Annual Groundwater Monitoring Report

Southwestern Electric Power Company
H. W. Pirkey Power Plant
West Bottom Ash Pond CCR Management Unit
CN600126767; RN100214287

Registration No: CCR104

Hallsville, Texas

January 31, 2023

Prepared by:
American Electric Power Service Corporation
1 Riverside Plaza
Columbus, Ohio 43215

Page

Table of Contents

I.	Overview	. 1
II.	Groundwater Monitoring Well Locations and Identification Numbers	. 4
III.	Monitoring Wells Installed or Decommissioned	. 4
IV.	Groundwater Quality Data and Static Water Elevation Data, With Flow Rate and Direction and Discussion	
V.	Groundwater Quality Data Statistical Analysis	. 5
VI.	Alternate Source Demonstration	. 6
VII.	Discussion About Transition Between Monitoring Requirements or Alternate Monitoring Frequency	. 6
VIII.	Other Information Required.	. 6
IX.	Description of Any Problems Encountered in 2022 and Actions Taken	. 6
X.	A Projection of Key Activities for the Upcoming Year	. 6

Appendix 1- Groundwater Data Tables and Figures

Appendix 2- Statistical Analysis

Appendix 3- Alternate Source Demonstrations

Appendix 4- Field Sheets

Appendix 5- Analytical Reports

Abbreviations:

ASD - Alternate Source Demonstration

CCR – Coal Combustion Residual

GWPS - Groundwater protection standards

SSI - Statistically Significant Increase

SSL - Statistically Significant Level

TDS – Total Dissolved Solids

TCEQ - Texas Commission on Environmental Quality

I. Overview

This Annual Groundwater Monitoring Report (Report) has been prepared to report the status of activities for the preceding year at the West Bottom Ash Pond (WBAP) Coal Combustion Residual (CCR) unit at Pirkey Power Plant. Southwestern Electric Power Company is wholly-owned subsidiary of American Electric Power Company (AEP). The Texas Commission on Environmental Quality's (TCEQ's) CCR rule requires that the Annual Groundwater Monitoring Report be posted to the operating record for the preceding year no later than January 31, 2023.

In general, the following activities were completed:

- At the start of the current annual reporting period, the WBAP was operating under the Assessment monitoring program.
- At the end of the current annual reporting period, the WBAP was operating under the Assessment monitoring program.
- The WBAP initiated an assessment monitoring program on April 3, 2018.
- Groundwater samples were collected for AD-3, AD-12, AD-17, AD-18, AD-28, and AD-30 in March, May, and November 2022 and analyzed for Appendix III and Appendix IV constituents, as specified in 30 TAC §352.941 or §352.951et seq. and AEP's Groundwater Sampling and Analysis Plan (2021).
- Groundwater data underwent various validation tests, including tests for completeness, valid values, transcription errors, and consistent units.
- Data and statistical analysis not available for the previous reporting period indicates that during the 2nd semi-annual 2021 sampling event (November 2021):

The following Appendix IV parameters exceeded established groundwater protection standards (GWPS):

o Cobalt at AD-28

The following Appendix III parameters exceeded background:

- o Boron at AD-28 and AD-30
- o Chloride at AD-17 and AD-30
- o pH at AD-30
- o Sulfate at AD-30
- o TDS at AD-30
- A successful ASDs for the Appendix IV parameter that exceeded the GWPS for the 2nd semi-annual 2021 was certified on June 16, 2022 and submitted to TCEQ June 16, 2022 for approval.

• The 1st semi-annual sampling event held in June 2022:

The following Appendix IV parameters exceeded established GWPS:

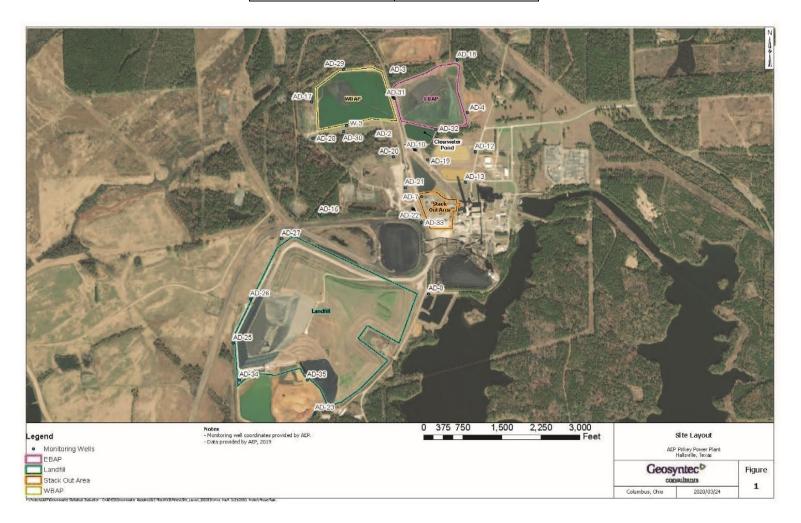
o Cobalt at AD-28

The following Appendix III parameters exceeded background:

- o Boron at AD-28 and AD-30
- o Chloride at AD-17 and AD-30
- o Sulfate at AD-28 and AD-30
- o TDS at AD-30
- A successful ASD for the Appendix IV parameter that exceeded the GWPS 1st semi-annual 2022 was certified January 25, 2023 and submitted to TCEQ January 25, 2023 for approval.
- The 2nd semi-annual sampling event was held in November 2022 and data are still undergoing statistical analysis.
- Because an alternate source for the SSL(s) was identified, but no alternate source for the SSI(s) was identified, WBAP remained in Assessment Monitoring.
- A statistical process in accordance with 30 TAC §352.931 to evaluate groundwater data was updated, certified, and posted to AEP's CCR website in 2021 titled: AEP's Statistical Analysis Plan (Geosyntec 2021). The statistical process was guided by USEPA's Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance ("Unified Guidance," USEPA, 2009).
- On March 30, 2022, WBAP ceased receipt of CCR and non-CCR wastestreams and commenced closure by removal in accordance with the certified closure plan.
- The CCR material was removed from April to June of 2022 from the WBAP. An additional 12 inches of soil was then removed, finishing in July of 2022. The last inspection for the removal was completed on July 26, 2022.

The major components of this annual report, to the extent applicable at this time, are presented in sections that follow:

- A map, aerial photograph or a drawing showing the CCR management unit(s), all groundwater monitoring wells and monitoring well identification numbers;
- All of the monitoring data collected, including the rate and direction of groundwater flow, plus a summary showing the number of samples collected per monitoring well, the dates the samples were collected and whether the sample was collected as part of detection monitoring or assessment monitoring programs (Attached as **Appendix 1**);


- Statistical comparison of monitoring data to determine if there have been SSI(s) or SSL(s) (Attached as **Appendix 2**);
- A discussion of whether any alternate source demonstrations were performed, and the conclusions (Attached as **Appendix 3**);
- A summary of any transition between monitoring programs, or an alternate monitoring frequency, for example the date and circumstances for transitioning from detection monitoring to assessment monitoring, in addition to identifying the constituents detected at a SSI over background concentrations (where applicable);
- Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a statement as to why that happened;
- Other information required to be included in the annual report such as field sheets, analytical reports, etc. (Appendix 4 and 5).

In addition, this report summarizes key actions completed, and where applicable, describes any problems encountered and actions taken to resolve those problems. The report includes a projection of key activities for the upcoming year.

II. Groundwater Monitoring Well Locations and Identification Numbers

The figure that follows depicts the PE-certified groundwater monitoring network, the monitoring well locations and their corresponding identification numbers.

WBAP Mon	itoring Wells
Upgradient	Downgradient
AD-3	AD-17
AD-12	AD-28
AD-18	AD-30

III. Monitoring Wells Installed or Decommissioned

There were no new groundwater monitoring wells installed or decommissioned during 2022. The network design, as summarized in the *Groundwater Monitoring Network Design Report* (May 25, 2016) and as posted at the CCR website for Pirkey Power Plant's WBAP, did not change. That network design report, viewable on the AEP CCR web site, discusses the facility location, the hydrogeological setting, the hydrostratigraphic units, the uppermost aquifer, downgradient monitoring well locations and the upgradient monitoring well locations.

IV. <u>Groundwater Quality Data and Static Water Elevation Data, With Flow Rate and Direction and Discussion</u>

Appendix 1 contains tables showing the groundwater quality data collected during the establishment of background quality, and during detection and assessment monitoring. Static water elevation data from each monitoring event also are shown in **Appendix 1**, along with the groundwater velocity calculations, groundwater flow direction and potentiometric maps developed after each sampling event.

The sampling event conducted March 2022 satisfies the annual screening sampling requirements of 30 TAC §352.951.

V. Groundwater Quality Data Statistical Analysis

Appendix 2 contains the statistical analysis report(s).

Data and statistical analysis not available for the previous reporting period indicates that during the 2nd semi-annual 2021 sampling event (November 2021) the following Appendix IV parameters exceeded established GWPS:

o Cobalt at AD-28

The following Appendix III parameters exceeded background:

- o Boron at AD-28 and AD-30
- o Chloride at AD-17 and AD-30
- o pH at AD-30
- o Sulfate at AD-30
- o TDS at AD-30

The 1st semi-annual sampling event held in June 2022:

The following Appendix IV parameters exceeded established GWPS:

o Cobalt at AD-28

The following Appendix III parameters exceeded background:

- o Boron at AD-28 and AD-30
- o Chloride at AD-17 and AD-30
- o Sulfate at AD-28 and AD-30
- o TDS at AD-30

The 2nd semi-annual sampling event was held in November 2022 and data are still undergoing statistical analysis.

VI. Alternate Source Demonstration

A successful ASD for the Appendix IV parameter that exceeded the GWPS for the 2nd semi-annual 2021 was certified on June 16, 2022 and submitted to TCEQ June 16, 2022 for approval.

A successful ASD for the Appendix IV parameter that exceeded the GWPS 1st semi-annual 2022 was certified January 25, 2023 and submitted to TCEQ January 25, 2023 for approval.

The successful ASDs are found in Appendix 3.

Because an alternate source for the SSL(s) was identified, but no alternate source for the SSI(s) was identified, WBAP remained in Assessment Monitoring.

VII. <u>Discussion About Transition Between Monitoring Requirements or Alternate</u> <u>Monitoring Frequency</u>

The WBAP will remain in assessment monitoring unless all Appendix III and IV parameters are below background values for two consecutive monitoring events (return to detection monitoring) as prescribed by 30 TAC §352.951(c). If an Appendix IV parameter exceeds its respective GWPS due to a release from the WBAP, an assessment of corrective measures will be undertaken as required by 30 TAC §352.961.

Regarding defining an alternate monitoring frequency, the groundwater velocity and monitoring well production are high enough at this facility that no modification to the semiannual assessment monitoring frequency is needed.

VIII. Other Information Required

As required by the CCR assessment monitoring rules in 30 TAC §352.951, sampling all CCR wells for the required Appendix III and IV parameters was completed in 2022.

On March 30, 2022, WBAP ceased receipt of CCR and non-CCR wastestreams and commenced closure by removal for this CCR Unit in accordance with the certified closure plan.

The CCR material was removed from April to June of 2022 from the WBAP. An additional 12 inches of soil was then removed, finishing in July of 2022. The last inspection for the removal was completed on July 26, 2022.

IX. <u>Description of Any Problems Encountered in 2022 and Actions Taken</u>

No significant problems were encountered. The low flow sampling effort went smoothly, and the schedule was met to support the annual groundwater report preparation covering the year 2022 groundwater monitoring activities.

X. A Projection of Key Activities for the Upcoming Year

Key activities for next year will include:

- Complete the statistical evaluation of the second semi-annual groundwater monitoring event that took place in November 2022;
- If any SSL are identified, then an alternate source demonstration will be completed.
- If the alternate source demonstration is successful, then assessment monitoring will be discontinued since all conditions for closure completion in accordance with 30 TAC §352. 1211 (40CFR257.102(c)) will have been met.
- Prepare a Closure Completion Notification that is certified by a Professional engineer and submit to TCEQ.
- Responding to any new data received in light of CCR rule requirements.
- Preparation of the next annual groundwater report.

APPENDIX 1- Groundwater Data Tables and Figures

Figures and Tables follow, showing the groundwater monitoring data collected, the rate and direction of groundwater flow, and a summary showing the number of samples collected per monitoring well. The dates that the samples were collected also is shown.

Table 1 - Groundwater Data Summary: AD-3 Pirkey - WBAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/11/2016	Background	0.04	2.9	6	< 0.083 U1	4.9	18	136
7/14/2016	Background	0.06	4.67	6	< 0.083 U1	4.7	30	161
9/8/2016	Background	0.06	4.28	7	< 0.083 U1	4.5	28	145
10/13/2016	Background	0.05	4.93	8	< 0.083 U1	5.5	31	168
11/14/2016	Background	0.07	4.61	7	< 0.083 U1	5.4	29	170
1/12/2017	Background	0.05	3.81	7	< 0.083 U1	5.3	27	152
3/1/2017	Background	0.05	2.55	5	< 0.083 U1	5.1	16	124
4/10/2017	Background	0.06	2.6	10	< 0.083 U1	4.9	19	140
8/24/2017	Detection	0.08625	2.37	6	< 0.083 U1	5.6	17	68
3/22/2018	Assessment	0.05508	3.41	5	< 0.083 U1	5.3	26	140
8/21/2018	Assessment	0.055	4.79	9	< 0.083 U1	5.6	34	166
2/27/2019	Assessment	0.034	3.46	6.16	0.04 J1	5.3	21.8	50
5/23/2019	Assessment	0.045	6.19	5.99	0.09	4.9	29.5	154
8/13/2019	Assessment	0.05 J1	5.08	6.83	0.19	5.1	32.5	168
3/11/2020	Assessment	0.04 J1	2.84	5.76	0.04 J1	4.8	19.5	124
6/3/2020	Assessment	0.04 J1	4.56	6.44	0.09	5.3	29.2	171
11/3/2020	Assessment	0.054	4.58	6.32	0.08	5.0	30.1	167
3/9/2021	Assessment	0.03 J1	4.22	5.98	0.06	5.0	27.1	158
5/25/2021	Assessment	0.051	4.7	6.06	0.08	4.6	28.8	150
11/16/2021	Assessment	0.054	4.92	6.42	0.12	5.3	31.3	150
3/29/2022	Assessment	0.059	6.09	6.84	0.21	4.8	34.0	170 L1
6/21/2022	Assessment	0.08 J1	3.1	5.65	0.04 J1	4.4	21.2	
8/30/2022	Assessment					4.7		170
11/16/2022	Assessment	0.063	5.05	7.40	0.18	5.9	34.4	160

Notes:

mg/L: milligrams per liter

SU: standard unit

In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

L1: The associated laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) recovery was outside acceptance limits.

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

^{- -:} Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

Table 1 - Groundwater Data Summary: AD-3 Pirkey - WBAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/11/2016	Background	< 0.93 U1	< 1.05 U1	59	0.412956 J1	0.0947139 J1	0.724945 J1	3.12937 J1	1.059	< 0.083 U1	< 0.68 U1	0.025	0.00992 J1	0.774997 J1	3.29747 J1	< 0.86 U1
7/14/2016	Background	< 0.93 U1	2.10876 J1	70	0.583927 J1	< 0.07 U1	1	7	1.69	< 0.083 U1	< 0.68 U1	0.095	0.025	1.16077 J1	2.50173 J1	< 0.86 U1
9/8/2016	Background	< 0.93 U1	< 1.05 U1	70	0.502486 J1	< 0.07 U1	0.974129 J1	7	1.491	< 0.083 U1	< 0.68 U1	0.087	0.00618 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
10/13/2016	Background	< 0.93 U1	4.22879 J1	82	0.591063 J1	0.159178 J1	2	9	3.42	< 0.083 U1	< 0.68 U1	0.991	0.0073 J1	< 0.29 U1	1.92667 J1	< 0.86 U1
11/14/2016	Background	< 0.93 U1	1.98138 J1	64	0.310985 J1	< 0.07 U1	0.42234 J1	8	1.532	< 0.083 U1	< 0.68 U1	0.092	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
1/12/2017	Background	< 0.93 U1	< 1.05 U1	62	0.281878 J1	< 0.07 U1	0.551806 J1	4.96138 J1	2.01	< 0.083 U1	< 0.68 U1	0.079	0.0057 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/1/2017	Background	< 0.93 U1	< 1.05 U1	62	0.279961 J1	< 0.07 U1	< 0.23 U1	2.54266 J1	0.862	< 0.083 U1	< 0.68 U1	0.046	< 0.005 U1	< 0.29 U1	1.78128 J1	1.13014 J1
4/10/2017	Background	< 0.93 U1	< 1.05 U1	61	0.284613 J1	< 0.07 U1	0.250858 J1	2.40319 J1	0.991	< 0.083 U1	< 0.68 U1	0.046	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/22/2018	Assessment	< 0.93 U1	< 1.05 U1	57.94	0.22 J1	< 0.07 U1	0.86 J1	3.74 J1	0.739	< 0.083 U1	< 0.68 U1	0.06189	< 0.005 U1	< 0.29 U1	1.13 J1	< 0.86 U1
8/21/2018	Assessment	< 0.01 U1	1.01	63.3	0.240	0.02 J1	0.496	7.18	1.837	< 0.083 U1	0.355	0.0876	< 0.005 U1	0.1 J1	0.1	0.057
2/27/2019	Assessment	0.04 J1	0.13	54.2	< 0.4 U1	0.03 J1	0.04 J1	2.31	0.3144	0.04 J1	0.05 J1	0.0525	< 0.005 U1	< 0.4 U1	0.05 J1	< 0.1 U1
5/23/2019	Assessment	< 0.4 U1	< 0.6 U1	61.8	< 0.4 U1	< 0.2 U1	< 0.8 U1	4.94	0.988	0.09	< 0.4 U1	0.0734	< 0.005 U1	< 8 U1	< 0.6 U1	< 0.1 U1
8/13/2019	Assessment	< 0.02 U1	2.41	58.3	0.196	0.02 J1	0.206	6.55	1.378	0.19	0.417	0.108	< 0.005 U1	< 0.4 U1	0.1 J1	< 0.1 U1
3/11/2020	Assessment	< 0.02 U1	0.81	62.4	0.312	0.02 J1	0.1 J1	2.62	1.504	0.04 J1	0.396	0.0353	0.003 J1	< 0.4 U1	0.09 J1	< 0.1 U1
6/3/2020	Assessment	< 0.02 U1	0.66	57.4	0.228	0.09	0.226	4.36	1.352	0.09	0.372	0.0561	0.003 J1	< 0.4 U1	0.06 J1	< 0.1 U1
11/3/2020	Assessment	< 0.02 U1	1.22	64.8	0.257	0.02 J1	0.220	5.27	1.594	0.08	0.364	0.0714	< 0.002 U1	< 0.4 U1	0.08 J1	< 0.1 U1
3/9/2021	Assessment	< 0.02 U1	0.53	60.7	0.185	0.02 J1	0.207	3.63	0.709	0.06	0.1 J1	0.0445	< 0.002 U1	< 0.1 U1	< 0.09 U1	< 0.04 U1
5/25/2021	Assessment	< 0.02 U1	0.49	66.4	0.169	0.097	0.32	3.98	1.30	0.08	0.20	0.0452	< 0.002 U1	< 0.1 U1	0.09 J1	0.05 J1
11/16/2021	Assessment	< 0.02 U1	1.90	64.1	0.200	0.016 J1	0.63	5.87	1.32	0.12	0.43	0.0722	0.006	< 0.1 U1	< 0.09 U1	< 0.04 U1
3/29/2022	Assessment	< 0.02 U1	1.51	68.3	0.163	0.012 J1	0.40	7.88	1.91	0.21	0.28	0.0934	< 0.002 U1	< 0.1 U1	< 0.09 U1	0.04 J1
6/21/2022	Assessment	< 0.1 U1	0.2 J1	55.6	0.22 J1	< 0.02 U1	0.3 J1	2.70	1.68	0.04 J1	< 0.3 U1	0.0457	0.004 J1	< 0.5 U1	< 0.5 U1	< 0.2 U1
11/16/2022	Assessment	< 0.02 U1	1.22	63.7	0.186	0.012 J1	0.63	7.40	1.51	0.18	0.31	0.0837	< 0.002 U1	< 0.1 U1	0.09 J1	0.05 J1

Notes:

μg/L: micrograms per liter mg/L: milligrams per liter pCi/L: picocuries per liter

Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

- -: Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit. In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

Table 1 - Groundwater Data Summary: AD-12 Pirkey - WBAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/11/2016	Background	0.03	0.362	5	< 0.083 U1	4.4	4	94
7/13/2016	Background	0.03	0.26	6	< 0.083 U1	3.1	4	75
9/7/2016	Background	0.04	0.343	6	< 0.083 U1	3.9	7	63
10/12/2016	Background	0.03	0.271	7	1	3.4	8	92
11/14/2016	Background	0.04	0.331	8	< 0.083 U1	2.6	6	80
1/11/2017	Background	0.03	0.315	7	< 0.083 U1	4.8	6	76
2/28/2017	Background	0.04	0.434	5	< 0.083 U1	3.6	4	50
4/11/2017	Background	0.05	0.299	6	0.2565 J1	4.7	7	72
8/23/2017	Detection	0.0495	0.245	6	0.213 J1	4.8	6	52
3/21/2018	Assessment	0.01397	0.269	5	< 0.083 U1	4.2	3	< 2 U1
8/20/2018	Assessment	0.017	0.338	10	< 0.083 U1	4.4	4	94
2/27/2019	Assessment	0.03 J1	0.4 J1	6.08	0.09	5.2	3.6	36
5/21/2019	Assessment	0.020	0.3 J1	6.30	0.09	4.1	4.0	80
8/12/2019	Assessment	< 0.02 U1	0.278	7.24	0.06 J1	4.9	2.6	90
3/10/2020	Assessment	0.02 J1	0.3 J1	6.08	0.10	4.9	3.7	62
6/2/2020	Assessment	< 0.02 U1	0.2 J1	5.63	0.10	4.0	3.9	91
11/2/2020	Assessment	0.03 J1	0.3 J1	4.65	0.08	4.3	3.3	74
3/8/2021	Assessment	0.01 J1	0.2 J1	6.46	0.11	4.1	3.8	68
5/24/2021	Assessment	0.032 J1	0.2 J1	5.54	0.12	4.2	5.46	70
11/15/2021	Assessment	0.012 J1	0.28	8.03	0.07	3.5	2.90	90
3/28/2022	Assessment	0.021 J1	0.20	6.10	0.07	3.9	3.80	60 L1
6/20/2022	Assessment	0.042 J1	0.32	7.59	0.09	4.3	4.81	80
11/15/2022	Assessment	0.013 J1	0.36	8.03	0.08	4.7	3.39	70

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

- -: Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

L1: The associated laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) recovery was outside acceptance limits.

Table 1 - Groundwater Data Summary: AD-12 Pirkey - WBAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/11/2016	Background	< 0.93 U1	< 1.05 U1	26	0.219521 J1	< 0.07 U1	0.710981 J1	1.58207 J1	0.2073	< 0.083 U1	< 0.68 U1	< 0.00013 U1	< 0.005 U1	< 0.29 U1	1.73953 J1	< 0.86 U1
7/13/2016	Background	< 0.93 U1	< 1.05 U1	23	0.190337 J1	< 0.07 U1	0.68835 J1	1.29444 J1	2.909	< 0.083 U1	< 0.68 U1	0.008	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
9/7/2016	Background	< 0.93 U1	< 1.05 U1	30	0.232192 J1	< 0.07 U1	0.353544 J1	1.66591 J1	0.881	< 0.083 U1	< 0.68 U1	0.01	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
10/12/2016	Background	< 0.93 U1	< 1.05 U1	27	0.149553 J1	< 0.07 U1	0.529033 J1	1.56632 J1	0.257	1	< 0.68 U1	0.012	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
11/14/2016	Background	< 0.93 U1	< 1.05 U1	28	0.152375 J1	< 0.07 U1	0.32826 J1	1.47282 J1	0.767	< 0.083 U1	< 0.68 U1	0.013	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
1/11/2017	Background	< 0.93 U1	< 1.05 U1	23	0.126621 J1	< 0.07 U1	0.650158 J1	1.09495 J1	1.536	< 0.083 U1	< 0.68 U1	0.01	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
2/28/2017	Background	< 0.93 U1	< 1.05 U1	26	0.149219 J1	< 0.07 U1	0.325811 J1	1.29984 J1	0.416	< 0.083 U1	< 0.68 U1	0.009	< 0.005 U1	< 0.29 U1	< 0.99 U1	0.994913 J1
4/11/2017	Background	< 0.93 U1	< 1.05 U1	24	0.159412 J1	< 0.07 U1	0.416007 J1	1.33344 J1	0.3895	0.2565 J1	< 0.68 U1	0.008	0.01364 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/21/2018	Assessment	< 0.93 U1	< 1.05 U1	25.82	0.16 J1	< 0.07 U1	1.05	1.49 J1	0.784	< 0.083 U1	< 0.68 U1	0.00722	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
8/20/2018	Assessment	< 0.01 U1	0.11	27.8	0.159	0.01 J1	0.330	1.72	1.128	< 0.083 U1	0.089	0.0143	< 0.005 U1	0.04 J1	0.1	0.04 J1
2/27/2019	Assessment	< 0.4 U1	< 0.6 U1	22.5	< 0.4 U1	< 0.2 U1	< 0.8 U1	1.37	0.225	0.09	< 0.4 U1	0.00688	< 0.005 U1	< 8 U1	< 0.6 U1	< 2 U1
5/21/2019	Assessment	< 0.4 U1	< 0.6 U1	21.7	< 0.4 U1	< 0.2 U1	< 0.8 U1	1.15	0.201	0.09	< 0.4 U1	0.00576	< 0.005 U1	< 8 U1	< 0.6 U1	< 0.1 U1
8/12/2019	Assessment	< 0.02 U1	0.07 J1	23.8	0.154	< 0.01 U1	0.204	1.30	0.237	0.06 J1	0.08 J1	0.00829	< 0.005 U1	< 0.4 U1	0.2 J1	< 0.1 U1
3/10/2020	Assessment	< 0.02 U1	0.09 J1	21.7	0.139	0.01 J1	0.2 J1	1.21	3.0706	0.10	0.09 J1	0.00547	< 0.002 U1	< 0.4 U1	0.2	< 0.1 U1
6/2/2020	Assessment	< 0.02 U1	0.09 J1	19.0	0.132	< 0.01 U1	0.208	1.02	0.799	0.10	0.09 J1	0.00505	< 0.002 U1	< 0.4 U1	0.3	< 0.1 U1
11/2/2020	Assessment	0.05 J1	0.09 J1	18.9	0.122	< 0.01 U1	0.204	1.04	0.929	0.08	0.09 J1	0.00510	< 0.002 U1	< 0.4 U1	0.3	< 0.1 U1
3/8/2021	Assessment	< 0.02 U1	0.07 J1	22.9	0.150	0.007 J1	0.2 J1	1.19	0.214	0.11	0.07 J1	0.00570	< 0.002 U1	< 0.1 U1	0.2 J1	< 0.04 U1
5/24/2021	Assessment	< 0.02 U1	0.08 J1	23.1	0.136	0.005 J1	0.24	1.19	0.60	0.12	0.07 J1	0.00500	< 0.002 U1	< 0.1 U1	0.31 J1	< 0.04 U1
11/15/2021	Assessment	< 0.02 U1	0.05 J1	26.5	0.148	0.01 J1	0.30	1.38	1.76	0.07	0.07 J1	0.0110	< 0.002 U1	< 0.1 U1	0.10 J1	< 0.04 U1
3/28/2022	Assessment	< 0.02 U1	0.09 J1	20.2	0.127	0.009 J1	0.35	1.01	0.76	0.07	0.09 J1	0.00604	< 0.002 U1	< 0.1 U1	0.33 J1	< 0.04 U1
6/20/2022	Assessment	< 0.02 U1	0.08 J1	24.2	0.135	0.008 J1	0.63	1.35	0.63	0.09	0.08 J1	0.00949	< 0.002 U1	< 0.1 U1	0.16 J1	< 0.04 U1
11/15/2022	Assessment	< 0.02 U1	0.06 J1	30.6	0.153	0.007 J1	0.45	1.59	1.46	0.08	0.08 J1	0.0119	< 0.002 U1	< 0.1 U1	0.23 J1	< 0.04 U1

Notes:

μg/L: micrograms per liter mg/L: milligrams per liter pCi/L: picocuries per liter

Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

- -: Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit. In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

Table 1 - Groundwater Data Summary: AD-17 Pirkey - WBAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/11/2016	Background	0.02	0.648	12	< 0.083 U1	4.3	4	68
7/14/2016	Background	0.03	1.28	34	< 0.083 U1	3.3	4	96
9/8/2016	Background	0.03	1.19	29	< 0.083 U1	3.9	6	88
10/13/2016	Background	0.03	1.34	32	0.393 J1	3.6	6	96
11/15/2016	Background	0.03	1.3	30	0.3446 J1	3.7	6	88
1/12/2017	Background	0.03	1.08	26	< 0.083 U1	4.4	6	90
3/1/2017	Background	0.04	0.57	19	< 0.083 U1	4.0	5	80
4/10/2017	Background	0.03	0.395	20	< 0.083 U1	4.2	9	88
8/24/2017	Detection	0.04495	1.06	25	0.245 J1	4.6	6	98
12/21/2017	Detection			26	< 0.083 U1		8	76
3/22/2018	Assessment	0.03113	0.0981	13	< 0.083 U1	4.4	5	44
8/21/2018	Assessment	0.044	0.997	35	< 0.083 U1	3.9	7	98
2/28/2019	Assessment	0.03 J1	0.2 J1	10.2	0.12	3.7	2.4	68
5/23/2019	Assessment	0.019	0.2 J1	10.3	0.13	4.0	2.4	58
8/13/2019	Assessment	0.03 J1	0.777	26.3	0.24	4.8	1.8	88
3/11/2020	Assessment	< 0.02 U1	0.1 J1	10.1	0.13	4.4	2.4	60 J1
6/3/2020	Assessment	0.02 J1	0.312	22.7	0.26	4.2	2.7	77
11/3/2020	Assessment	0.03 J1	1.06	32.4	0.24	3.7	1.8	86
3/9/2021	Assessment	0.02 J1	< 0.1 U1	10.2	0.17	4.3	2.3	83
5/25/2021	Assessment	0.031 J1	< 0.1 U1	9.30	0.17	3.9	2.66	60
11/16/2021	Assessment	0.022 J1	0.98	31.3	0.29	4.0	2.58	90
3/29/2022	Assessment	0.031 J1	0.24	16.2	0.26	4.1	6.77	60 L1
6/21/2022	Assessment	0.021 J1	1.10	30.2	0.30	3.3	5.78	90
11/16/2022	Assessment	0.026 J1	1.23	35.0	0.26	4.5	2.91	80

Notes:

mg/L: milligrams per liter

SU: standard unit

In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

L1: The associated laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) recovery was outside acceptance limits.

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

^{- -:} Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

Table 1 - Groundwater Data Summary: AD-17 Pirkey - WBAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/11/2016	Background	< 0.93 U1	1.21333 J1	143	0.507354 J1	0.0868344 J1	1	5	2.082	< 0.083 U1	< 0.68 U1	< 0.00013 U1	0.06	< 0.29 U1	2.55378 J1	< 0.86 U1
7/14/2016	Background	< 0.93 U1	1.3096 J1	334	0.85295 J1	0.0833036 J1	2	14	3.12	< 0.083 U1	< 0.68 U1	0.027	0.138	0.485824 J1	< 0.99 U1	< 0.86 U1
9/8/2016	Background	< 0.93 U1	1.76675 J1	327	0.948023 J1	< 0.07 U1	5	14	4.473	< 0.083 U1	< 0.68 U1	0.028	0.142	< 0.29 U1	< 0.99 U1	1.0754 J1
10/13/2016	Background	< 0.93 U1	< 1.05 U1	324	0.753919 J1	< 0.07 U1	0.542006 J1	14	6.64	0.393 J1	< 0.68 U1	0.026	0.05	< 0.29 U1	< 0.99 U1	< 0.86 U1
11/15/2016	Background	< 0.93 U1	< 1.05 U1	290	0.708598 J1	< 0.07 U1	0.448238 J1	13	7.94	0.3446 J1	< 0.68 U1	0.026	0.078	< 0.29 U1	< 0.99 U1	< 0.86 U1
1/12/2017	Background	< 0.93 U1	< 1.05 U1	234	0.541302 J1	< 0.07 U1	0.723126 J1	10	9.6	< 0.083 U1	< 0.68 U1	0.023	0.055	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/1/2017	Background	< 0.93 U1	< 1.05 U1	176	0.499114 J1	< 0.07 U1	0.359001 J1	8	2.31	< 0.083 U1	< 0.68 U1	0.019	0.084	< 0.29 U1	< 0.99 U1	< 0.86 U1
4/10/2017	Background	< 0.93 U1	< 1.05 U1	140	0.511666 J1	< 0.07 U1	0.689417 J1	7	3.67	< 0.083 U1	< 0.68 U1	0.016	0.069	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/22/2018	Assessment	< 0.93 U1	< 1.05 U1	94.77	0.38 J1	< 0.07 U1	1.21	4.57 J1	1.669	< 0.083 U1	< 0.68 U1	0.01186	0.125	< 0.29 U1	< 0.99 U1	< 0.86 U1
8/21/2018	Assessment	< 0.01 U1	0.41	223	0.588	0.04	0.367	10.9	2.505	< 0.083 U1	0.181	0.0234	0.216	< 0.02 U1	0.5	0.051
2/28/2019	Assessment	< 0.4 U1	< 0.6 U1	71.4	< 0.4 U1	< 0.2 U1	< 0.8 U1	2.93	0.772	0.12	< 0.4 U1	0.00912	0.107	< 8 U1	< 0.6 U1	< 2 U1
5/23/2019	Assessment	< 0.4 U1	< 0.6 U1	82.9	< 0.4 U1	< 0.2 U1	0.9 J1	3.15	1.62	0.13	< 0.4 U1	0.00911	0.103	< 8 U1	< 0.6 U1	< 0.1 U1
8/13/2019	Assessment	< 0.02 U1	0.40	216	0.554	0.04 J1	0.732	9.03	6.40	0.24	0.2 J1	0.0193	0.447	< 0.4 U1	0.3	< 0.1 U1
3/11/2020	Assessment	< 0.02 U1	0.46	73.5	0.285	0.02 J1	0.700	3.04	3.986	0.13	0.2 J1	0.00822	0.175	< 0.4 U1	0.2 J1	< 0.1 U1
6/3/2020	Assessment	< 0.02 U1	0.17	176	0.553	0.03 J1	0.208	7.02	2.44	0.26	0.09 J1	0.0147	0.346	< 0.4 U1	0.4	< 0.1 U1
11/3/2020	Assessment	< 0.02 U1	0.44	263	0.610	0.05	0.518	12.1	8.21	0.24	0.209	0.0237	0.476	< 0.4 U1	0.4	< 0.1 U1
3/9/2021	Assessment	< 0.02 U1	0.13	76.7	0.321	0.02 J1	0.222	3.05	0.816	0.17	0.06 J1	0.00924	0.123	< 0.1 U1	0.1 J1	< 0.04 U1
5/25/2021	Assessment	< 0.02 U1	0.14	74.5	0.262	0.012 J1	0.36	2.85	1.41	0.17	0.07 J1	0.00759	0.127	< 0.1 U1	0.12 J1	< 0.04 U1
11/16/2021	Assessment	< 0.02 U1	0.21	266	0.686	0.058	0.33	11.8	6.42	0.29	0.13 J1	0.0236	0.350	< 0.1 U1	0.35 J1	0.04 J1
3/29/2022	Assessment	< 0.02 U1	0.30	112	0.481	0.028	0.70	6.48	3.01	0.26	0.1 J1	0.0126	0.300 J1	< 0.1 U1	0.26 J1	< 0.04 U1
6/21/2022	Assessment	< 0.02 U1	0.39	250	0.650	0.063	0.51	12.2	11.96	0.30	0.13 J1	0.0206	0.200 J1	< 0.1 U1	0.44 J1	0.05 J1
11/16/2022	Assessment	< 0.02 U1	0.13	276	0.662	0.061	0.37	12.7	6.75	0.26	0.16 J1	0.0267	0.400 J1	< 0.1 U1	0.36 J1	0.07 J1

Notes:

μg/L: micrograms per liter mg/L: milligrams per liter pCi/L: picocuries per liter

Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

- -: Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit. In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

Table 1 - Groundwater Data Summary: AD-18 Pirkey - WBAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/10/2016	Background	0.01	0.548	8	< 0.083 U1	4.5	7	108
7/14/2016	Background	0.01	0.409	8	< 0.083 U1	4.7	7	116
9/8/2016	Background	0.01	0.343	8	< 0.083 U1	4.7	8	110
10/13/2016	Background	0.02	0.56	7	< 0.083 U1	4.1	10	124
11/15/2016	Background	0.02	0.59	7	< 0.083 U1	4.4	7	134
1/12/2017	Background	0.01	0.415	7	< 0.083 U1	4.7	10	128
3/1/2017	Background	0.01	0.224	6	< 0.083 U1	4.1	7	108
4/10/2017	Background	0.01	0.304	7	< 0.083 U1	4.1	8	102
8/24/2017	Detection	0.0278	0.435	8	< 0.083 U1	4.9	8	68
3/22/2018	Assessment	0.01642	0.292	6	< 0.083 U1	5.4	6	100
8/21/2018	Assessment	0.012	0.321	10	< 0.083 U1	5.1	8	118
2/28/2019	Assessment	< 0.02 U1	0.490	8.19	0.02 J1	5.0	6.1	84
5/23/2019	Assessment	0.013	0.684	8.82	0.02 J1	5.2	10.6	104
8/13/2019	Assessment	< 0.02 U1	0.647	8.49	0.01 J1	5.2	6.6	90
3/11/2020	Assessment	< 0.02 U1	0.3 J1	7.34	0.02 J1	4.4	6.1	90 J1
6/3/2020	Assessment	< 0.02 U1	0.2 J1	8.30	0.03 J1	4.5	6.3	119
11/3/2020	Assessment					4.4		
11/4/2020	Assessment	< 0.02 U1	0.2 J1	6.30	0.02 J1		6.3	100
3/9/2021	Assessment	0.009 J1	0.2 J1	6.61	0.02 J1	4.5	6.6	113
5/25/2021	Assessment	0.021 J1	0.3	7.16	0.02 J1	4.4	7.46	100 P1
11/16/2021	Assessment					3.9		
11/17/2021	Assessment	0.01 J1	0.20	5.99	< 0.02 U1		6.23	100
3/29/2022	Assessment	0.009 J1	0.24	5.26	< 0.02 U1	4.4	7.31	140 L1
6/22/2022	Assessment	< 0.009 U1	1.49	5.20	< 0.02 U1	4.6	6.47	110
11/16/2022	Assessment	0.011 J1	0.19	4.94	< 0.02 U1	4.5	6.55	90

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

- -: Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

L1: The associated laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) recovery was outside acceptance limits.

P1: The precision between duplicate results was above acceptance limits.

Due to limited groundwater volume, pH values for some sampling events were collected the day prior to collection of analytical samples.

Table 1 - Groundwater Data Summary: AD-18 Pirkey - WBAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/10/2016	Background	< 0.93 U1	< 1.05 U1	157	0.262755 J1	0.109247 J1	1	1.82932 J1	0.847	< 0.083 U1	< 0.68 U1	0.004	0.01536 J1	< 0.29 U1	1.71074 J1	< 0.86 U1
7/14/2016	Background	< 0.93 U1	3.77261 J1	139	0.243326 J1	< 0.07 U1	3	2.16037 J1	3.264	< 0.083 U1	< 0.68 U1	0.02	0.064	0.41347 J1	2.45009 J1	< 0.86 U1
9/8/2016	Background	< 0.93 U1	< 1.05 U1	115	0.226343 J1	< 0.07 U1	0.779959 J1	1.09947 J1	1.105	< 0.083 U1	< 0.68 U1	0.019	0.03	< 0.29 U1	< 0.99 U1	< 0.86 U1
10/13/2016	Background	< 0.93 U1	< 1.05 U1	112	0.192611 J1	< 0.07 U1	0.631027 J1	2.24885 J1	1.161	< 0.083 U1	< 0.68 U1	0.026	0.01416 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
11/15/2016	Background	< 0.93 U1	< 1.05 U1	94	0.107171 J1	< 0.07 U1	0.724569 J1	1.66054 J1	1.486	< 0.083 U1	< 0.68 U1	0.017	0.029	< 0.29 U1	< 0.99 U1	< 0.86 U1
1/12/2017	Background	< 0.93 U1	< 1.05 U1	99	0.169196 J1	< 0.07 U1	0.411433 J1	1.62881 J1	0.976	< 0.083 U1	< 0.68 U1	0.026	0.01887 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/1/2017	Background	< 0.93 U1	< 1.05 U1	99	0.105337 J1	< 0.07 U1	0.572874 J1	0.976724 J1	0.468	< 0.083 U1	< 0.68 U1	0.017	0.01086 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
4/10/2017	Background	< 0.93 U1	< 1.05 U1	105	0.130316 J1	< 0.07 U1	0.967681 J1	0.98157 J1	0.648	< 0.083 U1	< 0.68 U1	0.019	0.0096 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/22/2018	Assessment	< 0.93 U1	< 1.05 U1	97.75	0.09 J1	< 0.07 U1	< 0.23 U1	0.97 J1	0.942	< 0.083 U1	< 0.68 U1	0.01647	0.006 J1	< 0.29 U1	1.53 J1	< 0.86 U1
8/21/2018	Assessment	0.02 J1	1.01	99.8	0.129	0.02 J1	0.809	1.18	1.108	< 0.083 U1	0.280	0.0175	0.014 J1	0.08 J1	0.2	0.060
2/28/2019	Assessment	< 0.4 U1	< 0.6 U1	106	< 0.4 U1	< 0.2 U1	< 0.8 U1	1.11	0.615	0.02 J1	0.7 J1	0.0177	0.009 J1	< 8 U1	< 0.6 U1	< 2 U1
5/23/2019	Assessment	< 0.4 U1	< 0.6 U1	131	< 0.4 U1	< 0.2 U1	< 0.8 U1	1.47	0.492	0.02 J1	< 0.4 U1	0.0209	0.009 J1	< 8 U1	< 0.6 U1	< 0.1 U1
8/13/2019	Assessment	< 0.02 U1	0.45	100	0.118	0.02 J1	0.212	1.25	0.473	0.01 J1	0.2 J1	0.0183	0.023 J1	< 0.4 U1	0.09 J1	< 0.1 U1
3/11/2020	Assessment	< 0.02 U1	0.09 J1	97.1	0.09 J1	0.01 J1	0.1 J1	0.948	4.813	0.02 J1	< 0.05 U1	0.0134	0.003 J1	< 0.4 U1	0.05 J1	< 0.1 U1
6/3/2020	Assessment	< 0.02 U1	0.22	100	0.1 J1	0.01 J1	0.2 J1	0.950	0.728	0.03 J1	0.06 J1	0.0132	0.007	< 0.4 U1	0.09 J1	< 0.1 U1
11/4/2020	Assessment	< 0.02 U1	0.29	89.3	0.08 J1	0.01 J1	0.1 J1	0.917	1.169	0.02 J1	0.06 J1	0.0128	0.028	< 0.4 U1	0.2 J1	< 0.1 U1
3/9/2021	Assessment	< 0.02 U1	0.28	88.7	0.09 J1	0.01 J1	0.271	0.827	0.331	0.02 J1	0.08 J1	0.0131	0.006	< 0.1 U1	0.1 J1	< 0.04 U1
5/25/2021	Assessment	< 0.02 U1	0.42	103	0.088	0.014 J1	0.55	0.964	0.77	0.02 J1	0.15 J1	0.0127	0.014	< 0.1 U1	0.13 J1	0.05 J1
11/17/2021	Assessment	< 0.02 U1	0.19	82.2	0.078	0.011 J1	0.31	0.801	1.91	< 0.02 U1	< 0.05 U1	0.0124	0.030	< 0.1 U1	0.11 J1	< 0.04 U1
3/29/2022	Assessment	0.02 J1	1.55	90.1	0.106	0.01 J1	1.40	0.842	2.01	< 0.02 U1	0.53	0.0137	0.021	< 0.1 U1	0.38 J1	0.05 J1
6/22/2022	Assessment	< 0.02 U1	0.30	79.3	0.073	0.012 J1	0.47	0.790	0.73	< 0.02 U1	0.11 J1	0.0108	< 0.007 U1	< 0.1 U1	0.14 J1	< 0.04 U1
11/16/2022	Assessment	< 0.02 U1	0.25	77.4	0.071	0.009 J1	0.54	0.723	1.61	< 0.02 U1	0.08 J1	0.0125	0.018	< 0.1 U1	0.12 J1	< 0.04 U1

Notes:

μg/L: micrograms per liter mg/L: milligrams per liter pCi/L: picocuries per liter

Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

- -: Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit. In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

Table 1 - Groundwater Data Summary: AD-28 Pirkey - WBAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/11/2016	Background	0.277	2.16	6	0.9005 J1	4.7	18	106
7/14/2016	Background	0.301	1.69	6	0.4478 J1	5.1	17	96
9/7/2016	Background	0.332	1.25	6	0.3966 J1	4.1	19	94
10/13/2016	Background	0.23	3.21	6	0.532 J1	5.3	19	124
11/15/2016	Background	0.32	1.64	8	0.9199 J1	4.2	16	112
1/12/2017	Background	0.285	1.22	7	0.7158 J1	4.1	17	84
3/1/2017	Background	0.293	1.25	5	< 0.083 U1	3.4	18	96
4/10/2017	Background	0.293	1.2	7	0.6732 J1	4.1	20	104
8/24/2017	Detection	0.281	1.22	6	0.557 J1	5.1	18	96
12/21/2017	Detection	0.277	1.14					
3/22/2018	Assessment	0.254	1.4	5	0.6327 J1	5.2	23	100
8/21/2018	Assessment	0.330	1.39	9	0.4982 J1	5.0	22	96
2/27/2019	Assessment	0.458	1.65	6.29	0.81	5.0	19.6	32
5/22/2019	Assessment	0.313	1.24	4.48	0.69	4.6	20.1	100
8/12/2019	Assessment	0.366	1.72	6.04	0.65	4.7	22.5	128
3/11/2020	Assessment	0.370	1.14	5.48	1.04	4.2	29.1	112
6/2/2020	Assessment	0.351	1.18	5.33	0.87	4.5	26.2	125
11/2/2020	Assessment	0.395	1.38	5.51	0.55	4.4	21.9	104
3/9/2021	Assessment	0.358	1.26	5.16	1.03	4.2	28.3	117
5/25/2021	Assessment	0.391	1.3	4.92	1.0	3.9	27.6	110
11/16/2021	Assessment	0.363	1.22	4.79	0.58	4.3	24.2	100
3/29/2022	Assessment	0.356	1.31	5.07	0.68	3.7	28.9	100 L1
6/21/2022	Assessment	0.311	1.40	4.36	0.61	4.0	28.0	110
11/16/2022	Assessment	0.334	1.34	4.96	0.48	4.3	23.3	80

Notes:

mg/L: milligrams per liter

SU: standard unit

In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

L1: The associated laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) recovery was outside acceptance limits.

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

^{- -:} Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

Table 1 - Groundwater Data Summary: AD-28 Pirkey - WBAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/11/2016	Background	1.58838 J1	2.49885 J1	223	0.968775 J1	< 0.07 U1	1	18	1.212	0.9005 J1	< 0.68 U1	0.004	0.146	< 0.29 U1	1.10335 J1	< 0.86 U1
7/14/2016	Background	< 0.93 U1	1.52986 J1	170	0.663081 J1	< 0.07 U1	0.982579 J1	15	2.29	0.4478 J1	< 0.68 U1	0.034	0.162	< 0.29 U1	< 0.99 U1	< 0.86 U1
9/7/2016	Background	< 0.93 U1	< 1.05 U1	168	0.728735 J1	< 0.07 U1	0.605543 J1	14	1.44	0.3966 J1	< 0.68 U1	0.03	0.069	< 0.29 U1	< 0.99 U1	1.24745 J1
10/13/2016	Background	< 0.93 U1	6	152	0.42032 J1	< 0.07 U1	6	18	2.547	0.532 J1	< 0.68 U1	0.066	0.085	< 0.29 U1	< 0.99 U1	< 0.86 U1
11/15/2016	Background	< 0.93 U1	1.40867 J1	148	0.520895 J1	< 0.07 U1	0.638766 J1	13	3.35	0.9199 J1	< 0.68 U1	0.032	0.029	0.294156 J1	< 0.99 U1	< 0.86 U1
1/12/2017	Background	< 0.93 U1	< 1.05 U1	154	0.475597 J1	< 0.07 U1	< 0.23 U1	12	2.67	0.7158 J1	< 0.68 U1	0.031	0.025	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/1/2017	Background	< 0.93 U1	< 1.05 U1	163	0.576508 J1	< 0.07 U1	0.968975 J1	14	2.082	< 0.083 U1	< 0.68 U1	0.031	0.025	< 0.29 U1	< 0.99 U1	< 0.86 U1
4/10/2017	Background	< 0.93 U1	< 1.05 U1	162	0.654819 J1	< 0.07 U1	0.324151 J1	15	2.331	0.6732 J1	< 0.68 U1	0.03	0.026	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/22/2018	Assessment	< 0.93 U1	< 1.05 U1	166	0.95 J1	< 0.07 U1	< 0.23 U1	14.36	1.288	0.6327 J1	< 0.68 U1	0.02561	0.046	< 0.29 U1	< 0.99 U1	< 0.86 U1
8/21/2018	Assessment	0.03 J1	0.64	143	0.598	0.05	0.688	14.4	2.028	0.4982 J1	0.266	0.0307	0.028	0.05 J1	0.3	0.03 J1
2/27/2019	Assessment	< 0.4 U1	< 0.6 U1	154	0.9 J1	< 0.2 U1	< 0.8 U1	14.3	2.318	0.81	< 0.4 U1	0.0266	0.061	< 8 U1	< 0.6 U1	< 2 U1
5/22/2019	Assessment	< 0.4 U1	< 0.6 U1	148	0.5 J1	< 0.2 U1	< 0.8 U1	13.8	1.948	0.69	< 0.4 U1	0.0227	0.028	< 8 U1	< 0.6 U1	< 0.1 U1
8/12/2019	Assessment	0.02 J1	0.64	113	0.473	0.04 J1	0.416	12.8	2.381	0.65	0.1 J1	0.0380	0.092	< 0.4 U1	0.2 J1	< 0.1 U1
3/11/2020	Assessment	< 0.02 U1	0.21	172	0.959	0.07	0.235	17.1	2.265	1.04	0.1 J1	0.0226	0.028	< 0.4 U1	0.4	< 0.1 U1
6/2/2020	Assessment	< 0.02 U1	0.16	146	0.801	0.05	0.230	13.6	1.667	0.87	0.06 J1	0.0223	0.026	< 0.4 U1	0.3	< 0.1 U1
11/2/2020	Assessment	< 0.02 U1	0.18	131	0.466	0.04 J1	0.2 J1	13.4	2.33	0.55	0.06 J1	0.0279	0.064	< 0.4 U1	0.2	< 0.1 U1
3/9/2021	Assessment	< 0.02 U1	0.16	153	0.958	0.07	0.292	15.3	1.214	1.03	0.08 J1	0.0223	0.019	< 0.1 U1	0.3	< 0.04 U1
5/25/2021	Assessment	0.02 J1	0.18	153	0.771	0.062	0.47	15.0	1.18	1.0	0.11 J1	0.0190	0.019	< 0.1 U1	0.21 J1	< 0.04 U1
11/16/2021	Assessment	< 0.02 U1	0.27	120	0.501	0.049	0.59	11.8	2.17	0.58	0.10 J1	0.0240	0.024	< 0.1 U1	0.17 J1	< 0.04 U1
3/29/2022	Assessment	< 0.02 U1	0.09 J1	120	0.605	0.057	0.35	12.5	2.98	0.68	0.05 J1	0.0242	0.012	< 0.1 U1	0.26 J1	< 0.04 U1
6/21/2022	Assessment	< 0.02 U1	0.14	130	0.463	0.047	0.40	13.3	5.96	0.61	0.08 J1	0.0213	0.007	< 0.1 U1	0.15 J1	< 0.04 U1
11/16/2022	Assessment	< 0.02 U1	0.10	125	0.459	0.046	0.54	11.8	5.15	0.48	0.15 J1	0.0270	0.008	< 0.1 U1	0.16 J1	< 0.04 U1

Notes:

 μ g/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

^{- -:} Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit. In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

Table 1 - Groundwater Data Summary: AD-30 Pirkey - WBAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/11/2016	Background	0.258	0.591	18	< 0.083 U1	4.7	14	112
7/14/2016	Background	0.384	0.499	22	< 0.083 U1	4.8	14	118
9/7/2016	Background	0.515	0.27	24	< 0.083 U1	4.4	15	110
10/13/2016	Background	0.625	0.373	24	< 0.083 U1	4.2	18	140
11/15/2016	Background	0.701	0.326	25	< 0.083 U1	4.3	19	132
1/12/2017	Background	0.697	0.286	26	< 0.083 U1	5.2	22	136
3/1/2017	Background	0.824	0.273	22	< 0.083 U1	4.8	25	136
4/11/2017	Background	0.837	0.242	24	< 0.083 U1	4.2	27	124
8/24/2017	Detection	1.39	0.294	25	< 0.083 U1	5.2	46	176
12/21/2017	Detection	1.27	0.363	26	< 0.083 U1		48	152
3/22/2018	Assessment	0.937	0.345	17	< 0.083 U1	5.2	44	140
8/21/2018	Assessment	1.57	0.716	29	< 0.083 U1	4.8	66	188
2/28/2019	Assessment	0.491	0.3 J1	14.6	< 0.04 U1	4.2	31.5	
4/3/2019	Assessment							135
5/23/2019	Assessment	0.520	1.74	18.8	0.04 J1	4.9	29.2	112
8/12/2019	Assessment	1.25	0.302	28.1	0.03 J1	4.9	39.8	160
3/11/2020	Assessment	1.63	0.351	22.8	0.05 J1	4.6	76.4	188
6/2/2020	Assessment	1.58	0.341	23.2	0.05 J1	4.9	77.2	219
11/2/2020	Assessment	2.55	0.523	30.6	0.05 J1	4.4	109	252
3/9/2021	Assessment	1.91	0.478	23.5	0.07	4.5	122	264
5/25/2021	Assessment	1.84	0.6	22.8	0.08	4.1	113	240
11/15/2021	Assessment	2.78	0.67	30.9	0.05 J1	3.7	149	330
3/28/2022	Assessment	2.45	0.66	29.5	0.07	4.0	170	330 L1
6/20/2022	Assessment	2.49	0.75	26.0	0.06	4.2	177	340
11/16/2022	Assessment	2.86	0.71	27.4	0.07	5.1	177	340

Notes:

mg/L: milligrams per liter

SU: standard unit

In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

L1: The associated laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) recovery was outside acceptance limits.

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

^{- -:} Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

Table 1 - Groundwater Data Summary: AD-30 Pirkey - WBAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/11/2016	Background	1.71137 J1	1.92931 J1	54	0.155441 J1	< 0.07 U1	3	2.21375 J1	1.057	< 0.083 U1	< 0.68 U1	< 0.00013 U1	0.278	< 0.29 U1	< 0.99 U1	< 0.86 U1
7/14/2016	Background	< 0.93 U1	< 1.05 U1	54	0.126875 J1	< 0.07 U1	0.994219 J1	2.13856 J1	4.701	< 0.083 U1	< 0.68 U1	0.01	0.649	1.14165 J1	< 0.99 U1	< 0.86 U1
9/7/2016	Background	< 0.93 U1	< 1.05 U1	52	0.153878 J1	< 0.07 U1	0.769517 J1	1.83325 J1	0.312	< 0.083 U1	< 0.68 U1	0.009	0.214	< 0.29 U1	< 0.99 U1	1.34697 J1
10/13/2016	Background	< 0.93 U1	< 1.05 U1	56	0.0606961 J1	< 0.07 U1	0.543859 J1	2.26228 J1	2.27	< 0.083 U1	< 0.68 U1	0.01	0.709	< 0.29 U1	< 0.99 U1	< 0.86 U1
11/15/2016	Background	< 0.93 U1	< 1.05 U1	52	0.0603858 J1	< 0.07 U1	< 0.23 U1	1.91681 J1	4.07	< 0.083 U1	< 0.68 U1	0.009	0.584	< 0.29 U1	1.2068 J1	0.959001 J1
1/12/2017	Background	< 0.93 U1	< 1.05 U1	51	0.0580655 J1	< 0.07 U1	0.504125 J1	1.76108 J1	0.355	< 0.083 U1	< 0.68 U1	0.009	1.588	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/1/2017	Background	0.997045 J1	< 1.05 U1	55	0.0632093 J1	< 0.07 U1	0.740184 J1	1.69598 J1	0.354	< 0.083 U1	< 0.68 U1	0.008	2.59	< 0.29 U1	< 0.99 U1	< 0.86 U1
4/11/2017	Background	< 0.93 U1	< 1.05 U1	55	0.0611 J1	< 0.07 U1	0.535696 J1	1.80383 J1	1.861	< 0.083 U1	< 0.68 U1	0.008	1.207	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/22/2018	Assessment	< 0.93 U1	< 1.05 U1	56.42	0.09 J1	< 0.07 U1	1.47	2.6 J1	1.108	< 0.083 U1	< 0.68 U1	0.00837	0.104	< 0.29 U1	< 0.99 U1	< 0.86 U1
8/21/2018	Assessment	< 100 U1	0.77	62.9	0.07 J1	< 0.05 U1	1.22	2.93	0.987	< 0.083 U1	0.2 J1	0.0118	1.123	< 200 U1	0.4 J1	0.1 J1
2/28/2019	Assessment	< 0.4 U1	< 0.6 U1	43.3	< 0.4 U1	< 0.2 U1	4 J1	1.67	1.144	< 0.04 U1	< 0.4 U1	0.00707	0.461	< 8 U1	< 0.6 U1	< 2 U1
5/23/2019	Assessment	< 0.4 U1	0.6 J1	59.2	< 0.4 U1	< 0.2 U1	1 J1	3.26	1.089	0.04 J1	< 0.4 U1	0.00841	0.165	< 8 U1	< 0.6 U1	< 0.1 U1
8/12/2019	Assessment	< 0.02 U1	0.21	58.0	0.07 J1	< 0.01 U1	0.374	2.10	1.217	0.03 J1	0.06 J1	0.00804	0.345	< 0.4 U1	0.2 J1	< 0.1 U1
3/11/2020	Assessment	< 0.02 U1	0.23	82.6	0.08 J1	< 0.01 U1	0.300	2.82	3.41	0.05 J1	0.09 J1	0.00788	0.010	0.8 J1	0.2 J1	< 0.1 U1
6/2/2020	Assessment	< 0.02 U1	0.19	77.3	0.08 J1	< 0.01 U1	0.531	2.64	0.983	0.05 J1	0.09 J1	0.00779	0.021	< 0.4 U1	0.2	< 0.1 U1
11/2/2020	Assessment	< 0.02 U1	0.15	104	0.09 J1	0.01 J1	0.328	4.10	1.311	0.05 J1	< 0.05 U1	0.0104	0.085	< 0.4 U1	0.2 J1	< 0.1 U1
3/9/2021	Assessment	< 0.02 U1	0.15	115	0.107	0.01 J1	0.301	3.87	1.144	0.07	< 0.05 U1	0.00939	0.018	< 0.1 U1	0.3	< 0.04 U1
5/25/2021	Assessment	< 0.02 U1	0.17	104	0.158	0.019 J1	0.42	4.95	1.83	0.08	0.07 J1	0.00858	0.015	< 0.1 U1	0.30 J1	< 0.04 U1
11/15/2021	Assessment	< 0.02 U1	0.21	113	0.107	0.008 J1	0.51	4.55	1.48	0.05 J1	0.06 J1	0.0113	0.060	< 0.1 U1	0.33 J1	< 0.04 U1
3/28/2022	Assessment	< 0.02 U1	0.19	129	0.125	0.012 J1	0.45	4.76	2.30	0.07	< 0.05 U1	0.0101	0.035	< 0.1 U1	0.44 J1	0.04 J1
6/20/2022	Assessment	< 0.02 U1	0.23	106	0.089	0.014 J1	0.42	4.90	3.71	0.06	< 0.05 U1	0.0100	0.014	< 0.1 U1	0.34 J1	0.04 J1
11/16/2022	Assessment	< 0.02 U1	0.16	89.4	0.108	0.013 J1	0.55	4.86	1.52	0.07	< 0.05 U1	0.0119	0.017	< 0.1 U1	0.35 J1	0.05 J1

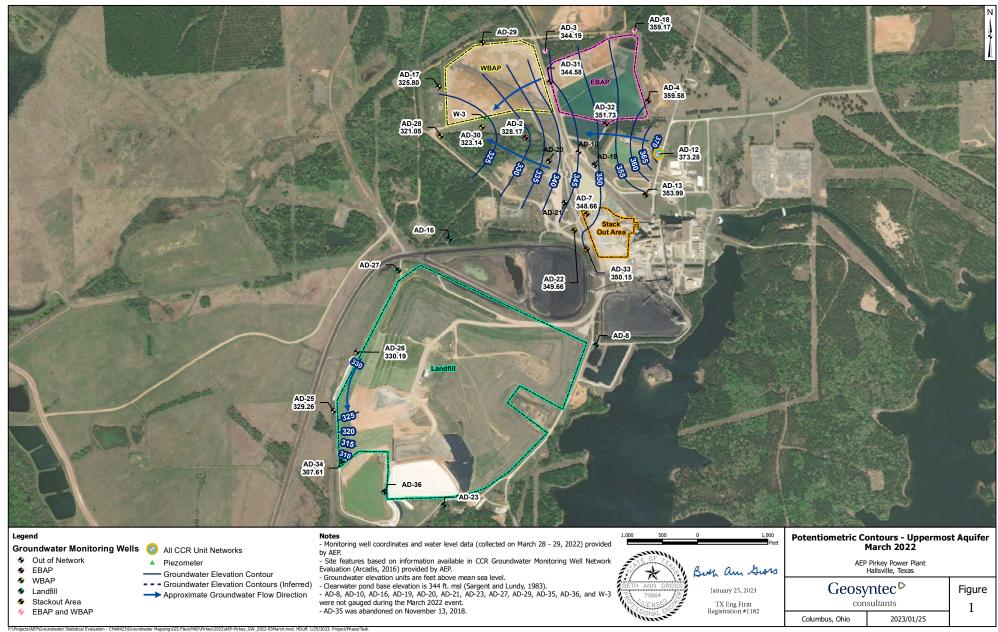
Notes:

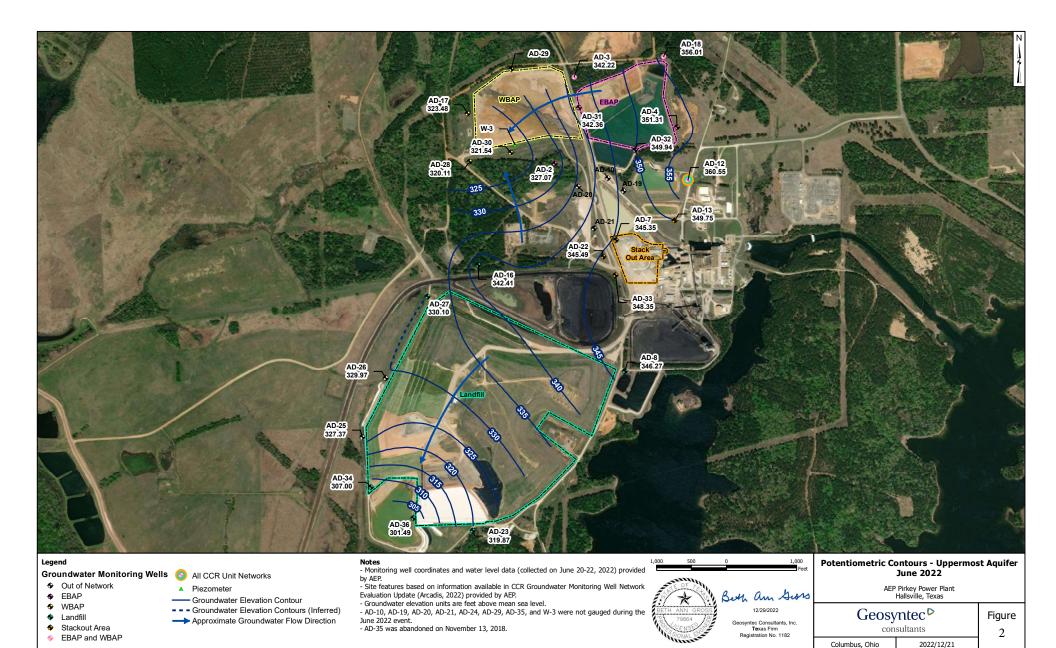
μg/L: micrograms per liter mg/L: milligrams per liter pCi/L: picocuries per liter

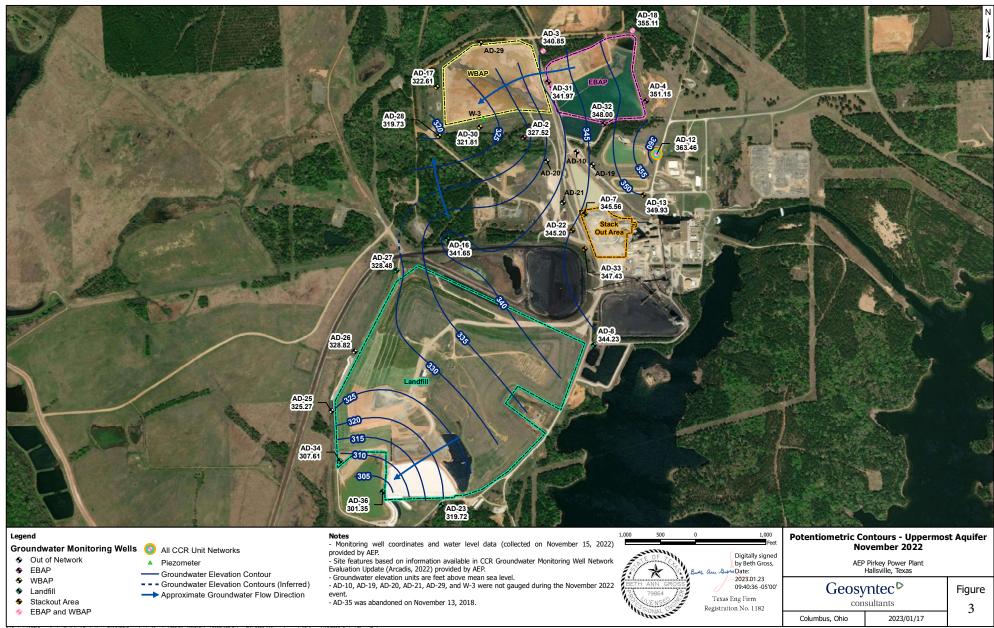
Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

- -: Not analyzed

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit. In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.


