodium	18.2 mg/L	2	0.4	0.1	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Strontium	0.0565 mg/L	2	0.0040	0.0008	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Thallium	0. 1 7 μg/L	2	0.40	0.08 J1	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-12 Customer Description:

Lab Number: 221028-005 Preparation:

Date Collected: 03/28/2022 11:02 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Arsenic	0.09 µg/L	1	0.10	0.03 J1	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Barium	20.2 μg/L	1	0.20	0.05	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 127 μg/L	1	0.050	0.007	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Boron	0.021 mg/L	1	0.050	0.009 J1	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Cadmium	0.009 µg/L	1	0.020	0.004 J1	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Calcium	0.20 mg/L	1	0.05	0.02	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Chromium	0.35 µg/L	1	0.20	0.04	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Cobalt	1.01 µg/L	1	0.020	0.003	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Lead	0.09 µg/L	1	0.20	0.05 J1	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Lithium	0.00604 mg/L	1	0.00020	0.00005	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Magnesium	0.35 mg/L	1	0.10	0.02	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Potassium	0.33 mg/L	1	0.10	0.02	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Selenium	0.33 µg/L	1	0.50	0.09 J1	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Sodium	4.07 mg/L	1	0.20	0.05	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Strontium	0.0021 mg/L	1	0.0020	0.0004	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.21 pCi/L	0.09	0.21	ST	04/14/2022 09:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	101 %					
Radium-228	0.55 pCi/L	0.18	0.57	TTP	04/08/2022 13:57	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	82.3 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-12 Customer Description:
Lab Number: 221028-005-01 Preparation: Dissolved

Date Collected: 03/28/2022 11:02 EDT Date Received: 04/01/2022 12:20 EDT

Metais									
Parameter	Result !	Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02	μg/L	1	0.10	0.02	U1	GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Arsenic	0.06	μg/L	1	0.10	0.03	J1	GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Barium	19.4	μg/L	1	0.20	0.05		GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Beryllium	0.123	μg/L	1	0.050	0.007		GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Boron	0.016	mg/L	1	0.050	0.009	J1	GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Cadmium	0.006	μg/L	1	0.020	0.004	J1	GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Calcium	0.24	mg/L	1	0.05	0.02		GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Chromium	0.29	μg/L	1	0.20	0.04		GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Cobalt	1.01	μg/L	1	0.020	0.003		GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Iron	0.015	mg/L	1	0.020	0.006	J1	GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Lead	0.12	µg/L	1	0.20	0.05	J1	GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Lithium	0.00591	mg/L	1	0.00020	0.00005		GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Magnesium	0.34 ı	mg/L	1	0.10	0.02		GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Manganese	0.0037	mg/L	1	0.0010	0.0002		GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ı	ng/L	1	5	2	U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1	µg/L	1	0.5	0.1	U1	GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Potassium	0.34 ı	mg/L	1	0.10	0.02		GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Selenium	0.28	μg/L	1	0.50	0.09	J1	GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Sodium	4.15 (mg/L	1	0.20	0.05		GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Strontium	0.0021	mg/L	1	0.0020	0.0004		GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04	μg/L	1	0.20	0.04	U1	GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-13 Customer Description:

Lab Number: 221028-006 Preparation:

Date Collected: 03/28/2022 09:38 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Unit	s Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/l	. 1	0.10	0.02 U1	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Arsenic	2.18 µg/	. 1	0.10	0.03	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Barium	52.1 μg/l	. 1	0.20	0.05	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Beryllium	0.579 µg/	. 1	0.050	0.007	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Boron	0.065 mg/	L 1	0.050	0.009	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/l	. 1	0.020	0.004 U1	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Calcium	13.3 mg/	L 1	0.05	0.02	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Chromium	0.52 µg/	. 1	0.20	0.04	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Cobalt	46.9 µg/	. 1	0.020	0.003	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/l	. 1	0.20	0.05 U1	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Lithium	0.138 mg/	L 1	0.00020	0.00005	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Magnesium	13.8 mg/	L 1	0.10	0.02	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/l	. 1	5	2 U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/	. 1	0.5	0.1 U1	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Potassium	5.16 mg/	L 1	0.10	0.02	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/l	. 1	0.50	0.09 U1	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Sodium	19.6 mg/	L 1	0.20	0.05	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Strontium	0.117 mg/	L 1	0.0020	0.0004	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/l	. 1	0.20	0.04 U1	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.10 pCi/L	0.24	0.29	ST	04/14/2022 09:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	77.6 %					
Radium-228	1.85 pCi/L	0.20	0.57	TTP	04/08/2022 13:57	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	76.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-13 Customer Description:
Lab Number: 221028-006-01 Preparation: Dissolved

Date Collected: 03/28/2022 09:38 EDT Date Received: 04/01/2022 12:20 EDT

Metais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Arsenic	0.25 μg/L	1	0.10	0.03	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Barium	50.1 μg/L	1	0.20	0.05	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Beryllium	0.471 μg/L	1	0.050	0.007	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Boron	0.067 mg/L	1	0.050	0.009	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Cadmium	0.009 μg/L	1	0.020	0.004 J1	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Calcium	12.8 mg/L	1	0.05	0.02	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Chromium	0.28 μg/L	1	0.20	0.04	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Cobalt	45.7 μg/L	1	0.020	0.003	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Iron	12.8 mg/L	1	0.020	0.006	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Lithium	0.142 mg/L	1	0.00020	0.00005	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Magnesium	13.5 mg/L	1	0.10	0.02	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Manganese	0.466 mg/L	1	0.0010	0.0002	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Potassium	5.03 mg/L	1	0.10	0.02	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Sodium	19.6 mg/L	1	0.20	0.05	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Strontium	0.112 mg/L	1	0.0020	0.0004	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-17 Customer Description:

Lab Number: 221028-007 Preparation:

Date Collected: 03/29/2022 11:25 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Arsenic	0.30 µg/L	1	0.10	0.03	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Barium	112 µg/L	1	0.20	0.05	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Beryllium	0.481 µg/L	1	0.050	0.007	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Boron	0.031 mg/L	1	0.050	0.009 J1	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Cadmium	0.028 µg/L	1	0.020	0.004	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Calcium	0.24 mg/L	1	0.05	0.02	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Chromium	0.70 µg/L	1	0.20	0.04	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Cobalt	6.48 µg/L	1	0.020	0.003	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Lead	0.1 µg/L	1	0.20	0.05 J1	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Lithium	0.0126 mg/L	1	0.00020	0.00005	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Magnesium	2.05 mg/L	1	0.10	0.02	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Mercury	300 ng/L	100	500	200 J1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Potassium	0.42 mg/L	1	0.10	0.02	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Selenium	0.26 µg/L	1	0.50	0.09 J1	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Sodium	6.73 mg/L	1	0.20	0.05	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Strontium	0.0099 mg/L	1	0.0020	0.0004	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.48 pCi/L	0.24	0.24	ST	04/14/2022 09:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	95.0 %					
Radium-228	1.53 pCi/L	0.16	0.47	ΠTP	04/08/2022 13:57	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	84.5 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-17 Customer Description:
Lab Number: 221028-007-01 Preparation: Dissolved

Date Collected: 03/29/2022 11:25 EDT Date Received: 04/01/2022 12:20 EDT

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Arsenic	0.09 µg/L	1	0.10	0.03 J1	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Barium	111 µg/L	1	0.20	0.05	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Beryllium	0.469 μg/L	1	0.050	0.007	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Boron	0.031 mg/L	1	0.050	0.009 J1	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Cadmium	0.027 μg/L	1	0.020	0.004	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Calcium	0.24 mg/L	1	0.05	0.02	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Chromium	1.28 µg/L	1	0.20	0.04	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Cobalt	6.40 μg/L	1	0.020	0.003	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Iron	0.013 mg/L	1	0.020	0.006 J1	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Lead	0.08 μg/L	1	0.20	0.05 J1	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Lithium	0.0126 mg/L	1	0.00020	0.00005	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Magnesium	2.01 mg/L	1	0.10	0.02	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Manganese	0.0052 mg/L	1	0.0010	0.0002	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Mercury	<200 ng/L	100	500	200 U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Potassium	0.40 mg/L	1	0.10	0.02	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Selenium	0.21 μg/L	1	0.50	0.09 J1	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Sodium	6.63 mg/L	1	0.20	0.05	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Strontium	0.0096 mg/L	1	0.0020	0.0004	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-18 Customer Description:

Lab Number: 221028-008 Preparation:

Date Collected: 03/29/2022 10:36 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.02 μg/L	1	0.10	0.02 J1	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Arsenic	1.55 µg/L	1	0.10	0.03	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Barium	90.1 μg/L	1	0.20	0.05	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Beryllium	0.106 µg/L	1	0.050	0.007	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Boron	0.009 mg/L	1	0.050	0.009 J1	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Cadmium	0.01 µg/L	1	0.020	0.004 J1	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Calcium	0.24 mg/L	1	0.05	0.02	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Chromium	1.40 µg/L	1	0.20	0.04	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Cobalt	0.842 μg/L	1	0.020	0.003	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Lead	0.53 μg/L	1	0.20	0.05	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Lithium	0.0137 mg/L	1	0.00020	0.00005	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Magnesium	0.34 mg/L	1	0.10	0.02	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Mercury	21 ng/L	1	5	2	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Potassium	0.77 mg/L	1	0.10	0.02	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Selenium	0.38 µg/L	1	0.50	0.09 J1	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Sodium	5.33 mg/L	1	0.20	0.05	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Strontium	0.0050 mg/L	1	0.0020	0.0004	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 µg/L	1	0.20	0.04 J1	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.60 pCi/L	0.13	0.18	ST	04/14/2022 09:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	140 %					
Radium-228	1.41 pCi/L	0.20	0.60	TTP	04/08/2022 13:57	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	82.3 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-18 Customer Description:
Lab Number: 221028-008-01 Preparation: Dissolved

Date Collected: 03/29/2022 10:36 EDT Date Received: 04/01/2022 12:20 EDT

Parameter F	esult	Unite	Dilution						
		Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02	μg/L	1	0.10	0.02	U1	GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Arsenic	0.03	μg/L	1	0.10	0.03	J1	GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Barium	82.7	μg/L	1	0.20	0.05		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Beryllium	0.084	μg/L	1	0.050	0.007		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Boron	0.009	mg/L	1	0.050	0.009	J1	GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012	μg/L	1	0.020	0.004	J1	GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Calcium	0.27	mg/L	1	0.05	0.02		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Chromium	2.02	μg/L	1	0.20	0.04		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Cobalt).743	µg/L	1	0.020	0.003		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Iron	0.039	mg/L	1	0.020	0.006		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Lead	<0.05	μg/L	1	0.20	0.05	U1	GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Lithium 0	0140	mg/L	1	0.00020	0.00005		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Magnesium	0.30	mg/L	1	0.10	0.02		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Manganese 0	0035	mg/L	1	0.0010	0.0002		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Mercury	<2	ng/L	1	5	2	U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1	μg/L	1	0.5	0.1	U1	GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Potassium	0.73	mg/L	1	0.10	0.02		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09	μg/L	1	0.50	0.09	U1	GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Sodium	5.21	mg/L	1	0.20	0.05		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Strontium 0	0041	mg/L	1	0.0020	0.0004		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04	μg/L	1	0.20	0.04	U1	GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-22 Customer Description:

Lab Number: 221028-009 Preparation:

Date Collected: 03/28/2022 10:35 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Unit	s Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/l	1	0.10	0.02 U1	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Arsenic	3.21 µg/l	1	0.10	0.03	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Barium	19.3 µg/l	1	0.20	0.05	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Beryllium	8.78 μg/l	1	0.050	0.007	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Boron	0.068 mg/	_ 1	0.050	0.009	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Cadmium	1.27 µg/l	1	0.020	0.004	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Calcium	16.4 mg/	_ 1	0.05	0.02	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Chromium	0.43 µg/l	1	0.20	0.04	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Cobalt	1 09 μg/l	1	0.020	0.003	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Lead	0. 1 5 µg/l	1	0.20	0.05 J1	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Lithium	0.170 mg/	. 1	0.00020	0.00005	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Magnesium	22.7 mg/	1	0.10	0.02	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Mercury	<4 ng/l	2	10	4 U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/l	1	0.5	0.1 U1	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Potassium	4.73 mg/	_ 1	0.10	0.02	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Selenium	9.20 μg/l	1	0.50	0.09	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Sodium	96.7 mg/	_ 1	0.20	0.05	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Strontium	0.140 mg/	. 1	0.0020	0.0004	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Thallium	0.19 µg/l	1	0.20	0.04 J1	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.48 pCi/L	0.26	0.26	ST	04/14/2022 09:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	80.4 %					
Radium-228	2.76 pCi/L	0.21	0.55	TTP	04/08/2022 13:57	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	74.9 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-22 Customer Description:
Lab Number: 221028-009-01 Preparation: Dissolved

Date Collected: 03/28/2022 10:35 EDT Date Received: 04/01/2022 12:20 EDT

Metais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Arsenic	3.30 µg/L	1	0.10	0.03	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Barium	1 9.3 μg/L	1	0.20	0.05	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Beryllium	8.78 μg/L	1	0.050	0.007	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Boron	0.069 mg/L	1	0.050	0.009	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Cadmium	1.28 μg/L	1	0.020	0.004	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Calcium	16.5 mg/L	1	0.05	0.02	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Chromium	0.53 μg/L	1	0.20	0.04	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Cobalt	111 μg/L	1	0.020	0.003	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Iron	31.8 mg/L	1	0.020	0.006	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Lead	0. 1 7 μg/L	1	0.20	0.05 J1	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Lithium	0.171 mg/L	1	0.00020	0.00005	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Magnesium	23.1 mg/L	1	0.10	0.02	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Manganese	0.407 mg/L	1	0.0010	0.0002	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Mercury	12 ng/L	1	5	2	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Potassium	4.80 mg/L	1	0.10	0.02	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Selenium	9.49 μg/L	1	0.50	0.09	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Sodium	97.9 mg/L	1	0.20	0.05	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Strontium	0.142 mg/L	1	0.0020	0.0004	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Thallium	0.19 μg/L	1	0.20	0.04 J1	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-28 Customer Description:

Lab Number: 221028-010 Preparation:

Date Collected: 03/29/2022 11:34 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Arsenic	0.09 µg/L	1	0.10	0.03 J1	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Barium	12 0 μg/L	1	0.20	0.05	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Beryllium	0.605 μg/L	1	0.050	0.007	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Boron	0.356 mg/L	1	0.050	0.009	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Cadmium	0.057 μg/L	1	0.020	0.004	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Calcium	1.31 mg/L	1	0.05	0.02	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Chromium	0.35 μg/L	1	0.20	0.04	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Cobalt	12.5 µg/L	1	0.020	0.003	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Lead	0.05 μg/L	1	0.20	0.05 J1	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Lithium	0.0242 mg/L	1	0.00020	0.00005	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Magnesium	2.94 mg/L	1	0.10	0.02	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Mercury	12 ng/L	1	5	2	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Potassium	0.73 mg/L	1	0.10	0.02	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Selenium	0.26 μg/L	1	0.50	0.09 J1	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Sodium	7.52 mg/L	1	0.20	0.05	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Strontium	0.0197 mg/L	1	0.0020	0.0004	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.61 pCi/L	0.26	0.26	ST	04/14/2022 09:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	83.5 %					
Radium-228	1.37 pCi/L	0.16	0.47	TTP	04/08/2022 13:57	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	81.5 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

 Analysis Report
 4001 Bixby Road

 Groveport, OH 43125
 Phone: 614-836-4221

 Audinet: 210-4221
 Audinet: 210-4221

Dolan Chemical Laboratory

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-28 Customer Description:
Lab Number: 221028-010-01 Preparation: Dissolved

Date Collected: 03/29/2022 11:34 EDT Date Received: 04/01/2022 12:20 EDT

Metais									
Parameter	Result l	Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µ	µg/L	1	0.10	0.02	U1	GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Arsenic	0.08 կ	µg/L	1	0.10	0.03	J1	GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Barium	125 µ	µg/L	1	0.20	0.05		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Beryllium	0.576 լ	µg/L	1	0.050	0.007		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Boron	0.359 r	mg/L	1	0.050	0.009		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Cadmium	0.052 μ	µg/L	1	0.020	0.004		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Calcium	1 .29 r	mg/L	1	0.05	0.02		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Chromium	0.36 բ	µg/L	1	0.20	0.04		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Cobalt	12.4 µ	µg/L	1	0.020	0.003		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Iron	0.0 13 r	mg/L	1	0.020	0.006	J1	GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Lead	0.06 μ	µg/L	1	0.20	0.05	J1	GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Lithium	0.0245 r	mg/L	1	0.00020	0.00005		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Magnesium	2.92 r	mg/L	1	0.10	0.02		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Manganese	0.0497 r	mg/L	1	0.0010	0.0002		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Mercury	3 r	ng/L	1	5	2	J1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µ	µg/L	1	0.5	0.1	U1	GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Potassium	0.76 r	mg/L	1	0.10	0.02		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Selenium	0.25 լ	µg/L	1	0.50	0.09	J1	GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Sodium	7.49 r	mg/L	1	0.20	0.05		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Strontium	0.0198 r	mg/L	1	0.0020	0.0004		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 լ	µg/L	1	0.20	0.04	J1	GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-30 Customer Description:

Lab Number: 221028-011 Preparation:

Date Collected: 03/28/2022 13:51 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifier	rs Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Arsenic	0.19 µg/L	1	0.10	0.03	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Barium	129 µg/L	1	0.20	0.05	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Beryllium	0.125 μg/L	1	0.050	0.007	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Boron	2.45 mg/L	1	0.050	0.009	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012 µg/L	1	0.020	0.004 J1	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Calcium	0.66 mg/L	1	0.05	0.02	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Chromium	0.45 µg/L	1	0.20	0.04	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Cobalt	4.76 μg/L	1	0.020	0.003	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Lithium	0.0101 mg/L	1	0.00020	0.00005	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Magnesium	2.73 mg/L	1	0.10	0.02	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Mercury	35 ng/L	2	10	4	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/18/2022 19:09	EPA 200.8-1994, Rev. 5.4
Potassium	0.92 mg/L	1	0.10	0.02	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Selenium	0.44 µg/L	1	0.50	0.09 J1	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Sodium	90.3 mg/L	1	0.20	0.05 M1	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Strontium	0.0116 mg/L	1	0.0020	0.0004	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 µg/L	1	0.20	0.04 J1	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.85 pCi/L	0.19	0.25	ST	04/14/2022 09:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	83.7 %					
Radium-228	1.45 pCi/L	0.26	0.81	TTP	04/13/2022 13:52	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	57.2 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-30 Customer Description:
Lab Number: 221028-011-01 Preparation: Dissolved

Date Collected: 03/28/2022 13:51 EDT Date Received: 04/01/2022 12:20 EDT

Metais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Arsenic	0.09 μg/L	1	0.10	0.03 J1	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Barium	114 µg/L	1	0.20	0.05	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Beryllium	0.130 µg/L	1	0.050	0.007	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Boron	2.50 mg/L	1	0.050	0.009	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012 µg/L	1	0.020	0.004 J1	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Calcium	0.66 mg/L	1	0.05	0.02	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Chromium	0.31 μg/L	1	0.20	0.04	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Cobalt	4.73 μg/L	1	0.020	0.003	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Iron	0.009 mg/L	1	0.020	0.006 J1	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Lead	0.06 µg/L	1	0.20	0.05 J1	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Lithium	0.0103 mg/L	1	0.00020	0.00005	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Magnesium	2.70 mg/L	1	0.10	0.02	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Manganese	0.0166 mg/L	1	0.0010	0.0002	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Mercury	11 ng/L	2	10	4	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.1 µg/L	1	0.5	0.1 J1	GES	04/18/2022 19:24	EPA 200.8-1994, Rev. 5.4
Potassium	0.93 mg/L	1	0.10	0.02	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Selenium	0.20 µg/L	1	0.50	0.09 J1	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Sodium	91.4 mg/L	1	0.20	0.05	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Strontium	0.0116 mg/L	1	0.0020	0.0004	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Thallium	0.07 µg/L	1	0.20	0.04 J1	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-31 Customer Description:

Lab Number: 221028-012 Preparation:

Date Collected: 03/28/2022 13:04 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Ur	nits Dilution	n RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 με	:/L 1	0.10	0.02 U1	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Arsenic	0.26 με	:/L 1	0.10	0.03	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Barium	32.8 με	/L 1	0.20	0.05	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Beryllium	0.854 με	/L 1	0.050	0.007	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Boron	0.026 m	g/L 1	0.050	0.009 J1	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Cadmium	0.068 με	:/L 1	0.020	0.004	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Calcium	2.75 m	g/L 1	0.05	0.02	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Chromium	0.51 με	:/L 1	0.20	0.04	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Cobalt	9.14 με	:/L 1	0.020	0.003	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Lead	0.29 με	:/L 1	0.20	0.05	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Lithium	0.0687 m	g/L 1	0.00020	0.00005	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Magnesium	4.03 m	g/L 1	0.10	0.02	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Mercury	103 ng	/L 1	5	2	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg	:/L 1	0.5	0.1 U1	GES	04/18/2022 19:29	EPA 200.8-1994, Rev. 5.4
Potassium	1.65 m	g/L 1	0.10	0.02	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Selenium	0.38 µg	:/L 1	0.50	0.09 J1	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Sodium	32.4 m	g/L 1	0.20	0.05	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Strontium	0.0392 m	g/L 1	0.0020	0.0004	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 με	:/L 1	0.20	0.04 J1	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.95 pCi/L	0.19	0.22	ST	04/14/2022 09:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	90.5 %					
Radium-228	1.46 pCi/L	0.16	0.46	TTP	04/13/2022 13:52	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	91.7 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-31 Customer Description:
Lab Number: 221028-012-01 Preparation: Dissolved

Date Collected: 03/28/2022 13:04 EDT Date Received: 04/01/2022 12:20 EDT

Metais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 23:34	EPA 200.8-1994, Rev. 5.4
Arsenic	0. 14 μg/L	1	0.10	0.03	GES	04/14/2022 23:34	EPA 200.8-1994, Rev. 5.4
Barium	31.8 µg/L	1	0.20	0.05	GES	04/14/2022 23:34	EPA 200.8-1994, Rev. 5.4
Beryllium	0.765 μg/L	1	0.050	0.007	GES	04/14/2022 23:34	EPA 200.8-1994, Rev. 5.4
Boron	0.021 mg/L	1	0.050	0.009 J1	GES	04/14/2022 23:34	EPA 200.8-1994, Rev. 5.4
Cadmium	0.063 µg/L	1	0.020	0.004	GES	04/14/2022 23:34	EPA 200.8-1994, Rev. 5.4
Calcium	2.78 mg/L	1	0.05	0.02	GES	04/14/2022 23:34	EPA 200.8-1994, Rev. 5.4
Chromium	0.34 μg/L	1	0.20	0.04	GES	04/14/2022 23:34	EPA 200.8-1994, Rev. 5.4
Cobalt	8.83 µg/L	1	0.020	0.003	GES	04/14/2022 23:34	EPA 200.8-1994, Rev. 5.4
Iron	0.109 mg/L	1	0.020	0.006	GES	04/14/2022 23:34	EPA 200.8-1994, Rev. 5.4
Lead	0.39 µg/L	1	0.20	0.05	GES	04/14/2022 23:34	EPA 200.8-1994, Rev. 5.4
Lithium	0.0679 mg/L	1	0.00020	0.00005	GES	04/14/2022 23:34	EPA 200.8-1994, Rev. 5.4
Magnesium	3.84 mg/L	1	0.10	0.02	GES	04/14/2022 23:34	EPA 200.8-1994, Rev. 5.4
Manganese	0.0252 mg/L	1	0.0010	0.0002	GES	04/14/2022 23:34	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/18/2022 19:34	EPA 200.8-1994, Rev. 5.4
Potassium	1.63 mg/L	1	0.10	0.02	GES	04/14/2022 23:34	EPA 200.8-1994, Rev. 5.4
Selenium	0. 14 μg/L	1	0.50	0.09 J1	GES	04/14/2022 23:34	EPA 200.8-1994, Rev. 5.4
Sodium	32.6 mg/L	1	0.20	0.05	GES	04/14/2022 23:34	EPA 200.8-1994, Rev. 5.4
Strontium	0.0386 mg/L	1	0.0020	0.0004	GES	04/14/2022 23:34	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 µg/L	1	0.20	0.04 J1	GES	04/14/2022 23:34	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-32 Customer Description:

Lab Number: 221028-013 Preparation:

Date Collected: 03/28/2022 12:07 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Arsenic	1.05 µg/L	1	0.10	0.03	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Barium	30.0 μg/L	1	0.20	0.05	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Beryllium	2.89 μg/L	1	0.050	0.007	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Boron	0.773 mg/L	1	0.050	0.009	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Cadmium	0.323 μg/L	1	0.020	0.004	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Calcium	8.05 mg/L	1	0.05	0.02	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Chromium	0.60 µg/L	1	0.20	0.04	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Cobalt	25.1 µg/L	1	0.020	0.003	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Lead	0.38 µg/L	1	0.20	0.05	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Lithium	0.0731 mg/L	1	0.00020	0.00005	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Magnesium	9.45 mg/L	1	0.10	0.02	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Mercury	1900 ng/L	100	500	200	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/18/2022 19:39	EPA 200.8-1994, Rev. 5.4
Potassium	2.99 mg/L	1	0.10	0.02	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Selenium	3.42 µg/L	1	0.50	0.09	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Sodium	33.6 mg/L	1	0.20	0.05	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Strontium	0.150 mg/L	1	0.0020	0.0004	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Thallium	0.17 µg/L	1	0.20	0.04 J1	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.34 pCi/L	0.24	0.27	ST	04/14/2022 09:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	83.3 %					
Radium-228	4.56 pCi/L	0.21	0.52	TTP	04/13/2022 13:52	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	80.4 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-32 Customer Description:
Lab Number: 221028-013-01 Preparation: Dissolved

Date Collected: 03/28/2022 12:07 EDT Date Received: 04/01/2022 12:20 EDT

Metais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Arsenic	0.92 μg/L	1	0.10	0.03	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Barium	28.9 μg/L	1	0.20	0.05	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Beryllium	2.86 μg/L	1	0.050	0.007	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Boron	0.747 mg/L	1	0.050	0.009	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Cadmium	0.317 μg/L	1	0.020	0.004	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Calcium	7.84 mg/L	1	0.05	0.02	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Chromium	0.56 μg/L	1	0.20	0.04	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Cobalt	24.1 μg/L	1	0.020	0.003	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Iron	0.719 mg/L	1	0.020	0.006	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Lead	0.34 μg/L	1	0.20	0.05	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Lithium	0.0719 mg/L	1	0.00020	0.00005	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Magnesium	8.96 mg/L	1	0.10	0.02	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Manganese	0.0455 mg/L	1	0.0010	0.0002	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Mercury	<20 ng/L	10	50	20 U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/18/2022 19:45	EPA 200.8-1994, Rev. 5.4
Potassium	2.87 mg/L	1	0.10	0.02	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Selenium	3.30 µg/L	1	0.50	0.09	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Sodium	32.5 mg/L	1	0.20	0.05	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Strontium	0.145 mg/L	1	0.0020	0.0004	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Thallium	0. 12 μg/L	1	0.20	0.04 J1	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-33 Customer Description:

Lab Number: 221028-014 Preparation:

Date Collected: 03/28/2022 11:54 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Arsenic	0.87 µg/L	1	0.10	0.03	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Barium	45.0 μg/L	1	0.20	0.05	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Beryllium	1.35 µg/L	1	0.050	0.007	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Boron	0.146 mg/L	1	0.050	0.009	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Cadmium	0.057 μg/L	1	0.020	0.004	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Calcium	2.28 mg/L	1	0.05	0.02	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Chromium	0.47 μg/L	1	0.20	0.04	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Cobalt	9.82 μg/L	1	0.020	0.003	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Lead	0.32 μg/L	1	0.20	0.05	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Lithium	0.0219 mg/L	1	0.00020	0.00005	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Magnesium	4.10 mg/L	1	0.10	0.02	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Mercury	4600 ng/L	100	500	200	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/18/2022 19:50	EPA 200.8-1994, Rev. 5.4
Potassium	0.30 mg/L	1	0.10	0.02	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Selenium	2.68 µg/L	1	0.50	0.09	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Sodium	18.7 mg/L	1	0.20	0.05	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Strontium	0.0345 mg/L	1	0.0020	0.0004	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.27 pCi/L	0.23	0.24	ST	04/14/2022 09:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	87.2 %					
Radium-228	1.01 pCi/L	0.23	0.72	TTP	04/13/2022 13:52	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	53.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-33 Customer Description:
Lab Number: 221028-014-01 Preparation: Dissolved

Date Collected: 03/28/2022 11:54 EDT Date Received: 04/01/2022 12:20 EDT

motalo									
Parameter	Result l	Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µ	µg/L	1	0.10	0.02	U1	GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Arsenic	0.82 լ	µg/L	1	0.10	0.03		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Barium	45.7 լ	µg/L	1	0.20	0.05		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Beryllium	1.35 µ	µg/L	1	0.050	0.007		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Boron	0.143 r	mg/L	1	0.050	0.009		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Cadmium	0.058 լ	µg/L	1	0.020	0.004		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Calcium	2.29 r	mg/L	1	0.05	0.02		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Chromium	0.39 μ	µg/L	1	0.20	0.04		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Cobalt	9.88 μ	µg/L	1	0.020	0.003		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Iron	0.030 r	mg/L	1	0.020	0.006		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Lead	0.29 μ	µg/L	1	0.20	0.05		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Lithium	0.0220 r	mg/L	1	0.00020	0.00005		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Magnesium	4.21 r	mg/L	1	0.10	0.02		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Manganese	0.0090 r	mg/L	1	0.0010	0.0002		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Mercury	34 r	ng/L	1	5	2		JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µ	µg/L	1	0.5	0.1	U1	GES	04/18/2022 19:55	EPA 200.8-1994, Rev. 5.4
Potassium	0.30 r	mg/L	1	0.10	0.02		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Selenium	2.70 μ	µg/L	1	0.50	0.09		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Sodium	18.6 r	mg/L	1	0.20	0.05		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Strontium	0.0353 r	mg/L	1	0.0020	0.0004		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µ	µg/L	1	0.20	0.04	U1	GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: Duplicate 1 Customer Description:

Lab Number: 221028-015 Preparation:

Date Collected: 03/28/2022 13:00 EDT Date Received: 04/01/2022 12:20 EDT

Metais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Arsenic	3. 1 9 µg/L	1	0.10	0.03	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Barium	19.2 μg/L	1	0.20	0.05	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Beryllium	9.06 μg/L	1	0.050	0.007	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Boron	0.068 mg/L	1	0.050	0.009	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Cadmium	1.23 µg/L	1	0.020	0.004	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Calcium	16.4 mg/L	1	0.05	0.02	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Chromium	0.47 μg/L	1	0.20	0.04	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Cobalt	1 09 μg/L	1	0.020	0.003	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Lead	0.15 μg/L	1	0.20	0.05 J1	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Lithium	0.176 mg/L	1	0.00020	0.00005	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Magnesium	22.7 mg/L	1	0.10	0.02	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Mercury	14 ng/L	1	5	2	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/18/2022 20:00	EPA 200.8-1994, Rev. 5.4
Potassium	4.79 mg/L	1	0.10	0.02	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Selenium	8.93 µg/L	1	0.50	0.09	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Sodium	96.9 mg/L	1	0.20	0.05	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Strontium	0.141 mg/L	1	0.0020	0.0004	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Thallium	0.19 μg/L	1	0.20	0.04 J1	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: Duplicate 1 Customer Description:
Lab Number: 221028-015-01 Preparation: Dissolved

Date Collected: 03/28/2022 13:00 EDT Date Received: 04/01/2022 12:20 EDT

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Arsenic	3.18 µg/L	1	0.10	0.03	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Barium	1 9.4 μg/L	1	0.20	0.05	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Beryllium	8.88 µg/L	1	0.050	0.007	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Boron	0.069 mg/L	1	0.050	0.009	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Cadmium	1.26 µg/L	1	0.020	0.004	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Calcium	16.5 mg/L	1	0.05	0.02	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Chromium	1.10 µg/L	1	0.20	0.04	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Cobalt	109 μg/L	1	0.020	0.003	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Iron	31.7 mg/L	1	0.020	0.006	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Lead	0. 1 7 μg/L	1	0.20	0.05 J1	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Lithium	0.174 mg/L	1	0.00020	0.00005	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Magnesium	23.0 mg/L	1	0.10	0.02	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Manganese	0.408 mg/L	1	0.0010	0.0002	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Mercury	3 ng/L	1	5	2 J1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/18/2022 20:05	EPA 200.8-1994, Rev. 5.4
Potassium	4.85 mg/L	1	0.10	0.02	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Selenium	8.99 µg/L	1	0.50	0.09	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Sodium	98.3 mg/L	1	0.20	0.05	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Strontium	0.141 mg/L	1	0.0020	0.0004	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Thallium	0.19 μg/L	1	0.20	0.04 J1	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: Duplicate 2 Customer Description:

Lab Number: 221028-016 Preparation:

Date Collected: 03/29/2022 11:55 EDT Date Received: 04/01/2022 12:20 EDT

Motalo							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Arsenic	0.09 μg/L	1	0.10	0.03 J1	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Barium	12 5 μg/L	1	0.20	0.05	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Beryllium	0.633 μg/L	1	0.050	0.007	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Boron	0.355 mg/L	1	0.050	0.009	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Cadmium	0.059 μg/L	1	0.020	0.004	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Calcium	1.31 mg/L	1	0.05	0.02	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Chromium	0.75 μg/L	1	0.20	0.04	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Cobalt	12.5 μg/L	1	0.020	0.003	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Lead	0.05 μg/L	1	0.20	0.05 J1	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Lithium	0.0253 mg/L	1	0.00020	0.00005	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Magnesium	2.98 mg/L	1	0.10	0.02	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Mercury	13 ng/L	2	10	4	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/18/2022 21:12	EPA 200.8-1994, Rev. 5.4
Potassium	0.77 mg/L	1	0.10	0.02	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Selenium	0.22 μg/L	1	0.50	0.09 J1	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Sodium	7.52 mg/L	1	0.20	0.05	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Strontium	0.0205 mg/L	1	0.0020	0.0004	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: Duplicate 2 Customer Description:
Lab Number: 221028-016-01 Preparation: Dissolved

Date Collected: 03/29/2022 11:55 EDT Date Received: 04/01/2022 12:20 EDT

Metais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Arsenic	0.07 μg/L	1	0.10	0.03 J1	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Barium	127 µg/L	1	0.20	0.05	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Beryllium	0.595 μg/L	1	0.050	0.007	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Boron	0.346 mg/L	1	0.050	0.009	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Cadmium	0.050 µg/L	1	0.020	0.004	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Calcium	1.34 mg/L	1	0.05	0.02	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Chromium	0.34 μg/L	1	0.20	0.04	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Cobalt	12.0 µg/L	1	0.020	0.003	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Iron	0.012 mg/L	1	0.020	0.006 J1	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Lead	0.07 µg/L	1	0.20	0.05 J1	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Lithium	0.0252 mg/L	1	0.00020	0.00005	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Magnesium	2.87 mg/L	1	0.10	0.02	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Manganese	0.0493 mg/L	1	0.0010	0.0002	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Mercury	5 ng/L	1	5	2	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/18/2022 21:17	EPA 200.8-1994, Rev. 5.4
Potassium	0.75 mg/L	1	0.10	0.02	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Selenium	0.21 µg/L	1	0.50	0.09 J1	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Sodium	7.20 mg/L	1	0.20	0.05	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Strontium	0.0199 mg/L	1	0.0020	0.0004	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4

4001 Bixby Road Groveport, OH 43125

Phone: 614-836-4221 Audinet: 210-4221

Dolan Chemical Laboratory

Reissued

Customer: Pirkey Power Station Job ID: 221028 **Date Reported: 12/22/2022**

Customer Sample ID: Equipment Blank

Customer Description:

Lab Number: 221028-017

Preparation:

Date Collected: 03/28/2022 11:30 EDT

Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Un	its Dilution	n RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg	/L 1	0.10	0.02	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg	/L 1	0.10	0.03	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Barium	0.05 µg	/L 1	0.20	0.05	J1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.007 µg	/L 1	0.050	0.007	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Boron	<0.009 mg	/L 1	0.050	0.009	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg	/L 1	0.020	0.004	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Calcium	<0.02 mg	/L 1	0.05	0.02	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Chromium	0.25 µg	/L 1	0.20	0.04		GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Cobalt	0.009 µg	/L 1	0.020	0.003	J1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg	/L 1	0.20	0.05	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Lithium	<0.00005 mg	/L 1	0.00020	0.00005	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Magnesium	<0.02 mg	/L 1	0.10	0.02	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng	′L 1	5	2	U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg	/L 1	0.5	0.1	U1	GES	04/18/2022 21:22	EPA 200.8-1994, Rev. 5.4
Potassium	<0.02 mg	/L 1	0.10	0.02	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg	/L 1	0.50	0.09	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Sodium	<0.05 mg	/L 1	0.20	0.05	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Strontium	<0.0004 mg	:/L 1	0.0020	0.0004	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg	/L 1	0.20	0.04	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4

221028 **Job Comments:**

Original report issued 5/11/2022. Report reissued with amended Matrix Spike precision calculations.

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

- U1 Not detected at or above method detection limit (MDL).
- M1 The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.
- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

Chain of Custody Record

Dolan Chemical Laboratory (DCL.)

The state of the s	9.1)							
Grandon Ohlo 43425				à	2	المارة	mhuetio	Drommer Coal Combinetion Besiduals (CCB)	CO) ale	á				
Contacts: Michael Ohlinger (814.838-4184)					N.	Site Contact:	11	DESCRIPTION OF THE PROPERTY OF	S) GIB	Date:			For Lab Use Only:	
Project Name: Pirkey - CCR							-	Field-filter			r vial or E lined *, pH<2	to taiv a benil 3 S>Hq."	\20160	
Contact Name: Leslie Fuerschbach	Analysis	lumaround	Analysis Turnaround Time (in Calendar Days)	tlendar D	ays)	2 A		250 mL bottle, then	1 L bottle.	(six every	TTG 7	ATA J	000000	
Contact Phone: 318-423-3805	20.00					O.I.	PH<2, HNO,			L bottles, pH<2, HNO ₃	m 03S	m 03S		
Sampler(s): Matt Hamilton Kenny McDonald						,68 ,8A	18,	, Fe, JT ,e 12 ,		822			86016e	
						/ 'qs '	צ' שַּפּי נר	Ct, Co Pb, Se K, Mg,		, Ra-	- 3			
Sample Identification	Sample Date	Sample Time	Type (C=Comp, G=Grab)	Matrix	# of Cont	B, Ca, Li	Be, Ca, Li, and Na, I B, Ca, Li,	Be, Cd, C Mn, Mo, I	,7 CDT and Br,	Ra-226	6н	6н	Sample Specific Notes:	
AD-2	3/29/2022	1125	9	GW	7		×	U		×	×	×		
AD-3	3/28/2022	1148	ပ	GW	7		×	×		×	×	×		
AD-4	3/29/2022	1216	ອ	GW	7		×	×		×	×	×		
AD-7	3/28/2022	1150	ຶ	GW	7		×	×		×	×	×		
AD-12	3/28/2022	1002		GW	7		×	×		×	×	×		
AD-13	3/28/2022	838	ပ	QW	_	-	×	×		×	×	×		
AD-17	3/29/2022	1025	ပ	Q.W	7		×	×		×	×	×		
AD-18	3/29/2022	936	g	GW	7		×	×		×	×	×		
AD-22	3/28/2022	935	ဖ	ΒW	5	\dashv	×	×		×	×	×		
AD-28	3/29/2022	1034	ပ	QW.	5		×	×		×	×	×		
AD-30	3/28/2022	1251	g	ВW	7		×	×		×	×	×		
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HN03; 5=N	OH; 6= 0	ther		F= filter in field	field	4	F4	1	4	7	2		
Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.												

Six 1L Bottles must be collected for Radium for every 10th samp

Special Instructions/QC Requirements & Comments:

TG-32

			Tomos Company	
Relinquished by H	Company	Date/Time 13c-	λ ι 3 c Received by:	Date/Time;
Relinquished by:	Company:	Date/Time	Received by:	Date/Time;
Relinquished by:	Company	Date/Time	Received in Jabonapory by:	Date Time 1 22 1230pm

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shrayefort, Rev. 1, 1/10/17

Chain of Custody Record

Dolan Chemical Laboratory (DCL)

4001 Bixby Road

Sample Specific Notes For Lab Use Only: COC/Order #: bottle, HCL", pH<2 S50 mL PTFE lined 6H × 40 mL Glass vial or 40 mL Glass vial or 250 mL PTFE lined bottle, HCL**, pH<2 βН × × × Date Three (six every 10th*)
L bottles, pH<2, HNO3 Ra-226, Ra-228 × Program: Coal Combustion Residuals (CCR) 1 L bottle, Coot, 0-6°C and Br, Alkalinity TD\$, F, CI, SQ, B, Ca, Li, Sb, As, Ba, Be, Cd, Cr, Co, Fe, Mn, Mo, Pb, Se, TL and Na, K, Mg, Sr Field-filter 250 mL bottle, then PH<2, HNO₃ × B, Ca, Li, Sb, As, Ba, Be, Cd, Cr, Co, Pb, Mo, Se, TL and Na, K, Mg, Sr 250 mL bottle, pH<2, HNO × × × Site Contact: Sampler(s) Initials Pod d Analysis Turnaround Time (in Calendar Days) 0 Matrix GW <u></u>§ ĕ δW δ¥ 3 Sample Type (C=Comp, G=Grab) Ø 이 ပ Ø ଠା O Sample 1200 Time 1204 1107 1054 1055 1030 3/28/2022 Sample 3/28/2022 3/28/2022 3/28/2022 3/28/2022 Date Jonathan Barnhill (318-673-3803) Michael Ohlinger (614-836-4184) Sampler(s): Matt Hamilton Kenny McDonald 318-423-3805 Groveport, Ohio 43125 Contact Name: Leslie Fuerschbach Sample Identification EQUIPMENT BLANK **DUPLICATE 2 DUPLICATE 1** AD-31 AD-32 AD-33 Project Name: Pirkey - CCR Contact Phone:

Special Instructions/QC Requirements & Comments:

Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other

N

4

Z

: F= filter in field

TG-32

Relinquished by Manager	Company	Date/Time: 130-	Received by:	Date/Time.
Relinquished by:		Date/Time:	Received by:	Date/Time:
Relinquished by:	Сотрапу:	Date/Time:	Received in Laboratory by:	Date Time: 122 (2:30 m)
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Samp	cord for Coal Combustion Residu	ial (CCR) Sampling - Sh	pling - Shreveport, Rev. 1, 1/10/17	

Six 1L Bottles must be collected for Radium for every 10th sample.

AFP WATER & WASTE SAMPLE RECEIPT FORM (IR#1)

. Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer Pukey	Number of Plastic Containers:
Opened By MGK	Number of Glass Containers:
Date/Time 4 1 22 1230	Number of Mercury Containers: 33
Were all temperatures within 0-6°C? Y/N	or N/A Initial:on ice / no ice
(IR Gun Ser# 210441568, Expir.5/27/2023)	
Was container in good condition? Y N	Comments
Was Chain of Custody received? Y / N	Comments
Requested turnaround: Koutune	If RUSH, who was notified?
pH (15 min) Cr⁴6 (pres) NO₂ or N (24 hr)	NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? Y N	Comments
Were samples labeled properly? Y / N	Comments
Were correct containers used? Y/N	Comments
Was pH checked & Color Coding done? Y	/ N or N/A initial & Date:
pH paper (circle one): MQuant pH Cat 1.0 lot HC904495	D9535.0001 [OR] Lab rat pH Cat # LRS -4801 Lot X000RWDG21
- Was Add'l Preservative needed? Y / N	Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / N	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# 221028 Initial &	Date & Time :
Logged byComme	ents:
Reviewed by	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Dolan Chemical Laboratory

Sample Receipt Form SOP-7102

Page l of l

÷

Municipal Solid Waste Laboratory Review Checklist

This da	ata pack	kage consists of	•			
x	(which		eportable data			Table 1, Reportable Data upporting Data, and
х	R1	Field chain-of	-custody doci	ımentation		
х	R2	Sample identif	fication cross	-reference		
x	R3	(a) Items spe NELAC Si (b) Dilution f (c) Preparation (d) Cleanup r	cified in NEL tandard actors on methods nethods	AC Chapter 5 for	environmental sar reporting results, of lentified compound	e.g., Section 5.5.10 in 2003
M	R4	Surrogate reco (a) Calculate (b) The labor	d recovery (%	SR)		
×	R ₅	• •	,	ns for blank sam	oles	
×	R6	•	ummary forming amounts	ns for laboratory	control samples (L	CSs) including:
×	R7	(a) Samples a(b) MS/MSD(c) Concentration	associated wi spiking amo ation of each d %Rs and re	th the MS/MSD ounts MS/MSD analyto lative percent dif	clearly identified e measured in the p	MS/MSDs) including: parent and spiked samples
X	R8	(a) The amou	int of analyte lated RPD	cate (if applicabl measured in the nits for analytica	-	ecision:
х	R9	List of method	l quantitation	limits (MQLs) f	or each analyte for	each method and matrix
x	R10	Other problem	ns or anomali	es		
x	The Ex	xception Repor	t for every ite	m for which the	result is "No" or "N	R" (Not Reviewed)
packag requir report by the labora	ge as be ements s. By m labora tory in	een reviewed by of the methods by signature be tory as having t	the laborato sused, except low, I affirm the potential t Review Chec	ry and is comple where noted by to the best of my to affect the qual	te and technically c the laboratory in th knowledge, all prol ity of the data, have	package. This data ompliant with the e attached exception blems/anomalies, observed been identified by the ve been knowingly withheld
respor used is staten	nding to s respor nent is t	rule. The officinsible for releas rue.	al signing the ing this data	e cover page of th package and is b	y signature affirmir	ed by the person oort in which these data are ng the above release
Susa	nn He	enschen	Susann	Hersile	Chemist	5-11-2022
Name	(printe	d)	Signature	52,450 V	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Susann Henschen

LRC Date: 5-6-2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22041805, PB22041806, PB22042503

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER 2
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA.	
R4	0	Surrogate recovery data		***
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	11	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	1	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
e e	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?		
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	0, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Susann Henschen

LRC Date: 5-6-2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22041805, PB22041806, PB22042503

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?		
	I	Are ICAL data available for all instruments used?	Yes	·
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
Si .	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		•
		If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
:	I g	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	0, I	Laboratory standard operating procedures (SOPs):		
	ı	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Susann Henschen

LRC Date: 5-6-2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22041805, PB22041806, PB22042503

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< td=""></mql.<>
ER 2	Sample result was less than 10% above the Curve and less than the LDR.
· · · · · · · · · · · · · · · · · · ·	

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: х This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. x R₁ Field chain-of-custody documentation X R_2 Sample identification cross-reference X Test reports (analytical data sheets) for each environmental sample that includes: R3 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits Test reports/summary forms for blank samples x **R**5 X. Test reports/summary forms for laboratory control samples (LCSs) including: **R6** (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits [x]Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits X R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's OC limits for analytical duplicates $|\mathbf{x}|$ R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix $\overline{\mathbf{x}}$ Rio Other problems or anomalies × The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. **Check**, **if applicable**: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Tamisha Palmer

Name (printed)

04/20/2022

Date

Chemical Tech Princ.

Official Title

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 04/20/2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22040403, PB22040405

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	ER1
R9	O, I	Method quantitation limits (MQLs):		
L	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 04/20/2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22040403, PB22040405

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		4
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S 3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	:=
54	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹			Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	A
S 7	0	Tentatively identified compounds (TICs):		
7	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	V.
S10	0, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	NA	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	NA	
S11	0, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):	18	
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Nan	ne: American Electric Power Dolan Chemical Laboratory
Project Name:	Pirkey Power
Reviewer Name	Tamisha Palmer
LRC Date: 04/2	
Laboratory Job	204020
Prep Batch Nun	DD00040400 DD0004040E

Exception Report No.	Description
ER1	PB22040405 RPD exceeded 25%; results less than critical value/MDA 0.95
	<u> </u>
	() () () () () () () () () ()
	732

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data X (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. X R1 Field chain-of-custody documentation X R2 Sample identification cross-reference X Test reports (analytical data sheets) for each environmental sample that includes: **R**3 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits Test reports/summary forms for blank samples Х **R**5 X **R6** Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits Х Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits Х Laboratory analytical duplicate (if applicable) recovery and precision: **R8** (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates Х List of method quantitation limits (MQLs) for each analyte for each method and matrix R9 X R10 Other problems or anomalies Х The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) **Release Statement:** I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. **Check, if applicable:** () This laboratory is an in-house laboratory controlled by the person

responding to rule. The official signing the cover page of the rule-required report in which these data are

Chemist Associate

Official Title

used is responsible for releasing this data package and is by signature affirming the above release

Municipal Solid Waste Laboratory Review Checklist (rev. 08/19/11)

statement is true.

Sunita Timsina
Name (printed)

04/13/2022

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 04/13/2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22040402

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	NA	
	I	Were analytical duplicates analyzed at the appropriate frequency?	NA	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	NA	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 04/13/2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22040402

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	NA	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	NA	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name: Pirk	
Reviewer Name: S	unita Timsina
LRC Date: 04/13/20	022
Laboratory Job Nu	mber: 221028
Prep Batch Numbe	

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

х	(which	signature page, and the laboratory review checklist consisting of Table 1, Reportable Data ch includes the reportable data identified on this page), Table 2, Supporting Data, and 23, Exception Reports.						
X	R1	Field chain-of	- -custody documenta	tion				
X	R2	Sample identi	fication cross-refere	nce				
×	R3	(a) Items specified NELAC S(b) Dilution 1(c) Preparati(d) Cleanup 1	ecified in NELAC Cha tandard factors on methods methods	ipter 5 for	environmental sampl reporting results, e.g. entified compounds (, Section		
NA	R4	(a) Calculate	overy data including: d recovery (%R) atory's surrogate QC					
X	R5	Test reports/s	summary forms for b	lank samp	oles			
X	R6	(a) LCS spik(b) Calculate		e	control samples (LCSs	;) includ	ling:	
X	R7	(a) Samples(b) MS/MSD(c) Concentr(d) Calculate	associated with the No spiking amounts	AS/MSD of SD analyte ercent dif	measured in the pare		-	
X	R8	(a) The amore (b) The calcu	unt of analyte measu	red in the	•	ion:		
Х	R9	List of method	d quantitation limits	(MQLs) fo	or each analyte for eac	h metho	od and matrix	
X	R10	Other probler	ns or anomalies					
X	The Ex	ception Repor	t for every item for w	hich the r	esult is "No" or "NR" ((Not Re	viewed)	
packag require reports by the laborat	ge as be ements s. By m laborat tory in t	en reviewed by of the methods y signature be cory as having	y the laboratory and it is used, except where low, I affirm to the b the potential to affect Review Checklist, an	is complet noted by t est of my l t the quali	his laboratory data pare and technically combined he laboratory in the attraction of the data, have be mation or data have be	pliant w ttached ns/anor en ident	rith the exception nalies, observed tified by the	
respon used is statem	ding to responent is to	rule. The offic sible for releas ue.	ial signing the cover j	page of the	aboratory controlled le rule-required report signature affirming the	in which	h these data are e release	
	a Tims		Signature		Chemist Associate Official Title		04/22/2022 Date	
raille	(himte)	1)	Signatuje		Omeiai mie	1	Jail	

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 04/22/2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22040708

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	NA	
	I	Were analytical duplicates analyzed at the appropriate frequency?	NA	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	NA	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 04/22/2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22040708

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	NA	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	NA	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Radium Laboratory Review Checklist

Table 3. Exception Reports.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory								
Project Name: Pirk									
Reviewer Name: Sunita Timsina									
LRC Date: 04/22/20	022								
Laboratory Job Number: 221028									
Prep Batch Numbe									

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

	•	O									
x	(which		and the laboratory review che reportable data identified on t Reports.								
X	R1	Field chain-of-custody documentation									
X	R2	Sample iden	tification cross-reference								
X	R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs)										
NA	R4	(a) Calculat	covery data including: red recovery (%R) oratory's surrogate QC limits								
X	R5	Test reports,	summary forms for blank sam	ples							
X	R6	(a) LCS spil(b) Calculat	summary forms for laboratory king amounts ed %R for each analyte oratory's LCS QC limits	v control samples (LCSs) in	cluding:						
X	R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samp (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits										
X	R8	(a) The amo	nalytical duplicate (if applicabount of analyte measured in thulated RPD oratory's QC limits for analytical	e duplicate							
X	R9	List of metho	od quantitation limits (MQLs)	for each analyte for each m	ethod and matrix						
X	R10	Other proble	ms or anomalies								
X	The Ex	ception Repo	rt for every item for which the	result is "No" or "NR" (No	t Reviewed)						
Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.											
respon used is statem	ding to responent is to	rule. The officisible for release rue.	This laboratory is an in-house cial signing the cover page of the sing this data package and is because the cover page.	he rule-required report in v	which these data are						
Jona	than B	arnhill	Sonathan Boundill	Supervisor	12/5/2022						
Name	(printed	d)	Signature	Official Title	Date						

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 12/5/2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22040605 PB22040606 QC2204153 QC2204159

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?		
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER1
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	No	ER3
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 12/5/2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22040605 PB22040606 QC2204153 QC2204159

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4	
S1	O, I	Initial calibration (ICAL)			
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA		
	I	Were percent RSDs or correlation coefficient criteria met?	Yes		
	I	Was the number of standards recommended in the method used for all analytes?	Yes		
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes		
	I	Are ICAL data available for all instruments used?	Yes		
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes		
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):			
	I	Was the CCV analyzed at the method-required frequency?	Yes		
	I	Were percent differences for each analyte within the method-required QC limits?	Yes		
	I	Was the ICAL curve verified for each analyte?	Yes		
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2	
S3	0	Mass spectral tuning:			
	I	Was the appropriate compound for the method used for tuning?	Yes		
	I	Were ion abundance data within the method-required QC limits?	Yes		
S4	0	Internal standards (IS):			
	I	Were IS area counts and retention times within the method-required QC limits?	Yes		
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)			
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes		
	I	Were data associated with manual integrations flagged on the raw data?	NA		

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 12/5/2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22040605 PB22040606 QC2204153 QC2204159

Exception Report No.