Table 1: Residence Time Calculation Summary Pirkey West Bottom Ash Pond


			2022	2-03	2022	2-06	2022-11		
CCR Management Unit	Monitoring Well	Well Diameter (inches)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	
West Bottom Ash Pond	AD-3 [1]	4.0	16.2	7.5	13.4	9.1	12.8	9.5	
	AD-12 ^[1]	4.0	36.4	3.3	21.6	5.6	22.8	5.3	
	AD-17 ^[2]	2.0	7.8	7.8	10.2	5.9	10.6	5.7	
	AD-18 ^[1]	2.0	11.3	5.4	10.4	5.9	11.0	5.5	
	AD-28 ^[2]	2.0	8.9	6.8	12.5	4.9	12.7	4.8	
	AD-30 ^[2]	2.0	12.6	4.8	12.5	4.9	12.1	5.0	


Notes:

[1] - Background Well

[2] - Downgradient Well

APPENDIX 2- Statistical Analyses

The reports summarizing the statistical evaluation follow.

STATISTICAL ANALYSIS SUMMARY WEST BOTTOM ASH POND H.W. Pirkey Power Plant Hallsville, Texas

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

engineers | scientists | innovators

941 Chatham Lane Suite 103 Columbus, Ohio 43221

> March 18, 2022 CHA8500

TABLE OF CONTENTS

SECTION 1	l Execut	tive Summary	
SECTION 2	2 West I	Bottom Ash Pond Evaluation	2-1
2.1	Data V	Validation & QA/QC	2-1
2.2	Statist	ical Analysis	2-1
	2.2.1	Establishment of GWPSs	2-1
	2.2.2	Evaluation of Potential Appendix IV SSLs	2-2
	2.2.3	Establishment of Appendix III Prediction Limits	2-2
	2.2.4	Evaluation of Potential Appendix III SSIs	2-3
2.3	Conclu	usions	2-4
SECTION 3	Refere	ences	3-1

LIST OF TABLES

Table 1	Groundwater Data Summary
Table 2	Appendix IV Groundwater Protection Standards
Table 3	Appendix III Data Summary

LIST OF ATTACHMENTS

Attachment A Certification by Qualified Professional Engineer
Attachment B Statistical Analysis Output

LIST OF ACRONYMS AND ABBREVIATIONS

AEP American Electric Power

ASD Alternative Source Demonstration

CCR Coal Combustion Residuals

CCV Continuing Calibration Verification

GWPS Groundwater Protection Standard

LCL Lower Confidence Limit

LFB Laboratory Fortified Blanks

LPL Lower Prediction Limit

LRB Laboratory Reagent Blanks

MCL Maximum Contaminant Level

NELAP National Environmental Laboratory Accreditation Program

PQL Practical Quantitation Limit

QA Quality Assurance

QC Quality Control

SSI Statistically Significant Increase

SSL Statistically Significant Level

SU Standard Units

TCEQ Texas Commission on Environmental Quality

TDS Total Dissolved Solids

UPL Upper Prediction Limit

UTL Upper Tolerance Limit

WBAP West Bottom Ash Pond

SECTION 1

EXECUTIVE SUMMARY

In accordance with the Texas Commission on Environmetal Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (Title 30 Chapter 352, "CCR rule"), groundwater monitoring has been conducted at the West Bottom Ash Pond (WBAP), an existing CCR unit at the H.W. Pirkey Power Plant located in Hallsville, Texas. Recent groundwater monitoring results were compared to site-specific groundwater protection standards (GWPSs) to identify potential exceedances.

Based on detection monitoring conducted in 2017 and 2018, statistically significant increases (SSIs) over background were concluded for boron at the WBAP. An alternative source was not identified at the time, so the WBAP initiated assessment monitoring in 2018. GWPSs were set in accordance with § 352.951(b) and a statistical evaluation of the assessment monitoring data was conducted. During 2021, sampling events for both Appendix III parameters and Appendix IV parameters, as required by § 352.951(a), were completed in March and May. During the May 2021 assessment monitoring event, statistically significant levels (SSLs) were observed for cobalt (Geosyntec, 2021a). In accordance with § 352.951(e), an alternative source demonstration (ASD) was successfully completed (Geosyntec, 2021b); thus, the unit remained in assessment monitoring. One assessment monitoring event was conducted at the WBAP in November 2021 in accordance with § 352.951(a). The results of the November 2021 assessment event are documented in this report.

Prior to conducting the statistical analyses, the groundwater data underwent several validation tests, including those for completeness, sample tracking accuracy, transcription errors, and consistent use of measurement units. No data quality issues were identified which would impact data usability.

The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. GWPSs were re-established for the Appendix IV parameters. Confidence intervals were calculated for Appendix IV parameters at the compliance wells to assess whether SSLs of Appendix IV parameters were present above the GWPSs. An SSL was identified for cobalt. Thus, either the unit will move to an assessment of corrective measures or an ASD will be conducted to evaluate if the unit can remain in assessment monitoring. Certification of the selected statistical methods by a qualified professional engineer is documented in Attachment A.

SECTION 2

WEST BOTTOM ASH POND EVALUATION

2.1 Data Validation & QA/QC

During the assessment monitoring program, one set of samples was collected for analysis from the background and compliance wells to meet the requirements of § 352.951(a) in November 2021. Samples from November 2021 were analyzed for all Appendix III and Appendix IV parameters. A summary of data collected during this assessment monitoring event is presented in Table 1.

Chemical analysis was completed by an analytical laboratory certified by the National Environmental Laboratory Accreditation Program (NELAP). Quality assurance and quality control (QA/QC) samples completed by the analytical laboratory included the use of laboratory reagent blanks (LRBs), continuing calibration verification (CCV) samples, and laboratory fortified blanks (LFBs).

The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.9.6.32 statistics software. The export file was checked against the analytical data for transcription errors and completeness. No QA/QC issues were noted which would impact data usability.

2.2 Statistical Analysis

Statistical analyses for the WBAP were conducted in accordance with the November 2021 *Statistical Analysis Plan* (Geosyntec, 2021c). Time series plots and results for all completed statistical tests are provided in Attachment B.

The data obtained in November 2021 were screened for potential outliers. No outliers were identified for this event.

2.2.1 Establishment of GWPSs

A GWPS was established for each Appendix IV parameter in accordance with the *Statistical Analysis Plan* (Geosyntec, 2021c). The established GWPS was determined to be the greater value of the background concentration and the maximum contaminant level (MCL) for each Appendix IV parameter. To determine background concentrations, an upper tolerance limit (UTL) was calculated using pooled data from the background wells collected during the background monitoring and assessment monitoring events. Tolerance limits were calculated parametrically with 95% coverage and 95% confidence for chromium, combined radium, and lithium. Non-parametric tolerance limits were calculated for arsenic, barium, beryllium, cadmium, cobalt, fluoride, lead, mercury, and selenium due to apparent non-normal distributions and for antimony,

molybdenum, and thallium due to a high non-detect frequency. Tolerance limits and the final GWPSs are summarized in Table 2.

2.2.2 Evaluation of Potential Appendix IV SSLs

A confidence interval was constructed for each Appendix IV parameter at each compliance well. Confidence limits were generally calculated parametrically ($\alpha = 0.01$); however, non-parametric confidence limits were calculated in some cases (e.g., when the data did not appear to be normally distributed or when the non-detect frequency was too high). An SSL was concluded if the lower confidence limit (LCL) exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). Calculated confidence limits are shown in Attachment B.

The following SSLs were identified at the Pirkey WBAP:

• The LCL for cobalt exceeded the GWPS of 0.00900 mg/L at AD-28 (0.01345 mg/L).

As a result, the Pirkey WBAP will either move to an assessment of corrective measures or an ASD will be conducted to evaluate if the unit can remain in assessment monitoring.

2.2.3 Establishment of Appendix III Prediction Limits

Upper prediction limits (UPLs) were previously established for all Appendix III parameters following the background monitoring period. Intrawell tests were used to evaluate potential SSIs for calcium, pH, sulfate, and total dissolved solids (TDS), whereas interwell tests were used to evaluate potential SSIs for boron, chloride, and fluoride. Interwell and intrawell prediction limits are updated periodically during the assessment monitoring period as sufficient data became available.

For the intrawell tests, insufficient data was available to compare against the existing background dataset, thus the prediction limits were not updated for the intrawell tests at this time. The intrawell prediction limits were previously calculated using historical data through June 2020 (Geosyntec, 2021d). The intrawell prediction limits were used to evaluate potential SSIs for calcium, pH, sulfate, and TDS.

Prediction limits for the interwell tests were recalculated using data collected during the 2021 assessment monitoring events. New background well data were tested for outliers prior to being added to the background dataset. Background well data were also evaluated for statistically significant trends using the Sen's Slope/Mann-Kendall trend test, and the results are included in Attachment B. The revised interwell prediction limit was used to evaluate a potential SSI for boron, chloride, and fluoride.

After the revised background set was established, a parametric or non-parametric analysis was selected based on the distribution of the data and the frequency of non-detect data. Estimated results less than the practical quantitation limit (PQL) – i.e., "J-flagged" data – were considered detections and the estimated results were used in the statistical analyses. Non-parametric analyses

were selected for datasets with at least 50% non-detect data or datasets that could not be normalized. Parametric analyses were selected for datasets (either transformed or untransformed) that passed the Shapiro-Wilk / Shapiro-Francía test for normality. The Kaplan-Meier non-detect adjustment was applied to datasets with between 15% and 50% non-detect data. For datasets with fewer than 15% non-detect data, non-detect data were replaced with one half of the PQL. The selected analysis (i.e., parametric or non-parametric) and transformation (where applicable) for each background dataset are shown in Attachment B.

Interwell UPLs were updated for boron, chloride, and fluoride using historical data through November 2021. Intrawell UPLs were previously calculated for calcium, pH, sulfate, and TDS using historical data through June 2020 to represent background values. The updated prediction limits are summarized in Table 3. The prediction limits were calculated for a one-of-two retesting procedure; i.e., if at least one sample in a series of two does not exceed the UPL, or in the case of pH, is neither less than the LPL nor greater than the UPL, then it can be concluded that an SSI has not occurred. In practice, where the initial result does not exceed the UPL, or in the case of pH, is neither less than the LPL nor greater than the UPL, a second sample will not be collected. The retesting procedures allow achieving an acceptably high statistical power to detect changes at compliance wells for constituents evaluated using intrawell prediction limits.

2.2.4 Evaluation of Potential Appendix III SSIs

While SSLs were identified for the Appendix IV parameters, a review of the Appendix III results was also completed to assess whether concentrations of Appendix III parameters at the compliance wells exceeded background concentrations.

Data collected during the November 2021 assessment monitoring event from each compliance well were compared to the re-calculated prediction limits to evaluate results above background values. The results from this event and the prediction limits are summarized in Table 3. The following exceedances of the UPLs were noted:

- Boron concentrations exceeded the interwell UPL of 0.100 mg/L at AD-28 (0.363 mg/L) and AD-30 (2.78 mg/L).
- Chloride concentrations exceeded the interwell UPL of 9.01 mg/L at AD-17 (31.3 mg/L) and AD-30 (30.9 mg/L).
- The pH value was below the intrawell LPL of 4.0 SU at AD-30 (3.7 SU).
- Sulfate concentrations exceeded the intrawell UPL of 31.6 mg/L at AD-30 (149 mg/L).
- TDS concentrations exceeded the intrawell UPL of 206 mg/L at AD-30 (330 mg/L).

While the prediction limits were calculated for a one-of-two retesting procedure, SSIs were conservatively assumed if the November 2021 sample was above the UPL or below the LPL.

Based on these results, concentrations of Appendix III constituents appear to be above background levels at compliance wells.

2.3 Conclusions

A semi-annual assessment monitoring event was conducted at the WBAP in accordance with the CCR Rule. The laboratory and field data were reviewed prior to statistical analysis, with no QA/QC issues identified that impacted data usability. A review of outliers identified no potential outliers in the November 2021 data. GWPSs were re-established for the Appendix IV parameters. A confidence interval was constructed at each compliance well for each Appendix IV parameter; SSLs were concluded if the entire confidence interval exceeded the GWPS. An SSL was identified for cobalt. Appendix III parameters were compared to established prediction limits, with exceedances identified for boron, chloride, pH, sulfate, and TDS.

Based on this evaluation, the Pirkey WBAP CCR unit will either move to an assessment of corrective measures or an ASD will be conducted to evaluate if the unit can remain in assessment monitoring.

SECTION 3

REFERENCES

Geosyntec Consultants, Inc. (Geosyntec). 2021a. Statistical Analysis Summary – West Bottom Ash Pond, Pirkey, Hallsville, Texas. September.

Geosyntec. 2021b. Alternative Source Demonstration Report - Texas State CCR Rule. H.W. Pirkey Power Plant. December.

Geosyntec. 2021c. Statistical Analysis Plan – H.W. Pirkey Power Plant. November.

Geosyntec. 2021d. Statistical Analysis Summary – West Bottom Ash Pond, H.W. Pirkey Plant. March.



Table 1 - Groundwater Data Summary Pirkey Plant - West Bottom Ash Pond

Well ID	AD-3	AD-12	AD-17	AD	AD-18		AD-30	
Well Classification		Background	Background	Compliance	Background		Compliance	Compliance
Parameter	Unit	11/16/2021	11/15/2021	11/16/2021	11/16/2021	11/17/2021	11/16/2021	11/15/2021
Antimony	μg/L	0.1 U	0.1 U	0.1 U	-	0.1 U	0.1 U	0.1 U
Arsenic	μg/L	1.90	0.05 J	0.21	-	0.19	0.27	0.21
Barium	μg/L	64.1	26.5	266	-	82.2	120	113
Beryllium	μg/L	0.200	0.148	0.686	-	0.078	0.501	0.107
Boron	mg/L	0.054	0.012 J	0.022 J	-	0.01 J	0.363	2.78
Cadmium	μg/L	0.016 J	0.01 J	0.058	-	0.011 J	0.049	0.008 J
Calcium	mg/L	4.92	0.28	0.98	-	0.20	1.22	0.67
Chloride	mg/L	6.42	8.03	31.3	-	5.99	4.79	30.9
Chromium	μg/L	0.63	0.30	0.33	-	0.31	0.59	0.51
Cobalt	μg/L	5.87	1.38	11.8	-	0.801	11.8	4.55
Combined Radium	pCi/L	1.32	1.76	6.42	-	1.91	2.17	1.48
Fluoride	mg/L	0.12	0.07	0.29	-	0.06 U	0.58	0.05 J
Lead	μg/L	0.43	0.07 J	0.13 J	-	0.2 U	0.10 J	0.06 J
Lithium	mg/L	0.0722	0.0110	0.0236	1	0.0124	0.0240	0.0113
Mercury	μg/L	0.006	0.005 U	0.350	ı	0.030	0.024	0.060
Molybdenum	μg/L	0.5 U	0.5 U	0.5 U	ı	0.5 U	0.5 U	0.5 U
Selenium	μg/L	0.5 U	0.10 J	0.35 J	-	0.11 J	0.17 J	0.33 J
Sulfate	mg/L	31.3	2.90	2.58	-	6.23	24.2	149
Thallium	μg/L	0.2 U	0.2 U	0.04 J	ı	0.2 U	0.2 U	0.2 U
Total Dissolved Solids	mg/L	150	90	90	1	100	100	330
рН	SU	5.3	3.5	4.0	3.9	-	4.3	3.7

Notes:

mg/L: milligrams per liter $\mu g/L$: micrograms per liter

SU: standard unit

pCi/L: picocuries per liter

U: Parameter was not present in concentrations above method detection limit and is reported as the reporting limit

J: Estimated value. Parameter was detected in concentrations below the reporting limit

Due to limited groundwater volume, the pH value for AD-18 was collected the day prior to collection of analytical samples.

Table 2: Appendix IV Groundwater Protection Standards Pirkey Plant - West Bottom Ash Pond

Constituent Name	MCL	Calculated UTL	GWPS		
Antimony, Total (mg/L)	0.00600	0.00500	0.00600		
Arsenic, Total (mg/L)	0.0100	0.00500	0.0100		
Barium, Total (mg/L)	2.00	0.157	2.00		
Beryllium, Total (mg/L)	0.00400	0.00200	0.00400		
Cadmium, Total (mg/L)	0.00500	0.00100	0.00500		
Chromium, Total (mg/L)	0.100	0.00386	0.100		
Cobalt, Total (mg/L)	n/a	0.00900	0.00900		
Combined Radium, Total (pCi/L)	5.00	3.15	5.00		
Fluoride, Total (mg/L)	4.00	1.00	4.00		
Lead, Total (mg/L)	n/a	0.00500	0.00500		
Lithium, Total (mg/L)	n/a	0.143	0.143		
Mercury, Total (mg/L)	0.00200	0.0000640	0.00200		
Molybdenum, Total (mg/L)	n/a	0.00500	0.00500		
Selenium, Total (mg/L)	0.0500	0.00500	0.0500		
Thallium, Total (mg/L)	0.00200	0.00200	0.00200		

Notes:

MCL = Maximum Contaminant Level

GWPS = Groundwater Protection Standard

Calculated UTL (Upper Tolerance Limit) represents site-specific background values.

Grey cells indicate the GWPS is based on the calculated UTL because an MCL does not exist.

Table 3 - Appendix III Data Summary Pirkey Plant - West Bottom Ash Pond

Analyte	Unit	Description	AD-17	AD-28	AD-30		
,		1	11/16/2021	11/16/2021	11/15/2021		
Boron	mg/L	Interwell Background Value (UPL)	0.100				
Doron	mg/L	Analytical Result	0.022	0.363	2.78		
Calcium	mg/L	Intrawell Background Value (UPL)	1.63	3.21	1.74		
Calcium	mg/L	Analytical Result	0.98	1.22	0.67		
Chloride		Interwell Background Value (UPL)	9.01				
	mg/L	Analytical Result	31.3	4.79	30.9		
Fluoride	mg/L	Interwell Background Value (UPL)	1.00				
riuoriae	mg/L	Analytical Result	0.29	0.58	0.05		
		Intrawell Background Value (UPL)	4.8	5.6	5.4		
рН	SU	Intrawell Background Value (LPL)	3.3	3.5	4.0		
		Analytical Result	4.0	4.3	3.7		
Sulfate	ma/I	Intrawell Background Value (UPL)	9.05	27.2	31.6		
	mg/L	Analytical Result	2.58	24.2	149		
Total Dissolved Solids	mg/L	Intrawell Background Value (UPL)	111	133	206		
	mg/L	Analytical Result	90	100	330		

Notes:

UPL: Upper prediction limit LPL: Lower prediction limit

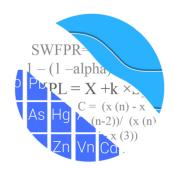
Bold values exceed the background value.

Background values are shaded gray.

ATTACHMENT A Certification by Qualified Professional Engineer

Certification by Qualified Professional Engineer

I certify that the selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Pirkey West Bottom Ash Pond CCR management area and that the requirements of § 352.931(a) have been met.


DAVID ANTH	IONY MILLER	STATE OF TEXTS
Printed Name of Licer	sed Professional Engineer	DAVID ANTHONY MILLER 112498 CENSE
David Anth Signature	ony Miller	WAS TONAL ENGINEER
112498 License Number	TEXA5 Licensing State	03.19.22 Date

ATTACHMENT B Statistical Analysis Output

GROUNDWATER STATS CONSULTING

February 25, 2022

Geosyntec Consultants Attn: Ms. Allison Kreinberg 941 Chatham Lane, #103 Columbus, OH 43221

Re: Pirkey WBAP - Assessment Monitoring Event & Background Update 2021

Dear Ms. Kreinberg,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the background update and assessment of 2021 groundwater data for American Electric Power Inc.'s Pirkey West Bottom Ash Pond. The analysis complies with the Texas Commission of Environmental Quality rule 30 TAC 352 as well as with the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling began at the site for the Coal Combustion Residuals (CCR) program in 2016. The monitoring well network, as provided by Geosyntec Consultants, consists of the following:

o **Upgradient wells:** AD-3, AD-12, and AD-18

o **Downgradient wells:** AD-17, AD-28, and AD-30

Data were sent electronically, and the statistical analysis was reviewed by Andrew Collins, Project Manager of Groundwater Stats Consulting. The analysis was conducted according to the Statistical Analysis Plan and initial screening evaluation prepared in November 2017 by GSC and approved by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to GSC.

The CCR program consists of the following constituents listed below. The terms "constituent" and "parameter" are interchangeable.

- Appendix III (Detection Monitoring) boron, calcium, chloride, fluoride, pH, sulfate, and TDS
- Appendix IV (Assessment Monitoring) antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Time series and box plots for Appendix III and IV parameters are provided for all wells and constituents, and are used to evaluate concentrations over the entire record (Figures A & B, respectively). A summary of the values identified as outliers in this report and through previous screenings follows this letter. These values are deselected prior to the statistical analysis. All flagged values may also be seen in a lighter font and disconnected symbol on the time series graphs (Figure C).

In earlier analyses, data at all wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix III parameters based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves were provided during the initial background screening and demonstrated that the selected statistical methods for Appendix III parameters comply with the USEPA Unified Guidance recommendations as discussed below. During this analysis, data from all wells were screened for updating Appendix III background statistical limits, which was last performed in January 2021, as described below.

Summary of Statistical Methods – Appendix III Parameters

Based on the original background screening described in the 2017 screening report, the following statistical methods were selected for Appendix III parameters:

- 1) Intrawell prediction limits, combined with a 1-of-2 resample plan for calcium, pH, sulfate, and TDS
- 2) Interwell prediction limits combined with a 1-of-2 resample plan for boron, chloride, and fluoride

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the annual false positive rate associated with parametric limits is fixed at 10% as recommended by the EPA Unified

Guidance (2009), the false positive rate associated with nonparametric limits is not fixed and depends upon the available background sample size, number of future comparisons, and verification resample plan. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits as appropriate. Non-detects are handled as follows:

- No statistical analyses are required on wells and analytes containing 100% non-detects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects in background, the reporting limit utilized for non-detects is the practical quantification limit (PQL) as reported by the laboratory and there is no replacement of historical reporting limits with the most recent reporting limit. It was noted that the more recent reporting limits are significantly lower than those reported historically.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the intrawell case, data for all wells and constituents may be re-evaluated when a minimum of 4 new data points are available to determine whether earlier concentrations are representative of present-day groundwater quality. In the interwell case, prediction limits are updated with upgradient well data following each sampling event after careful screening for any new outliers. In some cases, deselecting the earlier portion of data may be necessary prior to construction of limits so that resulting statistical limits are conservative (lower) from a regulatory perspective and capable of rapidly detecting changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Appendix III Background Update Summaries

November 2019

Samples from all wells for intrawell parameters and from all upgradient wells for interwell parameters were evaluated using Tukey's outlier test and visual screening. Samples during August and December 2017 that were previously absent were also incorporated into this analysis. No values were noted or flagged as outliers for Appendix III parameters. A summary of Tukey's test results and flagged outliers followed the November 2019 background update.

For constituents requiring intrawell prediction limits, the Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through April 2017 to the new compliance samples at each well through February 2019 to evaluate whether the groups are statistically different at the 99% confidence level. Statistically significant differences were found between the two groups for pH in upgradient well AD-18, and sulfate in downgradient well AD-30. This resulted in truncating earlier portions of background data for pH in upgradient well AD-18 to use the 8 most recent values and using trend tests in lieu of prediction limits for sulfate in downgradient well AD-30. The full results of the Mann-Whitney test were included with the November 2019 background update.

January 2021

Prior to updating background data for the 2020 analysis, Tukey's outlier test and visual screening were used to evaluate data for outliers at all wells for calcium, pH, sulfate, and TDS, which utilize intrawell prediction limits, and at all upgradient wells for boron, chloride, and fluoride, which utilize interwell prediction limits. No values were noted or flagged as outliers for Appendix III parameters.

No seasonal adjustments were made. However, calcium at well AD-17 showed a possible seasonal pattern, which if it persists, could suggest the need for a seasonal adjustment in the future.

For constituents requiring intrawell prediction limits, the Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through February 2019 to the new compliance samples at each well through June 2020 to evaluate whether the groups are statistically different at the 99% confidence level. A statistically significant difference was found between the two groups for sulfate in well AD-17 and the record for

sulfate at well AD-17 was updated because the recent data were lower than the older data, and the update resulted in the same or a lower prediction limit.

Since the December 2019 background update, concentrations for sulfate in well AD-30 briefly returned (decreased) to near the older historic concentrations, but recently have substantially increased. Although the Mann-Whitney test did not identify a statistically significant difference in medians, a trend test was recommended in lieu of a prediction limit for this well/constituent pair until concentrations stabilize. Additionally, because pH concentrations in upgradient well AD-18 have returned to historical levels, all historical data were used instead of using a truncated portion of background data as was recommended during the 2019 background update. Intrawell prediction limits using all historical data through June 2020, combined with a 1-of-2 resample plan, were constructe and a trend test was used to evaluate sulfate in well AD-30 which resulted in an increasing trend during the 2020 background update.

For parameters tested using interwell analyses, the Sen's Slope/Mann-Kendall trend test was used to evaluate data in upgradient wells and determine whether concentrations are statistically increasing, decreasing or stable. A statistically significant increasing trend was identified for boron in upgradient well AD-18, and statistically significant decreasing trends were noted for fluoride in upgradient wells AD-3 and AD-12. Since all three of these trends were strongly influenced by substantial numbers of non-detects near one end of the record, no adjustments were made at this time. All well/constituent pairs for parameters using interwell prediction limits were updated to use all historical data through November 2020.

February 2022

Interwell and intrawell prediction limits were last updated during Fall 2020, and the results of those findings were submitted with the January 5, 2021 report. During this analysis, upgradient well data through November 2021 were re-screened for the purpose of updating the interwell prediction limits for boron, chloride, and fluoride. Intrawell prediction limits will be updated during the Fall 2022 when sufficient compliance samples are available.

Outlier Analysis

Prior to updating background data during this analysis, Tukey's outlier test and visual screening were used to re-evaluate data through November 2021 at all upgradient wells for parameters utilizing interwell prediction limits (boron, chloride, and fluoride). Tukey's outlier test identified several values as potential outliers; though, no new values were

flagged as outliers and no changes were made to previously flagged outliers for these constituents due to the potential outliers either being consistent with previous data, or below the Maximum Containment Level (MCL). Tukey's outlier test results for all Appendix III parameters are shown in Figure C.

For parameters which use intrawell prediction limits (calcium, pH, sulfate, and TDS), values were not re-evaluated for new outliers as these records had insufficient samples for updating background during this evaluation period.

<u>Intrawell – Prediction Limits</u>

Intrawell prediction limits, combined with a 1-of-2 resample plan, were constructed using historical data through June 2020 for calcium, pH, sulfate, and TDS (Figure D). Background data sets for all parameters utilizing intrawell prediction limits will be updated after the Fall 2022 sample event when a minimum of 4 compliance samples are available. A summary table of the limits follows this report.

Due to significant differences identified between background and compliance medians using the Mann-Whitney test as discussed above, trend tests were initially recommended in lieu of prediction limits for sulfate in downgradient well AD-30. However, during this analysis, a prediction limit was constructed using the earlier and stable portion of the record through April 2017 for the purpose of comparing future compliance samples. A list of any well/constituent pairs using a truncated portion of their record follows this report.

<u>Interwell – Trend Test Evaluation</u>

The Sen's Slope/Mann Kendall trend test was used to evaluate data at upgradient wells for boron, chloride, and fluoride to identify statistically significant increasing or decreasing trends (Figure E). The results of the trend analyses showed decreasing trends for fluoride in upgradient wells AD-3, AD-12, and AD-18. However, the magnitudes of the trends were low relative to the average concentrations in these wells; therefore, no adjustments were required at this time.

<u>Interwell – Prediction Limits</u>

Interwell prediction limits, combined with a 1-of-2 resample plan, were constructed using all available data from upgradient wells through November 2021 for boron, chloride, and fluoride (Figure F). Time series plots were included with the interwell prediction limit graphs to display concentrations at upgradient wells that were used to construct the statistical limits. Interwell prediction limits pool upgradient well data to establish a

background limit for an individual constituent. A summary table of the updated limits may be found following this letter in the Prediction Limit Summary Table.

Evaluation of Appendix IV Parameters – November 2021

Prior to evaluating Appendix IV parameters, upgradient well data are screened through both visual screening and Tukey's outlier test for potential outliers and extreme trending patterns that would lead to artificially elevated statistical limits.

For the current analysis, Tukey's outlier test on pooled upgradient well data through November 2021 identified outliers for beryllium, chromium, combined radium 226 + 228, and lithium. Among these identified values, no new values were flagged as outliers as they were similar to concentrations upgradient of the facility or below the MCL.

During previous screenings, the highest value for lithium at upgradient well AD-3 was flagged to construct statistical limits that are conservative (i.e., lower) from a regulatory perspective. The reporting limit for thallium for the February 2019 event was 0.01 mg/L, which is higher than the historical reporting limit of 0.002 mg/L. Therefore, this value was flagged as an outlier at wells with reported non-detects for the February 2019 event. Similarly, the high non-detects for molybdenum of 0.04 mg/L for February and May of 2019 are flagged since they are censored at a much higher level than the other non-detects.

Additionally, downgradient well data through November 2021 were screened through visual screening using time series graphs. Since the downgradient well data are used to construct confidence intervals, a regulatory conservative approach is taken in that values that are marginally high relative to the rest of the data are retained unless there is particular justification for excluding them. No new outliers were flagged and no changes to previously flagged outliers were made during this analysis. All flagged values may be seen on the Outlier Summary following this letter (Figure C).

Interwell Upper Tolerance Limits

Upper tolerance limits were used to calculate background limits from pooled upgradient well data through November 2021 for Appendix IV parameters (Figure G). For parametric limits a target of 95% confidence and 95% coverage is used. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples.

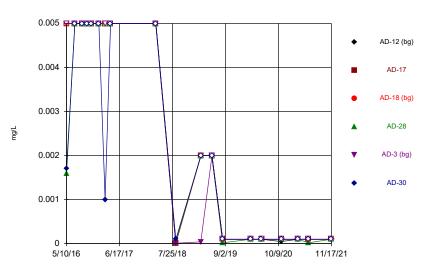
Groundwater Protection Standards

These background limits were compared to the Maximum Contaminant Levels (MCLs) as shown in the Groundwater Protection Standard (GWPS) table following this letter to determine the highest limit for use as the GWPS in the confidence interval comparisons (Figure H).

Confidence Intervals

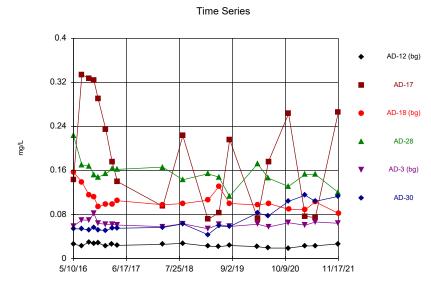
Confidence intervals were then constructed on downgradient wells using all data through November 2021 for each of the Appendix IV parameters and then compared to the GWPS, i.e., the highest limit of the MCL or background limit as discussed above (Figure I). Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard. An exceedance was found for cobalt in downgradient well AD-28. A summary of the confidence interval results follows this letter.

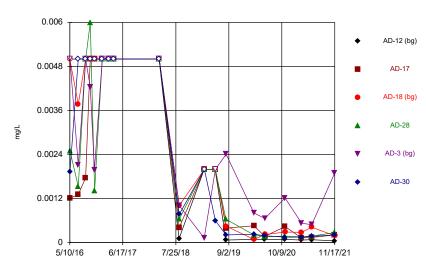
Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Pirkey West Bottom Ash Pond. If you have any questions or comments, please feel free to contact us.


For Groundwater Stats Consulting,

Easton Rayner

Groundwater Analyst

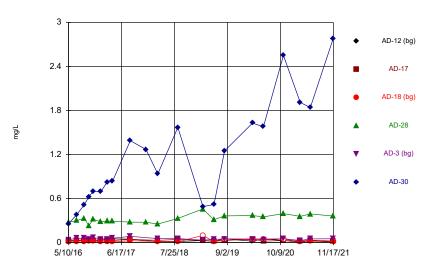

Andrew T. Collins
Project Manager


Constituent: Antimony, total Analysis Run 1/24/2022 2:15 PM View: Descriptive
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

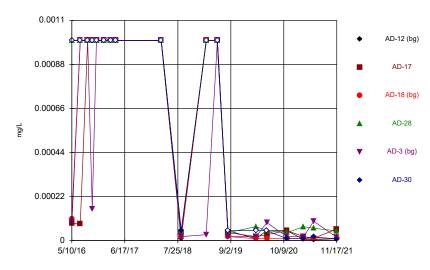
Sanitas™ v.9.6.32 . UG

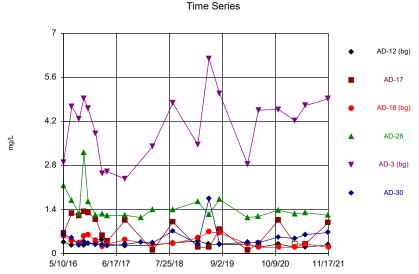
Constituent: Barium, total Analysis Run 1/24/2022 2:15 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Constituent: Arsenic, total Analysis Run 1/24/2022 2:15 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

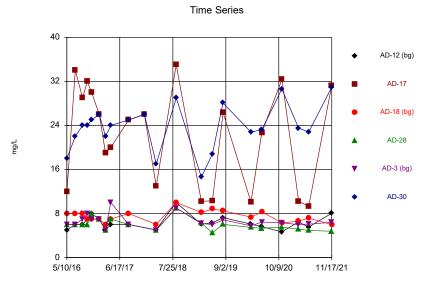

Sanitas™ v.9.6.32 . UG

Constituent: Beryllium, total Analysis Run 1/24/2022 2:15 PM View: Descriptive
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

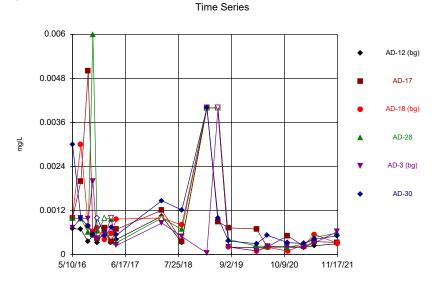

Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values


Constituent: Boron, total Analysis Run 1/24/2022 2:15 PM View: Descriptive
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Time Series


Constituent: Cadmium, total Analysis Run 1/24/2022 2:15 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values.



Constituent: Calcium, total Analysis Run 1/24/2022 2:15 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 . UG

Constituent: Chloride, total Analysis Run 1/24/2022 2:15 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

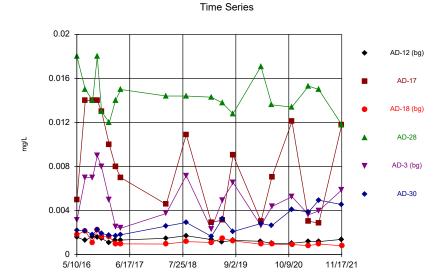
Constituent: Chromium, total Analysis Run 1/24/2022 2:15 PM View: Descriptive
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 . UG

5/10/16

6/17/17

Time Series AD-12 (bg) AD-18 (bg) AD-30

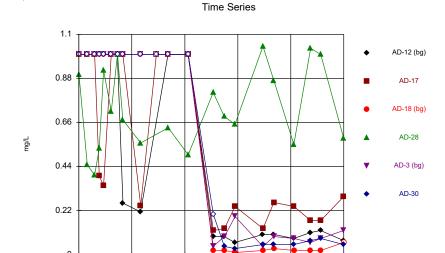

Constituent: Combined Radium 226 + 228 Analysis Run 1/24/2022 2:15 PM View: Descriptive
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

9/2/19

10/9/20

11/17/21

7/25/18


Constituent: Cobalt, total Analysis Run 1/24/2022 2:15 PM View: Descriptive
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

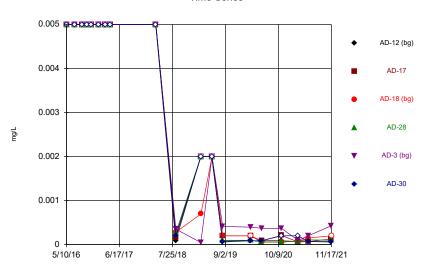
Sanitas™ v.9.6.32 . UG

Hollow symbols indicate censored values.

5/10/16

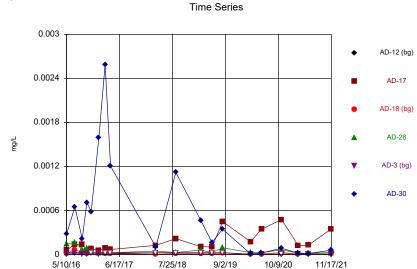
6/17/17

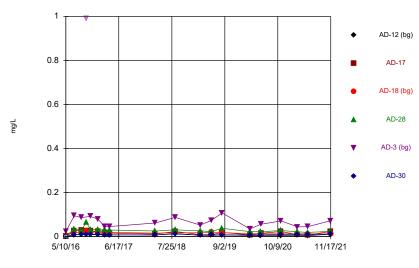
Constituent: Fluoride, total Analysis Run 1/24/2022 2:15 PM View: Descriptive
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


9/2/19

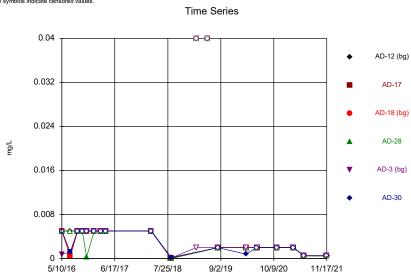
10/9/20

11/17/21

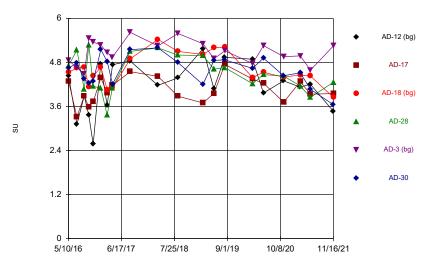

7/25/18


Constituent: Lead, total Analysis Run 1/24/2022 2:15 PM View: Descriptive
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

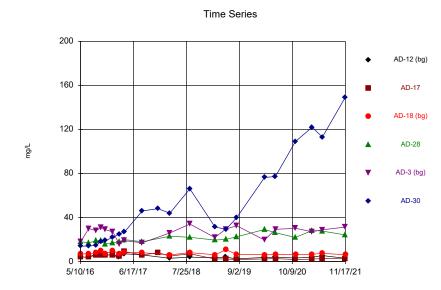
Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values.

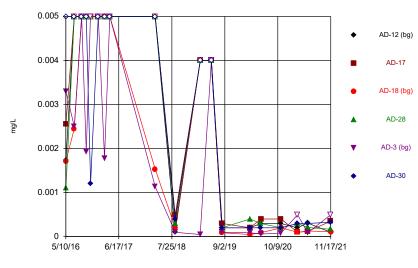

Constituent: Mercury, total Analysis Run 1/24/2022 2:15 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Time Series

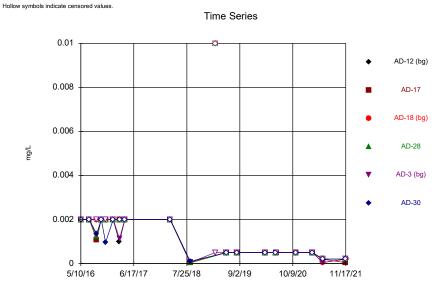

Constituent: Lithium, total Analysis Run 1/24/2022 2:15 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

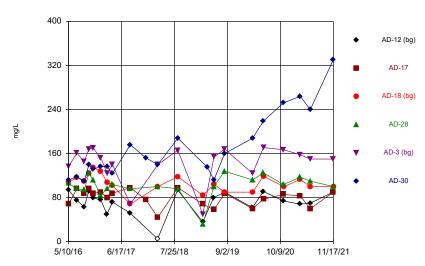
Sanitas™ v.9.6.32 . UG Hollow symbols indicate censored values.


Constituent: Molybdenum, total Analysis Run 1/24/2022 2:15 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

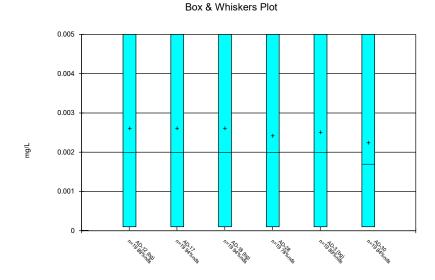

Constituent: pH, field Analysis Run 1/24/2022 2:15 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 . UG

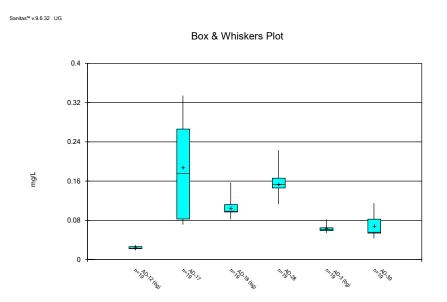

Constituent: Sulfate, total Analysis Run 1/24/2022 2:15 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

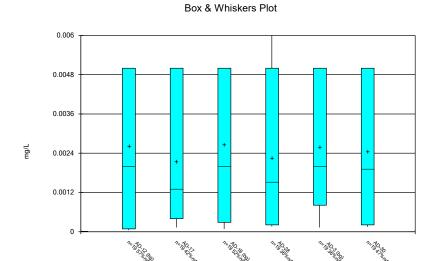

Constituent: Selenium, total Analysis Run 1/24/2022 2:15 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 . UG

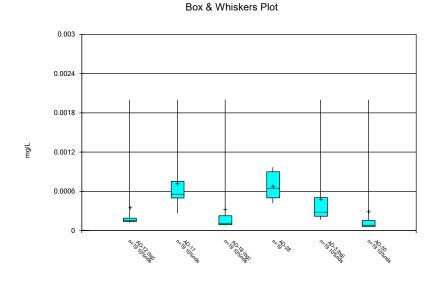


Constituent: Thallium, total Analysis Run 1/24/2022 2:15 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

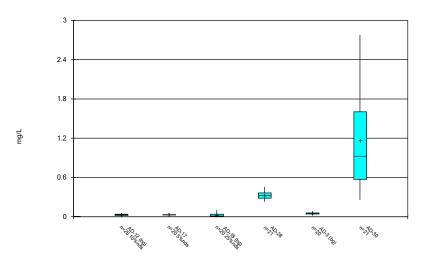

Time Series

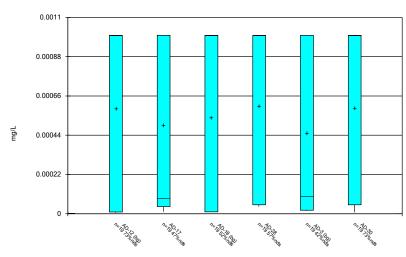

Constituent: Total Dissolved Solids [TDS] Analysis Run 1/24/2022 2:15 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Constituent: Antimony, total Analysis Run 1/24/2022 2:17 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

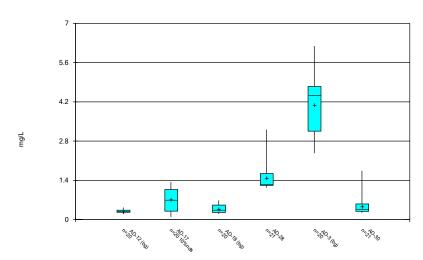


Constituent: Barium, total Analysis Run 1/24/2022 2:17 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Constituent: Arsenic, total Analysis Run 1/24/2022 2:17 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

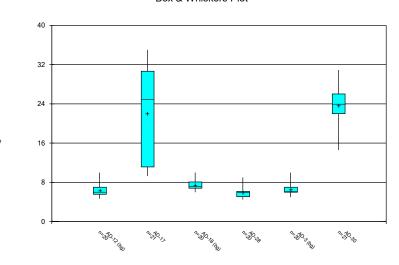

Constituent: Beryllium, total Analysis Run 1/24/2022 2:17 PM View: Descriptive
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Constituent: Boron, total Analysis Run 1/24/2022 2:17 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

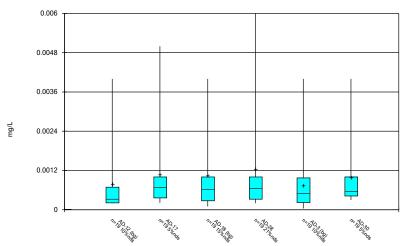

Box & Whiskers Plot

Constituent: Cadmium, total Analysis Run 1/24/2022 2:17 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

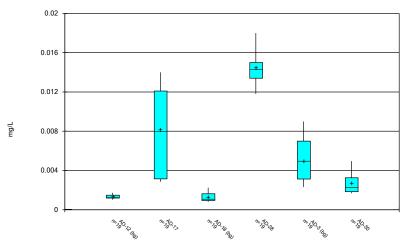
Sanitas™ v.9.6.32 . UG


Box & Whiskers Plot

Constituent: Calcium, total Analysis Run 1/24/2022 2:17 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

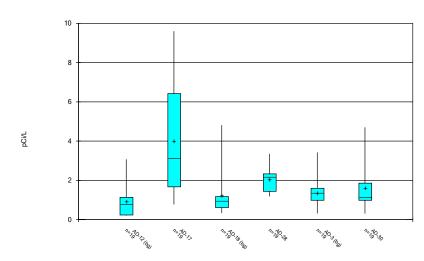

Sanitas™ v.9.6.32 . UG

Box & Whiskers Plot



Constituent: Chloride, total Analysis Run 1/24/2022 2:17 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

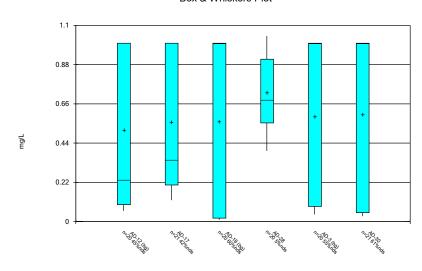
Constituent: Chromium, total Analysis Run 1/24/2022 2:17 PM View: Descriptive
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

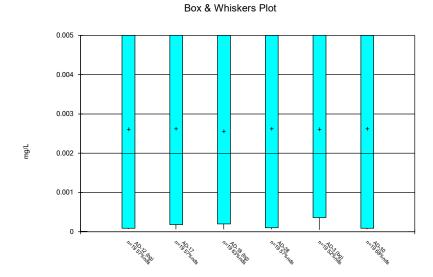


Box & Whiskers Plot

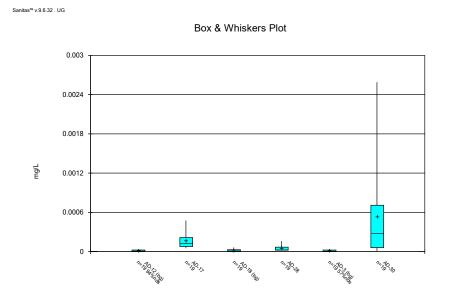
Constituent: Cobalt, total Analysis Run 1/24/2022 2:17 PM View: Descriptive
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 . UG

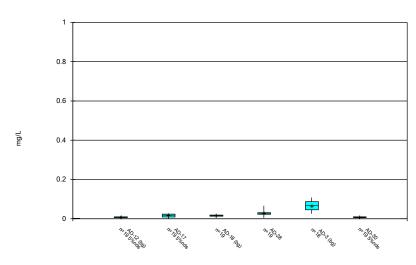

Box & Whiskers Plot


Constituent: Combined Radium 226 + 228 Analysis Run 1/24/2022 2:17 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 . UG

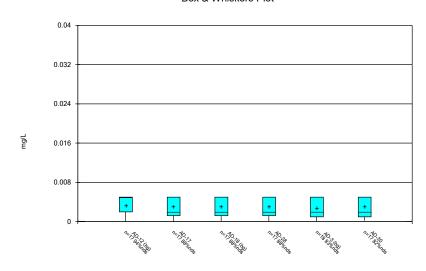

Box & Whiskers Plot

Constituent: Fluoride, total Analysis Run 1/24/2022 2:17 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

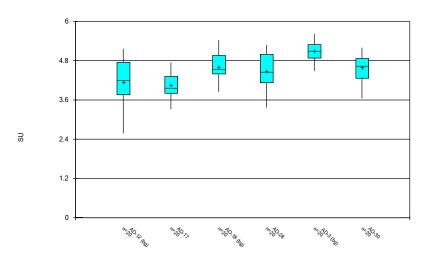


Constituent: Lead, total Analysis Run 1/24/2022 2:17 PM View: Descriptive
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

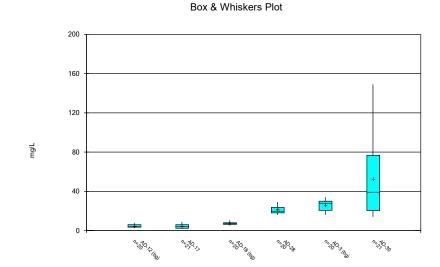
Constituent: Mercury, total Analysis Run 1/24/2022 2:17 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

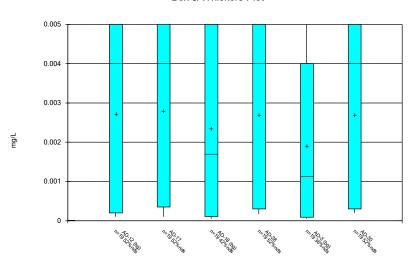


Constituent: Lithium, total Analysis Run 1/24/2022 2:17 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Sanitas™ v.9.6.32 . UG

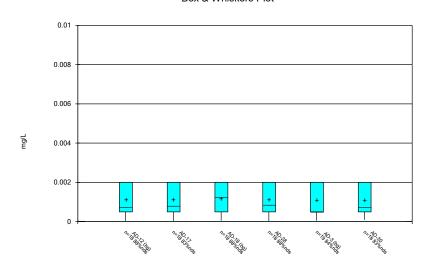
Box & Whiskers Plot


Constituent: Molybdenum, total Analysis Run 1/24/2022 2:17 PM View: Descriptive
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

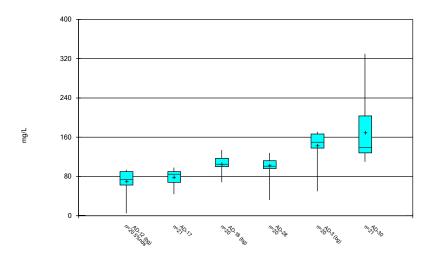

Constituent: pH, field Analysis Run 1/24/2022 2:17 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 . UG

Constituent: Sulfate, total Analysis Run 1/24/2022 2:17 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Box & Whiskers Plot

Constituent: Selenium, total Analysis Run 1/24/2022 2:17 PM View: Descriptive
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Sanitas™ v.9.6.32 . UG

Box & Whiskers Plot

Constituent: Thallium, total Analysis Run 1/24/2022 2:17 PM View: Descriptive
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Box & Whiskers Plot

Constituent: Total Dissolved Solids [TDS] Analysis Run 1/24/2022 2:17 PM View: Descriptive Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Outlier Summary

Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP Printed 1/24/2022, 2:19 PM

	AD-3 Lithium, t	_{otal} (mg/L) AD-12 Molybd ^e	enum, total (mg/L AD-17 Molybde	.) _{enum, total} (mg/L) AD-18 Molybde) _{num, total} (mg/L AD-28 Molybde	.) _{enum, total} (mg/L) AD-3 Molybden	_{um, total} (mg/L) AD-30 Molybde	_{num, total} (mg/L) AD-12 Thallium	, total (mg/L) AD-17 Thallium	_{i, total} (mg/L) AD-18 Thallium, total (mg/L
10/13/2016	0.991 (o)									
2/27/2019		<0.04 (o)			<0.04 (o)			<0.01 (o)		
2/28/2019			<0.04 (o)	<0.04 (o)			<0.04 (o)		<0.01 (o)	<0.01 (o)
5/21/2019		<0.04 (o)								
5/22/2019					<0.04 (o)					
5/23/2019			<0.04 (o)	<0.04 (o)		<0.04 (o)	<0.04 (o)			

AD-28 Thallium, total (mg/L) AD-30 Thallium, total (mg/L)

10/13/2016 2/27/2019

<0.01 (o)

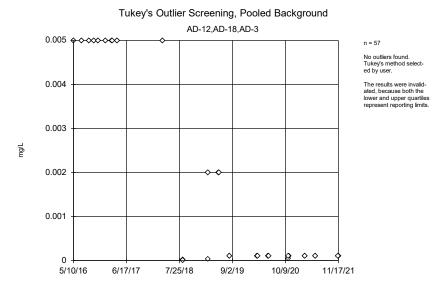
2/28/2019 <0.01 (o)

5/21/2019

5/22/2019

5/23/2019

Tukey's Outlier Test - Upgradient Wells - Significant Results

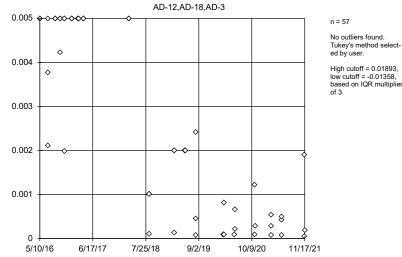

Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP Printed 1/31/2022, 3:50 PM

Constituent	Well	Outlier	<u>Value(s)</u>	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Distribution	Normality Test
Beryllium, total (mg/L)	AD-12,AD-18,AD-3	Yes	0.002,0.002,0.002,0.002	NP	NaN	57	0.0003901	0.0005677	normal	ShapiroWilk
Chromium, total (mg/L)	AD-12,AD-18,AD-3	Yes	0.004,0.004,0.004,0.004,0.003	NP	NaN	57	0.0008563	0.001093	normal	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	AD-12,AD-18,AD-3	Yes	4.813	NP	NaN	57	1.17	0.8925	normal	ShapiroWilk
Lithium, total (mg/L)	AD-12,AD-18,AD-3	Yes	0.991	NP	NaN	57	0.04625	0.1305	normal	ShapiroWilk

Tukey's Outlier Test - Upgradient Wells - All Results

Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP Printed 1/31/2022, 3:50 PM Constituent <u>Well</u> Outlier Value(s) Method <u>Alpha</u> <u>N</u> Mean Std. Dev. <u>Distribution</u> Normality Test AD-12,AD-18,AD-3 NaN 57 0.002581 0.002373 Antimony, total (mg/L) NP ShapiroWilk n/a n/a unknown Arsenic, total (mg/L) AD-12,AD-18,AD-3 NP NaN 57 0.002629 0.002141 ShapiroWilk No normal Barium, total (mg/L) AD-12,AD-18,AD-3 No n/a NP NaN 57 0.06451 0.03549 normal ShapiroWilk Beryllium, total (mg/L) 0.002,0.002,0.002,0.002 AD-12.AD-18.AD-3 NaN 57 0.0003901 0.0005677 ShapiroWilk Yes NP normal Boron, total (mg/L) AD-12,AD-18,AD-3 No NP NaN 60 0.03613 0.02027 ShapiroWilk Cadmium, total (mg/L) AD-12,AD-18,AD-3 No n/a NP NaN 57 0.0005262 0.0004872 normal ShapiroWilk NP ShapiroWilk Chloride, total (mg/L) AD-12,AD-18,AD-3 No n/a NaN 60 6.803 1.259 normal Chromium, total (mg/L) AD-12,AD-18,AD-3 0.004,0.004,0.004,0.004,0.003 NP NaN 57 0.0008563 0.001093 ShapiroWilk Yes normal Cobalt, total (mg/L) AD-12,AD-18,AD-3 No NP NaN 57 0.002523 0.002115 normal ShapiroWilk Combined Radium 226 + 228 (pCi/L) AD-12,AD-18,AD-3 4.813 NΡ NaN 57 1.17 0.8925 ShapiroWilk Yes normal NP NaN 60 0.4658 ShapiroWilk Fluoride, total (mg/L) AD-12,AD-18,AD-3 No n/a 0.555 normal Lead, total (mg/L) AD-12,AD-18,AD-3 No n/a NP NaN 57 0.002601 0.002342 normal ShapiroWilk Lithium, total (mg/L) AD-12,AD-18,AD-3 Yes 0.991 NP NaN 57 0.04625 0.1305 normal ShapiroWilk Mercury, total (mg/L) AD-12,AD-18,AD-3 57 0.00001694 0.00001133 ShapiroWilk No n/a normal Molybdenum, total (mg/L) AD-12,AD-18,AD-3 n/a n/a NP NaN 57 0.006273 0.01071 unknown ShapiroWilk AD-12.AD-18.AD-3 NP NaN 57 0.002321 0.002169 Selenium, total (mg/L) No ShapiroWilk n/a normal Thallium, total (mg/L) AD-12,AD-18,AD-3 n/a 0.001451 0.001829 unknown ShapiroWilk

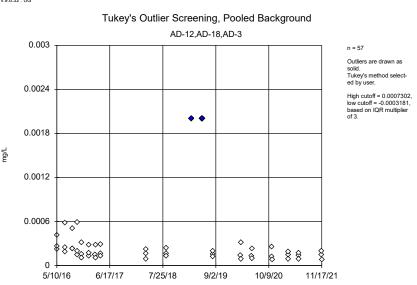

Sanitas™ v.9.6.32 . UG Sanitas™ v.9.6.32 . UG



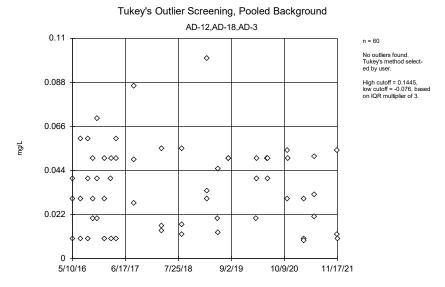
Constituent: Antimony, total Analysis Run 1/31/2022 3:47 PM View: AIII + AIV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 . UG Tukey's Outlier Screening, Pooled Background AD-12,AD-18,AD-3 0.2 n = 57 No outliers found. Tukey's method selected by user. 0.16 High cutoff = 0.3111, low cutoff = -0.1874, based on IQR multiplier \Diamond \Diamond 0.12 ◊◊ \Diamond \Diamond ♦ ♦ \diamond \Diamond \Diamond 0.08 $\Diamond \Diamond$ \Diamond $\diamond \diamond \diamond \diamond$ \Diamond \Diamond \Diamond \Diamond 0.04 \Diamond \Diamond \Diamond \Diamond \Diamond 5/10/16 6/17/17 7/25/18 9/2/19 10/9/20 11/17/21

Constituent: Barium, total Analysis Run 1/31/2022 3:47 PM View: AlII + AlV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP



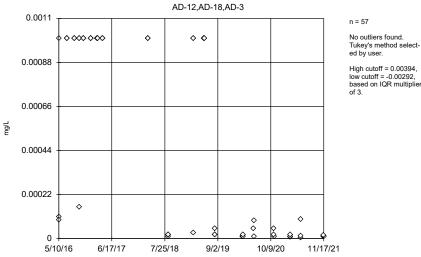
Constituent: Arsenic, total Analysis Run 1/31/2022 3:47 PM View: AIII + AIV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Sanitas™ v.9.6.32 . UG

mg/L

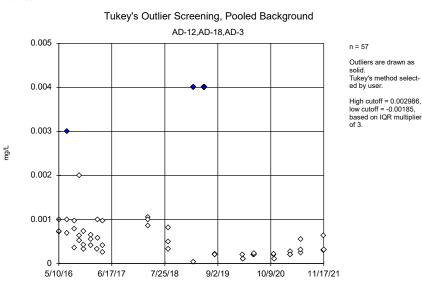
Constituent: Beryllium, total Analysis Run 1/31/2022 3:47 PM View: AIII + AIV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 . UG Sanitas™ v.9.6.32 . UG

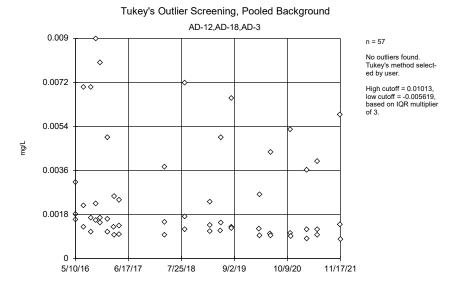

Constituent: Boron, total Analysis Run 1/31/2022 3:47 PM View: AllI + AlV Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 . UG

Tukey's Outlier Screening, Pooled Background AD-12,AD-18,AD-3 10 n = 60 No outliers found. \Diamond Tukey's method selected by user. \Diamond \Diamond High cutoff = 12.68, low cutoff = 0.99, based on \Diamond **\Q** $\Leftrightarrow \Leftrightarrow \Leftrightarrow$ IQR multiplier of 3. 8 \Diamond **♦** \Diamond 0 \Diamond 2 5/10/16 6/17/17 7/25/18 9/2/19 10/9/20 11/17/21


Constituent: Chloride, total Analysis Run 1/31/2022 3:47 PM View: AllI + AIV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Tukey's Outlier Screening, Pooled Background

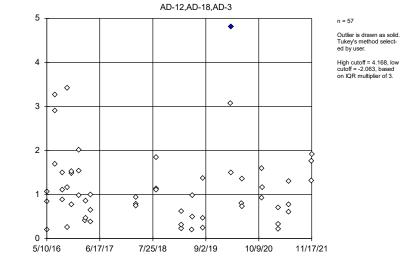

Constituent: Cadmium, total Analysis Run 1/31/2022 3:47 PM View: AllI + AlV Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 . UG

Constituent: Chromium, total Analysis Run 1/31/2022 3:47 PM View: AIII + AIV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 . UG

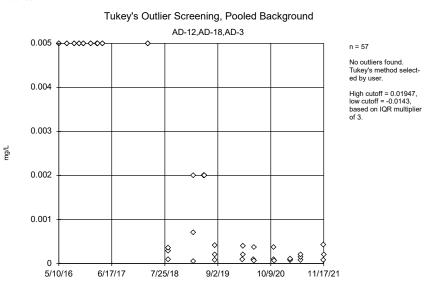
Constituent: Cobalt, total Analysis Run 1/31/2022 3:47 PM View: AIII + AIV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Sanitas™ v.9.6.32 . UG

Tukey's Outlier Screening, Pooled Background AD-12,AD-18,AD-3 1 \$->>>>> n = 60 No outliers found. Tukey's method selected by user. 0.8 High cutoff = 3.76, low cutoff = -2.68, based on IQR multiplier of 3. 0.6 0.4 \Diamond 0.2 \$ \$ **\$** \Diamond *** *** 8 0 5/10/16 6/17/17 7/25/18 9/2/19 10/9/20 11/17/21

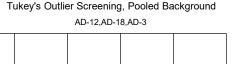
Constituent: Fluoride, total Analysis Run 1/31/2022 3:47 PM View: AIII + AIV

Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Tukey's Outlier Screening, Pooled Background

Constituent: Combined Radium 226 + 228 Analysis Run 1/31/2022 3:47 PM View: AIII + AIV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

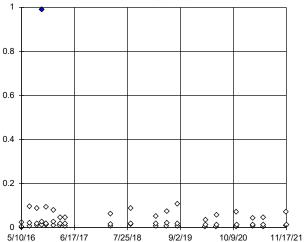
Sanitas™ v.9.6.32 . UG


pCi/L

Constituent: Lead, total Analysis Run 1/31/2022 3:47 PM View: AIII + AIV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 . UG

Sanitas™ v.9.6.32 . UG


n = 57

Outlier is drawn as solid.

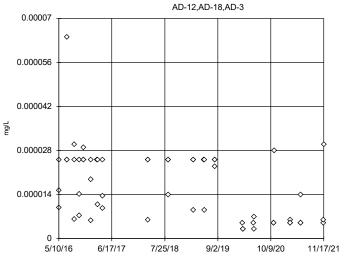
Tukey's method select-

High cutoff = 0.1555, low cutoff = -0.1, based

on IQR multiplier of 3.

Constituent: Lithium, total Analysis Run 1/31/2022 3:47 PM View: AIII + AIV Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

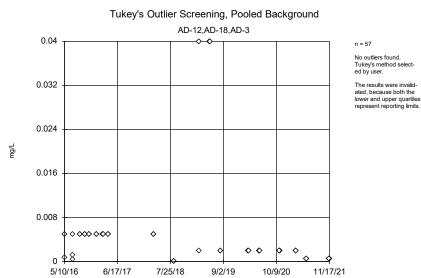
Tukey's Outlier Screening, Pooled Background


n = 57

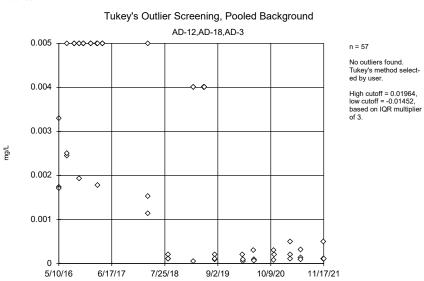
No outliers found.

Tukey's method selected by user.

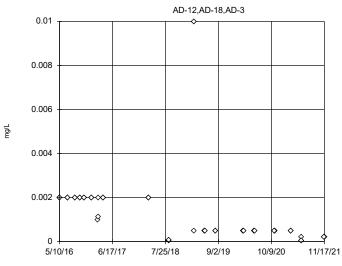
High cutoff = 0.000082.


low cutoff = -0.000051, based on IQR multiplier

Constituent: Mercury, total Analysis Run 1/31/2022 3:47 PM View: AIII + AIV Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Sanitas™ v.9.6.32 . UG

mg/L


Constituent: Molybdenum, total Analysis Run 1/31/2022 3:47 PM View: AIII + AIV Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 . UG

Constituent: Selenium, total Analysis Run 1/31/2022 3:47 PM View: AIII + AIV Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

The results were invalidated, because both the lower and upper quartiles represent reporting limits.

No outliers found. Tukey's method selected by user.

n = 57

Constituent: Thallium, total Analysis Run 1/31/2022 3:47 PM View: AllI + AlV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Intrawell Prediction Limits - All Results

Client: Geosyntec Data: Pirkey WBAP Printed 2/24/2022, 3:51 PM Constituent <u>Well</u> Upper Lim. Lower Lim.Date Observ. Sig. Bg N Bg Mean Std. Dev. %NDs ND Adj. Transform Alpha Method Calcium, total (mg/L) AD-12 0.4249 n/a 0.05881 0 None Param Intra 1 of 2 n/a 1 future n/a 16 0.3091 No 0.002505 Calcium, total (mg/L) AD-17 1.63 n/a n/a 1 future n/a 16 0.7217 0.4613 0 None No 0.002505 Param Intra 1 of 2 Calcium, total (mg/L) AD-18 0.7184 n/a n/a 1 future n/a 16 0.4226 0.1501 0 None No 0.002505 Param Intra 1 of 2 Calcium, total (mg/L) AD-28 3.21 n/a 17 0 0.005914 NP Intra (normality) 1 of 2 n/a 1 future n/a n/a n/a n/a Calcium, total (mg/L) AD-3 6.132 n/a n/a 1 future n/a 16 3.941 1.112 0 None No 0.002505 Param Intra 1 of 2 Calcium, total (mg/L) AD-30 1.74 0.005914 NP Intra (normality) 1 of 2 n/a n/a 1 future n/a 17 n/a n/a 0 n/a n/a pH, field (SU) AD-12 5.63 2.743 16 0.7328 0 No 0.001253 Param Intra 1 of 2 pH, field (SU) AD-17 4.831 3.318 n/a 1 future n/a 16 4 074 0.384 0 None No 0.001253 Param Intra 1 of 2 pH, field (SU) AD-18 5.521 3.859 n/a 1 future n/a 16 4.69 0.4218 0 None No 0.001253 Param Intra 1 of 2 pH, field (SU) AD-28 5.633 3.514 1 future n/a 16 4.574 0.5378 0 None No 0.001253 Param Intra 1 of 2 pH, field (SU) Param Intra 1 of 2 AD-3 5.77 4.47 n/a 1 future n/a 16 5.12 0.33 0 None No 0.001253 pH, field (SU) AD-30 5.377 4.016 1 future 0.3454 None No 0.001253 Param Intra 1 of 2 AD-12 0.002505 Param Intra 1 of 2 Sulfate, total (mg/L) 7.976 n/a n/a 1 future n/a 16 48 1.612 Ω None No Sulfate, total (mg/L) AD-17 9.053 n/a 17 4.924 2.117 0 No 0.002505 Param Intra 1 of 2 n/a n/a None 1 future Sulfate, total (mg/L) AD-18 10.5 n/a n/a 1 future n/a 16 7.606 1.469 0 None No 0.002505 Param Intra 1 of 2 Sulfate, total (mg/L) AD-28 27.24 n/a 1 future n/a 16 20.28 3.535 0 None Nο 0.002505 Param Intra 1 of 2 n/a Sulfate, total (mg/L) AD-3 0.002505 Param Intra 1 of 2 37.21 n/a 1 future n/a 16 5.962 AD-30 0.002505 Param Intra 1 of 2 Sulfate, total (mg/L) 31.56 n/a n/a 1 future n/a 8 19 25 5.007 0 None No Total Dissolved Solids [TDS] (mg/L) AD-12 117.6 n/a 16 69.5 24.43 6.25 None No 0.002505 Param Intra 1 of 2 n/a n/a 1 future Total Dissolved Solids [TDS] (mg/L) AD-17 110.9 1 future n/a 17 80.06 15.83 0 No 0.002505 Param Intra 1 of 2 Total Dissolved Solids [TDS] (mg/L) AD-18 140.6 n/a n/a 16 106.4 17.36 0 Nο 0.002505 Param Intra 1 of 2 n/a 1 future None Total Dissolved Solids [TDS] (mg/L) Param Intra 1 of 2 AD-28 133.4 n/a n/a 1 future n/a 16 10519 3698 None x^2 0.002505 Total Dissolved Solids [TDS] (mg/L) AD-3 0.002505 191.8 n/a n/a 1 future n/a 16 20718 8150 0 None x^2 Param Intra 1 of 2

n/a 17

1 future

145.8

31.08

0

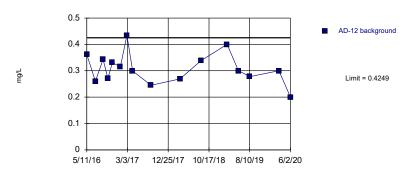
None

No

0.002505

Param Intra 1 of 2

Total Dissolved Solids [TDS] (mg/L)

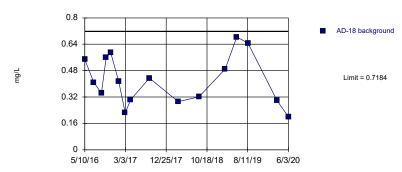

AD-30

206.4

n/a

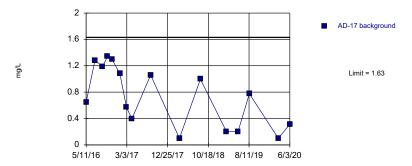
n/a

Prediction Limit Intrawell Parametric, AD-12 (bg)



Background Data Summary: Mean=0.3091, Std. Dev.=0.05881, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9788, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

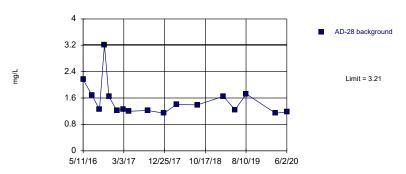
Constituent: Calcium, total Analysis Run 2/24/2022 3:36 PM View: Intrawell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, AD-18 (bg)

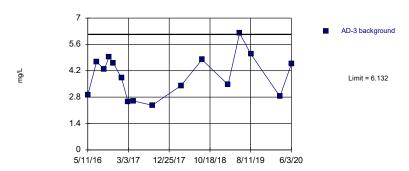
Background Data Summary: Mean=0.4226, Std. Dev.=0.1501, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9519, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Parametric, AD-17



Background Data Summary: Mean=0.7217, Std. Dev.=0.4613, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8976, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

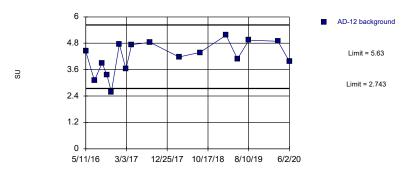
Constituent: Calcium, total Analysis Run 2/24/2022 3:36 PM View: Intrawell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Prediction Limit Intrawell Non-parametric, AD-28

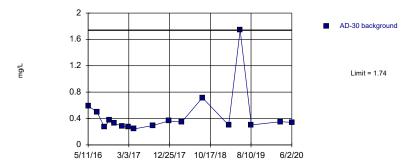
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Assumes 1 future value.

Prediction Limit Intrawell Parametric, AD-3 (bg)



Background Data Summary: Mean=3,941, Std. Dev.=1.112, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9416, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

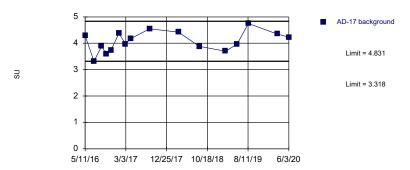
Constituent: Calcium, total Analysis Run 2/24/2022 3:36 PM View: Intrawell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, AD-12 (bg)

Background Data Summary: Mean=4.186, Std. Dev.=0.7328, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.944, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Non-parametric, AD-30



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Assumes 1 future value.

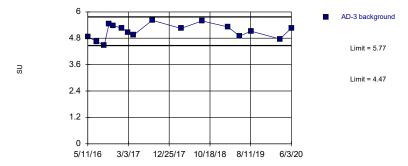
Constituent: Calcium, total Analysis Run 2/24/2022 3:36 PM View: Intrawell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, AD-17

Background Data Summary: Mean=4,074, Std. Dev.=0.384, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9844, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Parametric, AD-18 (bg)



Background Data Summary: Mean=4.69, Std. Dev.=0.4218, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9561, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: pH, field Analysis Run 2/24/2022 3:36 PM View: Intrawell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

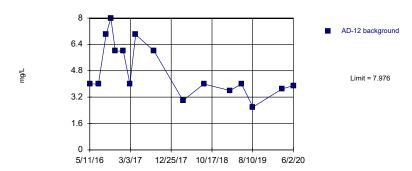
Prediction Limit Intrawell Parametric, AD-3 (bg)

Background Data Summary: Mean=5.12, Std. Dev.=0.33, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.971, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Parametric, AD-28

Background Data Summary: Mean=4.574, Std. Dev.=0.5378, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9302, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

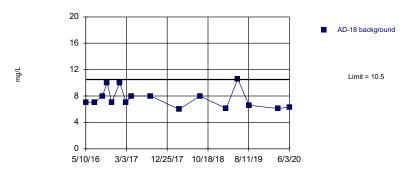
Constituent: pH, field Analysis Run 2/24/2022 3:36 PM View: Intrawell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, AD-30

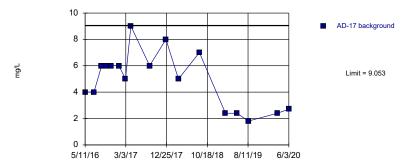
Background Data Summary: Mean=4.696, Std. Dev.=0.3454, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9083, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Parametric, AD-12 (bg)



Background Data Summary: Mean=4.8, Std. Dev.=1.612, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8792, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

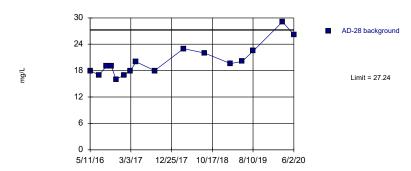
Constituent: Sulfate, total Analysis Run 2/24/2022 3:36 PM View: Intrawell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, AD-18 (bg)

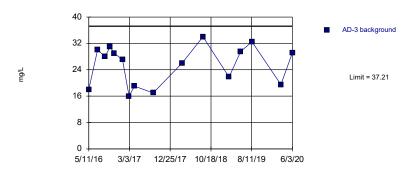
Background Data Summary: Mean=7.606, Std. Dev.=1.469, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8631, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Parametric, AD-17



Background Data Summary: Mean=4.924, Std. Dev.=2.117, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9376, critical = 0.851. Kappa = 1.951 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

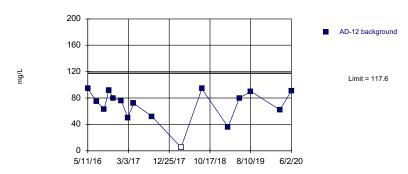
Constituent: Sulfate, total Analysis Run 2/24/2022 3:36 PM View: Intrawell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, AD-28

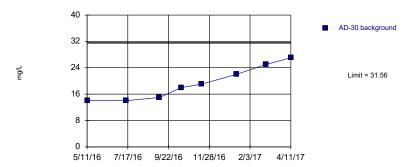
Background Data Summary: Mean=20.28, Std. Dev.=3.535, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8875, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Parametric, AD-3 (bg)



Background Data Summary: Mean=25.47, Std. Dev.=5.962, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9078, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

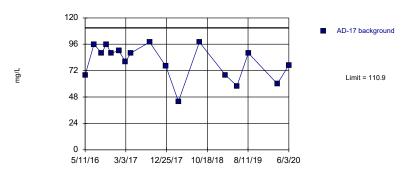
Constituent: Sulfate, total Analysis Run 2/24/2022 3:36 PM View: Intrawell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit Intrawell Parametric, AD-12 (bg)

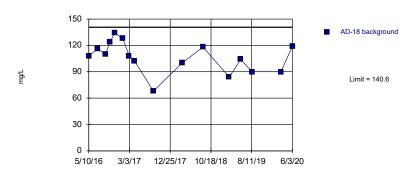
Background Data Summary: Mean=69.5, Std. Dev.=24.43, n=16, 6.25% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8742, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Parametric, AD-30



Background Data Summary: Mean=19.25, Std. Dev.=5.007, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9081, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

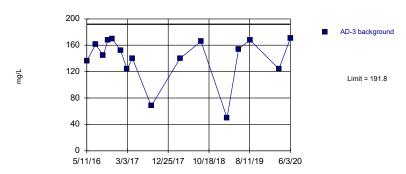
Constituent: Sulfate, total Analysis Run 2/24/2022 3:36 PM View: Intrawell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, AD-17

Background Data Summary: Mean=80.06, Std. Dev.=15.83, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9099, critical = 0.851. Kappa = 1.951 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Parametric, AD-18 (bg)



Background Data Summary: Mean=106.4, Std. Dev.=17.36, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9752, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

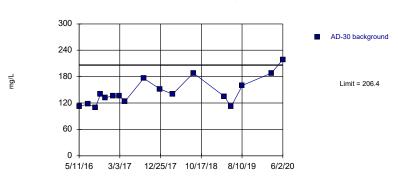
Constituent: Total Dissolved Solids [TDS] Analysis Run 2/24/2022 3:36 PM View: Intrawell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, AD-3 (bg)

Background Data Summary (based on square transformation): Mean=20718, Std. Dev.=8150, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8716, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Parametric, AD-28



Background Data Summary (based on square transformation): Mean=10519, Std. Dev.=3698, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9093, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

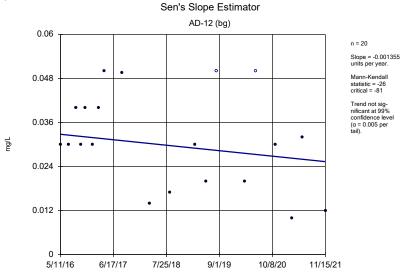
Constituent: Total Dissolved Solids [TDS] Analysis Run 2/24/2022 3:36 PM View: Intrawell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, AD-30

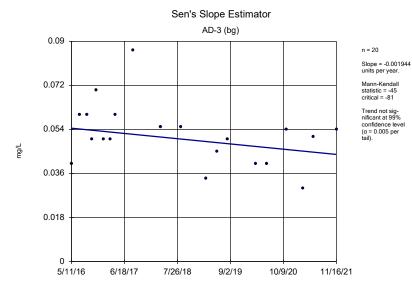
Background Data Summary: Mean=145.8, Std. Dev.=31.08, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9021, critical = 0.851. Kappa = 1.951 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

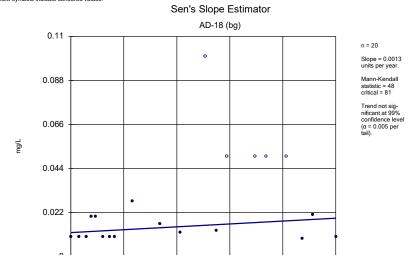
Upgradient Trend Test - Significant Results


	Р	Pirkey WBAP	Client: Geosyntec	Data: Pir	key WBAP	Printed	1/24/20	22, 2:41 I	PM			
Constituent	Well	Slo	pe g	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Fluoride, total (mg/L)	AD-12 (bg)	-0.	1502	-102	-81	Yes	20	45	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	AD-18 (bg)	-0.	186 -	-88	-81	Yes	20	60	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	AD-3 (bg)	-0.	1786	-94	-81	Yes	20	55	n/a	n/a	0.01	NP

Upgradient Trend Test - All Results Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP Printed 1/24/2022, 2:41 PM

	Pirkey	WBAP Client: Geosynt	ec Data:	Pirkey WBAP	Printe	ed 1/24/2	022, 2:41	РМ			
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron, total (mg/L)	AD-12 (bg)	-0.001355	-26	-81	No	20	10	n/a	n/a	0.01	NP
Boron, total (mg/L)	AD-18 (bg)	0.0013	48	81	No	20	25	n/a	n/a	0.01	NP
Boron, total (mg/L)	AD-3 (bg)	-0.001944	-45	-81	No	20	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	AD-12 (bg)	0.01392	13	81	No	20	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	AD-18 (bg)	-0.08945	-19	-81	No	20	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	AD-3 (bg)	-0.02918	-23	-81	No	20	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	AD-12 (bg)	-0.1502	-102	-81	Yes	20	45	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	AD-18 (bg)	-0.186	-88	-81	Yes	20	60	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	AD-3 (bg)	-0.1786	-94	-81	Yes	20	55	n/a	n/a	0.01	NP


Sanitas™ v.9.6.32 . UG


Constituent: Boron, total Analysis Run 1/24/2022 2:39 PM View: AIII Interwell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 . UG

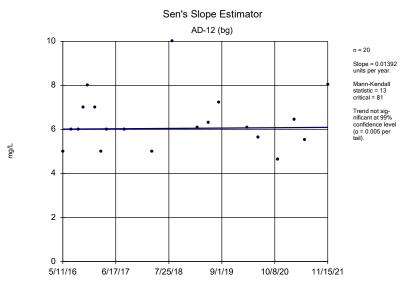
Constituent: Boron, total Analysis Run 1/24/2022 2:39 PM View: AIII Interwell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 . UG

Constituent: Boron, total Analysis Run 1/24/2022 2:39 PM View: AllI Interwell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

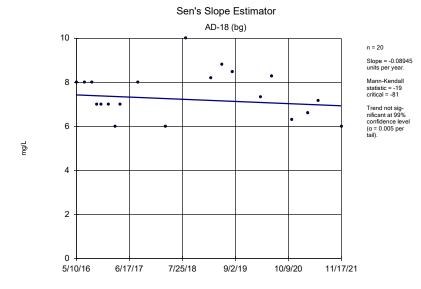
9/2/19

10/9/20

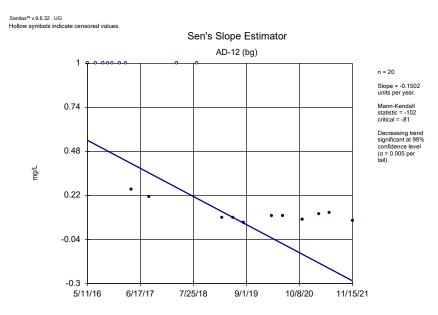

11/17/21

7/25/18

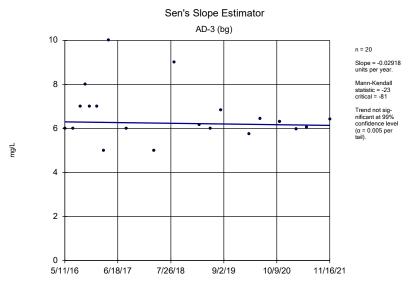
6/17/17

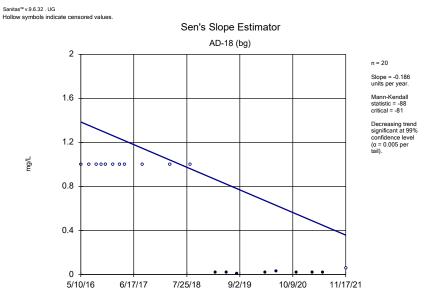

5/10/16

Sanitas™ v.9.6.32 . UG

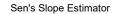


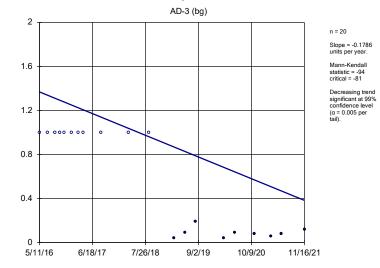
Constituent: Chloride, total Analysis Run 1/24/2022 2:39 PM View: AllI Interwell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Sanitas™ v.9.6.32 . UG


Constituent: Chloride, total Analysis Run 1/24/2022 2:39 PM View: AIII Interwell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Constituent: Fluoride, total Analysis Run 1/24/2022 2:39 PM View: AlII Interwell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP




Constituent: Chloride, total Analysis Run 1/24/2022 2:39 PM View: AllI Interwell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

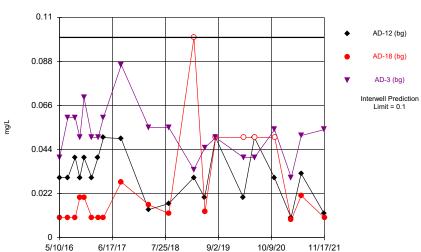
Constituent: Fluoride, total Analysis Run 1/24/2022 2:39 PM View: AllI Interwell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

mg/L

Constituent: Fluoride, total Analysis Run 1/24/2022 2:39 PM View: AllI Interwell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Interwell Prediction Limits - All Results

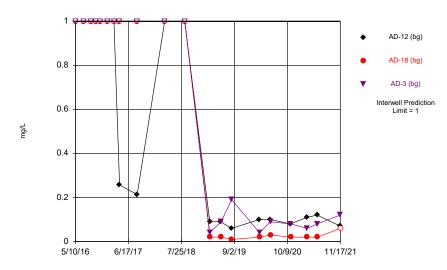
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP Printed 2/3/2022, 2:15 PM


<u>Upper Lim. Lower Lim.Date Observ. Sig. Bg N Bg Mean Std. Dev. %NDs ND Adj. Transform Alpha Method</u>

0.1 n/a n/a 3 future n/a 60 n/a n/a 11.67 n/a n/a 0.0005253 NP Inter (normality) 1 of 2

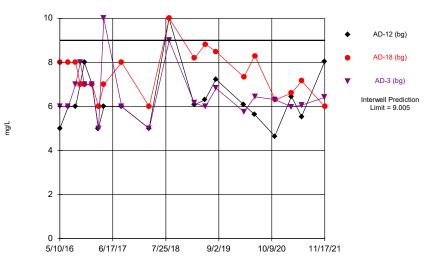
Constituent	Well	Upper Lim	Lower Lim	<u>.Date</u>	Observ.	Sig. Bg N	<u>I Bg Mean</u>	Std. Dev.	<u>%NDs</u>	ND Adj.	Transforn	n Alpha	Method
Boron, total (mg/L)	n/a	0.1	n/a	n/a	3 future	n/a 60	n/a	n/a	11.67	n/a	n/a	0.0005253	NP Inter (normality) 1 of 2
Chloride, total (mg/L)	n/a	9.005	n/a	n/a	3 future	n/a 60	2.598	0.2363	0	None	sqrt(x)	0.002505	Param Inter 1 of 2
Fluoride total (mg/L)	n/a	1	n/a	n/a	3 future	n/a 60	n/a	n/a	53 33	n/a	n/a	0.0005253	NP Inter (NDs) 1 of 2

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



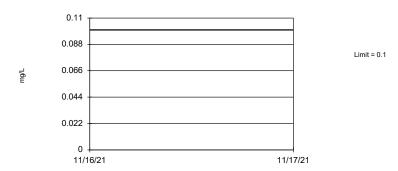
Constituent: Boron, total Analysis Run 2/3/2022 2:17 PM View: Interwell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Time Series

Constituent: Fluoride, total Analysis Run 2/3/2022 2:17 PM View: Interwell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG



Constituent: Chloride, total Analysis Run 2/3/2022 2:17 PM View: Interwell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

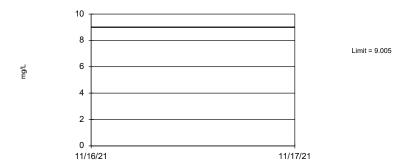
Prediction Limit
Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 60 background values. 11.67% NDs. Annual perconstituent alpha = 0.003148. Individual comparison alpha = 0.0005253 (1 of 2). Assumes 3 future values.

Constituent: Boron, total Analysis Run 2/3/2022 2:14 PM View: Interwell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Prediction Limit
Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 60 background values. 53.33% NDs. Annual per-constituent alpha = 0.003148. Individual comparison alpha = 0.0005253 (1 of 2). Assumes 3 future values.

Constituent: Fluoride, total Analysis Run 2/3/2022 2:14 PM View: Interwell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Prediction Limit Interwell Parametric

Background Data Summary (based on square root transformation): Mean=2.598, Std. Dev.=0.2363, n=60. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9512, critical = 0.945. Kappa = 1.706 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00532. Assumes 3 future values.

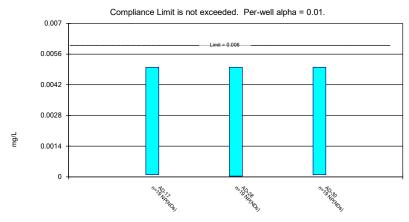
Constituent: Chloride, total Analysis Run 2/3/2022 2:14 PM View: Interwell Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Upper Tolerance Limits

		Pirkey WBAP	Client: Geosynteo	Data: Pirk	key WBAF	P Prir	nted 1/20/2	022, 8:56 AM		
Constituent	Well	Upper Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Antimony, total (mg/L)	n/a	0.005	n/a	n/a	n/a	57	91.23	n/a	0.05373	NP Inter(NDs)
Arsenic, total (mg/L)	n/a	0.005	n/a	n/a	n/a	57	49.12	n/a	0.05373	NP Inter(normality)
Barium, total (mg/L)	n/a	0.157	n/a	n/a	n/a	57	0	n/a	0.05373	NP Inter(normality)
Beryllium, total (mg/L)	n/a	0.002	n/a	n/a	n/a	57	10.53	n/a	0.05373	NP Inter(normality)
Cadmium, total (mg/L)	n/a	0.001	n/a	n/a	n/a	57	56.14	n/a	0.05373	NP Inter(normality)
Chromium, total (mg/L)	n/a	0.003856	n/a	n/a	n/a	57	12.28	ln(x)	0.05	Inter
Cobalt, total (mg/L)	n/a	0.009	n/a	n/a	n/a	57	0	n/a	0.05373	NP Inter(normality)
Combined Radium 226 + 228 (pCi/L)	n/a	3.148	n/a	n/a	n/a	57	0	sqrt(x)	0.05	Inter
Fluoride, total (mg/L)	n/a	1	n/a	n/a	n/a	60	53.33	n/a	0.04607	NP Inter(normality)
Lead, total (mg/L)	n/a	0.005	n/a	n/a	n/a	57	57.89	n/a	0.05373	NP Inter(normality)
Lithium, total (mg/L)	n/a	0.1426	n/a	n/a	n/a	56	1.786	ln(x)	0.05	Inter
Mercury, total (mg/L)	n/a	0.000064	n/a	n/a	n/a	57	50.88	n/a	0.05373	NP Inter(normality)
Molybdenum, total (mg/L)	n/a	0.005	n/a	n/a	n/a	52	88.46	n/a	0.06944	NP Inter(NDs)
Selenium, total (mg/L)	n/a	0.005	n/a	n/a	n/a	57	43.86	n/a	0.05373	NP Inter(normality)
Thallium, total (mg/L)	n/a	0.002	n/a	n/a	n/a	55	87.27	n/a	0.05954	NP Inter(NDs)

Confidence Intervals - Significant Results

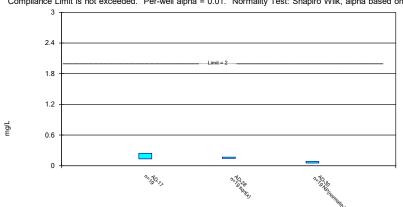
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP Printed 2/24/2022, 3:25 PM


Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	Mean	Std. Dev.	%NDs	ND Adj.	Transfor	m <u>Alpha</u>	Method
Cobalt, total (mg/L)	AD-28	0.01549	0.01345	0.009	Yes	19	0.01447	0.001738	0	None	No	0.01	Param.

Confidence Intervals - All Results

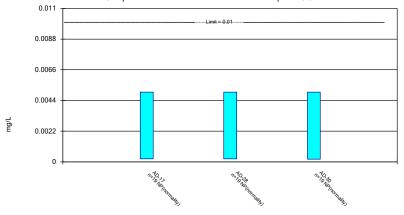
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP Printed 2/24/2022, 3:25 PM

Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	N	Mean	Std. Dev.	%NDs	ND Adj.	Transform	n Alpha	Method
Antimony, total (mg/L)	AD-17	0.005	0.0001	0.006	No	_ 19		0.002392	94.74	None	No	0.01	NP (NDs)
Antimony, total (mg/L)	AD-28	0.005	0.00003	0.006	No	19	0.002429	0.002339	78.95	None	No	0.01	NP (NDs)
Antimony, total (mg/L)	AD-30	0.005	0.0001	0.006	No		0.002237	0.00226	84.21	None	No	0.01	NP (NDs)
Arsenic, total (mg/L)	AD-17	0.005	0.00021	0.01	No	19	0.002139	0.002084	42.11	None	No	0.01	NP (normality)
Arsenic, total (mg/L)	AD-28	0.005	0.00021	0.01	No	19	0.002257	0.002158	36.84	None	No	0.01	NP (normality)
Arsenic, total (mg/L)	AD-30	0.005	0.00019	0.01	No	19	0.002453	0.002292	47.37	None	No	0.01	NP (normality)
Barium, total (mg/L)	AD-17	0.2442	0.1332	2	No	19	0.1887	0.09478	0	None	No	0.01	Param.
Barium, total (mg/L)	AD-28	0.1673	0.1411	2	No	19		0.02291	0	None	sqrt(x)	0.01	Param.
Barium, total (mg/L)	AD-30	0.0826	0.052	2	No	19	0.06867	0.02326	0	None	No	0.01	NP (normality)
Beryllium, total (mg/L)	AD-17	0.0008375	0.0004442	0.004	No	19	0.0007138	0.0004874	10.53	None	ln(x)	0.01	Param.
Beryllium, total (mg/L)	AD-28	0.0007792	0.0005547	0.004	No	19	0.0006782	0.0001959	0	None	x^(1/3)	0.01	Param.
Beryllium, total (mg/L)	AD-30	0.0001554	0.0000611	0.004	No	19	0.0002943	0.000602	10.53	None	No	0.01	NP (normality)
Cadmium, total (mg/L)	AD-17	0.001	0.00003	0.005	No	19	0.0004968	0.0004908	47.37	None	No	0.01	NP (normality)
Cadmium, total (mg/L)	AD-28	0.001	0.00005	0.005	No	19	0.0006016	0.00048	57.89	None	No	0.01	NP (NDs)
Cadmium, total (mg/L)	AD-30	0.001	0.000019	0.005	No	19	0.0005919	0.0004918	73.68	None	No	0.01	NP (NDs)
Chromium, total (mg/L)	AD-17	0.001155	0.0004188	0.1	No	19	0.001069	0.00129	5.263	None	ln(x)	0.01	Param.
Chromium, total (mg/L)	AD-28	0.0008538	0.0003453	0.1	No	19	0.001244	0.001595	21.05	Kaplan-Meier	ln(x)	0.01	Param.
Chromium, total (mg/L)	AD-30	0.001109	0.0004746	0.1	No	19	0.0009759	0.0009623	5.263	None	ln(x)	0.01	Param.
Cobalt, total (mg/L)	AD-17	0.013	0.00305	0.009	No	19	0.008181	0.004247	0	None	No	0.01	NP (normality)
Cobalt, total (mg/L)	AD-28	0.01549	0.01345	0.009	Yes	19	0.01447	0.001738	0	None	No	0.01	Param.
Cobalt, total (mg/L)	AD-30	0.003162	0.00208	0.009	No	19	0.00269	0.001012	0	None	x^(1/3)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	AD-17	5.601	2.408	5	No	19	4.005	2.727	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	AD-28	2.377	1.698	5	No	19	2.038	0.5794	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	AD-30	2.116	0.8775	5	No	19	1.615	1.214	0	None	sqrt(x)	0.01	Param.
Fluoride, total (mg/L)	AD-17	1	0.17	4	No	21	0.5587	0.3969	42.86	None	No	0.01	NP (normality)
Fluoride, total (mg/L)	AD-28	0.8421	0.6073	4	No	20	0.7247	0.2067	5	None	No	0.01	Param.
Fluoride, total (mg/L)	AD-30	1	0.05	4	No	21	0.601	0.4733	61.9	None	No	0.01	NP (NDs)
Lead, total (mg/L)	AD-17	0.005	0.00013	0.005	No	19	0.002639	0.002367	57.89	None	No	0.01	NP (NDs)
Lead, total (mg/L)	AD-28	0.005	0.0001	0.005	No	19	0.002625	0.002383	57.89	None	No	0.01	NP (NDs)
Lead, total (mg/L)	AD-30	0.005	0.00009	0.005	No	19	0.00263	0.002377	68.42	None	No	0.01	NP (NDs)
Lithium, total (mg/L)	AD-17	0.02192	0.01238	0.14	No	19	0.01715	0.008151	5.263	None	No	0.01	Param.
Lithium, total (mg/L)	AD-28	0.032	0.0226	0.14	No	19	0.02841	0.01162	0	None	No	0.01	NP (normality)
Lithium, total (mg/L)	AD-30	0.009789	0.007791	0.14	No	19	0.008581	0.002213	5.263	None	x^2	0.01	Param.
Mercury, total (mg/L)	AD-17	0.000203	0.00009001	0.002	No	19	0.0001722	0.0001329	0	None	In(x)	0.01	Param.
Mercury, total (mg/L)	AD-28	0.000085	0.000025	0.002	No	19	0.00005274	0.00004229	0	None	No	0.01	NP (normality)
Mercury, total (mg/L)	AD-30	0.0007298	0.000124	0.002	No	19	0.0005381	0.0006754	0	None	sqrt(x)	0.01	Param.
Molybdenum, total (mg/L)	AD-17	0.005	0.0005	0.005	No	17	0.00303	0.002011	88.24	None	No	0.01	NP (NDs)
Molybdenum, total (mg/L)	AD-28	0.005	0.0005	0.005	No	17	0.00302	0.002024	88.24	None	No	0.01	NP (NDs)
Molybdenum, total (mg/L)	AD-30	0.005	0.0008	0.005	No	17	0.003008	0.00201	82.35	None	No	0.01	NP (NDs)
Selenium, total (mg/L)	AD-17	0.005	0.0003	0.05	No	19	0.002785	0.00226	52.63	None	No	0.01	NP (NDs)
Selenium, total (mg/L)	AD-28	0.005	0.00021	0.05	No	19	0.002694	0.002308	52.63	None	No	0.01	NP (NDs)
Selenium, total (mg/L)	AD-30	0.005	0.0003	0.05	No	19	0.002702	0.002302	52.63	None	No	0.01	NP (NDs)
Thallium, total (mg/L)	AD-17	0.002	0.0002	0.002	No	18	0.001131	0.0008281	83.33	None	No	0.01	NP (NDs)
Thallium, total (mg/L)	AD-28	0.002	0.0002	0.002	No	18	0.001149	0.0008183	88.89	None	No	0.01	NP (NDs)
Thallium, total (mg/L)	AD-30	0.002	0.0002	0.002	No	18	0.0011	0.0007871	83.33	None	No	0.01	NP (NDs)


Non-Parametric Confidence Interval

Constituent: Antimony, total Analysis Run 2/24/2022 3:24 PM View: Appendix IV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

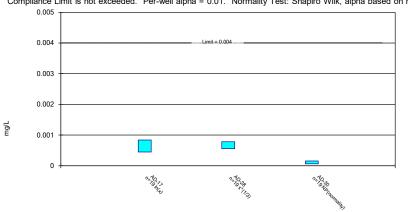
Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

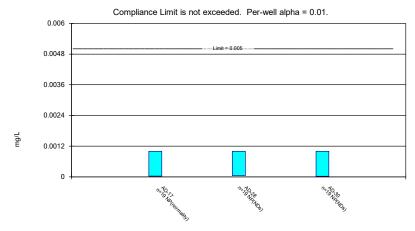
Constituent: Barium, total Analysis Run 2/24/2022 3:24 PM View: Appendix IV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

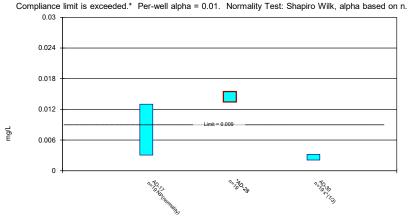


Constituent: Arsenic, total Analysis Run 2/24/2022 3:24 PM View: Appendix IV Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

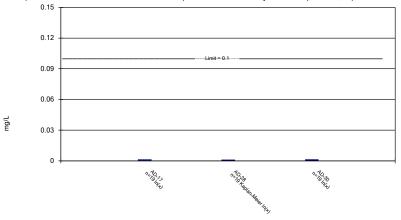
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Non-Parametric Confidence Interval

Constituent: Cadmium, total Analysis Run 2/24/2022 3:24 PM View: Appendix IV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

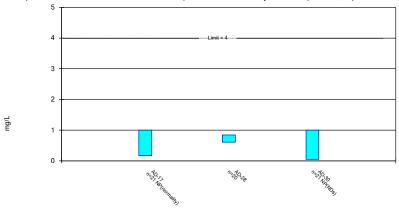
Constituent: Cobalt, total Analysis Run 2/24/2022 3:24 PM View: Appendix IV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Chromium, total Analysis Run 2/24/2022 3:24 PM View: Appendix IV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

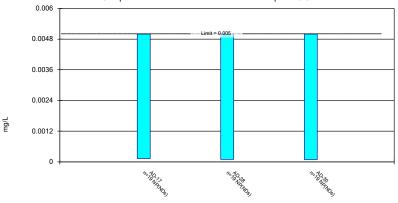
Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG


Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

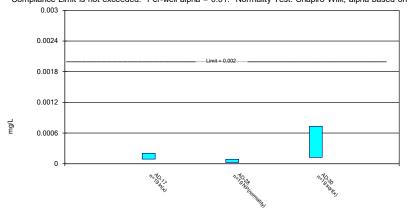

Constituent: Fluoride, total Analysis Run 2/24/2022 3:24 PM View: Appendix IV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

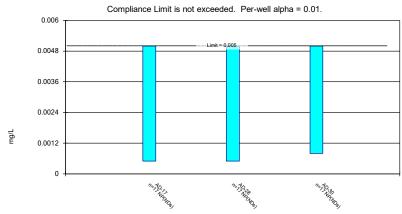
Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.


Constituent: Lead, total Analysis Run 2/24/2022 3:24 PM View: Appendix IV

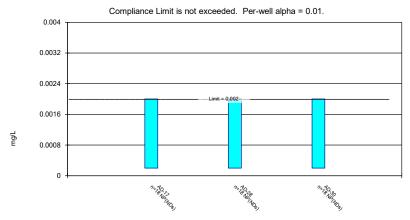
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

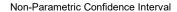

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

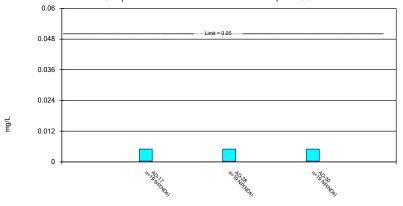
Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG


Non-Parametric Confidence Interval

Constituent: Molybdenum, total Analysis Run 2/24/2022 3:24 PM View: Appendix IV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval



Constituent: Thallium, total Analysis Run 2/24/2022 3:25 PM View: Appendix IV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Compliance Limit is not exceeded. Per-well alpha = 0.01.

Constituent: Selenium, total Analysis Run 2/24/2022 3:24 PM View: Appendix IV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

PIRKEY WBAP GWPS									
		Background							
Constituent Name	MCL	Limit	GWPS						
Antimony, Total (mg/L)	0.006	0.005	0.006						
Arsenic, Total (mg/L)	0.01	0.005	0.01						
Barium, Total (mg/L)	2	0.16	2						
Beryllium, Total (mg/L)	0.004	0.002	0.004						
Cadmium, Total (mg/L)	0.005	0.001	0.005						
Chromium, Total (mg/L)	0.1	0.0039	0.1						
Cobalt, Total (mg/L)	n/a	0.009	0.009						
Combined Radium, Total (pCi/L)	5	3.15	5						
Fluoride, Total (mg/L)	4	1	4						
Lead, Total (mg/L)	n/a	0.005	0.005						
Lithium, Total (mg/L)	n/a	0.14	0.14						
Mercury, Total (mg/L)	0.002	0.000064	0.002						
Molybdenum, Total (mg/L)	n/a	0.005	0.005						
Selenium, Total (mg/L)	0.05	0.005	0.05						
Thallium, Total (mg/L)	0.002	0.002	0.002						

^{*}Grey cell indicates Background Limit is higher than MCL

^{*}MCL = Maximum Contaminant Level

^{*}GWPS = Groundwater Protection Standard

500 West Wilson Bridge Road, Suite 250 Worthington, Ohio 43085 PH 614.468.0415 FAX 614.468.0416 www.geosyntec.com

January 11, 2023

David Miller American Electric Power 1 Riverside Plaza Columbus, Ohio 43215

Subject: October 2022 Assessment Monitoring Report Revisions

Pirkey West Bottom Ash Pond (WBAP)

Dear Mr. Miller:

Geosyntec Consultants, Inc. (Geosyntec) has revised the attached Statistical Analysis Summary report for the H.W. Pirkey Power Plant's West Bottom Ash Pond (WBAP), which summarizes the statistical analysis of the March and June 2022 groundwater sampling results collected in accordance with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR Rule").

The Statistical Analysis Summary report was previously certified on October 27, 2022, which was within 90 days of issuance of the analytical laboratory reports for the June 2022 groundwater sampling event. Following certification, the analytical laboratory reports were reissued with amended matrix spike precision calculations. The data quality review memorandum, which was provided as Attachment B of the certified Statistical Analysis Summary report, has been updated to reflect the reissued analytical laboratory reports. A record of revisions is provided with the updated data quality review memorandum as Attachment B of the compiled Statistical Analysis Summary report attached to this cover letter. There are no other changes to the previously certified report, as the conclusions of the data quality review memorandum were unaffected and no changes to the statistical analysis were required.

Sincerely,

Allison Kreinberg, Project Manager

Attachment A: Statistical Analysis Summary, West Botttom Ash Pond (WBAP). H.W. Pirkey Power

Plant, Hallsville, Texas. October 2022.

STATISTICAL ANALYSIS SUMMARY WEST BOTTOM ASH POND H.W. Pirkey Power Plant Hallsville, Texas

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

engineers | scientists | innovators

500 West Wilson Bridge Road Suite 250 Worthington, Ohio 43085

> October 27, 2022 CHA8500B

TABLE OF CONTENTS

SECTION 1	Executi	ve Summary	1
SECTION 2	West B	ottom Ash Pond Evaluation	2-1
2.1	Data Va	alidation & QA/QC	2-1
2.2	Statistic	cal Analysis	2-1
	2.2.1	Evaluation of Potential Appendix IV SSLs	2-1
	2.2.2	Evaluation of Potential Appendix III SSIs	2-2
2.3	Conclu	sions	2-2
SECTION 3	Referen	nces	3-1

LIST OF TABLES

Table 1	Groundwater Data Summary
Table 2	Appendix IV Groundwater Protection Standards
Table 3	Appendix III Data Summary

LIST OF ATTACHMENTS

Attachment A	Certification by Qualified Professional Engineer
Attachment B	Data Quality Review Memorandum
Attachment C	Statistical Analysis Output

LIST OF ACRONYMS AND ABBREVIATIONS

AEP American Electric Power

ASD Alternative Source Demonstration

CCR Coal Combustion Residuals

CCV Continuing Calibration Verification

GWPS Groundwater Protection Standard

LCL Lower Confidence Limit

LFB Laboratory Fortified Blanks

LPL Lower Prediction Limit

LRB Laboratory Reagent Blanks

MCL Maximum Contaminant Level

NELAP National Environmental Laboratory Accreditation Program

QA Quality Assurance

QC Quality Control

SSI Statistically Significant Increase

SSL Statistically Significant Level

SU Standard Units

TCEQ Texas Commission on Environmental Quality

TDS Total Dissolved Solids

UPL Upper Prediction Limit

UTL Upper Tolerance Limit

WBAP West Bottom Ash Pond

SECTION 1

EXECUTIVE SUMMARY

In accordance with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR rule"), groundwater monitoring has been conducted at the West Bottom Ash Pond (WBAP), an existing CCR unit at the Pirkey Power Plant located in Hallsville, Texas. Recent groundwater monitoring results were compared to the site-specific groundwater protection standards (GWPS) to identify potential exceedances.

Based on detection monitoring conducted in 2017 and 2018, statistically significant increases (SSIs) over background were concluded for boron at the WBAP. An alternative source was not identified at the time, so assessment monitoring was initiated and GWPS were set in accordance with § 352.951(b). Two assessment monitoring events were conducted at the WBAP in March and June 2022 in accordance with § 352.951(a). The results of these assessment events are documented in this report.

The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. Confidence intervals were calculated for Appendix IV parameters at the compliance wells to assess whether Appendix IV parameters were present at an SSL above previously established GWPS. An SSL was identified for cobalt. Thus, either the unit will move to an assessment of corrective measures or an ASD will be conducted to evaluate if the unit can remain in assessment monitoring. Certification of the selected statistical methods by a qualified professional engineer is documented in Attachment A.

SECTION 2

WEST BOTTOM ASH POND EVALUATION

2.1 Data Validation & QA/QC

During the assessment monitoring program in 2022, two sets of samples (March 2022 and June 2022) were collected for analysis from each upgradient and downgradient well to meet the requirements of § 352.951(a). Samples from both sampling events were analyzed for all Appendix III and Appendix IV parameters. A summary of data collected during these assessment monitoring events are presented in Table 1.

Chemical analysis was completed by an analytical laboratory certified by the National Environmental Laboratory Accreditation Program (NELAP). Quality assurance and quality control (QA/QC) samples completed by the analytical laboratory included the use of laboratory reagent blanks (LRBs), continuing calibration verification (CCV) samples, and laboratory fortified blanks (LFBs).

A data quality review was completed to assess if the data met the objectives outlined in TCEQ Draft Technical Guidance No. 32 related to groundwater sampling and analysis (TCEQ, 2020). The total dissolved solids (TDS) sample collected at AD-3 in June 2022 was analyzed out of hold time. Thus, the June 2022 TDS results from AD-3 will not be used for data analysis purposes. An additional TDS sample was collected from AD-3 in August 2022 and these results will be used for statistical analysis. The data were determined usable for supporting project objectives, as documented in the review memorandum provided in Attachment B. The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.9.6.35 statistics software. The export file was checked against the analytical data for transcription errors and completeness.

2.2 Statistical Analysis

Statistical analyses for the WBAP were conducted in accordance with the November 2021 *Statistical Analysis Plan* (Geosyntec, 2021). Time series plots and results for all completed statistical tests are provided in Attachment C.

The data obtained in March and June 2022 were screened for potential outliers. No outliers were identified for these events.

2.2.1 Evaluation of Potential Appendix IV SSLs

A confidence interval was constructed for each Appendix IV parameter at each compliance well. Confidence limits were generally calculated parametrically ($\alpha = 0.01$); however, non-parametric

confidence limits were calculated in some cases (e.g., when the data did not appear to be normally distributed or when the non-detect frequency was too high). An SSL was concluded if the lower confidence limit (LCL) exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). Calculated confidence limits are shown in Attachment C. The calculated confidence limits were compared to the GWPS provided in Table 2. The GWPS were established as either the greater value of the background concentration calculated during a previous statistical analysis (Geosyntec, 2022) or the maximum contaminant level (MCL).

The following SSL was identified at the Pirkey WBAP:

• The LCL for cobalt exceeded the GWPS of 0.00900 mg/L at AD-28 (0.0134 mg/L).

As a result, the Pirkey WBAP will either move to an assessment of corrective measures or an ASD will be conducted to evaluate if the unit can remain in assessment monitoring.

2.2.2 Evaluation of Potential Appendix III SSIs

While SSLs were identified, a review of the Appendix III results was also completed to assess whether concentrations of Appendix III parameters at the compliance wells exceeded background concentrations.

Data collected during the June 2022 assessment monitoring event from each compliance well were compared to previously established prediction limits to evaluate results above background values. The results from this event and the prediction limits are summarized in Table 3. The following exceedances of the upper prediction limits (UPLs) were noted:

- Boron concentrations exceeded the interwell UPL of 0.100 mg/L at AD-28 (0.311 mg/L) and AD-30 (2.49 mg/L).
- Chloride concentrations exceeded the interwell UPL of 9.01 mg/L at AD-17 (30.2 mg/L) and AD-30 (26.0 mg/L).
- Sulfate concentrations exceeded the intrawell UPL of 27.2 mg/L at AD-28 (28.0 mg/L) and the intrawell UPL of 31.6 mg/L at AD-30 (177 mg/L).
- TDS concentrations exceeded the intrawell UPL of 206 mg/L at AD-30 (340 mg/L).

While the prediction limits were calculated for a one-of-two retesting procedure, SSIs were conservatively assumed if the June 2022 sample was above the UPL or below the lower prediction limit (LPL). Based on these results, concentrations of Appendix III constituents appear to be above background concentrations.

2.3 Conclusions

An annual and a semi-annual assessment monitoring event were conducted in accordance with the CCR Rule. The laboratory and field data were reviewed prior to statistical analysis, with no

QA/QC issues identified that prevented data usage. A review of outliers identified no potential outliers in the March and June 2022 data. A confidence interval was constructed at each compliance well for each Appendix IV parameter; SSLs were concluded if the entire confidence interval exceeded the GWPS. An SSL was identified for cobalt. Appendix III parameters were compared to previously calculated prediction limits, with exceedances identified for boron, chloride, sulfate, and TDS.

Based on this evaluation, the Pirkey WBAP CCR unit will either move to an assessment of corrective measures or an ASD will be conducted to evaluate if the unit can remain in assessment monitoring.


SECTION 3

REFERENCES

Geosyntec Consultants (Geosyntec). 2021. Statistical Analysis Plan. H.W. Pirkey Plant. November.

Geosyntec. 2022. Statistical Analysis Summary – West Bottom Ash Pond, H.W. Pirkey Plant. March 18, 2022.

Texas Commission on Environmental Quality (TCEQ). 2020. Draft Technical Guidance No. 32. Coal Combustion Residuals Groundwater Monitoring and Corrective Action. May.

Table 1 - Groundwater Data Summary Pirkey Plant - West Bottom Ash Pond

Well ID			AD-3		AD)-12	AD	-17	AD	-18	AΓ)-28	AD	0-30
Classificati	on		Background		Backg	ground	Comp	liance	Backg	round	Comp	oliance	Comp	oliance
Parameter	Unit	3/29/2022	6/21/2022	8/30/2022	3/28/2022	6/20/2022	3/29/2022	6/21/2022	3/29/2022	6/21/2022	3/29/2022	6/21/2022	3/28/2022	6/20/2022
Antimony	μg/L	0.1 U1	0.5 U1		0.1 U1	0.1 U1	0.1 U1	0.1 U1	0.02 J1	0.1 U1	0.1 U1	0.1 U1	0.1 U1	0.1 U1
Arsenic	μg/L	1.51	0.2 J1	-	0.09 J1	0.08 J1	0.30	0.39	1.55	0.30	0.09 J1	0.14	0.19	0.23
Barium	μg/L	68.3	55.6	-	20.2	24.2	112	250	90.1	79.3	120	130	129	106
Beryllium	μg/L	0.163	0.22 J1		0.127	0.135	0.481	0.650	0.106	0.073	0.605	0.463	0.125	0.089
Boron	mg/L	0.059	0.08 J1	-	0.021 J1	0.042 J1	0.031 J1	0.021 J1	0.009 J1	0.05 U1	0.356	0.311	2.45	2.49
Cadmium	μg/L	0.012 J1	0.1 U1		0.009 J1	0.008 J1	0.028	0.063	0.01 J1	0.012 J1	0.057	0.047	0.012 J1	0.014 J1
Calcium	mg/L	6.09	3.1	-	0.20	0.32	0.24	1.10	0.24	1.49	1.31	1.40	0.66	0.75
Chloride	mg/L	6.84	5.65	-	6.10	7.59	16.2	30.2	5.26	5.20	5.07	4.36	29.5	26.0
Chromium	μg/L	0.40	0.3 J1		0.35	0.63	0.70	0.51	1.40	0.47	0.35	0.40	0.45	0.42
Cobalt	μg/L	7.88	2.70	-	1.01	1.35	6.48	12.2	0.842	0.790	12.5	13.3	4.76	4.90
Combined Radium	pCi/L	1.91	1.68		0.76	0.63	3.01	11.96	2.01	0.73	2.98	5.96	2.3	3.71
Fluoride	mg/L	0.21	0.04 J1	-	0.07	0.09	0.26	0.30	0.06 U1	0.06 U1	0.68	0.61	0.07	0.06
Lead	μg/L	0.28	1 U1		0.09 J1	0.08 J1	0.1 J1	0.13 J1	0.53	0.11 J1	0.05 J1	0.08 J1	0.2 U1	0.2 U1
Lithium	mg/L	0.0934	0.0457	-	0.00604	0.00949	0.0126	0.0206	0.0137	0.0108	0.0242	0.0213	0.0101	0.0100
Mercury	μg/L	0.005 U1	0.004 J1	-	0.005 U1	0.005 U1	0.300 J1	0.200 J1	0.021	0.02 U1	0.012	0.007	0.035	0.014
Molybdenum	μg/L	0.5 U1	2.5 U1		0.5 U1	0.5 U1	0.5 U1							
Selenium	μg/L	0.5 U1	2.5 U1	-	0.33 J1	0.16 J1	0.26 J1	0.44 J1	0.38 J1	0.14 J1	0.26 J1	0.15 J1	0.44 J1	0.34 J1
Sulfate	mg/L	34.0	21.2	-	3.80	4.81	6.77	5.78	7.31	6.47	28.9	28.0	170	177
Thallium	μg/L	0.04 J1	1 U1		0.2 U1	0.2 U1	0.2 U1	0.05 J1	0.05 J1	0.2 U1	0.2 U1	0.2 U1	0.04 J1	0.04 J1
Total Dissolved Solids	mg/L	170 L1	150 P1, H2	170	60 L1	80	60 L1	90	140 L1	110	100 L1	110	330 L1	340
рН	SU	4.78	4.38		3.85	4.25	4.13	3.3	4.4	4.61	3.66	4	3.96	4.15

Notes:

μg/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

--: Not analyzed

U1: Non-detect value. For statistical analysis, parameters which were not detected were replaced with the reporting limit.

J1: Estimated value. Parameter was detected in concentrations below the reporting limit.

L1: The associated laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) recovery was outside acceptance limits.

P1: The precision between duplicate results was above acceptance limits.

H2: Sample analysis performed past holding time.

Table 2: Appendix IV Groundwater Protection Standards
Pirkey Plant - West Bottom Ash Pond

Constituent Name	MCL	Calculated UTL	GWPS
Antimony, Total (mg/L)	0.00600	0.00500	0.00600
Arsenic, Total (mg/L)	0.0100	0.00500	0.0100
Barium, Total (mg/L)	2.00	0.157	2.00
Beryllium, Total (mg/L)	0.00400	0.00200	0.00400
Cadmium, Total (mg/L)	0.00500	0.00100	0.00500
Chromium, Total (mg/L)	0.100	0.00386	0.100
Cobalt, Total (mg/L)	n/a	0.00900	0.00900
Combined Radium, Total (pCi/L)	5.00	3.15	5.00
Fluoride, Total (mg/L)	4.00	1.00	4.00
Lead, Total (mg/L)	n/a	0.00500	0.00500
Lithium, Total (mg/L)	n/a	0.143	0.143
Mercury, Total (mg/L)	0.00200	0.0000640	0.00200
Molybdenum, Total (mg/L)	n/a	0.00500	0.00500
Selenium, Total (mg/L)	0.0500	0.00500	0.0500
Thallium, Total (mg/L)	0.00200	0.00200	0.00200

Notes:

MCL = Maximum Contaminant Level

GWPS = Groundwater Protection Standard

Calculated UTL (Upper Tolerance Limit) represents site-specific background values.

Grey cells indicate the GWPS is based on the calculated UTL because an MCL does not exist.

Table 3: Appendix III Data Summary Pirkey - West Bottom Ash Pond

Analyte	Unit	Description	AD-17	AD-28	AD-30
			6/21/2022	6/21/2022	6/20/2022
Boron	mg/L	Interwell Background Value (UPL)	0.100		
		Analytical Result	0.021	0.311	2.49
Calcium	mg/L	Intrawell Background Value (UPL)	1.63	3.21	1.74
		Analytical Result	1.10	1.40	0.75
Chloride	mg/L	Interwell Background Value (UPL)	9.01		
		Analytical Result	30.2	4.36	26.0
Fluoride	mg/L	Interwell Background Value (UPL)	1.00		
		Analytical Result	0.30	0.61	0.06
рН	SU	Intrawell Background Value (UPL)	4.8	5.6	5.4
		Intrawell Background Value (LPL)	3.3	3.5	4.0
		Analytical Result	3.3	4.0	4.2
Sulfate	mg/L	Intrawell Background Value (UPL)	9.05	27.2	31.6
		Analytical Result	5.78	28.0	177
Total Dissolved Solids	mg/L	Intrawell Background Value (UPL)	111	133	206
		Analytical Result	90	110	340

Notes:

UPL: Upper prediction limit LPL: Lower prediction limit

Bold values exceed the background value.

Background values are shaded gray.

ATTACHMENT A Certification by Qualified Professional Engineer

Certification by Qualified Professional Engineer

I certify that the selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Pirkey West Bottom Ash Pond CCR management area and that the requirements of § 352.931(a) have been met.

DAVID ANTHONY MILLER

Printed Name of Licensed Professional Engineer

Signature

\\2498 License Number TEXAS licensing State

Licensing State

10.27.22

DAVID ANTHONY MILLER

Date

ATTACHMENT B Data Quality Review Memorandum Revision 1 - January 2023

ATTACHMENT B

DATA QUALITY REVIEW – H.W. PIRKEY POWER PLANT JUNE 2022 SAMPLING EVENT MEMORANDUM RECORD OF REVISIONS

Revision 1 (January 2023)

- The introductory text was updated to note that the laboratory reports for the sample data groups (SDGs) discussed in this memorandum were reissued in December 2022 with amended matrix spike (MS) precision calculations.
- For the second bullet point, regarding equipment blank detections, the text was amended to note that a high bias for groundwater chromium results may occur in multiple, not all, samples.
- The low matrix spike duplicate (MSD) recovery for beryllium in the sample "Duplicate 1" was added to the discussion of MS and MSD issues associated with SDG 222015.
- The relative percent difference (RPD) for sodium between the MS and MSD associated with sample 'AD-2' on SDG 222015 is no longer outside the acceptable range. This text was removed.
- The RPDs for calcium, lithium, magnesium, and sodium between the MS and MSD associated with sample 'Duplicate-1' on SDG 222015 are no longer outside the acceptable range. This text was removed.
- The RPD for calcium and sodium associated with the sample 'AD-8' on SDG 222016 are no longer outside the acceptable range. This text was removed.

500 West Wilson Bridge Road, Suite 250 Worthington, Ohio 43085 PH 614.468.0415 FAX 614.468.0416 www.geosyntec.com

Memorandum

Date: January 11, 2023

To: David Miller (AEP)

Copies to: Leslie Fuerschbach (AEP)

From: Allison Kreinberg (Geosyntec)

Subject: Data Quality Review – H.W. Pirkey Power Plant

June 2022 Sampling Event – Revision 1

This memorandum summarizes the findings of a data quality review for groundwater samples collected at the H.W. Pirkey Power Plant, located in Pittsburg, Texas in June 2022. The groundwater samples were collected to comply with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR Rule"). The groundwater samples were analyzed for 40 CFR 257 Appendix III and IV constituents, plus additional constituents collected to support site evaluation efforts.

The following sample data groups (SDGs) were associated with the June 2022 sampling event and are reviewed in this memorandum:

- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 221988
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 221989
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 221990
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 221991
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 222015
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 222016

The laboratory reports for these SDGs were reissued in December 2022 with amended matrix spike precision calculations. The data included in the revised laboratory reports associated with these

SDGs were reviewed to assess if they met the objectives outlined in TCEQ Draft Technical Guideline No. 32¹ prior to submittal of this data to TCEQ.