ER1 Linear Dynamic Range (LDR) study used to determine upper limit of analyte calibration.

ER2 CCB acceptance criteria is CCB<2.2*MDL.

ER3 MS/MSD failure on sample 221028-001 for Na.

MS/MSD failure on sample 221028-011 for Na.

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221988 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-32 Customer Description:

Lab Number: 221988-001 Preparation:

Date Collected: 06/20/2022 10:51 EDT Date Received: 06/24/2022 11:48 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	6.70 mg/L	2	0.10	0.02	CRJ	07/08/2022 00:31	EPA 300.1 -1997, Rev. 1.0
Chloride	30.6 mg/L	2	0.04	0.02	CRJ	07/08/2022 00:31	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.42 mg/L	2	0.06	0.02	CRJ	07/08/2022 00:31	EPA 300.1 -1997, Rev. 1.0
Sulfate	147 mg/L	25	5.0	0.8	CRJ	07/07/2022 22:22	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011	
TDS, Filterable Residue	320 mg/L	1	50	20	SDW	06/27/2022 08:39	SM 2540C-2015	

Customer Sample ID: AD-33 Customer Description:

Lab Number: 221988-002 Preparation:

Date Collected: 06/20/2022 11:37 EDT Date Received: 06/24/2022 11:48 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.21 mg/L	2	0.10	0.02	CRJ	07/08/2022 01:23	EPA 300.1 -1997, Rev. 1.0
Chloride	8.49 mg/L	2	0.04	0.02	CRJ	07/08/2022 01:23	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.19 mg/L	2	0.06	0.02	CRJ	07/08/2022 01:23	EPA 300.1 -1997, Rev. 1.0
Sulfate	57.7 mg/L	10	2.0	0.3	CRJ	07/07/2022 22:47	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	150 mg/L	1	50	20	SDW	06/27/2022 08:39	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Customer: Pirkey Power Station Job ID: 221988 Date Reported: 12/27/2022

Customer Sample ID: Duplicate-1

Customer Description:

Preparation:

Date Collected: 06/20/2022 15:00 EDT

Date Received: 06/24/2022 11:48 EDT

Ion Chromatography

Lab Number: 221988-003

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.26 mg/L	5	0.25	0.05	CRJ	07/08/2022 01:48	EPA 300.1 -1997, Rev. 1.0
Chloride	55.1 mg/L	5	0.10	0.05	CRJ	07/08/2022 01:48	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.33 mg/L	5	0.15	0.05	CRJ	07/08/2022 01:48	EPA 300.1 -1997, Rev. 1.0
Sulfate	165 mg/L	50	10	2	CRJ	07/07/2022 23:13	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	260 mg/L	1	50	20	SDW	06/27/2022 08:48	SM 2540C-2015

221988

Job Comments:

Original report issued 7/28/2022. Report reissued with amended Matrix Spike precision calculations.

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com Phone: 614-836-4184 Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Job ID: 221988

Water Analysis Report

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Customer: Pirkey Power Station Date Reported: 12/27/2022

Data Qualifer Legend

U1 - Not detected at or above method detection limit (MDL).

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Bixby Road				ਠ	ain of	Custoc	hain of Custody Record	p g		
Groveport, Onio 43125				rogra	E	Compustion	m: Coal Compustion Residuals (CCK)	CCR)		
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)					Site	Site Contact:			Date:	For Lab Use Only: COC/Order #
Project Name: Pirkey PP CCR Contact Name: Leslie Fuerschbach Contact Phone: 318-673-2744	Analysis 6 Rou	Tumaround utine (28 da	Analysis Turnaround Time (in Calendar Days) © Routine (28 days for Monitoring Wells)	lendar Da	(S)	250 mL bottle, pH<2, HNO3	Field-filter 250 mL bottle, then pH<2, HNO3	1 L bottle, (six Cool, 0-6C 10th") L by L by PH<2	Three (six every oth.") 1 L bottles, L L bottles, pH<2, HNO3	236166
Sampler(s): Matt Hamilton Kenny McDonald					#left		ercury	, Br, linity	82Z-F	
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	Conf. (Sampler(s) Ini	Mercury	M bevlossiQ	F, CI, SO4,	8-226, 단8	Sample Specific Notes:
AD-32	6/20/2022	951	g	GW	1			×		
AD-33	6/20/2022	1037	ပ	O.W	-			×		
Duplicate - 1	6/20/2022	1400	ဗ	GW	-			×		
					-					
					_					
				. 0			345			
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3; 5=Na	OH; 6≈ Ot	her	; F= f	; F= filter in field	1 4	F4	1	4	
* Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.								

Special Instructions/QC Requirements & Comments:

Date/Time: Company: Relinquished by:

10:30 pm

Date/Time 22

Talhala and

Date/Time:

Received by:

Date/Time:

Company Company:

Relinquished by

Relinquished by:

Received by:

Date/Time;

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shrayeport, Rev. 1, 1/10/17

MATER & WASTE SAMPLE RECEIPT FORM (IR#1)

· Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS (FedEX) USPS
	Other
Plant/Customer Puney	Number of Plastic Containers: 3
Opened By MGK	Number of Glass Containers:
Date/Time 6/24/22 10:30 AV	Number of Mercury Containers:
Were all temperatures within 0-6°C? N	or N/A Initial: Mo-K (on ice) no ice
(IR Gun Ser# 210441568, Expir.5/27/2023)	- If No, specify each deviation:
Was container in good condition? Y/ N	Comments
Was Chain of Custody received? Y/N	Comments
1	If RUSH, who was notified?
	NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	Comments
Were samples labeled properly? (Y) N	Comments
Were correct containers used? (Y) N	Comments
Was pH checked & Color Coding done?	N or N/A Initial & Date: Work 16/24/22
	.09535.0001 [OR] Lab rat pH Cat # LRS -4801 Lot X000RWDG21
~	If Yes: By whom & when: (See Prep Bo
Is sample filtration requested? Y / N	Comments (See Prep Bo
Was the customer contacted? If Yes	: Person Contacted:
Lab ID# <u>321988</u> Initial 8	& Date & Time :
Logged by	nents:
$\varphi (y)$	
TOTIONED DY	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Dolan Chemical Laboratory

Sample Receipt Form SOP-7102

Page 1 of 1

÷

Municipal Solid Waste Laboratory Review Checklist

This da	ıta pack	ge consists of:
x	(which	nature page, and the laboratory review checklist consisting of Table 1, Reportable Data ncludes the reportable data identified on this page), Table 2, Supporting Data, and Exception Reports.
x	R1	Field chain-of-custody documentation
x	R2	Sample identification cross-reference
×	R3	Test reports (analytical data sheets) for each environmental sample that includes: a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard b) Dilution factors c) Preparation methods d) Cleanup methods e) If required for the project, tentatively identified compounds (TICs)
NA	R4	Surrogate recovery data including: a) Calculated recovery (%R) b) The laboratory's surrogate QC limits
x	R5	Test reports/summary forms for blank samples
x	R6	Cest reports/summary forms for laboratory control samples (LCSs) including: a) LCS spiking amounts b) Calculated %R for each analyte c) The laboratory's LCS QC limits
x	R7	Cest reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: a) Samples associated with the MS/MSD clearly identified b) MS/MSD spiking amounts c) Concentration of each MS/MSD analyte measured in the parent and spiked samples d) Calculated %Rs and relative percent differences (RPDs) e) The laboratory's MS/MSD QC limits
x	R8	Laboratory analytical duplicate (if applicable) recovery and precision: a) The amount of analyte measured in the duplicate b) The calculated RPD c) The laboratory's QC limits for analytical duplicates
×	R9	ist of method quantitation limits (MQLs) for each analyte for each method and matrix
×	R10	Other problems or anomalies
x	The Ex	eption Report for every item for which the result is "No" or "NR" (Not Reviewed)
packag require reports by the laborat	e as be ements s. By m laborat tory in t	ment: I am responsible for the release of this laboratory data package. This data in reviewed by the laboratory and is complete and technically compliant with the f the methods used, except where noted by the laboratory in the attached exception signature below, I affirm to the best of my knowledge, all problems/anomalies, observed ry as having the potential to affect the quality of the data, have been identified by the e Laboratory Review Checklist, and no information or data have been knowingly withheld at the quality of the data.
respon used is statem	ding to respon ent is t	
	ael Oh	3
Name	(printe	Signature / Official Title Date /

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Michael Ohlinger

LRC Date: 7/28/22

Laboratory Job Number: 221988

Prep Batch Number(s): QC2206187

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)	10	
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
·	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
_	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
·	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
100	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Michael Ohlinger

LRC Date: 7/28/22

Laboratory Job Number: 221988

Prep Batch Number(s): QC2206187

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S 3	0 _	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	0, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Michael Ohlinger

LRC Date: 7/28/22

Laboratory Job Number: 221988

Prep Batch Number(s): QC2206187

B acceptance criteria is CCB<0.5*MQL.	
D. STANSF	
V100 - 1.1	

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: X This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. $|\mathbf{x}|$ Rı Field chain-of-custody documentation \square R2 Sample identification cross-reference X Test reports (analytical data sheets) for each environmental sample that includes: R3 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) \square Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits $\overline{\mathbf{x}}$ **R**5 Test reports/summary forms for blank samples \mathbf{x} Test reports/summary forms for laboratory control samples (LCSs) including: **R6** (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits \square **R7** Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD OC limits Laboratory analytical duplicate (if applicable) recovery and precision: \square **R8** (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates List of method quantitation limits (MOLs) for each analyte for each method and matrix ΙXΠ R9 X. R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) **Release Statement:** I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Timothy E. Arnold Chemist Principle 7/11/2022

Official Title

Name (printed)

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Timothy E. Arnold

LRC Date: 7/11/2022

Laboratory Job Number: 221988

Prep Batch Number(s): QC2207069

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	ñ'
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	Yes	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	= I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data	1	
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	0, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Timothy E. Arnold

LRC Date: 7/11/2022

Laboratory Job Number: 221988

Prep Batch Number(s): QC2207069

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	ti.
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
\$ 7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
\$10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
<u>-</u> .	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Timothy E. Arnold

LRC Date: 7/11/2022

Laboratory Job Number: 221988

Prep Batch Number(s): QC2207069

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>
	2 2 3 3 4 5 4 5 4 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5
•	

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: х This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. X R₁ Field chain-of-custody documentation x R₂ Sample identification cross-reference X **R**3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits X Test reports/summary forms for blank samples **R**5 × R6 Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits X Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: R7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits \mathbf{x} R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates \square List of method quantitation limits (MQLs) for each analyte for each method and matrix R9 \mathbf{x} Rio Other problems or anomalies [X] The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. **Check, if applicable:** () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data/package and is by signature affirming the above release statement is true. Michael Ohlinger Chemist

Official Title

Name (printed)

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Michael Ohlinger

LRC Date: 7/28/22

Laboratory Job Number: 221988

Prep Batch Number(s): QC2207061

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	NA	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
<u>. </u>	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Analytes ² Description (
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes					
	I	Were blank concentrations < MQL?	Yes					
R6	O, I	Laboratory control samples (LCS):						
	I	Were all COCs included in the LCS?	Yes					
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes					
	I	Were LCSs analyzed at the required frequency?	Yes					
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes					
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes					
	I	Was the LCSD RPD within QC limits?	Yes					
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data						
	I	Were the project/method specified analytes included in the MS and MSD?	NA					
	I	Were MS/MSD analyzed at the appropriate frequency?	NA					
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA					
	I	Were MS/MSD RPDs within laboratory QC limits?	NA					
R8	O, I	Analytical duplicate data						
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes					
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes					
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes					
R9	O, I	Method quantitation limits (MQLs):						
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes					
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes					
	I	Are unadjusted MQLs included in the laboratory data package?	Yes					
R10	O, I	Other problems/anomalies						
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes					
	I	Were all necessary corrective actions performed for the reported data?	Yes					
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes					

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Michael Ohlinger

LRC Date: 4/5/22

Laboratory Job Number: 221988

Prep Batch Number(s): QC2207061

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S 2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	:
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	į
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S 9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	!
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Michael Ohlinger

LRC Date: 7/28/22

Laboratory Job Number: 221988

Prep Batch Number(s): QC2207061

Exception Report No.	Description	
		2000
	68	
		233
		(50 do 1117)
	<u> </u>	7.00
<u> </u>	· .	
· · · · · · · · · · · · · · · · · · ·	11.00	
	1918 1111	

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221989 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-2 Customer Description:

Lab Number: 221989-001 Preparation:

Date Collected: 06/21/2022 09:49 EDT Date Received: 06/24/2022 11:56 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.32 mg/L	2	0.10	0.02	CRJ	07/06/2022 20:44	EPA 300.1 -1997, Rev. 1.0
Chloride	29.7 mg/L	10	0.2	0.1	CRJ	07/06/2022 20:18	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.21 mg/L	2	0.06	0.02	CRJ	07/06/2022 20:44	EPA 300.1 -1997, Rev. 1.0
Sulfate	259 mg/L	10	2.0	0.3	CRJ	07/06/2022 20:18	EPA 300.1-1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	490 mg/L	1	50	20	SDW	06/27/2022 13:08	SM 2540C-2015

Customer Sample ID: AD-3 Customer Description:

Lab Number: 221989-002 Preparation:

Date Collected: 06/21/2022 12:23 EDT Date Received: 06/24/2022 11:56 EDT

Ion Chromatography

Parameter	Result Units Di	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.04 mg/L	2	0.10	0.02 J1	CRJ	07/06/2022 19:53	EPA 300.1 -1997, Rev. 1.0
Chloride	5.65 mg/L	2	0.04	0.02	CRJ	07/06/2022 19:53	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.04 mg/L	2	0.06	0.02 J1	CRJ	07/06/2022 19:53	EPA 300.1 -1997, Rev. 1.0
Sulfate	21.2 mg/L	2	0.40	0.06	CRJ	07/06/2022 19:53	EPA 300.1-1997, Rev. 1.0

Parameter	Result Units Dil	ution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	150 mg/L	1	50	20 P1, H2	SDW	06/29/2022 11:00	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221989 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-4 Customer Description:

Lab Number: 221989-003 Preparation:

Date Collected: 06/21/2022 11:34 EDT Date Received: 06/24/2022 11:56 EDT

Ion Chromatography

Parameter	Result Units I	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.20 mg/L	2	0.10	0.02	CRJ	07/06/2022 21:36	EPA 300.1 -1997, Rev. 1.0
Chloride	3.92 mg/L	2	0.04	0.02	CRJ	07/06/2022 21:36	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.05 mg/L	2	0.06	0.02 J1	CRJ	07/06/2022 21:36	EPA 300.1-1997, Rev. 1.0
Sulfate	20.5 mg/L	2	0.40	0.06	CRJ	07/06/2022 21:36	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	160 mg/L	1	50	20	SDW	06/27/2022 13:15	SM 2540C-2015

Customer Sample ID: AD-7 Customer Description:

Lab Number: 221989-004 Preparation:

Date Collected: 06/21/2022 10:47 EDT Date Received: 06/24/2022 11:56 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	3.56 mg/L	2	0.10	0.02	CRJ	07/06/2022 22:28	EPA 300.1 -1997, Rev. 1.0
Chloride	53.1 mg/L	10	0.2	0.1	CRJ	07/06/2022 22:02	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.30 mg/L	2	0.06	0.02	CRJ	07/06/2022 22:28	EPA 300.1-1997, Rev. 1.0
Sulfate	71.1 mg/L	10	2.0	0.3	CRJ	07/06/2022 22:02	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units Dil	ution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	290 mg/L	1	50	20	SDW	06/27/2022 13:15	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221989 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-12 Customer Description:

Lab Number: 221989-005 Preparation:

Date Collected: 06/20/2022 09:52 EDT Date Received: 06/24/2022 11:56 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.11 mg/L	2	0.10	0.02	CRJ	07/06/2022 23:19	EPA 300.1 -1997, Rev. 1.0
Chloride	7.59 mg/L	2	0.04	0.02	CRJ	07/06/2022 23:19	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.09 mg/L	2	0.06	0.02	CRJ	07/06/2022 23:19	EPA 300.1-1997, Rev. 1.0
Sulfate	4.81 mg/L	2	0.40	0.06	CRJ	07/06/2022 23:19	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	80 mg/L	1	50	20	SDW	06/27/2022 08:30	SM 2540C-2015

Customer Sample ID: AD-13 Customer Description:

Lab Number: 221989-006 Preparation:

Date Collected: 06/20/2022 09:43 EDT Date Received: 06/24/2022 11:56 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.30 mg/L	2	0.10	0.02	CRJ	07/07/2022 03:12	EPA 300.1 -1997, Rev. 1.0
Chloride	54.5 mg/L	25	0.5	0.3	CRJ	07/07/2022 02:46	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.26 mg/L	2	0.06	0.02	CRJ	07/07/2022 03:12	EPA 300.1 -1997, Rev. 1.0
Sulfate	138 mg/L	25	5.0	0.8	CRJ	07/07/2022 02:46	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units Di	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	270 mg/L	2	100	40	SDW	06/27/2022 08:30	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Customer: Pirkey Power Station Date Reported: 12/27/2022 Job ID: 221989

Customer Sample ID: AD-17 Customer Description:

Lab Number: 221989-007 Preparation:

Date Collected: 06/21/2022 11:40 EDT Date Received: 06/24/2022 11:56 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.20 mg/L	2	0.10	0.02	CRJ	07/06/2022 23:45	EPA 300.1 -1997, Rev. 1.0
Chloride	30.2 mg/L	2	0.04	0.02	CRJ	07/06/2022 23:45	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.30 mg/L	2	0.06	0.02	CRJ	07/06/2022 23:45	EPA 300.1 -1997, Rev. 1.0
Sulfate	5.78 mg/L	2	0.40	0.06	CRJ	07/06/2022 23:45	EPA 300.1-1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	90 mg/L	1	50	20	SDW	06/27/2022 13:22	SM 2540C-2015

Customer Description:

Customer Sample ID: AD-18

Preparation:

Lab Number: 221989-008

Date Received: 06/24/2022 11:56 EDT Date Collected: 06/21/2022 09:17 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.06 mg/L	2	0.10	0.02 J1	CRJ	07/07/2022 02:20	EPA 300.1 -1997, Rev. 1.0
Chloride	5.20 mg/L	2	0.04	0.02	CRJ	07/07/2022 02:20	EPA 300.1 -1997, Rev. 1.0
Fluoride	<0.02 mg/L	2	0.06	0.02 U1	CRJ	07/07/2022 02:20	EPA 300.1-1997, Rev. 1.0
Sulfate	6.47 mg/L	2	0.40	0.06	CRJ	07/07/2022 02:20	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	110 mg/L	1	50	20	SDW	06/27/2022 13:22	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221989 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-22 Customer Description:

Lab Number: 221989-009 Preparation:

Date Collected: 06/20/2022 10:53 EDT Date Received: 06/24/2022 11:56 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.79 mg/L	2	0.10	0.02	CRJ	07/07/2022 07:57	EPA 300.1 -1997, Rev. 1.0
Chloride	1 07 mg/L	25	0.5	0.3	CRJ	07/07/2022 05:47	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.32 mg/L	2	0.06	0.02	CRJ	07/07/2022 07:57	EPA 300.1 -1997, Rev. 1.0
Sulfate	293 mg/L	25	5.0	0.8	CRJ	07/07/2022 05:47	EPA 300.1-1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	580 mg/L	2	100	40	SDW	06/27/2022 08:48	SM 2540C-2015

Customer Description:

Customer Sample ID: AD-28

Lab Number: 221989-010 Preparation:

ab Number. 221969-010 Freparation

Date Collected: 06/21/2022 10:56 EDT Date Received: 06/24/2022 11:56 EDT

Ion Chromatography

Parameter	Result Units Dil	lution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.04 mg/L	2	0.10	0.02 J1	CRJ	07/07/2022 04:04	EPA 300.1 -1997, Rev. 1.0
Chloride	4.36 mg/L	2	0.04	0.02	CRJ	07/07/2022 04:04	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.61 mg/L	2	0.06	0.02	CRJ	07/07/2022 04:04	EPA 300.1 -1997, Rev. 1.0
Sulfate	28.0 mg/L	2	0.40	0.06	CRJ	07/07/2022 04:04	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units Dil	lution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	110 mg/L	1	50	20	SDW	06/27/2022 13:29	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221989 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-30 Customer Description:

Lab Number: 221989-011 Preparation:

Date Collected: 06/20/2022 12:29 EDT Date Received: 06/24/2022 11:56 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.34 mg/L	2	0.10	0.02	CRJ	07/07/2022 04:56	EPA 300.1 -1997, Rev. 1.0
Chloride	26.0 mg/L	2	0.04	0.02	CRJ	07/07/2022 04:56	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.06 mg/L	2	0.06	0.02	CRJ	07/07/2022 04:56	EPA 300.1 -1997, Rev. 1.0
Sulfate	1 77 mg/L	10	2.0	0.3	CRJ	07/07/2022 04:30	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	340 mg/L	1	50	20	SDW	06/27/2022 09:01	SM 2540C-2015

Customer Sample ID: AD-31 Customer Description:

Lab Number: 221989-012 Preparation:

Date Collected: 06/20/2022 11:43 EDT Date Received: 06/24/2022 11:56 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.29 mg/L	5	0.25	0.05	CRJ	07/11/2022 15:51	EPA 300.1 -1997, Rev. 1.0
Chloride	23.2 mg/L	5	0.10	0.05	CRJ	07/11/2022 15:51	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.14 mg/L	5	0.15	0.05 J1	CRJ	07/11/2022 15:51	EPA 300.1 -1997, Rev. 1.0
Sulfate	89.0 mg/L	10	2.0	0.3	CRJ	07/07/2022 06:13	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS Filterable Residue	270 mg/l	1	50	20	SDW	06/27/2022 08:55	SM 2540C-2015

221989

Job Comments:

Original report issued 7/29/2022. Report reissued with amended Matrix Spike precision calculations.

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 221989 Customer: Pirkey Power Station Date Reported: 12/27/2022

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

- U1 Not detected at or above method detection limit (MDL).
- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.
- P1 The precision between duplicate results was above acceptance limits.
- H2 Sample analysis performed past holding time.

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Bixby Road				ਠਂ	Chain	of Cu	stody	n of Custody Record	ġ		
Grovaport, Ohio 43125				Program:		al Comb	ustion R	Coal Combustion Residuals (CCR)	(CCR)		
Contacts: Dave Conover (614-836-4184)						Site Contact:	H H		3	Date:	COC/Order #:
Project Name: Pirkey PP Semi-Annual CCR Contact Name: Leslie Fuerschbach Contact Phone: 318-673-2744	Analysis © Re	Furnaround	Analysis Turnaround Time (in Calendar Days)	ilendar Da Monitor		Wels)	250 mL bottle, pH<2, t	Field-filter 250 mL bottle, then pH<2, HNO3	1 L bottle, Cool, 0-6C	Three (six every 10th*) 1 L bottles, pH<2, HNO3	papagaga papidad
Sampler(s) Matt Hamilton Kenny McDonald					-	gleja		ercury	.Br, inity	822-1	
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) Inl	Метситу	M beviossid	F, CI, SO4,	Fa-226, Fa	Sample Specific Notes:
AD-2	6/21/2022	849	ŋ	GW	-				×	N A	
AD-3	6/21/2022	1123	9	МS	-		3000		×		
AD-4	621/2022	1034	၅	GW	-				×		
AD-7	6/21/2022	947	ຶ່	GW	-	\dashv			×		
AD-12	6/20/2022	852	g	GW	-				×		
AD-13	6/20/2022	843	G	GW	-				×		
AD-17	8/21/2022	1040	၅	GW	-	1000			×		
AD-18	6/21/2022	817	ပ	GW	-				×		
AD-22	6/20/2022	953	g	GW	-				×		
AD-28	6/21/2022	956	g	GW	-				×		
AD-30	6/20/2022	1129	ပ	ВW	-			9	×		
AD-31	6/20/2022	1043	G	GW	-	1000			×		
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	4NO3; 5=Na	OH; 6= Ot	her	; F= filter	ilter in field	ield	4	F4	1	4	
Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.									

Special Instructions/QC Requirements & Comments:

Relinquished by: Bot Sam	Some	Date/Time 160 Received by:	Received by:	Date/Time:
Relinquished by:	Company	Je.	Received by:	Date/Time:
Relinquished by:	Company	Date/Time	Received in Abonatory by:	Date/Time: 122 10:30 Pm
TANGET OF THE COMPANY OF THE PROPERTY OF THE P	Contraction of the Contraction o	To College Street	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

MATER & WASTE SAMPLE RECEIPT FORM (IR#1)

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UP GOEX USPS
	Other
Plant/Customer Puney	Number of Plastic Containers:
Opened By MGK	Number of Glass Containers:
Date/Time 6/24/22 10:30 A	Number of Mercury Containers:
Were all temperatures within 0-6°C? N	or N/A Initial: M&K (on ice) no ice
(IR Gun Ser# 210441568, Expir.5/27/2023)	- If No, specify each deviation:
Was container in good condition? Y N	Comments
Was Chain of Custody received? Y/ N	Comments
Requested turnaround: Routine	If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) NO ₂ or (24 hr)	NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? (Y) N	Comments
Were samples labeled properly? (Y) N	Comments
Were correct containers used? (Y) N	Comments
Was pH checked & Color Coding done?	N or N/A Initial & Date: Work 6/24/22
pH paper (circle one): MQuant pH Cat 1. lot HC904495	09535.0001 [OR] Lab rat pH Cat # LRS -4801 Lot X000RWDG21
- Was Add'l Preservative needed? Y (N)	If Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / N	Comments(See Prep Book)
Was the customer contacted? If Yes	Person Contacted:
Lab ID# 221989 Initial 8	& Date & Time :
Logged by Comm	ents:

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Dolan Chemical Laboratory

Sample Receipt Form SOP-7102

Page I of I

÷.