The following data quality issues were identified:

- As reported in SDG 221989, the sample "AD-3" submitted for total dissolved solids (TDS) analysis via method SM2540C was analyzed out of hold time. The "AD-3" TDS results should be considered estimated.
- As reported in SDG 222015, chromium and cobalt were detected in the equipment blank sample "Equipment Blank" collected on 6/20/2022. The detected chromium concentration in the equipment blank (0.41 µg/L) was higher than the detected values for chromium in multiple groundwater samples, which could result in high bias for all groundwater chromium results. The cobalt equipment blank detection was less than 10% of the detected values in the groundwater samples and would not result in a high bias.
- As reported in SDG 221988 and SDG 221989, the relative percent difference (RPD) for fluoride concentrations from parent sample "AD-13" and duplicate sample "Duplicate-1" was 24%. The "AD-13" fluoride results should be considered estimated.
- As reported in SDG 2221989, the RPD for TDS (11.5%) in the laboratory duplicate was above the acceptable limit of 10%. The associated sample ("AD-3") was flagged P1: the precision between duplicate results was above acceptance limits. The "AD-3" TDS results should be considered estimated.
- As reported in SDG 222015, the following matrix spike (MS) or matrix spike duplicate (MSD) recovery issues were observed:
 - The MSD recovery for sodium (-30.9%) associated with sample "AD-2" was below the acceptable range of 75-125%. The associated sample (AD-2) was flagged M1: the associated MS or MSD recovery was outside acceptance limits. The "AD-2" sodium results should be considered estimated. Sodium is not a regulated Appendix III or IV constituent.
 - O The MS recovery for cobalt (69.7%) and lithium (54%) associated with sample "AD13" were below the acceptable range of 75-125%. The associated sample (AD-13) was flagged M1: the associated MS or MSD recovery was outside

-

¹ TCEQ. 2020. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action Draft Technical Guidance No. 32. May.

acceptance limits. The "AD-13" cobalt and lithium results should be considered estimated.

- O The MSD recovery (72%) for beryllium associated with sample "Duplicate-1", which was collected from well AD-13, was below the acceptable range of 75-125%. The MS recovery (62.6%) for calcium was below the acceptable range of 75-125%. The MS recovery (5.81%) and MSD recovery (53.9%) for cobalt were below the acceptable range of 75-125%. The MS recovery (-3.26%) and MSD recovery (-49.7%) for lithium were below the acceptable range of 75-125%. The MS recovery (32.4%) and MSD recovery (52.1%) for magnesium were below the acceptable range of 75-125%. The MS recovery (71.5%) and MSD recovery (54.3%) for sodium were below the acceptable range of 75-125%. The 'Duplicate-1" beryllium, calcium, cobalt, lithium, magnesium, and sodium results should be considered estimated. Magnesium and sodium are not regulated Appendix III or IV constituents.
- As reported in SDG 222015, the RPD for radium-226 (25.5%) in the laboratory duplicate was above the acceptable limit of 25%. The "AD-13" radium-226 results should be considered estimated.
- As reported in SDG 222016, the MS recovery (49.2%) and MSD recovery (63.5%) for calcium associated with sample "AD-8" were below the acceptable range of 75-125%. The MS recovery for sodium (70.1%) was below the acceptable range of 75-125%. The MS recovery (62.6%) and MSD recovery (72.2%) were below the acceptable range of 75-125%. The associated sample (AD-8) was flagged M1: the associated MS or MSD recovery was outside acceptance limits. The "AD-8" calcium, sodium, and strontium results should be considered estimated. Sodium and strontium are not regulated Appendix III or Appendix IV constituents.

Based on these findings, the majority of the data reported in these SDGs are considered accurate and complete. Although the QC failures mentioned above will result in some limitations of data use since the affected results are considered estimated or have elevated reporting limits, the data are considered usable for supporting project objectives.

ATTACHMENT C Statistical Analysis Output

GROUNDWATER STATS CONSULTING

SWFPR= 1 - (1 - alpha)PEPL = X +k × .

As Hg (n-2)/ (x (n)

August 25, 2022

Geosyntec Consultants Attn: Ms. Allison Kreinberg 500 W. Wilson Bridge Road, Ste. #250 Worthington, OH 43085

Re: Pirkey West Bottom Ash Pond

Assessment Monitoring Event – March & June 2022

Dear Ms. Kreinberg,

Groundwater Stats Consulting (GSC), formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the Assessment Monitoring Event statistical analysis of groundwater data through June 2022 for American Electric Power Inc.'s Pirkey West Bottom Ash Pond (WBAP). The analysis complies with the Texas Commission of Environmental Quality rule 30 TAC 352 as well as with the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling began at the site for the Coal Combustion Residual (CCR) program in 2016. The monitoring well network, as provided by Geosyntec Consultants, consists of the following:

o **Upgradient wells:** AD-3, AD-12, and AD-18

o **Downgradient wells:** AD-17, AD-28, and AD-30

Data were sent electronically to GSC, and the statistical analysis report was prepared according to the background screening conducted in December 2017 that was approved by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to GSC. The statistical analysis was reviewed by Kristina Rayner, Senior Statistician and Founder of Groundwater Stats Consulting.

The CCR Assessment Monitoring program consists of the following constituents:

 Appendix IV (Assessment Monitoring) – antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Time series and box plots for Appendix IV parameters are provided for all wells and constituents; and are used to evaluate concentrations over the entire record (Figures A and B, respectively). The time series plots are used to evaluate concentrations over time and between wells, and to initially screen for suspected outliers and trends while the box plots provide visual representation of variation within individual wells and between wells. Values in background, which have previously been flagged as outliers, may be seen in a lighter font and disconnected symbol on the graphs. Additionally, a summary of flagged values follows this letter (Figure C).

Summary of Statistical Methods

Assessment monitoring for Appendix IV parameters involves the comparison of a confidence interval for each parameter at each downgradient well against the corresponding Groundwater Protection Standard (GWPS). The GWPS is determined for each parameter as the highest limit of the Maximum Contaminant Levels (MCLs) or background limits constructed from tolerance limits using all pooled upgradient well data.

Prior to computing tolerance limits on upgradient well data or confidence intervals on downgradient well data, the distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (USEPA, 2009), data are analyzed using either parametric or non-parametric tolerance limits and confidence intervals as appropriate, based on the following criteria.

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects in background, the reporting limit utilized for non-detects is the practical quantification limit (PQL) as reported by the laboratory. For several constituents, the most recent reporting limits are significantly lower than those reported historically. This is a conservative approach for tolerance limits and confidence intervals at this site.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean

- and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric tolerance limits are used on data containing greater than 50% nondetects.

Background Screening – Conducted in March 2022

Outlier Analysis

Prior to evaluating Appendix IV parameters, background data were screened through visual screening and Tukey's outlier test for potential outliers and extreme trending patterns that would lead to artificially elevated statistical limits. High outliers are also 'cautiously' flagged in the downgradient wells when they are clearly much different from the rest of the data. This is intended to be a regulatory conservative approach in that it will reduce the variance and thus reduce the width of parametric confidence intervals, although it will also reduce the mean and thus lower the entire interval. The intent is to better represent the actual downgradient mean. Flagging high outliers should have no effect on the lower limit of nonparametric confidence intervals.

Tukey's outlier test on pooled upgradient well data through November 2021 identified outliers for beryllium, chromium, combined radium 226 + 228, and lithium. Among these identified values, no new values were flagged as outliers as they were similar to concentrations upgradient of the facility or below the MCL.

Additionally, downgradient well data through November 2021 were screened through visual screening using time series graphs. Since the downgradient well data are used to construct confidence intervals, a regulatory conservative approach is taken in that values that are marginally high relative to the rest of the data are retained unless there is particular justification for excluding them. No new outliers were flagged and no changes to previously flagged outliers were made during the March 2022 screening.

During previous screenings, the reporting limit for thallium for the February 2019 event was 0.01 mg/L, which is higher than both the historical reporting limit and the GWPS of 0.002 mg/L. Therefore, this value was flagged as an outlier at wells with reported non-detects for the February 2019 event. Similarly, the reporting limit for molybdenum of 0.04 mg/L during the February and May 2019 sample events, while lower than the GWPS of 0.1 mg/L, are flagged since they are censored at a much higher level than remaining reporting limits for this constituent.

Tukey's outlier test results for Appendix IV parameters were included with the background update conducted in February 2022. As mentioned above, a list of flagged values follows this report (Figure C).

Interwell Upper Tolerance Limits

Interwell upper tolerance limits were established in the Fall 2021 using all available pooled upgradient well data for each Appendix IV parameter through November 2021 (Figure D). GWPS will be updated during Fall 2022. When data followed a normal or transformed-normal distribution, parametric tolerance limits were used to calculate background limits for Appendix IV parameters with a target of 95% confidence and 95% coverage. Nonparametric tolerance limits are constructed when data do not follow a normal or transformed-normal distribution or when there are greater than 50% non-detects. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples.

Groundwater Protection Standards

Background limits were compared to the Maximum Contaminant Levels (MCLs) in the Groundwater Protection Standard (GWPS) table following this letter to determine the highest limit for use as the GWPS in the Confidence Interval comparisons (Figure E).

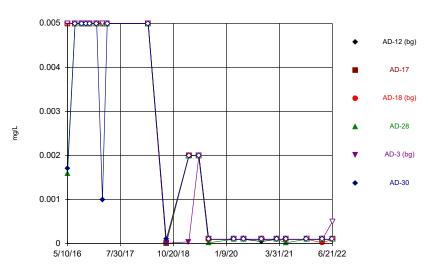
Evaluation of Appendix IV Parameters – March & June 2022

Confidence intervals were then constructed on downgradient wells with data through June 2022 for each of the Appendix IV parameters using either parametric or nonparametric intervals depending on the data distribution and percentage of non-detects, similar to the logic used to construct tolerance limits as discussed above (Figure F). Each confidence interval was compared with the corresponding GWPS from Figure E. Only when the entire confidence interval is above the GWPS is the well/constituent pair considered to exceed its respective standard. Both a tabular summary and graphical presentation of the confidence interval results follow this letter. An exceedance was noted for the following well/constituent pair:

• Cobalt: AD-28

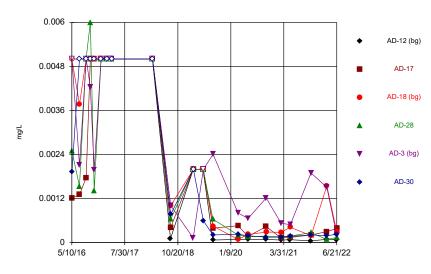
Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Pirkey WBAP. If you have any questions or comments, please feel free to contact us.

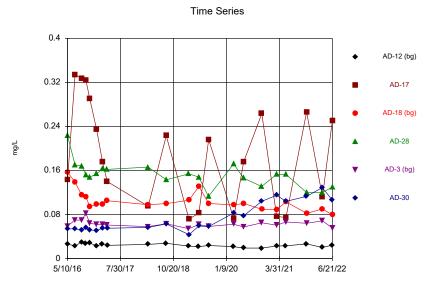
For Groundwater Stats Consulting,


Andrew T. Collins

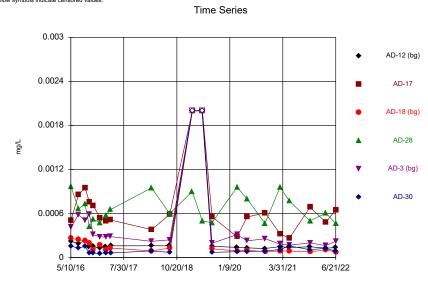
Project Manager

Kristina L. Rayner Senior Statistician

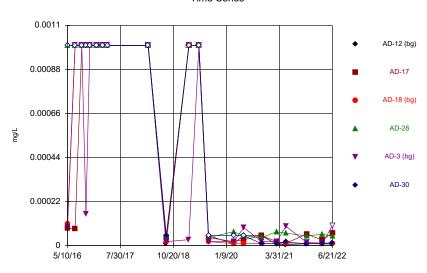

Kristina Rayner


Constituent: Antimony, total Analysis Run 8/25/2022 8:10 AM
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

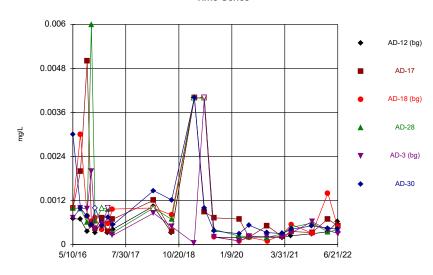
Time Series

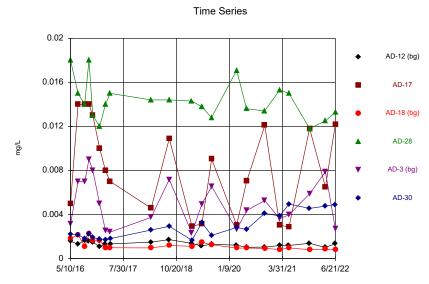

Constituent: Arsenic, total Analysis Run 8/25/2022 8:10 AM
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas[™] v.9.6.35 Groundwater Stats Consulting. UG

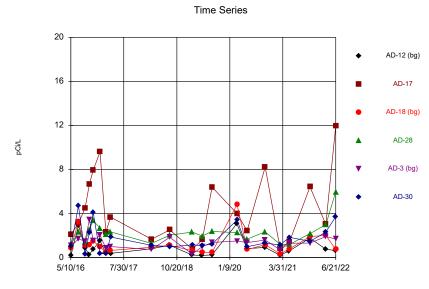

Constituent: Barium, total Analysis Run 8/25/2022 8:10 AM
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Beryllium, total Analysis Run 8/25/2022 8:10 AM
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

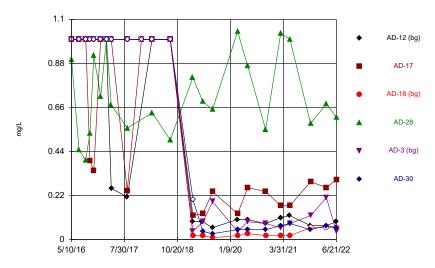

Constituent: Cadmium, total Analysis Run 8/25/2022 8:10 AM
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Time Series

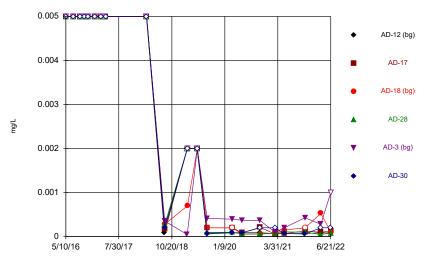

Constituent: Chromium, total Analysis Run 8/25/2022 8:10 AM
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas[™] v.9.6.35 Groundwater Stats Consulting. UG

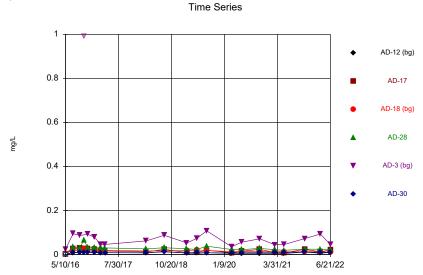
Constituent: Cobalt, total Analysis Run 8/25/2022 8:10 AM Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

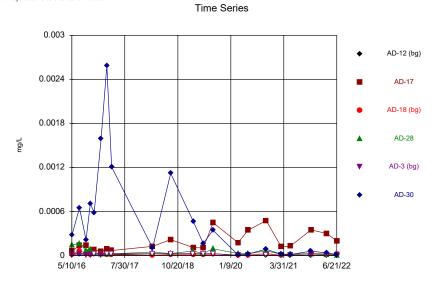
Constituent: Combined Radium 226 + 228 Analysis Run 8/25/2022 8:10 AM


Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

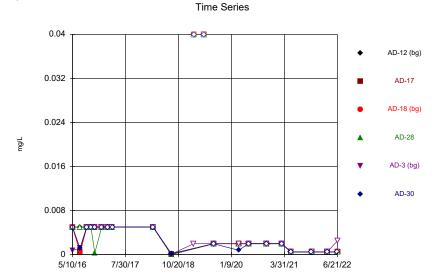
Time Series


Constituent: Fluoride, total Analysis Run 8/25/2022 8:10 AM
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

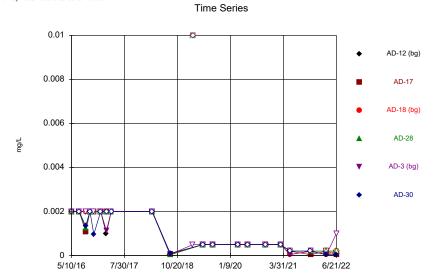
Time Series


Constituent: Lead, total Analysis Run 8/25/2022 8:10 AM Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

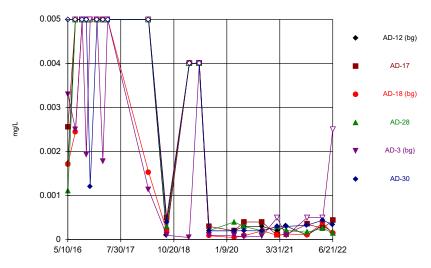

Constituent: Lithium, total Analysis Run 8/25/2022 8:10 AM
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

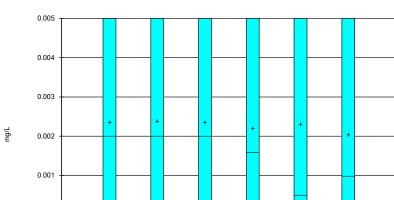
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Mercury, total Analysis Run 8/25/2022 8:10 AM
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

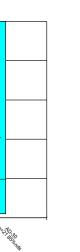
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Molybdenum, total Analysis Run 8/25/2022 8:10 AM Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

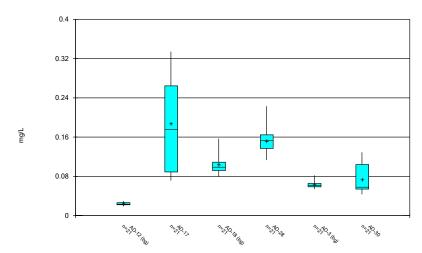

Constituent: Thallium, total Analysis Run 8/25/2022 8:10 AM
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

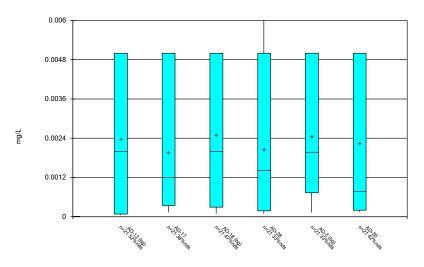


Constituent: Selenium, total Analysis Run 8/25/2022 8:10 AM
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Box & Whiskers Plot

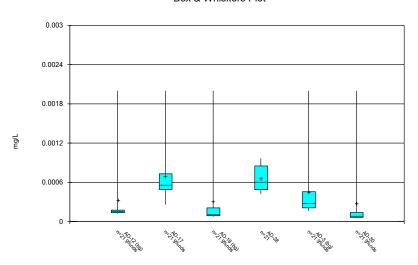

Constituent: Antimony, total Analysis Run 8/25/2022 8:13 AM

Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

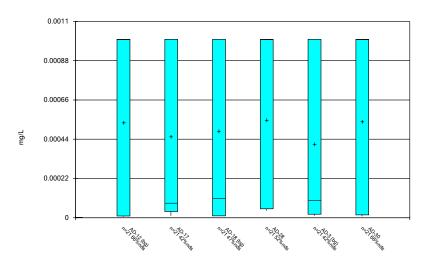


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Constituent: Barium, total Analysis Run 8/25/2022 8:13 AM Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

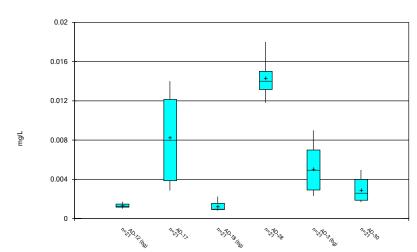

Box & Whiskers Plot

Constituent: Arsenic, total Analysis Run 8/25/2022 8:13 AM Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

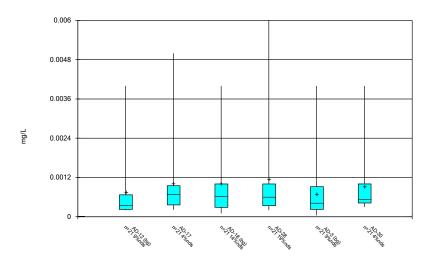

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Beryllium, total Analysis Run 8/25/2022 8:13 AM Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

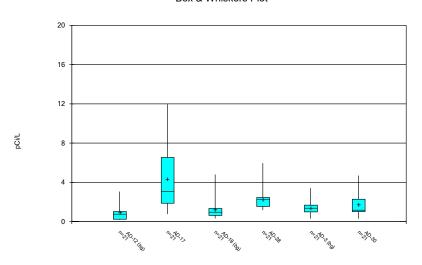

Box & Whiskers Plot

Constituent: Cadmium, total Analysis Run 8/25/2022 8:13 AM
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

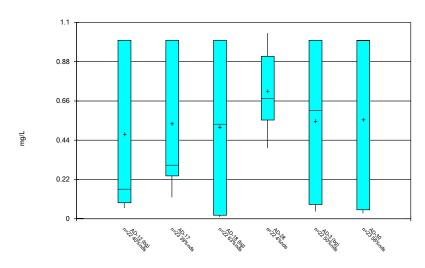

Sanitas[™] v.9.6.35 Groundwater Stats Consulting. UG

Box & Whiskers Plot

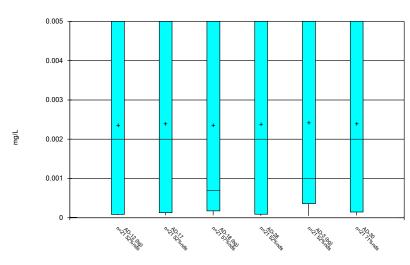
Constituent: Cobalt, total Analysis Run 8/25/2022 8:13 AM Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Box & Whiskers Plot

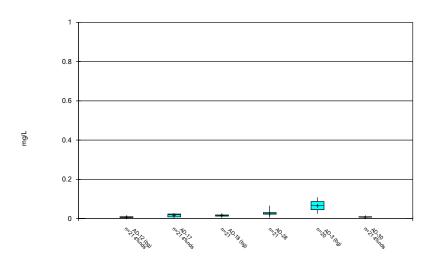
Constituent: Chromium, total Analysis Run 8/25/2022 8:13 AM
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Box & Whiskers Plot

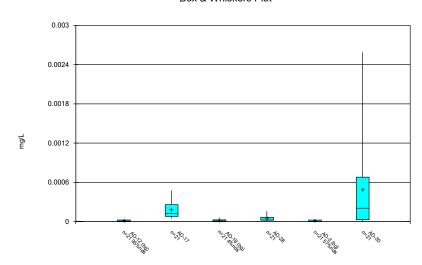

Constituent: Combined Radium 226 + 228 Analysis Run 8/25/2022 8:13 AM
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Constituent: Fluoride, total Analysis Run 8/25/2022 8:13 AM
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Box & Whiskers Plot

Constituent: Lead, total Analysis Run 8/25/2022 8:13 AM
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

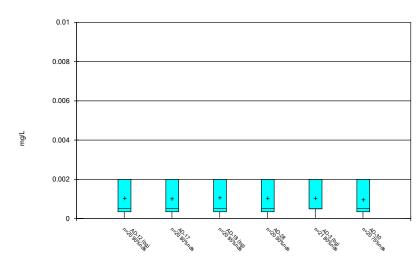
Constituent: Lithium, total Analysis Run 8/25/2022 8:13 AM
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Box & Whiskers Plot

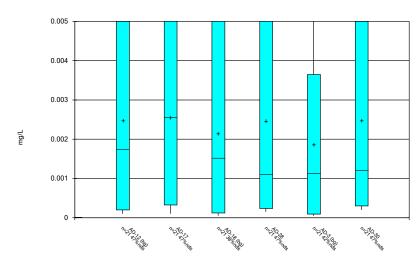
Constituent: Mercury, total Analysis Run 8/25/2022 8:13 AM
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Molybdenum, total Analysis Run 8/25/2022 8:13 AM Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Thallium, total Analysis Run 8/25/2022 8:13 AM
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Selenium, total Analysis Run 8/25/2022 8:13 AM
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Outlier Summary

Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP Printed 8/25/2022, 8:25 AM

	AD-3 Lithium, total (mg/l AD-12 Mo	-) blybdenum, total AD-17 Mol	(mg/L) ybdenum, total (AD-18 Moly	mg/L) odenum, total AD-28 Moly	(mg/L) bdenum, total AD-3 Molyb	(mg/L) odenum, total (m AD-30 Molyb	g/L) denum, total (AD-12 Thalli	mg/L) um, total (mg/l AD-17 Thall	-) _{Num, total} (mg/L) AD-18 Thallium, total (mg/L)
10/13/2016	0.991 (o)								
2/27/2019	<0.04 (o)			<0.04 (o)			<0.01 (o)		
2/28/2019		<0.04 (o)	<0.04 (o)			<0.04 (o)		<0.01 (o)	<0.01 (o)
5/21/2019	<0.04 (o)								
5/22/2019				<0.04 (o)					
5/23/2019		<0.04 (o)	<0.04 (o)		<0.04 (o)	<0.04 (o)			

AD-28 Thallium, total (mg/L) AD-30 Thallium, total (mg/L)

10/13/2016

2/27/2019 <0.01 (o)

2/28/2019 <0.01 (o)

5/21/2019 5/22/2019

0/22/2010

5/23/2019

Upper Tolerance Limits

		Pirkey WBAP	Client: Geosynteo	Data: Pirk	key WBAF	P Prir	nted 1/20/2	022, 8:56 AM		
Constituent	Well	Upper Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Antimony, total (mg/L)	n/a	0.005	n/a	n/a	n/a	57	91.23	n/a	0.05373	NP Inter(NDs)
Arsenic, total (mg/L)	n/a	0.005	n/a	n/a	n/a	57	49.12	n/a	0.05373	NP Inter(normality)
Barium, total (mg/L)	n/a	0.157	n/a	n/a	n/a	57	0	n/a	0.05373	NP Inter(normality)
Beryllium, total (mg/L)	n/a	0.002	n/a	n/a	n/a	57	10.53	n/a	0.05373	NP Inter(normality)
Cadmium, total (mg/L)	n/a	0.001	n/a	n/a	n/a	57	56.14	n/a	0.05373	NP Inter(normality)
Chromium, total (mg/L)	n/a	0.003856	n/a	n/a	n/a	57	12.28	ln(x)	0.05	Inter
Cobalt, total (mg/L)	n/a	0.009	n/a	n/a	n/a	57	0	n/a	0.05373	NP Inter(normality)
Combined Radium 226 + 228 (pCi/L)	n/a	3.148	n/a	n/a	n/a	57	0	sqrt(x)	0.05	Inter
Fluoride, total (mg/L)	n/a	1	n/a	n/a	n/a	60	53.33	n/a	0.04607	NP Inter(normality)
Lead, total (mg/L)	n/a	0.005	n/a	n/a	n/a	57	57.89	n/a	0.05373	NP Inter(normality)
Lithium, total (mg/L)	n/a	0.1426	n/a	n/a	n/a	56	1.786	ln(x)	0.05	Inter
Mercury, total (mg/L)	n/a	0.000064	n/a	n/a	n/a	57	50.88	n/a	0.05373	NP Inter(normality)
Molybdenum, total (mg/L)	n/a	0.005	n/a	n/a	n/a	52	88.46	n/a	0.06944	NP Inter(NDs)
Selenium, total (mg/L)	n/a	0.005	n/a	n/a	n/a	57	43.86	n/a	0.05373	NP Inter(normality)
Thallium, total (mg/L)	n/a	0.002	n/a	n/a	n/a	55	87.27	n/a	0.05954	NP Inter(NDs)

PIRKEY WBAP GWPS							
Background							
Constituent Name	MCL	Limit	GWPS				
Antimony, Total (mg/L)	0.006	0.005	0.006				
Arsenic, Total (mg/L)	0.01	0.005	0.01				
Barium, Total (mg/L)	2	0.16	2				
Beryllium, Total (mg/L)	0.004	0.002	0.004				
Cadmium, Total (mg/L)	0.005	0.001	0.005				
Chromium, Total (mg/L)	0.1	0.0039	0.1				
Cobalt, Total (mg/L)	n/a	0.009	0.009				
Combined Radium, Total (pCi/L)	5	3.15	5				
Fluoride, Total (mg/L)	4	1	4				
Lead, Total (mg/L)	n/a	0.005	0.005				
Lithium, Total (mg/L)	n/a	0.14	0.14				
Mercury, Total (mg/L)	0.002	0.000064	0.002				
Molybdenum, Total (mg/L)	n/a	0.005	0.005				
Selenium, Total (mg/L)	0.05	0.005	0.05				
Thallium, Total (mg/L)	0.002	0.002	0.002				

^{*}Grey cell indicates Background Limit is higher than MCL

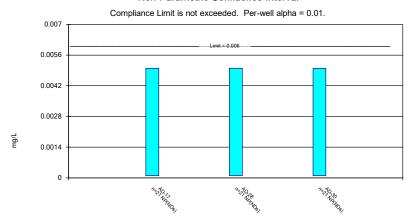
^{*}MCL = Maximum Contaminant Level

^{*}GWPS = Groundwater Protection Standard

Confidence Intervals - Significant Results

Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP Printed 8/25/2022, 8:27 AM

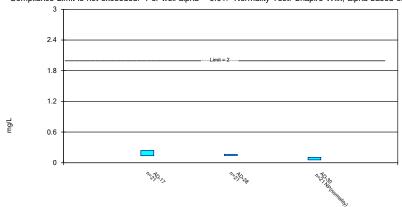
Constituent	Well	Upper Lim.	Lower Lim.	Complianc	e Sig.	N Mean	Std. Dev.	<u>%NE</u>	Os ND Adj.	Transfor	m <u>Alpha</u>	Method
Cobalt, total (mg/L)	AD-28	0.01527	0.01337	0.009	Yes	21 0 01432	0.00172	0	None	No	0.01	Param

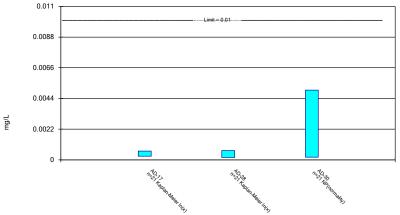

Confidence Intervals - All Results

Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP Printed 8/25/2022, 8:27 AM

Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	ND Adj.	Transform	n <u>Alpha</u>	Method
Antimony, total (mg/L)	AD-17	0.005	0.0001	0.006	No	21	0.002377	0.002392	95.24	None	No	0.01	NP (NDs)
Antimony, total (mg/L)	AD-28	0.005	0.0001	0.006	No	21	0.002208	0.002327	80.95	None	No	0.01	NP (NDs)
Antimony, total (mg/L)	AD-30	0.005	0.0001	0.006	No	21	0.002034	0.002238	85.71	None	No	0.01	NP (NDs)
Arsenic, total (mg/L)	AD-17	0.000627	0.0002573	0.01	No	21	0.001969	0.00205	38.1	Kaplan-Meier	ln(x)	0.01	Param.
Arsenic, total (mg/L)	AD-28	0.0006625	0.0001709	0.01	No	21	0.002053	0.002147	33.33	Kaplan-Meier	ln(x)	0.01	Param.
Arsenic, total (mg/L)	AD-30	0.005	0.00019	0.01	No	21	0.002239	0.002277	42.86	None	No	0.01	NP (normality)
Barium, total (mg/L)	AD-17	0.239	0.1369	2	No	21	0.188	0.09255	0	None	No	0.01	Param.
Barium, total (mg/L)	AD-28	0.1648	0.1389	2	No	21	0.1519	0.02355	0	None	No	0.01	Param.
Barium, total (mg/L)	AD-30	0.104	0.054	2	No	21	0.07332	0.02676	0	None	No	0.01	NP (normality)
Beryllium, total (mg/L)	AD-17	0.0008043	0.0004549	0.004	No	21	0.0006997	0.0004653	9.524	None	ln(x)	0.01	Param.
Beryllium, total (mg/L)	AD-28	0.0007705	0.0005584	0.004	No	21	0.0006645	0.0001922	0	None	No	0.01	Param.
Beryllium, total (mg/L)	AD-30	0.0001539	0.0000632	0.004	No	21	0.0002765	0.0005739	9.524	None	No	0.01	NP (normality)
Cadmium, total (mg/L)	AD-17	0.001	0.00003	0.005	No	21	0.0004539	0.000485	42.86	None	No	0.01	NP (normality)
Cadmium, total (mg/L)	AD-28	0.001	0.00005	0.005	No	21	0.0005493	0.0004844	52.38	None	No	0.01	NP (NDs)
Cadmium, total (mg/L)	AD-30	0.001	0.000014	0.005	No	21	0.0005368	0.000498	66.67	None	No	0.01	NP (NDs)
Chromium, total (mg/L)	AD-17	0.001081	0.000435	0.1	No	21	0.001025	0.001232	4.762	None	ln(x)	0.01	Param.
Chromium, total (mg/L)	AD-28	0.0007841	0.0003463	0.1	No	21	0.001161	0.001536	19.05	Kaplan-Meier	ln(x)	0.01	Param.
Chromium, total (mg/L)	AD-30	0.001019	0.0004684	0.1	No	21	0.0009244	0.0009273	4.762	None	ln(x)	0.01	Param.
Cobalt, total (mg/L)	AD-17	0.01058	0.006005	0.009	No	21	0.008291	0.004144	0	None	No	0.01	Param.
Cobalt, total (mg/L)	AD-28	0.01527	0.01337	0.009	Yes	21	0.01432	0.00172	0	None	No	0.01	Param.
Cobalt, total (mg/L)	AD-30	0.003429	0.002219	0.009	No	21	0.002894	0.001156	0	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	AD-17	6.062	2.61	5	No	21	4.336	3.129	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	AD-28	2.667	1.713	5	No	21	2.269	1.029	0	None	x^(1/3)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	AD-30	2.237	0.9917	5	No	21	1.747	1.246	0	None	sqrt(x)	0.01	Param.
Fluoride, total (mg/L)	AD-17	1	0.24	4	No	23	0.5345	0.3869	39.13	None	No	0.01	NP (normality)
Fluoride, total (mg/L)	AD-28	0.8239	0.611	4	No	22	0.7174	0.1983	4.545	None	No	0.01	Param.
Fluoride, total (mg/L)	AD-30	1	0.06	4	No	23	0.5543	0.4769	56.52	None	No	0.01	NP (NDs)
Lead, total (mg/L)	AD-17	0.005	0.00013	0.005	No	21	0.002399	0.002371	52.38	None	No	0.01	NP (NDs)
Lead, total (mg/L)	AD-28	0.005	0.00008	0.005	No	21	0.002381	0.002388	52.38	None	No	0.01	NP (NDs)
Lead, total (mg/L)	AD-30	0.005	0.00009	0.005	No	21	0.002399	0.002371	71.43	None	No	0.01	NP (NDs)
Lithium, total (mg/L)	AD-17	0.02142	0.01278	0.14	No	21	0.0171	0.007837	4.762	None	No	0.01	Param.
Lithium, total (mg/L)	AD-28	0.031	0.0223	0.14	No	21	0.02787	0.01116	0	None	No	0.01	NP (normality)
Lithium, total (mg/L)	AD-30	0.009828	0.008018	0.14	No	21	0.00872	0.002146	4.762	None	x^2	0.01	Param.
Mercury, total (mg/L)	AD-17	0.0002293	0.0001036	0.002	No	21	0.0001796	0.0001292	0	None	sqrt(x)	0.01	Param.
Mercury, total (mg/L)	AD-28	0.00006309	0.00002482	0.002	No	21	0.00004862	0.00004218	0	None	sqrt(x)	0.01	Param.
Mercury, total (mg/L)	AD-30	0.0006351	0.0001048	0.002	No	21	0.0004891	0.0006591	0	None	sqrt(x)	0.01	Param.
Molybdenum, total (mg/L)	AD-17	0.005	0.0005	0.005	No	19	0.002763	0.002057	89.47	None	No	0.01	NP (NDs)
Molybdenum, total (mg/L)	AD-28	0.005	0.0005	0.005	No	19	0.002755	0.002067	89.47	None	No	0.01	NP (NDs)
Molybdenum, total (mg/L)	AD-30	0.005	0.0005	0.005	No	19	0.002744	0.002053	84.21	None	No	0.01	NP (NDs)
Selenium, total (mg/L)	AD-17	0.005	0.0003	0.05	No	21	0.002554	0.002266	47.62	None	No	0.01	NP (normality)
Selenium, total (mg/L)	AD-28	0.005	0.00021	0.05	No	21	0.002457	0.002314	47.62	None	No	0.01	NP (normality)
Selenium, total (mg/L)	AD-30	0.005	0.0003	0.05	No	21	0.002482	0.002292	47.62	None	No	0.01	NP (normality)
Thallium, total (mg/L)	AD-17	0.002	0.0002	0.002	No	20	0.001031	0.0008427	80	None	No	0.01	NP (NDs)
Thallium, total (mg/L)	AD-28	0.002	0.0002	0.002	No	20	0.001054	0.0008273	90	None	No	0.01	NP (NDs)
Thallium, total (mg/L)	AD-30	0.002	0.0002	0.002	No	20	0.0009943	0.0008129	75	None	No	0.01	NP (NDs)

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

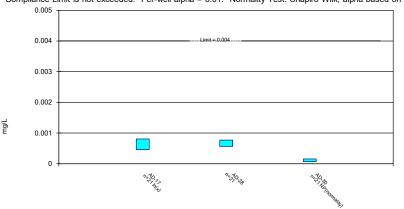

Non-Parametric Confidence Interval


Constituent: Antimony, total Analysis Run 8/25/2022 8:26 AM View: Appendix IV Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

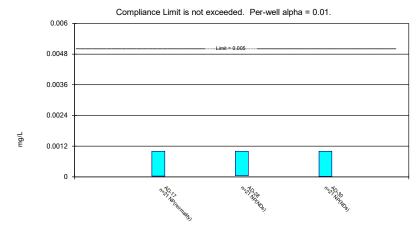
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

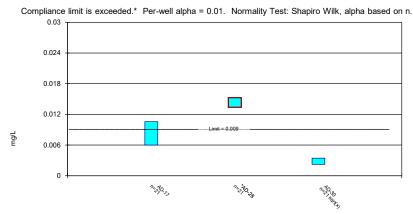


Constituent: Arsenic, total Analysis Run 8/25/2022 8:26 AM View: Appendix IV Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

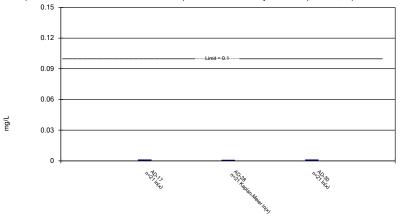

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Non-Parametric Confidence Interval

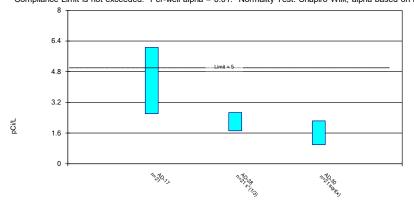
Constituent: Cadmium, total Analysis Run 8/25/2022 8:26 AM View: Appendix IV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Parametric Confidence Interval

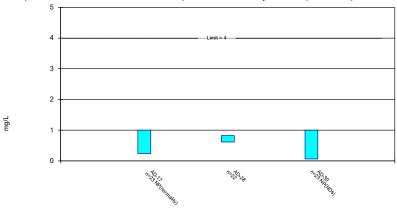
Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Chromium, total Analysis Run 8/25/2022 8:26 AM View: Appendix IV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

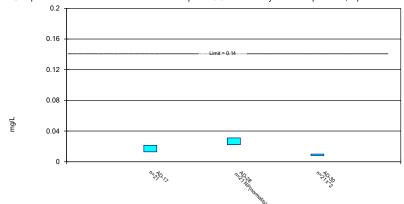
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

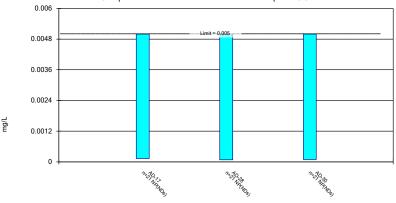
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Fluoride, total Analysis Run 8/25/2022 8:26 AM View: Appendix IV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

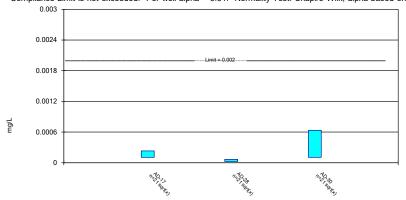
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Lithium, total Analysis Run 8/25/2022 8:26 AM View: Appendix IV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

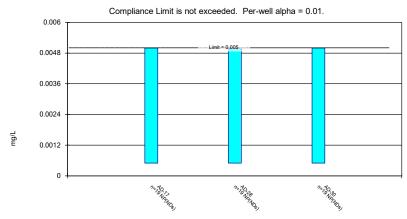
Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.


Constituent: Lead, total Analysis Run 8/25/2022 8:26 AM View: Appendix IV

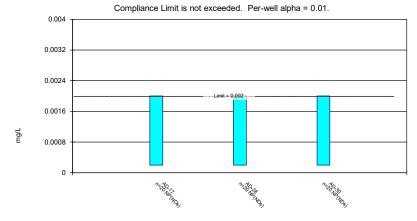
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

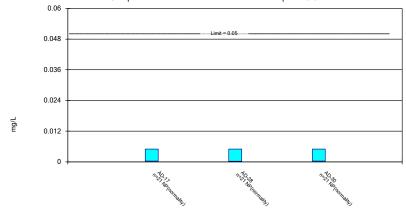
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Non-Parametric Confidence Interval

Constituent: Molybdenum, total Analysis Run 8/25/2022 8:26 AM View: Appendix IV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas[™] v.9.6.35 Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval



Constituent: Thallium, total Analysis Run 8/25/2022 8:26 AM View: Appendix IV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

Constituent: Selenium, total Analysis Run 8/25/2022 8:26 AM View: Appendix IV
Pirkey WBAP Client: Geosyntec Data: Pirkey WBAP

Memorandum

Date: January 20, 2023

To: David Miller (AEP)

Copies to: Leslie Fuerschbach (AEP)

From: Allison Kreinberg (Geosyntec)

Subject: Data Quality Review – H.W. Pirkey Power Plant

November 2022 Sampling Event

This memorandum summarizes the findings of a data quality review for groundwater samples collected at the H.W. Pirkey Power Plant, located in Pittsburg, Texas in November 2022. The groundwater samples were collected to comply with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR Rule"). The groundwater samples were analyzed for 40 CFR 257 Appendix III and IV constituents, plus additional constituents collected to support site evaluation efforts.

The following sample data groups (SDGs) were associated with the November 2022 sampling event and are reviewed in this memorandum:

- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223647
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223649
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223664
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223668

The laboratory reports for SDGs 223647 and 223649 were reissued in December 2022 with amended matrix spike precision calculations. The data included in the revised laboratory reports associated with these SDGs were reviewed to assess if they met the objectives outlined in TCEQ Draft Technical Guideline No. 32¹ prior to submittal of this data to TCEQ.

¹ TCEQ. 2020. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action Draft Technical Guidance No. 32. May.

Data Quality Review – Pirkey November 2022 Data January 20, 2023 Page 2

The following data quality issues were identified:

- As reported in SDG 223664, chromium, cobalt, and molybdenum were detected in the equipment blank sample "Equipment Blank" collected on 11/16/2022. The detected chromium concentration in the equipment blank (0.47 μg/L) was more than 10% of the detected values in the groundwater samples, which could result in high bias for all groundwater chromium results. The detected cobalt concentration in the equipment blank (0.143 μg/L) was more than 10% of the detected value in sample "AD-18" (0.723 μg/L), which could result in high bias in the "AD-18" cobalt results. The estimated molybdenum concentration in the equipment blank (0.2 μg/L) was more than 10% of the detected value in sample "Duplicate-2" (0.2 μg/L), which could result in high bias in the "Duplicate-2" molybdenum results. Molybdenum was not detected in the other groundwater samples.
- As reported in SDG 223649, the relative percent difference (RPD) for sulfate concentrations from parent sample "AD-36" and duplicate sample "Landfill Duplicate" was 86%. The "AD-36" sulfate results should be considered estimated.
- As reported in SDG 223664, the following matrix spike (MS) and matrix spike duplicate (MSD) recovery for sodium (160% and 223%, respectively) associated with sample "AD-2" was above the acceptable range of 75-125%. The MS recovery for sodium (50.4%) associated with sample "AD-30" was below the acceptable range of 75-125%. The associated samples ("AD-2" and "AD-30") were flagged M1: the associated MS or MSD recovery was outside acceptance limits. The "AD-2" and "AD-30" sodium results should be considered estimated. Sodium is not a regulated Appendix III or IV constituent.
- As reported in SDG 223664, the RPD for radium-226 (52.5%) in the laboratory duplicate was above the acceptable limit of 25%. The "AD-12" radium-226 result was flagged P1: the precision between duplicate results was above acceptance limits. The "AD-12" radium-226 results should be considered estimated.

Based on these findings, the majority of the data reported in these SDGs are considered accurate and complete. Although the QC failures mentioned above will result in some limitations of data use since the affected results are considered estimated or have elevated reporting limits, the data are considered usable for supporting project objectives.

APPENDIX 3- Alternate Source Demonstrations

Alternate source demonstrations are included in this appendix. Alternate sources are sources or reasons that explain that statistically significant increases over background or statistically significant levels above the groundwater protection standard are not attributable to the CCR unit.

ALTERNATIVE SOURCE DEMONSTRATION REPORT TEXAS STATE CCR RULE

H.W. Pirkey Power Plant West Bottom Ash Pond Hallsville, Texas

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

engineers | scientists | innovators

941 Chatham Lane, Suite 103 Columbus, OH 43221

June 2022

CHA8495

TABLE OF CONTENTS

SECTION 1	1 Introduction and Summary	1-
1.1	CCR Rule Requirements	
1.2	Demonstration of Alternative Sources	1-2
SECTION 2	2 Alternative Source Demonstration	2-1
2.1	Regional Geology/Site Hydrogeology	2-1
2.2	Proposed Alternative Source	2-1
2.3	Sampling Requirements	2-4
SECTION 3	3 Conclusions and Recommendations	3-1
SECTION 4	4 References	4-
	TABLES	
Table 1	Summary of Key Analytical Data	
Table 2	Soil Cobalt Data	
Table 3	AD-28 Mineralogy Results	
Table 4	B-3 X-Ray Diffraction Results	
	FIGURES	
T' 1		0.1

Figure 1	Potentiometric Contours – Uppermost Aquifer November 2021
Figure 2	Aqueous Cobalt Distribution
Figure 3	Cobalt Distribution in Soil
Figure 4	B-3 Visual Boring Log

ATTACHMENTS

i

Attachment A	Geologic Cross-Section A-A
Attachment B	SB-28 Boring Log
Attachment C	SB-28 Boring Photographic Log
Attachment D	SEM/EDS Analysis
Attachment E	Certification by a Qualified Professional Engineer

LIST OF ACRONYMS

AEP American Electric Power

ASD Alternative Source Demonstration

CCR Coal Combustion Residuals

EBAP East Bottom Ash Pond

EDS Energy Dispersive Spectroscopy

EPRI Electric Power Research Institute

GSC Groundwater Stats Consulting, LLC

GWPS Groundwater Protection Standard

LCL Lower Confidence Limit

MCL Maximum Contaminant Level

QA Quality Assurance

QC Quality Control

SEM Scanning Electron Microscopy

SPLP Synthetic Precipitation Leaching Procedure

SSL Statistically Significant Level

TAC Texas Administrative Code

TCEQ Texas Commission on Environmental Quality

UTL Upper Tolerance Limit

USEPA United States Environmental Protection Agency

VAP Vertical Aquifer Profiling

WBAP West Bottom Ash Pond

XRD X-Ray Diffraction

SECTION 1

INTRODUCTION AND SUMMARY

This Alternative Source Demonstration (ASD) report has been prepared to address a statistically significant level (SSL) for cobalt in the groundwater monitoring network at the H.W. Pirkey Plant Western Bottom Ash Pond (WBAP), located in Hallsville, Texas, following the second semi-annual assessment monitoring event of 2021.

The H.W. Pirkey Plant has four coal combustion residuals (CCR) storage units regulated by the Texas Commission on Environmental Quality (TCEQ) under Registration No. CCR104, including the WBAP (Figure 1). The WBAP is also registered as a surface impoundment under TCEQ Industrial and Hazardous Waste Solid Waste Registration No. 33240. In November 2021, a semi-annual assessment monitoring event was conducted at the WBAP in accordance with 30 TAC §352.951(a). The monitoring data were submitted to Groundwater Stats Consulting, LLC (GSC) for statistical analysis. Groundwater protection standards (GWPSs) were established for each Appendix IV parameter in accordance with the statistical analysis plan developed for the facility (Geosyntec, 2020a) and United States Environmental Protection Agency's (USEPA) Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance (Unified Guidance; USEPA, 2009). The GWPS for each parameter was established as the greater of either the background concentration or, for constituents with a maximum contaminant level (MCL), the MCL. To determine background concentrations, an upper tolerance limit (UTL) was calculated using pooled data from the background wells collected during the background monitoring and assessment monitoring events.

Confidence intervals were re-calculated for Appendix IV parameters at the compliance wells to assess whether these parameters were present at a statistically significant level (SSL) above the GWPSs. An SSL was concluded if the lower confidence limit (LCL) of a parameter exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). An SSL was identified for cobalt at AD-28 at the WBAP, where the LCL of 0.0135 milligrams per liter (mg/L) exceeded the calculated GWPS of 0.0090 mg/L (Geosyntec, 2021a). No other SSLs were identified.

1.1 CCR Rule Requirements

TCEQ regulations (TCEQ, 2020a) regarding assessment monitoring programs for CCR landfills and surface impoundments provide owners and operators with the option to make an ASD when an SSL is identified (30 TAC §352.951(e)). In making a demonstration under this section, the owner or operator must:

Within 90 days of detecting a statistically significant level above the groundwater protection standard of any constituent listed in Appendix IV adopted by reference in § 352.1431 of this title, submit a report prepared and certified in accordance with § 352.4 of this title (relating to Engineering and Geoscientific Information) to the executive director, and any local pollution

agency with jurisdiction that has requested to be notified, demonstrating that a source other than a CCR unit caused the exceedance or that the exceedance resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

Pursuant to 30 TAC § 352.951(e), Geosyntec Consultants, Inc. (Geosyntec) has prepared this ASD report to document that the SSL identified for cobalt at AD-28 is from a source other than the WBAP.

1.2 <u>Demonstration of Alternative Sources</u>

An evaluation was completed to assess possible alternative sources to which the identified SSL could be attributed. Alternative sources were identified amongst five types, based on methodology provided by EPRI (2017):

- ASD Type I: Sampling Causes;
- ASD Type II: Laboratory Causes;
- ASD Type III: Statistical Evaluation Causes;
- ASD Type IV: Natural Variation; and
- ASD Type V: Alternative Sources.

A demonstration was conducted to show that the SSL identified for cobalt at AD-28 was based on a Type IV cause and not by a release from the Pirkey WBAP.

SECTION 2

ALTERNATIVE SOURCE DEMONSTRATION

The TCEQ CCR rules allows the owner or operator 90 days from the determination of an SSL to demonstrate that a source other than the CCR unit caused the SSL. Descriptions of the regional geology and site hydrogeology and the methodology used to evaluate the SSL identified for cobalt and the proposed alternative source are described below.

2.1 Regional Geology/Site Hydrogeology

The WBAP is positioned on an outcrop of the Eocene-age Recklaw Formation, which consists predominantly of clay and fine-grained sand (Arcadis, 2016). The Recklaw Formation is underlain by the Carrizo Sand, which crops out in the topographically lower southern portion of the plant. The Carrizo Sand consists of fine to medium grained sand interbedded with silt and clay.

The WBAP monitoring well network monitors groundwater within the uppermost aquifer, which was defined by Arcadis (2016) as very fine to fine grained clayey and silty sand located about 7 feet below the WBAP with an average thickness of approximately 15 feet. Geologic cross-section A-A' from the Arcadis (2016) shows the subsurface structure of the uppermost aquifer (indicated on the figure as clayey silty sand, tan to gray) underlying the WBAP and the East Bottom Ash Pond (EBAP). This figure as well as a cross-section location map is provided as **Attachment A**. Geologic cross-section A-A' demonstrates lateral continuity of the uppermost aquifer spanning the entire length of the WBAP.

Groundwater flow direction in the area of the WBAP is west-southwesterly (**Figure 1**). Seasonal variability in groundwater flow has not been observed since the monitoring well network was installed. Groundwater flow velocities in the Uppermost Aquifer in the area of the WBAP have been reported as approximately 5 to 40 feet/year. The WBAP monitoring well network consists of upgradient monitoring wells AD-3 and AD-17, and compliance wells AD-12, AD-18, AD-28, AD-29, and AD-30, all of which are screened within the uppermost aquifer.

2.2 Proposed Alternative Source

An initial review of site geochemistry, site historical data, and laboratory quality assurance/quality control (QA/QC) data did not identify alternative sources for cobalt due to Type I (sampling), Type II (laboratory), Type III (statistical evaluation), or Type V (alternative: anthropologic) issues. Groundwater sampling, laboratory analysis, and statistical evaluations were generally completed in accordance with the 30 TAC §352.931 and draft TCEQ guidance for groundwater monitoring (TCEQ, 2020b). As described below, the SSL has been attributed to natural variation associated with the underlying geology, which is a Type IV (natural variation) issue.

Monitoring well AD-28 is located near the southwest corner of the WBAP, as shown in **Figure 1**. Previous ASDs for cobalt at the WBAP provided evidence that cobalt is present in the aquifer

media at the site and that the observed cobalt concentrations were due to natural variation of native geogenic sources (Geosyntec, 2019a; Geosyntec, 2019b; Geosyntec, 2020b; Geosyntec, 2020c; Geosyntec, 2021a; Geosyntec, 2021b). The previous ASDs discussed how the WBAP was not a source for cobalt in downgradient groundwater, based on observed concentrations of cobalt both in the ash material and in leachate from Synthetic Precipitation Leaching Procedure (SPLP) analysis (SW-864 Test Method 1312 [USEPA, 1994]) of the ash material. Cobalt was not detected in the SPLP leachate above the reporting limit of 0.01 mg/L, which is lower than the average concentration at AD-28 (**Table 1**).

A surface water sample was collected from the WBAP in November 2020 to characterize the total cobalt concentrations. Cobalt was detected at a concentration of 0.000501 mg/L in this sample. No changes to material handling or plant operations have occurred which would change the anticipated cobalt concentrations in the WBAP since this sample was collected. The WBAP ceased receipt of CCR and non-CCR waste streams in March 2022 and commenced closure by removal activities (AEP, 2022). The cobalt concentration from the November 2020 surface water sample is lower than all reported cobalt concentrations for in-network wells from the from the most recent WBAP sampling event, and over an order of magnitude lower than the average concentration observed at AD-28 (**Figure 2**; **Table 1**). Thus, the WBAP is not the likely source of cobalt at AD-28.

As noted in the previous ASDs, soil samples collected across the site, including from locations near the WBAP, identified cobalt in the aquifer solids at varying concentrations. SB-28 was advanced in the vicinity of AD-28 in April 2020 to re-log the geology at AD-28 and collect samples for laboratory analysis of total metals and mineralogy. The SB-28 field boring log, which was generated by Auckland Consulting LLC, is provided as **Attachment B**. Cobalt was identified at SB-28 at concentrations of 4.53 milligrams per kilogram (mg/kg) at 15.5-16 feet below ground surface (bgs) and 8.70 mg/kg at 40-41 feet bgs (**Table 2**). The 15.5-16 feet bgs interval at SB-28 correlates to the depth of the monitoring well screen of AD-28 (15-35 feet bgs), indicating that naturally occurring cobalt is present in aquifer solids within the AD-28 screened interval. Cobalt was also identified in the aquifer solids at varying concentrations at other locations throughout the site, with the highest value of 23.5 mg/kg reported at AD-41, which is upgradient of the WBAP (**Figure 3**).

In addition to the analysis of total cobalt, soil samples were submitted for mineralogical analysis to determine the mineral composition of soils near the WBAP. X-ray diffraction (XRD) analysis of soils from SB-28 identified pyrite (an iron sulfide mineral) in samples collected at 25-30 feet bgs and 40-41 feet bgs at concentrations up to 3% by weight (**Table 3**). Cobalt is known to undergo isomorphic substitution for iron in crystalline iron minerals such as pyrite due to their similar ionic radii of approximately 1.56 angstrom (Å) for iron vs. 1.52 Å for cobalt (Clementi and Raimondi, 1963; Krupka and Serne, 2002; Hitzman et al., 2017). The presence of iron-bearing minerals in soil near the EBAP constitutes a potential source of naturally occurring cobalt.

The aquifer solids at SB-28 are distinctly red in color at shallow depths, as illustrated in the photolog of soil cores provided in **Attachment C.** Red color in soils is often associated with the presence of oxidized iron-bearing minerals such as hematite and goethite. Goethite, an iron

hydroxide mineral (FeOOH), was present at depths up to 16 ft bgs at SB-28 at up to 37% of the total aquifer solids (**Table 3**). The alteration of pyrite to goethite under oxidizing conditions is a well-understood phenomenon, including in formations in east Texas (Senkayi et al., 1986; Dixon et al., 1982). It is likely that the pyrite weathering process is resulting in the release of isomorphically substituted cobalt from the pyrite crystal structure as it undergoes oxidative weathering to iron oxide/hydroxide minerals.

As described in an ASD previously generated for the Pirkey Plant's EBAP, vertical aquifer profiling (VAP) was used to collect groundwater samples from upgradient locations B-2 and B-3 during the soil boring and sample collection process (Geosyntec, 2019b). A groundwater sample was also collected from AD-30, an existing well within the WBAP groundwater monitoring network. Solid phases within these groundwater samples were separated and submitted for analysis of chemical composition and mineralogy. For the VAP samples, separation was completed using a centrifuge due to the high abundance of suspended solids. For the groundwater sample at AD-30, the sample was filtered using a 1.5-micron filter. Based on total metals analysis, cobalt was identified both in the centrifuged solid material collected from upgradient VAP location B-3 [VAP-B3-(40-45)] and in the material retained on the filter after processing groundwater from permanent monitoring wells AD-30, B-2, and B-3 (Table 2). The concentrations of cobalt in the solid material retained after filtration were comparable to the bulk soil samples collected from the same locations.

The solid sample [VAP-B3-(40-45)] was submitted for mineralogical analysis via XRD and scanning electron microscopy (SEM) using an energy dispersive spectroscopic analyzer (EDS). The XRD results identified pyrite as approximately 3% of the solid phase (**Table 4**). Pyrite was identified during SEM/EDS analysis of lignite which is mined immediately adjacent to the site. Logging completed while the VAP boring was advanced identified coal at several intervals, including 45 and 48 ft bgs (**Figure 4**). Furthermore, SEM/EDS of both centrifuged solid samples [VAP-B3-(40-45) and VAP-B3-(50-55)] identified pyrite in backscattered electron micrographs by the distinctive framboidal morphology (Harris et al., 1981; Sawlowicz, 2000). Major peaks representing iron and sulfur were identified in the EDS spectrum, which further support the identification of pyrite (**Attachment D**). While cobalt was not identified in the EDS spectrum, it is likely present at concentrations below the detection limit.

The WBAP was not identified as the source of cobalt at AD-28 based on the low concentrations of cobalt in the pond itself. Cobalt concentrations at AD-28 are believed to be a result of natural variability within the aquifer. The presence of pyrite and iron oxides has been confirmed at AD-28 and across the Site. Naturally occurring cobalt is known to substitute for iron in pyrite, which is then known to weather to iron oxides/hydroxides. The weathering of pyritic minerals to iron oxide/hydroxide minerals may be resulting in the release of cobalt into groundwater from the crystal structure of these aquifer minerals.

2.3 Sampling Requirements

As the ASD presented above supports the position that the identified SSL is not due to a release from the Pirkey WBAP, the unit will remain in the assessment monitoring program. Groundwater at the unit will continue to be sampled for Appendix IV parameters on a semi-annual basis.

SECTION 3

CONCLUSIONS AND RECOMMENDATIONS

The preceding information serves as the ASD prepared in accordance with 30 TAC § 352.951(e) and supports the position that the SSL for cobalt identified at AD-28 during assessment monitoring in November 2021 was not due to a release from the WBAP. The identified SSL was instead attributed to natural variation in the underlying geology. Therefore, no further action is warranted, and the Pirkey WBAP will remain in the assessment monitoring program. Certification of this ASD by a qualified professional engineer is provided in **Attachment E**.

SECTION 4

REFERENCES

- Arcadis, 2016. West Bottom Ash Pond CCR Groundwater Monitoring Well Network Evaluation H.W. Pirkey Power Plant. May.
- AEP, 2022. Notification of Intent to Close a CCR Unit Pirkey Power Plant West Bottom Ash Pond. Revision 1. May.
- Clementi, E., and Raimdoni, D. L. 1963. Atomic screening constants from SCF functions. *J. Chem. Phys.*, 38, 2686.
- Dixon, J.B., Hossner, L.R., Senkayi, A.L., and Egashira, K. 1982. Mineral properties of lignite overburden as they relate to mine spoil reclamation. In: J.A. Kittrick, D.S. Fanning, L. R. Hossner, editors, Acid Sulfate Weathering, *SSSA Spec. Publ. 10*. SSSA, Madison, WI. p. 169-191.
- EPRI, 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Site. 3002010920. October.
- Geosyntec, 2019a. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, West Bottom Ash Pond. Hallsville, Texas. March.
- Geosyntec, 2019b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, West Bottom Ash Pond. Hallsville, Texas. September.
- Geosyntec, 2020a. Statistical Analysis Plan Revision 1. October.
- Geosyntec, 2020b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, West Bottom Ash Pond. Hallsville, Texas. April.
- Geosyntec, 2020c. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, West Bottom Ash Pond. Hallsville, Texas. December.
- Geosyntec, 2021a. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, West Bottom Ash Pond. Hallsville, Texas. May.
- Geosyntec, 2021b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, West Bottom Ash Pond. Hallsville, Texas. December.
- Geosyntec, 2022. Statistical Analysis Summary, West Bottom Ash Pond. H.W. Pirkey Power Plant. Hallsville, Texas. March.

- Harris, L.A, Kenik, E.A., and Yust, C.S. 1981. Reactions in pyrite framboids induced by electron beam heating in a HVEM. *Scanning Electron Microscopy*, 1, web.
- Hitzman, M.W., Bookstrom, A.A., Slack, J.F., and Zientek, M.L., 2017. Cobalt Styles of Deposits and the Search for Primary Deposits. USGS Open File Report 2017-1155.
- Krupka, K.M. and Serne, R.J., 2002. Geochemical Factors Affecting the Behavior of Antimony, Cobalt, Europium, Technetium, and Uranium in Vadose Sediments. Pacific Northwest National Lab, PNNL-14126. December.
- Sawlowicz, Z. 2000. Framboids: From Their Origin to Application. Pr. Mineral. (Mineralogical Transactions), 88, web.
- Senkayi, A.L., Dixon, J.B., and Hossner, L.R. 1986. Todorokite, goethite, and hematite: alteration products of siderite in East Texas lignite overburden. *Soil Science*, 142, 36-43.
- TCEQ, 2020a. Title 30, Part 1, Chapter 352: Coal Combustion Residuals Waste Management, May 22.
- TCEQ, 2020b. Coal Combustion Residuals Groundwater Monitoring and Corrective Action Draft Technical Guideline No. 32. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action. Waste Permits Division. May.
- United States Environmental Protection Agency (USEPA), 1994. Method 1312 Synthetic Precipitation Leaching Procedure, Revision 0, September 1994, Final Update to the Third Edition of the Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, EPA publication SW-846.
- USEPA, 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance. EPA 530/R-09/007. March.