Municipal Solid Waste Laboratory Review Checklist

This signature page, and the laboratory review checklist consisting of Table 1, Reportable Date (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. R1 Field chain-of-custody documentation R2 Sample identification cross-reference R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 20 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) R4 Surrogate recovery data including: (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits R5 Test reports/summary forms for blank samples R6 Test reports/summary forms for blank samples R6 Test reports/summary forms for blank samples (c) The laboratory's LCS QC limits (a) LCS spiking amounts (b) Calculated 'R6 for each analyte (c) The laboratory's LCS QC limits (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samp (d) Calculated '%Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates R9 List of method quantitation limits (MQLs) for each analyte for each method and matri R10 Other problems or anomalies R10 Other problems or anomalies T10 The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: 1 am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception responding to rule. The official	This da	ıta pack	age consists o	f:				
Image: Process of the content of the project of t	×	(which	includes the i	eportable data identifi				
R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Hems specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 20 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) R4 Surrogate recovery data including: (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits R5 Test reports/summary forms for blank samples R6 Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samp (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates R8 List of method quantitation limits (MQLs) for each analyte for each method and matrix R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory as having the potential to affect the quality of the data, have been indentified by the laboratory in the Labora	x	R1	Field chain-o	f-custody documentati	on			
R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Hems specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 20 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) R4 Surrogate recovery data including: (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits R5 Test reports/summary forms for blank samples R6 Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samp (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates R8 List of method quantitation limits (MQLs) for each analyte for each method and matrix R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory as having the potential to affect the quality of the data, have been indentified by the laboratory in the Labora	x	R2	Sample ident	ification cross-referenc	e			
(a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits R5 Test reports/summary forms for blank samples R6 Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samp (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates R9 List of method quantitation limits (MQLs) for each analyte for each method and matri R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, obser by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been		R3	(a) Items sp NELAC S(b) Dilution(c) Preparat(d) Cleanup	ecified in NELAC Chap Standard factors ion methods methods	ter 5 for	reporting results,	e.g., Sectio	
X R5 Test reports/summary forms for blank samples X R6 Test reports/summary forms for laboratory control samples (LCSs) including:	NA	R4	(a) Calculate	ed recovery (%R)	imits			
R6	x	R ₅				oles		
(a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samp (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits ■ R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates ■ R9 List of method quantitation limits (MQLs) for each analyte for each method and matri ■ R10 Other problems or anomalies ■ The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, obser by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly with that would affect the quality of the data. Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data used is responsible for releasing this data package and is by signature affirming the above release statement is true. Michael Ohilnger			(a) LCS spik (b) Calculate	ring amounts ed %R for each analyte	oratory	control samples (L	.CSs) inclu	ding:
(a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates R9 List of method quantitation limits (MQLs) for each analyte for each method and matri R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, obser by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly with that would affect the quality of the data. Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data used is responsible for releasing this data package and is by signature affirming the above release statement is true. Michael Ohilnger	X	R7	(a) Samples(b) MS/MSI(c) Concent(d) Calculate	associated with the MSD spiking amounts ration of each MS/MSI ed %Rs and relative pe	S/MSD of Danalytercent dif	clearly identified e measured in the p	·	_
R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, obserby the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly with that would affect the quality of the data. Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data used is responsible for releasing this data package and is by signature affirming the above release statement is true. Michael Ohilnger Chemist	X	R8	(a) The amo	ount of analyte measure ulated RPD	ed in the	duplicate	ecision:	
The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, obserby the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly with that would affect the quality of the data. Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data used is responsible for releasing this data package and is by signature affirming the above release statement is true. Michael Ohilnger Chemist	×	R9	List of metho	d quantitation limits (l	MQLs) f	or each analyte for	each meth	od and matrix
Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, obser by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly with that would affect the quality of the data. Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data used is responsible for releasing this data package and is by signature affirming the above release statement is true. Michael Ohilnger Chemist	x	R10	Other proble	ms or anomalies				
package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, obser by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly with that would affect the quality of the data. Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data used is responsible for releasing this data package and is by signature affirming the above release statement is true. Michael Ohilnger Chemist	x	The Ex	ception Repo	rt for every item for wh	ich the	result is "No" or "N	R" (Not Re	viewed)
responding to rule. The official signing the cover page of the rule-required report in which these data used is responsible for releasing this data package and is by signature affirming the above release statement is true. Michael Ohilnger Chemist	packag require reports by the laborat	ge as be ements s. By m laborat tory in t	en reviewed bof the method y signature botory as having the Laboratory	y the laboratory and is used, except where n elow, I affirm to the best the potential to affect to Review Checklist, and	comple oted by st of my the qual	te and technically on the laboratory in the knowledge, all pro ity of the data, have	compliant v ne attached blems/ano e been iden	vith the exception malies, observed tified by the
rame (printed) Signature / Official life pate /	respon used is statem Micha	ding to respon ent is to ael Oh	rule. The office sible for relead rue. nilnger	cial signing the cover pa	age of th	e rule-required rep y signature affirmin –	ort in which	ch these data are

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Michael Ohlinger

LRC Date: 7/29/22

Laboratory Job Number: 221989

Prep Batch Number(s): QC2206187

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	ļ
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Michael Ohlinger

LRC Date: 7/29/22

Laboratory Job Number: 221989

Prep Batch Number(s): QC2206187

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	0, 1	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	Ī	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
52	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	016-
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S 6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
58	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S 9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey PP Semi-Annual CCR
Reviewer Name: Michael Ohlinger

LRC Date: 7/29/22

Laboratory Job Number: 221989

Prep Batch Number(s): QC2206187

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB<0.5*MQL.

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This da	ta pack	age consists of:			
X	(which		nd the laboratory review chec portable data identified on th ports.		
×	Rı		custody documentation		
×	R2		cation cross-reference		
X	R ₃	Test reports (an (a) Items spector NELAC State (b) Dilution far (c) Preparatio (d) Cleanup m	nalytical data sheets) for each ified in NELAC Chapter 5 for andard actors n methods	reporting results, e.g., Section	
X	R4	Surrogate reco	very data including: recovery (%R) story's surrogate QC limits	compounds (1100)	
×	R ₅	Test reports/su	ımmary forms for blank sam	ples	
X	R6	(a) LCS spikir (b) Calculated	nmmary forms for laboratory ng amounts . %R for each analyte ntory's LCS QC limits	control samples (LCSs) inclu	ding:
x	R7	(a) Samples a(b) MS/MSD(c) Concentra(d) Calculated	r project matrix spike/matrix ssociated with the MS/MSD of spiking amounts tion of each MS/MSD analyt l %Rs and relative percent dif atory's MS/MSD QC limits	clearly identified e measured in the parent and	_
X	R8	(a) The amou(b) The calcul	alytical duplicate (if applicabl nt of analyte measured in the ated RPD atory's QC limits for analytica	duplicate	
×	R9	List of method	quantitation limits (MQLs) f	or each analyte for each meth	od and matrix
×	R10	Other problem	s or anomalies	-	
×	The Ex	ception Report	for every item for which the	result is "No" or "NR" (Not R	eviewed)
packag require reports by the laborat	e as be ements s. By m laborat tory in t	en reviewed by of the methods y signature bel tory as having tl	esponsible for the release of the laboratory and is comple used, except where noted by ow, I affirm to the best of my ne potential to affect the qual Review Checklist, and no infof the data.	te and technically compliant the laboratory in the attached knowledge, all problems/andity of the data, have been iden	with the d exception omalies, observed ntified by the
respon used is	ding to	rule. The official sible for releasi	his laboratory is an in-house al signing the cover page of th ng this data package and is b	e rule-required report in whi	ich these data are
Timo	thy E.	Arnold	Juilly & Chalel	Chemist Principle	7/13/2022
Name	(printe	d)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey PP Semi-Annual CCR
Reviewer Name: Timothy E. Arnold
LRC Date: 7/13/2022
Laboratory Job Number: 221989
Prep Batch Number(s): QC2207051

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	1	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soll and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	Yes	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	YES	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	1	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
•	I	Was the LCSD RPD within QC limits?	Yes	
R7	0, 1	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	1	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	0, 1	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	:
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies	,	
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey PP Semi-Annual CCR
Reviewer Name: Timothy E. Arnold
LRC Date: 7/13/2022

Laboratory Job Number: 221989

Prep Batch Number(s): QC2207051

Result Exception (Yes, Analytes² Item¹ Description Report No, NA, No.4 NR)3 Initial calibration (ICAL) **S1** 0, I Were response factors and/or relative response NA I factors for each analyte within QC limits? Were percent RSDs or correlation coefficient criteria I Yes met? Was the number of standards recommended in the I Yes method used for all analytes? Were all points generated between the lowest and Ī Yes highest standard used to calculate the curve? Are ICAL data available for all instruments used? I Yes Has the initial calibration curve been verified using an Ī Yes appropriate second source standard? Initial and continuing calibration verification 0, I **S2** (ICCV and CCV) and continuing calibration blank (CCB): Was the CCV analyzed at the method-required Ĭ Yes frequency? Were percent differences for each analyte within the Yes I method-required QC limits? I Was the ICAL curve verified for each analyte? Yes Was the absolute value of the analyte concentration in I No ER1 the inorganic CCB < MDL? O Mass spectral tuning: **S**3 Was the appropriate compound for the method used NA I for tuning? Were ion abundance data within the method-required NA Ī QC limits? **S4** 0 Internal standards (IS): Were IS area counts and retention times within the NA I method-regulred QC limits? Raw data (NELAC section 1 appendix A glossary, **S5** O, I and section 5.) Were the raw data (for example, chromatograms, I Yes spectral data) reviewed by an analyst? Were data associated with manual integrations I NA flagged on the raw data?

Item¹	Analytes ²	Result (Yes, No, NA, NR) ³	Exception Report No.4	
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	1	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey PP Semi-Annual CCR
Reviewer Name: Timothy E. Arnold
LRC Date: 7/13/2022
Laboratory Job Number: 221989
Prep Batch Number(s): QC2207051

Exception Report No.	Description							
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>							

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: х This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. X Rı Field chain-of-custody documentation X R2 Sample identification cross-reference X Test reports (analytical data sheets) for each environmental sample that includes: R3 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA. Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits х R_5 Test reports/summary forms for blank samples X Test reports/summary forms for laboratory control samples (LCSs) including: **R6** (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits х Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits х R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates х R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix х R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Chemist Michael Ohlinger

Official Title

Name (printed)

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Michael Ohlinger

LRC Date: 7/29/22

Laboratory Job Number: 221989

Prep Batch Number(s): QC2207061 & QC2207063

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	NA	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	-
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	No	ER1
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5 _	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	No	ER2
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Michael Ohlinger

LRC Date: 4/5/22

Laboratory Job Number: 221989

Prep Batch Number(s): QC2207061 & QC2207063

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	NA	
·	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S 2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
\$15	Ο, Ι	Verification/validation documentation for methods (NELAC Chap 5n 5)		
,	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
\$16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Michael Ohlinger

LRC Date: 7/29/22

Laboratory Job Number: 221989

Prep Batch Number(s): QC2207061 & QC2207063

Exception Report No.	Description
ER1	Sample analysis performed past holding time for 221989-002.
ER2	The precision between duplicate results was above acceptance limits for the duplicate analyzed on 221989-002

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-2 Customer Description:

Lab Number: 222015-001 Preparation:

Date Collected: 06/21/2022 09:49 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.1 µg/L	5	0.5	0.1 U1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Arsenic	2.0 μg/L	5	0.5	0.2	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Barium	17. 5 μg/L	5	1.0	0.3	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Beryllium	0.85 µg∕L	5	0.25	0.04	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Boron	3.26 mg/L	. 5	0.25	0.05	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Cadmium	0.11 µg/L	5	0.10	0.02	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Calcium	3.4 mg/L	. 5	0.3	0.1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Chromium	0.5 µg/L	5	1.0	0.2 J1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Cobalt	25.7 μg/L	5	0.10	0.02	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Lead	0.6 µg∕L	5	1.0	0.3 J1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Lithium	0.0688 mg/L	. 5	0.0010	0.0003	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Magnesium	7.1 mg/L	. 5	0.5	0.1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Mercury	244 ng/L	4	20	7	JAB	07/12/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.5 µg/L	5	2.5	0.5 U1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Potassium	1.4 mg/L	. 5	0.5	0.1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Selenium	2.7 μg/L	5	2.5	0.5	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Sodium	111 mg/l	. 5	1.0	0.3 M1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Strontium	0.048 mg/L	. 5	0.010	0.002	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Thallium	0.3 μg/L	5	1.0	0.2 J1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.59 pCi/L	0.17	0.28	ST	06/30/2022 14:29	SW-846 9315-1986, Rev. 0
Carrier Recovery	95.1 %					
Radium-228	1.28 pCi/L	0.17	0.52	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	87.8 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-2 Customer Description:
Lab Number: 222015-001-01 Preparation: Dissolved

Date Collected: 06/21/2022 09:49 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.1 µg/L	5	0.5	0.1 U1	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Arsenic	1. 6 μg/L	5	0.5	0.2	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Barium	17.8 μg/L	5	1.0	0.3	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Beryllium	0.80 µg/L	5	0.25	0.04	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Cadmium	0. 11 µg/L	5	0.10	0.02	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Chromium	0.5 μg/L	5	1.0	0.2 J1	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Cobalt	25.4 μg/L	5	0.10	0.02	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Iron	0.13 mg/L	5	0.10	0.03	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Lead	0.7 µg/L	5	1.0	0.3 J1	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Lithium	0.0673 mg/L	5	0.0010	0.0003	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Manganese	0.096 mg/L	5	0.005	0.001	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.5 µg/L	5	2.5	0.5 U1	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Selenium	2.2 μg/L	5	2.5	0.5 J1	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Thallium	<0.2 µg/L	5	1.0	0.2 U1	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-3 Customer Description:

Lab Number: 222015-002 Preparation:

Date Collected: 06/21/2022 12:23 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.1 µg/L	5	0.5	0.1 U1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Arsenic	0.2 μg/L	5	0.5	0.2 J1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Barium	55.6 μg/L	5	1.0	0.3	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Beryllium	0.22 μg/L	5	0.25	0.04 J1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Boron	0.08 mg/L	5	0.25	0.05 J1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.02 µg/L	5	0.10	0.02 U1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Calcium	3.1 mg/L	5	0.3	0.1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Chromium	0.3 μg/L	5	1.0	0.2 J1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Cobalt	2.70 μg/L	5	0.10	0.02	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Lead	<0.3 µg/L	5	1.0	0.3 U1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Lithium	0.0457 mg/L	5	0.0010	0.0003	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Magnesium	1.4 mg/L	5	0.5	0.1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Mercury	4 ng/L	1	5	2 J1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.5 µg/L	5	2.5	0.5 U1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Potassium	2.1 mg/L	5	0.5	0.1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Selenium	<0.5 µg/L	5	2.5	0.5 U1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Sodium	7.5 mg/L	5	1.0	0.3	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Strontium	0.020 mg/L	5	0.010	0.002	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Thallium	<0.2 µg/L	5	1.0	0.2 U1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.04 pCi/L	0.23	0.29	ST	06/30/2022 14:29	SW-846 9315-1986, Rev. 0
Carrier Recovery	88.2 %					
Radium-228	0.64 pCi/L	0.14	0.45	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	90.1 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-3 Customer Description:
Lab Number: 222015-002-01 Preparation: Dissolved

Date Collected: 06/21/2022 12:23 EDT Date Received: 06/27/2022 14:08 EDT

Metals

motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.1 µg/L	5	0.5	0.1 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.2 µg/L	5	0.5	0.2 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Barium	49.5 μg/L	5	1.0	0.3	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Beryllium	0.14 µg/L	5	0.25	0.04 J1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.02 µg/L	5	0.10	0.02 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Chromium	0.4 μg/L	5	1.0	0.2 J1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Cobalt	2.2 5 μg/L	5	0.10	0.02	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Iron	<0.03 mg/L	5	0.10	0.03 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Lead	<0.3 µg/L	5	1.0	0.3 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Lithium	0.0459 mg/L	5	0.0010	0.0003	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Manganese	0.025 mg/L	5	0.005	0.001	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Mercury	3 ng/L	1	5	2 J1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.5 µg/L	5	2.5	0.5 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Selenium	<0.5 µg/L	5	2.5	0.5 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Thallium	<0.2 µg/L	5	1.0	0.2 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-4 Customer Description:

Lab Number: 222015-003 Preparation:

Date Collected: 06/21/2022 11:34 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Arsenic	0.30 µg/L	1	0.10	0.03	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Barium	124 µg/L	1	0.20	0.05	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Beryllium	0.407 µg/L	1	0.050	0.007	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Boron	0.020 mg/L	1	0.050	0.009 J1	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Cadmium	0.021 µg/L	1	0.020	0.004	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Calcium	2.51 mg/L	1	0.05	0.02	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Chromium	0.46 µg/L	1	0.20	0.04	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Cobalt	4.10 µg/L	1	0.020	0.003	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Lithium	0.0220 mg/L	1	0.00020	0.00005	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Magnesium	0.76 mg/L	1	0.10	0.02	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Mercury	4 ng/L	1	5	2 J1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Potassium	2.21 mg/L	1	0.10	0.02	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Sodium	6.94 mg/L	1	0.20	0.05	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Strontium	0.0184 mg/L	1	0.0020	0.0004	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 µg/L	1	0.20	0.04 J1	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.66 pCi/L	0.18	0.26	ST	06/30/2022 14:29	SW-846 9315-1986, Rev. 0
Carrier Recovery	93.3 %					
Radium-228	0.65 pCi/L	0.14	0.47	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	89.0 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-4 Customer Description:
Lab Number: 222015-003-01 Preparation: Dissolved

Date Collected: 06/21/2022 11:34 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/L	1	0.10	0.03 U1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Barium	104 μg/L	1	0.20	0.05	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Beryllium	0.226 μg/L	1	0.050	0.007	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Cadmium	0.016 μg/L	1	0.020	0.004 J1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Chromium	0.27 μg/L	1	0.20	0.04	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Cobalt	3.12 µg/L	1	0.020	0.003	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Iron	0.019 mg/L	1	0.020	0.006 J1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Lead	0.14 μg/L	1	0.20	0.05 J1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Lithium	0.0233 mg/L	1	0.00020	0.00005	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Manganese	0.0289 mg/L	1	0.0010	0.0002	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 µg/L	1	0.20	0.04 J1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-7 Customer Description:

Lab Number: 222015-004 Preparation:

Date Collected: 06/21/2022 10:47 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.1 µg/L	5	0.5	0.1 U1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Arsenic	1.3 µg/L	5	0.5	0.2	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Barium	58.7 μg/L	5	1.0	0.3	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Beryllium	4.66 μg/L	5	0.25	0.04	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Boron	6.13 mg/L	5	0.25	0.05	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Cadmium	0.95 µg∕L	5	0.10	0.02	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Calcium	5.4 mg/L	5	0.3	0.1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Chromium	0.4 μg/L	5	1.0	0.2 J1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Cobalt	36.4 µg/L	5	0.10	0.02	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Lead	1.0 μg/L	5	1.0	0.3	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Lithium	0.113 mg/L	5	0.0010	0.0003	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Magnesium	8.9 mg/L	5	0.5	0.1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Mercury	<400 ng/L	200	1000	400 U1	JAB	07/12/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.5 µg/L	5	2.5	0.5 U1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Potassium	3.2 mg/L	5	0.5	0.1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Selenium	2.3 µg/L	5	2.5	0.5 J1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Sodium	22.6 mg/L	5	1.0	0.3	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Strontium	0.058 mg/L	5	0.010	0.002	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Thallium	0.2 μg/L	5	1.0	0.2 J1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.59 pCi/L	0.38	0.35	ST	06/30/2022 14:29	SW-846 9315-1986, Rev. 0
Carrier Recovery	79.1 %					
Radium-228	2.23 pCi/L	0.16	0.46	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	84.4 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-7 Customer Description:
Lab Number: 222015-004-01 Preparation: Dissolved

Date Collected: 06/21/2022 10:47 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Arsenic	1.38 µg/L	1	0.10	0.03	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Barium	54.1 μg/L	1	0.20	0.05	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Beryllium	3.55 µg∕L	1	0.050	0.007	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Cadmium	0.972 μg/L	1	0.020	0.004	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Chromium	0.34 μg/L	1	0.20	0.04	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Cobalt	35.4 μg/L	1	0.020	0.003	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Iron	0.324 mg/L	1	0.020	0.006	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Lead	1. 06 μg/L	1	0.20	0.05	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Lithium	0.0887 mg/L	1	0.00020	0.00005	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Manganese	0.142 mg/L	1	0.0010	0.0002	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Mercury	<20 ng/L	10	50	20 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.2 μg/L	1	0.5	0.1 J1	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Selenium	2.1 5 μg/L	1	0.50	0.09	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Thallium	0.21 µg/L	1	0.20	0.04	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-12 Customer Description:

Lab Number: 222015-005 Preparation:

Date Collected: 06/20/2022 09:52 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Arsenic	0.08 µg/L	1	0.10	0.03 J1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Barium	24.2 μg/L	1	0.20	0.05	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Beryllium	0.135 μg/L	1	0.050	0.007	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Boron	0.042 mg/L	1	0.050	0.009 J1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Cadmium	0.008 µg/L	1	0.020	0.004 J1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Calcium	0.32 mg/L	1	0.05	0.02	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Chromium	0.63 µg/L	1	0.20	0.04	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Cobalt	1.35 µg/L	1	0.020	0.003	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Lead	0.08 µg/L	1	0.20	0.05 J1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Lithium	0.00949 mg/L	1	0.00020	0.00005	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Magnesium	0.45 mg/L	1	0.10	0.02	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Potassium	0.53 mg/L	1	0.10	0.02	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Selenium	0.16 µg/L	1	0.50	0.09 J1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Sodium	5.28 mg/L	1	0.20	0.05	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Strontium	0.0030 mg/L	1	0.0020	0.0004	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.51 pCi/L	0.16	0.28	ST	06/30/2022 14:29	SW-846 9315-1986, Rev. 0
Carrier Recovery	93.1 %					
Radium-228	0.12 pCi/L	0.11	0.37	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	96.0 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-12 Customer Description:
Lab Number: 222015-005-01 Preparation: Dissolved

Date Collected: 06/20/2022 09:52 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Arsenic	0.06 μg/L	1	0.10	0.03 J1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Barium	24.4 μg/L	1	0.20	0.05	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Beryllium	0.131 µg/L	1	0.050	0.007	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Cadmium	0.009 μg/L	1	0.020	0.004 J1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Chromium	0.33 µg/L	1	0.20	0.04	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Cobalt	1.30 µg/L	1	0.020	0.003	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Iron	0.006 mg/L	1	0.020	0.006 J1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Lead	0.07 μg/L	1	0.20	0.05 J1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Lithium	0.00918 mg/L	1	0.00020	0.00005	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Manganese	0.0052 mg/L	1	0.0010	0.0002	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Selenium	0. 12 μg/L	1	0.50	0.09 J1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-13 Customer Description:

Lab Number: 222015-006 Preparation:

Date Collected: 06/20/2022 09:43 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Arsenic	4.30 μg/L	1	0.10	0.03	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Barium	41.4 µg/L	1	0.20	0.05	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Beryllium	0.409 μg/L	1	0.050	0.007	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Boron	0.075 mg/L	1	0.050	0.009	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Calcium	11.1 mg/L	1	0.05	0.02	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Chromium	0.31 μg/L	1	0.20	0.04	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Cobalt	56.2 μg/L	1	0.020	0.003 M1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Lithium	0.150 mg/L	1	0.00020	0.00005 M1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Magnesium	15.7 mg/L	1	0.10	0.02	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	1.1 µg/L	1	0.5	0.1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Potassium	5.19 mg/L	1	0.10	0.02	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Selenium	0.1 μg/L	1	0.50	0.09 J1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Sodium	21.4 mg/L	1	0.20	0.05	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Strontium	0.0509 mg/L	1	0.0020	0.0004	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.15 pCi/L	0.24	0.29	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	93.3 %					
Radium-228	1.07 pCi/L	0.14	0.45	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	95.1 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-13 Customer Description:
Lab Number: 222015-006-01 Preparation: Dissolved

Date Collected: 06/20/2022 09:43 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Arsenic	0.80 μg/L	1	0.10	0.03	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Barium	40.0 μg/L	1	0.20	0.05	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Beryllium	0.203 μg/L	1	0.050	0.007	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Cadmium	0.005 μg/L	1	0.020	0.004 J1	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Chromium	0.27 μg/L	1	0.20	0.04	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Cobalt	55.8 μg/L	1	0.020	0.003	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Iron	47.8 mg/L	1	0.020	0.006	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Lithium	0.146 mg/L	1	0.00020	0.00005	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Manganese	0.550 mg/L	1	0.0010	0.0002	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.8 µg/L	1	0.5	0.1	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 µg/L	1	0.20	0.04 J1	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-17 Customer Description:

Lab Number: 222015-007 Preparation:

Date Collected: 06/21/2022 11:40 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Arsenic	0.39 µg/L	1	0.10	0.03	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Barium	250 μg/L	1	0.20	0.05	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Beryllium	0.650 μg/L	1	0.050	0.007	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Boron	0.021 mg/L	1	0.050	0.009 J1	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Cadmium	0.063 µg/L	1	0.020	0.004	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Calcium	1.10 mg/L	1	0.05	0.02	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Chromium	0.51 µg/L	1	0.20	0.04	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Cobalt	12.2 μg/L	1	0.020	0.003	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Lead	0.13 μg/L	1	0.20	0.05 J1	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Lithium	0.0206 mg/L	1	0.00020	0.00005	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Magnesium	4.35 mg/L	1	0.10	0.02	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Mercury	200 ng/L	100	500	200 J1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Potassium	1.11 mg/L	1	0.10	0.02	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Selenium	0.44 µg/L	1	0.50	0.09 J1	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Sodium	8.53 mg/L	1	0.20	0.05	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Strontium	0.0206 mg/L	1	0.0020	0.0004	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 μg/L	1	0.20	0.04 J1	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	7.36 pCi/L	0.63	0.30	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	94.4 %					
Radium-228	4.60 pCi/L	0.17	0.41	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	94.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-17 Customer Description:
Lab Number: 222015-007-01 Preparation: Dissolved

Date Collected: 06/21/2022 11:40 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Arsenic	0.17 μg/L	1	0.10	0.03	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Barium	24 5 μg/L	1	0.20	0.05	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Beryllium	0.489 µg/L	1	0.050	0.007	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Cadmium	0.061 µg/L	1	0.020	0.004	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Chromium	0.47 μg/L	1	0.20	0.04	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Cobalt	11. 5 μg/L	1	0.020	0.003	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Iron	0.021 mg/L	1	0.020	0.006	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Lead	0.24 μg/L	1	0.20	0.05	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Lithium	0.0198 mg/L	1	0.00020	0.00005	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Manganese	0.0377 mg/L	1	0.0010	0.0002	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Mercury	<200 ng/L	100	500	200 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Selenium	0.20 μg/L	1	0.50	0.09 J1	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 µg/L	1	0.20	0.04 J1	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-18 Customer Description:

Lab Number: 222015-008 Preparation:

Date Collected: 06/21/2022 09:17 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Arsenic	0.30 μg/L	1	0.10	0.03	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Barium	79.3 μg/L	1	0.20	0.05	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Beryllium	0.073 μg/L	1	0.050	0.007	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Boron	<0.009 mg/L	1	0.050	0.009 U1	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012 μg/L	1	0.020	0.004 J1	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Calcium	1.49 mg/L	1	0.05	0.02	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Chromium	0.47 μg/L	1	0.20	0.04	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Cobalt	0.790 μg/L	1	0.020	0.003	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Lead	0.11 µg/L	1	0.20	0.05 J1	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Lithium	0.0108 mg/L	1	0.00020	0.00005	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Magnesium	0.30 mg/L	1	0.10	0.02	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Mercury	<7 ng/L	4	20	7 U1	JAB	07/12/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Potassium	0.70 mg/L	1	0.10	0.02	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Selenium	0.14 µg/L	1	0.50	0.09 J1	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Sodium	5.16 mg/L	1	0.20	0.05	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Strontium	0.0069 mg/L	1	0.0020	0.0004	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.55 pCi/L	0.17	0.30	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	96.7 %					
Radium-228	0.18 pCi/L	0.17	0.58	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	92.3 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-18 Customer Description:
Lab Number: 222015-008-01 Preparation: Dissolved

Date Collected: 06/21/2022 09:17 EDT Date Received: 06/27/2022 14:08 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Arsenic	0.05 μg/L	1	0.10	0.03 J1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Barium	31.8 μg/L	1	0.20	0.05	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.007 µg/L	1	0.050	0.007 U1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Chromium	0.29 µg/L	1	0.20	0.04	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Cobalt	0.237 μg/L	1	0.020	0.003	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Iron	0.024 mg/L	1	0.020	0.006	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Lead	0.07 μg/L	1	0.20	0.05 J1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Lithium	0.0107 mg/L	1	0.00020	0.00005	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Manganese	0.0008 mg/L	1	0.0010	0.0002 J1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Mercury	8 ng/L	4	20	7 J1	JAB	07/12/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-22 Customer Description:

Lab Number: 222015-009 Preparation:

Date Collected: 06/20/2022 10:53 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Arsenic	3.02 μg/L	1	0.10	0.03	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Barium	16.2 μg/L	1	0.20	0.05	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Beryllium	2.11 μg/L	1	0.050	0.007	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Boron	0.028 mg/L	1	0.050	0.009 J1	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Cadmium	0.587 μg/L	1	0.020	0.004	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Calcium	11.9 mg/L	1	0.05	0.02	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Chromium	0.66 μg/L	1	0.20	0.04	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Cobalt	69.6 μg/L	1	0.020	0.003	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Lead	0.18 μg/L	1	0.20	0.05 J1	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Lithium	0.110 mg/L	1	0.00020	0.00005	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Magnesium	15.6 mg/L	1	0.10	0.02	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Mercury	460 ng/L	10	50	20	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.1 μg/L	1	0.5	0.1 J1	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Potassium	3.63 mg/L	1	0.10	0.02	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Selenium	2.01 μg/L	1	0.50	0.09	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Sodium	90.5 mg/L	1	0.20	0.05	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Strontium	0.0955 mg/L	1	0.0020	0.0004	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Thallium	0.15 μg/L	1	0.20	0.04 J1	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.96 pCi/L	0.31	0.33	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	96.0 %					
Radium-228	1.99 pCi/L	0.19	0.58	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	92.5 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-22 Customer Description:
Lab Number: 222015-009-01 Preparation: Dissolved

Date Collected: 06/20/2022 10:53 EDT Date Received: 06/27/2022 14:08 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Arsenic	2.14 μg/L	1	0.10	0.03	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Barium	16.3 μg/L	1	0.20	0.05	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Beryllium	2.2 5 μg/L	1	0.050	0.007	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Cadmium	0.564 μg/L	1	0.020	0.004	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Chromium	0.41 µg/L	1	0.20	0.04	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Cobalt	74.5 μg/L	1	0.020	0.003	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Iron	38.1 mg/L	1	0.020	0.006	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Lead	0.1 µg/L	1	0.20	0.05 J1	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Lithium	0.125 mg/L	1	0.00020	0.00005	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Manganese	0.351 mg/L	1	0.0010	0.0002	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Mercury	4 ng/L	1	5	2 J1	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Selenium	2.13 μg/L	1	0.50	0.09	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Thallium	0.15 µg/L	1	0.20	0.04 J1	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-28 Customer Description:

Lab Number: 222015-010 Preparation:

Date Collected: 06/21/2022 10:56 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Arsenic	0.14 µg/L	1	0.10	0.03	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Barium	130 μg/L	1	0.20	0.05	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Beryllium	0.463 μg/L	1	0.050	0.007	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Boron	0.311 mg/L	1	0.050	0.009	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Cadmium	0.047 μg/L	1	0.020	0.004	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Calcium	1.40 mg/L	1	0.05	0.02	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Chromium	0.40 μg/L	1	0.20	0.04	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Cobalt	13.3 μg/L	1	0.020	0.003	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Lead	0.08 µg/L	1	0.20	0.05 J1	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Lithium	0.0213 mg/L	1	0.00020	0.00005	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Magnesium	2.95 mg/L	1	0.10	0.02	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Mercury	7 ng/L	1	5	2	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Potassium	0.78 mg/L	1	0.10	0.02	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Selenium	0.15 μg/L	1	0.50	0.09 J1	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Sodium	6.84 mg/L	1	0.20	0.05	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Strontium	0.0192 mg/L	1	0.0020	0.0004	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	5.02 pCi/L	0.51	0.30	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	85.4 %					
Radium-228	0.94 pCi/L	0.15	0.49	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	93.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-28 Customer Description:
Lab Number: 222015-010-01 Preparation: Dissolved

Date Collected: 06/21/2022 10:56 EDT Date Received: 06/27/2022 14:08 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Arsenic	0.11 μg/L	1	0.10	0.03	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Barium	131 µg/L	1	0.20	0.05	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Beryllium	0.486 μg/L	1	0.050	0.007	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Cadmium	0.054 μg/L	1	0.020	0.004	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Chromium	0.38 µg/L	1	0.20	0.04	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Cobalt	13.0 µg/L	1	0.020	0.003	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Iron	0.070 mg/L	1	0.020	0.006	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Lead	0.07 µg/L	1	0.20	0.05 J1	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Lithium	0.0226 mg/L	1	0.00020	0.00005	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Manganese	0.0530 mg/L	1	0.0010	0.0002	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Mercury	4 ng/L	1	5	2 J1	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Selenium	0. 21 μg/L	1	0.50	0.09 J1	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-30 Customer Description:

Lab Number: 222015-011 Preparation:

Date Collected: 06/20/2022 12:29 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Arsenic	0.23 µg/L	1	0.10	0.03	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Barium	106 μg/L	1	0.20	0.05	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Beryllium	0.089 µg/L	1	0.050	0.007	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Boron	2.49 mg/L	1	0.050	0.009	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Cadmium	0.014 µg/L	1	0.020	0.004 J1	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Calcium	0.75 mg/L	1	0.05	0.02	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Chromium	0.42 µg/L	1	0.20	0.04	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Cobalt	4.90 μg/L	1	0.020	0.003	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Lithium	0.0100 mg/L	1	0.00020	0.00005	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Magnesium	2.48 mg/L	1	0.10	0.02	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Mercury	14 ng/L	2	10	4	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Potassium	0.89 mg/L	1	0.10	0.02	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Selenium	0.34 µg/L	1	0.50	0.09 J1	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Sodium	87.2 mg/L	1	0.20	0.05	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Strontium	0.0114 mg/L	1	0.0020	0.0004	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 µg/L	1	0.20	0.04 J1	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.72 pCi/L	0.35	0.28	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	96.5 %					
Radium-228	0.99 pCi/L	0.15	0.47	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	91.7 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-30 Customer Description:
Lab Number: 222015-011-01 Preparation: Dissolved

Date Collected: 06/20/2022 12:29 EDT Date Received: 06/27/2022 14:08 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Arsenic	0.10 μg/L	1	0.10	0.03	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Barium	90.4 μg/L	1	0.20	0.05	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Beryllium	0.092 μg/L	1	0.050	0.007	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Cadmium	0.011 µg/L	1	0.020	0.004 J1	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Chromium	0.36 µg/L	1	0.20	0.04	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Cobalt	4.45 μg/L	1	0.020	0.003	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Iron	0.014 mg/L	1	0.020	0.006 J1	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Lead	0.05 μg/L	1	0.20	0.05 J1	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Lithium	0.00993 mg/L	1	0.00020	0.00005	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Manganese	0.0194 mg/L	1	0.0010	0.0002	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Mercury	6 ng/L	2	10	4 J1	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Selenium	0.18 μg/L	1	0.50	0.09 J1	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-31 Customer Description:

Lab Number: 222015-012 Preparation:

Date Collected: 06/20/2022 11:43 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Arsenic	0.42 μg/L	1	0.10	0.03	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Barium	34.1 μg/L	1	0.20	0.05	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Beryllium	1.03 μg/L	5	0.25	0.04	GES	07/14/2022 13:04	EPA 200.8-1994, Rev. 5.4
Boron	0.028 mg/L	1	0.050	0.009 J1	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Cadmium	0.071 μg/L	1	0.020	0.004	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Calcium	2.65 mg/L	1	0.05	0.02	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Chromium	0.59 μg/L	1	0.20	0.04	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Cobalt	9.61 μg/L	1	0.020	0.003	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Lead	0.35 μg/L	1	0.20	0.05	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Lithium	0.0844 mg/L	5	0.0010	0.0003	GES	07/14/2022 13:04	EPA 200.8-1994, Rev. 5.4
Magnesium	3.85 mg/L	1	0.10	0.02	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Mercury	89 ng/L	2	10	4	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Potassium	1.50 mg/L	1	0.10	0.02	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Selenium	0.33 μg/L	1	0.50	0.09 J1	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Sodium	30.7 mg/L	1	0.20	0.05	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Strontium	0.0376 mg/L	1	0.0020	0.0004	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Thallium	0.08 μg/L	1	0.20	0.04 J1	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.51 pCi/L	0.34	0.27	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	94.2 %					
Radium-228	2.09 pCi/L	0.15	0.42	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	90.8 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-31 Customer Description:
Lab Number: 222015-012-01 Preparation: Dissolved

Date Collected: 06/20/2022 11:43 EDT Date Received: 06/27/2022 14:08 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Arsenic	0.23 μg/L	1	0.10	0.03	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Barium	33.1 µg/L	1	0.20	0.05	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Beryllium	0.96 μg/L	5	0.25	0.04	GES	07/14/2022 13:09	EPA 200.8-1994, Rev. 5.4
Cadmium	0.061 µg/L	1	0.020	0.004	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Chromium	0.50 μg/L	1	0.20	0.04	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Cobalt	9.49 µg∕L	1	0.020	0.003	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Iron	0.114 mg/L	1	0.020	0.006	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Lead	0.31 µg/L	1	0.20	0.05	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Lithium	0.0860 mg/L	5	0.0010	0.0003	GES	07/14/2022 13:09	EPA 200.8-1994, Rev. 5.4
Manganese	0.0253 mg/L	1	0.0010	0.0002	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Mercury	9 ng/L	1	5	2	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Selenium	0.18 μg/L	1	0.50	0.09 J1	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Thallium	0.08 µg/L	1	0.20	0.04 J1	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-32 Customer Description:

Lab Number: 222015-013 Preparation:

Date Collected: 06/20/2022 10:51 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Arsenic	1.81 µg/L	1	0.10	0.03	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Barium	32.3 μg/L	1	0.20	0.05	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Beryllium	3.28 µg/L	5	0.25	0.04	GES	07/14/2022 13:14	EPA 200.8-1994, Rev. 5.4
Boron	0.909 mg/L	1	0.050	0.009	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Cadmium	0.318 μg/L	1	0.020	0.004	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Calcium	7.25 mg/L	1	0.05	0.02	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Chromium	0.68 μg/L	1	0.20	0.04	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Cobalt	27.2 μg/L	1	0.020	0.003	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Lead	0.43 μg/L	1	0.20	0.05	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Lithium	0.0923 mg/L	5	0.0010	0.0003	GES	07/14/2022 13:14	EPA 200.8-1994, Rev. 5.4
Magnesium	9.33 mg/L	1	0.10	0.02	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Mercury	2700 ng/L	100	500	200	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Potassium	3.05 mg/L	1	0.10	0.02	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Selenium	2.67 μg/L	1	0.50	0.09	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Sodium	33.8 mg/L	1	0.20	0.05	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Strontium	0.128 mg/L	1	0.0020	0.0004	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Thallium	0. 1 7 μg/L	1	0.20	0.04 J1	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	6.24 pCi/L	0.56	0.29	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	85.8 %					
Radium-228	7.63 pCi/L	0.23	0.55	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	89.7 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-32 Customer Description:
Lab Number: 222015-013-01 Preparation: Dissolved

Date Collected: 06/20/2022 10:51 EDT Date Received: 06/27/2022 14:08 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Arsenic	1.69 µg/L	1	0.10	0.03	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Barium	37.4 μg/L	1	0.20	0.05	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Beryllium	3.48 µg/L	5	0.25	0.04	GES	07/14/2022 13:19	EPA 200.8-1994, Rev. 5.4
Cadmium	0.342 µg/L	1	0.020	0.004	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Chromium	0.45 μg/L	1	0.20	0.04	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Cobalt	26.6 µg/L	1	0.020	0.003	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Iron	1.20 mg/L	1	0.020	0.006	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Lead	0.38 µg/L	1	0.20	0.05	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Lithium	0.0952 mg/L	5	0.0010	0.0003	GES	07/14/2022 13:19	EPA 200.8-1994, Rev. 5.4
Manganese	0.0517 mg/L	1	0.0010	0.0002	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Mercury	80 ng/L	20	100	40 J1	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Selenium	2.57 μg/L	1	0.50	0.09	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Thallium	0.18 µg/L	1	0.20	0.04 J1	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-33 Customer Description:

Lab Number: 222015-014 Preparation:

Date Collected: 06/20/2022 11:37 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.04 μg/L	1	0.10	0.02 J1	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Arsenic	1.19 µg/L	1	0.10	0.03	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Barium	42.0 μg/L	1	0.20	0.05	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Beryllium	0.939 μg/L	1	0.050	0.007	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Boron	0.093 mg/L	1	0.050	0.009	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Cadmium	0.039 μg/L	1	0.020	0.004	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Calcium	1. 06 mg/L	1	0.05	0.02	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Chromium	0.64 μg/L	1	0.20	0.04	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Cobalt	7.81 µg/L	1	0.020	0.003	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Lead	0.27 μg/L	1	0.20	0.05	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Lithium	0.0166 mg/L	1	0.00020	0.00005	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Magnesium	3.11 mg/L	1	0.10	0.02	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Mercury	3000 ng/L	100	500	200	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Potassium	0.27 mg/L	1	0.10	0.02	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Selenium	1.2 7 μg/L	1	0.50	0.09	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Sodium	16.7 mg/L	1	0.20	0.05	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Strontium	0.0218 mg/L	1	0.0020	0.0004	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.21 pCi/L	0.32	0.30	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	93.6 %					
Radium-228	1.16 pCi/L	0.14	0.42	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	90.0 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-33 Customer Description:
Lab Number: 222015-014-01 Preparation: Dissolved

Date Collected: 06/20/2022 11:37 EDT Date Received: 06/27/2022 14:08 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Arsenic	0.72 μg/L	1	0.10	0.03	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Barium	41.3 µg/L	1	0.20	0.05	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Beryllium	0.863 μg/L	1	0.050	0.007	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Cadmium	0.038 µg/L	1	0.020	0.004	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Chromium	0.33 µg/L	1	0.20	0.04	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Cobalt	7.29 µg/L	1	0.020	0.003	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Iron	0.553 mg/L	1	0.020	0.006	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Lead	0.22 μg/L	1	0.20	0.05	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Lithium	0.0183 mg/L	1	0.00020	0.00005	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Manganese	0.0059 mg/L	1	0.0010	0.0002	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Mercury	410 ng/L	20	100	40	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Selenium	0.77 μg/L	1	0.50	0.09	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: Duplicate 1 Customer Description:

Lab Number: 222015-015 Preparation:

Date Collected: 06/20/2022 15:00 EDT Date Received: 06/27/2022 14:08 EDT

motaro							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Arsenic	4.50 μg/L	1	0.10	0.03	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Barium	41. 7 μg/L	1	0.20	0.05	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Beryllium	0.427 μg/L	1	0.050	0.007 M1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Boron	0.083 mg/L	1	0.050	0.009	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Calcium	11. 6 mg/L	1	0.05	0.02 M1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Chromium	0.33 μg/L	1	0.20	0.04	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Cobalt	61.1 μg/L	1	0.020	0.003 M1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Lithium	0.163 mg/L	1	0.00020	0.00005 M1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Magnesium	16.9 mg/L	1	0.10	0.02 M1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	1.1 μg/L	1	0.5	0.1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Potassium	5.48 mg/L	1	0.10	0.02 M1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Selenium	0.09 μg/L	1	0.50	0.09 J1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Sodium	23.3 mg/L	1	0.20	0.05 M1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Strontium	0.0519 mg/L	1	0.0020	0.0004	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: Duplicate 1 Customer Description:
Lab Number: 222015-015-01 Preparation: Dissolved

Date Collected: 06/20/2022 15:00 EDT Date Received: 06/27/2022 14:08 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Arsenic	0.84 μg/L	1	0.10	0.03	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Barium	39.6 μg/L	1	0.20	0.05	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Beryllium	0.203 μg/L	1	0.050	0.007	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Chromium	0.29 µg/L	1	0.20	0.04	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Cobalt	57.9 μg/L	1	0.020	0.003	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Iron	50.0 mg/L	1	0.020	0.006	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Lithium	0.147 mg/L	1	0.00020	0.00005	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Manganese	0.561 mg/L	1	0.0010	0.0002	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.8 μg/L	1	0.5	0.1	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Thallium	0.08 µg/L	1	0.20	0.04 J1	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: Equipment Blank Customer Description:

Lab Number: 222015-016 Preparation:

Date Collected: 06/20/2022 11:13 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result	Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02	μg/L	1	0.10	0.02	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03	µg/L	1	0.10	0.03	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Barium	<0.05	μg/L	1	0.20	0.05	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.007	μg/L	1	0.050	0.007	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Boron	<0.009	mg/L	1	0.050	0.009	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004	µg/L	1	0.020	0.004	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Calcium	<0.02	mg/L	1	0.05	0.02	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Chromium	0.41	μg/L	1	0.20	0.04		GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Cobalt	0.013	μg/L	1	0.020	0.003	J1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Lead	<0.05	μg/L	1	0.20	0.05	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Lithium	<0.00005	mg/L	1	0.00020	0.00005	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Magnesium	<0.02	mg/L	1	0.10	0.02	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Mercury	<2	ng/L	1	5	2	U1	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1	μg/L	1	0.5	0.1	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Potassium	<0.02	mg/L	1	0.10	0.02	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09	μg/L	1	0.50	0.09	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Sodium	<0.05	mg/L	1	0.20	0.05	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Strontium	<0.0004	mg/L	1	0.0020	0.0004	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04	μg/L	1	0.20	0.04	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4

222015 Job Comments:

Original report issued 8/9/2022. Report reissued with amended matrix spike precision calculations.

Job ID: 222015

Water Analysis Report

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Customer: Pirkey Power Station Date Reported: 12/22/2022

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

- U1 Not detected at or above method detection limit (MDL).
- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.
- M1 The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.

Chain of Custody Record

Dolan Chemical Laboratory (DCL)

4001 Bixby Road				,) ;			3				
Groveport, Ohio 43125		1		Prog	ram: O	Soal Con	nbustion	Program: Coal Combustion Residuals (CCR)	s (CCR)	100000000000000000000000000000000000000	-		
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)					<u>s</u>	Site Contact:				Date:			For Lab Use Only: COC/Order #:
Project Name: Pirkey PP CCR						8 -		Field-filter 250 mL	Three (six every 10th*)	250 mL Glass	250 mL Glass		Slater
Contact Name: Leslie Fuerschbach	Analysis T	umaround	Analysis Turnaround Time (in Calendar Days)	endar Da	133			듄	1 L bottles, pH<2,	bottle, HCL*,	bottle, HCL**,		,
Contact Phone: 318-673-2744	e Rou	ine (28 da	 Routine (28 days for Monitoring Wells) 	toring W	ells)	_	HNO,	HNO,	HNO3	pH<2	pH<2	+	
Sampler(s): Matt Hamilton Kenny McDonald							'βM (i⊐ ')	,iJ ,eA ,o;	822-8		ercury		
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) In	Cd, Cr, Co, P Mo, Na, Pb, 3	Dissolved Si Be, Cd, Cr, C Mn, Mo, Pb,	전 - 226, Ra	Mercury	M beviossid		Sample Specific Notes:
AD-2	8/21/2022	849	g	GW	7		×	×	×	×	×	Н	
AD-3	6/21/2022	1123	ဖ	GW	7		×	×	×	×	×		100
AD-4	6/21/2022	1034	ပ	GW	7		×	×	×	×	×		
AD-7	8/21/2022	947	ဖ	GW	7		×	×	×	×	×	+	
AD-12	6/20/2022	852	ဖ	ΒW	7		×	×	×	×	×	\dashv	
AD-13	6/20/2022	843	ပ	ΒW	10		×	×	×	×	×		
AD-17	6/21/2022	1040	ဗ	GW	7		×	×	×	×	×	\dashv	
AD-18	6/21/2022	817	ဗ	GW	7		×	×	×	×	×	\dashv	
AD-22	6/20/2022	953	ပ	βW	7	\dashv	×	×	×	×	×	-	
AD-28	6/21/2022	956	ဖ	Q.W	7	=1	×	×	×	×	×	+	
AD-30	6/20/2022	1129	တ	GW	7		×	×	×	×	×	\dashv	
AD-31	6/20/2022	1043	ပ	GW	7		×	×	×	×	×	Н	
Preservation Used: 1= lce, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	NO3; 5=NaC	H; 6= Oth	er	; F= fi	Alter in field	pl	4	F4	4	2	F2		

Special Instructions/QC Requirements & Comments:

Six 1L Bottles must be collected for Radium for every 10th sample.

7		
Relinquished on James	Company Company	Date/Time:
Relinquished by:	Company:	Date/Time:
Relinquished by:	Company	Date/Time.

Received in Laboratory by: Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

Date/Time: 622 (:00pm

Date/Time: Date/Time:

600 Received by:

Received by:

Chain of Custody Record

Dolan Chemical Laboratory (DCL)

4001 Bixby Road				-	<u> </u>	ilaili oi custody Necold	stody		3				
Groveport, Ohio 43125				Prog	ram: C	Program: Coal Combustion Residuals (CCR)	Sustion R	esiduals	(CCR)				ĺ
Contacts: Dave Conover (614-836-4184)					io	Site Contact:				Date:		For Lab Use Only: COC/Order#:	100
Project Name: Pirkey PP CCR Contact Name: Leslie Fuerschbach Contact Phone: 318-673-2744	Analysis T	umaround ine (28 da)	Analysis Turnaround Time (in Calendar Days) G Routine (28 days for Monitoring Wells)	lendar Da	(s)	25C 59C 14F	250 mL 25 bottle, bott pH<2, p	Field-filter (s 250 mL bottle, then 11 pH<2, HNO ₃	Three (six every 10th*) 1 L bottles, pH<2, HNO3	250 mL Glass bottle, HCL", pH<2	250 mL Glass bottle, HCL**,	510EEE	
Sampler(s): Matt Hamilton Kenny McDonald						60, 68 ,e	IT ,12 ,e3	(t] '64 '0;	822-	8	eucnið		
Sample Identification	Sample Date	Sample	Sample Type (C=Comp, G=Grab)	Matrix	ont.	Sampter(s) Ini	Cd, Cr, Co, K	8e, Cd, Cr, C Mn, Mo, Pb, 1	요 - 226, 단8	Mercury	Dissolved Mi	Sample Specific Notes:	
AD-32	6/20/20/22	951	9	GW	7		×	×	×	×	×		
AD-33	6/20/2022	1037	9	GW	7		×	×	×	×	×		
Duplicate - 1	6/20/2022	1400	ပ	GW	4		×	×		×	×		1
Equipment Blank	6/20/2022	1013	O	Q.W	2	1	×			×			Т
						-							1
													П
							9						
						_							
				E (5				3					
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	INO3; 5=NaC)H; 6= Oth	er	.; F¤ fi	_; F= filter in field		4	F4	4	2	F2	1000	
	100												

^{*} Six 1L Bottles must be collected for Radium for every 10th sample.

Special Instructions/QC Requirements & Comments:

				The state of the s
Relinquished 9:	Company	Date/Time 1600	box Received by:	Date/Time:
Relinquis fed by:	Company:	Date/Time:	Received by:	Date/Time:
Relinquished by:	Company:	Date/Time:	Received in Laboratory IV:	Date/Time; + 122 1:00pm

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 111 0/17

WATER & WASTE SAMPLE RECEIPT FORM (IR#1)

E.	
Package Type	<u>Delivery Type</u>
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer Pulsey	Number of Plastic Containers:
Opened By JAB JDB JWB	Number of Glass Containers:
Date/Time 6/27/22 1:00pm	Number of Mercury Containers: 31
Were all temperatures within 0-6°C? Y/N	o(N/A) Initial:on ice /(no ice
(IR Gun Ser# 210441568, Expir.5/27/2023) - If No, specify each deviation:
Was container in good condition (Y) N	Comments
Was Chain of Custody received (Y) N	Comments
Requested turnaround: Koutine	If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) NO₂ or (24 hr)	· NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? (Y) N	Comments
Were samples labeled properly? Y N	Comments
Were correct containers used? (Y)N	Comments
Was pH checked & Color Coding done?	Y) N or N/A Initial & Date: JWB 6/27/22
pH paper (circle one): MQuant pH Cat 1 lot HC904495	1.09535.0001 Lab rat pH Cat # LRS -4801 Lot X000RWDG21
- Was Add'l Preservative needed? Y N	f Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y	Comments(See Prep Book
Was the customer contacted? If Yes	s: Person Contacted:
Lab ID# 22015 Initial	& Date & Time :
	ments:
Logged by	
- Designed by	<u> </u>
Reviewed by	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Dolan Chemical Laboratory

Sample Receipt Form SOP-7102

Page I of I

4.

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

X	(which	ignature page, and the laboratory review checklist consisting of Table 1, Reportable Data n includes the reportable data identified on this page), Table 2, Supporting Data, and 3, Exception Reports.
X	R1	Field chain-of-custody documentation
Х	R2	Sample identification cross-reference
X	R3	 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs)
NA	R4	Surrogate recovery data including: (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits
X	R5	Test reports/summary forms for blank samples
X	R6	Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits
X	R7	Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits
X	R8	Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates
Х	R9	List of method quantitation limits (MQLs) for each analyte for each method and matrix
X	R10	Other problems or anomalies
X	The Ex	sception Report for every item for which the result is "No" or "NR" (Not Reviewed)
packag requir report by the labora	ge as be ements s. By m labora tory in t	tement: I am responsible for the release of this laboratory data package. This data een reviewed by the laboratory and is complete and technically compliant with the of the methods used, except where noted by the laboratory in the attached exception by signature below, I affirm to the best of my knowledge, all problems/anomalies, observed tory as having the potential to affect the quality of the data, have been identified by the the Laboratory Review Checklist, and no information or data have been knowingly withheld fect the quality of the data.
Check	x, if ap nding to	plicable: This laboratory is an in-house laboratory controlled by the person rule. The official signing the cover page of the rule-required report in which these data are

used is responsible for releasing this data package and is by signature affirming the above release

Lab Supervisor

Official Title

statement is true.