Table 1: Summary of Key Analytical Data West Bottom Ash Pond - H.W. Pirkey Plant

Sample	Sample Date	Unit	Cobalt Concentration
Bottom Ash (Solid Material)	2/11/2019	mg/kg	5.8
SPLP Leachate of Bottom Ash	2/11/2019	mg/L	<0.01
WBAP Pond Water	11/4/2020	mg/L	0.000501
AD-28 - Average	May 2016 - November 2021	mg/L	0.0143

Notes:

mg/kg - milligram per kilogram

mg/L - milligram per liter

An average value was calculated for AD-28 using all cobalt data collected under 40 CFR 257 Subpart D

Table 2: Soil Cobalt Data West Bottom Ash Pond - H.W. Pirkey Plant

Location ID	Location	Sample Depth (ft bgs)	Cobalt (mg/kg)		
	Bulk	Soil Samples	(mg/kg)		
		6-6.5	< 2.38		
AD 20	WD AD NI-41-	15.5-16	4.53		
AD-28	WBAP Network	25-30	< 2.50		
		40-41	8.70		
AD-30	WBAP Network	7	1.00		
AD-30	W DAP Network	23	15.0		
		10	2.36		
	Upgradient	16	3.62		
B-2		71	10.30		
		82	7.21		
		87	3.11		
		10	1.30		
B-3	Upgradient	20	0.59		
		97	1.11		
		15	<1.0		
AD-41	Upgradient	35	23.5		
		95	1.90		
Solid Material Retained After Filtration					
AD-30	WBAP Network	15-25	9.3 J		
B-2	Upgradient	38-48	4.3 J		
B-3	Upgradient	29-34	12.0		
D-3	Opgradient	VAP 40-45	18.0		

Notes:

mg/kg- milligram per kilogram

ft bgs - feet below ground surface

J = estimated value

For AD-28 and AD-30, samples were collected from additional boreholes advanced in the immediate area of the location identified by the well ID. Samples were not collected from the cuttings of the borings advanced for well installation. Samples at B-2, B-3, and AD-41 were collected from cores removed from the borehole during well lithology logging.

Depths for samples collected after filtration represent the screened interval for the permanent well where the sample was collected.

Table 3 - AD-28 Mineralogy Results West Bottom Ash Pond - H. W. Pirkey Plant

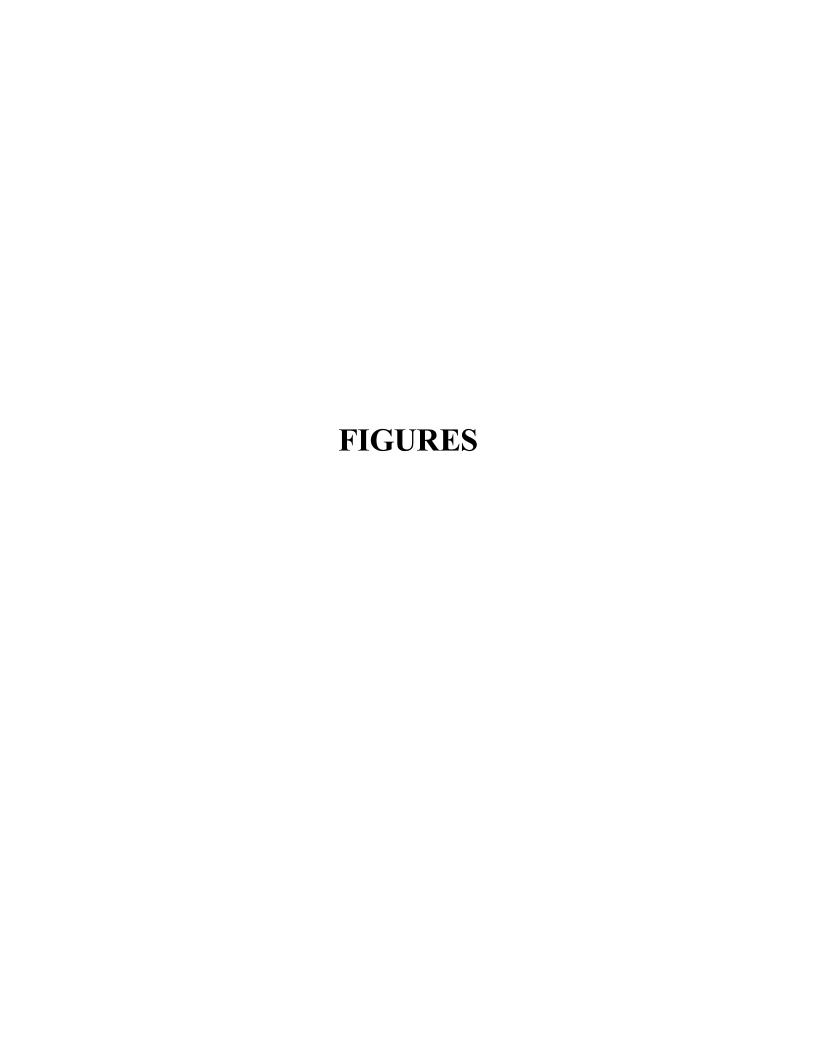
Boring ID	SB-28 (AD-28)					
Sample Depth Interval	6-6.5	15.5-16	25-30	40-41		
Sample Location	Above Screened Interval	Within Scree	Below Screened Interval			
Color	Red-brown to yellow-brown	Light gray, light Brown, light red- red-brown brown		Gray to dark gray		
Mineralogy						
Quartz	58%	46%	73%	34%		
Pyrite		-	3%	3%		
K-Feldspar		1%	1%	1%		
Siderite			2%	52%		
Goethite	37%	15%				
Anhydrite				2%		
Clay/Mica	5%	38%	21%	8%		

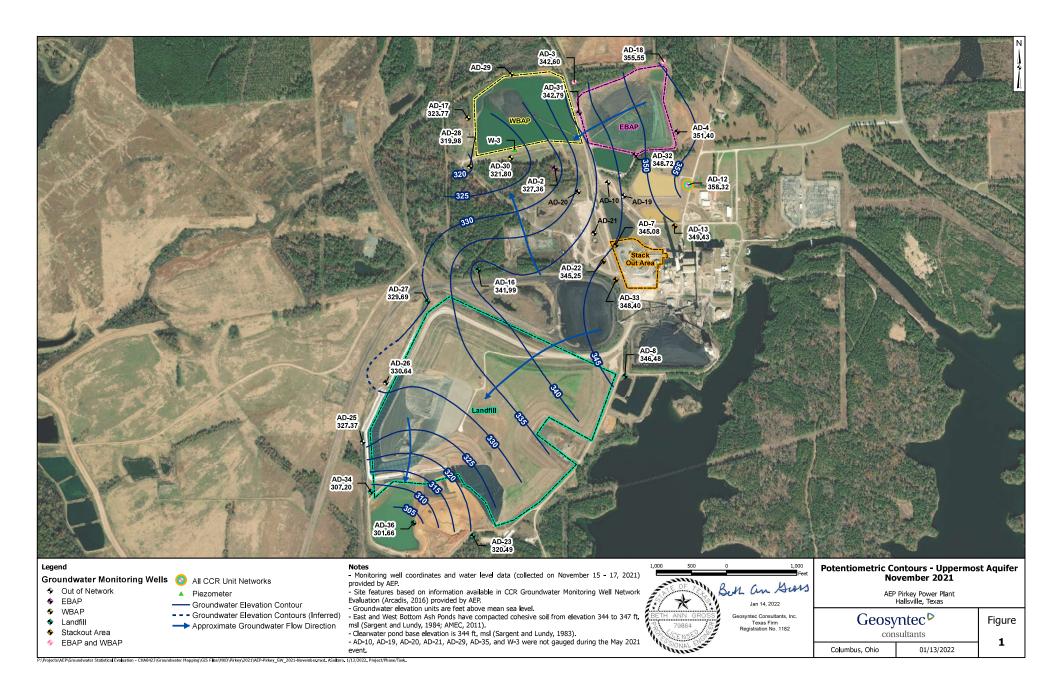
Notes:

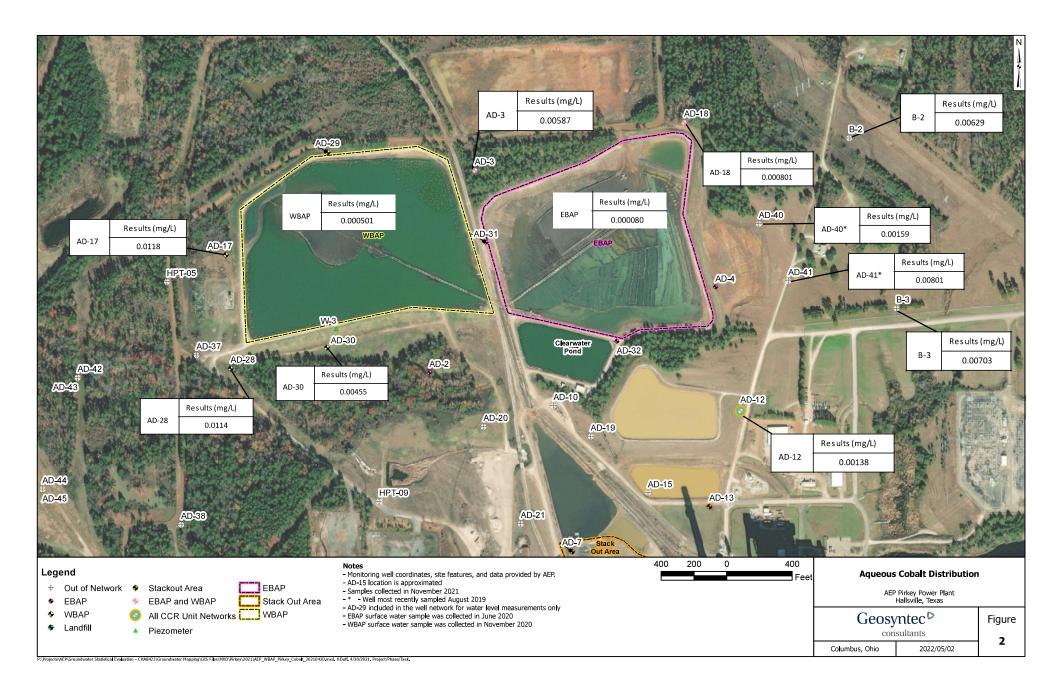
Sample depths are shown in feet below ground surface (bgs)

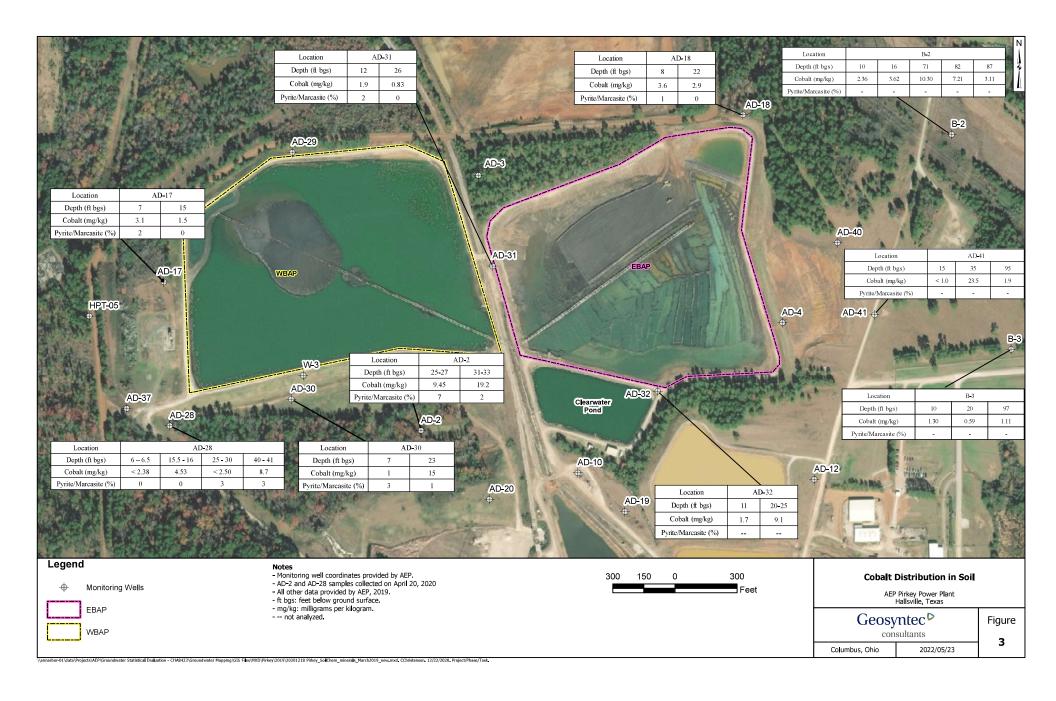
Well AD-28 is screened from 15-35 ft. below ground surface.

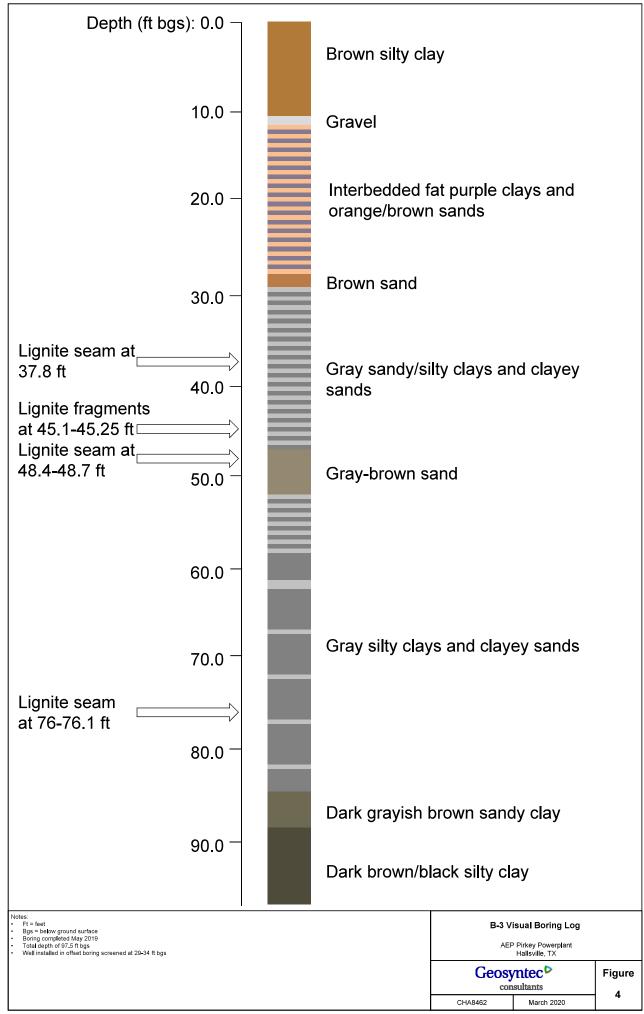
Mineralogical component results are given in relative % abundance.

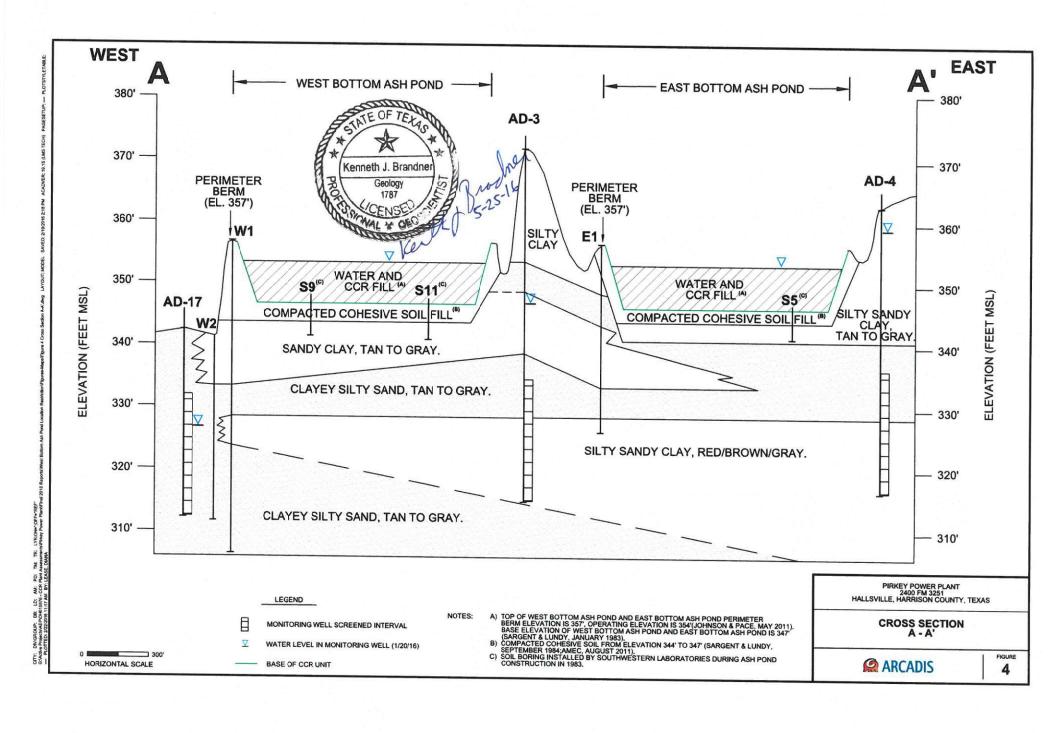

Table 4: B-3 X-Ray Diffraction Results West Bottom Ash Pond - H. W. Pirkey Plant


Constituent	VAP-B3-(40-45)
Quartz	15
Plagioclase Feldspar	0.5
Orthoclase	ND
Calcite	ND
Dolomite	ND
Siderite	0.5
Goethite	ND
Hematite	2
Pyrite	3
Kaolinte	42
Chlorite	4
Illite/Mica	6
Smectite	12
Amorphous	15


Notes:


ND: Not detected


Results given in units of relative % abundance VAP-B3-(40-45) is the centrifuged solid material from the groundwater sample collected at that interval.



ATTACHMENT A Geologic Cross-Section A-A'

Document Path: 21GISPROJECTS1 FNVAEPUPIKAN PlantMXD/Figure 3 - Ste Lawrett and Most Lawretter

ATTACHMENT B SB-28 Boring Log

-	& SANDS	_	28		8 - Pirke		Mari	ELEV	MATERIALS	DA	_	D ADJ	20/20	CTERTICS
VLo V Lo L	ery Loose oose fed. Dense	0-4 4-10	Vso So Mst St VSt	ONSISTENCY Very Soft Soft Stiff Very Stiff Very Stiff Hard	PENETROMET 0 - 0.25 0.25 - 0.5 0.5 - 1.0 1.0 - 2.0 2.0 - 4.0 > 4.0	ER N - VAI	4 8 15 130 11 130 11 11 11 11 11 11 11 11 11 11 11 11 11	Light Brown k Dark Bk Black Grey Bl Blue Tan Gr Grenn Red Y Yellow dish.Reddish.Wh White	Cl Clay, Clayer Si Silt, Silty Sa Sand, Sandy Ls Limestone Gr Gravel SiS Siltstone SS Sandstone Sh Shale, Shale		FI MN	ine Medium Coarse	Calc C Lig I Org C Lam I	Calcareous Lignite Organic Laminate Hickensided
7	0	T.	S			STRATU	JM DI	SCRIPTION			AND			
SAME TATER TEST ASSIGNMENT	RELOVENY	DEPTH F	SAMPLE	CONDITION OR CONSISTENCY	COLOR	MATERIALS OR ADJECTIVES	PREDOMINATE MATERIAL	CHARACTI OF MODIFIC	}	SEAT - 6"	i.9 - ts1	Zud - 6"	UNIFIED SOIL CLASSIFICATION	N - VALUE OR HAND PENETROMETER
8-5	41	0		0-2	Br U.Br	SI	Sa	Silty sand to	dep clay &				moist	(0-Z
		2			'U.rd.Br			gravely	ine trokore					/
				2-10'	RLBr. YIIW	51.60	CI	Clav-50Me	cs)+ trace				Motst	(2-5
		-			Br			11. fl. sand to	race coarse i	BA			14	
5-10	1,5"		H					ore concre					moist	(5-10
0-10	113						4.00	laxere6-6		ne				
10-15	- 11	10	Н	101-	RLBC.	510	Sa	NAME AND ADDRESS OF TAXABLE PARTY.	tef with day in				W 4.5. C	100
10.15				16-	H.67	314	096	Huy lences	trace comer	91			V. MDIS	10-1
15 CD	1 1-1					1		dayey sand						
15-20	1.5'		H		H. 61.4 H.R	Br		- clay lence	15'(6")				vimist	(15-16
		•						amented sand						
20-25	3"			40	Br, U.Rd.	Si	Sa	- Medicae	some irousto	ne			Satura	ede;
25-30	3/1		H		Gray			- gray@ 20'	Jad -la var	1	1	1		
								- SOME CONE	VIEW Clayer	AWA	re	coul	41	
36-35	- NR										0	25-	30'	
35-40	NR		H											100
								R.T. @ 41)'					
			H					* Split Spec	n Muen				7	51107
								From 4						
46-41	10			40-41	Gray, DK	4	Sa	Clayer Sand	ulleuses of					
		• •	H		31.4/			comented san	in crystise				V. mals	7 40-1
					424			Have Axbor	THE YOUR	-	11		The state of the s	
								*6-6,5 col						
			H					* 25-36' 0	Hechele 123	0	1		No. of	4
Trum	ASA	. D		Auger		SEEDA	E C	FT. WHILE I	lected 1300	T	0		T. ON C	IOI IDI

*GPS: 32.465448, -94.49432 (18'W-NW) of AD-28/MW-28

ATTACHMENT C SB-28 Boring Photographic Log

GEOSYNTEC CONSULTANTS Photographic Record

Client: American Electric Power Project Number: CHA8495/12A/02

Site Name: H.W. Pirkey Plant WBAP Site Location: Hallsville, Texas

Photograph 1

Date: 4/21/2020

Direction: N/A

Comments:

Multiple sections of core from soil boring SB-28 advanced near downgradient monitoring well AD-28 within the Western Bottom Ash Pond (WBAP) CCR unit. 5-foot pushes were used. Note the reddish color indicating the presence of oxidized iron-bearing minerals.

Photograph 2

Date: 4/21/2020

Direction: N/A

Comments:

0-5 foot interval of SB-

28.


Photograph 3

Date: 4/21/2020

Direction: N/A

Comments:

5-10 foot interval of SB-28. Recovery of this interval was limited. A sample was collected from this interval from 6-6.5 ft. below ground surface (bgs).

Photograph 4

Date: 4/21/2020

Direction: N/A

Comments:

10-15 foot interval of SB-28. Recovery of this interval was limited.

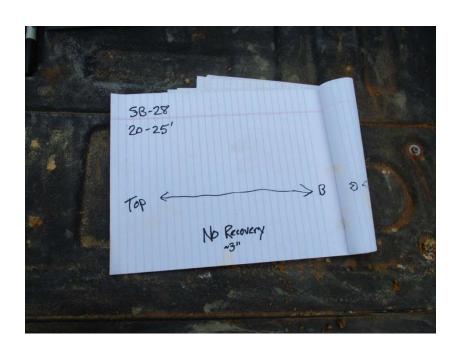
Photograph 5

Date: 4/21/2020

Direction: N/A

Comments:

15-20 foot interval of SB-28. Recovery of this interval was limited. A sample was collected from this interval from 15.5-16 ft. bgs.


Photograph 6

Date: 4/21/2020

Direction: N/A

Comments:

Field geologist's note indicating that very little of the 20-25 foot interval of SB-28 was recovered.


Photograph 7

Date: 4/21/2020

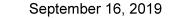
Direction: N/A

Comments:

25-30 foot interval of SB-28. Very little of this interval was recovered. Note the color change of the soil from red to dark brown/black. A sample was collected from this interval.

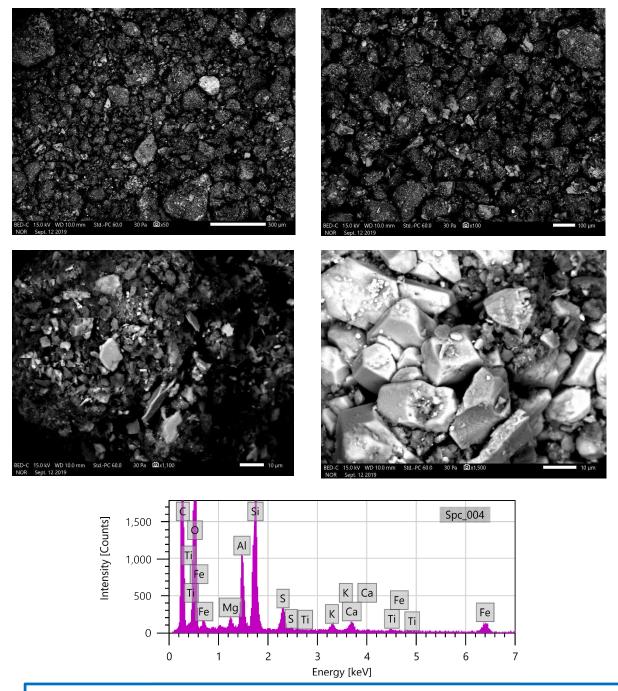
Photograph 8

Date: 4/21/2020

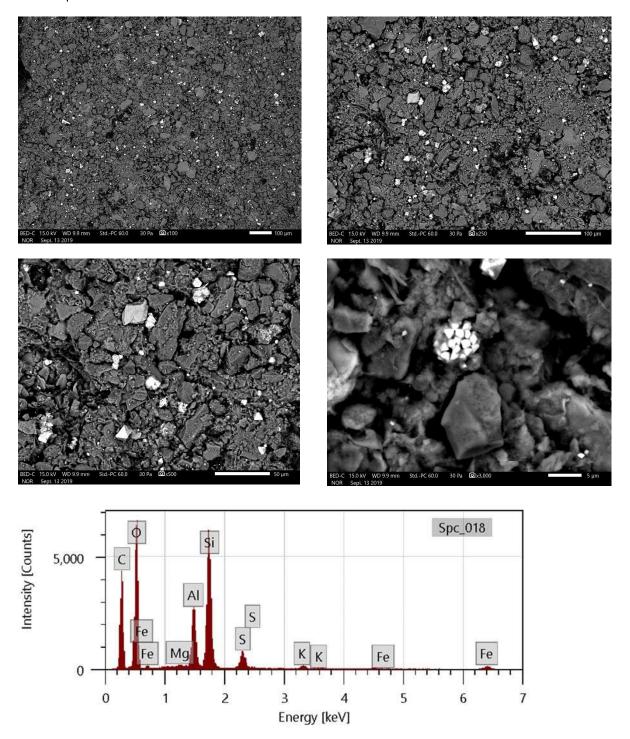

Direction: N/A

Comments:

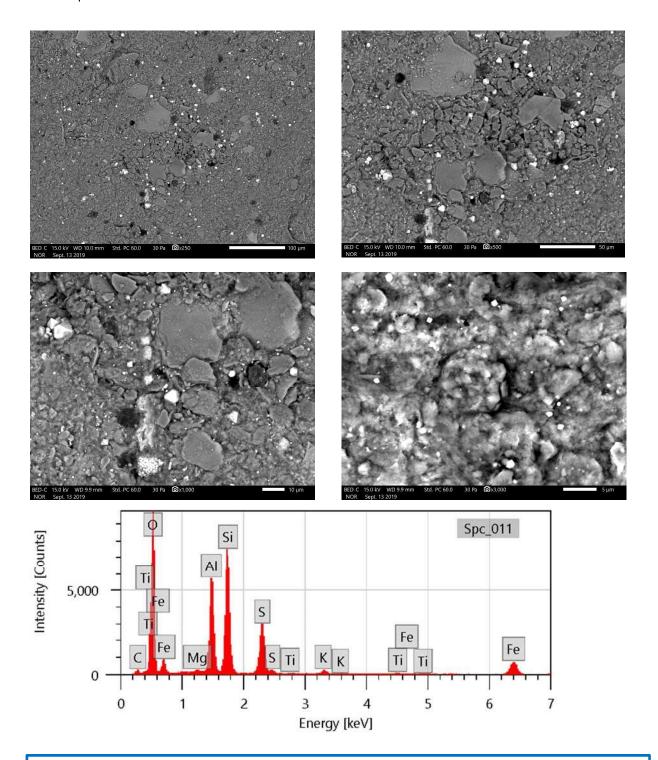
Bottom of SB-28. The boring log indicates no recovery of soil from the 30-40 foot interval. A sample was collected from this interval.



ATTACHMENT D SEM/EDS Analysis



Dr. Bruce Sass 941 Chatham Lane, Suite 103, Columbus, OH 43221 via Email: <u>BSass@geosyntec.com</u>



Lignite. Backscattered electron micrographs show the sample at 100X, 1,100X, and 1,500X. EDS spectrum at bottom is an area scan of the region shown in top right micrograph. Bright particles are mostly quartz and feldspar. Major peaks for carbon, oxygen, silicon, and aluminum suggest coal and clay.

Sample VAP B3 40-45. Backscattered electron micrographs show the sample at 100X, 250X, 500X, and 3000X. EDS spectrum at bottom is an area scan of the region shown at 500X. Bright particles are pyrite (framboid in bottom right micrograph). Major peaks for carbon, oxygen, silicon, and aluminum suggest coal and clay.

Sample VAP B3 50-55. Backscattered electron micrographs show the sample at 250X, 500X, 1000X, and 3000X. EDS spectrum at bottom is an area scan of the region shown at 3000X. Bright particles are mostly pyrite (framboid in bottom left micrograph); occasional particles of Fe-Ti oxide are detected. Major peaks for oxygen, silicon, and aluminum suggest clay. Large blocky particles are mostly quartz, feldspar, and clay.

ATTACHMENT E Certification by a Qualified Professional Engineer

CERTIFICATION BY A QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected and above described alternative source demonstration is appropriate for evaluating the groundwater monitoring data for the Pirkey West Bottom Ash Pond CCR management area and that the requirements of 30 TAC § 352.951(e) have been met.

	sed Professional Engineer	BETH ANN GROSS 79864 CENSE SIONAL EN
Signature		
		Geosyntec Consultants 2039 Centre Pointe Blvd, Suite 103 Tallahassee, Florida 32308
		Texas Registered Engineering Firm No. F-1182
79864	Texas	6/16/2022
License Number	Licensing State	Date

ALTERNATIVE SOURCE DEMONSTRATION REPORT TEXAS STATE CCR RULE

H.W. Pirkey Power Plant West Bottom Ash Pond Hallsville, Texas

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

engineers | scientists | innovators

500 West Wilson Bridge Road, Suite 250 Worthington, OH 43085

January 2023

CHA8495

TABLE OF CONTENTS

SECTION 1	Introduction and Summary	1-1
1.1	CCR Rule Requirements.	1-1
1.2	Demonstration of Alternative Sources	1-2
SECTION 2	Alternative Source Demonstration	2-1
2.1	WBAP Design and Construction	2-1
2.2	Regional Geology/Site Hydrogeology	2-1
2.3	Proposed Alternative Source	2-2
2.4	Sampling Requirements	2-4
SECTION 3	Conclusions and Recommendations	3-1
SECTION 4	References	4-1

TABLES

Table 1	Summary of Key Analytical Data
Table 2	Soil Cobalt and Mineralogy Data
Table 3	AD-28 Mineralogy Results
Table 4	B-3 X-Ray Diffraction Results

FIGURES

Figure 1	Potentiometric Contours – Uppermost Aquifer June 2022
Figure 2	Aqueous Cobalt Distribution
Figure 3	Cobalt Distribution in Soil
Figure 4	B-3 Visual Boring Log

ATTACHMENTS

i

Attachment A	SB-28 Boring Log
Attachment B	SB-28 Boring Photographic Log
Attachment C	SEM/EDS Analysis
Attachment D	Certification by a Qualified Professional Engineer

LIST OF ACRONYMS

ASD Alternative Source Demonstration

BGS Below Ground Surface

CCR Coal Combustion Residuals

EBAP East Bottom Ash Pond

EDS Energy Dispersive Spectroscopy Analyzer

EPRI Electric Power Research Institute

GSC Groundwater Stats Consulting, LLC

GWPS Groundwater Protection Standard

LCL Lower Confidence Limit

MCL Maximum Contaminant Level

QA Quality Assurance

QC Quality Control

SEM Scanning Electron Microscopy

SPLP Synthetic Precipitation Leaching Procedure

SSL Statistically Significant Level

TAC Texas Administrative Code

TCEQ Texas Commission on Environmental Quality

UTL Upper Tolerance Limit

USEPA United States Environmental Protection Agency

VAP Vertical Aquifer Profiling

WBAP West Bottom Ash Pond

XRD X-Ray Diffraction

SECTION 1

INTRODUCTION AND SUMMARY

This Alternative Source Demonstration (ASD) report has been prepared to address a statistically significant level (SSL) for cobalt in the groundwater monitoring network at the H.W. Pirkey Plant Western Bottom Ash Pond (WBAP), located in Hallsville, Texas, following the first semiannual assessment monitoring event of 2022. The H.W. Pirkey Plant has four coal combustion residuals (CCR) storage units regulated by the Texas Commission on Environmental Quality (TCEQ) under Registration No. CCR104, including the WBAP (**Figure 1**).

In June 2022, a semiannual assessment monitoring event was conducted at the WBAP in accordance with 30 TAC §352.951(a). The monitoring data were submitted to Groundwater Stats Consulting, LLC (GSC) for statistical analysis. Groundwater protection standards (GWPSs) were established for each Appendix IV parameter in accordance with the statistical analysis plan developed for the facility (Geosyntec, 2020a) and United States Environmental Protection Agency's (USEPA) Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance (Unified Guidance; USEPA, 2009). The GWPS for each parameter was established as the greater of either the background concentration or, for constituents with a maximum contaminant level (MCL), the MCL. To determine background concentrations, an upper tolerance limit (UTL) was calculated using pooled data from the background wells collected during the background monitoring and assessment monitoring events.

Confidence intervals were re-calculated for Appendix IV parameters at the compliance wells to assess whether these parameters were present at an SSL above the GWPSs. An SSL was concluded if the lower confidence limit (LCL) of a parameter exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). An SSL was identified for cobalt at AD-28 at the WBAP, where the LCL of 0.0134 milligrams per liter (mg/L) exceeded the calculated GWPS of 0.0090 mg/L (Geosyntec, 2022a). No other SSLs were identified.

1.1 CCR Rule Requirements

TCEQ regulations regarding assessment monitoring programs for CCR landfills and surface impoundments (TCEQ, 2020a) provide owners and operators with the option to make an ASD when an SSL is identified (30 TAC §352.951(e)):

... In making a demonstration under this subsection, the owner or operator must, within 90 days of detecting a statistically significant level above the groundwater protection standard of any constituent listed in Appendix IV adopted by reference in §352.1431 of this title, submit a report prepared and certified in accordance with §352.4 of this title (relating to Engineering and Geoscientific Information) to the executive director, and any local pollution agency with jurisdiction that has requested to be notified, demonstrating that a

1-1

source other than a CCR unit caused the exceedance or that the exceedance resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

Pursuant to 30 TAC §352.951(e), Geosyntec Consultants, Inc. (Geosyntec) has prepared this ASD report to document that the SSL identified for cobalt at AD-28 is from a source other than the WBAP.

1.2 <u>Demonstration of Alternative Sources</u>

An evaluation was completed to assess possible alternative sources to which the identified SSL could be attributed. Alternative sources were identified amongst five types, based on methodology provided by EPRI (2017):

- ASD Type I: Sampling Causes;
- ASD Type II: Laboratory Causes;
- ASD Type III: Statistical Evaluation Causes;
- ASD Type IV: Natural Variation; and
- ASD Type V: Alternative Sources.

A demonstration was conducted to show that the SSL identified for cobalt at AD-28 was based on a Type IV cause and not by a release from the Pirkey WBAP.

SECTION 2

ALTERNATIVE SOURCE DEMONSTRATION

The TCEQ CCR rules allow the owner or operator 90 days from the determination of an SSL to demonstrate that a source other than the CCR unit caused the SSL. Descriptions of the WBAP design and construction, regional geology and site hydrogeology, methodology used to evaluate the SSLs, and proposed alternative source are described below.

2.1 WBAP Design and Construction

The WBAP is a 30.9-acre CCR surface impoundment located at the north end of the Pirkey Plant, immediately west of the East Bottom Ash Pond (EBAP) (**Figure 1**). It was constructed while the Pirkey Plant was being developed in 1983 and 1984 and placed into operation in 1985 to receive bottom ash and economizer ash sluiced from the Plant boiler (Arcadis, 2016). The WBAP ceased receipt of CCR and non-CCR waste streams on March 30, 2022 (AEP, 2022a). At this time, the WBAP commenced closure by removal in accordance with the certified closure plan, with CCR material removal occurring from April to June of 2022. The final inspection for CCR material removal was completed on July 26, 2022.

The WBAP was constructed with compacted clay embankments around the pond perimeter and a compacted clay liner over the pond base (Arcadis, 2016). Multiple lithological borings advanced following installation of the clay liner confirm that at least 6 feet of clay is present below the base of the EBAP (Arcadis, 2016). The bottom elevation of the WBAP is approximately 347 feet above mean sea level, and the elevation of the top of the pond embankment is approximately 357 feet above mean sea level. The unit was designed to have a maximum storage capacity of 216.5 acrefeet (Arcadis, 2016).

2.2 Regional Geology/Site Hydrogeology

The WBAP is positioned on an outcrop of the Eocene-age Recklaw Formation, which consists predominantly of clay and fine-grained sand (Arcadis, 2016). The Recklaw Formation is underlain by the Carrizo Sand, which crops out in the topographically lower southern portion of the plant. The Carrizo Sand consists of fine to medium grained sand interbedded with silt and clay.

The WBAP monitoring well network monitors groundwater within the Uppermost Aquifer, which was defined by Arcadis (2016) as very fine to fine grained clayey and silty sand with an average thickness of approximately 15 feet. Geologic cross-section A-A' from the Arcadis (2016) shows the subsurface structure of the uppermost aquifer (indicated on the figure as clayey silty sand, tan to gray) underlying the WBAP and the EBAP. This figure is provided as **Attachment A**. Geologic cross-section A-A' demonstrates lateral continuity of the uppermost aquifer spanning the entire length of the WBAP.

Groundwater flow direction in the area of the WBAP is west-southwesterly (**Figure 1**). Seasonal variability in groundwater flow has not been observed since the monitoring well network was installed. Groundwater flow through the Uppermost Aquifer contains a hydraulic gradient of approximately 0.01 feet per foot. The WBAP monitoring well network consists of upgradient monitoring wells AD-3, AD-12, and AD-18, and compliance wells AD-17, AD-28, AD-29, and AD-30, all of which are screened within the uppermost aquifer.

2.3 **Proposed Alternative Source**

An initial review of site geochemistry, site historical data, and laboratory quality assurance/quality control (QA/QC) data did not identify alternative sources for cobalt due to Type I (sampling), Type II (laboratory), or Type III (statistical evaluation) issues. Groundwater sampling, laboratory analysis, and statistical evaluations were generally completed in accordance with 30 TAC §352.931 and the draft TCEQ guidance for groundwater monitoring (TCEQ, 2020b). As described below, the SSL has been attributed to natural variation associated with the underlying geology, which is a Type IV (natural variation) issue.

Monitoring well AD-28 is located near the southwest corner of the WBAP, as shown in **Figure 1**. Previous ASDs for cobalt at the WBAP provided evidence that cobalt is present in the aquifer media at the site and that the observed cobalt concentrations in groundwater were due to natural variation (Geosyntec, 2019a; Geosyntec, 2019b; Geosyntec, 2020b; Geosyntec, 2020c; Geosyntec, 2021b; Geosyntec, 2022b). The previous ASDs discussed how the WBAP did not appear to be a source for cobalt in downgradient groundwater, based on observed concentrations of cobalt both in the ash material and in leachate from Synthetic Precipitation Leaching Procedure (SPLP) analysis (SW-864 Test Method 1312, [USEPA, 1994]) of the ash material. Cobalt was not detected in the SPLP leachate above the reporting limit of 0.01 mg/L, which is lower than the average concentration at AD-28 (**Table 1**).

Cobalt was detected at a concentration of 0.000501 mg/L in a surface water sample previously collected from the WBAP on November 4, 2020 to characterize total cobalt concentrations. The WBAP ceased receipt of waste on March 30, 2022 and initiated activities to close the pond via removal of CCR materials (AEP, 2022b). Cobalt was detected in a surface water sample collected on June 24, 2022 from the EBAP at a concentration of 0.00128 mg/L (**Table 1**). The EBAP and WBAP historically received the same process water, with the use of each pond dependent on available freeboard and cleaning schedule; thus, there is a basis for the equivalency between these two surface water samples. These concentrations are lower than the reported cobalt concentrations for in-network wells from the most recent sampling event, except for AD-18 (0.00079 mg/L) (**Figure 2**). However, both pond surface water samples were over an order of magnitude lower than the average concentration observed at AD-28 (**Table 1**). Thus, the WBAP is not the likely source of cobalt at AD-28.

As noted in the previous ASDs, soil samples collected across the site, including from locations near the WBAP, identified cobalt in the aquifer solids at concentrations ranging from non-detect

to 23.5 milligrams per kilogram (mg/kg) with the highest value reported at AD-41, which is upgradient of the WBAP and EBAP (**Figure 3**). SB-28 was advanced in the vicinity of AD-28 in April 2020 to re-log the geology at AD-28 and collect samples for laboratory analysis of total metals and mineralogy. The SB-28 field boring log, which was generated by Auckland Consulting LLC, is provided as **Attachment A**. Cobalt was identified at SB-28 at concentrations of 4.53 mg/kg at 15.5-16 feet below ground surface (bgs) and 8.70 mg/kg at 40-41 feet bgs (**Table 2**). The 15.5-16 feet bgs interval at SB-28 correlates to the depth of the monitoring well screen of AD-28 (15-35 feet bgs), indicating that cobalt is present in aquifer solids within the AD-28 screened interval.

In addition to total cobalt, soil samples were submitted for mineralogical analysis to evaluate the presence of cobalt-containing minerals. X-ray diffraction (XRD) analysis of soils from SB-28 identified pyrite (an iron sulfide mineral) in samples collected at 25-30 feet bgs and 40-41 feet bgs at concentrations up to 3% by weight (**Table 3**). Cobalt is known to undergo isomorphic substitution for iron in crystalline iron minerals such as pyrite due to their similar ionic radii of approximately 1.56 angstrom (Å) for iron vs. 1.52 Å for cobalt (Clementi and Raimondi, 1963; Krupka and Serne, 2002; Hitzman et al., 2017).

The aquifer solids at SB-28 are distinctly red in color at shallow depths, as illustrated in the photolog of soil cores provided in **Attachment B.** Red color in soils is often associated with the presence of oxidized iron-bearing minerals such as hematite and goethite. Goethite, an iron oxide mineral (FeOOH), was present at depths up to 16 ft bgs at SB-28 at up to 37% of the total aquifer solids (**Table 3**). The weathering of pyrite to goethite under oxidizing conditions is also a well-understood phenomenon, including in formations in east Texas (Senkayi et al., 1986; Dixon et al., 1982). It is likely that the pyrite weathering process is resulting in the release of isomorphically substituted cobalt from the pyrite crystal structure as it undergoes oxidative weathering to iron oxide minerals.

As described in an ASD previously generated for the EBAP, vertical aquifer profiling (VAP) was used to collect groundwater samples from upgradient locations B-2 and B-3 during the soil boring and sample collection process (Geosyntec, 2019b). A groundwater sample was also collected from AD-30, one of the existing compliance wells within the WBAP groundwater monitoring network. Solid phase materials within these groundwater samples were separated and submitted for analysis of chemical composition and mineralogy. For the VAP samples, separation was completed using a centrifuge due to the high abundance of solids. For the groundwater sample at AD-30, the sample was filtered using a 1.5-micron filter. Based on total metals analysis, cobalt was identified both in the centrifuged solid material collected from upgradient VAP location B-3 [VAP-B3-(40-45)] and in the material retained on the filter after processing groundwater from permanent monitoring wells AD-30, B-2, and B-3 (**Table 2**). The concentrations of cobalt in the solid material retained after filtration were comparable to the bulk soil samples collected from the same locations.

The solid sample [VAP-B3-(40-45)] was submitted for mineralogical analysis via XRD and scanning electron microscopy (SEM) using an energy dispersive spectroscopic analyzer (EDS).

The XRD results identified pyrite as approximately 3% of the solid phase (**Table 4**). Pyrite was identified during SEM/EDS analysis of lignite which is mined immediately adjacent to the site. Logging completed while the VAP boring was advanced identified coal at several intervals, including 45 and 48 ft bgs (**Figure 4**). Furthermore, SEM/EDS of both centrifuged solid samples [VAP-B3-(40-45) and VAP-B3-(50-55)] identified pyrite in backscattered electron micrographs by the distinctive framboidal morphology (Harris et al., 1981; Sawlowicz, 2000). Major peaks involving iron and sulfur were identified in the EDS spectrum, which further support the identification of pyrite (**Attachment C**). While cobalt was not identified in the EDS spectrum, it is likely present at concentrations below the detection limit.

The WBAP was not identified as the source of cobalt at wells in the WBAP network based on the low concentrations of cobalt in the pond itself and the ubiquity of naturally occurring cobalt, especially in soil and groundwater samples upgradient from the WBAP. Cobalt in the WBAP network groundwater is believed to be a result of natural variability within the aquifer. Naturally occurring cobalt is known to substitute for iron in pyrite, which is then known to weather to iron oxides. The presence of pyrite and iron oxides has been confirmed at AD-28 and across the Site. The presence of these aquifer minerals suggests that weathering of pyritic minerals may be providing a source for aqueous cobalt in groundwater.

2.4 Sampling Requirements

As the ASD presented above supports the position that the identified SSL is not due to a release from the Pirkey WBAP, the unit will remain in the assessment monitoring program. Groundwater at the unit will continue to be sampled for Appendix IV parameters on a semiannual basis.

SECTION 3

CONCLUSIONS AND RECOMMENDATIONS

The preceding information serves as the ASD prepared in accordance with 30 TAC §352.951(e) and supports the position that the SSL for cobalt identified at AD-28 during assessment monitoring in June 2022 was not due to a release from the WBAP. The identified SSL should instead be attributed to natural variation in the underlying geology, including the presence of pyrite and goethite in the solid aquifer material. Therefore, no further action is warranted, and the Pirkey WBAP will remain in the assessment monitoring program. Certification of this ASD by a qualified professional engineer is provided in **Attachment D**.

January 2023

SECTION 4

REFERENCES

- Arcadis, 2016. East Bottom Ash Pond CCR Groundwater Monitoring Well Network Evaluation. H.W. Pirkey Power Plant. May.
- AEP, 2022a. Annual Report-02 Alternative Closure Requirements. East and West Bottom Ash Ponds. H.W. Pirkey Power Plant. November.
- AEP, 2022b. Notification of Intent to Close a CCR Unit. Pirkey Power Plant West Bottom Ash Pond. Revision 1. May.
- Clementi, E., and Raimdoni, D. L. 1963. Atomic screening constants from SCF functions. *J. Chem. Phys.*, 38, 2686.
- Dixon, J.B., Hossner, L.R., Senkayi, A.L., and Egashira, K. 1982. Mineral properties of lignite overburden as they relate to mine spoil reclamation. In: J.A. Kittrick, D.S. Fanning, L. R. Hossner, editors, Acid Sulfate Weathering, *SSSA Spec. Publ. 10*. SSSA, Madison, WI. p. 169-191.
- EPRI, 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Site. 3002010920. October.
- Geosyntec, 2019a. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, West Bottom Ash Pond. Hallsville, Texas. March.
- Geosyntec, 2019b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, West Bottom Ash Pond. Hallsville, Texas. September.
- Geosyntec, 2020a. Statistical Analysis Plan Revision 1. October.
- Geosyntec, 2020b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, West Bottom Ash Pond. Hallsville, Texas. April.
- Geosyntec, 2020c. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, West Bottom Ash Pond. Hallsville, Texas. December.
- Geosyntec, 2021a. Statistical Analysis Summary, West Bottom Ash Pond. H.W. Pirkey Power Plant. Hallsville, Texas. October.
- Geosyntec, 2021b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, West Bottom Ash Pond. Hallsville, Texas. May.

January 2023

- Geosyntec, 2022a. Statistical Analysis Summary, West Bottom Ash Pond. H.W. Pirkey Power Plant. Hallsville, Texas. October.
- Geosyntec, 2022b. Alternative Source Demonstration Report Texas State CCR Rule. H.W. Pirkey Plant, West Bottom Ash Pond. Hallsville, Texas. June.
- Harris, L.A, Kenik, E.A., and Yust, C.S. 1981. Reactions in pyrite framboids induced by electron beam heating in a HVEM. Scanning Electron Microscopy, 1, web.
- Hitzman, M.W., Bookstrom, A.A., Slack, J.F., and Zientek, M.L., 2017. Cobalt Styles of Deposits and the Search for Primary Deposits. USGS Open File Report 2017-1155.
- Krupka, K.M. and Serne, R.J., 2002. Geochemical Factors Affecting the Behavior of Antimony, Cobalt, Europium, Technetium, and Uranium in Vadose Sediments. Pacific Northwest National Lab, PNNL-14126. December.
- Sawlowicz, Z. 2000. Framboids: From Their Origin to Application. Pr. Mineral. (Mineralogical Transactions), 88, web.
- Senkayi, A.L., Dixon, J.B., and Hossner, L.R. 1986. Todorokite, goethite, and hematite: alteration products of siderite in East Texas lignite overburden. Soil Science, 142, 36-43.
- TCEQ, 2020a. Title 30, Part 1, Chapter 352: Coal Combustion Residuals Waste Management, May 22.
- TCEQ, 2020b. Coal Combustion Residuals Groundwater Monitoring and Corrective Action Draft Technical Guideline No. 32. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action. Waste Permits Division. May.
- USEPA, 1994. Method 1312 Synthetic Precipitation Leaching Procedure, Revision 0, September 1994, Final Update to the Third Edition of the Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, EPA publication SW-846.
- USEPA, 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance, EPA 530/R-09/007, March.

Table 1: Summary of Key Analytical Data West Bottom Ash Pond - H.W. Pirkey Plant

Sample	Sample Date	Unit	Cobalt Concentration
Bottom Ash (Solid Material)	2/11/2019	mg/kg	5.8
SPLP Leachate of Bottom Ash	2/11/2019	mg/L	< 0.01
WBAP Pond Water	11/4/2020	mg/L	0.000501
EBAP Pond Water	6/24/2022	mg/L	0.00128
AD-28 - Average	May 2016 - June 2022	mg/L	0.0143

Notes:

mg/kg - milligram per kilogram

mg/L - milligram per liter

AD-28 - Average value was calculated using all cobalt data collected under 40 CFR 257 Subpart D.

Table 2: Soil Cobalt and Mineralogy Data West Bottom Ash Pond - H.W. Pirkey Plant

Location ID	Location	Sample Depth (ft bgs)	Cobalt (mg/kg)					
	Bulk Soil Samples							
		6-6.5	< 2.38					
AD-28	WBAP Network	15.5-16	4.53					
AD-28	WBAP Network	25-30	< 2.50					
		40-41	8.70					
AD-30	WBAP Network	7	1.00					
AD-30	WDAP Network	23	15.0					
		10	2.36					
		16	3.62					
B-2	Upgradient	71	10.30					
		82	7.21					
		87	3.11					
		10	1.30					
B-3	Upgradient	20	0.59					
		97	1.11					
		15	<1.0					
AD-41	Upgradient	35	23.5					
		95	1.90					
Solid Material Retained After Filtration								
AD-30	WBAP Network	15-25	9.3 J					
B-2	Upgradient	38-48	4.3 J					
B-3	Upgradient	29-34	12.0					
D-3	Opgradient	VAP 40-45	18.0					

Notes:

mg/kg- milligram per kilogram

ft bgs - feet below ground surface

J = estimated value

For AD-28 and AD-30, samples were collected from additional boreholes advanced in the immediate area of the location identified by the well ID. Samples were not collected from the cuttings of the borings advanced for well installation. Samples at B-2, B-3, and AD-41 were collected from cores removed from the borehole during well lithology logging.

Depths for samples collected after filtration represent the screened interval for the permanent well where the sample was collected.

Table 3 - AD-28 Mineralogy Results West Bottom Ash Pond - H. W. Pirkey Plant

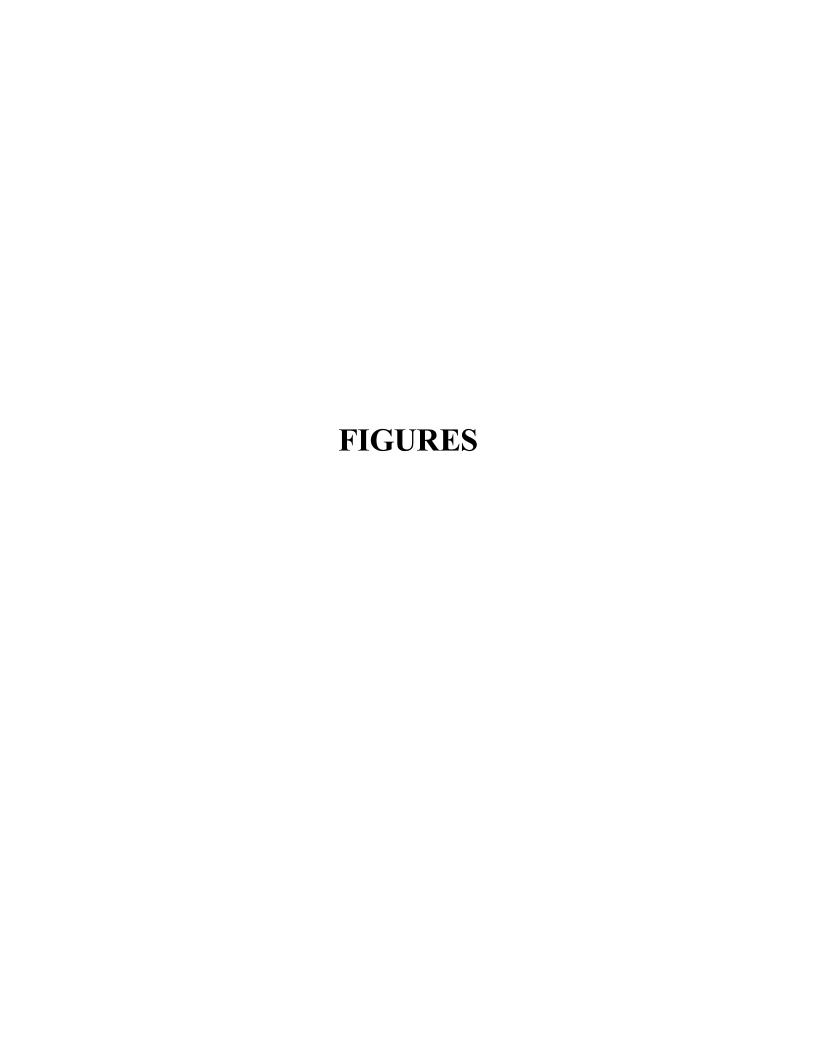
Boring ID	SB-28 (AD-28)								
Sample Depth Interval	6-6.5	15.5-16	25-30	40-41					
Sample Location	Above Screened Interval	Within Scree	Within Screened Interval						
Color	Red-brown to yellow-brown	Light gray, light red-brown	Brown, light red- brown	Gray to dark gray					
Mineralogy									
Quartz	58%	46%	73%	34%					
Pyrite			3%	3%					
K-Feldspar		1%	1%	1%					
Siderite			2%	52%					
Goethite	37%	15%							
Anhydrite				2%					
Clay/Mica	5%	38%	21%	8%					

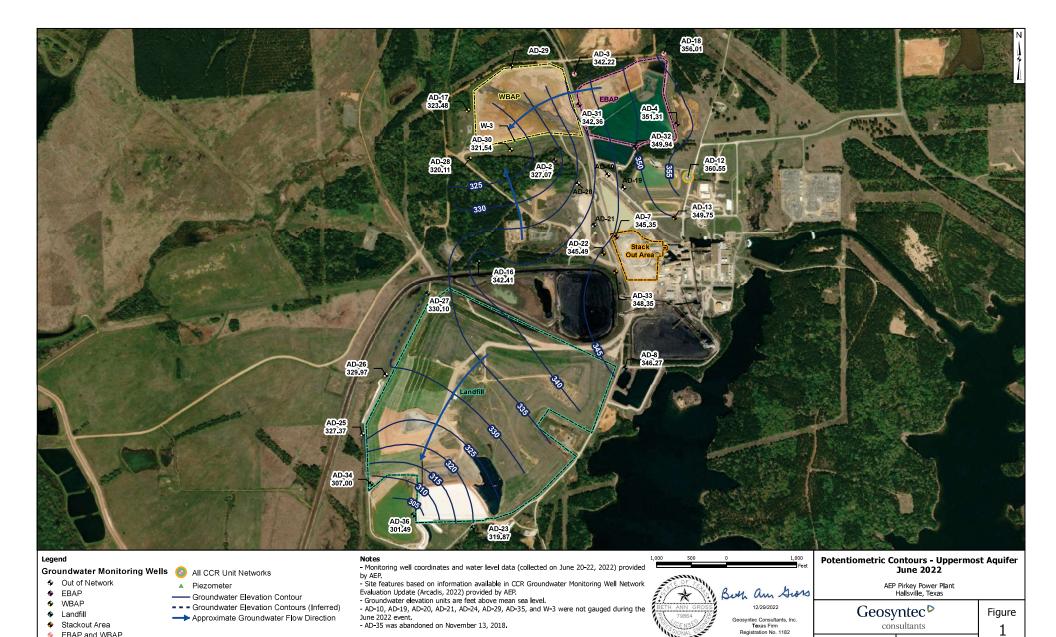
Notes:

Sample depths are shown in feet below ground surface (bgs)

Well AD-28 is screened from 15-35 ft. below ground surface.

Mineralogical component results are shown in relative % abundance.

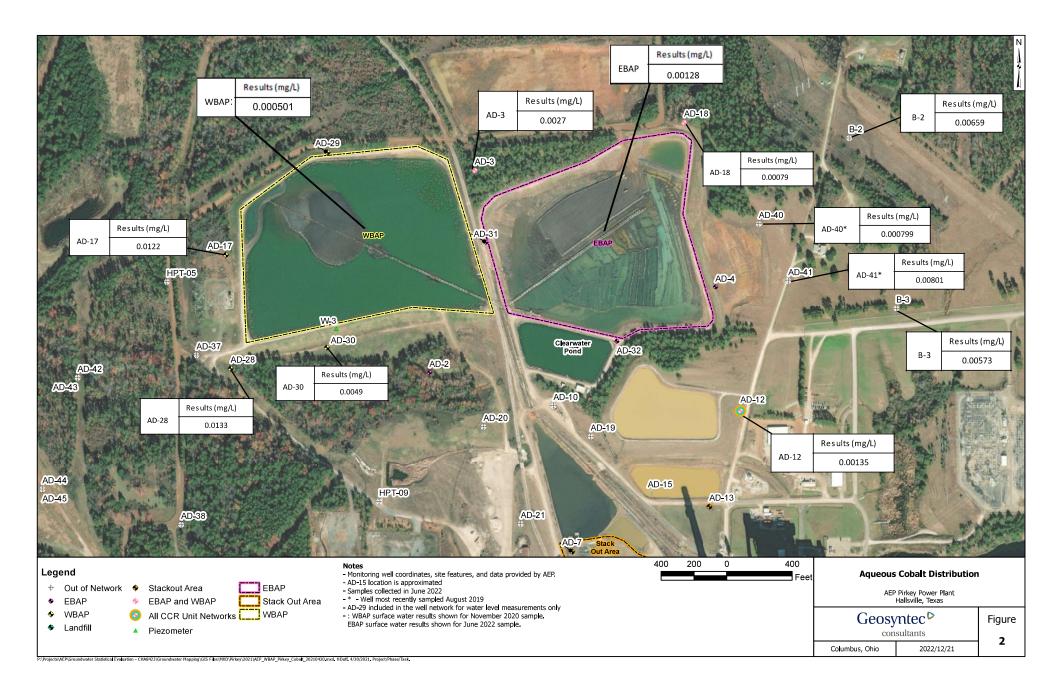

Table 4: B-3 X-Ray Diffraction Results West Bottom Ash Pond - H. W. Pirkey Plant

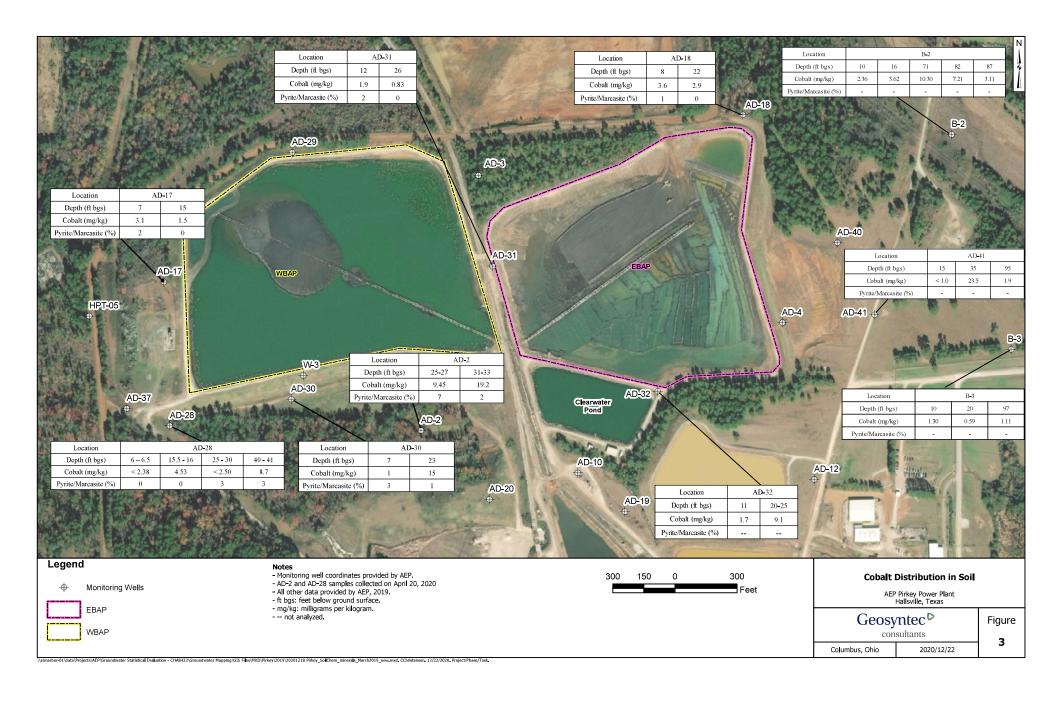

Constituent	VAP-B3-(40-45)				
Quartz	15				
Plagioclase Feldspar	0.5				
Orthoclase	ND				
Calcite	ND				
Dolomite	ND				
Siderite	0.5				
Goethite	ND				
Hematite	2				
Pyrite	3				
Kaolinte	42				
Chlorite	4				
Illite/Mica	6				
Smectite	12				
Amorphous	15				

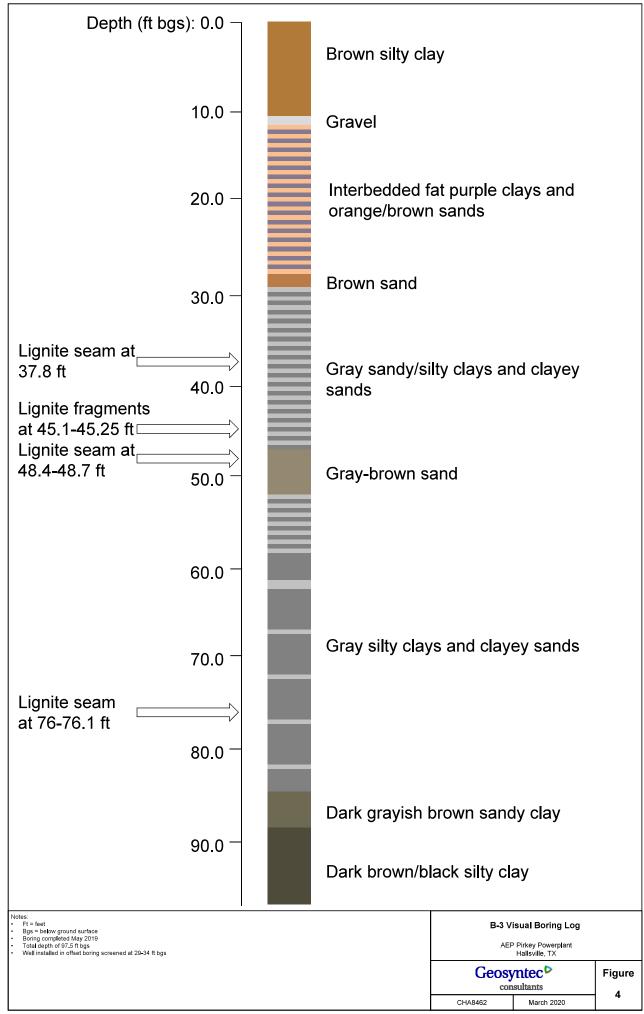
Notes:

ND: Not detected

Results given in units of relative % abundance VAP-B3-(40-45) is the centrifuged solid material from the groundwater sample collected at that interval.