Name (printed)

Jonathan Barnhill

12-12-2022

Date

Table 1. Reportable Data.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name:	
Reviewer Name:	onathan Barnhill
LRC Date: 12-12-2	022
Laboratory Job Nu	mber: 222015
<u> </u>	PB22070101 PB2207151 QC2207105 QC2207151

Item¹	Analytes. ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?		
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER1
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes. ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	Ι	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NO	ER3
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name:	
Reviewer Name:	onathan Barnhill

Laboratory Job Number: 222015

Prep Batch Number(s): PB22070101 PB2207151 QC2207105 QC2207151

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	Yes	
	I	Were ion abundance data within the method-required QC limits?	Yes	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	Yes	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name:	
Reviewer Name: 👤	onathan Barnhill
LRC Date: 12-12-2	
Laboratory Job Nu	
	PB22070101 PB2207151 QC2207105 QC2207151

Exception Report No.	Description
ER1	Linear Dynamic Range (LDR) study used to determine upper limit of analyte calibration.
ER2	CCB acceptance criteria is CCB<2.2*MDL.
ER3	Matrix Spike failure for Na on sample 222015-001
	Matrix Spike failure for Co Li on sample 222015-006
	Matrix Spike failure for Ca Li Mg Na Co K on sample 222015-015

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: Х This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. х R₁ Field chain-of-custody documentation Х R_2 Sample identification cross-reference х R₃ Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: R4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits X **R**5 Test reports/summary forms for blank samples x R6 Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits X **R**7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD OC limits х Laboratory analytical duplicate (if applicable) recovery and precision: **R8** (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates List of method quantitation limits (MOLs) for each analyte for each method and matrix R9 |x| $|\mathbf{x}|$ **R10** Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) **Release Statement:** I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. **Check, if applicable:** () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Tamisha T. Palmer Chemical Technician, Principal 07/07/2022

Official Title

Name (printed)

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 07/07/2022

Laboratory Job Number: 222015

Prep Batch Number(s): PB22062803, PB22062804

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	1
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
_	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes, No	ER1
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 07/07/2022

Laboratory Job Number: 222015

Prep Batch Number(s): PB22062803, PB22062804

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA.	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S 6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	S I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
58	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9 -	I	Serial dilutions, post digestion spikes, and method of standard additions	()	
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	NA	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	NA	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
\$16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 07/07/2022

Laboratory Job Number: 222015

Prep Batch Number(s): PB22062803, PB22062804

Exception Report No.	Description		
ER1	PB22062804 the RPD was slightly above 25%		
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
			

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

х	(which		eportable data identified	checklist consisting of Table 1, I on this page), Table 2, Supportin	
X	R1	Field chain-o	f-custody documentation		
X	R2	Sample identi	ification cross-reference		
X	R3	(a) Items spender(b) Dilution(c) Preparate(d) Cleanup	ecified in NELAC Chapter Standard factors ion methods methods	each environmental sample tha 5 for reporting results, e.g., Sect ely identified compounds (TICs)	tion 5.5.10 in 2003
NA	R4	(a) Calculate	overy data including: ed recovery (%R) ratory's surrogate QC limi	ts	
X	R5	Test reports/s	summary forms for blank	samples	
X	R6	(a) LCS spik(b) Calculate		ntory control samples (LCSs) inc	luding:
X	R7	(a) Samples(b) MS/MSI(c) Concentro(d) Calculate	associated with the MS/M Spiking amounts	nalyte measured in the parent ar nt differences (RPDs)	J
X	R8	(a) The amo	unt of analyte measured in	-	
X	R9	List of metho	d quantitation limits (MQ	Ls) for each analyte for each me	thod and matrix
X	R10	Other problem	ns or anomalies		
X	The Ex	ception Repor	t for every item for which	the result is "No" or "NR" (Not	Reviewed)
packag require reports by the laborat	ge as be ements s. By m laborat tory in t	en reviewed by of the methods y signature be cory as having	y the laboratory and is cors s used, except where noted slow, I affirm to the best of the potential to affect the Review Checklist, and no	e of this laboratory data package nplete and technically complian d by the laboratory in the attache f my knowledge, all problems/ar quality of the data, have been id information or data have been i	t with the ed exception nomalies, observed entified by the
respon used is statem	ding to respon ent is to	rule. The offic sible for releas ue.	ial signing the cover page	ouse laboratory controlled by the of the rule-required report in what is by signature affirming the ab	hich these data are ove release
	a Tims		a: The state of th	Chemist Associate	07/07/2022
Name (printed)			Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 07/07/2022

Laboratory Job Number: 222015

Prep Batch Number(s): PB22062806

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes. ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	N/A	
	I	Were analytical duplicates analyzed at the appropriate frequency?	N/A	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	N/A	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	Ι	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 07/07/2022

Laboratory Job Number: 222015

Prep Batch Number(s): PB22062806

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Radium Laboratory Review Checklist

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	NA	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	NA	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Radium Laboratory Review Checklist

Table 3. Exception Reports.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name: Pirl	key Power Station
Reviewer Name:	Sunita Timsina
LRC Date: 07/07/2	022
Laboratory Job Nu	mber: 222015
~	r(s): PB22062806

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: X This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. \square R1 Field chain-of-custody documentation $|\mathbf{x}|$ R₂ Sample identification cross-reference x R₃ Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: R4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits [x]**R**5 Test reports/summary forms for blank samples х R6 Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits X **R7** Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits × R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates х R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix X R₁₀ Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Susann Sultmann Senior Chemist Susann Sulzmann 08-03-2022

Official Title

Name (printed)

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Susann Sulzmann

LRC Date: 8-03-2022

Laboratory Job Number: 222015

Prep Batch Number(s): PB22070805, PB22070708, PB22071112

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	yes	
	1	Other than those results < MQL, were all other raw values bracketed by calibration standards?	yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
<u> </u>	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?		144
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	99.
	I	Was the LCSD RPD within QC limits?	yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	yes	
	I	Were MS/MSD RPDs within laboratory QC limits?		
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	1	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Susann Sulzmann

LRC Date: 8-03-2022

Laboratory Job Number: 222015

Prep Batch Number(s): PB22070805, PB22070708, PB22071112

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S 3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	Ī	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Susann Sulzmann

LRC Date: 8-03-2022

Laboratory Job Number: 222015

Prep Batch Number(s): PB22070805, PB22070708, PB22071112

Exception Report No.	Description								
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>								
,									

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-2 Customer Description: TG-32

Lab Number: 223664-001 Preparation:

Date Collected: 11/15/2022 11:05 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Arsenic	0.40 μg/L	1	0.10	0.03	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Barium	16.8 μg/L	1	0.20	0.05	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Beryllium	0.561 μg/L	1	0.050	0.007	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Boron	2.83 mg/L	1	0.050	0.009	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Cadmium	0.086 μg/L	1	0.020	0.004	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Calcium	2.80 mg/L	1	0.05	0.02	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Chromium	0.43 μg/L	1	0.20	0.04	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Cobalt	19. 6 μg/L	1	0.020	0.003	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Lead	0.60 μg/L	1	0.20	0.05	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Lithium	0.0556 mg/L	1	0.00020	0.00005	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Magnesium	5.23 mg/L	1	0.10	0.02	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Mercury	58 ng/L	2	10	4	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Potassium	1.43 mg/L	1	0.10	0.02	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Selenium	1.28 μg/L	1	0.50	0.09	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Sodium	90.6 mg/L	1	0.20	0.05 M1	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Strontium	0.0408 mg/L	1	0.0020	0.0004	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Thallium	0. 11 μg/L	1	0.20	0.04 J1	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.40 pCi/L	0.12	0.23	ST	12/07/2022 10:18	SW-846 9315-1986, Rev. 0
Carrier Recovery	77.9 %					
Radium-228	1.01 pCi/L	0.13	0.39	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	85.0 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-2 Customer Description: TG-32

Lab Number: 223664-001-01 Preparation: Dissolved

Date Collected: 11/15/2022 11:05 EST Date Received: 11/21/2022 12:30 EST

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Arsenic	0.41 µg/L	1	0.10	0.03	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Barium	16.8 µg/L	1	0.20	0.05	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Beryllium	0.559 µg/L	1	0.050	0.007	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Cadmium	0.090 µg/L	1	0.020	0.004	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Chromium	0.41 µg/L	1	0.20	0.04	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Cobalt	19.9 µg/L	1	0.020	0.003	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Iron	0.257 mg/L	1	0.020	0.006	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Lead	0.60 µg/L	1	0.20	0.05	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Lithium	0.0554 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Manganese	0.0853 mg/L	1	0.0010	0.0002	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Selenium	1.30 µg/L	1	0.50	0.09	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Thallium	0.13 µg/L	1	0.20	0.04 J1	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-3 Customer Description: TG-32

Lab Number: 223664-002 Preparation:

Date Collected: 11/16/2022 12:45 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Arsenic	1.22 μg/L	1	0.10	0.03	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Barium	63.7 µg/L	1	0.20	0.05	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 18 6 μg/L	1	0.050	0.007	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Boron	0.063 mg/L	1	0.050	0.009	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012 μg/L	1	0.020	0.004 J1	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Calcium	5.05 mg/L	1	0.05	0.02	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Chromium	0.63 μg/L	1	0.20	0.04	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Cobalt	7.40 µg∕L	1	0.020	0.003	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Lead	0.31 µg/L	1	0.20	0.05	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Lithium	0.0837 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Magnesium	4.15 mg/L	1	0.10	0.02	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Potassium	3.44 mg/L	1	0.10	0.02	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Selenium	0.09 µg/L	1	0.50	0.09 J1	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Sodium	12.3 mg/L	1	0.20	0.05	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Strontium	0.0380 mg/L	1	0.0020	0.0004	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 μg/L	1	0.20	0.04 J1	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.72 pCi/L	0.14	0.20	ST	12/07/2022 10:18	SW-846 9315-1986, Rev. 0
Carrier Recovery	89.9 %					
Radium-228	0.79 pCi/L	0.11	0.36	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	99.5 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-3 Customer Description: TG-32

Lab Number: 223664-002-01 Preparation: Dissolved

Date Collected: 11/16/2022 00:45 EST Date Received: 11/21/2022 12:30 EST

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Arsenic	0.91 µg/L	1	0.10	0.03	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Barium	61.6 µg/L	1	0.20	0.05	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Beryllium	0.139 µg/L	1	0.050	0.007	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012 µg/L	1	0.020	0.004 J1	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Chromium	0.29 µg/L	1	0.20	0.04	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Cobalt	7.92 µg/L	1	0.020	0.003	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Iron	9.45 mg/L	1	0.020	0.006	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Lithium	0.0933 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Manganese	0.115 mg/L	1	0.0010	0.0002	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-4 Customer Description: TG-32

Lab Number: 223664-003 Preparation:

Date Collected: 11/16/2022 12:32 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Arsenic	0.21 μg/L	1	0.10	0.03	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Barium	128 μg/L	1	0.20	0.05	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 1 95 μg/L	1	0.050	0.007	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Boron	0.019 mg/L	1	0.050	0.009 J1	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Cadmium	0.019 μg/L	1	0.020	0.004 J1	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Calcium	2.25 mg/L	1	0.05	0.02	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Chromium	0.44 μg/L	1	0.20	0.04	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Cobalt	3.00 μg/L	1	0.020	0.003	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Lithium	0.0212 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Magnesium	0.55 mg/L	1	0.10	0.02	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Mercury	5 ng/L	1	5	2	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Potassium	2.15 mg/L	1	0.10	0.02	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Sodium	6.41 mg/L	1	0.20	0.05	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Strontium	0.0183 mg/L	1	0.0020	0.0004	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Thallium	0.10 µg/L	1	0.20	0.04 J1	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.40 pCi/L	0.10	0.17	ST	12/07/2022 10:18	SW-846 9315-1986, Rev. 0
Carrier Recovery	96.5 %					
Radium-228	-0.01 pCi/L	0.13	0.46	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	89.2 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-4 Customer Description: TG-32

Lab Number: 223664-003-01 Preparation: Dissolved

Date Collected: 11/16/2022 12:32 EST Date Received: 11/21/2022 12:30 EST

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Arsenic	0.13 µg/L	1	0.10	0.03	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Barium	128 μg/L	1	0.20	0.05	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 1 97 µg/L	1	0.050	0.007	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Cadmium	0.021 µg/L	1	0.020	0.004	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Chromium	0.40 µg/L	1	0.20	0.04	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Cobalt	2.98 µg/L	1	0.020	0.003	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Iron	2.40 mg/L	1	0.020	0.006	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Lithium	0.0215 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Manganese	0.0291 mg/L	1	0.0010	0.0002	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Thallium	0.1 µg/L	1	0.20	0.04 J1	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-7 Customer Description: TG-32

Lab Number: 223664-004 Preparation:

Date Collected: 11/16/2022 10:10 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Uni	s Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/	. 1	0.10	0.02 U1	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Arsenic	0.43 μg/	. 1	0.10	0.03	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Barium	55.2 μg/	. 1	0.20	0.05	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Beryllium	2.49 µg/	. 1	0.050	0.007	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Boron	9.38 mg/	L 1	0.050	0.009	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Cadmium	0.880 µg/	. 1	0.020	0.004	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Calcium	5.20 mg/	L 1	0.05	0.02	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Chromium	0.35 µg/	. 1	0.20	0.04	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Cobalt	31.8 µg/	. 1	0.020	0.003	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Lead	0.27 μg/	. 1	0.20	0.05	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Lithium	0.110 mg/	L 1	0.00020	0.00005	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Magnesium	8.25 mg/	L 1	0.10	0.02	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Mercury	37 ng/	. 1	5	2	JAB	12/05/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/	. 1	0.5	0.1 U1	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Potassium	3.50 mg/	L 1	0.10	0.02	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Selenium	1.49 µg/	. 1	0.50	0.09	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Sodium	32.3 mg/	L 1	0.20	0.05	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Strontium	0.0575 mg/	L 1	0.0020	0.0004	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Thallium	0.19 µg/	. 1	0.20	0.04 J1	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.65 pCi/L	0.21	0.20	ST	12/07/2022 10:18	SW-846 9315-1986, Rev. 0
Carrier Recovery	93.9 %					
Radium-228	2.48 pCi/L	0.15	0.41	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	98.0 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-7 Customer Description: TG-32

Lab Number: 223664-004-01 Preparation: Dissolved

Date Collected: 11/16/2022 10:10 EST Date Received: 11/21/2022 12:30 EST

otalo							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Arsenic	0.43 µg/L	1	0.10	0.03	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Barium	54.5 μg/L	1	0.20	0.05	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Beryllium	2. 55 μg/L	1	0.050	0.007	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Cadmium	0.879 µg/L	1	0.020	0.004	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Chromium	0.35 µg/L	1	0.20	0.04	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Cobalt	31.8 μg/L	1	0.020	0.003	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Iron	10.8 mg/L	1	0.020	0.006	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Lead	0.23 µg/L	1	0.20	0.05	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Lithium	0.110 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Manganese	0.157 mg/L	1	0.0010	0.0002	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Mercury	4 ng/L	1	5	2 J1	JAB	12/05/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Selenium	1. 53 µg/L	1	0.50	0.09	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Thallium	0.17 µg/L	1	0.20	0.04 J1	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-12 Customer Description: TG-32

Lab Number: 223664-005 Preparation:

Date Collected: 11/15/2022 11:58 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Arsenic	0.06 µg/L	1	0.10	0.03 J1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Barium	30.6 μg/L	1	0.20	0.05	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 1 53 μg/L	1	0.050	0.007	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Boron	0.013 mg/L	1	0.050	0.009 J1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Cadmium	0.007 μg/L	1	0.020	0.004 J1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Calcium	0.36 mg/L	1	0.05	0.02	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Chromium	0.45 μg/L	1	0.20	0.04	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Cobalt	1. 59 μg/L	1	0.020	0.003	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Lead	0.08 μg/L	1	0.20	0.05 J1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Lithium	0.0119 mg/L	1	0.00020	0.00005	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Magnesium	0.54 mg/L	1	0.10	0.02	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Potassium	0.81 mg/L	1	0.10	0.02	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Selenium	0.23 μg/L	1	0.50	0.09 J1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Sodium	5.83 mg/L	1	0.20	0.05	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Strontium	0.0035 mg/L	1	0.0020	0.0004	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.72 pCi/L	0.15	0.19 P1	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	102 %					
Radium-228	0.74 pCi/L	0.14	0.44	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	95.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-12 Customer Description: TG-32

Lab Number: 223664-005-01 Preparation: Dissolved

Date Collected: 11/15/2022 11:58 EST Date Received: 11/21/2022 12:30 EST

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Arsenic	0.05 μg/L	1	0.10	0.03 J1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Barium	30.0 μg/L	1	0.20	0.05	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Beryllium	0.149 µg/L	1	0.050	0.007	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Cadmium	0.008 µg/L	1	0.020	0.004 J1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Chromium	0.35 µg/L	1	0.20	0.04	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Cobalt	1. 59 μg/L	1	0.020	0.003	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Iron	<0.006 mg/L	1	0.020	0.006 U1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Lead	0.08 µg/L	1	0.20	0.05 J1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Lithium	0.0116 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Manganese	0.0061 mg/L	1	0.0010	0.0002	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Selenium	0.28 µg/L	1	0.50	0.09 J1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 µg/L	1	0.20	0.04 J1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-13 Customer Description: TG-32

Lab Number: 223664-006 Preparation:

Date Collected: 11/15/2022 09:21 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Arsenic	1.62 µg/L	1	0.10	0.03	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Barium	44.2 μg/L	1	0.20	0.05	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Beryllium	0.131 μg/L	1	0.050	0.007	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Boron	0.095 mg/L	1	0.050	0.009	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Calcium	8.57 mg/L	1	0.05	0.02	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Chromium	0.35 μg/L	1	0.20	0.04	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Cobalt	45.9 μg/L	1	0.020	0.003	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Lithium	0.141 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Magnesium	12.4 mg/L	1	0.10	0.02	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Potassium	5.16 mg/L	1	0.10	0.02	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Sodium	16.3 mg/L	1	0.20	0.05	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Strontium	0.0402 mg/L	1	0.0020	0.0004	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.55 pCi/L	0.26	0.35	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	84.9 %					
Radium-228	-0.86 pCi/L	0.14	0.50	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	102 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-13 Customer Description: TG-32

Lab Number: 223664-006-01 Preparation: Dissolved

Date Collected: 11/15/2022 09:21 EST Date Received: 11/21/2022 12:30 EST

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Arsenic	1.43 µg/L	1	0.10	0.03	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Barium	44.7 μg/L	1	0.20	0.05	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Beryllium	0.116 µg/L	1	0.050	0.007	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Chromium	0.31 µg/L	1	0.20	0.04	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Cobalt	47.2 μg/L	1	0.020	0.003	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Iron	39.9 mg/L	5	0.10	0.03	GES	12/05/2022 09:18	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Lithium	0.140 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Manganese	0.428 mg/L	1	0.0010	0.0002	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-17 Customer Description: TG-32

Lab Number: 223664-007 Preparation:

Date Collected: 11/16/2022 11:58 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result	Units	Dilution	RL	MDL Data Qual	ifiers Analyst	Analysis Date	Method
Antimony	<0.02	µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Arsenic	0.13	μg/L	1	0.10	0.03	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Barium	276	μg/L	1	0.20	0.05	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Beryllium	0.662	µg/L	1	0.050	0.007	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Boron	0.026	mg/L	1	0.050	0.009 J1	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Cadmium	0.061	µg/L	1	0.020	0.004	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Calcium	1.23	mg/L	1	0.05	0.02	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Chromium	0.37	µg/L	1	0.20	0.04	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Cobalt	12.7	µg/L	1	0.020	0.003	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Lead	0.16	μg/L	1	0.20	0.05 J1	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Lithium	0.0267	mg/L	1	0.00020	0.00005	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Magnesium	4.53	mg/L	1	0.10	0.02	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Mercury	400	ng/L	100	500	200 J1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1	μg/L	1	0.5	0.1 U1	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Potassium	1.40	mg/L	1	0.10	0.02	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Selenium	0.36	μg/L	1	0.50	0.09 J1	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Sodium	9.35	mg/L	1	0.20	0.05	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Strontium	0.0231	mg/L	1	0.0020	0.0004	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Thallium	0.07	μg/L	1	0.20	0.04 J1	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	3.34 pCi/L	0.33	0.23	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	101 %					
Radium-228	3.41 pCi/L	0.19	0.52	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	95.3 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-17 Customer Description: TG-32

Lab Number: 223664-007-01 Preparation: Dissolved

Date Collected: 11/16/2022 11:58 EST Date Received: 11/21/2022 12:30 EST

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Arsenic	0.12 μg/L	1	0.10	0.03	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Barium	273 μg/L	1	0.20	0.05	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Beryllium	0.648 µg/L	1	0.050	0.007	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Cadmium	0.053 μg/L	1	0.020	0.004	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Chromium	0.39 µg/L	1	0.20	0.04	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Cobalt	12.3 μg/L	1	0.020	0.003	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Iron	0.269 mg/L	1	0.020	0.006	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Lead	0.16 μg/L	1	0.20	0.05 J1	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Lithium	0.0262 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Manganese	0.0545 mg/L	1	0.0010	0.0002	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Mercury	<200 ng/L	100	500	200 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Selenium	0.30 μg/L	1	0.50	0.09 J1	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 µg/L	1	0.20	0.04 J1	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-18 Customer Description: TG-32

Lab Number: 223664-008 Preparation:

Date Collected: 11/16/2022 11:13 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Arsenic	0.25 μg/L	1	0.10	0.03	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Barium	77.4 μg/L	1	0.20	0.05	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Beryllium	0.071 μg/L	1	0.050	0.007	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Boron	0.011 mg/L	1	0.050	0.009 J1	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Cadmium	0.009 µg/L	1	0.020	0.004 J1	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Calcium	0.19 mg/L	1	0.05	0.02	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Chromium	0.54 μg/L	1	0.20	0.04	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Cobalt	0.723 μg/L	1	0.020	0.003	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Lead	0.08 µg/L	1	0.20	0.05 J1	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Lithium	0.0125 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Magnesium	0.27 mg/L	1	0.10	0.02	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Mercury	18 ng/L	1	5	2	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Potassium	0.73 mg/L	1	0.10	0.02	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Selenium	0.12 μg/L	1	0.50	0.09 J1	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Sodium	5.46 mg/L	1	0.20	0.05	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Strontium	0.0040 mg/L	1	0.0020	0.0004	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1 pCi/L	0.18	0.21	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	103 %					
Radium-228	0.61 pCi/L	0.12	0.39	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	92.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-18 Customer Description: TG-32

Lab Number: 223664-008-01 Preparation: Dissolved

Date Collected: 11/16/2022 11:13 EST Date Received: 11/21/2022 12:30 EST

otalo							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Arsenic	0.06 µg/L	1	0.10	0.03 J1	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Barium	77.2 μg/L	1	0.20	0.05	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Beryllium	0.069 µg/L	1	0.050	0.007	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012 µg/L	1	0.020	0.004 J1	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Chromium	0.34 µg/L	1	0.20	0.04	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Cobalt	0.719 µg/L	1	0.020	0.003	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Iron	0.060 mg/L	1	0.020	0.006	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Lithium	0.0127 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Manganese	0.0028 mg/L	1	0.0010	0.0002	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-22 Customer Description: TG-32

Lab Number: 223664-009 Preparation:

Date Collected: 11/14/2022 12:31 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualif	iers Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Arsenic	2.40 μg/L	1	0.10	0.03	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Barium	20.8 μg/L	1	0.20	0.05	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Beryllium	2.1 6 μg/L	1	0.050	0.007	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Boron	0.021 mg/L	1	0.050	0.009 J1	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Cadmium	0.494 μg/L	1	0.020	0.004	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Calcium	10.5 mg/L	1	0.05	0.02	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Chromium	0.47 μg/L	1	0.20	0.04	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Cobalt	60.3 μg/L	1	0.020	0.003	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Lead	0.22 µg/L	1	0.20	0.05	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Lithium	0.0905 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Magnesium	15.1 mg/L	1	0.10	0.02	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Mercury	410 ng/L	10	50	20	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Potassium	3.37 mg/L	1	0.10	0.02	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Selenium	1.93 µg/L	1	0.50	0.09	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Sodium	83.9 mg/L	1	0.20	0.05	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Strontium	0.0898 mg/L	1	0.0020	0.0004	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Thallium	0.14 µg/L	1	0.20	0.04 J1	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.96 pCi/L	0.21	0.31	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	76.7 %					
Radium-228	1.74 pCi/L	0.18	0.53	TTP	12/27/2022 14:41	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	88.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-22 Customer Description: TG-32

Lab Number: 223664-009-01 Preparation: Dissolved

Date Collected: 11/14/2022 12:31 EST Date Received: 11/21/2022 12:30 EST

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Arsenic	1.28 μg/L	1	0.10	0.03	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Barium	20.5 μg/L	1	0.20	0.05	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Beryllium	2.04 μg/L	1	0.050	0.007	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Cadmium	0.503 μg/L	1	0.020	0.004	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Chromium	0.46 µg/L	1	0.20	0.04	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Cobalt	60.0 µg/L	1	0.020	0.003	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Iron	29.8 mg/L	1	0.020	0.006	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Lead	0.12 µg/L	1	0.20	0.05 J1	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Lithium	0.0883 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Manganese	0.295 mg/L	1	0.0010	0.0002	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Mercury	51 ng/L	1	5	2	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Selenium	2.06 µg/L	1	0.50	0.09	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Thallium	0.13 µg/L	1	0.20	0.04 J1	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-28 Customer Description: TG-32

Lab Number: 223664-010 Preparation:

Date Collected: 11/16/2022 09:48 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Arsenic	0.10 μg/L	1	0.10	0.03	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Barium	12 5 μg/L	1	0.20	0.05	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Beryllium	0.459 μg/L	1	0.050	0.007	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Boron	0.334 mg/L	1	0.050	0.009	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Cadmium	0.046 μg/L	1	0.020	0.004	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Calcium	1.34 mg/L	1	0.05	0.02	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Chromium	0.54 μg/L	1	0.20	0.04	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Cobalt	11.8 μg/L	1	0.020	0.003	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Lead	0.1 5 μg/L	1	0.20	0.05 J1	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Lithium	0.0270 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Magnesium	2.76 mg/L	1	0.10	0.02	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Mercury	8 ng/L	1	5	2	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Potassium	0.85 mg/L	1	0.10	0.02	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Selenium	0.16 μg/L	1	0.50	0.09 J1	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Sodium	6.45 mg/L	1	0.20	0.05	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Strontium	0.0182 mg/L	1	0.0020	0.0004	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	3.79 pCi/L	0.35	0.26	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	95.0 %					
Radium-228	1.36 pCi/L	0.13	0.39	TTP	12/27/2022 14:41	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	96.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-28 Customer Description: TG-32

Lab Number: 223664-010-01 Preparation: Dissolved

Date Collected: 11/16/2022 09:48 EST Date Received: 11/21/2022 12:30 EST

ottailo							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Arsenic	0.06 µg/L	1	0.10	0.03 J1	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Barium	128 μg/L	1	0.20	0.05	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Beryllium	0.447 µg/L	1	0.050	0.007	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Cadmium	0.045 μg/L	1	0.020	0.004	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Chromium	0.47 µg/L	1	0.20	0.04	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Cobalt	11.8 μg/L	1	0.020	0.003	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Iron	0.493 mg/L	1	0.020	0.006	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Lead	0.08 µg/L	1	0.20	0.05 J1	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Lithium	0.0267 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Manganese	0.0556 mg/L	1	0.0010	0.0002	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Selenium	0.17 µg/L	1	0.50	0.09 J1	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-30 Customer Description: TG-32

Lab Number: 223664-011 Preparation:

Date Collected: 11/16/2022 10:46 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Arsenic	0.16 µg/L	1	0.10	0.03	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Barium	89.4 μg/L	1	0.20	0.05	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Beryllium	0.108 μg/L	1	0.050	0.007	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Boron	2.86 mg/L	1	0.050	0.009	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Cadmium	0.013 µg/L	1	0.020	0.004 J1	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Calcium	0.71 mg/L	1	0.05	0.02	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Chromium	0.55 μg/L	1	0.20	0.04	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Cobalt	4.86 µg/L	1	0.020	0.003	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Lithium	0.0119 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Magnesium	2.58 mg/L	1	0.10	0.02	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Mercury	1 7 ng/L	2	10	4	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Potassium	1.01 mg/L	1	0.10	0.02	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Selenium	0.35 µg/L	1	0.50	0.09 J1	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Sodium	94.0 mg/L	1	0.20	0.05 M1	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Strontium	0.0113 mg/L	1	0.0020	0.0004	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 μg/L	1	0.20	0.04 J1	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.75 pCi/L	0.16	0.23	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	96.5 %					
Radium-228	0.77 pCi/L	0.14	0.46	TTP	12/27/2022 14:41	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	93.5 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-30 Customer Description: TG-32

Lab Number: 223664-011-01 Preparation: Dissolved

Date Collected: 11/16/2022 10:46 EST Date Received: 11/21/2022 12:30 EST

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Arsenic	0.14 µg/L	1	0.10	0.03	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Barium	79.7 μg/L	1	0.20	0.05	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Beryllium	0.108 μg/L	1	0.050	0.007	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012 µg/L	1	0.020	0.004 J1	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Chromium	0.50 µg/L	1	0.20	0.04	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Cobalt	4.76 μg/L	1	0.020	0.003	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Iron	0.033 mg/L	1	0.020	0.006	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Lithium	0.0119 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Manganese	0.0215 mg/L	1	0.0010	0.0002	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Mercury	<4 ng/L	2	10	4 U1	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Selenium	0.37 µg/L	1	0.50	0.09 J1	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Thallium	0.07 µg/L	1	0.20	0.04 J1	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-31 Customer Description: TG-32

Lab Number: 223664-012 Preparation:

Date Collected: 11/15/2022 11:02 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qual	ifiers Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Arsenic	0.30 µg/L	1	0.10	0.03	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Barium	35.8 μg/L	1	0.20	0.05	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Beryllium	0.863 µg/L	1	0.050	0.007	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Boron	0.035 mg/L	1	0.050	0.009 J1	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Cadmium	0.066 µg∕L	1	0.020	0.004	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Calcium	2.63 mg/L	1	0.05	0.02	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Chromium	0.74 μg/L	1	0.20	0.04	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Cobalt	9.41 µg/L	1	0.020	0.003	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Lead	0.34 μg/L	1	0.20	0.05	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Lithium	0.0681 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Magnesium	3.94 mg/L	1	0.10	0.02	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Mercury	610 ng/L	10	50	20	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Potassium	1. 67 mg/L	1	0.10	0.02	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Selenium	0.38 µg/L	1	0.50	0.09 J1	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Sodium	30.6 mg/L	1	0.20	0.05	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Strontium	0.0388 mg/L	1	0.0020	0.0004	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Thallium	0.10 µg/L	1	0.20	0.04 J1	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.05 pCi/L	0.18	0.24	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	95.4 %					
Radium-228	2.76 pCi/L	0.18	0.50	TTP	12/27/2022 14:41	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	94.8 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-31 Customer Description: TG-32

Lab Number: 223664-012-01 Preparation: Dissolved

Date Collected: 11/15/2022 11:02 EST Date Received: 11/21/2022 12:30 EST

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Arsenic	0.20 µg/L	1	0.10	0.03	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Barium	35.7 µg/L	1	0.20	0.05	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Beryllium	0.868 µg/L	1	0.050	0.007	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Cadmium	0.065 µg/L	1	0.020	0.004	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Chromium	0.44 µg/L	1	0.20	0.04	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Cobalt	9.60 µg/L	1	0.020	0.003	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Iron	0.113 mg/L	1	0.020	0.006	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Lead	0.27 μg/L	1	0.20	0.05	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Lithium	0.0694 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Manganese	0.0262 mg/L	1	0.0010	0.0002	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Mercury	4 ng/L	1	5	2 J1	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Selenium	0.35 µg/L	1	0.50	0.09 J1	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 µg/L	1	0.20	0.04 J1	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-32 Customer Description: TG-32

Lab Number: 223664-013 Preparation:

Date Collected: 11/15/2022 10:03 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Arsenic	1.73 µg/L	1	0.10	0.03	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Barium	24.4 μg/L	1	0.20	0.05	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Beryllium	3.77 µg/L	1	0.050	0.007	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Boron	1.26 mg/L	1	0.050	0.009	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Cadmium	0.404 µg/L	1	0.020	0.004	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Calcium	12.0 mg/L	1	0.05	0.02	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Chromium	0.82 µg/L	1	0.20	0.04	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Cobalt	34.8 μg/L	1	0.020	0.003	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Lead	0.66 µg/L	1	0.20	0.05	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Lithium	0.0812 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Magnesium	12.3 mg/L	1	0.10	0.02	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Mercury	1 500 ng/L	100	500	200	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Potassium	3.76 mg/L	1	0.10	0.02	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Selenium	5.95 µg∕L	1	0.50	0.09	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Sodium	48.7 mg/L	1	0.20	0.05	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Strontium	0.219 mg/L	1	0.0020	0.0004	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Thallium	0.24 μg/L	1	0.20	0.04	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.26 pCi/L	0.21	0.24	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	86.8 %					
Radium-228	4.02 pCi/L	0.19	0.46	TTP	12/27/2022 14:41	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	90.0 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-32 Customer Description: TG-32

Lab Number: 223664-013-01 Preparation: Dissolved

Date Collected: 11/15/2022 10:03 EST Date Received: 11/21/2022 12:30 EST

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Arsenic	1.57 µg/L	1	0.10	0.03	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Barium	23.9 µg/L	1	0.20	0.05	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Beryllium	3.79 µg/L	1	0.050	0.007	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Cadmium	0.409 µg/L	1	0.020	0.004	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Chromium	0.67 µg/L	1	0.20	0.04	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Cobalt	34.9 µg/L	1	0.020	0.003	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Iron	2.03 mg/L	1	0.020	0.006	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Lead	0.59 µg/L	1	0.20	0.05	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Lithium	0.0809 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Manganese	0.0661 mg/L	1	0.0010	0.0002	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Mercury	20 ng/L	2	10	4	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Selenium	5.88 μg/L	1	0.50	0.09	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Thallium	0.20 µg/L	1	0.20	0.04	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-33 Customer Description: TG-32

Lab Number: 223664-014 Preparation:

Date Collected: 11/15/2022 12:06 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Arsenic	0.37 μg/L	1	0.10	0.03	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Barium	49.4 μg/L	1	0.20	0.05	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Beryllium	0.945 μg/L	1	0.050	0.007	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Boron	0.086 mg/L	1	0.050	0.009	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Cadmium	0.038 μg/L	1	0.020	0.004	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Calcium	0.90 mg/L	1	0.05	0.02	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Chromium	0.44 μg/L	1	0.20	0.04	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Cobalt	6.83 μg/L	1	0.020	0.003	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Lead	0.22 μg/L	1	0.20	0.05	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Lithium	0.0185 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Magnesium	2.64 mg/L	1	0.10	0.02	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Mercury	5900 ng/L	100	500	200	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Potassium	0.28 mg/L	1	0.10	0.02	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Selenium	0.96 μg/L	1	0.50	0.09	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Sodium	14.9 mg/L	1	0.20	0.05	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Strontium	0.0201 mg/L	1	0.0020	0.0004	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.68 pCi/L	0.30	0.24	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	93.9 %					
Radium-228	0.98 pCi/L	0.13	0.40	TTP	12/27/2022 14:41	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	99.2 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-33 Customer Description: TG-32

Lab Number: 223664-014-01 Preparation: Dissolved

Date Collected: 11/15/2022 12:06 EST Date Received: 11/21/2022 12:30 EST

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Arsenic	0.29 μg/L	1	0.10	0.03	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Barium	48. 7 μg/L	1	0.20	0.05	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Beryllium	0.936 μg/L	1	0.050	0.007	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Cadmium	0.035 μg/L	1	0.020	0.004	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Chromium	0.32 μg/L	1	0.20	0.04	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Cobalt	6.65 μg/L	1	0.020	0.003	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Iron	0.009 mg/L	1	0.020	0.006 J1	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Lead	0.22 μg/L	1	0.20	0.05	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Lithium	0.0182 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Manganese	0.0054 mg/L	1	0.0010	0.0002	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Mercury	47 ng/L	1	5	2	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Selenium	0.91 μg/L	1	0.50	0.09	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: Duplicate - 2 Customer Description: TG-32

Lab Number: 223664-015 Preparation:

Date Collected: 11/15/2022 15:00 EST Date Received: 11/21/2022 12:30 EST

Metals

motaro							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Arsenic	1.69 µg/L	1	0.10	0.03	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Barium	45.3 μg/L	1	0.20	0.05	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Beryllium	0.129 μg/L	1	0.050	0.007	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Boron	0.061 mg/L	1	0.050	0.009	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Calcium	8.71 mg/L	1	0.05	0.02	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Chromium	0.40 μg/L	1	0.20	0.04	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Cobalt	46.5 μg/L	1	0.020	0.003	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Lithium	0.139 mg/L	1	0.00020	0.00005	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Magnesium	12.6 mg/L	1	0.10	0.02	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.2 μg/L	1	0.5	0.1 J1	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Potassium	5.32 mg/L	1	0.10	0.02	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Sodium	16.4 mg/L	1	0.20	0.05	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Strontium	0.0419 mg/L	1	0.0020	0.0004	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: Duplicate - 2 Customer Description: TG-32

Lab Number: 223664-015-01 Preparation: Dissolved

Date Collected: 11/15/2022 15:00 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Arsenic	1.44 µg/L	1	0.10	0.03	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Barium	45.2 μg/L	1	0.20	0.05	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 11 5 µg/L	1	0.050	0.007	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Chromium	0.42 µg/L	1	0.20	0.04	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Cobalt	46.3 µg/L	1	0.020	0.003	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Iron	39.7 mg/L	5	0.10	0.03	GES	12/05/2022 09:23	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Lithium	0.140 mg/L	1	0.00020	0.00005	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Manganese	0.420 mg/L	1	0.0010	0.0002	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: Equipment Blank Customer Description: TG-32

Lab Number: 223664-016 Preparation:

Date Collected: 11/16/2022 11:22 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result	Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02	μg/L	1	0.10	0.02	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03	μg/L	1	0.10	0.03	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Barium	<0.05	μg/L	1	0.20	0.05	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.007	μg/L	1	0.050	0.007	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Boron	<0.009	mg/L	1	0.050	0.009	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004	µg/L	1	0.020	0.004	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Calcium	<0.02	mg/L	1	0.05	0.02	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Chromium	0.47	μg/L	1	0.20	0.04		GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Cobalt	0.143	μg/L	1	0.020	0.003		GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Lead	<0.05	μg/L	1	0.20	0.05	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Lithium	<0.00005	mg/L	1	0.00020	0.00005	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Magnesium	<0.02	mg/L	1	0.10	0.02	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Mercury	<2	ng/L	1	5	2	U1	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.2	μg/L	1	0.5	0.1	J1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Potassium	<0.02	mg/L	1	0.10	0.02	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09	μg/L	1	0.50	0.09	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Sodium	<0.05	mg/L	1	0.20	0.05	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Strontium	<0.0004	mg/L	1	0.0020	0.0004	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04	μg/L	1	0.20	0.04	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4

223664 Job Comments:

Original report issued 12/29/22 . Report reissued with boron added to TM on 1/23/23.

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

 Email:
 msohlinger@aep.com

 Phone:
 614-836-4184

 Audinet:
 8-210-4184

Muhuel & Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

- U1 Not detected at or above method detection limit (MDL).
- M1 The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.
- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.
- P1 The precision between duplicate results was above acceptance limits.

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Bixby Road

Michael Ohlinger (614-836-4184)				5		20 1800	2000	riogiami: com compassion recolded (com		Control of the Contro		
Contacts: Dave Conover (614.836.4210)					vs.	Site Contact:	븅			Date:	ä	For Lab Use Only: COC/Order #:
(614-66-10) 10101100 0100	-39				1	-			Three			
Project Name: Pirkey PP CCR					- 000	*4	250 mL	Field-filter 250 mL	(six every 10th*)	250 mL Glass	250 mL Glass	
Contact Name: Leslie Fuerschbach	Analysis T	umaround	Analysis Turnaround Time (in Calendar Days)	lendar D.	ays)		bottle,	듄	1 L bottles,	bottle,	bottle,	カノフェ
	© Rout	ine (28 da	 Routine (28 days for Monitoring Wells) 	oring Wel	<u>s</u>		HNO,	HNO,	HNO3	pH<2	pH<2	757001
Sampler(s): Matt Hamilton Kenny McDonald						10000	(, Li, Mg, Se, Sr, Ti	, Аз, Вз, , БЗ, БЗ, БЗ, ТЗ, ТТ, eS	822-8		etcnty	
Sample Identification	Sample Date	Sample	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampter(s) In	Sb, As, B, B; Cd, Cr, Co, H Mo, Na, Pb, 9	Dissolved Si Ré, Cd, Ct, C Mín, Mó, Pb,	Ra-226, Ra	Мегсигу	M beviossiQ	Sample Specific Notes.
AD-2	11/15/2022	1005	၅	GW	7		×	×	×	×	×	
AD-3	11/16/2022	1145	g	GW	7		×	×	×	×	×	
AD-4	11/16/2022	1132	၁	GW	7		×	×	×	×	×	
AD-7	11/16/2022	910	9	GW	5		×	×	×	×	×	
AD-12	11/15/2022	1058	ပ	βW	0	50 E.S.	×	×	×	×	×	
AD-13	11/15/2022	821	၁	Q.W.	7		×	×	×	×	×	
AD-17	11/16/2022	1058	ပ	0W	7		×	×	×	×	×	
AD-18	11/16/2022	1013	ŋ	MS	7		×	×	×	×	×	
AD-22	11/14/2022	1131	O	GW	_		×	×	×	×	×	
AD-28	11/16/2022	82	O	Q.W	7		×	×	×	×	×	
AD-30	11/16/2022	946	O	ω	_		×	×	×	×	×	
AD-31	11/15/2022	1002	ပ	ΒW	7		×	×	×	×	×	
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	1NO3; 5=NaC	3H; 6= Ott	ler	; F= filter in field	Iter in fi	eld	4	F4	4	2	F2	

Six 1L Bottles must be collected for Radium for every 10th sample.

TG-32 needed Special Instructions/QC Requirements & Comments:

Relinquished by Shr Amula,	Company	Date/Time. 13 & Received by:	Received by:	Date/Time.
Relinquished by:	Company	Date/Time:	Received by:	Date/Time:
Relinquished by:	Company:	Date/Time	Received in Angland and and and and and and and and and	Date(7) 22/22 12:00/PM

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Bixby Road

Groveport, Ohio 43125				Pro	Jram:	Coal Co	mbustio	Program: Coal Combustion Residuals (CCR)	Is (CCR)	33		
Contacts: Dave Conover (614-836-4184)					47	Site Contact:	;;			Date:		For Lab Use Only: COC/Order #:
I .≒I	Analysis Turnaround Time (in Calendar Days)	maround		lendar D	(\$/,8			Field-filter 250 mL bottle, then	Three (six every 10th*)	250 mL Glass bottle,	250 mL Glass bottle,	
Contact Phone: 318-673-2744	6 Routi	ne (28 days	© Routine (28 days for Monitoring Wells)	ing Wells			pH<2, HNO ₃	pH<2, HNO ₃	PH<2, HNO3	HCL", pH<2	HCL**,	
Sampler(s): Matt Hamilton Kenny McDonald						#lsiti	(, Ll, Mg,	,o, Fe, Li,	822-		eucnuλ	
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) In	Sb, As, B, B; Cd, Cr, Co, K Mo, Na, Pb, 3	Dissolved Si Be, Cd, Cr, C Mn, Mo, Pb,	Ra-226, Ra	Метситу	M bevlossid	Sample Specific Notes:
AD-32	11/15/2022	903	G	GW	7		×	×	×	×	×	
AD-33	11/15/2022	1106	G	GW	7		×	×	×	×	×	
Duplicate - 2	11/15/2022	1400	_D	GW	4		×	×		×	×	
Equipment Blank	11/16/2022	1022	G	GW	2		×			×		
	·											
											·	
Preservation Used: 1= ice, 2= HC; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other_	HNO3; 5≂NaO	H; 6= Oth	er	; FE	; F= filter in field	ield	4	F4	4	2	F2	
* Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th s	атріе.									i	

Special Instructions/QC Requirements & Comments:

TG-32 needed

Relinquished by:	Company: The	Date/Time: \3 Received by: -\7.22		Date/Time:
	Company:		Received by:	Date/Time:
Relinquished by:	Company:	Date/Time:	Received in Laboratory by:	Date/Time:

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

MATER & WASTE SAMPLE RECEIPT FORM (IR#1)

- Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FEEEX USPS
	Other
Plant/Customer	Number of Plastic Containers: 79
Opened By MC	Number of Glass Containers: 3
Date/Time 11/21/22 12:00fM.	Number of Mercury Containers:
Were all temperatures within 0-6°C? Y/N	or N/A Initial:on ice I-no ice
(IR Gun Ser# 210441568, Expir.5/27/2023)	
Was container in good condition? (Y)/ N	Comments
Was Chain of Custody received?	Comments
Requested turnaround:	If RUSH, who was notified?
pH (15 min) Cr ⁴⁶ (pres) NO₂ or I (24 hr)	NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out property?	Comments
Were samples labeled property? VN	Comments
Were correct containers used? N	
=	N or N/A Initial & Date: Mirk 1/21/21
pH paper (circle one): MQuant pH Cat 1. lot HC904495	09535.0001 Lab rat pH Cat # LRS -4801 Lot X000RWDG21
	if Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab 10# 223664 Initial 8	& Date & Time :
Comm	ents;
Logged by	
Reviewed by	
(/ -	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Doinn Chemical Laboratory

Sample Receipt Form SOP-7102

Page I of I

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

х	(which	includ	e page, and the laboratory i les the reportable data iden ption Reports.			
Х	R1		chain-of-custody documen	tation		
X	R2	Sampl	le identification cross-refer	ence		
X	R3	(a) It N (b) D (c) P (d) C	eports (analytical data shee ems specified in NELAC C ELAC Standard ilution factors reparation methods leanup methods required for the project, to	hapter 5 for	reporting results, e.g	., Section 5.5.10 in 2003
NA	R4	(a) C	gate recovery data includin alculated recovery (%R) he laboratory's surrogate Q	_		
X	R5	Test re	eports/summary forms for	blank samp	oles	
X	R6	(a) L (b) C	eports/summary forms for CS spiking amounts alculated %R for each anal he laboratory's LCS QC lim	yte	control samples (LCS	s) including:
X	R7	(a) S.(b) M.(c) C.(d) C.	eports for project matrix spamples associated with the IS/MSD spiking amounts oncentration of each MS/Nalculated %Rs and relative he laboratory's MS/MSD (MS/MSD of MSD analyte percent dif	learly identified measured in the pare	-
X	R8	(a) T (b) T	atory analytical duplicate (he amount of analyte meas he calculated RPD he laboratory's QC limits fo	sured in the	duplicate	ion:
Х	R9		f method quantitation limit	•	-	ch method and matrix
х	R10	Other	problems or anomalies			
X	The Ex	ception	n Report for every item for	which the r	esult is "No" or "NR"	(Not Reviewed)
packag require reports by the laborar	ge as be ements s. By m laborat tory in t	en revi of the r y signa tory as the Lab	t: I am responsible for the ewed by the laboratory and methods used, except wher ature below, I affirm to the having the potential to afferoratory Review Checklist, a quality of the data.	d is complet e noted by t best of my l ect the quali	e and technically com he laboratory in the a knowledge, all probler ty of the data, have be	pliant with the ttached exception ms/anomalies, observed een identified by the
respon used is	ding to	rule. T sible fo	he official signing the cove or releasing this data packa	r page of th	e rule-required report	in which these data are
	than B		- Controller	arnhill	Lab Supervisor	12/14/2022
Name	(printed	d)	Signature		Official Title	Date

Table 1. Reportable Data.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory							
Project Name:								
Reviewer Name:	onathan Barnhill							
LRC Date: 12/14/2022								
Laboratory Job Nu								
Pren Ratch Numbe	PB22112206 PB22112207 QC2212035 QC2212036							

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?		
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER1
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	No	ER3
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name:	
Reviewer Name: Jo	onathan Barnhill
LRC Date: 12/14/20	022
Laboratory Job Nu	

Prep Batch Number(s): PB22112206 PB22112207 QC2212035 QC2212036

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	Yes	
	I	Were ion abundance data within the method-required QC limits?	Yes	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	Yes	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: _	American Electric Power Dolan Chemical Laboratory
Project Name:	
Reviewer Name: Jo	nathan Barnhill
LRC Date: 12/14/202	
Laboratory Job Num	
	(s): PB22112206 PB22112207 QC2212035 QC2212036

Exception Report No.	Description
ER1	Linear Dynamic Range (LDR) study used to determine upper limit of analyte calibration.
ER2	CCB acceptance criteria is CCB<2.2*MDL.
ER3	Matrix Spike Failure for Na on sample 223664-001
	Matrix Spike Failure for Na on sample 223664-011

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

х	(which	gnature page, and the laboratory review checklist consisting of Table 1, Reportable Data includes the reportable data identified on this page), Table 2, Supporting Data, and 3, Exception Reports.
X	R1	Field chain-of-custody documentation
X	R2	Sample identification cross-reference
X	R3	 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs)
NA	R4	Surrogate recovery data including: (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits
X	R ₅	Test reports/summary forms for blank samples
X	R6	Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits
X	R7	Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits
X	R8	Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates
Х	R9	List of method quantitation limits (MQLs) for each analyte for each method and matrix
X	R10	Other problems or anomalies
X	The Ex	sception Report for every item for which the result is "No" or "NR" (Not Reviewed)
packag require reports	ge as be ements s. By m	tement: I am responsible for the release of this laboratory data package. This data sen reviewed by the laboratory and is complete and technically compliant with the of the methods used, except where noted by the laboratory in the attached exception y signature below, I affirm to the best of my knowledge, all problems/anomalies, observed forwards having the potential to affect the quality of the data, have been identified by the

the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Tamisha Palmer 12/20/2022 Chemical Technician, Prin Name (printed) Official Title Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 12/20/2022

Laboratory Job Number: PB22112803

Prep Batch Number(s): 223664

Item¹	Analytes.2	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?		
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 12/20/2022

Laboratory Job Number: PB22112803

Prep Batch Number(s): 223664

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: _	American Electric Power Dolan Chemical Laboratory
Project Name: Pirke	ey Power
Reviewer Name: Ta	ımisha Palmer
LRC Date: 12/20/20	22
Laboratory Job Nun	nber: PB22112803
Prep Batch Number	

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

X	(which	his signature page, and the laboratory review checklist consisting of Table 1, Reportable Data which includes the reportable data identified on this page), Table 2, Supporting Data, and able 3, Exception Reports.				
х	R1	· -	-	y documentation		
Х	R2	Sample iden	tification	cross-reference		
х	R3	(a) Items synthems(b) Dilution(c) Prepara(d) Cleanup	pecified in Standard factors tion method	n NELAC Chapter 5 : l hods s	ich environmental sample t for reporting results, e.g., So ridentified compounds (TIC	ection 5.5.10 in 2003
NA	R4	(a) Calcula	ted recov	ata including: ery (%R) surrogate QC limits		
X	R ₅	Test reports	/summar	y forms for blank sa	mples	
X	R6	(a) LCS spi (b) Calcula	king amo		ry control samples (LCSs) in	ncluding:
X	R7	(a) Sample(b) MS/MS(c) Concen(d) Calcula	s associated spiking tration of the spiking tration of the spiking and the spiking are spiking as a spiking as	ted with the MS/MS g amounts	yte measured in the parent	J
X	R8	(a) The am(b) The calc	ount of a culated R	nalyte measured in t	-	:
Х	R9	List of meth	od quant	itation limits (MQLs) for each analyte for each n	nethod and matrix
х	R10	Other proble	ems or an	omalies		
Х	The Ex	ception Repo	ort for eve	ery item for which th	e result is "No" or "NR" (No	t Reviewed)
packag require reports by the laborat	e as be ements of s. By my laborat cory in t	en reviewed of the methody of the methody ory as having	by the lab ds used, e pelow, I a g the pote y Review	ooratory and is comp except where noted b ffirm to the best of m ential to affect the qu Checklist, and no in	of this laboratory data packa lete and technically complic by the laboratory in the attac ny knowledge, all problems/ ality of the data, have been formation or data have been	ant with the ched exception anomalies, observed identified by the
respon used is	ding to	rule. The offi sible for relea	cial signi	ng the cover page of	se laboratory controlled by t the rule-required report in by signature affirming the	which these data are
	a Tims		A	bysina	Chemist Associate	12/20/2022
Name (printed)		Signat	ure	Official Title	Date	

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 12/20/2022

Laboratory Job Number: 223664

Prep Batch Number(s): PB22112804

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes. ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	NO	ER1
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 12/20/2022

Laboratory Job Number: 223664

Prep Batch Number(s): PB22112804

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	NA	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	NA	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name:American Electric Power Dolan Chemical LaboratoryProject Name:Pirkey Power StationReviewer Name:Sunita TimsinaLRC Date:12/20/2022Laboratory Job Number:223664Prep Batch Number(s):PB22112804

Exception Report No.	Description
ER1	RPD for duplicate sample exceeds 25%.