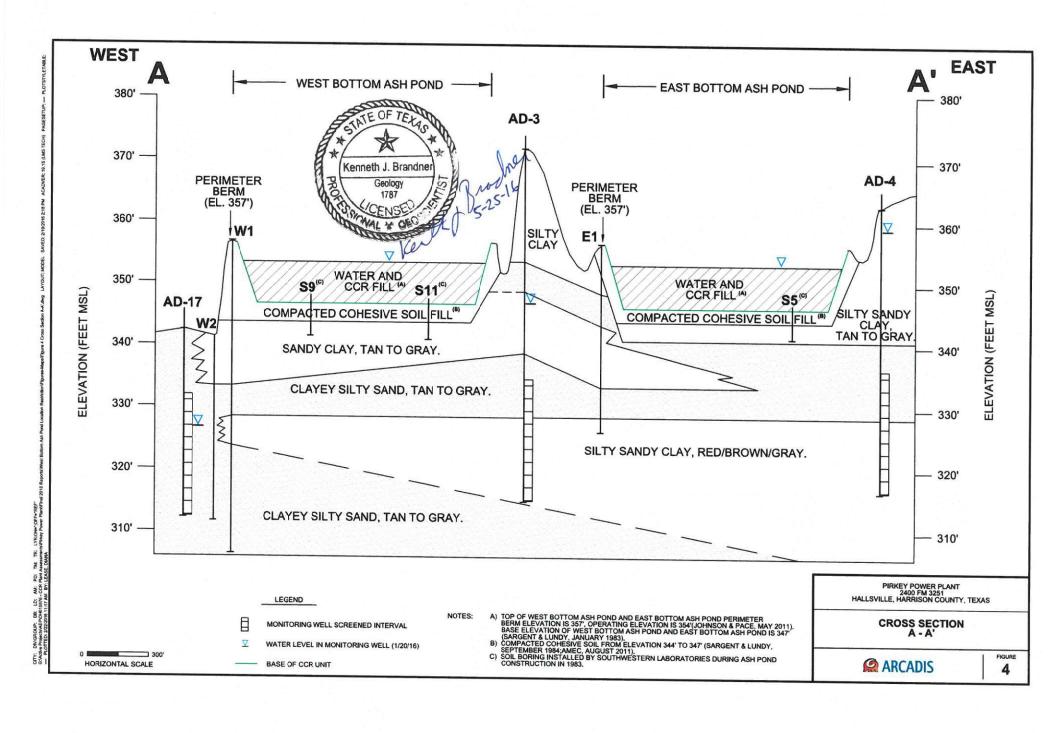





Columbus, Ohio

2022/12/21

EBAP and WBAP



ATTACHMENT A Geologic Cross-Section A-A'

Document Path: 21GISPROJECTS1 FNVAEPUPIKAN PlantMXD/Figure 3 - Ste Lawrett and Most Lawretter

ATTACHMENT B SB-28 Boring Log

		_	28		8 - Pirke		May	ELEV.	MATERIALS	DA	_	_	20/20	OTERTION
Lo Loose 4-10 MDe Med. Dense 10-30 De Dense 30-50 VDe Very Dense >50		COHESIVE SOILS - CLAYS CONSISTENCY PENETROMETER N - VALUE Vso Very Soft 0 - 0.25 <2 So Soft 0.25 - 0.5 2 - 4 Mst Stiff 0.5 - 1.0 4 - 8 St Stiff 1.0 - 2.0 8 - 15 VSt Very Stiff 2.0 - 4.0 15 - 30 H Hard > 4.0 >30			4 8 15 30	COLORS Li Light Brown Dk Dark Bk Black G Grey Bl Blue T Tan Gr Grenn R Red Y Yellow Rdish.Reddish.Wh White MATERIALS Si Slit, Silty Sa Sand, Sandy Ls Limestone Gr Gravel SiS Siltstone SS Sandstone Sh Shale, Shale		SiSilty		Calc Calcareous				
7	0	T.	S			STRATU	JM DI	DESCRIPTION			STANDARD			
SAME TATER TEST ASSIGNMENT	RELOVENY	DEPTH F	SAMPLE	CONDITION OR CONSISTENCY	COLOR	MATERIALS OR ADJECTIVES	PREDOMINATE MATERIAL	CHARACTI OF MODIFIC	1	SEAT - 6"	i.9 - ts1	Zud - 6"	UNIFIED SOIL CLASSIFICATION	N - VALUE OR HAND PENETROMETER
8-5	41	0		0-2	Br U.Br	51	Sa	Silty sand to	dep clay t				moist	(0-Z
		2			'U.Rd.Br			gravel, trace f	ine trodore					/
				2-10'	RLBr. YIIW	51.60	CI	Clav-50Me	cs)+ trace				Motst	(2-5
		-			Br	2		11. fl. sand to	race coarse il	BA			14	
5-10	1,5"		H					ore concre					moist	(5-10
0-10	113						3.00	laxere6-6		ne				
10-15	- 11	10	Н	101-	RLBC.	510	Sa	NAME AND ADDRESS OF TAXABLE PARTY.	tef with day in				W 4.5. C	100
10.15				16-	4.67	314	09	Huy lences	trace comen	91			V. MDIS	10-1
15 CD	1 1-1					1		dayey sand						
15-20	1.5'				4.6rd 4.R	Br		- clay lence	15'(6")				vimist	(15-16
		-						amented sand						
20-25	3"			40	Br, U.Rd.	Si	Sa	- Medicae	some insusto	ne			Satura	ede;
25-30	3/1		H		Gray			- gray@ 20'	Lad -la var	1	1	1		
								- SOME CONE	vited chavey	AWA	re	coul	41	
36-35	- NR										0	25-	30'	
35-40	NR		H											100
No. of the last								R.T. @ 41)'					
			H					* Split Spec	in Arther				7	51107
								From 4						
46-41	10			40-41	Gray, DK	4	Sa	Clayer Sand	ul leuses of					
		• •			. 51-5/			comented san	m crystise				V. mals	1 40-6
					49.			The gypor	THE YOUR	_	11		The same	
								*6-6,5 col						
			H					* 25-36' 0	Hected @ 123	0	1		No. of	4
Trunc	ASA			Auger		SEEDAC	E C	FT. WHILE I	lected 1300	T	0		T. ON C	101 101

*GPS: 32.465448, -94.49432 (18'W-NW) of AD-28/MW-28

ATTACHMENT C SB-28 Boring Photographic Log

GEOSYNTEC CONSULTANTS Photographic Record

Client: American Electric Power Project Number: CHA8495/12A/02

Site Name: H.W. Pirkey Plant WBAP Site Location: Hallsville, Texas

Photograph 1

Date: 4/21/2020

Direction: N/A

Comments:

Multiple sections of core from soil boring SB-28 advanced near downgradient monitoring well AD-28 within the Western Bottom Ash Pond (WBAP) CCR unit. 5-foot pushes were used. Note the reddish color indicating the presence of oxidized iron-bearing minerals.

Photograph 2

Date: 4/21/2020

Direction: N/A

Comments:

0-5 foot interval of SB-

28.


Photograph 3

Date: 4/21/2020

Direction: N/A

Comments:

5-10 foot interval of SB-28. Recovery of this interval was limited. A sample was collected from this interval from 6-6.5 ft. below ground surface (bgs).

Photograph 4

Date: 4/21/2020

Direction: N/A

Comments:

10-15 foot interval of SB-28. Recovery of this interval was limited.

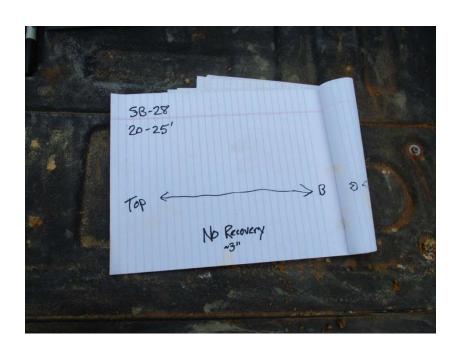
Photograph 5

Date: 4/21/2020

Direction: N/A

Comments:

15-20 foot interval of SB-28. Recovery of this interval was limited. A sample was collected from this interval from 15.5-16 ft. bgs.


Photograph 6

Date: 4/21/2020

Direction: N/A

Comments:

Field geologist's note indicating that very little of the 20-25 foot interval of SB-28 was recovered.

Photograph 7

Date: 4/21/2020

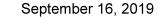
Direction: N/A

Comments:

25-30 foot interval of SB-28. Very little of this interval was recovered. Note the color change of the soil from red to dark brown/black. A sample was collected from this interval.

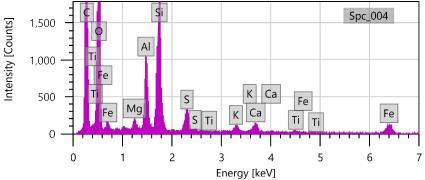
Photograph 8

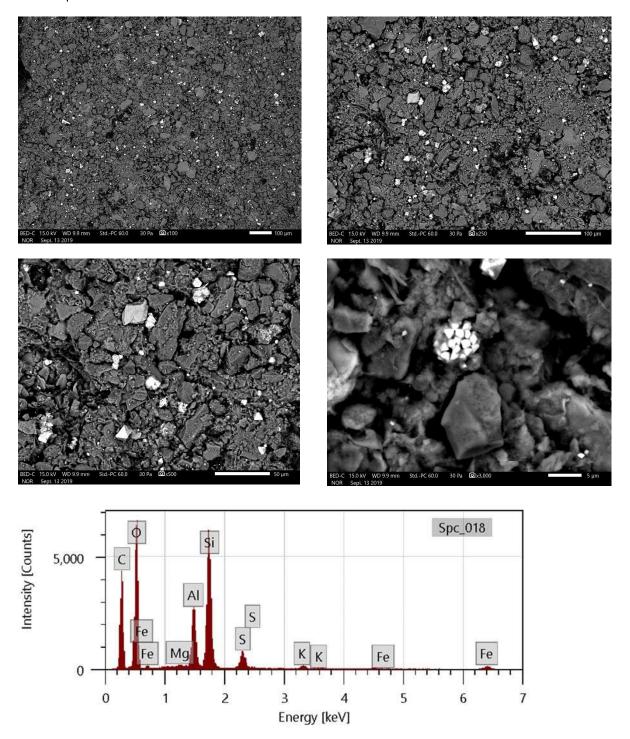
Date: 4/21/2020


Direction: N/A

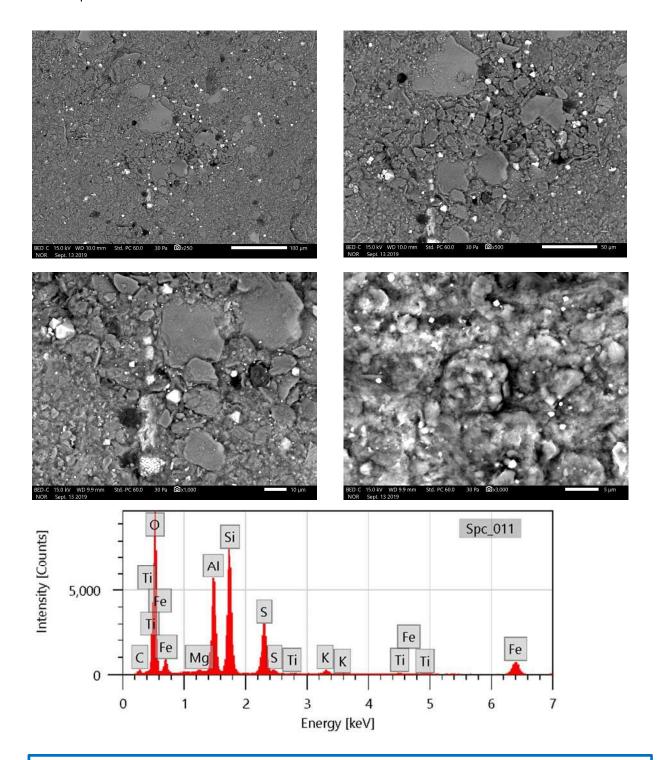
Comments:

Bottom of SB-28. The boring log indicates no recovery of soil from the 30-40 foot interval. A sample was collected from this interval.


ATTACHMENT D SEM/EDS Analysis


via Email: BSass@geosyntec.com

Dr. Bruce Sass 941 Chatham Lane, Suite 103, Columbus, OH 43221



Lignite. Backscattered electron micrographs show the sample at 100X, 1,100X, and 1,500X. EDS spectrum at bottom is an area scan of the region shown in top right micrograph. Bright particles are mostly quartz and feldspar. Major peaks for carbon, oxygen, silicon, and aluminum suggest coal and clay.

Sample VAP B3 40-45. Backscattered electron micrographs show the sample at 100X, 250X, 500X, and 3000X. EDS spectrum at bottom is an area scan of the region shown at 500X. Bright particles are pyrite (framboid in bottom right micrograph). Major peaks for carbon, oxygen, silicon, and aluminum suggest coal and clay.

Sample VAP B3 50-55. Backscattered electron micrographs show the sample at 250X, 500X, 1000X, and 3000X. EDS spectrum at bottom is an area scan of the region shown at 3000X. Bright particles are mostly pyrite (framboid in bottom left micrograph); occasional particles of Fe-Ti oxide are detected. Major peaks for oxygen, silicon, and aluminum suggest clay. Large blocky particles are mostly quartz, feldspar, and clay.

ATTACHMENT E Certification by a Qualified Professional Engineer

CERTIFICATION BY A QUALIFIED PROFESSIONAL ENGINEER

I certify that the above described alternative source demonstration is appropriate for evaluating the groundwater monitoring data for the Pirkey West Bottom Ash Pond CCR management area and that the requirements of 30 TAC §352.951(e) have been met.

Beth Ar	<u>ın Gross</u>	<u> </u>	
Printed	Name of	f License	d Professional Engineer
			Digitally signed by Beth
Q 14	0	hone	Gross,

Date: 2023.01.25 16:52:26 -05'00'

Signature

Geosyntec Consultants 2039 Centre Pointe Blvd, Suite 103 Tallahassee, Florida 32308

Texas Registered Engineering Firm No. F-1182

79864 January 25, 2023 Texas Licensing State License Number Date

APPENDIX 4- Field Reports

CCR Groundwater Monitoring Well Inspection Form

Facility: PINMM PP		Sampling Period: MARCH 2022	
Sampling Contractor: FAGUE	ENTRUNMETAL	Signature:	

Well No.	Well Locked	Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Housing, and Pad in Good Shape	Well Properly Labeled	Well cap present	Comments	
AD-13	V	\checkmark	\checkmark	V	✓	V	V		
A0-22	V	V	V	V	\checkmark	V	/		
A0-33	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	V	V		
AP-7	V	\checkmark	V	V		V	V	CORRESION; CASING HARD TO OPEN	
B-3				V	V		/	NOLOCK	_
Ap-18	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	√		-
AD-34	V	V	\checkmark	\checkmark		\checkmark	V	HIMGE BRIHEN	-
AD-17	\checkmark		✓			\checkmark	/	000 100 100 0	
AD-Z	V	\checkmark	\checkmark	V	\checkmark		V		
AD-4					V	\checkmark	J	NO LOCK LIMITEP ACCESS	ESPECIALLY WHEN WET

<u>Instructions:</u> Complete form and submit to AEP Environmental Services with Field Data. Place check mark for items that are satisfactory. Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

CCR Groundwater Monitoring Well Inspection Form

Facility:	Pilloy	Sampling Period: March 2022
Sampling Contractor:	Essle Env	Signature: Part M

Well No.	Well Locked	Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Housing, and Pad in Good Shape	Well Properly Labeled	Well cap present	Medal Coved Wen'+ Clife
B-Z							~	-no label
AD-12			/			labeled as	1	No ribel
AD-32	✓			/	/		/	
413			/		/	/	_	
AD-30	0	_	_		/		~	
25.0A	1	/		_	/	_		
25.CA	<u> </u>	1				J	1	overgrown
85. ap				/			U	3,000
40-3	/	/	/			labeled as mw-3	/	access not maintained
								overslawn
						,		

<u>Instructions:</u> Complete form and submit to AEP Environmental Services with Field Data. Place check mark for items that are satisfactory. Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

Facility Name	PAHONA
Sample by	Kinny Mi Down d
Depth to water, feet (TOC)	RETURNS MI DONALD

Sample Location ID	100
1 = Ideation ID	HD-2
Depth to water date	03/59/5

Time	Water Depth (from TOC) 6(2 4) 16,30 16,32	Flow Rate (mL/min) 220 221 220 220	pH (S.U.) 3,97 3,95 3,90	Spec Cond (μS/cm) 658 666 675	Turbidity (N.T.U) 0.0 0.0	D.O. (mg/L) 6(2) 4(2) 4(3) 4(3)	ORP (mV) 445 449 454 456	Temperature (°C) 21,17 21,20 21,29 21,31	
								'	
otal volum			Carl brown years						

Total volume purged	
Sample appearance	CIFAN
Sample time	1125
Sample date	03/29/27

Facility Name		0 1	
Sample by		1.1/cey	00.130
Depth to water, feet (TOC)		telet 14-	MILTA
Measured Total Depth, feet (TOC	31.	

Sample Location ID	AD-03	
Depth to water date	3-7(-)7	

Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (µS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP	Temperature	
13/	31.69	300	4.58	3 e	28.7	4.78	(mV)	(°C)	
141	31, 67	300	4.76	145	25.4	0.40	202	31.30	
	30.101	300	4.78	161	25.7	0.32	166	21.17	
								2 1	
									-

Total volume purged	
Sample appearance	(0 : 1
Sample time	11/1 0
Sample date	22122

Facility Name	Piakes DO
Sample by	11.1(1)
	KERNY MC DONALD

Donth to week	
Depth to water, feet (TOC)	771
Measured Total Depth, feet (TOC)	1,0
and open, reet (TOC)	4720
	11101

Sample Location ID	DA V
	FIDE
Depth to water date	07/2012

Time 1159 204	Water Depth (from TOC) 7.30 7.44 7.6	Flow Rate (mL/min) 178 178	pH (S.U.) 4,84 4,90 4,90	Spec Cond (µS/cm)	Turbidity (N.T.U) 524 72, 4	D.O. (mg/L) 7,59	ORP (mV)	Temperature (°C)	
209	7.68	178	4,93	99 99 99	41.7 71.2 40.6	3.69	399 399 395	22,86 22,83 22,82 22,79	

Total volume purged	
Sample appearance	SUGHTIM TURBLE
Sample time	1216
Sample date	02/20/22

* 1 * 4

Facility Name	Vahon 10
Sample by	PIANOT PP
	MENNY MODERAL

The state of the s	
Depth to water, feet (TOC)	
Measured Total Depth, feet (TOC)	14.13
4 CONTROL OF THE CONT	41.98

Sample Location ID	A0-7
Depth to water date	
open to water date	03/28/22

Time	Water Depth (from TOC)	Flow Rate	рН	Spec Cond	Turbidity	OCINI DE CONTROL DE CO	THE REAL PROPERTY AND ADDRESS OF THE PARTY AND	The state of the s		
133	14.31	(mL/min) 152	(S.U.) 3, 67	(μS/cm)	(N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature	T	
43	14.76	152	3,64	327	3,6	6.31	1151	(°C)	-	
48	14,91	152	3.60	334	3:2	3,02	496	23,59		
			31.00	336	0.0	2,87	437	23,52		
		1 1 1						02130		-
		1								
		."		8						-
		,								
										- 0
	3	,								
					,-					+
				*						

Total volume purged	
Sample appearance	(1/00
Sample time	o the
Sample date	03/20/22

Pilley
Mitt Hamilton
8.71

AD-12	
111	
	AD-13

Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (µS/cm)	Turbidity	D.O.	ORP	Temperature	
155	9.45	300 300 300	4.20 3.42 3.85	47	(N.T.U) 2. (1. 2	(mg/L) 3.48 3.67	(mV) 2145	(°C)	
						3.10	259	21,14	
		L							

Total volume purged	
Sample appearance	
Sample time	Ulc.V
Sample date)) ())

Facility Name	Dia ti
Sample by	PIRKOT PP
	Kinny Mi DONALD
Depth to water, feet (To	00

	W 7
Depth to water, feet (TOC)	1.0
Measured Total Depth, feet (TOC)	10,77
	40,70

Sample Location ID	A1 17
Donth	110-13
Depth to water date	03/28/22

Time	Water Depth	Flow Rate	рН	Spec Cond	CO DECICE DE CONTRACTOR DE CON	-	CHICAGO CHICAGO CONTRACTOR CONTRA		*
08/6 0821 826 0831 836	(from TOC) 10.95 11.06 11.14 11.20 11.26	(mL/min) 180 180 180 180 180	(S.U.) 5.24 5.25 5.25 5.25 5.25	Spec Cond (µS/cm) 399 393 384 379 377	Turbidity (N.T.U) 261 255 217 206 208	D.O. (mg/L) 014 2.83 3.7 5 6 5 2	ORP (mV) 294 290 236 232 229	Temperature (°C) 20,35 20,37 20,37 20,37 20,39	
		j							- 1
					Pro-				

To the state of th
the state of
BROWN
0338

Facility Name	2.4
Sample by	PINION PP
	ntway moderated

Depth to water, feet (TOC	
Measured Total Depth, feet	20,29
, ree	(10C) 77.0C
	33,03

Sample Location ID	A0-17
Depth to water date	13/29/27

Time 1008 1013 1018 1023	Water Depth (from TOC) 20,37 20,40 20,40	Flow Rate (mL/min) 2/6 2/6	pH (S.U.) 4.16 4.15	Spec Cond (µS/cm) 98 98	Turbidity (N.T.U) 19,9	D.O. (mg/L) 8124 2(69	ORP (mV) 429 429	Temperature (°C) 21,63 21,54	
		216	4,13	98	11,2	7,66	939	21,68	
					,	,		A s	

Total volume purged	
Sample appearance	1 1 sm.
Sample time	CUM
Sample date	1025

Facility Name	P 14 000 111
Sample by	Kinny McDonard
Depth to water, feet (TOC)	

Measured Total Depth, feet (TOC)

Depth to water

Sample Location ID A D-18

Depth to water date 0 1/28/27

Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН	Spec Cond	Turbidity	D.O.		With the state of	Marine	
257	6,54	100	(S.U.) 4,25 4,40	(μS/cm) 153	(N.T.U) 60.3	(mg/L)	ORP (mV)	Temperature (°C) 20,98		
					0 2.0	3.75	382	20186		
				WON 14 H	old water I					
	T.									
			tikes							
			·							- /
					,					

Total volume purged	
Sample appearance	BROWN TINT
Sample time	0936
Sample date	03/20/22

Facility Name	
Sample by	FIRMON PP
эаттые ву	Minny Mc PonAc
1.	t then the

Denth to water 6	
Depth to water, feet (TOC)	0 60
Measured Total Depth, feet (TOC)	8183
Total Depth, feet (TOC)	77 71
	56,10
Company of the Compan	

Sample Location ID	AD-ZZ
Denth to wet	
Depth to water date	03/28/22

Purge	Stabilization Data

	Time Water D (from T) 9 (8) 9 (9)	(mL/min) 5 200	pH Spec Cond (μS/cm) 4.25 957 4.27 966 4.25 971	Turbidity (N.T.U) 1 1 0 0 0 0 0 0	D.O. (mg/L) 6:49 1:97 2:01	ORP (mV) 342 3/1 307 301	Temperature (°C) 20.82 20.76 21.05 21.09	
							· · · · · · · · · · · · · · · · · · ·	<i>y</i>

Total volume purged	
Sample appearance	(1400
Sample time	D A 26
Sample date	0735

DUPLICATE-1

Facility Name	01	
Sample by	Piller	
	19 At Hanilly	

D ii	
Depth to water, feet (TOC)	
NA - 1	7 7
Measured Total Depth, feet (TOC)	1103
epair, reet (TOC)	77.20
	2/138
JACOB CHOOK CHOOK CHOOK CONTROL OF THE CONTROL OF T	

Sample Location ID	(10. 37	
	AD CO	
Depth to water date	** * *	

Time 14 15 15 15 15 15 15 15	bilization Data Water Depth (from TOC) 8, 15 8, 43 8, 56 8, 65	Flow Rate (mL/min) 12c 17c 17c	pH (S.U.) 3.22 3.22 3.24	Spec Cond (µS/cm) GZU 470 873	Turbidity (N.T.U) 15.9 23.5 7.2	D.O. (mg/L)	ORP (mV) 245 212	Temperature (°C) 21.77 21.62	
	1.	(20	3:25	911	8.4	035	286	21.87	
									7
Character	me purged		No. 17 Control	- ADMINISTRA					

Total volume purged	
Sample appearance	Close
Sample time	la 7
Sample date	2-25-22

. .

irlery
Just Hamilton
6
,

42.79

Sample Location ID	An => 8
Donth to	
Depth to water date	3-25-50

ime	bilization Data Water Depth	Flow Rate	рН			· ·	Ortocompensor conference (Constitution of	Part of the second seco	
55	(from TOC) 15, 48 15, 74 15, 64 16, 15 16, 24 14, 33	(mL/min) 3=c 3=c 3o	(S.U.) 3.30 3.15 3.14 3.01 3.01	Spec Cond (μS/cm)	Turbidity (N.T.U) 21.7 48.5 44.5 36.7 1).2	D.O. (mg/L) 1/2 & 0/65 0/65 0/54 0/58 0/58	ORP (mV) \$-\forall 29 = 25 (25 \dots 5 \dots 25 \dots 5 \dots 25 \dots 6 \dot	Temperature (°C) 22.33 21.48 21.88 21.85 21.85	
	a.								
			* # # # # # # # # # # # # # # # # # # #					j	
		T.		20					1
					199				

Total volume purged	
Sample appearance	alaa a
Sample time	- CIERL
Sample date	3-25-23

Landfill

acility Name	D
ample by	illey
	Matt Henilton

Depth to water, feet (TOC)	
Measured Total Depth, feet (TOC)	18.35
recti Deptil, reet (TOC)	15.86
CONCERNO SECURIOR CONTRACTOR CONT	30.)

ANDO
11203

Time	Water Depth (from TOC)	Flow Rate	Hq -	Spec Cond	Tunkidi	· · · · · · · · · · · · · · · · · · ·	HELDON GOLDEN CONTROL OF THE PARTY OF THE PA	MACHINE STREET, W.C. Commission of the Commissio		
027	18.81	(mL/min) 220 220	(S.U.) 3.66	(μS/cm)	Turbidity (N.T.U) 3 . ≩	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
32	18.81	2.20	3.68	118	2.1	1.67	273	2/1/8		
						1	287	21.04		
								i s		
		:								1.0
				· ·	i.e.				(90)	
							3.			

Dup.

Ment

Sample appearance

Sample time Sample date

> 1055 1055

Facility Name	2111
Sample by	1. Icey
Denth to water 6	Trans Ity
Depth to water, feet (TOC)	18.88
Measured Total Depth, feet (TOC)	27,11

Sample Location ID	B11/30
	718 3
Depth to water date	>-28-27

vicasurec	1 Total Depth, feet (TOC)	27	1)1		Depth to wat	er date	3.28.2	
urge Sta	bilization Data	The state of the s				3.0	**	;	
71me 12 3 4 12 3 9 12 3 4 1244	Water Depth (from TOC) G, Co G, o G, o G, o	Flow Rate (mL/min) 220 220 220	pH (S.U.) 3.44 4.00 3.97 3.96	Spec Cond (μS/cm) 53 c 53 s 52 q	Turbidity (N.T.U) 6 13.1 8,2 8,4	D.O. (mg/L) 2.11 1.78 1.74	ORP (mV) 275 270 274	Temperature (°C) 25.9c 23.41 23.35 23.37	
				·					
			14			60			
	A			· ·					
					,				

Total volume purged	
Sample appearance	110
Sample time	17 51
Sample date	3-25-27

Facility Name	
Sample by	Pilley
Donth	Moth/ Henilton
Depth to water, feet (TOC)	16.17
Measured Total Depth, feet (TOC)	37.20

Sample Location ID	10	
	7415-31	
Depth to water date	500	

Time	Water Depth (from TOC) 16.47 16.51 16.51	Flow Rate (mL/min) 20 22 22 22 210	pH (S.U.) 3 40 3 42 3 42 3 41 3 41	Spec Cond (µS/cm) 218 217 211 300 300	Turbidity (N.T.U) 51.4 50.4 31.5 16.7 7.6 7.5	D.O. (mg/L) 1.3189 0.83 0.6475	ORP (mV) 310 200 300 300 300 300 300 300 300 300 30	Temperature (°C) 22.98 23.77 23.68 23.65 23.65	
		į							
			- Court of the Cou						

Total volume purged	The state of the s
Sample appearance	
Sample time	Cless
Sample date	1204
	3-28-22

Facility Name	2)
Sample by	Filley
	Mitt Howilton
Depth to water, feet (TOC)	
Measured Tetal D	7.4

Sample Location ID	Mr. S.
Donth	740 36
Depth to water date	3.28.22

Manage	water, reet (TOC)	SV = 52	7.4-
neasured	Total Depth, feet (TOC)	1, 13
	9		34.69
urge Sta	bilization Data	Control of the same of the sam	
unge sta			
Time	Water Depth	Flow Rate	- pli

Time	Water Depth (from TOC)	Flow Rate	- pH	Spec Cond	SIR SHOW CHARLES AND A CANADA			THE RESERVE OF THE PERSON OF T	
035	7.98 8.03 \$.07 \$.07 \$.08 8.08	(mL/min) 220 220 270 270 270 270 220	(S.U.) 3.27 3.21 3.17 3.15 3.13 3.13 3.12	(µS/cm) 435 444 450 446 446 447 447	Turbidity (N.T.U) 181 67.1 41.5 25.3 12.7 8.2	D.O. (mg/L) 1.23 0.53 0.51 0.51 0.42 0.34	ORP (mV) 3-7 3-7 3-7 3-7 3-7 3-7 3-7 3-7 3-7 3-7	Temperature (°C) 27.71 21.51 21.47 21.34 21.32 21.30	
					, pa.				
	ne purged	CALL THE PARTY OF	-	THE RESIDENCE OF THE PARTY OF T	11		· · · · · · · · · · · · · · · · · · ·		

Total volume purged	
Sample appearance	(12:5
Sample time	Clear.
Sample date	2 - 3 (-2-

Facility Name	00457 00
Sample by	MEMPY ME DOWN A

Depth to water, feet (TOC) 12,22

Measured Total Depth, feet (TOC) 32,50

Sample Location ID	AD-33
Depth to water date	03/28/27

Time 0.37 0.42 0.47 0.52	Water Depth (from TOC) 12,29 12,29 12,30 12,30	Flow Rate (mL/min) 80 60 80	pH (S.U.) 3, 98 3, 98 3, 98 3, 98	Spec Cond (μS/cm) 24 9 230	Turbidity (N.T.U) 614 613	D.O. (mg/L) 12,45 2,29 2,26	ORP (mV) 375 375 370	Temperature (°C) 22,68 22,61 22,57	
				222	0.3	2,19	367	27,51	

Total volume purged		
Sample appearance	CLIAN	
Sample time	1054	
Sample date	13/24/22	

Facility Name	
Sample by	PIRMO PP
	K ENRY MC PENRIA

Depth to water, feet (TOC)	6. 4 6. 6. 6.
Measured Total Depth, feet (TOC)	SURFACE
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	26.05

Sample Location ID	An 74
	110-31
Depth to water date	07/20/27

Time	Water Depth	Flow Rate	- pH	Spec Cond	T. 1.11	CHARLES THE CHARLES THE CHARLES TO CHARLES THE COURT		The state of the s		
0815 820 0825 830 0835	(from TOC) 0,62 0,84 0,92 1,09	(mL/min) 160 160 160 160	(S.U.) 3,61 3,57 3,56 3,555 5,55	(μS/cm) 800 840 840	Turbidity (N.T.U) 3.7 0.0 0.0	D.O. (mg/L) 12.61 6.2.7 1.3.1 1.28	ORP (mV) 4 06 253 3 5 0 3 4 4 3 47	Temperature (°C) 20,66 20,57 20,57 20,59 20,62		
		9		·						
	1.								-	
										-
								; .		
								-1		
										- e #
					85 g					
					ş**.	×				
			E							-

Total volume purged	
Sample appearance	Clean
Sample time	0837
Sample date	13/70/17

AO-34 DUP 0837

Facility Name	Div
Sample by	· (/ley
Depth to water foot (TOC)	1) - pt Itami Ity

Depth to water, feet (TOC)	
Measured Total Depth, feet (TOC)	15.77
- Forth Beptil, Teet (TOC)	51 44
CONTROL DE LA CO	

Sample Location ID	Ren
	13 2
Depth to water date	3-) C-27

Time	bilization Data Water Depth	Flow Rate	l pl		· ·	· ·	Naconomon Company		
547 552 557 02	(from TOC) 16.05 16.14 16.18	(mL/min) 300 300 300 300 300	pH (s.u.) 4.73 4.55 4.55 4.57	Spec Cond (μS/cm) / 6 13 1 13 6 3 6	Turbidity (N.T.U) 18.2 5.4 5.4 5.3	D.O. (mg/L) 3,03 1,43 1,20 1,14	ORP (mV) 21(128 120	Temperature (°C) 20.62 20.15 20.17 20.14	
									.,
							4		

Total volume purged	
Sample appearance	c/e=1
Sample time	6 o Ll
Sample date	2.76.77

Dap-1

Facility Name	
Sample by King M. Parked	C
Depth to water, feet (TOC)	Sample Location ID
Measured Total Depth, feet (TOC) 37, 49	Depth to water date 03/

Purge Stabilization Data Time Water Depth (from TOC) (mL/min) (s.U.) (µs/cm) (N.T.U) (mg/L) (mV) (°c)		d Total Depth, feet (100)	3	7,49	Ĺ	Depth to wate	er date	03/28/2	2	
Time Water Depth (from TOC) (mL/min) (S.U.) (µS/cm) (N.T.U) (ng/L) (mV) (°C) (°C) (12.2) (10.0 S.2) 3.14 32.13 7.58 3.43 2.4.28 (12.4) (12.4) (13.07) (10.0 S.2) 3.07 (10.0 S.2) 3.07 (10.0 S.2) 3.07 (10.0 S.2)	urge Sta	bilization Data			Organization and a second seco		2 1		į.	e .	
WON'T HILD WATER LOUFL WON'T HILD WATER LOUFL	236	(from TOC)	(mL/min) 00	(S.U.) 5,26	(μS/cm)	(N.T.U)	D.O. (mg/L) 7,58 5,17	(mV) 343 352	Temperature (°C)		
					worlt it	Ld WATE	loupl				

Total volume purged	
Sample appearance	SCIENTLY TURRIP
Sample time	1000
Sample date	63/29/27

CCR Groundwater Monitoring Well Inspection Form

	× :	N= 5 33
Facility:	Pilley	Sampling Period:
Sampling Contractor:	Esale	Signature:
Samping Sam		

Well No.	Well Locked	Fastener and Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Protective Cover, Barriers and Pad in Good Shape	Well Properly Labeled	Well Cap Present and Vented*	All wells No Fill No Meep h-le No inside Isbel
AD-12	OD'S		5	5	5	U	5	labeled as MW-12
an-32	5	5	5	5	5	5	5	
40.31	7	5	5	5	5		S	
AD-3c	5	5	5	5	5	5		- No look -access not maintained
B-)	1)	1)	V	V	5	U		- No look -access Not Mantaneo
An. > C				5	5	5	5	
AD-17	5		5	5	5	5	5	-needs weedesting to see p
An . 3	<	5	5	5	5	S	5	
AN->/	5	7	5		S	5	5	-needs New lock
An 25	5		5	5	5	5	5	
Ah-23	5	5	5	5	2	ک	2	
DN-27	5	5	5	_5	S	5	5	

^{*}Not all wells will be vented, especially flush mounted wells. If that is the case, please note "flush mount well" in the comments.

CCR Groundwater Monitoring Well Inspection Form

Facility: A PP	PIRMM PP	Sampling Period: Jone 2022
Sampling Contractor:	CALL ENVIRONMENTAL	Signature: Intro

Well No.	Well Locked	Fastener and Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Protective Cover, Barriers and Pad in Good Shape	Well Properly Labeled	Well Cap Present and Vented*	Comments
A0-13	5	5	5	5	u	ч	u	NO WIFF HULF, NO CHANGAR FILL, WELL LABELED MW-13, CAP NUT VENTED
A0-22	5	5	5	5	U	4 0 0	Ч	CAB NOT NOW THE WALL THE INTER
AD-73	5	5	5	Ч	U	V	Y	NET WEED PATTO, NO WELP HOLE IN LABELED INSION NO GRANVLAN FILL, CAPNOT VENTO, NOT LABELED INSION NET VENTO, NO CRANVLAN FILL NO VERTO, NO CRANVLAN FILL COD
A0-7R	5	5	5	S	Ч	V	4	NOT LABRUED , NZ DEF ON DUTSIDE, NO CRANCE ARFILL
AD-2	5	S	5	5	V	U	Ч	NO VEFT HULF, NO CHANVEAN FILL, CAD NOT VENTED, LASTLED AS MW-2, NOT LASTLED INSIDE
AD-7	5	5	5	5	V	V	И	PLS 6
40-4	ØU	# U	B U	ч	u	V	V	NO SOOD WAY TO GET TOWN
AD-18	5	9	5	V	u	И	4	NOT LADMEN INSIGE NO WEED HOLF, APRILLY WAY
6-3	U	u	V	И	Ч	И	U	NOTOCH NO WELL IMS IDE-OLD NO CHENNAN
AD-/6	S	S	5	V	u	И	Ч	EVERGREWN TRAIL; WELL OVERGREWN NO WELP HOLE MY INTERNAL LABEL CAPACT VENTER NOT VENTER
Ap-34	\$ 5	5 4 5	45	805	Ч	V	V	NOT industry were not structed ful nowers
AD-36	5	5	5	9	Ч	ч	4	PAR NOT VENTO WORRANDARTICE
A0-8		5	S	5	V	V	N	CARVED AS MW-8 NO WIM CHONET VENTO

*Not all wells will be vented, especially flush mounted wells. If that is the case, please note "flush mount well" in the comments.

Facility Name	AEP PIANCY PP.
Sample by	Kenny Me Denne ed

Depth to water, feet (TOC)	16,97
Measured Total Depth, feet (TOC)	40,36

Sample Location ID	AD-02
Depth to water date	16/21/22

Purge Sta	bilization Data	-			·	·			
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (Ŋ.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
0832	17.01	700	4.02	668	16.5	831	475	23.82	
0837	17.13	200	4,00	674	1.8	5.00	475	23.16	
0842	17,21	700	3.96	6.75	0.0	4,47	475	23.04	
0847	17.28	200	3.96	677	Ø. 0	4,42	476	22.9Z	
	· ··· .								
								·	
		,							
	<u> </u>		,						

Total volume purged	
Sample appearance	CIGAN
Sample time	0849
Sample date	0 6 /21/22

Facility Name	Picker
Sample by	Meth Hamilton

Depth to water, feet (TOC)

Measured Total Depth, feet (TOC)

33.08

57.4(

Sample Location ID	Color Physics Color	110	1	
		(+1)	- 5	
	1/2			

Weasured Total Depth, feet (TOC)	Depth to water date
57.4	0-21-22

(from TO)	ater Denth Flow b.	ato	1	<u> </u>	*			THE STATE OF THE S	-
	3.51 21° 3.68 22° 3.77 22°	(S.U.) 4.35 4.46 4.34	Spec Cond (µS/cm) 17 40	Turbidity (N.T.U) 41.3 io. §	D.O. (mg/L)	ORP (mV) 274 275	Temperature (°C)		
	3.85 210		90	9-2	1,00	276	24.62		
	1.						7.1		
1									/

Total volume purged	
Sample appearance	(leaf
Sample time	11) 3
Sample date	(2)27

Facility Name	<i>f</i>	TIP.	finno	PP	
Sample by			KINM	Reported	

Depth to water, feet (TOC) 15,48

Measured Total Depth, feet (TOC) 47, 79

Sample Location ID	B 0-4
Depth to water date	16/21/27

Purge Sta	bilization Data									
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
1017	15.81.	160	4.27	127	228	8.21	329	24.82	,	
1022	15,86	160	436	113	2/6	3.17	341	24.63		
1027	15.93	160	4,39	110	201	3.06	355	24.57		
1032	15.99	160	4.40	108	204	3.02	357	24.51		
@			,							
	-									
				-						
							ļ			
				-						

Total volume purged	
Sample appearance	Comn
Sample time	1034
Sample date	06/21/22

Facility Name	AEP PINHOPP
Sample by	KANNY MCDENALO

Depth to water, feet (TOC)	17.44
Measured Total Depth, feet (TOC)	41.'98

Sample Location ID	AD-7
Depth to water date	06/21/22

Purge Sta	bilization Data									
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	_	<u> </u>
0938	18,02	150	3,55	40,	2016	9,74	412	76:83		
0935	18:11	150	3,54	406	5,9	12,80	477	24.42		
0940	18.19	150	3.54	397	2,6	2,71	472	26.11		
0945	18,25	150	3,52	399	0.0	7.63	767	25.99		
7										
				·						
					<u></u>					
										-
										_
— —										
				· · · · · · · · · · · · · · · · · · ·						
					<u> </u>					
1										
		 	 			<u> </u>				
1							1	1		

Total volume purged	
Sample appearance	classi
Sample time	0947
Sample date	06/21/22

Facility Name	HEP PIRAMPP
Sample by	Kinny McDonard

Depth to water, feet (TOC)	10.95
Measured Total Depth, feet (TOC)	33.03

Sample Location ID	AD-7R
Depth to water date	06/20/22

Purge Sta	bilization Data									
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
1104	11.01	120	4.56	210	4.1	10,21	383	28:27		
1109	11.02	120	4,59	211	0.0	3.21	360	26,97		
1114	11.05	120	4.58	212	0.0	3.19	351	24.52		
1119	11.11	120	4.57	213	0.0	3.12	3.46	24.25		
				-	-					
									_	
			:							
				amanu						
										:

Total volume purged	
Sample appearance	Cion
Sample time	1/2
Sample date	(16/20/22

Facility Name	AEP PLANOT PP
Sample by	Kerny Middadd

Depth to water, feet (TOC)	1357
Measured Total Depth, feet (TOC) 3 /, 33

Sample Location ID	P-0-8	
Depth to water date	16/22/22	\neg

Purge Sta	bilization Data									
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	:	
1154	13.82	160	5.25	334	26,0	9.45	350	27.41		
1159	13.87	160	5.16	735	13.1	2,47	346	26.46		
1204	13.88	160	5,03	337	6.8	2,72	750	26,28		
1209	13.89	160	5.00	337	4.8	2,19	352	26.19		
1214	13.88	160	5.01	337	5,2	2,17	>54	26.13		
				•						
	•									

Total volume purged	·
Sample appearance	Cifan
Sample time	12/6
Sample date	06/22/22

cility Name	D. J.
mple by	Pisicery Math Hamilton
epth to water foot /TOC)	Mitt Himilton

Sample Location ID	AD-12	
Depth to water date	1-20-22	

Depth to water, feet (TOC)

Measured Total Depth, feet (TOC)

52.00

Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity			LA COUNTRY OF CONTRACT OF CONT	
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	D.O.	ORP	Temperature	
840	21.67	300	4.61	123	(14.1.0)	(mg/L)	(mV)	(°C)	
543	21.78	300	4.30	57	0.	3.71	254	27.28	
-50	21.5-	300	4.25	56	. 0	163	.242	24.73	
						1.48	300	24.58	
				10		 			
	F								
		79							
	,							1 .	
									 -
				4					
									-
			1						-

Total volume purged	
Sample appearance	1,036
Sample time	852
Sample date	6.70-2.7

Facility Name	ALP PIRMON PP
Sample by	Kinny Mi De-Ald
Depth to water, feet (TOC)	5.0
Measured Total Depth, feet (TC	ic) 40.70

Sample Location ID	AD-13	
Depth to water date	06/20/22	

Purge Sta	abilization Data								
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
0821	15.22	170	5.79	539	556	17,75	-33	24.29	
0826	12.58	(70	3071	537	321	6.37	-22	24/31	
0831	15.37	70	2168	576	337.	6:30	-8	24.02	
0836	15,48	170	5.48	2 25	300	5,97	-10	24,07	
0841	19,55	170	5.6B	> 3 3	298	5.91	-18	24.08	
<u> </u>									
	L.								
			;						
						<u> </u>			
						<u> </u>			
									1
									-1

Total volume purged	
Sample appearance	BROWN
Sample time	0843
Sample date	06/20/22

Complete Dupulate-11400

Facility Name	APP PIANEY PP
Sample by	Kanny As Dunaed

Depth to water, feet (TOC)

Measured Total Depth, feet (TOC)

7,69

38,29

C defending ID	00.16	
Sample Location ID	FIDE 10	

Depth to water date 06/22/22

urge Sta	bilization Data			Cros Cond	Turbidity	D.O.	ORP	Temperature		
Time	Water Depth	Flow Rate	pH	Spec Cond		(mg/L)	(mV)	(°C)		
Į.	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U) 3.2.2	3,87	421	73.87		
1948	18,01	210	4.57	131		1.97	419	23.91		
7953	18.09	210	4,54	136	28,6		419	23.94	+	
958	18:13	210	4.51	136	27.1	2.03				
003	18:17	210	4,51	136	26.9	2.11	414	23.97		
<u>u • </u>										
						<u></u>				
										_
					 		 			
	<u> </u>			<u> </u>		 				
					 					
					<u> </u>		 	 		
										
									<u> </u>	
								ļ		₩
		 					1			<u> </u>

Total volume purged	
Sample appearance	Clean
Sample time	10.05
Sample date	06/22/22

Facility Name	Piller
Sample by	19-07 Hamilton
	,
Depth to water, feet (TOC)	32.61
Measured Total Depth, feet (TOC)	27.05

75.1

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
A,00000 11000 2000	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
103	22,76	200	3,75	146	6:7	324	360	26.48	
128	22,7%	200	339	147	7.8	1,09	254.	23.47	
1033	32176	2-0	3.32	145	4.8	0.95	25!	75.65	
1038	22.76	200	3.30	145	3,3	0,69	316	10.25	
									*
- 22									
				*					-

Total volume purged	
Sample appearance	rlear
Sample time	1040
Sample date	6-21-27

Facility Name	HEP PERMEM PP
Sample by	Kenny MiDiand
Depth to water, feet (TOC)	7. 41

Measured Total Depth, feet (TOC)

Sample Location ID	ĤĴ-18
Depth to water date	06/2/122

Purge Sta	bilization Data		•							
Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
1108	8.37	102	4.83	58	56,4 18,2	5.28	3/25	25,12		
1113	9.41	102	4.61	5	18,2	3,79	374	24.68		
-				·						
			WON T	Hard WI	TM LEVEL					
						<u> </u>				
		<u> </u>							1	
									<u> </u>	
									<u> </u>	
		[

Total volume purged	
Sample appearance	CUMR
Sample time	.0817
Sample date	06/27/12

Facility Name	Aft finh on PP
Sample by	Klary MDsr4cd

Depth to water, feet (TOC)	13,02
Measured Total Depth, feet (TOC)	32,70

Sample Location ID	A0-22	
Depth to water date	06120/22	

Purge Stabilization Data										
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
0936	13,22	164	4,80	766	13,0	8,21	274	27.21		
0941	13.29	164	4,57	778	5.5	3.63	290	26.69		
0946	13,31	164	4,54	787	511	3.59	277	26,75		
1951	13,36	164	4,51	791	4.6	3.52	274	26:71		
										
						<u></u>				
						1			<u> </u>	
"					<u> </u>					
						<u> </u>				
<u> </u>										
						<u> </u>				
										_
-								<u></u>		

Total volume purged	
Sample appearance	cian
Sample time	0953
Sample date	06/20/20

Facility Name	D 1
Sample by	Tickey

Depth to water, feet (TOC)	
Measured Total Depth, feet (TOC)	30.23
. , . (.00)	38.20

Sample Location ID	AN-23
	TIP ES
Depth to water date	/ 22 27

Purge Sta	bilization Data		The state of the s	the state of the s					8
Time 1050 1055 1100 1105 1110 1115	Water Depth (from TOC) 30.45 30.50 30.53 30.53 30.53	Flow Rate (mL/min) 220 220 220 220 220 220 220	pH (S.U.) 3.56 3.58 3.51 3.62 3.62	Spec Cond (μS/cm) 2.3.1 4.4 8.2 7.6 17	Turbidity (N.T.U) 16.2 85.7 55.7 236.8 32.2 32.6	D.O. (mg/L) 2,33 1,53 1,78 1,66 1,61	ORP (mV) 26e 265 266 284 281 288	Temperature (°C) 31.16 26.4 25.44 25.64 25.64	
	1.								
							-		
r r								اس ا	
d d		F							
					100				

Total volume purged	
Sample appearance	White/clandy
Sample time	Mark / Clendy
Sample date	6-22-27

Sample by Mith Hamilton	

A ~ A
9.12

Sample Location ID	
Sample Location ID	AN.25

Time 455 1005 1010	bilization Data Water Depth (from TOC) 9,91 6,95	Flow Rate (mL/min) 120 120 120	pH (S.U.) 3.81 3.83 3.71 3.75	Spec Cond (μS/cm) - & 1 - & 3 - & 3 - & 4 - & 5 - & 5 - & 5	Turbidity (N.T.U) 54.6 32.3 10.1	D.O. (mg/L) 1,45 0,35 0,24 0,22	ORP (mV) 218 208 204	Temperature (°C) 26,00	
							210	28.11	

.

1/2/	
1323:	
-	Ulen'

Facility Name	2
Sample by	Pirkey Hamilia
Depth to water, feet (TOC)	
Measured Total Depth, feet (TOC)	15.28

	Sample Location ID	_
28	Depth to water date (5 =)2 : 2 :	
	0	_

Time 857 6-2 107 112 117	Water Depth (from TOC) 15.61 15.76 15.85	Flow Rate (mL/min) 300 300 300	pH (S.U.) 3.41 3.34 3.23	Spec Cond (μS/cm) 2,050 2,110 2,110	Turbidity (N.T.U) 51.40 59.30	D.O. (mg/L)	ORP (mV) 261 248 245	Temperature (°C) 27.41 25 6	
922	16.15	300	3.25	5/120	28.2 17.5 17.8	4.42	245	24.82 24.75 24.70	
								e e	

Total volume purged	
Sample appearance	Clest
Sample time	CON
Sample date	6.22-21

Picker
Makt Hamilton

Depth to water, feet (TOC)	12 53
Measured Total Depth, feet (TOC)	1 2
	70.01

Sample Location ID	AD-27	
Depth to water date	6-22-23	

_ '	Water Depth	Flow Rate	-11					
Time 114c 1145 1150	(from TOC)	(mL/min) 300	pH (S.U.) 3.3.7 3.3.3	Spec Cond (μS/cm) 22 \	Turbidity (N.T.U) 87	D.O. (mg/L)	ORP (mV) 312	Temperature (°C) 31.84
1155	22.57	300 300	3.30	230	5.9 5.8	0.43	332	28 55 27.17 27.02
							1	
					1			

Total volume purged	
Sample appearance	Class
Sample time	1157
Sample date	6-22-77

Facility Name	Pilley
Sample by	Mett Hamilia
Depth to water, feet (TOC)	19.29
Measured Total Depth, feet (TOC)	16.6

Sample Location ID	110-28	
Depth to water date	(.)1.)-	

Purge Sta	bilization Data								
	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
944	19.120	220	4.27	103	1	4.60	208	26.52	
949	19-68	72-	406	107	3.1	1176	237	24.30	
954	19 74	22c	400	105	13	1.63	245	24.01	
139	11.		1.0		140				
				•					

Total volume purged	
Sample appearance	Cleek
Sample time	956
Sample date	6-21-27

Facility Name	P. ney
Sample by	Mat Howilly
Depth to water, feet (TOC)	20.48
Measured Total Depth, feet (TOC)	37.15

Sample Location ID	(4)-3
	,

	oilization Data Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP (mV)	Temperature (°C)	
Γime	(from TOC)	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	296	32,00	
1-7	20.46	756	4.15	495 518	48.8	0.97	294	27.38	
117	20151	25	423	520	13.	6.97	297	26.28	
117	21,00	221	417	155	3.2	0.85	3-3	26.05	
155	20100	726	4115	322	3.1	0,81	301	25.99	
1127	7)101	446	1110						
									3
									-
									+
									+

Total volume purged	
Sample appearance	CICIY
Sample time	1124
Sample date	6-222

Facility Name	filler
Sample by	19 mt 1 1 m

	EC >:
Depth to water, feet (TOC)	18.31
Measured Total Depth, feet (TOC)	37,32
Measured Total Depth, Teet (100)	3

	10-31
Sample Location ID	740 21
Depth to water date	1 - 12

Time Water Depth (from TOC) Social States Social States	Flow Rate (mL/min)	pH (S.U.) 3.5 \ 2.45 3.46 3.46	Spec Cond (μS/cm) 3	Turbidity (N.T.U) 79,4 24,6 14,3 7,6 7,5	D.O. (mg/L) 1,9,0 0,43 0,3,4 0,25	ORP (mV) 31/ 336 256 2513	Temperature (°C) 24.3 } 20.8 [25.5 7 25.5 7	

Total volume purged	
Sample appearance	Clev
Sample time	1043
Sample date	8-)0-26

Facility Name	Pirkey
Sample by	i'cx+ itomilten

Depth to water, feet (TOC)	9.7.4
Measured Total Depth, feet (TOC)	24.65

Sample Location ID	41) 37	
		9
Denth to water date	1 5 7 7	

Purge Sta	bilization Data						1	- 50°		
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
linic	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
925	11.71	25c	3.31	415	82.4	1214	125	26.89		
934	11 75	550	3.15	421	51.4	0.48	355	24.93		
936	11.8=	550	3.04	410	31.3	0-38	303	24.59		
944	11.57	320	\$ 05	417	9.9	0.31	786	24,45		
9.49	17:88	250	3.03	413	9.8	0,3-	367	2445		
171	11.70	6								
<u> </u>										
-										
									1	
-										22
	14									8:
						+				
							+			
1										

Total volume purged	
Sample appearance	cle-1
Sample time	951
Sample date	6.20.23

Facility Name	ALD PINKET PP.
Sample by	KARY MIDERALD

Depth to water, feet (TOC) 14,02

Measured Total Depth, feet (TOC) 32.50

Sample Location ID	AD-33

Depth to water date 06/20/22

Purge Sta	bilization Data	_							-	
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
1020	14.09	200	4.60	180	9,5	643	323	26.47		
1025	14.10	200	4,44	163	9.3	3,43	297	26.33		
1030	14.11	200	3,39	161	9,3	3.37	294	25.91		
1035	14.13	200	4.37_	158	819	3.31	290	25.87		
				,						
							ļ <u>-</u>			
			ļ <u> </u>							
						-			<u> </u>	
							 		-	
<u> </u>									<u> </u>	
<u> </u>						<u> </u>	<u> </u>			
			_				-		-	
						_	 			
				<u> </u>				<u> </u>		<u> </u>

Total volume purged	
Sample appearance	CLGAN
Sample time	1037
Sample date	00/20/22

Facility Name	AFP PINNOY
Sample by	KINN MIPERALL

Depth to water, feet (TOC)	0.61	
Measured Total Depth, feet (1	OC) 26.05	

Sample Location ID	AD-34
Depth to water date	16/22/27

Purge Sta	bilization Data		<u> </u>	· -		•			
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.) ,	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
1031	1,01	120	3,76	1610	10,4	10,84	457	28.41	
1036	1.10	120	3.70	1650	0.0	2,99	434	27.72	
1041	1,14	17.0	3,64	1670	3,3	2,87	428	27.49	
1046	1,20	120	3.66	1670	5.6	2,79	423	27.48	
	·····								
				·					
		<u></u>		<u> </u>					
							· -		 <u> </u>
		-						_	
	··· .							 	
				·		_			
					"				
								··· <u></u>	

Total volume purged	
Sample appearance	cum
Sample time	1048
Sample date	06/22/22

Dupucate - 3 1400

Facility Name	HEP PIANOT PP
Sample by	Konny McDonald

Sample Location ID	HD-36	
Depth to water date	06/22/22	

Depth to water, feet (TOC)		7,71	
Measured Total Depth, feet (TOC)	17.10	

Purge Sta	bilization Data									
Time	Water Depth	Flow Rate	рH	Spec Cond	Turbidity	D.O.	ORP	Temperature		
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
1113	7.83	146	4,03	63	62,7	2,87	354	29.71		
1118	7,85	146	4,53	64	24,1	1.87	32.3	29.69		
1123	7.89	146	4.55	64	11,4	1,42	350	29.63		
1128	7.89	146	7,58	64	10.9	1.37	349	29.72		
1133	7.92	146	4,58	<i>U</i> 3	IliZ	1.32	347	29.78	.	
	- 									
					_					

Total volume purged	
Sample appearance	Cum
Sample time	1135
Sample date	06/27/17

Facility Name	Piricel
Sample by	14-th Hamiltin

Depth to water, feet (TOC)	24.40
Measured Total Depth, feet (TOC)	51.44

Sample Location ID	7.5				
Depth to water date	1 21 27				

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
823	24.71	300	4.64	166	7.5	5.89	275	25.44	
828	24.78	300	4,52	103	0	415	751	22.51	
433	24.83	300	4.66	151	0	1.13	121	72.27	
838	24,90	3-0	4.68	125	0	1,07	158	22,19	
				95					
				(4					

Total volume purged	
Sample appearance	clev
Sample time	840
Sample date	621-17

Duplicate 1000

Facility Name	Aprimorph
Sample by	KINNY MIDERALD

Sample Location ID 8_3

Depth to water date 06/21/22

Depth to water, feet (TOC)	16.24	·
Measured Total Depth, feet (TOC)	77,49	

Purge Sta	bilization Data	.				 "		<u> </u>		
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (µS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
1142	17.13	106	4.84	246	(N.T.U) 3 \$. Z	8,31	414	22,34	<u> </u>	
1147	18,27	106	4188	248	7.8	2,75	407	23,34 23,73		
				WON'T Ite	d water	lfifl				
				- "						

Total volume purged	
Sample appearance	Cllock
Sample time	.0851.
Sample date	06/22/22

Facility Name	* # · · · · · · · · · · · · · · · · · ·
Sample by Math Hamilton	Special
Depth to water, feet (TOC)	Sample Location ID EBAD
Measured Total Depth, feet (TOC)	Depth to water date 6-22-22

ime	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond	Turbidity	D.O.	ORP	Tompount	
10			5.02	(μS/cm) 4 46°	(N.T.U) 246	(mg/L)	(mV)	Temperature (°C)	
				1			. 116	27.31	
			r r			*	·		
		n to t							
	1								
								, i	
		10							7

Total volume purged	
Sample appearance	0 1
Sample time	Clardy
Sample date	1-22-22

CCR Groundwater Monitoring Well Inspection Form

Facility: Pilley	Sampling Period: Nov 2023
Sampling Contractor: E-4	Signature: Jan Jan

					Lave I Str.			
Well No.	Well	Lock	Well Locked	Access to	Well Casing,	Well	Well cap	Comments
	Locked	Functioning	After Sampling	Well	Housing, and	Properly	present	
				Maintained	Pad in Good	Labeled		3
		45			Shape	050 054440 0000000000 0 540 540		
		. 4						
12. UK	S	51		5	_5	5	5.	
AD-25	5	5	5	5	5	5	5	
AD-23	5	5	5	5	5	9	5	et a
rs-da	5	5	5	5	5	S	5	
AD-32	5	Ś	5	5	5	_5	5	
AD-31	5	5	5	5	5	5	5	
ADIZ	5	5	5	5	5	5	5	
B-2	\$U	U		5	5.	()	5	-No label
AD-28	5	5	5	5	5	5	5	
An-30	5		5	5	5	5	_5	
AD-17	5	5	5	5	5	5	5	
AD-3	5	5	. 5	5	5	5	5	

<u>Instructions:</u> Complete form and submit to AEP Environmental Services with Field Data. Place check mark for items that are satisfactory. Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

CCR Groundwater Monitoring Well Inspection Form

Facility:firm PP	Sampling Period: November 2022
Sampling Contractor:	Signature:

Well No.	Well Locked	Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Housing, and Pad in Good Shape	Well Properly Labeled	Well cap present	Comments
AD-34	V	V	V	V		V	V	HINGE BEAR EN
AP-36	V	V	√	V	V	V	v	
AD-8	V	V		\checkmark	V	V	~	
AD-16			/	\checkmark	V	V	/	ritos New LICK
AD-22	\vee	V	V	V	✓	V	V	
A0-13	\checkmark	\checkmark	\checkmark	V	✓	✓	V	
A0-7R	\checkmark	✓	\checkmark	\vee	\checkmark		V	NOLABEL
Ab-2	V	✓	\checkmark	✓	V	V	V	
AD-33	V	√	./	V	V	V	V	
B-3				1	√		/	NO ICCK NOT LASFLYD
AD-18		/		, i		√	V	+ BRUSHCLIANING
A0-7	V	~	\checkmark	\checkmark	J	\checkmark	✓	

<u>Instructions:</u> Complete form and submit to AEP Environmental Services with Field Data. Place check mark for items that are satisfactory. Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

CCR Groundwater Monitoring Well Inspection Form

Facility:	Y-	IRAM			Sampling Perio	od:^	OV(-MBIA	2022
Sampling	g Contrac	tor: FA	616		Signature:	LA	And	
Well No.	Well Locked	Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Housing, and Pad in Good Shape	Well Properly Labeled	Well cap present	Comments
AD-4						✓	√	NEEDS WEEDERAM

<u>Instructions:</u> Complete form and submit to AEP Environmental Services with Field Data. Place check mark for items that are satisfactory. Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

Facility Name	Aft PIRMOT PP
Sample by	KINNY Mc Ponned

Depth to water, feet (TOC)	16,52
Measured Total Depth, feet (TOC)	40:36

Sample Location ID	AD-2	
Depth to water date	11/16/27	

Purge Sta	Purge Stabilization Data									
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O.	ORP	Temperature		
0948	16.71	210	3 97	5 8 l	2,4	(mg/L)	(mV) 280	(°C)		
0953	16.76	210	3,96,	592	1.8	2,54	276	16.28		
0958	16.83	210	3,96	594	11.7	2.46	276	16:39		
1003	16.87	210	3,96	5 95	1.3	2.49	275	16147		
						-111				
	.1									

Total volume purged		
Sample appearance	clinn	
Sample time	1005	
Sample date	11/15/22	

Facility Name	D
Sample by	1.11.ey
	Titti Hamilti
Depth to water, feet (TOC)	24.113
Measured Total Depth, feet (TOC)	7-1,43

11 3	
7411.)	
11/37	
	AN-3

Time (1.8)	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (µS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
143	35.07	27° 27°	5.84 5.61 5.94	148	7.6	0.71:	743 212 144 186	17.54 18.33 16.68 18.79		
								at contract of the contract of		
		:							2 4	
			8							

Total volume purged	
Sample appearance	Clark
Sample time	11/12
Sample date	127

. .

Facility Name	A (P PINHON PP
Sample by	Kinny MiDonald
Depth to water, feet (TOC)	15.64
Measured Total Depth, feet (TO	c) 47,29

Sample Location ID	AD-4	
Depth to water date	11/16/22	

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1116	15,69	170	4.59	77	1372	4.82	339	19.86	
1121	15.73	170	4.63	フフ	14.3	3.31	330	20,65	
1176	15,99	170	4,65	77	15.9	3,27	330	20:71	
113/	16,03	170	4,68	76	16.2	3,22	329	20,74	
			,					1	

Total volume purged	
Sample appearance	Clean
Sample time	1133
Sample date	11/16/22

Facility Name	AEPPIRKY PP
Sample by	KINNY Mi Dinglo

Depth to water, feet (TOC)	17,23	
Measured Total Depth, feet (TOC)	41.98	

Sample Location ID	A0-7	
Depth to water date	11/11/25	

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S,U,)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	, (°C)	
0853	17.82	160	3,66	424	4,2	3,62	367	16,82	
0858	17.91	160	3.67	474	2.7	2,09	372	17,46	
0903	17.98	1100	3,64	427	3,2	7,03	369	17,51	
0908	18.03	160	3,62	479	5,6	1.97	366	17,57	

Total volume purged		
Sample appearance	CIFAR	
Sample time	0910	
Sample date	11/16/22	

RA MS/MSO

Facility Name	Afr Finney pp
Sample by	Kimmy Mc Pongid

Depth to water, feet (TOC)	10.75	
Measured Total Depth, feet (TOC)	33.03	

Sample Location ID	AD-7R	
Depth to water date	11/15/22	

	bilization Data Water Depth	Flow Rate	ъU	Casa Cand	Totale talta.	D.O.	ODD	-	
Гime		AN DESCRIPTION OF COMPANY	pH (G.L.)	Spec Cond	Turbidity	D.O.	ORP	Temperature	
1000	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1859	10.80	126	4.92	244	12,9	612/	142	15,62	
1904	10,81	126	4.89	208	2,4	2,48	151	16:13	
909	10,82	126	4.90	208	2.8	2,46	156	16.18	
914	10.85	126	4,90	208	3,1	2,45	161	16.27	
1					711	. 12	1 4	10.0.	
-									-

Total volume purged		
Sample appearance	Cl (man	
Sample time	09/6	
Sample date	11/15/22	

Facility Name	AEP PINNOT PP
Sample by	Kinny McDennel

Depth to water, feet (TOC)	15,61
Measured Total Depth, feet (TOC)	31.33

Sample Location ID	AD-8	

Depth to water date	11/14/22
---------------------	----------

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
0756	15.63	168	4,43	3/0	8,2	3.84	322	19.07	
0955	15.64.	168	4.44	312	7,6	2,13	331	19.19	
1000	15,64	168	4.43	314	7,4	2.09	333	19,22	
1005	15,66	168	4.46	323	6.9	2.14	333	19,76	
					-				

Total volume purged	
Sample appearance	CLIMA
Sample time	1007
Sample date	1/14/22

acility Name	DVI		
Sample by	1,/1100	1.1	
	 19.21	(tonilly	

Depth to water, feet (TOC)	
Measured Total Depth, feet (TOC)	18.53
, (100)	52-0

Sample Location ID	RN-13
Depth to water date	11-15-33

1-36 1-36 1-41	Water Depth (from TOC) 18.65 16.57 20.21	Flow Rate (mL/min) 3cs 3cs	pH (S.U.) 4.38 4.56	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L) 2.44	ORP (mV)	Temperature (°C)	
056	20,52	300	4.71	66	30.1	1.83	318 318 320	19.cc 19.17 19.25 14.29	
				· ·					

(7)	
14-0	
11-17:23	
	1058

Ms/Nsd

Facility Name	AFP PIAHM PP
Sample by	Ktory Mi Denvald

Depth to water, feet (TOC)	14.83
Measured Total Depth, feet (TOC)	40.70

Sample Location ID	AD-13	4)
Depth to water date	11/15/77	

Purge Sta	bilization Data			6					0.00	
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S,U.)	(μS/ˌcm)	(N.T.U)	(mg/L)	(mV)	(°C)		
0804	15.01	180	5.65	400	126	8,21	224	17,21		
0809	15,10	180	5,83	400	88.2	4,63	140	18.06		
08/4	15,21	180	5.81	399	86,4	4,59	131	18,32		
0319	15.33	180	5.81	398	85.1	4.54	124	18.51		
						П				
					4					
	9			14						

Total volume purged		
Sample appearance	SUOHTLY TURDIO	
Sample time	0821	
Sample date	11/15/22	

Deplicate-2 Wa + methos only 1400

Facility Name	FIRKITY PP
Sample by	Klong Mi Dina. 8

Depth to water, feet (TOC)	18,40	*
Measured Total Depth, feet (TOC)	38,24	

/	
AD-16	
11/11/73	
	AD-16

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1038	18,62	200	4,26	132	21,7	2,87	3/3	18,14	
1043	18,68	200	4.31	132	19.9	1,94	321	18.71	
1048	18,71	200	4,33	132	19.7	1,94	324	19.02	
1053	18,73	200	4,33	134	18,8	1,90	331	19.13	
							3		

Total volume purged	
Sample appearance	Clim
Sample time	1055
Sample date	11/14/22

Facility Name	D.
Sample by	Tillcay
* · · · · · · · · · · · · · · · · · · ·	Mett It amil too
Depth to water, feet (TOC)	
Measured Total Depth, feet (TOC)	23.48

Sample Location ID	KN-17
Death	
Depth to water date	11-16-22

Purge	Stabilization	Data

Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (µS/cm)	Turbidity	D.O.	ORP	Temperature	114
1036	23.6c 23.6c 23.61 23.61	200 200 200 200	4.66	153	(N.T.U) 42.7 55.7 43.\ 32.?	(mg/L) 1.60 0.71 0.45	(mV) 786 785	-(°C) -[7.43 -[8.87 -[4.3]	
1056	23.62	760	4.56	165	218	1.01	285 286 285	14,72	
								• • •	
				and the second s	The same and the s		0		<u>.</u>

Total volume purged		
Sample appearance		
Sample time	1 = 4	
Sample date	11 1/2	

Facility Name	AEPPIRACT PP	
Sample by	KENNY MIDENALD	

Depth to water, feet (TOC)	8,31
Measured Total Depth, feet (TOC)	28.42

Sample Location ID	AP-18	
Depth to water date	11/10/22	

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	pH	Spec Cond	Turbidity	D.O.	ORP	Temperature	
* 1	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1201	9,27	110	4.37	55	16,5	3.87	332	15.50	
1206	10,42	110	4,46	52	812	2,19	331	1697	
			*	WUN'T HOLD	WATTON	WIL			
			-						

Total volume purged	
Sample appearance	clina
Sample time	1013
Sample date	11//6/22

Facility Name	AFPPIRMM PP
Sample by	Ktowy MI DENALD

Depth to water, feet (TOC)	13.31	
Measured Total Depth, feet (TOC)	32,70	

Sample Location ID	AD-22	
Depth to water date	11/41/22	

Purge Sta	bilization Data								and the second second	
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
1114	13.46	160	4.64	769	10.7	4.21	311	17.45		
1119	17,48	160	4.76	767	5,2	2187	300	17.50		
1124	13,49	160	4.77	768	4.8	2.83	295	17.56		
1129	13,51	160	4.77	770	5,5	2,80	292	17,61		

Total volume purged		
Sample appearance	CHAN	
Sample time	1131	
Sample date	11/14/22	

Facility Name	7 11
Sample by	Pitter
	1 with Hamilton
Depth to water, feet (TOC)	3 76
Measured Total Depth, feet (TO	OC) 36-

Sample Location ID	ES-OB	
Devil		
Depth to water date	11-14-23	

1034 1034 1044	Water Depth (from TOC) 30 16 3 3- 13 3-14 3-15	Flow Rate (mL/min)	pH (S.U.) 4-3-2 4-3-8	Spec Cond (µS/cm) Sec 5	Turbidity (N.T.U) 28.8 37(D.O. (mg/L) 7.15	ORP (mV)	Temperature (°C)	
1054	30.65	220	4.43	87 79 71	212 204 36 201 204	5.17 4.58 3.13 3.81	228 231 233	14.62 14.80 14.94 15.07	
	3	:							

Total volume purged		
Sample appearance	4. bid	
Sample time	Turbiq	
Sample date	1111/22	
oumpie date	11-14-22	

Facility Name	Dati
Sample by	Pilley D
	MUT HEM. H.
Depth to water, feet (TOC)	1163
Measured Total Depth, feet (TOC)	11.81

Sample Location ID	D75
Depth to water date	
septific water date	11-14-27

744 545 534 955 1004	Water Depth (from TOC) 12.cc 12.08 12.14 12.15	Flow Rate (mL/min) (C) () () () () () () () () () () () () ()	pH (S.U.) 4 & k 4 & c 4 & c	Spec Cond (µS/cm) (PS/cm) (PS/	Turbidity (N.T.U) 17 - 6 21.5 35 - 6 37.1	D.O. (mg/L) 7.04 0.85 0.47 0.65	ORP (mV) 171 . 153 . 153 . 151 . 15c	Temperature (°C) 11.41 13.67 14.43 14.78	
	8								

.

Total volume purged		
Sample appearance	cl-1/	•
Sample time	100 /	
Sample date	11-111-27	

. a

Facility Name	
Sample by	Pitkey Hamilton
Depth to water, feet (TOC)	11 112
Measured Total Depth, feet (TOC)	16.43

Sample Location ID	AN 21
, ,	7411-26
Depth to water date	1) 10/27 2
Depth to water date	11-14-27

ge Stabili; ime \$41 \$52 \$57 \$677	Water Depth (from TOC) 16.81 17.21 17.21	Flow Rate (mL/min) 300 300 300 300	pH (S.U.) 3 52 3 78 3 47 3 48	Spec Cond (μS/cm) 2,23c 2,23c 2,23c 2,22c 2,22c 2,22c	Turbidity (N.T.U) 56.1 31.8 31.1 31.2	D.O. (mg/L) 17.06 1.87 0.56 0.70 0.65	ORP (mV) 34c 274 251 243 238	Temperature (°C) 3 e6 4.78 5.23 5.06	

	_
GIERT G G	
1) 1/4-72	
-	clear 909

Facility Name	D. A.
Sample by	Hot Home D.
Depth to water, feet (TOC)	7 4 3/1
Measured Total Depth, feet (TOC)	67.19

Sample Location ID	ANS
	740.87
Depth to water date	

(177 (177	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (µS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
1137	24.48 24.51 24.56 24.60	3 e 3 e 6 3 e 6 3 e 6 3 e 6 3 e 6 9	3,81	215	24.2 23.5 9.8	3.43 2.26 1.03. 0.87 C.82	3-3 2(1 287 285	13.56 HAME 14.21 14.48 14.55	
	3.								
		3							7

Total volume purged		
Sample appearance	Class	
Sample time	CIEGIT	
Sample date	1/-147	

Facility Name	PN
Sample by	Tilled 1
Depth to water, feet (TOC)	Try tag
Measured Total Depth, feet (TOC)	15.67

38.59

Sample Location ID	AN -2 0
Deadin	10 28
Depth to water date	11-16-22

Time	Water Depth (from TOC)	Flow Rate (mL/min) 220 220	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
£31 £41 £41	20.24.	22e 22e 22e 22c	4.43	56 57 67	22.0	7.84	30 C 30 T 30 8 30 L 310	16.53 17.63 17.82 18.11	
									,
		1							,

Total volume purged	
Sample appearance	
Sample time	Citi
Sample date	1/1/22

Facility Name	D
Sample by	1 illey
	Muttl Hamiltin
Depth to water, feet (TOC)	
Measured Total Depth, feet (TOC)	15:05
	7.7

Sample Location ID	A)-30
Donali	
Depth to water date	17 - 16-2

Time	Water Depth	Flow Rate	рН	Spec Cond	T	CONTRACTOR DE CO	Dr. Carlotte Company	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN		
514 624 634 635 644	(from TOC) 20.52 20.65 20.65 20.65 20.65	(mL/min) 22c 22c 22c 22c 22c	(S.U.) 4.81 4.48 5.03 5.05 5.05	(μS/cm) (μS/cm) (μ17) 516 523 526 527 528	Turbidity (N.T.U) 247 23.1 22.5 22.7 11.8	D.O. (mg/L) 7.54 1.36 1.25 1.17	ORP (mV)) 1 (2 5 4 2 7 (2 6 5 2 6 4	Temperature (°C) 4		
					- 10	,			4	

Total volume purged	
Sample appearance	CPA
Sample time	GILL
Sample date	11-14

Facility Name	D.
Sample by	Mark 1)
Depth to water, feet (TOC)	10° - 0
Measured Total Depth, feet (TOC)	18.78

Sample Location ID	NA-31
Donthi	
Depth to water date	11-15-21

Purge Stabilization Data

Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond	Turbidity	D.O.	ORP	-		
935	19.03	725	3.99	(μS/cm) 4c7	(N.T.U)	(mg/L)	(mV)	Temperature (°C)		
140	19.12	220	4.74	313	111.	3.81	361	12.13		-
45	15.12	22-	4-26	3-7	65.5	0.4.6	338	11.7		
55	16.13	220	4.27	3=7	57.2.	0.41	335	17.84		-
000	15:13	220	4.27	301	12.5	0.45	332	18.06		
				3-6	13.3	0.45	331	18.10		
	4									
					,					
								al .	-	,
					40					
			D. Scanding and Section 1			-				

Total volume purged		
Sample appearance	1/24	
Sample time	1067	, , , , , , , , , , , ,
Sample date	11-15-27	

Facility Name	ACP FIRM PP	
Sample by	KINNY MI PENNED	

Depth to water, feet (TOC)	14.94	
Measured Total Depth, feet (TOC)	32,50	

Sample Location ID	AP-33	

our to water, reet (TOC)	19,19	Depth to water date	11/15/26	
sured Total Depth, feet (TOC)	32,50			
e Stabilization Data				

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1049	15,00	192	3.97	171	5,6	5,12	312	18,75	
1054	15,01	192	3.97	166	4.8	3,27	306	18,97	
1059	15,01	192	3.98	164	4.3	3.24	302	18.96	
1104	15.02	192	3,96	163	4,5	3.20	297	18,95	
		A							
		El .							
				(0)					

Total volume purged	
Sample appearance	Clfgn
Sample time	1106
Sample date	11/15/22

Facility Name	Dist
Sample by	Pilley
The Sy	Middle Hamilda

Depth to water, feet (TOC)

Measured Total Depth, feet (TOC)

Sample Location ID	DN-32
0	710-0
Depth to water date	11.14.03

Time 831 836	Water Depth (from TOC)	Flow Rate (mL/min)) フェ ことさ	pH (S.U.) 3 7(Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
646 651 856 901	11, 83)20)20 220 220 270	3.62	106 598 597 596 546	16.4 34.8 15.5 4.2 208	0.71	341 376 371 363 359 359	17.01 18.16 18.10 17.74 17.85 17.82		
								1 .		
									2 2	
								**		

Total volume purged	
Sample appearance	-1 -1
Sample time	Clear
Sample date	11-1-25

Facility Name	AFFRAMA FF		
Sample by	Ktong MiDenaid		

Depth to water, feet (TOC)	TUP OF CASING
Measured Total Depth, feet (TOC)	26.05

Sample Location ID	AD-34	
Depth to water date	11/14/22	

Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
2000	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
2080	0.61	124	3.63	1750	3,8	3,62	78	14.94		
0807	0.73	124	3,61	1730	61)	2,55	98	15.37		
2180	0,88	124	3.59	1720	412	2,54	104	15,40		
0817	0,97	124	3.54	1690	4,5	2,51	106	15.44		
										1
									 	
									 	
-										-

Total volume purged	
Sample appearance	CLEAN
Sample time	0819
Sample date	11/14/22

Facility Name	AFP PIRKT PP
Sample by	KENNY MIDENALD

Depth to water, feet (TOC)

Measured Total Depth, feet (TOC)

7, 85

17,10

Sample Location ID	AD-36	
Depth to water date	11/14/22	

Water Depth (from TOC) 7, 92 7, 93	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O.	ORP	Temperature		
7.92	150			(NTII)					
		4.18		(14.1.0)	(mg/L)	(mV)	(°C)		
7,93		1110	125	41,2	13,21	184	15,39		
	150	4,39	90	16.8	7.48	177	16,54		
7,93	150	4.41	83	10.1	6,13	169	17,61		
7,95	150	4.45	75	7.6	5.52	170	18,20		
	150		74	7.8	5.52	168	18124		
7.95	150	4.46	72		5,50	168	18.26		
	7,93	7,93 150 7,95 150 7,95 150	7,93 150 4,41 7,95 150 4,45 7,95 150 4,45	7,93 150 4,41 83 7,95 150 4,45 75 7,95 150 4,45 74	7,93 150 4,41 83 10,1 7,95 150 4,45 75 7,6 7,95 150 4,45 74 7,8	7,93 150 4.41 83 10.1 6.13 7,95 150 4.45 75 7.6 5.52 7,95 150 4.45 74 7.8 5.52	7,93 150 4,41 83 10,1 6,13 169 7,95 150 4,45 75 7,6 5,52 170 7,95 150 4,45 74 7,8 5,52 168	7,93 150 4,41 83 10,1 6,13 169 17,61 7,95 150 4,45 75 7,6 5,52 170 18,20 7,95 150 4,45 74 7,8 5,52 168 18,24	7,93 150 4,41 83 10,1 6,13 169 17,6 7,95 150 4,45 75 7,6 5,52 170 18,20 7,95 150 4,45 74 7,8 5,52 168 18,24

Clian
0928
11/14/72

LAMD FILL DEPLICATE 1406

acility Name	Philippi
Sample by	1.1/cey
	19. It Iten: Ita

Depth to water, feet (TOC)

Measured Total Depth, feet (TOC)

27(1)

S1(44)

Sample Location ID	R.>
D	P
Depth to water date	11/17/15

1146 1146 1151	Water Depth (from TOC) 27.5 \$ 27.66 27.66	Flow Rate (mL/min)	pH (S.U.) 5 68 5.81 5.83	Spec Cond (µS/cm)	Turbidity (N.T.U) (1),4 (4),6 (4),7	D.O. (mg/L)) . \	ORP (mV) > 66	Temperature (°C) 17.77 18.54	
								18.7)	
								2 - 3 - 2	

Total volume purged	
Sample appearance	(- 1)
Sample time	(16:1)
Sample date	11.15.25

Dapil

Facility Name	A EP PIRM CO PP
Sample by	Kenny McPenaco
	Cer Proce and
	1/ ==

Depth to water, feet (TOC)	15,83	
Measured Total Depth, feet (TOC)	37,49	

Sample Location ID	8-3	
Depth to water date	11/15/27	

Purge Sta	bilization Data								
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
1216	16:71	108	4.99	724	11.4	4,11	335	15,82	
1221	17,93	108	5,03	216	611	2,97	314	16,04	
				WOT'T Ito	1 d Warin 1	1 holl			
				0. 1 110	LO VONTULE				

Total volume purged	
Sample appearance	cilm
Sample time	0803
Sample date	11/16/72

APPENDIX 5- Analytical Laboratory Reports

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221004 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-2 Customer Description:

Lab Number: 221004-001 Preparation:

Date Collected: 03/29/2022 12:25 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.31 mg/L	2	0.10	0.02	CRJ	04/05/2022 15:40	EPA 300.1 -1997, Rev. 1.0
Chloride	31.4 mg/L	2	0.04	0.02	CRJ	04/05/2022 15:40	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.20 mg/L	2	0.06	0.02	CRJ	04/05/2022 15:40	EPA 300.1 -1997, Rev. 1.0
Sulfate	241 mg/L	10	2.0	0.3	CRJ	04/05/2022 15:14	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	460 mg/L	1	50	20 L1	SDW	04/01/2022 15:09	SM 2540C-2011

Customer Sample ID: AD-3 Customer Description:

Lab Number: 221004-002 Preparation:

Date Collected: 03/29/2022 12:48 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.07 mg/L	2	0.10	0.02 J1	CRJ	04/05/2022 14:47	EPA 300.1 -1997, Rev. 1.0
Chloride	6.84 mg/L	2	0.04	0.02	CRJ	04/05/2022 14:47	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.21 mg/L	2	0.06	0.02	CRJ	04/05/2022 14:47	EPA 300.1 -1997, Rev. 1.0
Sulfate	34.0 mg/L	2	0.40	0.06	CRJ	04/05/2022 14:47	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units I	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	35 mg/L	1	20	5	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	170 mg/L	1	50	20 L1	SDW	04/01/2022 15:15	SM 2540C-2011

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221004 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-4 Customer Description:

Lab Number: 221004-003 Preparation:

Date Collected: 03/29/2022 13:16 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.16 mg/L	2	0.10	0.02	CRJ	04/05/2022 16:33	EPA 300.1 -1997, Rev. 1.0
Chloride	3.80 mg/L	2	0.04	0.02	CRJ	04/05/2022 16:33	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.08 mg/L	2	0.06	0.02	CRJ	04/05/2022 16:33	EPA 300.1 -1997, Rev. 1.0
Sulfate	22.2 mg/L	2	0.40	0.06	CRJ	04/05/2022 16:33	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	140 mg/L	1	50	20 L1	SDW	04/01/2022 15:15	SM 2540C-2011

Customer Sample ID: AD-7 Customer Description:

Lab Number: 221004-004 Preparation:

Date Collected: 03/28/2022 12:50 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units D	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	2.86 mg/L	2	0.10	0.02	CRJ	04/05/2022 18:19	EPA 300.1 -1997, Rev. 1.0
Chloride	40.8 mg/L	2	0.04	0.02	CRJ	04/05/2022 18:19	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.36 mg/L	2	0.06	0.02	CRJ	04/05/2022 18:19	EPA 300.1 -1997, Rev. 1.0
Sulfate	49.9 mg/L	2	0.40	0.06	CRJ	04/05/2022 18:19	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	230 mg/L	1	50	20 L1	SDW	04/01/2022 15:20	SM 2540C-2011

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221004 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-12 Customer Description:

Lab Number: 221004-005 Preparation:

Date Collected: 03/28/2022 11:02 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.05 mg/L	2	0.10	0.02 J1	CRJ	04/05/2022 18:45	EPA 300.1 -1997, Rev. 1.0
Chloride	6.10 mg/L	2	0.04	0.02	CRJ	04/05/2022 18:45	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.07 mg/L	2	0.06	0.02	CRJ	04/05/2022 18:45	EPA 300.1 -1997, Rev. 1.0
Sulfate	3.80 mg/L	2	0.40	0.06	CRJ	04/05/2022 18:45	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	60 mg/L	1	50	20 L1	SDW	04/01/2022 15:20	SM 2540C-2011

Customer Sample ID: AD-13 Customer Description:

Lab Number: 221004-006 Preparation:

Date Collected: 03/28/2022 09:38 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.23 mg/L	2	0.10	0.02	CRJ	04/05/2022 17:26	EPA 300.1 -1997, Rev. 1.0
Chloride	46.5 mg/L	10	0.2	0.1	CRJ	04/05/2022 17:00	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.34 mg/L	2	0.06	0.02	CRJ	04/05/2022 17:26	EPA 300.1 -1997, Rev. 1.0
Sulfate	79.2 mg/L	2	0.40	0.06	CRJ	04/05/2022 17:26	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units D	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	230 mg/L	1	50	20 L1	SDW	04/01/2022 15:21	SM 2540C-2011

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221004 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-17 Customer Description:

Lab Number: 221004-007 Preparation:

Date Collected: 03/29/2022 11:25 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units I	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.16 mg/L	2	0.10	0.02	CRJ	04/05/2022 21:24	EPA 300.1 -1997, Rev. 1.0
Chloride	16.2 mg/L	2	0.04	0.02	CRJ	04/05/2022 21:24	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.26 mg/L	2	0.06	0.02	CRJ	04/05/2022 21:24	EPA 300.1 -1997, Rev. 1.0
Sulfate	6.77 mg/L	2	0.40	0.06	CRJ	04/05/2022 21:24	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	60 mg/L	1	50	20 L1	SDW	04/01/2022 15:21	SM 2540C-2011

Customer Sample ID: AD-18

Lab Number: 221004-008

Date Collected: 03/29/2022 10:36 EDT

Customer Description:

Preparation:

Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units D	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.04 mg/L	2	0.10	0.02 J1	CRJ	04/05/2022 23:10	EPA 300.1 -1997, Rev. 1.0
Chloride	5.26 mg/L	2	0.04	0.02	CRJ	04/05/2022 23:10	EPA 300.1 -1997, Rev. 1.0
Fluoride	<0.02 mg/L	2	0.06	0.02 U1	CRJ	04/05/2022 23:10	EPA 300.1 -1997, Rev. 1.0
Sulfate	7.31 mg/L	2	0.40	0.06	CRJ	04/05/2022 23:10	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units D	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	140 mg/L	1	50	20 L1	SDW	04/01/2022 15:26	SM 2540C-2011

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221004 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-22 Customer Description:

Lab Number: 221004-009 Preparation:

Date Collected: 03/28/2022 10:35 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.42 mg/L	2	0.10	0.02	CRJ	04/05/2022 22:17	EPA 300.1 -1997, Rev. 1.0
Chloride	88.8 mg/L	10	0.2	0.1	CRJ	04/05/2022 21:50	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.96 mg/L	2	0.06	0.02	CRJ	04/05/2022 22:17	EPA 300.1 -1997, Rev. 1.0
Sulfate	385 mg/L	10	2.0	0.3	CRJ	04/05/2022 21:50	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	720 mg/L	2	100	40 L1	SDW	04/01/2022 15:26	SM 2540C-2011

Customer Sample ID: AD-28 Customer Description:

Lab Number: 221004-010 Preparation:

Date Collected: 03/29/2022 11:34 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.06 mg/L	2	0.10	0.02 J1	CRJ	04/06/2022 00:55	EPA 300.1 -1997, Rev. 1.0
Chloride	5.07 mg/L	2	0.04	0.02	CRJ	04/06/2022 00:55	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.68 mg/L	2	0.06	0.02	CRJ	04/06/2022 00:55	EPA 300.1 -1997, Rev. 1.0
Sulfate	28.9 mg/L	2	0.40	0.06	CRJ	04/06/2022 00:55	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units Di	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	100 mg/L	1	50	20 L1	SDW	04/01/2022 15:38	SM 2540C-2011

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221004 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-30 Customer Description:

Lab Number: 221004-011 Preparation:

Date Collected: 03/28/2022 13:51 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.39 mg/L	2	0.10	0.02	CRJ	04/06/2022 00:03	EPA 300.1 -1997, Rev. 1.0
Chloride	29.5 mg/L	2	0.04	0.02	CRJ	04/06/2022 00:03	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.07 mg/L	2	0.06	0.02	CRJ	04/06/2022 00:03	EPA 300.1 -1997, Rev. 1.0
Sulfate	170 mg/L	10	2.0	0.3	CRJ	04/05/2022 23:36	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 P1, U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	330 mg/L	1	50	20 L1	SDW	04/01/2022 15:38	SM 2540C-2011

Customer Sample ID: AD-31 Customer Description:

Lab Number: 221004-012 Preparation:

Date Collected: 03/28/2022 13:04 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.29 mg/L	2	0.10	0.02	CRJ	04/06/2022 01:22	EPA 300.1 -1997, Rev. 1.0
Chloride	21.8 mg/L	2	0.04	0.02	CRJ	04/06/2022 01:22	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.13 mg/L	2	0.06	0.02	CRJ	04/06/2022 01:22	EPA 300.1 -1997, Rev. 1.0
Sulfate	80.8 mg/L	2	0.40	0.06	CRJ	04/06/2022 01:22	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	260 mg/L	1	50	20 L1	SDW	04/01/2022 15:45	SM 2540C-2011

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221004 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-32 Customer Description:

Lab Number: 221004-013 Preparation:

Date Collected: 03/28/2022 12:07 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	3.87 mg/L	2	0.10	0.02	CRJ	04/06/2022 04:53	EPA 300.1 -1997, Rev. 1.0
Chloride	25.2 mg/L	2	0.04	0.02	CRJ	04/06/2022 04:53	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.44 mg/L	2	0.06	0.02	CRJ	04/06/2022 04:53	EPA 300.1 -1997, Rev. 1.0
Sulfate	157 mg/L	25	5.0	0.8	CRJ	04/06/2022 04:27	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	330 mg/L	1	50	20 L1	SDW	04/01/2022 15:45	SM 2540C-2011

Customer Sample ID: AD-33 Customer Description:

Lab Number: 221004-014 Preparation:

Date Collected: 03/28/2022 11:54 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.24 mg/L	2	0.10	0.02	CRJ	04/06/2022 05:46	EPA 300.1 -1997, Rev. 1.0
Chloride	8.88 mg/L	2	0.04	0.02	CRJ	04/06/2022 05:46	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.30 mg/L	2	0.06	0.02	CRJ	04/06/2022 05:46	EPA 300.1 -1997, Rev. 1.0
Sulfate	67.0 mg/L	2	0.40	0.06	CRJ	04/06/2022 05:46	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	190 mg/L	1	50	20 L1	SDW	04/01/2022 15:50	SM 2540C-2011

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221004 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: Duplicate 1 Customer Description:

Lab Number: 221004-015 Preparation:

Date Collected: 03/28/2022 13:00 EDT Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.42 mg/L	2	0.10	0.02	CRJ	04/05/2022 13:55	EPA 300.1 -1997, Rev. 1.0
Chloride	88.0 mg/L	10	0.2	0.1	CRJ	04/06/2022 04:00	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.94 mg/L	2	0.06	0.02	CRJ	04/05/2022 13:55	EPA 300.1 -1997, Rev. 1.0
Sulfate	381 mg/L	10	2.0	0.3	CRJ	04/06/2022 04:00	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS, Filterable Residue	720 mg/L	1	50	20 L1	SDW	04/01/2022 15:50	SM 2540C-2011

Customer Sample ID: Duplicate 2

Lab Number: 221004-016

Date Collected: 03/29/2022 11:55 EDT

Customer Description:

Preparation:

Date Received: 03/31/2022 10:30 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.06 mg/L	2	0.10	0.02 J1	CRJ	04/05/2022 13:28	EPA 300.1 -1997, Rev. 1.0
Chloride	5.02 mg/L	2	0.04	0.02	CRJ	04/05/2022 13:28	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.64 mg/L	2	0.06	0.02	CRJ	04/05/2022 13:28	EPA 300.1 -1997, Rev. 1.0
Sulfate	29.1 mg/L	2	0.40	0.06	CRJ	04/05/2022 13:28	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/31/2022 13:59	SM 2320B-2011
TDS Filterable Recidue	110 mg/l	1	50	20 11	SDW	04/01/2022 16:23	SM 2540C-2011

221004

Job Comments:

Original report issued 5/11/2022. Report reissued with amended Matrix Spike precision calculations.

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 221004 Customer: Pirkey Power Station Date Reported: 12/27/2022

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

- U1 Not detected at or above method detection limit (MDL).
- L1 The associated laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) recovery was outside acceptance limits.
- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.
- P1 The precision between duplicate results was above acceptance limits.

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Blxby Road Groveport, Ohio 43125

Program: Coal Combustion Residuals (CCR)

からの一般のことのでは、一般の一般のできるとなると、人ところのできるとのできると													The second secon
Contacts: Michael Ohlinger (814-838-4184)						Site Contact:	act:			Date:			For Lab Use Only:
Project Name: Pirkey - CCR								Field-filter		1	vial or E lined ', pH<2	to laiv a benit 3 PHq."	22,1004
Contact Name: Leslie Fuerschbach	Analysis	Гиттагоилд	Analysis Turnaround Time (in Calendar Days)	lendar D	(ays)			250 mL	7	(six every	119 .	919 .	
Contact Phone: 318-423-3805	•						pH<2.	pH<2, HNO ₃	Cool,	L bottler, pH<2, HNO ₂	1때 092	260 mL	
Sampler(s): Matt Hamilton Kenny McDonald							, Pb,	,67,0 JT ,68		822-			
Sample identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	Conf.	Sampler(s) Init	B, Ca, Li, Sb, Mo, Se, TL and Na, K, M	Be, Ca, Cr, C Mn, Mo, Pb, 1 Be, Cd, Cr, C Mn, Mo, Pb, 1 Be, Cd, Ch, M	TDS, F, CI, Br, andAlk	87 ,822-87	вн	БН	Sample Specific Notes
AD-2	3/28/2022	1125	ပ	GW					×				
AD-3	3/28/2022	1148	g	GW	1				×				
AD-4	3/29/2022	1216	0	GW	-				×				
, AD-7	3/28/2022	1150	ß	GW	-				×				
AD-12	3/28/2022	1002	0	GW	-				×				
AD-13	3/28/2022	838	ຶ	GW	-				×				
AD-17	3/29/2022	1025	g	βW	-				×				
AD-18	3/29/2022	936	9	βW	-				×				
AD-22	3/28/2022	935	ပ	ΑS	-				×				
AD-28	3/29/2022	1034	ပ	βW	-				×				
AD-30	3/28/2022	1251	G	ΒW	-				×				
Preservation Used: 1= kce, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HN03; 5=N2	10H; 6= 0	ther		filter in field	feld r	4	F4	1	4	2	2	
Six 1L. Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.											

ix 1L Bottles must be collected for Radium for every 10th sa

Special Instructions/QC Requirements & Comments:

TG-32

Relinquished by 7 M Jawy	Company:	Date/Time: 1300 Received by: 3-522		Date/Time
Relinquished by:		Date/Time:	Received by:	Date/Time:
Relinquished by:	Company:	Date/Time:	Received in Laboratory by:	3/31/22 10:15/hm

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shrevebort, Rev. 1, 1/10/17

Chain of Custody Record

Dolan Chemical Laboratory (DCL)					ည်	ain o	f Custo	Chain of Custody Record	cord				í	
4001 Bixby Road								1						
Groveport, Ohio 43125				٥	ogran	n: Coal	Combust	Program: Coal Combustion Residuals (CCR)	ials (CC					
Contacts: Michael Ohlinger (614-836-4184)						Site Contact:	itact:		č.	Date:			For Lal	For Lab Use Only:
Project Name: Pirkey - CCR								Field-filter		, and a	o vial or benii 3 S>Hq.*	s viat or E lined ", pH<2		
Contact Name: Leslie Fuerschbach	Analysis	Furnamound	Analysis Turnaround Time (in Calendar Days)	fendar	Jays)			250 mL bottle, then	1 L bottle,	(six every 10th*)	ata J	AT9 J		
Contact Phone: 318-423-3805							PH<2, HNO,	PH<2, HNO,		L bottles, pH<2, HNO ₃	520 m	320 m		
Sampler(s): Matt Hamilton Kenny McDonald							,04 Pb,	,0, Fe, Se, TL		822-1				
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	Cont.	ini (a)selgms2	8, Ca, Li, Sb, Be, Cd, Cr, C Mo, Se, TL and Na, K, M	B, Ca, Li, Sb, Mn, Mo, Pb, 1 and Na, K, M	TDS, F, CI, Br, and All	Ra-226, Ra	βН	6 _H	Sample S	Sample Specific Notes:
AD-31	3/26/2022	1204	9	ΜĐ	-				×					
AD-32	3/28/2022	1107	ပ	δW	-				×					
AD-33	3/28/2022	1054	ပ	ΔW	-				×					
DUPLICATE 1	328/2022	1200	ဖ	SW SW	-				×					
DUPLICATE 2	3/29/2022	1055	9	SW	-				×					
The second secon						I								
2.00 (4.00-2)	3.9							2.00000						
Preservation Used: 1= ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3; 5=N	aOH; 6= 0	ther	. F	filter	filter in field	4	F4	1	4	2	2		
Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.												

Special Instructions/QC Requirements & Comments.

TG-32

Relinquished by Burney	Company:	Date/Time: 3.00 Received by:		Date/Time:
Relinquished by:	Company	Date/Time:		Date/Time:
Relinquished by:	Company:	Date/Time	Received in Laboratory by:	3/3/122 10:15 AM
Eneman COC 04 AED Chain of Control (COC) Decord for Coal Combinetion Besides	ord for Coal Combination Begins	CCO Campling	(CCB) Campling - Shrawfood Bay 1 1/10/17	

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling

AEP WATER & WASTE SAMPLE RECEIPT FORM (IR#1)

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY (UPS) FedEX USPS
	Other
Francisco Pieles	Number of Plastic Containers:
Planocustomer (VXCO)	Aumber of Plasoc Containers: 1 C
Opened By MGK	Number of Glass Containers:
	Number of Mercury Containers:
Were all temperatures within 0-6°C?	Y N or N/A Initial: M&K on ice no ice
	(2023) - If No, specify each deviation:
Was container in good condition? Y	N Comments
Was Chain of Custody received? Y	N Comments
Requested turnaround: Routin	e If RUSH, who was notified?
pH (15 min) Cr ⁴⁶ (pres) N (24 hr)	lO₂ or NO₃ (48 tvr) artho-PO₄ (48 tvr) Hg-diss (pres) (48 tvr)
Was COC filled out properly?	N Comments
Were samples labeled properly?	N Comments
Were correct containers used?	N Comments .
Was pH checked & Color Coding do	one? YV N or N/A Initial & Date: MGK
nti naner (circle one); MQuant pH lot HC90449	Cat 1.09535.0001 Lab rat pH Cat # LRS -4801 Lot X000RWDG21
- Was Add'l Preservative needed?	Y (N) If Yes: By whom & when:(See Prep Book)
is sample filtration requested?	Y /N Comments(See Prep Book)
Was the customer contacted?	if Yes: Person Contacted:
Lab 10# 221009	Initial & Date & Time :
Logged by M 50	Comments: Watting JAS 3/31/22 Engin
Reviewed by	
\ /	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Dolan Chemical Laboratory

Sample Receipt Form SOP-7102

Page I of I

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: х This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. X R1 Field chain-of-custody documentation х R2 Sample identification cross-reference х R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: **R4** (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits х Test reports/summary forms for blank samples R_5 × **R6** Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits х Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits \square **R8** Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates List of method quantitation limits (MQLs) for each analyte for each method and matrix \mathbf{x} R9 X R10 Other problems or anomalies X The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) **Release Statement:** I am responsible for the release of this laboratory data package. This data

package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

used is responsible for releas	ing this data package and is l	y signature affirming the abo	ve release
statement is true.	$\alpha \vdash 0 \circ \infty$		1 ,
Michael Ohlinger	Huhul phly	Chemist	4/11/22
Name (printed)	Signature	Official Title	Date '
	/		

responding to rule. The official signing the cover page of the rule-required report in which these data are

Check, if applicable: () This laboratory is an in-house laboratory controlled by the person

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey - CCR

Reviewer Name: Michael Ohlinger

LRC Date: 4/11/22

Laboratory Job Number: 221004

Prep Batch Number(s): QC2204008

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		I.
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?		
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		N
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?		
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?		
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?		
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	ı	Were RPDs or relative standard deviations within the laboratory QC limits?	No	ER2
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies	, i	
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey - CCR

Reviewer Name: Michael Ohlinger

LRC Date: 4/11/22

Laboratory Job Number: 221004

Prep Batch Number(s): QC2204008

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?		
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S 3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
51	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	I.	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey - CCR

Reviewer Name: Michael Ohlinger

LRC Date: 4/11/22

Laboratory Job Number: 221004

Prep Batch Number(s): QC2204008

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB<0.5*MQL.
ER2	The duplicate result is above the acceptance criteria.

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:
 This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.
 R1 Field chain-of-custody documentation

R3 Test reports (analytical data sheets) for each environmental sample that includes:
 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003
 NELAC Standard

(b) Dilution factors

N

R₂

(c) Preparation methods(d) Cleanup methods

(e) If required for the project, tentatively identified compounds (TICs)

R4 Surrogate recovery data including:(a) Calculated recovery (%R)

Sample identification cross-reference

(b) The laboratory's surrogate QC limits

R5 Test reports/summary forms for blank samples

R6 Test reports/summary forms for laboratory control samples (LCSs) includes

R6 Test reports/summary forms for laboratory control samples (LCSs) including:

(a) LCS spiking amounts

(b) Calculated %R for each analyte

(c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

(a) Samples associated with the MS/MSD clearly identified

(b) MS/MSD spiking amounts

(c) Concentration of each MS/MSD analyte measured in the parent and spiked samples

(d) Calculated %Rs and relative percent differences (RPDs)

(e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) recovery and precision:

(a) The amount of analyte measured in the duplicate

(b) The calculated RPD

(c) The laboratory's QC limits for analytical duplicates

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix

R10 Other problems or anomalies

The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Tim E. Arnold

Name (printed)

Signature

Practiple Chewist

4/11/22

Official Title

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey - CCR

Reviewer Name: Tim Arnold

LRC Date: 4/11/2022

Laboratory Job Number: 221004

Prep Batch Number(s): QC2204049

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	Yes	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	
3=	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
1	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey - CCR

Reviewer Name: Tim Arnold

LRC Date: 4/11/2022

Laboratory Job Number: 221004

Prep Batch Number(s): QC2204049

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	0, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S 9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	10
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
\$11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey - CCR

Reviewer Name: Tim Arnold

LRC Date: 4/11/2022

Laboratory Job Number: 221004

Prep Batch Number(s): QC2204049

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< td=""></mql.<>
	100 A
<u></u>	
_	

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

4001 Bixby Road

Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Dolan Chemical Laboratory

Reissued

Customer: Pirkey Power Station Job ID: 221028 Date Reported: 12/22/2022

Customer Sample ID: AD-2 Customer Description:

Lab Number: 221028-001 Preparation:

Date Collected: 03/29/2022 12:25 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result	Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.04	μg/L	2	0.20	0.04 U1	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Arsenic	0.82	μg/L	2	0.20	0.06	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Barium	18.2	μg/L	2	0.4	0.1	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Beryllium	0.75	μg/L	2	0.10	0.01	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Boron	3.02	mg/L	2	0.10	0.02	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Cadmium	0.102	μg/L	2	0.040	0.008	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Calcium	3.13	mg/L	2	0.10	0.04	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Chromium	0.90	μg/L	2	0.40	0.08	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Cobalt	22.7	μg/L	2	0.040	0.006	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Lead	0.5	μg/L	2	0.4	0.1	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Lithium	0.0653	mg/L	2	0.0004	0.0001	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Magnesium	6.51	mg/L	2	0.20	0.04	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Mercury	92	ng/L	2	10	4	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.2	μg/L	2	1.0	0.2 U1	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Potassium	1.36	mg/L	2	0.20	0.04	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Selenium	2.7	μg/L	2	1.0	0.2	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Sodium	103	mg/L	2	0.4	0.1 M1	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Strontium	0.0455	mg/L	2	0.0040	0.0008	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4
Thallium	0.10	$\mu g/L$	2	0.40	0.08 J1	GES	04/14/2022 19:02	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.57 pCi/L	0.12	0.15	ST	04/12/2022 10:28	SW-846 9315-1986, Rev. 0
Carrier Recovery	92.3 %					
Radium-228	1.19 pCi/L	0.18	0.54	TTP	04/08/2022 13:57	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	88.3 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-2 Customer Description:
Lab Number: 221028-001-01 Preparation: Dissolved

Date Collected: 03/29/2022 12:25 EDT Date Received: 04/01/2022 12:20 EDT

Metals

IVICIAIS							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.04 µg/L	2	0.20	0.04 U1	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Arsenic	0.81 μg/L	2	0.20	0.06	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Barium	1 8.4 μg/L	2	0.4	0.1	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Beryllium	0.73 μg/L	2	0.10	0.01	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Boron	3.09 mg/L	2	0.10	0.02	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Cadmium	0.097 μg/L	2	0.040	0.008	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Calcium	3.13 mg/L	2	0.10	0.04	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Chromium	1.30 µg/L	2	0.40	0.08	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Cobalt	22.7 μg/L	2	0.040	0.006	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Iron	0.07 mg/L	2	0.04	0.01	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Lead	0.5 μg/L	2	0.4	0.1	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Lithium	0.0649 mg/L	2	0.0004	0.0001	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Magnesium	6.46 mg/L	2	0.20	0.04	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Manganese	0.0859 mg/L	2	0.0020	0.0004	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.2 µg/L	2	1.0	0.2 U1	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Potassium	1.35 mg/L	2	0.20	0.04	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Selenium	2.6 μg/L	2	1.0	0.2	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Sodium	103 mg/L	2	0.4	0.1	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Strontium	0.0455 mg/L	2	0.0040	0.0008	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4
Thallium	0. 1 3 μg/L	2	0.40	0.08 J1	GES	04/14/2022 19:18	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221

Audinet: 210-4221

Reissued

Customer: Pirkey Power Station Job ID: 221028 **Date Reported: 12/22/2022**

Customer Sample ID: AD-3 Customer Description:

Lab Number: 221028-002 Preparation:

Date Collected: 03/29/2022 12:48 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Uni	s Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/	_ 1	0.10	0.02 U1	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Arsenic	1.51 µg/	. 1	0.10	0.03	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Barium	68.3 µg/	. 1	0.20	0.05	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Beryllium	0.163 µg/	. 1	0.050	0.007	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Boron	0.059 mg	L 1	0.050	0.009	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012 µg/	. 1	0.020	0.004 J1	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Calcium	6.09 mg	L 1	0.05	0.02	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Chromium	0.40 µg/	. 1	0.20	0.04	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Cobalt	7.88 µg/	_ 1	0.020	0.003	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Lead	0.28 µg/	. 1	0.20	0.05	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Lithium	0.0934 mg	L 1	0.00020	0.00005	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Magnesium	4.69 mg	L 1	0.10	0.02	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/	. 1	5	2 U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/	. 1	0.5	0.1 U1	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Potassium	3.60 mg/	L 1	0.10	0.02	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/	. 1	0.50	0.09 U1	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Sodium	13.2 mg/	L 1	0.20	0.05	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Strontium	0.0434 mg	L 1	0.0020	0.0004	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 µg/	_ 1	0.20	0.04 J1	GES	04/14/2022 18:21	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.59 pCi/L	0.12	0.14	ST	04/12/2022 10:28	SW-846 9315-1986, Rev. 0
Carrier Recovery	95.2 %					
Radium-228	1.32 pCi/L	0.18	0.54	TTP	04/08/2022 13:57	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	76.9 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-3 Customer Description:
Lab Number: 221028-002-01 Preparation: Dissolved

Date Collected: 03/29/2022 12:48 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Metais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Arsenic	0.98 μg/L	1	0.10	0.03	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Barium	65.0 μg/L	1	0.20	0.05	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Beryllium	0.124 μg/L	1	0.050	0.007	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Boron	0.053 mg/L	1	0.050	0.009	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Cadmium	0.014 µg/L	1	0.020	0.004 J1	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Calcium	6.04 mg/L	1	0.05	0.02	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Chromium	0.39 μg/L	1	0.20	0.04	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Cobalt	7.81 µg/L	1	0.020	0.003	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Iron	10.1 mg/L	1	0.020	0.006	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Lithium	0.0934 mg/L	1	0.00020	0.00005	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Magnesium	4.67 mg/L	1	0.10	0.02	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Manganese	0.119 mg/L	1	0.0010	0.0002	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Potassium	3.61 mg/L	1	0.10	0.02	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Sodium	13.1 mg/L	1	0.20	0.05	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Strontium	0.0420 mg/L	1	0.0020	0.0004	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	04/14/2022 18:26	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-4 Customer Description:

Lab Number: 221028-003 Preparation:

Date Collected: 03/29/2022 13:16 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Arsenic	1.10 µg/L	1	0.10	0.03	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Barium	93.2 μg/L	1	0.20	0.05	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Beryllium	0.641 µg/L	1	0.050	0.007	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Boron	0.019 mg/L	1	0.050	0.009 J1	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Cadmium	0.010 µg/L	1	0.020	0.004 J1	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Calcium	1.84 mg/L	1	0.05	0.02	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Chromium	0.31 μg/L	1	0.20	0.04	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Cobalt	6. 1 6 µg/L	1	0.020	0.003	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Lead	0.07 μg/L	1	0.20	0.05 J1	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Lithium	0.0383 mg/L	1	0.00020	0.00005	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Magnesium	1.24 mg/L	1	0.10	0.02	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Mercury	1 7 ng/L	1	5	2	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Potassium	2.51 mg/L	1	0.10	0.02	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Sodium	9.25 mg/L	1	0.20	0.05	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Strontium	0.0160 mg/L	1	0.0020	0.0004	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4
Thallium	0.07 µg/L	1	0.20	0.04 J1	GES	04/14/2022 18:31	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.54 pCi/L	0.12	0.17	ST	04/12/2022 10:28	SW-846 9315-1986, Rev. 0
Carrier Recovery	89.7 %					
Radium-228	0.61 pCi/L	0.18	0.60	TTP	04/08/2022 13:57	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	90.9 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-4 Customer Description:
Lab Number: 221028-003-01 Preparation: Dissolved

Date Collected: 03/29/2022 13:16 EDT Date Received: 04/01/2022 12:20 EDT

Metais							
Parameter	Result Unit	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/L	1	0.10	0.03 U1	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Barium	94.9 µg/L	1	0.20	0.05	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Beryllium	0.629 μg/L	1	0.050	0.007	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Boron	0.019 mg/l	. 1	0.050	0.009 J1	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Cadmium	0.0 11 μg/L	1	0.020	0.004 J1	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Calcium	1.88 mg/l	. 1	0.05	0.02	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Chromium	0.27 μg/L	1	0.20	0.04	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Cobalt	6.29 µg/L	1	0.020	0.003	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Iron	0.148 mg/l	. 1	0.020	0.006	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Lithium	0.0391 mg/l	. 1	0.00020	0.00005	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Magnesium	1.29 mg/l	. 1	0.10	0.02	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Manganese	0.0570 mg/l	. 1	0.0010	0.0002	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Potassium	2.52 mg/l	. 1	0.10	0.02	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Sodium	9.36 mg/l	. 1	0.20	0.05	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Strontium	0.0162 mg/l	. 1	0.0020	0.0004	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4
Thallium	0.07 µg/L	1	0.20	0.04 J1	GES	04/14/2022 18:37	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-7 Customer Description:

Lab Number: 221028-004 Preparation:

Date Collected: 03/28/2022 12:50 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Uni	s Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.04 µg/	_ 2	0.20	0.04 U1	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Arsenic	1.08 µg/	_ 2	0.20	0.06	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Barium	58.8 µg/	_ 2	0.4	0.1	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Beryllium	5.59 µg/	_ 2	0.10	0.01	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Boron	3.78 mg	L 2	0.10	0.02	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Cadmium	0.998 µg/	_ 2	0.040	0.008	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Calcium	4.33 mg	L 2	0.10	0.04	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Chromium	4.78 µg/	_ 2	0.40	0.08	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Cobalt	33.6 µg/	_ 2	0.040	0.006	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Lead	0.8 µg/	_ 2	0.4	0.1	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Lithium	0.0967 mg	L 2	0.0004	0.0001	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Magnesium	7.54 mg	L 2	0.20	0.04	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Mercury	400 ng/	100	500	200 J1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.2 µg/	_ 2	1.0	0.2 U1	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Potassium	2.80 mg	L 2	0.20	0.04	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Selenium	3.5 µg/	_ 2	1.0	0.2	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Sodium	18.3 mg	L 2	0.4	0.1	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Strontium	0.0561 mg	L 2	0.0040	0.0008	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4
Thallium	0.20 µg/	_ 2	0.40	0.08 J1	GES	04/14/2022 19:23	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.15 pCi/L	0.19	0.18	ST	04/12/2022 10:28	SW-846 9315-1986, Rev. 0
Carrier Recovery	80.7 %					
Radium-228	3.44 pCi/L	0.24	0.70	TTP	04/08/2022 13:57	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	81.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-7 Customer Description:
Lab Number: 221028-004-01 Preparation: Dissolved

Date Collected: 03/28/2022 12:50 EDT Date Received: 04/01/2022 12:20 EDT

Metais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.04 µg/L	2	0.20	0.04 U1	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Arsenic	1 .05 μg/L	2	0.20	0.06	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Barium	59.2 μg/L	2	0.4	0.1	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Beryllium	5.56 μg/L	2	0.10	0.01	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Boron	3.76 mg/L	2	0.10	0.02	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Cadmium	0.994 μg/L	2	0.040	0.008	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Calcium	4.38 mg/L	2	0.10	0.04	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Chromium	2.35 μg/L	2	0.40	0.08	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Cobalt	33.7 µg/L	2	0.040	0.006	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Iron	0.09 mg/L	2	0.04	0.01	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Lead	0.8 μg/L	2	0.4	0.1	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Lithium	0.0956 mg/L	2	0.0004	0.0001	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Magnesium	7.62 mg/L	2	0.20	0.04	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Manganese	0.0952 mg/L	2	0.0020	0.0004	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Mercury	30 ng/L	10	50	20 J1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.2 µg/L	2	1.0	0.2 U1	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Potassium	2.79 mg/L	2	0.20	0.04	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Selenium	3.6 µg/L	2	1.0	0.2	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Sodium	18.2 mg/L	2	0.4	0.1	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Strontium	0.0565 mg/L	2	0.0040	0.0008	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4
Thallium	0. 1 7 μg/L	2	0.40	0.08 J1	GES	04/14/2022 19:28	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-12 Customer Description:

Lab Number: 221028-005 Preparation:

Date Collected: 03/28/2022 11:02 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Arsenic	0.09 µg/L	1	0.10	0.03 J1	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Barium	20.2 μg/L	1	0.20	0.05	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 127 μg/L	1	0.050	0.007	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Boron	0.021 mg/L	1	0.050	0.009 J1	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Cadmium	0.009 µg/L	1	0.020	0.004 J1	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Calcium	0.20 mg/L	1	0.05	0.02	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Chromium	0.35 µg/L	1	0.20	0.04	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Cobalt	1.01 µg/L	1	0.020	0.003	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Lead	0.09 µg/L	1	0.20	0.05 J1	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Lithium	0.00604 mg/L	1	0.00020	0.00005	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Magnesium	0.35 mg/L	1	0.10	0.02	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Potassium	0.33 mg/L	1	0.10	0.02	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Selenium	0.33 µg/L	1	0.50	0.09 J1	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Sodium	4.07 mg/L	1	0.20	0.05	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Strontium	0.0021 mg/L	1	0.0020	0.0004	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	04/14/2022 18:52	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.21 pCi/L	0.09	0.21	ST	04/14/2022 09:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	101 %					
Radium-228	0.55 pCi/L	0.18	0.57	TTP	04/08/2022 13:57	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	82.3 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-12 Customer Description:
Lab Number: 221028-005-01 Preparation: Dissolved

Date Collected: 03/28/2022 11:02 EDT Date Received: 04/01/2022 12:20 EDT

Motais									
Parameter	Result U	Jnits	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 μ	ıg/L	1	0.10	0.02	U1	GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Arsenic	0.06 μ	ıg/L	1	0.10	0.03	J1	GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Barium	19.4 μ	ıg/L	1	0.20	0.05		GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Beryllium	0.123 μ	ıg/L	1	0.050	0.007		GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Boron	0.016 n	ng/L	1	0.050	0.009	J1	GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Cadmium	0.006 μ	ıg/L	1	0.020	0.004	J1	GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Calcium	0.24 n	ng/L	1	0.05	0.02		GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Chromium	0.29 μ	ıg/L	1	0.20	0.04		GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Cobalt	1.01 µ	ıg/L	1	0.020	0.003		GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Iron	0.0 1 5 n	ng/L	1	0.020	0.006	J1	GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Lead	0.12 μ	ıg/L	1	0.20	0.05	J1	GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Lithium	0.00591 n	ng/L	1	0.00020	0.00005		GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Magnesium	0.34 n	ng/L	1	0.10	0.02		GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Manganese	0.0037 n	ng/L	1	0.0010	0.0002		GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Mercury	<2 n	ng/L	1	5	2	U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µ	ıg/L	1	0.5	0.1	U1	GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Potassium	0.34 n	ng/L	1	0.10	0.02		GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Selenium	0.28 μ	ıg/L	1	0.50	0.09	J1	GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Sodium	4. 1 5 n	ng/L	1	0.20	0.05		GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Strontium	0.0021 n	ng/L	1	0.0020	0.0004		GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 μ	ıg/L	1	0.20	0.04	U1	GES	04/14/2022 18:57	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-13 Customer Description:

Lab Number: 221028-006 Preparation:

Date Collected: 03/28/2022 09:38 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Unit	s Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/l	. 1	0.10	0.02 U1	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Arsenic	2.18 µg/	. 1	0.10	0.03	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Barium	52.1 μg/l	. 1	0.20	0.05	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Beryllium	0.579 µg/	. 1	0.050	0.007	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Boron	0.065 mg/	L 1	0.050	0.009	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/l	. 1	0.020	0.004 U1	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Calcium	13.3 mg/	L 1	0.05	0.02	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Chromium	0.52 µg/	. 1	0.20	0.04	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Cobalt	46.9 µg/	. 1	0.020	0.003	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/l	. 1	0.20	0.05 U1	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Lithium	0.138 mg/	L 1	0.00020	0.00005	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Magnesium	13.8 mg/	L 1	0.10	0.02	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/l	. 1	5	2 U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/	. 1	0.5	0.1 U1	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Potassium	5.16 mg/	L 1	0.10	0.02	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/l	. 1	0.50	0.09 U1	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Sodium	19.6 mg/	L 1	0.20	0.05	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Strontium	0.117 mg/	L 1	0.0020	0.0004	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/	. 1	0.20	0.04 U1	GES	04/14/2022 20:35	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.10 pCi/L	0.24	0.29	ST	04/14/2022 09:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	77.6 %					
Radium-228	1.85 pCi/L	0.20	0.57	TTP	04/08/2022 13:57	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	76.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-13 Customer Description:
Lab Number: 221028-006-01 Preparation: Dissolved

Date Collected: 03/28/2022 09:38 EDT Date Received: 04/01/2022 12:20 EDT

Metais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Arsenic	0.25 μg/L	1	0.10	0.03	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Barium	50.1 μg/L	1	0.20	0.05	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Beryllium	0.471 μg/L	1	0.050	0.007	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Boron	0.067 mg/L	1	0.050	0.009	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Cadmium	0.009 μg/L	1	0.020	0.004 J1	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Calcium	12.8 mg/L	1	0.05	0.02	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Chromium	0.28 μg/L	1	0.20	0.04	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Cobalt	45.7 μg/L	1	0.020	0.003	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Iron	12.8 mg/L	1	0.020	0.006	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Lithium	0.142 mg/L	1	0.00020	0.00005	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Magnesium	13.5 mg/L	1	0.10	0.02	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Manganese	0.466 mg/L	1	0.0010	0.0002	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Potassium	5.03 mg/L	1	0.10	0.02	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Sodium	19.6 mg/L	1	0.20	0.05	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Strontium	0.112 mg/L	1	0.0020	0.0004	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	04/14/2022 20:40	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-17 Customer Description:

Lab Number: 221028-007 Preparation:

Date Collected: 03/29/2022 11:25 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Arsenic	0.30 µg/L	1	0.10	0.03	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Barium	112 µg/L	1	0.20	0.05	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Beryllium	0.481 µg/L	1	0.050	0.007	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Boron	0.031 mg/L	1	0.050	0.009 J1	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Cadmium	0.028 µg/L	1	0.020	0.004	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Calcium	0.24 mg/L	1	0.05	0.02	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Chromium	0.70 µg/L	1	0.20	0.04	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Cobalt	6.48 µg/L	1	0.020	0.003	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Lead	0.1 µg/L	1	0.20	0.05 J1	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Lithium	0.0126 mg/L	1	0.00020	0.00005	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Magnesium	2.05 mg/L	1	0.10	0.02	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Mercury	300 ng/L	100	500	200 J1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Potassium	0.42 mg/L	1	0.10	0.02	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Selenium	0.26 µg/L	1	0.50	0.09 J1	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Sodium	6.73 mg/L	1	0.20	0.05	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Strontium	0.0099 mg/L	1	0.0020	0.0004	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	04/14/2022 20:45	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.48 pCi/L	0.24	0.24	ST	04/14/2022 09:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	95.0 %					
Radium-228	1.53 pCi/L	0.16	0.47	ΠTP	04/08/2022 13:57	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	84.5 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-17 Customer Description:
Lab Number: 221028-007-01 Preparation: Dissolved

Date Collected: 03/29/2022 11:25 EDT Date Received: 04/01/2022 12:20 EDT

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Arsenic	0.09 µg/L	1	0.10	0.03 J1	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Barium	111 µg/L	1	0.20	0.05	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Beryllium	0.469 µg/L	1	0.050	0.007	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Boron	0.031 mg/L	1	0.050	0.009 J1	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Cadmium	0.027 μg/L	1	0.020	0.004	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Calcium	0.24 mg/L	1	0.05	0.02	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Chromium	1.28 µg/L	1	0.20	0.04	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Cobalt	6.40 μg/L	1	0.020	0.003	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Iron	0.013 mg/L	1	0.020	0.006 J1	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Lead	0.08 μg/L	1	0.20	0.05 J1	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Lithium	0.0126 mg/L	1	0.00020	0.00005	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Magnesium	2.01 mg/L	1	0.10	0.02	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Manganese	0.0052 mg/L	1	0.0010	0.0002	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Mercury	<200 ng/L	100	500	200 U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Potassium	0.40 mg/L	1	0.10	0.02	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Selenium	0.21 μg/L	1	0.50	0.09 J1	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Sodium	6.63 mg/L	1	0.20	0.05	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Strontium	0.0096 mg/L	1	0.0020	0.0004	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	04/14/2022 20:50	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-18 Customer Description:

Lab Number: 221028-008 Preparation:

Date Collected: 03/29/2022 10:36 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.02 μg/L	1	0.10	0.02 J1	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Arsenic	1.55 µg/L	1	0.10	0.03	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Barium	90.1 μg/L	1	0.20	0.05	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Beryllium	0.106 µg/L	1	0.050	0.007	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Boron	0.009 mg/L	1	0.050	0.009 J1	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Cadmium	0.01 µg/L	1	0.020	0.004 J1	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Calcium	0.24 mg/L	1	0.05	0.02	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Chromium	1.40 µg/L	1	0.20	0.04	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Cobalt	0.842 μg/L	1	0.020	0.003	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Lead	0.53 μg/L	1	0.20	0.05	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Lithium	0.0137 mg/L	1	0.00020	0.00005	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Magnesium	0.34 mg/L	1	0.10	0.02	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Mercury	21 ng/L	1	5	2	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Potassium	0.77 mg/L	1	0.10	0.02	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Selenium	0.38 µg/L	1	0.50	0.09 J1	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Sodium	5.33 mg/L	1	0.20	0.05	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Strontium	0.0050 mg/L	1	0.0020	0.0004	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 µg/L	1	0.20	0.04 J1	GES	04/14/2022 20:55	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.60 pCi/L	0.13	0.18	ST	04/14/2022 09:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	140 %					
Radium-228	1.41 pCi/L	0.20	0.60	TTP	04/08/2022 13:57	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	82.3 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-18 Customer Description:
Lab Number: 221028-008-01 Preparation: Dissolved