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

х	(which	This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.				
х	R1	Field chain-of	-custody documentation	l		
X	R2	Sample identi	fication cross-reference			
X	R3	(a) Items spectrum(b) Dilution f(c) Preparati(d) Cleanup f	cified in NELAC Chapte tandard actors on methods nethods	or each environmental sample t r 5 for reporting results, e.g., So vely identified compounds (TIC	ection 5.5.10 in 2003	
NA	R4	(a) Calculate	overy data including: d recovery (%R) atory's surrogate QC lim	nits		
X	R ₅	Test reports/s	ummary forms for blanl	x samples		
X	R6	(a) LCS spiki(b) Calculate		ratory control samples (LCSs) is	ncluding:	
X	R7	(a) Samples ((b) MS/MSD(c) Concentr(d) Calculate	associated with the MS/ spiking amounts	nalyte measured in the parent ent differences (RPDs)	-	
X	R8	Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates				
X	R9	List of method	l quantitation limits (Mo	QLs) for each analyte for each n	nethod and matrix	
X	R10	Other problem	ns or anomalies			
X	The Ex	ception Repor	t for every item for which	h the result is "No" or "NR" (No	ot Reviewed)	
Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.						
Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.				which these data are		
Sunit	a Tim	sina	C WAIRING TO THE PARTY OF THE P	Chemist Associate	12/29/2022	
Name (printed)		d)	Signature	Official Title	Date	

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 12/29/2022

Laboratory Job Number: 223664

Prep Batch Number(s): PB22112203, PB22112805

Item¹	Analytes. ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes. ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	N/A	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	Ι	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 12/29/2022

Laboratory Job Number: 223664

Prep Batch Number(s): PB22112203, PB22112805

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	NA	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	NA	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory			
Project Name: Pirke				
Reviewer Name: St	unita Timsina			
LRC Date: 12/29/2022				
Laboratory Job Number: 223664				
	PB22112203, PB22112805			

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

 This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.

 R₁ Field chain-of-custody documentation

 R₂ Sample identification cross-reference

R3 Test reports (analytical data sheets) for each environmental sample that includes:

(a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003

NELAC Standard

(b) Dilution factors

(c) Preparation methods

(d) Cleanup methods

(e) If required for the project, tentatively identified compounds (TICs)

R4 Surrogate recovery data including:
(a) Calculated recovery (%R)

(b) The laboratory's surrogate QC limits

R5 Test reports/summary forms for blank samples

R6 Test reports/summary forms for laboratory control samples (LCSs) including:

(a) LCS spiking amounts

(b) Calculated %R for each analyte

(c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

(a) Samples associated with the MS/MSD clearly identified

(b) MS/MSD spiking amounts

(c) Concentration of each MS/MSD analyte measured in the parent and spiked samples

(d) Calculated %Rs and relative percent differences (RPDs)

(e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) recovery and precision:

(a) The amount of analyte measured in the duplicate

(b) The calculated RPD

(c) The laboratory's QC limits for analytical duplicates

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix

x R10 Other problems or anomalies

The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Susann Sulzmann
Name (printed)
Signature
Senior Chemist
12-20-2022
Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power station

Reviewer Name: Susann Sulzmann

LRC Date: 12-20-2022

Laboratory Job Number: 223664

Prep Batch Number(s): PB22112503,-906,-907,-908

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		-
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
-	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		,
-	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power station

Reviewer Name: Susann Sulzmann

LRC Date: 12-20-2022

Laboratory Job Number: 223664

Prep Batch Number(s): PB22112503,-906,-907,-908

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
\$1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):	W 22	
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
_S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, 1	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Mercury Laboratory Review Checklist

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey Power station

Reviewer Name: Susann Sulzmann

LRC Date: 12-20-2022

Laboratory Job Number: 223664

Prep Batch Number(s): PB22112503,-906,-907,-908

Exception Report No.	Description									
ER1	CCB acceptance criteria is CCB <mql.< td=""></mql.<>									

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223647 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-2 Customer Description: TG-32

Lab Number: 223647-001 Preparation:

Date Collected: 11/15/2022 11:05 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.37 mg/L	2	0.10	0.02	CRJ	11/30/2022 14:27	EPA 300.1 -1997, Rev. 1.0
Chloride	30.5 mg/L	2	0.04	0.02	CRJ	11/30/2022 14:27	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.21 mg/L	2	0.06	0.02	CRJ	11/30/2022 14:27	EPA 300.1-1997, Rev. 1.0
Sulfate	259 mg/L	10	2.0	0.3	CRJ	11/30/2022 13:54	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	480 mg/L	1	50	20	SDW	11/20/2022 10:00	SM 2540C-2015

Customer Sample ID: AD-3 Customer Description: TG-32

Lab Number: 223647-002 Preparation:

Date Collected: 11/16/2022 12:45 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.07 mg/L	2	0.10	0.02 J1	CRJ	11/30/2022 13:21	EPA 300.1 -1997, Rev. 1.0
Chloride	7.40 mg/L	2	0.04	0.02	CRJ	11/30/2022 13:21	EPA 300.1-1997, Rev. 1.0
Fluoride	0.18 mg/L	2	0.06	0.02	CRJ	11/30/2022 13:21	EPA 300.1 -1997, Rev. 1.0
Sulfate	34.4 mg/L	2	0.40	0.06	CRJ	11/30/2022 13:21	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units Di	lution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	29 mg/L	1	20	5	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	160 mg/L	1	50	20	SDW	11/20/2022 10:05	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223647 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-4 Customer Description: TG-32

Lab Number: 223647-003 Preparation:

Date Collected: 11/16/2022 12:32 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.19 mg/L	2	0.10	0.02	CRJ	11/30/2022 15:33	EPA 300.1 -1997, Rev. 1.0
Chloride	4.14 mg/L	2	0.04	0.02	CRJ	11/30/2022 15:33	EPA 300.1 -1997, Rev. 1.0
Fluoride	<0.02 mg/L	2	0.06	0.02 U1	CRJ	11/30/2022 15:33	EPA 300.1 -1997, Rev. 1.0
Sulfate	16.6 mg/L	2	0.40	0.06	CRJ	11/30/2022 15:33	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	130 mg/L	1	50	20	SDW	11/20/2022 10:10	SM 2540C-2015

Customer Sample ID: AD-7 Customer Description: TG-32

Lab Number: 223647-004 Preparation:

Date Collected: 11/16/2022 10:10 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	4.29 mg/L	2	0.10	0.02	CRJ	11/30/2022 17:45	EPA 300.1 -1997, Rev. 1.0
Chloride	69.7 mg/L	10	0.2	0.1	CRJ	12/01/2022 08:54	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.23 mg/L	2	0.06	0.02	CRJ	11/30/2022 17:45	EPA 300.1 -1997, Rev. 1.0
Sulfate	60.5 mg/L	2	0.40	0.06	CRJ	11/30/2022 17:45	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units Dil	ution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	300 mg/L	1	50	20	SDW	11/20/2022 10:10	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223647 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-12 Customer Description: TG-32

Lab Number: 223647-005 Preparation:

Date Collected: 11/15/2022 11:58 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.14 mg/L	2	0.10	0.02	CRJ	11/30/2022 18:17	EPA 300.1 -1997, Rev. 1.0
Chloride	8.03 mg/L	2	0.04	0.02	CRJ	11/30/2022 18:17	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.08 mg/L	2	0.06	0.02	CRJ	11/30/2022 18:17	EPA 300.1-1997, Rev. 1.0
Sulfate	3.39 mg/L	2	0.40	0.06	CRJ	11/30/2022 18:17	EPA 300.1-1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	70 mg/L	1	50	20	SDW	11/20/2022 10:15	SM 2540C-2015

Customer Sample ID: AD-13 Customer Description: TG-32

Lab Number: 223647-006 Preparation:

Date Collected: 11/15/2022 09:21 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units Di	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.23 mg/L	2	0.10	0.02	CRJ	11/30/2022 16:39	EPA 300.1 -1997, Rev. 1.0
Chloride	41.3 mg/L	2	0.04	0.02	CRJ	11/30/2022 16:39	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.36 mg/L	2	0.06	0.02	CRJ	11/30/2022 16:39	EPA 300.1 -1997, Rev. 1.0
Sulfate	69.6 mg/L	2	0.40	0.06	CRJ	11/30/2022 16:39	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units Dil	lution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	66 mg/L	1	20	5	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	260 mg/L	1	50	20	SDW	11/20/2022 10:15	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223647 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-17 Customer Description: TG-32

Lab Number: 223647-007 Preparation:

Date Collected: 11/16/2022 11:58 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.20 mg/L	2	0.10	0.02	CRJ	11/30/2022 18:50	EPA 300.1 -1997, Rev. 1.0
Chloride	35.0 mg/L	2	0.04	0.02	CRJ	11/30/2022 18:50	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.26 mg/L	2	0.06	0.02	CRJ	11/30/2022 18:50	EPA 300.1 -1997, Rev. 1.0
Sulfate	2.91 mg/L	2	0.40	0.06	CRJ	11/30/2022 18:50	EPA 300.1-1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	80 mg/L	1	50	20	SDW	11/20/2022 10:23	SM 2540C-2015

Customer Sample ID: AD-18 Customer Description: TG-32

Lab Number: 223647-008 Preparation:

Date Collected: 11/16/2022 11:13 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units D	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.04 mg/L	2	0.10	0.02 J1	CRJ	11/30/2022 19:56	EPA 300.1 -1997, Rev. 1.0
Chloride	4.94 mg/L	2	0.04	0.02	CRJ	11/30/2022 19:56	EPA 300.1 -1997, Rev. 1.0
Fluoride	<0.02 mg/L	2	0.06	0.02 U1	CRJ	11/30/2022 19:56	EPA 300.1 -1997, Rev. 1.0
Sulfate	6.55 mg/L	2	0.40	0.06	CRJ	11/30/2022 19:56	EPA 300.1-1997, Rev. 1.0

Parameter	Result Units Dil	ution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	90 mg/L	1	50	20	SDW	11/20/2022 10:23	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223647 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-22 Customer Description: TG-32

Lab Number: 223647-009 Preparation:

Date Collected: 11/14/2022 12:31 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.79 mg/L	2	0.10	0.02	CRJ	11/30/2022 23:47	EPA 300.1 -1997, Rev. 1.0
Chloride	101 mg/L	25	0.5	0.3	CRJ	11/30/2022 23:14	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.28 mg/L	2	0.06	0.02	CRJ	11/30/2022 23:47	EPA 300.1-1997, Rev. 1.0
Sulfate	251 mg/L	25	5.0	0.8	CRJ	11/30/2022 23:14	EPA 300.1-1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	570 mg/L	1	50	20	SDW	11/20/2022 10:29	SM 2540C-2015

Customer Sample ID: AD-28 Customer Description: TG-32

Lab Number: 223647-010 Preparation:

Date Collected: 11/16/2022 09:48 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units Di	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.07 mg/L	2	0.10	0.02 J1	CRJ	12/01/2022 00:53	EPA 300.1 -1997, Rev. 1.0
Chloride	4.96 mg/L	2	0.04	0.02	CRJ	12/01/2022 00:53	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.48 mg/L	2	0.06	0.02	CRJ	12/01/2022 00:53	EPA 300.1 -1997, Rev. 1.0
Sulfate	23.3 mg/L	2	0.40	0.06	CRJ	12/01/2022 00:53	EPA 300.1-1997, Rev. 1.0

Parameter	Result Units Dil	ution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	80 mg/L	1	50	20	SDW	11/20/2022 10:29	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223647 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-30 Customer Description: TG-32

Lab Number: 223647-011 Preparation:

Date Collected: 11/16/2022 10:46 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.37 mg/L	2	0.10	0.02	CRJ	12/01/2022 01:58	EPA 300.1 -1997, Rev. 1.0
Chloride	27.4 mg/L	2	0.04	0.02	CRJ	12/01/2022 01:58	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.07 mg/L	2	0.06	0.02	CRJ	12/01/2022 01:58	EPA 300.1 -1997, Rev. 1.0
Sulfate	177 mg/L	10	2.0	0.3	CRJ	12/01/2022 01:25	EPA 300.1-1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	340 mg/L	1	50	20	SDW	11/20/2022 10:35	SM 2540C-2015

Customer Sample ID: AD-31 Customer Description: TG-32

Lab Number: 223647-012 Preparation:

Date Collected: 11/15/2022 11:02 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units D	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.35 mg/L	2	0.10	0.02	CRJ	12/01/2022 03:04	EPA 300.1 -1997, Rev. 1.0
Chloride	24.3 mg/L	2	0.04	0.02	CRJ	12/01/2022 03:04	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.14 mg/L	2	0.06	0.02	CRJ	12/01/2022 03:04	EPA 300.1-1997, Rev. 1.0
Sulfate	79.1 mg/L	2	0.40	0.06	CRJ	12/01/2022 03:04	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units Dil	ution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	250 mg/L	1	50	20	SDW	11/20/2022 10:35	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223647 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-32 Customer Description: TG-32

Lab Number: 223647-013 Preparation:

Date Collected: 11/15/2022 10:03 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	2.58 mg/L	2	0.10	0.02	CRJ	12/01/2022 05:49	EPA 300.1 -1997, Rev. 1.0
Chloride	22. 7 mg/L	2	0.04	0.02	CRJ	12/01/2022 05:49	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.49 mg/L	2	0.06	0.02	CRJ	12/01/2022 05:49	EPA 300.1 -1997, Rev. 1.0
Sulfate	244 mg/L	25	5.0	0.8	CRJ	12/01/2022 05:16	EPA 300.1-1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	450 mg/L	1	50	20	SDW	11/20/2022 10:40	SM 2540C-2015

Customer Sample ID: AD-33 Customer Description: TG-32

Lab Number: 223647-014 Preparation:

Date Collected: 11/15/2022 12:06 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units D	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.25 mg/L	2	0.10	0.02	CRJ	12/01/2022 06:55	EPA 300.1 -1997, Rev. 1.0
Chloride	9.18 mg/L	2	0.04	0.02	CRJ	12/01/2022 06:55	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.16 mg/L	2	0.06	0.02	CRJ	12/01/2022 06:55	EPA 300.1-1997, Rev. 1.0
Sulfate	42.7 mg/L	2	0.40	0.06	CRJ	12/01/2022 06:55	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units Dil	lution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	140 mg/L	1	50	20	SDW	11/20/2022 10:40	SM 2540C-2015

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 223647 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: Duplicate - 2 Customer Description: TG-32

Lab Number: 223647-015 Preparation:

Date Collected: 11/15/2022 15:00 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units Dilu	ition	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.23 mg/L	2	0.10	0.02	CRJ	12/01/2022 04:10	EPA 300.1 -1997, Rev. 1.0
Chloride	41.3 mg/L	2	0.04	0.02	CRJ	12/01/2022 04:10	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.36 mg/L	2	0.06	0.02	CRJ	12/01/2022 04:10	EPA 300.1 -1997, Rev. 1.0
Sulfate	70.2 mg/L	2	0.40	0.06	CRJ	12/01/2022 04:10	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	65 mg/L	1	20	5	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	270 mg/L	1	50	20	SDW	11/20/2022 10:47	SM 2540C-2015

223647

Job Comments:

Original report issued 12/21/22. Report reissued without P1 flag for alkalinity as sample and duplicate results < RL.

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Job ID: 223647

Water Analysis Report

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Customer: Pirkey Power Station Date Reported: 12/22/2022

Data Qualifer Legend

U1 - Not detected at or above method detection limit (MDL).

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Bixby Road

Groveport, Ohio 43125				rogran	n: Coal	Combus	tion Re	Program: Coal Combustion Residuals (CCR)	CCR)	5000000		
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)					Site	Site Contact:				Date:	For Lab Use Only: COC/Order #:	100
Project Name: Pirkey PP Semi-Annual CCR Contact Name: Leslie Fuerschbach Contact Phone: 318-673-2744	Analysis 1	Anatysis Turnaround Time (in		Calendar Days) for Monitorir	Calendar Days) For Monitoring Wells)		250 mL Fi bottle, pH<2, the	Field-filter 250 mL bottle, then pH<2, HNO3	Th 1 L bottle, (six. Cool, 0-6C 10th*) L bottle	Three (six every oth.) L bottles, pH<2, HNO3	1.522647	U DIGUE
Sampler(s): Matt Hamilton Kenny McDonald						gipni	177	etcury	, Br, thinity	822-e		
Sample Identification	Sample Date	Sample Time	Sample Type (CsComp, GsGrab)	Matrix	# of Cont.	Sampler(s) ini	Мегсигу	M beviossiQ	E' CI' 204	Ra-226, Ra	Sample Specific Notes:	
AD-2	11/15/2022	1005	၅	GW	-	H			×			
AD-3	11/16/2022	1145	9	GW	-				×			
AD-4	11/16/2022	1132	ပ	GW	-	\dashv			×			
AD-7	11/16/2022	910	ပ	GW	-	\dashv			×			П
AD-12	11/15/2022	1058	9	GW.	-				×			П
AD-13	11/15/2022	821	v	GW	-	-			×			П
AD-17	11/16/2022	1058	9	GW	-				×			П
AD-18	11/16/2022	1013	9	GW	-				×			
AD-22	11/14/2022	1131	ပ	NS CW	-		-		×			
AD-28	11/16/2022	848	v	GW	-	-			×			\neg
AD-30	11/16/2022	946	o	Q.W	-				×			
AD-31	11/15/2022	1002	9	GW	-				×			
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3; 5=Na	OH; 6= Otl		_; F= fi	; F= filter in field		4	F4	1	4		
Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.		ĺ								

Special Instructions/QC Requirements & Comments:

TG-32 needed

Reinquished by:	Company E 16	Date/Time: } Received by:	Received by:	Date/Time.	
Relinquished by	Company:	Date/Time:	Received by:	Date/Time.	
Relinqu shed by:	Company.	Date/Time:	Received in Laboratory by	M €05,01 12/8/11	

Chain of Custody Record

Dolan Chemical Laboratory (DCL)

10,30Am Sample Specific Notes: For Lab Use Only: Date/Time/ 18/22 COC/Order # Date/Time: Date/Time: Date: L bottles, pH<2, HNO3 1 L bottle, (six every Cool, 0-6C 10th*) Ra-226, Ra-228 TDS, Alkalinity Program: Coal Combustion Residuals (CCR) × E' CI' 204' BL' Received in Caboratory by: Field-filter 250 mL bottle, then pH<2, HNO3 Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17 Dissolved Mercury 7 Received by Received by 250 mL bottle, pH<2, HN03 Mercury 4 Site Contact: Sampter(s) initials ; F= filter in field 7 Conf. Analysis Turnaround Time (in Calendar Days) Date/Time: © Routine (28 days for Monitoring Wells) Date/Time: Date/Time: Sample
Type
(C=Comp,
G=Grab) Matrix გ Š ₿ Ø Ö Ö TG-32 needed reservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Sample Six 1L Bottles must be collected for Radium for every 10th sample. 1106 1400 Time 903 11/15/2022 11/15/2022 Company: 11/15/2022 Company: Sample Date Special Instructions/QC Requirements & Comments: Michael Ohlinger (614-836-4184) Matt Hamilton Kenny McDonald Dave Conover (614-836-4219) Groveport, Ohlo 43125 Leslie Fuerschbach Sample Identification 4001 Bixby Road 318-673-2744 Duplicate - 2 Project Name: Pirk ey PP CCR AD-33 AD-32 Relinquished by: Contact Phone: Relinquished by: Relinquished by Contact Name: Sampler(s):

WATER & WASTE SAMPLE RECEIPT FORM (Temp Gun 1)

Package Type Box Bag Envelope PONY UPS FedEX USPS Other Plant/Customer Number of Plastic Containers: Date/Time 11 52 10:20 Number of Mercury Containers: Were all temperatures within 0-6°C? (Y) N or N/A Initial: On ice (IR Gun Ser# 221368900, Expir. 3/22/2024) - If No, specify each deviation: Was container in good condition? (Y) N Comments Was Chain of Custody received? (Y) N Comments Requested turnaround: Requested turnaround: On ice / no If RUSH, who was notified? pH (15 min) Cr ⁶ (pres) NO2 or NO3 (48 hr) ortho-PO4 (48 hr) Hg-diss (pres) (24 hr) Was COC filled out properly? Were samples labeled properly? (Y) N Comments Were samples labeled properly? (Y) N Comments
Plant/Customer Number of Plastic Containers: 5 Opened By Number of Glass Containers: Date/Time
Plant/Customer Number of Plastic Containers: Date/Time
Plant/Customer Number of Plastic Containers: Date/Time
Number of Glass Containers: Date/Time 11 8 22 10 20 20 M Number of Mercury Containers: Were all temperatures within 0-6°C? N or N/A Initial: On ice / no ice (IR Gun Ser# 221368900, Expir. 3/22/2024) - If No, specify each deviation: Was container in good condition? N Comments Was Chain of Custody received? N Comments Requested turnaround: If RUSH, who was notified? pH (15 min) Cr*6 (pres) NO2 or NO3 (48 hr) ortho-PO4 (48 hr) Hg-diss (pres) (24 hr) Was COC filled out properly? N Comments Were samples labeled properly? N Comments Were samples labeled properly? N Comments
Date/Time 11 8 22 10 20 20 10 10 10 10
Were all temperatures within 0-6°C? Y/N or N/A Initial: on ice / no ice / IR Gun Ser# 221368900, Expir. 3/22/2024) - If No, specify each deviation: Was container in good condition? Y/N Comments Was Chain of Custody received? Y/N Comments Requested turnaround: If RUSH, who was notified? pH (15 min) Cr ⁺⁶ (pres) NO ₂ or NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (24 hr) Was COC filled out properly? Y/N Comments Were samples labeled properly? Y/N Comments
ice (IR Gun Ser# 221368900, Expir. 3/22/2024) - If No, specify each deviation: Was container in good condition? Y / N Comments Was Chain of Custody received? Y / N Comments Requested turnaround: If RUSH, who was notified? pH (15 min) Cr ⁺⁶ (pres) NO ₂ or NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (24 hr) Was COC filled out properly? Y N Comments Were samples labeled properly? Y / N Comments
ice (IR Gun Ser# 221368900, Expir. 3/22/2024) - If No, specify each deviation: Was container in good condition? Y / N Comments Was Chain of Custody received? Y / N Comments Requested turnaround: If RUSH, who was notified? pH (15 min) Cr ⁺⁶ (pres) NO ₂ or NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (24 hr) Was COC filled out properly? Y N Comments Were samples labeled properly? Y / N Comments
Was Chain of Custody received? Y / N Comments Requested turnaround: If RUSH, who was notified? pH (15 min) Cr ⁴⁶ (pres) NO ₂ or NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (24 hr) Was COC filled out properly? Y N Comments Were samples labeled properly? Y N Comments
Requested turnaround: If RUSH, who was notified? pH (15 min)
Requested turnaround: If RUSH, who was notified? pH (15 min)
pH (15 min) Cr ⁺⁶ (pres) NO ₂ or NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr) Was COC filled out properly? Y N Comments Were samples labeled properly? Y N Comments
Were samples labeled properly? Y/ N Comments
Were correct containers used? (Y/N Comments
Was pH checked & Color Coding done 1 Y/N or N/A Initial & Date: 915 11 18 22
pH paper (circle one): MQuant,PN1.09535.0001,LOT# HC904495 [OR] Lab Rat,PN4801,LOT# X000RWDG21
Was Add'l Preservative needed? Y N If Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / W Comments(See Prep Book
Was the customer contacted?
Lab ID# Initial & Date & Time :
Logged by MSD Comments:
Reviewed by

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Dolan Chemical Laboratory

.

Sample Receipt Form SOP-7102

Page 1 of 1

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data Х (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. X Field chain-of-custody documentation R₁ X R_2 Sample identification cross-reference X Test reports (analytical data sheets) for each environmental sample that includes: R_3 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) Surrogate recovery data including: × R4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits X Test reports/summary forms for blank samples R5 х Test reports/summary forms for laboratory control samples (LCSs) including: R6 (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits X Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits X Laboratory analytical duplicate (if applicable) recovery and precision: R8 (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's OC limits for analytical duplicates List of method quantitation limits (MQLs) for each analyte for each method and matrix X R9 X Other problems or anomalies R10 × The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. **Prin Chemist** 12/21/2022 Timothy E Arnold Date Name (printed)

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Timothy E Arnold

LRC Date: 12/21/2022

Laboratory Job Number: 223647

Prep Batch Number(s): QC2212004

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	Yes	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	1	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Timothy E Arnold

LRC Date: 12/21/2022

Laboratory Job Number: 223647

Prep Batch Number(s): QC2212004

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	1	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S 3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
_	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	Ī	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
\$9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	632
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	Ο, Ι	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Timothy E Arnold

LRC Date: 12/21/2022

Laboratory Job Number: 223647

Prep Batch Number(s): QC2212004

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: X This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. Field chain-of-custody documentation $\left[X \right]$ X R₂ Sample identification cross-reference X Test reports (analytical data sheets) for each environmental sample that includes: **R**3 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) Surrogate recovery data including: NA **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits X Test reports/summary forms for blank samples **R**5 х Test reports/summary forms for laboratory control samples (LCSs) including: R6 (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: X **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits х Laboratory analytical duplicate (if applicable) recovery and precision: **R8** (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates X List of method quantitation limits (MQLs) for each analyte for each method and matrix R9 X R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) X Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. **Check, if applicable:** () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Michael Ohlinger Name (printed)

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Michael Ohlinger

LRC Date: 12/20/2022

Laboratory Job Number: 223647

Prep Batch Number(s): QC2211231

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	NA	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	_
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	!
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Michael Ohlinger

LRC Date: 4/5/22

Laboratory Job Number: 223647

Prep Batch Number(s): QC2211231

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
5 2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S 3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
\$ 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S 6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
58	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA _	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
- 	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	Ο, Ι	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
\$12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory	Name: American Electric Power Dolan Chemical Laboratory
Project Nan	ne: Pirkey CCR
Reviewer N	ame: Michael Ohlinger
LRC Date:	12/20/2022
Laboratory	Job Number: 223647
Prep Batch	Number(s): QC2211231

Exception Report No.	Description

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: X This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. Field chain-of-custody documentation $\left[\times \right]$ R₁ X R₂ Sample identification cross-reference Х Test reports (analytical data sheets) for each environmental sample that includes: R_3 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: R4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits Test reports/summary forms for blank samples X R₅ X R6 Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits $\left[\times \right]$ Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: R7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits X Laboratory analytical duplicate (if applicable) recovery and precision: R8 (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates х R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix $\left[\times \right]$ R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. **Check, if applicable:** This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. **Chemist** Michael Ohilnger 12/22/2022 Official Title Name (printed) Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Michael Ohlinger

LRC Date: 12/22/2022

Laboratory Job Number: 223647

Prep Batch Number(s): QC2211194

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
_	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
•	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	:
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	No	ER1
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Michael Ohlinger

LRC Date: 12/22/2022

Laboratory Job Number: 223647

Prep Batch Number(s): QC2211194

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
_	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	77.830
S 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		ALL VICTOR
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Michael Ohlinger

LRC Date: 12/22/2022

Laboratory Job Number: 223647

Prep Batch Number(s): QC2211194

Exception Report No.	Description
ER1	The RPD between duplicate results > acceptance limits, not flagged as results < MQL.
ER2	CCB acceptance criteria is CCB<0.5*MQL.

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."