Date Collected: 03/29/2022 10:36 EDT Date Received: 04/01/2022 12:20 EDT

Parameter F	esult	Unite	Dilution						
		Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02	μg/L	1	0.10	0.02	U1	GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Arsenic	0.03	μg/L	1	0.10	0.03	J1	GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Barium	82.7	μg/L	1	0.20	0.05		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Beryllium	0.084	μg/L	1	0.050	0.007		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Boron	0.009	mg/L	1	0.050	0.009	J1	GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012	μg/L	1	0.020	0.004	J1	GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Calcium	0.27	mg/L	1	0.05	0.02		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Chromium	2.02	μg/L	1	0.20	0.04		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Cobalt).743	µg/L	1	0.020	0.003		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Iron	0.039	mg/L	1	0.020	0.006		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Lead	<0.05	μg/L	1	0.20	0.05	U1	GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Lithium 0	0140	mg/L	1	0.00020	0.00005		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Magnesium	0.30	mg/L	1	0.10	0.02		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Manganese 0	0035	mg/L	1	0.0010	0.0002		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Mercury	<2	ng/L	1	5	2	U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1	μg/L	1	0.5	0.1	U1	GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Potassium	0.73	mg/L	1	0.10	0.02		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09	μg/L	1	0.50	0.09	U1	GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Sodium	5.21	mg/L	1	0.20	0.05		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Strontium 0	0041	mg/L	1	0.0020	0.0004		GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04	μg/L	1	0.20	0.04	U1	GES	04/14/2022 21:00	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-22 Customer Description:

Lab Number: 221028-009 Preparation:

Date Collected: 03/28/2022 10:35 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Unit	s Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/l	1	0.10	0.02 U1	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Arsenic	3.21 µg/l	1	0.10	0.03	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Barium	19.3 µg/l	1	0.20	0.05	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Beryllium	8.78 μg/l	1	0.050	0.007	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Boron	0.068 mg/	_ 1	0.050	0.009	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Cadmium	1.27 µg/l	1	0.020	0.004	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Calcium	16.4 mg/	_ 1	0.05	0.02	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Chromium	0.43 µg/l	1	0.20	0.04	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Cobalt	109 µg/l	1	0.020	0.003	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Lead	0. 1 5 µg/l	1	0.20	0.05 J1	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Lithium	0.170 mg/	. 1	0.00020	0.00005	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Magnesium	22.7 mg/	1	0.10	0.02	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Mercury	<4 ng/l	2	10	4 U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/l	1	0.5	0.1 U1	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Potassium	4.73 mg/	_ 1	0.10	0.02	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Selenium	9.20 μg/l	1	0.50	0.09	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Sodium	96.7 mg/	_ 1	0.20	0.05	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Strontium	0.140 mg/	. 1	0.0020	0.0004	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4
Thallium	0.19 µg/l	1	0.20	0.04 J1	GES	04/14/2022 21:05	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.48 pCi/L	0.26	0.26	ST	04/14/2022 09:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	80.4 %					
Radium-228	2.76 pCi/L	0.21	0.55	TTP	04/08/2022 13:57	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	74.9 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-22 Customer Description:
Lab Number: 221028-009-01 Preparation: Dissolved

Date Collected: 03/28/2022 10:35 EDT Date Received: 04/01/2022 12:20 EDT

Metais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Arsenic	3.30 µg/L	1	0.10	0.03	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Barium	1 9.3 μg/L	1	0.20	0.05	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Beryllium	8.78 μg/L	1	0.050	0.007	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Boron	0.069 mg/L	1	0.050	0.009	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Cadmium	1.28 μg/L	1	0.020	0.004	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Calcium	16.5 mg/L	1	0.05	0.02	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Chromium	0.53 μg/L	1	0.20	0.04	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Cobalt	111 μg/L	1	0.020	0.003	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Iron	31.8 mg/L	1	0.020	0.006	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Lead	0. 1 7 μg/L	1	0.20	0.05 J1	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Lithium	0.171 mg/L	1	0.00020	0.00005	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Magnesium	23.1 mg/L	1	0.10	0.02	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Manganese	0.407 mg/L	1	0.0010	0.0002	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Mercury	12 ng/L	1	5	2	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Potassium	4.80 mg/L	1	0.10	0.02	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Selenium	9.49 μg/L	1	0.50	0.09	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Sodium	97.9 mg/L	1	0.20	0.05	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Strontium	0.142 mg/L	1	0.0020	0.0004	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4
Thallium	0.19 μg/L	1	0.20	0.04 J1	GES	04/14/2022 21:11	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-28 Customer Description:

Lab Number: 221028-010 Preparation:

Date Collected: 03/29/2022 11:34 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Arsenic	0.09 µg/L	1	0.10	0.03 J1	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Barium	12 0 μg/L	1	0.20	0.05	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Beryllium	0.605 μg/L	1	0.050	0.007	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Boron	0.356 mg/L	1	0.050	0.009	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Cadmium	0.057 μg/L	1	0.020	0.004	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Calcium	1.31 mg/L	1	0.05	0.02	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Chromium	0.35 μg/L	1	0.20	0.04	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Cobalt	12.5 µg/L	1	0.020	0.003	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Lead	0.05 μg/L	1	0.20	0.05 J1	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Lithium	0.0242 mg/L	1	0.00020	0.00005	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Magnesium	2.94 mg/L	1	0.10	0.02	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Mercury	12 ng/L	1	5	2	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Potassium	0.73 mg/L	1	0.10	0.02	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Selenium	0.26 μg/L	1	0.50	0.09 J1	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Sodium	7.52 mg/L	1	0.20	0.05	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Strontium	0.0197 mg/L	1	0.0020	0.0004	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	04/14/2022 21:16	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.61 pCi/L	0.26	0.26	ST	04/14/2022 09:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	83.5 %					
Radium-228	1.37 pCi/L	0.16	0.47	TTP	04/08/2022 13:57	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	81.5 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

 Analysis Report
 4001 Bixby Road

 Groveport, OH 43125
 Phone: 614-836-4221

 Audinet: 210-4221
 Audinet: 210-4221

Dolan Chemical Laboratory

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-28 Customer Description:
Lab Number: 221028-010-01 Preparation: Dissolved

Date Collected: 03/29/2022 11:34 EDT Date Received: 04/01/2022 12:20 EDT

Metais									
Parameter	Result L	Jnits	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µ	ıg/L	1	0.10	0.02	U1	GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Arsenic	0.08 μ	ıg/L	1	0.10	0.03	J1	GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Barium	12 5 μ	ıg/L	1	0.20	0.05		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Beryllium	0.576 μ	ıg/L	1	0.050	0.007		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Boron	0.359 n	ng/L	1	0.050	0.009		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Cadmium	0.052 μ	ıg/L	1	0.020	0.004		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Calcium	1.29 n	ng/L	1	0.05	0.02		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Chromium	0.36 μ	ıg/L	1	0.20	0.04		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Cobalt	12.4 μ	ıg/L	1	0.020	0.003		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Iron	0.013 n	ng/L	1	0.020	0.006	J1	GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Lead	0.06 μ	ıg/L	1	0.20	0.05	J1	GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Lithium	0.0245 n	ng/L	1	0.00020	0.00005		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Magnesium	2.92 n	ng/L	1	0.10	0.02		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Manganese	0.0497 n	ng/L	1	0.0010	0.0002		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Mercury	3 n	ng/L	1	5	2	J1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µ	ıg/L	1	0.5	0.1	U1	GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Potassium	0.76 n	ng/L	1	0.10	0.02		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Selenium	0.25 μ	ıg/L	1	0.50	0.09	J1	GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Sodium	7.49 n	ng/L	1	0.20	0.05		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Strontium	0.0198 n	ng/L	1	0.0020	0.0004		GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 μ	ıg/L	1	0.20	0.04	J1	GES	04/14/2022 21:31	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-30 Customer Description:

Lab Number: 221028-011 Preparation:

Date Collected: 03/28/2022 13:51 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifier	rs Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Arsenic	0.19 µg/L	1	0.10	0.03	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Barium	129 µg/L	1	0.20	0.05	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Beryllium	0.125 μg/L	1	0.050	0.007	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Boron	2.45 mg/L	1	0.050	0.009	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012 µg/L	1	0.020	0.004 J1	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Calcium	0.66 mg/L	1	0.05	0.02	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Chromium	0.45 µg/L	1	0.20	0.04	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Cobalt	4.76 μg/L	1	0.020	0.003	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Lithium	0.0101 mg/L	1	0.00020	0.00005	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Magnesium	2.73 mg/L	1	0.10	0.02	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Mercury	35 ng/L	2	10	4	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/18/2022 19:09	EPA 200.8-1994, Rev. 5.4
Potassium	0.92 mg/L	1	0.10	0.02	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Selenium	0.44 µg/L	1	0.50	0.09 J1	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Sodium	90.3 mg/L	1	0.20	0.05 M1	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Strontium	0.0116 mg/L	1	0.0020	0.0004	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 µg/L	1	0.20	0.04 J1	GES	04/14/2022 23:09	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.85 pCi/L	0.19	0.25	ST	04/14/2022 09:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	83.7 %					
Radium-228	1.45 pCi/L	0.26	0.81	TTP	04/13/2022 13:52	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	57.2 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-30 Customer Description:
Lab Number: 221028-011-01 Preparation: Dissolved

Date Collected: 03/28/2022 13:51 EDT Date Received: 04/01/2022 12:20 EDT

Metais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Arsenic	0.09 μg/L	1	0.10	0.03 J1	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Barium	114 µg/L	1	0.20	0.05	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Beryllium	0.130 μg/L	1	0.050	0.007	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Boron	2.50 mg/L	1	0.050	0.009	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012 µg/L	1	0.020	0.004 J1	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Calcium	0.66 mg/L	1	0.05	0.02	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Chromium	0.31 μg/L	1	0.20	0.04	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Cobalt	4.73 μg/L	1	0.020	0.003	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Iron	0.009 mg/L	1	0.020	0.006 J1	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Lead	0.06 µg/L	1	0.20	0.05 J1	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Lithium	0.0103 mg/L	1	0.00020	0.00005	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Magnesium	2.70 mg/L	1	0.10	0.02	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Manganese	0.0166 mg/L	1	0.0010	0.0002	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Mercury	11 ng/L	2	10	4	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.1 µg/L	1	0.5	0.1 J1	GES	04/18/2022 19:24	EPA 200.8-1994, Rev. 5.4
Potassium	0.93 mg/L	1	0.10	0.02	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Selenium	0.20 µg/L	1	0.50	0.09 J1	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Sodium	91.4 mg/L	1	0.20	0.05	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Strontium	0.0116 mg/L	1	0.0020	0.0004	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4
Thallium	0.07 µg/L	1	0.20	0.04 J1	GES	04/14/2022 23:24	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-31 Customer Description:

Lab Number: 221028-012 Preparation:

Date Collected: 03/28/2022 13:04 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Ur	nits Dilution	n RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 με	:/L 1	0.10	0.02 U1	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Arsenic	0.26 με	:/L 1	0.10	0.03	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Barium	32.8 με	/L 1	0.20	0.05	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Beryllium	0.854 με	/L 1	0.050	0.007	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Boron	0.026 m	g/L 1	0.050	0.009 J1	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Cadmium	0.068 με	:/L 1	0.020	0.004	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Calcium	2.75 m	g/L 1	0.05	0.02	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Chromium	0.51 με	:/L 1	0.20	0.04	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Cobalt	9.14 με	:/L 1	0.020	0.003	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Lead	0.29 με	:/L 1	0.20	0.05	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Lithium	0.0687 m	g/L 1	0.00020	0.00005	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Magnesium	4.03 m	g/L 1	0.10	0.02	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Mercury	103 ng	/L 1	. 5	2	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg	:/L 1	0.5	0.1 U1	GES	04/18/2022 19:29	EPA 200.8-1994, Rev. 5.4
Potassium	1.65 m	g/L 1	0.10	0.02	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Selenium	0.38 µg	:/L 1	0.50	0.09 J1	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Sodium	32.4 m	g/L 1	0.20	0.05	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Strontium	0.0392 m	g/L 1	0.0020	0.0004	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 με	:/L 1	0.20	0.04 J1	GES	04/14/2022 23:29	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.95 pCi/L	0.19	0.22	ST	04/14/2022 09:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	90.5 %					
Radium-228	1.46 pCi/L	0.16	0.46	TTP	04/13/2022 13:52	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	91.7 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-31 Customer Description:
Lab Number: 221028-012-01 Preparation: Dissolved

Date Collected: 03/28/2022 13:04 EDT Date Received: 04/01/2022 12:20 EDT

Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method Antimony <0.02 μg/L 1 0.10 0.02 U1 GES 04/14/2022 23:34 EPA 200.8-1994, F Arsenic 0.14 μg/L 1 0.10 0.03 GES 04/14/2022 23:34 EPA 200.8-1994, F Barium 31.8 μg/L 1 0.20 0.05 GES 04/14/2022 23:34 EPA 200.8-1994, F Beryllium 0.765 μg/L 1 0.050 0.007 GES 04/14/2022 23:34 EPA 200.8-1994, F Boron 0.021 mg/L 1 0.050 0.009 J1 GES 04/14/2022 23:34 EPA 200.8-1994, F Cadmium 0.063 μg/L 1 0.020 0.004 GES 04/14/2022 23:34 EPA 200.8-1994, F Chromium 2.78 mg/L 1 0.05 0.02 GES 04/14/2022 23:34 EPA 200.8-1994, F Cobalt 8.83 μg/L 1 0.020 0.003 GES 04/14/2022 23:34 EPA 200.8-1994, F	
Arsenic 0.14 μg/L 1 0.10 0.03 GES 04/14/2022 23:34 EPA 200.8-1994, FB arium 31.8 μg/L 1 0.20 0.05 GES 04/14/2022 23:34 EPA 200.8-1994, FB Beryllium 0.765 μg/L 1 0.050 0.007 GES 04/14/2022 23:34 EPA 200.8-1994, FB Boron 0.021 mg/L 1 0.050 0.009 J1 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cadmium 0.063 μg/L 1 0.020 0.004 GES 04/14/2022 23:34 EPA 200.8-1994, FB Calcium 2.78 mg/L 1 0.05 0.02 GES 04/14/2022 23:34 EPA 200.8-1994, FB Chromium 0.34 μg/L 1 0.20 0.04 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cobalt 8.83 μg/L 1 0.020 0.003 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cobalt 8.83 μg/L 1 0.020 0.003 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cobalt 8.83 μg/L 1 0.020 0.003 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cobalt 0.39 μg/L 1 0.020 0.006 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cobalt 0.39 μg/L 1 0.020 0.006 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cobalt 0.39 μg/L 1 0.020 0.006 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cobalt 0.39 μg/L 1 0.020 0.006 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cobalt 0.39 μg/L 1 0.020 0.006 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cobalt 0.39 μg/L 1 0.020 0.006 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cobalt 0.39 μg/L 1 0.020 0.006 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cobalt 0.39 μg/L 1 0.020 0.006 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cobalt 0.39 μg/L 1 0.020 0.006 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cobalt 0.39 μg/L 1 0.020 0.006 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cobalt 0.39 μg/L 1 0.020 0.006 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cobalt 0.39 μg/L 1 0.020 0.006 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cobalt 0.39 μg/L 1 0.020 0.006 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cobalt 0.39 μg/L 1 0.020 0.006 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cobalt 0.39 μg/L 1 0.020 0.006 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cobalt 0.39 μg/L 1 0.020 0.006 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cobalt 0.39 μg/L 1 0.020 0.006 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cobalt 0.39 μg/L 1 0.020 0.006 GES 04/14/2022 23:34 EPA 200.8-1994, FB Cobalt 0.39 μg/L 1 0.020 0.006 GES 04/14/2022 23:34 E	
Barium 31.8 μg/L 1 0.20 0.05 GES 04/14/2022 23:34 EPA 200.8-1994, FRA 200.8-199	Rev. 5.4
Beryllium 0.765 μg/L 1 0.050 0.007 GES 04/14/2022 23:34 EPA 200.8-1994, FR 200.	Rev. 5.4
Boron 0.021 mg/L 1 0.050 0.009 J1 GES 04/14/2022 23:34 EPA 200.8-1994, FRA 200.	Rev. 5.4
Cadmium 0.063 μg/L 1 0.020 0.004 GES 04/14/2022 23:34 EPA 200.8-1994, FR	Rev. 5.4
Calcium 2.78 mg/L 1 0.05 0.02 GES 04/14/2022 23:34 EPA 200.8-1994, F Chromium 0.34 µg/L 1 0.20 0.04 GES 04/14/2022 23:34 EPA 200.8-1994, F Cobalt 8.83 µg/L 1 0.020 0.003 GES 04/14/2022 23:34 EPA 200.8-1994, F Iron 0.109 mg/L 1 0.020 0.006 GES 04/14/2022 23:34 EPA 200.8-1994, F Lead 0.39 µg/L 1 0.20 0.05 GES 04/14/2022 23:34 EPA 200.8-1994, F	Rev. 5.4
Chromium 0.34 μg/L 1 0.20 0.04 GES 04/14/2022 23:34 EPA 200.8-1994, FR 20	Rev. 5.4
Cobalt 8.83 μ g/L 1 0.020 0.003 GES 04/14/2022 23:34 EPA 200.8-1994, Find 0.109 mg/L 1 0.020 0.006 GES 04/14/2022 23:34 EPA 200.8-1994, Find 0.39 μ g/L 1 0.20 0.05 GES 04/14/2022 23:34 EPA 200.8-1994, Find 0.39 μ g/L 1 0.20 0.05 GES 04/14/2022 23:34 EPA 200.8-1994, Find 0.39 μ g/L 1 0.20 0.05	Rev. 5.4
Iron 0.109 mg/L 1 0.020 0.006 GES 04/14/2022 23:34 EPA 200.8-1994, F Lead 0.39 μg/L 1 0.20 0.05 GES 04/14/2022 23:34 EPA 200.8-1994, F	Rev. 5.4
Lead 0.39 μg/L 1 0.20 0.05 GES 04/14/2022 23:34 EPA 200.8-1994, F	Rev. 5.4
	Rev. 5.4
Lithium 0.0679 mg/L 1 0.00020 0.00005 GES 04/14/2022 23:34 EPA 200.8-1994, F	Rev. 5.4
	Rev. 5.4
Magnesium 3.84 mg/L 1 0.10 0.02 GES 04/14/2022 23:34 EPA 200.8-1994, F	Rev. 5.4
Manganese 0.0252 mg/L 1 0.0010 0.0002 GES 04/14/2022 23:34 EPA 200.8-1994, F	Rev. 5.4
Mercury <2 ng/L 1 5 2 U1 JAB 04/25/2022 00:00 EPA 245.7-2005, F	Rev. 2.0
Molybdenum <0.1 μ g/L 1 0.5 0.1 U1 GES 04/18/2022 19:34 EPA 200.8-1994, Figure 1.5 Fig	Rev. 5.4
Potassium 1.63 mg/L 1 0.10 0.02 GES 04/14/2022 23:34 EPA 200.8-1994, F	Rev. 5.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Rev. 5.4
Sodium 32.6 mg/L 1 0.20 0.05 GES 04/14/2022 23:34 EPA 200.8-1994, F	Rev. 5.4
Strontium 0.0386 mg/L 1 0.0020 0.0004 GES 04/14/2022 23:34 EPA 200.8-1994, F	Rev. 5.4
Thallium 0.09 μ g/L 1 0.20 0.04 J1 GES 04/14/2022 23:34 EPA 200.8-1994, Figure 1.00 and 1.00 are supported by the contraction of the contraction	Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-32 Customer Description:

Lab Number: 221028-013 Preparation:

Date Collected: 03/28/2022 12:07 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Arsenic	1.05 µg/L	1	0.10	0.03	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Barium	30.0 μg/L	1	0.20	0.05	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Beryllium	2.89 μg/L	1	0.050	0.007	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Boron	0.773 mg/L	1	0.050	0.009	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Cadmium	0.323 μg/L	1	0.020	0.004	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Calcium	8.05 mg/L	1	0.05	0.02	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Chromium	0.60 µg/L	1	0.20	0.04	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Cobalt	25.1 µg/L	1	0.020	0.003	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Lead	0.38 µg/L	1	0.20	0.05	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Lithium	0.0731 mg/L	1	0.00020	0.00005	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Magnesium	9.45 mg/L	1	0.10	0.02	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Mercury	1900 ng/L	100	500	200	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/18/2022 19:39	EPA 200.8-1994, Rev. 5.4
Potassium	2.99 mg/L	1	0.10	0.02	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Selenium	3.42 µg/L	1	0.50	0.09	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Sodium	33.6 mg/L	1	0.20	0.05	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Strontium	0.150 mg/L	1	0.0020	0.0004	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4
Thallium	0.17 µg/L	1	0.20	0.04 J1	GES	04/14/2022 23:39	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.34 pCi/L	0.24	0.27	ST	04/14/2022 09:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	83.3 %					
Radium-228	4.56 pCi/L	0.21	0.52	TTP	04/13/2022 13:52	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	80.4 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-32 Customer Description:
Lab Number: 221028-013-01 Preparation: Dissolved

Date Collected: 03/28/2022 12:07 EDT Date Received: 04/01/2022 12:20 EDT

Metais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Arsenic	0.92 μg/L	1	0.10	0.03	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Barium	28.9 μg/L	1	0.20	0.05	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Beryllium	2.86 μg/L	1	0.050	0.007	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Boron	0.747 mg/L	1	0.050	0.009	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Cadmium	0.317 μg/L	1	0.020	0.004	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Calcium	7.84 mg/L	1	0.05	0.02	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Chromium	0.56 μg/L	1	0.20	0.04	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Cobalt	24.1 μg/L	1	0.020	0.003	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Iron	0.719 mg/L	1	0.020	0.006	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Lead	0.34 μg/L	1	0.20	0.05	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Lithium	0.0719 mg/L	1	0.00020	0.00005	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Magnesium	8.96 mg/L	1	0.10	0.02	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Manganese	0.0455 mg/L	1	0.0010	0.0002	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Mercury	<20 ng/L	10	50	20 U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/18/2022 19:45	EPA 200.8-1994, Rev. 5.4
Potassium	2.87 mg/L	1	0.10	0.02	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Selenium	3.30 µg/L	1	0.50	0.09	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Sodium	32.5 mg/L	1	0.20	0.05	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Strontium	0.145 mg/L	1	0.0020	0.0004	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4
Thallium	0. 12 μg/L	1	0.20	0.04 J1	GES	04/14/2022 23:45	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-33 Customer Description:

Lab Number: 221028-014 Preparation:

Date Collected: 03/28/2022 11:54 EDT Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Arsenic	0.87 μg/L	1	0.10	0.03	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Barium	45.0 μg/L	1	0.20	0.05	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Beryllium	1.35 μg/L	1	0.050	0.007	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Boron	0.146 mg/L	1	0.050	0.009	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Cadmium	0.057 μg/L	1	0.020	0.004	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Calcium	2.28 mg/L	1	0.05	0.02	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Chromium	0.47 μg/L	1	0.20	0.04	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Cobalt	9.82 μg/L	1	0.020	0.003	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Lead	0.32 μg/L	1	0.20	0.05	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Lithium	0.0219 mg/L	1	0.00020	0.00005	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Magnesium	4.10 mg/L	1	0.10	0.02	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Mercury	4600 ng/L	100	500	200	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/18/2022 19:50	EPA 200.8-1994, Rev. 5.4
Potassium	0.30 mg/L	1	0.10	0.02	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Selenium	2.68 μg/L	1	0.50	0.09	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Sodium	18.7 mg/L	1	0.20	0.05	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Strontium	0.0345 mg/L	1	0.0020	0.0004	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	04/14/2022 23:50	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.27 pCi/L	0.23	0.24	ST	04/14/2022 09:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	87.2 %					
Radium-228	1.01 pCi/L	0.23	0.72	TTP	04/13/2022 13:52	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	53.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-33 Customer Description:
Lab Number: 221028-014-01 Preparation: Dissolved

Date Collected: 03/28/2022 11:54 EDT Date Received: 04/01/2022 12:20 EDT

motalo									
Parameter	Result l	Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µ	µg/L	1	0.10	0.02	U1	GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Arsenic	0.82 լ	µg/L	1	0.10	0.03		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Barium	45.7 լ	µg/L	1	0.20	0.05		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Beryllium	1.35 µ	µg/L	1	0.050	0.007		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Boron	0.143 r	mg/L	1	0.050	0.009		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Cadmium	0.058 լ	µg/L	1	0.020	0.004		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Calcium	2.29 r	mg/L	1	0.05	0.02		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Chromium	0.39 μ	µg/L	1	0.20	0.04		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Cobalt	9.88 լ	µg/L	1	0.020	0.003		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Iron	0.030 r	mg/L	1	0.020	0.006		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Lead	0.29 μ	µg/L	1	0.20	0.05		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Lithium	0.0220 r	mg/L	1	0.00020	0.00005		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Magnesium	4.21 r	mg/L	1	0.10	0.02		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Manganese	0.0090 r	mg/L	1	0.0010	0.0002		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Mercury	34 r	ng/L	1	5	2		JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µ	µg/L	1	0.5	0.1	U1	GES	04/18/2022 19:55	EPA 200.8-1994, Rev. 5.4
Potassium	0.30 r	mg/L	1	0.10	0.02		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Selenium	2.70 μ	µg/L	1	0.50	0.09		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Sodium	18.6 r	mg/L	1	0.20	0.05		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Strontium	0.0353 r	mg/L	1	0.0020	0.0004		GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µ	µg/L	1	0.20	0.04	U1	GES	04/14/2022 23:55	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: Duplicate 1 Customer Description:

Lab Number: 221028-015 Preparation:

Date Collected: 03/28/2022 13:00 EDT Date Received: 04/01/2022 12:20 EDT

Metais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Arsenic	3. 1 9 µg/L	1	0.10	0.03	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Barium	19.2 μg/L	1	0.20	0.05	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Beryllium	9.06 μg/L	1	0.050	0.007	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Boron	0.068 mg/L	1	0.050	0.009	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Cadmium	1.23 µg/L	1	0.020	0.004	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Calcium	16.4 mg/L	1	0.05	0.02	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Chromium	0.47 μg/L	1	0.20	0.04	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Cobalt	1 09 μg/L	1	0.020	0.003	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Lead	0.15 μg/L	1	0.20	0.05 J1	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Lithium	0.176 mg/L	1	0.00020	0.00005	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Magnesium	22.7 mg/L	1	0.10	0.02	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Mercury	14 ng/L	1	5	2	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/18/2022 20:00	EPA 200.8-1994, Rev. 5.4
Potassium	4.79 mg/L	1	0.10	0.02	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Selenium	8.93 µg/L	1	0.50	0.09	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Sodium	96.9 mg/L	1	0.20	0.05	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Strontium	0.141 mg/L	1	0.0020	0.0004	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4
Thallium	0.19 μg/L	1	0.20	0.04 J1	GES	04/15/2022 00:00	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: Duplicate 1 Customer Description:
Lab Number: 221028-015-01 Preparation: Dissolved

Date Collected: 03/28/2022 13:00 EDT Date Received: 04/01/2022 12:20 EDT

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Arsenic	3.18 µg/L	1	0.10	0.03	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Barium	1 9.4 μg/L	1	0.20	0.05	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Beryllium	8.88 µg/L	1	0.050	0.007	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Boron	0.069 mg/L	1	0.050	0.009	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Cadmium	1.26 µg/L	1	0.020	0.004	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Calcium	16.5 mg/L	1	0.05	0.02	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Chromium	1.10 µg/L	1	0.20	0.04	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Cobalt	109 μg/L	1	0.020	0.003	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Iron	31.7 mg/L	1	0.020	0.006	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Lead	0. 1 7 μg/L	1	0.20	0.05 J1	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Lithium	0.174 mg/L	1	0.00020	0.00005	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Magnesium	23.0 mg/L	1	0.10	0.02	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Manganese	0.408 mg/L	1	0.0010	0.0002	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Mercury	3 ng/L	1	5	2 J1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/18/2022 20:05	EPA 200.8-1994, Rev. 5.4
Potassium	4.85 mg/L	1	0.10	0.02	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Selenium	8.99 µg/L	1	0.50	0.09	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Sodium	98.3 mg/L	1	0.20	0.05	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Strontium	0.141 mg/L	1	0.0020	0.0004	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4
Thallium	0.19 μg/L	1	0.20	0.04 J1	GES	04/15/2022 00:05	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: Duplicate 2 Customer Description:

Lab Number: 221028-016 Preparation:

Date Collected: 03/29/2022 11:55 EDT Date Received: 04/01/2022 12:20 EDT

Motalo							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Arsenic	0.09 μg/L	1	0.10	0.03 J1	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Barium	125 μg/L	1	0.20	0.05	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Beryllium	0.633 μg/L	1	0.050	0.007	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Boron	0.355 mg/L	1	0.050	0.009	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Cadmium	0.059 μg/L	1	0.020	0.004	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Calcium	1.31 mg/L	1	0.05	0.02	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Chromium	0.75 μg/L	1	0.20	0.04	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Cobalt	12.5 μg/L	1	0.020	0.003	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Lead	0.05 μg/L	1	0.20	0.05 J1	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Lithium	0.0253 mg/L	1	0.00020	0.00005	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Magnesium	2.98 mg/L	1	0.10	0.02	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Mercury	13 ng/L	2	10	4	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	04/18/2022 21:12	EPA 200.8-1994, Rev. 5.4
Potassium	0.77 mg/L	1	0.10	0.02	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Selenium	0.22 μg/L	1	0.50	0.09 J1	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Sodium	7.52 mg/L	1	0.20	0.05	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Strontium	0.0205 mg/L	1	0.0020	0.0004	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	04/15/2022 01:12	EPA 200.8-1994, Rev. 5.4

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: Duplicate 2 Customer Description:
Lab Number: 221028-016-01 Preparation: Dissolved

Date Collected: 03/29/2022 11:55 EDT Date Received: 04/01/2022 12:20 EDT

Metais									
Parameter	Result U	nits Dilu	tion	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 με	g/L	1	0.10	0.02	U1	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Arsenic	0.07 με	g/L	1	0.10	0.03	J1	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Barium	127 με	g/L	1	0.20	0.05		GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Beryllium	0.595 με	g/L	1	0.050	0.007		GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Boron	0.346 m	g/L	1	0.050	0.009		GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Cadmium	0.050 με	g/L	1	0.020	0.004		GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Calcium	1.34 m	g/L	1	0.05	0.02		GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Chromium	0.34 με	g/L	1	0.20	0.04		GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Cobalt	12.0 με	g/L	1	0.020	0.003		GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Iron	0.012 m	g/L	1	0.020	0.006	J1	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Lead	0.07 με	g/L	1	0.20	0.05	J1	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Lithium	0.0252 m	g/L	1	0.00020	0.00005		GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Magnesium	2.87 m	g/L	1	0.10	0.02		GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Manganese	0.0493 m	g/L	1	0.0010	0.0002		GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Mercury	5 ng	g/L	1	5	2		JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 με	g/L	1	0.5	0.1	U1	GES	04/18/2022 21:17	EPA 200.8-1994, Rev. 5.4
Potassium	0.75 m	g/L	1	0.10	0.02		GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Selenium	0.21 με	g/L	1	0.50	0.09	J1	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Sodium	7.20 m	g/L	1	0.20	0.05		GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Strontium	0.0199 m	g/L	1	0.0020	0.0004		GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 με	g/L	1	0.20	0.04	U1	GES	04/15/2022 01:17	EPA 200.8-1994, Rev. 5.4

4001 Bixby Road Groveport, OH 43125

Phone: 614-836-4221 Audinet: 210-4221

Dolan Chemical Laboratory

Reissued

Customer: Pirkey Power Station Job ID: 221028 **Date Reported: 12/22/2022**

Customer Sample ID: Equipment Blank

Customer Description:

Lab Number: 221028-017

Preparation:

Date Collected: 03/28/2022 11:30 EDT

Date Received: 04/01/2022 12:20 EDT

Metals

Parameter	Result Uni	s Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/	. 1	0.10	0.02	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/	. 1	0.10	0.03	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Barium	0.05 µg/	. 1	0.20	0.05	J1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.007 µg/	. 1	0.050	0.007	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Boron	<0.009 mg/	L 1	0.050	0.009	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/	. 1	0.020	0.004	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Calcium	<0.02 mg/	L 1	0.05	0.02	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Chromium	0.25 μg/	. 1	0.20	0.04		GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Cobalt	0.009 µg/	. 1	0.020	0.003	J1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/	. 1	0.20	0.05	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Lithium	<0.00005 mg/	L 1	0.00020	0.00005	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Magnesium	<0.02 mg/	L 1	0.10	0.02	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/	. 1	5	2	U1	JAB	04/25/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/	. 1	0.5	0.1	U1	GES	04/18/2022 21:22	EPA 200.8-1994, Rev. 5.4
Potassium	<0.02 mg/	L 1	0.10	0.02	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/	. 1	0.50	0.09	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Sodium	<0.05 mg/	L 1	0.20	0.05	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Strontium	<0.0004 mg/	L 1	0.0020	0.0004	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/	. 1	0.20	0.04	U1	GES	04/15/2022 01:22	EPA 200.8-1994, Rev. 5.4

221028 **Job Comments:**

Original report issued 5/11/2022. Report reissued with amended Matrix Spike precision calculations.

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 221028 Customer: Pirkey Power Station Date Reported: 12/22/2022

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

- U1 Not detected at or above method detection limit (MDL).
- M1 The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.
- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

Chain of Custody Record

Dolan Chemical Laboratory (DCL.)

The state of the s	9.1))						
Grandon Ohlo 43425				à	2	المرادين	ombuetic	Drommer Coal Combinetion Besiduals (CCB)	CO) ale	á			
Contacts: Michael Ohlinger (814.838-4184)					8	Site Contact:	#	The state of the s	ans (as	Date:			For Lab Use Only:
Project Name: Pirkey - CCR							-	Field-filter			r vial or E lined *, pH<2	to taiv a benil 3 S>Hq."	250160
Contact Name: Leslie Fuerschbach	Analysis	lumaround	Analysis Turnaround Time (in Calendar Days)	tlendar D	ays)	<u> </u>		_	1 L bottle.	(six eveny	TTG 7	ATG J	000000
Contact Phone: 318-423-3805	20 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -					a +	PH<2, HNO,			L bottles, pH<2, HNO ₃	m 03S	250 m	
Sampler(s): Matt Hamilton Kenny McDonald						,68 ,8A	18,	, Fe, JT ,e 12 ,		822			86016e
			Sample Type			ler(s) Initis	:d, Cr, Co ie, TL ie, K, Mg i, Li, Sb, /	d, Cr, Co la, K, Mg la, K, Mg	, F, Cl, 5 Br, Alka	.26, Ra-	*		
Sample Identification	Sample Date	Sample Time	(C=Comp, G=Grab)	Matrix	# of Conf.	B, Ca	S ,oM A bns	Be, C Mn, N and N		g-eA	6н	6н	Sample Specific Notes:
AD-2	3/29/2022	1125	9	GW	7		×	×		×	×	×	
AD-3	3/28/2022	1148	ပ	GW	7		×	×		×	×	×	
AD-4	3/29/2022	1216	ອ	GW	7		×	×		×	×	×	
AD-7	3/28/2022	1150	ຶ	GW	7		×	×		×	×	×	
AD-12	3/28/2022	1002		GW	7		×	×		×	×	×	
AD-13	3/28/2022	838	ပ	ВW	7		×	×		×	×	×	
AD-17	3/29/2022	1025	ပ	ВW	7		×	×		×	×	×	
AD-18	329/2022	936	g	ВW	7		×	×		×	×	×	
AD-22	3/28/2022	935	ဖ	δW	5	\dashv	×	×		×	×	×	
AD-28	3/29/2022	1034	ပ	ВW	5		×	×		×	×	×	
AD-30	3/28/2022	1251	g	GW	7		×	×		×	×	×	
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HN03; 5=N	OH; 6= 0	ther		F= filter in field	field	4	F4	1.	4	7	2	
Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.											

Six 1L Bottles must be collected for Radium for every 10th samp

Special Instructions/QC Requirements & Comments:

TG-32

			Tomos Company	
Relinquished by H	Company	Date/Time 13c-	λ ι 3 c Received by:	Date/Time;
Relinquished by:	Company:	Date/Time	Received by:	Date/Time;
Relinquished by:	Company	Date/Time	Received in Jabonapory by:	Date Time 1 22 1230pm

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shrayefort, Rev. 1, 1/10/17

Chain of Custody Record

Dolan Chemical Laboratory (DCL)

4001 Bixby Road

Sample Specific Notes For Lab Use Only: COC/Order #: bottle, HCL", pH<2 S50 mL PTFE lined 6H × 40 mL Glass vial or 40 mL Glass vial or 250 mL PTFE lined bottle, HCL**, pH<2 βН × × × Date Three (six every 10th*)
L bottles, pH<2, HNO3 Ra-226, Ra-228 × Program: Coal Combustion Residuals (CCR) 1 L bottle, Coot, 0-6°C and Br, Alkalinity TD\$, F, CI, SQ, B, Ca, Li, Sb, As, Ba, Be, Cd, Cr, Co, Fe, Mn, Mo, Pb, Se, TL and Na, K, Mg, Sr Field-filter 250 mL bottle, then PH<2, HNO₃ × B, Ca, Li, Sb, As, Ba, Be, Cd, Cr, Co, Pb, Mo, Se, TL and Na, K, Mg, Sr 250 mL bottle, pH<2, HNO × × × Site Contact: Sampler(s) Initials Pod d Analysis Turnaround Time (in Calendar Days) 0 Matrix GW <u></u>§ ĕ δW δ¥ 3 Sample Type (C=Comp, G=Grab) Ø 이 ပ Ø ଠା O Sample 1200 Time 1204 1107 1054 1055 1030 3/28/2022 Sample 3/28/2022 3/28/2022 3/28/2022 3/28/2022 Date Jonathan Barnhill (318-673-3803) Michael Ohlinger (614-836-4184) Sampler(s): Matt Hamilton Kenny McDonald 318-423-3805 Groveport, Ohio 43125 Contact Name: Leslie Fuerschbach Sample Identification EQUIPMENT BLANK **DUPLICATE 2 DUPLICATE 1** AD-31 AD-32 AD-33 Project Name: Pirkey - CCR Contact Phone:

Special Instructions/QC Requirements & Comments:

Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other

N

4

Z

: F= filter in field

TG-32

Relinquished by Manager	Company	Date/Time: 130-	Received by:	Date/Time:
Relinquished by:		Date/Time:	Received by:	Date/Time:
Relinquished by:	Company:	Date/Time:	Received in Laboratory by:	Date (me: 122 (2: 30pm)
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Samp	cord for Coal Combustion Residu	ial (CCR) Sampling - Sh	pling - Shreveport, Rev. 1, 1/10/17	

Six 1L Bottles must be collected for Radium for every 10th sample.

AFP WATER & WASTE SAMPLE RECEIPT FORM (IR#1)

. Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer Pukey	Number of Plastic Containers:
Opened By MGK	Number of Glass Containers:
Date/Time 4 1 22 1230	Number of Mercury Containers: 33
Were all temperatures within 0-6°C? Y/N	or N/A Initial:on ice / no ice
(IR Gun Ser# 210441568, Expir.5/27/2023)	
Was container in good condition? Y N	Comments
Was Chain of Custody received? Y / N	Comments
Requested turnaround: Koutune	If RUSH, who was notified?
pH (15 min) Cr⁴6 (pres) NO₂ or N (24 hr)	NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? Y N	Comments
Were samples labeled properly? Y / N	Comments
Were correct containers used? Y/N	Comments
Was pH checked & Color Coding done? Y	/ N or N/A initial & Date:
pH paper (circle one): MQuant pH Cat 1.0 lot HC904495	D9535.0001 [OR] Lab rat pH Cat # LRS -4801 Lot X000RWDG21
- Was Add'l Preservative needed? Y / N II	Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / N	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# 221028 Initial &	Date & Time :
Logged byComme	ents:
Reviewed by	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Dolan Chemical Laboratory

Sample Receipt Form SOP-7102

Page l of l

÷

Municipal Solid Waste Laboratory Review Checklist

This da	ata pack	kage consists of	•			
x	(which		eportable data			Table 1, Reportable Data upporting Data, and
х	R1	Field chain-of	-custody doci	ımentation		
х	R2	Sample identif	fication cross	-reference		
x	R3	(a) Items spe NELAC Si (b) Dilution f (c) Preparation (d) Cleanup r	cified in NEL tandard actors on methods nethods	AC Chapter 5 for	environmental sar reporting results, of lentified compound	e.g., Section 5.5.10 in 2003
M	R4	Surrogate reco (a) Calculate (b) The labor	d recovery (%	SR)		
×	R ₅	• •	,	ns for blank sam	oles	
×	R6	•	ummary forming amounts	ns for laboratory	control samples (L	CSs) including:
×	R7	(a) Samples a(b) MS/MSD(c) Concentrate	associated wi spiking amo ation of each d %Rs and re	th the MS/MSD ounts MS/MSD analyto lative percent dif	clearly identified e measured in the p	MS/MSDs) including: parent and spiked samples
X	R8	(a) The amou	int of analyte lated RPD	cate (if applicabl measured in the nits for analytica	-	ecision:
х	R9	List of method	l quantitation	limits (MQLs) f	or each analyte for	each method and matrix
x	R10	Other problem	ns or anomali	es		
x	The Ex	xception Repor	t for every ite	m for which the	result is "No" or "N	R" (Not Reviewed)
packag requir report by the labora	ge as be ements s. By m labora tory in	een reviewed by of the methods by signature be tory as having t	the laborato sused, except low, I affirm the potential t Review Chec	ry and is complet where noted by to the best of my to affect the qual	te and technically c the laboratory in th knowledge, all prol ity of the data, have	package. This data ompliant with the le attached exception blems/anomalies, observed been identified by the ly been knowingly withheld
respor used is staten	nding to s respor nent is t	rule. The officinsible for releas rue.	al signing the ing this data	e cover page of th package and is b	y signature affirmir	ed by the person oort in which these data are ng the above release
Susa	nn He	enschen	Susann	Hersile	Chemist	5-11-2022
Name	(printe	d)	Signature	52,450 N	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Susann Henschen

LRC Date: 5-6-2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22041805, PB22041806, PB22042503

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER 2
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA.	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	11	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	1	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
e e	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?		
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	0, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Susann Henschen

LRC Date: 5-6-2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22041805, PB22041806, PB22042503

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	•
	I	Were all points generated between the lowest and highest standard used to calculate the curve?		
	I	Are ICAL data available for all instruments used?	Yes	·
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
Si .	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Mercury Laboratory Review Checklist

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		•
		If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
:	I g	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	0, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	0, I	Laboratory standard operating procedures (SOPs):		
	ı	Are laboratory SOPs current and on file for each method performed?	Yes	

Mercury Laboratory Review Checklist

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Susann Henschen

LRC Date: 5-6-2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22041805, PB22041806, PB22042503

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< td=""></mql.<>
ER 2	Sample result was less than 10% above the Curve and less than the LDR.
· · · · · · · · · · · · · · · · · · ·	

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: х This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. x R₁ Field chain-of-custody documentation X R_2 Sample identification cross-reference X Test reports (analytical data sheets) for each environmental sample that includes: R3 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits Test reports/summary forms for blank samples x **R**5 X. Test reports/summary forms for laboratory control samples (LCSs) including: **R6** (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits [x]Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits X R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's OC limits for analytical duplicates $|\mathbf{x}|$ R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix $\overline{\mathbf{x}}$ Rio Other problems or anomalies × The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. **Check**, **if applicable**: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Tamisha Palmer

Name (printed)

04/20/2022

Date

Chemical Tech Princ.

Official Title

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 04/20/2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22040403, PB22040405

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	ER1
R9	O, I	Method quantitation limits (MQLs):		
L	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 04/20/2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22040403, PB22040405

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		4
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S 3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	:=
54	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	A
S 7	0	Tentatively identified compounds (TICs):		
7	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	V-
S10	0, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	NA	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	NA	
S11	0, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):	13	
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Nan	ne: American Electric Power Dolan Chemical Laboratory
Project Name:	Pirkey Power
Reviewer Name	Tamisha Palmer
LRC Date: 04/2	
Laboratory Job	204020
Prep Batch Nun	DD00040400 DD0004040E

Exception Report No.	Description
ER1	PB22040405 RPD exceeded 25%; results less than critical value/MDA 0.95
	<u> </u>
	() () () () () () () () () ()
	732

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data X (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. X R1 Field chain-of-custody documentation X R2 Sample identification cross-reference X Test reports (analytical data sheets) for each environmental sample that includes: **R**3 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits Test reports/summary forms for blank samples Х **R**5 X **R6** Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits Х Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits Х Laboratory analytical duplicate (if applicable) recovery and precision: **R8** (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates Х List of method quantitation limits (MQLs) for each analyte for each method and matrix R9 X R10 Other problems or anomalies Х The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) **Release Statement:** I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. **Check, if applicable:** () This laboratory is an in-house laboratory controlled by the person

responding to rule. The official signing the cover page of the rule-required report in which these data are

Chemist Associate

Official Title

used is responsible for releasing this data package and is by signature affirming the above release

Municipal Solid Waste Laboratory Review Checklist (rev. 08/19/11)

statement is true.

Sunita Timsina
Name (printed)

04/13/2022

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 04/13/2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22040402

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	NA	
	I	Were analytical duplicates analyzed at the appropriate frequency?	NA	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	NA	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 04/13/2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22040402

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	NA	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	NA	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name: Pirk	
Reviewer Name: S	unita Timsina
LRC Date: 04/13/20	022
Laboratory Job Nu	mber: 221028
Prep Batch Numbe	

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

х	(which	ignature page, and the laboratory review checklist consisting of Table 1, Reportable Data includes the reportable data identified on this page), Table 2, Supporting Data, and 3, Exception Reports.						
X	R1	Field chain-of	- -custody documenta	tion				
X	R2	Sample identi	fication cross-refere	nce				
×	R3	(a) Items specified NELAC S(b) Dilution 1(c) Preparati(d) Cleanup 1	ecified in NELAC Cha tandard factors on methods methods	ipter 5 for	environmental sampl reporting results, e.g. entified compounds (, Section		
NA	R4	(a) Calculate	overy data including: d recovery (%R) atory's surrogate QC					
X	R5	Test reports/s	summary forms for b	lank samp	oles			
X	R6	(a) LCS spik(b) Calculate		e	control samples (LCSs	;) includ	ling:	
X	R7	Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits					-	
X	R8	(a) The amore (b) The calcu	unt of analyte measu	red in the	•	ion:		
Х	R9	List of method	d quantitation limits	(MQLs) fo	or each analyte for eac	h metho	od and matrix	
X	R10	Other probler	ns or anomalies					
X	The Ex	ception Repor	t for every item for w	hich the r	esult is "No" or "NR" ((Not Re	viewed)	
packag require reports by the laborat	ge as be ements s. By m laborat tory in t	en reviewed by of the methods y signature be cory as having	y the laboratory and it is used, except where low, I affirm to the b the potential to affect Review Checklist, an	is complet noted by t est of my l t the quali	his laboratory data pare and technically combined he laboratory in the attraction of the data, have be mation or data have be	pliant w ttached ns/anor en ident	rith the exception nalies, observed tified by the	
respon used is statem	ding to responent is to	rule. The offic sible for releas ue.	ial signing the cover j	page of the	aboratory controlled le rule-required report signature affirming the	in which	h these data are e release	
	a Tims		Signature		Chemist Associate Official Title		04/22/2022 Date	
raille	(himte)	1)	Signatuje		Omeiai mie	1	Jail	

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 04/22/2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22040708

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	NA	
	I	Were analytical duplicates analyzed at the appropriate frequency?	NA	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	NA	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 04/22/2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22040708

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	NA	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	NA	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name: Pirk	
Reviewer Name: S	unita Timsina
LRC Date: 04/22/20	022
Laboratory Job Nu	mber: 221028
Prep Batch Numbe	

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

	•	O			
x	(which		and the laboratory review che reportable data identified on t Reports.		
X	R1	Field chain-o	of-custody documentation		
X	R2	Sample iden	tification cross-reference		
X	R3	(a) Items sp NELAC(b) Dilution(c) Prepara(d) Cleanup	tion methods	or reporting results, e.g., Se	ction 5.5.10 in 2003
NA	R4	(a) Calculat	covery data including: red recovery (%R) oratory's surrogate QC limits		
X	R5	Test reports,	summary forms for blank sam	ples	
X	R6	(a) LCS spil(b) Calculat	summary forms for laboratory king amounts ed %R for each analyte oratory's LCS QC limits	v control samples (LCSs) in	cluding:
X	R7	(a) Samples(b) MS/MS(c) Concent(d) Calculat	for project matrix spike/matric s associated with the MS/MSD D spiking amounts cration of each MS/MSD analy red %Rs and relative percent di pratory's MS/MSD QC limits	clearly identified te measured in the parent a	-
X	R8	(a) The amo	nalytical duplicate (if applicabount of analyte measured in thulated RPD oratory's QC limits for analytical	e duplicate	
X	R9	List of metho	od quantitation limits (MQLs)	for each analyte for each m	ethod and matrix
X	R10	Other proble	ms or anomalies		
X	The Ex	ception Repo	rt for every item for which the	result is "No" or "NR" (No	t Reviewed)
packag require reports by the laborar	ge as be ements s. By m laborat tory in t	en reviewed be of the method y signature be tory as having	n responsible for the release of by the laboratory and is complet ds used, except where noted by elow, I affirm to the best of my the potential to affect the quary y Review Checklist, and no infort of the data.	ete and technically complia the laboratory in the attac knowledge, all problems/ lity of the data, have been i	nt with the hed exception anomalies, observed dentified by the
respon used is statem	ding to responent is to	rule. The officisible for release rue.	This laboratory is an in-house cial signing the cover page of the sing this data package and is because the cover page.	he rule-required report in v	which these data are
Jona	than B	arnhill	Jonathan Boundill	Supervisor	12/5/2022
Name	(printed	d)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 12/5/2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22040605 PB22040606 QC2204153 QC2204159

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?		
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER1
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	No	ER3
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 12/5/2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22040605 PB22040606 QC2204153 QC2204159

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	Yes	
	I	Were ion abundance data within the method-required QC limits?	Yes	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	Yes	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 12/5/2022

Laboratory Job Number: 221028

Prep Batch Number(s): PB22040605 PB22040606 QC2204153 QC2204159

Exception Report No.

ER1 Linear Dynamic Range (LDR) study used to determine upper limit of analyte calibration.

ER2 CCB acceptance criteria is CCB<2.2*MDL.

ER3 MS/MSD failure on sample 221028-001 for Na.

MS/MSD failure on sample 221028-011 for Na.

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Water Analysis Report

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221988 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-32 Customer Description:

Lab Number: 221988-001 Preparation:

Date Collected: 06/20/2022 10:51 EDT Date Received: 06/24/2022 11:48 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	6.70 mg/L	2	0.10	0.02	CRJ	07/08/2022 00:31	EPA 300.1 -1997, Rev. 1.0
Chloride	30.6 mg/L	2	0.04	0.02	CRJ	07/08/2022 00:31	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.42 mg/L	2	0.06	0.02	CRJ	07/08/2022 00:31	EPA 300.1 -1997, Rev. 1.0
Sulfate	147 mg/L	25	5.0	0.8	CRJ	07/07/2022 22:22	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011	
TDS, Filterable Residue	320 mg/L	1	50	20	SDW	06/27/2022 08:39	SM 2540C-2015	

Customer Sample ID: AD-33 Customer Description:

Lab Number: 221988-002 Preparation:

Date Collected: 06/20/2022 11:37 EDT Date Received: 06/24/2022 11:48 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.21 mg/L	2	0.10	0.02	CRJ	07/08/2022 01:23	EPA 300.1 -1997, Rev. 1.0
Chloride	8.49 mg/L	2	0.04	0.02	CRJ	07/08/2022 01:23	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.19 mg/L	2	0.06	0.02	CRJ	07/08/2022 01:23	EPA 300.1 -1997, Rev. 1.0
Sulfate	57.7 mg/L	10	2.0	0.3	CRJ	07/07/2022 22:47	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	150 mg/L	1	50	20	SDW	06/27/2022 08:39	SM 2540C-2015

Water Analysis Report

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 221988 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: Duplicate-1

Customer Description:

Lab Number: 221988-003

Preparation:

Date Collected: 06/20/2022 15:00 EDT

Date Received: 06/24/2022 11:48 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.26 mg/L	5	0.25	0.05	CRJ	07/08/2022 01:48	EPA 300.1 -1997, Rev. 1.0
Chloride	55.1 mg/L	5	0.10	0.05	CRJ	07/08/2022 01:48	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.33 mg/L	5	0.15	0.05	CRJ	07/08/2022 01:48	EPA 300.1 -1997, Rev. 1.0
Sulfate	165 mg/L	50	10	2	CRJ	07/07/2022 23:13	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	260 mg/L	1	50	20	SDW	06/27/2022 08:48	SM 2540C-2015

221988

Job Comments:

Original report issued 7/28/2022. Report reissued with amended Matrix Spike precision calculations.

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Job ID: 221988

Water Analysis Report

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Customer: Pirkey Power Station Date Reported: 12/27/2022

Data Qualifer Legend

U1 - Not detected at or above method detection limit (MDL).

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125				S I	ain of	Custoc	Chain of Custody Record Program: Coal Combustion Residuals (CCR)	rd (CCR)		
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)					site	Site Contact:			Date:	For Lab Use Only: COC/Order #
Project Name. Pirkey PP CCR Contact Name: Leslie Fuerschbach Contact Phone: 318-673-2744	Analysis 1	rumaround tine (28 da)	Analysis Turnaround Time (in Calendar Days) © Routine (28 days for Monitoring Wells)	endar Da	₹ ;	250 mL bottle, pH<2, HNO3	Field-filter 250 mL bottle, then pH<2, HNO3	The first (six Coot, 0-8C (10th*) Lbo	Three (six every loth") 1 L bottles, pH<2, HNO3	236166
Sampler(s): Matt Hamilton Kenny McDonald					#lalt		ыспіў	, Br, linity	82Z-8	
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp,	Matrix	C # fig. 2 Sampler(s) Inl	Мегсигу	M bevlossiQ	F, CI, SO4	8 - 226, 면:	Sample Specific Notes:
AD-32	6/20/2022	951	ຶ່ນ	GW	-			×		
AD-33	6/20/2022	1037	ŋ	ΒW	-			×		
Duplicate - 1	6/20/2022	1400	၅	GW	-			×		
					_					
					_					
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3; 5=Na	OH; 6= Oth	her	. F= fi	ilter in field	4	F4	1	4	
* Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.								

Special Instructions/QC Requirements & Comments:

111	1461	22570		
Relinquished by:	Company:	Date/Time:	Received by:	Date/Time: Date/Time:
Relinquished by:	Company:	Date/Time:	Received in Litheratory by	Date 122 10:30 pm
Form COC 04. AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shrayeport, Rev. 1, 1/10/17	cord for Coal Combustion Residu	ual (CCR) Sampling - Shr	eyéport, Rev. 1, 1/10/17	

MATER & WASTE SAMPLE RECEIPT FORM (IR#1)

· Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS (FedEX) USPS
	Other
Plant/Customer Puney	Number of Plastic Containers: 3
Opened By MGK	Number of Glass Containers:
Date/Time 6/24/22 10:30 AV	Number of Mercury Containers:
Were all temperatures within 0-6°C? N	or N/A Initial: Mo-K (on ice) no ice
(IR Gun Ser# 210441568, Expir.5/27/2023)	- If No, specify each deviation:
Was container in good condition? Y/ N	Comments
Was Chain of Custody received? Y/N	Comments
1	If RUSH, who was notified?
	NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	Comments
Were samples labeled properly? (Y) N	Comments
Were correct containers used? (Y) N	Comments
Was pH checked & Color Coding done?	N or N/A Initial & Date: Work 16/24/22
	.09535.0001 [OR] Lab rat pH Cat # LRS -4801 Lot X000RWDG21
S 2	If Yes: By whom & when: (See Prep Bo
Is sample filtration requested? Y / N	Comments (See Prep Bo
Was the customer contacted? If Yes	: Person Contacted:
Lab ID# <u>321988</u> Initial 8	& Date & Time :
Logged by	nents:
$\varphi (y)$	
TOTIONED DY	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Dolan Chemical Laboratory

Sample Receipt Form SOP-7102

Page 1 of 1

÷

Municipal Solid Waste Laboratory Review Checklist

This da	ıta pack	ge consists of:
x	(which	nature page, and the laboratory review checklist consisting of Table 1, Reportable Data ncludes the reportable data identified on this page), Table 2, Supporting Data, and Exception Reports.
x	R1	Field chain-of-custody documentation
x	R2	Sample identification cross-reference
×	R3	Test reports (analytical data sheets) for each environmental sample that includes: a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard b) Dilution factors c) Preparation methods d) Cleanup methods e) If required for the project, tentatively identified compounds (TICs)
NA	R4	Surrogate recovery data including: a) Calculated recovery (%R) b) The laboratory's surrogate QC limits
x	R5	Test reports/summary forms for blank samples
x	R6	Cest reports/summary forms for laboratory control samples (LCSs) including: a) LCS spiking amounts b) Calculated %R for each analyte c) The laboratory's LCS QC limits
x	R7	Cest reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: a) Samples associated with the MS/MSD clearly identified b) MS/MSD spiking amounts c) Concentration of each MS/MSD analyte measured in the parent and spiked samples d) Calculated %Rs and relative percent differences (RPDs) e) The laboratory's MS/MSD QC limits
x	R8	Laboratory analytical duplicate (if applicable) recovery and precision: a) The amount of analyte measured in the duplicate b) The calculated RPD c) The laboratory's QC limits for analytical duplicates
×	R9	ist of method quantitation limits (MQLs) for each analyte for each method and matrix
×	R10	Other problems or anomalies
x	The Ex	eption Report for every item for which the result is "No" or "NR" (Not Reviewed)
packag require reports by the laborat	e as be ements s. By m laborat tory in t	ment: I am responsible for the release of this laboratory data package. This data in reviewed by the laboratory and is complete and technically compliant with the f the methods used, except where noted by the laboratory in the attached exception signature below, I affirm to the best of my knowledge, all problems/anomalies, observed ry as having the potential to affect the quality of the data, have been identified by the e Laboratory Review Checklist, and no information or data have been knowingly withheld at the quality of the data.
respon used is statem	ding to respon ent is t	
	ael Oh	3
Name	(printe	Signature / Official Title Date /

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Michael Ohlinger

LRC Date: 7/28/22

Laboratory Job Number: 221988

Prep Batch Number(s): QC2206187

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)	10	
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
·	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
-	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
-	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
·	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
10	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	<u> </u>
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Michael Ohlinger

LRC Date: 7/28/22

Laboratory Job Number: 221988

Prep Batch Number(s): QC2206187

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S 3	0 _	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	0, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Michael Ohlinger

LRC Date: 7/28/22

Laboratory Job Number: 221988

Prep Batch Number(s): QC2206187

B acceptance criteria is CCB<0.5*MQL.	
D. STANSF	
V100 - 1.1	

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: X This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. $|\mathbf{x}|$ Rı Field chain-of-custody documentation \square R2 Sample identification cross-reference X Test reports (analytical data sheets) for each environmental sample that includes: R3 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) \square Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits $\overline{\mathbf{x}}$ **R**5 Test reports/summary forms for blank samples \mathbf{x} Test reports/summary forms for laboratory control samples (LCSs) including: **R6** (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits \square **R7** Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD OC limits Laboratory analytical duplicate (if applicable) recovery and precision: \square **R8** (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates List of method quantitation limits (MOLs) for each analyte for each method and matrix ΙXΠ R9 X. R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) **Release Statement:** I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Timothy E. Arnold Chemist Principle 7/11/2022

Official Title

Name (printed)

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Timothy E. Arnold

LRC Date: 7/11/2022

Laboratory Job Number: 221988

Prep Batch Number(s): QC2207069

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	ñ'
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	Yes	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	= I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data	1	
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	0, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Timothy E. Arnold

LRC Date: 7/11/2022

Laboratory Job Number: 221988

Prep Batch Number(s): QC2207069

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴	
S1	0, I	Initial calibration (ICAL)			
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA		
	I	Were percent RSDs or correlation coefficient criteria met?	Yes		
	I	Was the number of standards recommended in the method used for all analytes?	Yes		
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes		
	I	Are ICAL data available for all instruments used?	Yes		
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes		
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):			
	I	Was the CCV analyzed at the method-required frequency?	Yes		
	I	Were percent differences for each analyte within the method-required QC limits?	Yes		
	I	Was the ICAL curve verified for each analyte?	Yes		
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1	
S3	0	Mass spectral tuning:			
	I	Was the appropriate compound for the method used for tuning?	NA		
	I	Were ion abundance data within the method-required QC limits?	NA		
S4	0	Internal standards (IS):			
	I	Were IS area counts and retention times within the method-required QC limits?	NA		
S 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)			
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	ti.	
	I	Were data associated with manual integrations flagged on the raw data?	NA		

Item¹	Analytes ²	Result (Yes, No, NA, NR) ³	Exception Report No.4	
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
\$ 7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
\$10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	O, I Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
<u>-</u> .	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Timothy E. Arnold

LRC Date: 7/11/2022

Laboratory Job Number: 221988

Prep Batch Number(s): QC2207069

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>
	2 2 3 3 4 5 4 5 4 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5
•	

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: х This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. X R₁ Field chain-of-custody documentation x R₂ Sample identification cross-reference X R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC** Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits X Test reports/summary forms for blank samples **R**5 × R6 Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits X Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: R7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits \mathbf{x} R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates \square List of method quantitation limits (MQLs) for each analyte for each method and matrix R9 \mathbf{x} Rio Other problems or anomalies [X] The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. **Check, if applicable:** () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data/package and is by signature affirming the above release statement is true. Michael Ohlinger Chemist

Official Title

Name (printed)

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Michael Ohlinger

LRC Date: 7/28/22

Laboratory Job Number: 221988

Prep Batch Number(s): QC2207061

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	NA	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
<u>. </u>	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Michael Ohlinger

LRC Date: 4/5/22

Laboratory Job Number: 221988

Prep Batch Number(s): QC2207061

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S 1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S 3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	:
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	į
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S 9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	!
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Michael Ohlinger

LRC Date: 7/28/22

Laboratory Job Number: 221988

Prep Batch Number(s): QC2207061

Exception Report No.	Description	
		2000
	68	3.00 3.00
		233
		(50 do 1117)
	<u> </u>	7.00
<u> </u>	· .	
· · · · · · · · · · · · · · · · · · ·	11.00	
	1918 1111	

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221989 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-2 Customer Description:

Lab Number: 221989-001 Preparation:

Date Collected: 06/21/2022 09:49 EDT Date Received: 06/24/2022 11:56 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.32 mg/L	2	0.10	0.02	CRJ	07/06/2022 20:44	EPA 300.1 -1997, Rev. 1.0
Chloride	29.7 mg/L	10	0.2	0.1	CRJ	07/06/2022 20:18	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.21 mg/L	2	0.06	0.02	CRJ	07/06/2022 20:44	EPA 300.1 -1997, Rev. 1.0
Sulfate	259 mg/L	10	2.0	0.3	CRJ	07/06/2022 20:18	EPA 300.1-1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	490 mg/L	1	50	20	SDW	06/27/2022 13:08	SM 2540C-2015

Customer Sample ID: AD-3 Customer Description:

Lab Number: 221989-002 Preparation:

Date Collected: 06/21/2022 12:23 EDT Date Received: 06/24/2022 11:56 EDT

Ion Chromatography

Parameter	Result Units Di	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.04 mg/L	2	0.10	0.02 J1	CRJ	07/06/2022 19:53	EPA 300.1 -1997, Rev. 1.0
Chloride	5.65 mg/L	2	0.04	0.02	CRJ	07/06/2022 19:53	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.04 mg/L	2	0.06	0.02 J1	CRJ	07/06/2022 19:53	EPA 300.1 -1997, Rev. 1.0
Sulfate	21.2 mg/L	2	0.40	0.06	CRJ	07/06/2022 19:53	EPA 300.1-1997, Rev. 1.0

Parameter	Result Units Dil	ution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	150 mg/L	1	50	20 P1, H2	SDW	06/29/2022 11:00	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221989 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-4 Customer Description:

Lab Number: 221989-003 Preparation:

Date Collected: 06/21/2022 11:34 EDT Date Received: 06/24/2022 11:56 EDT

Ion Chromatography

Parameter	Result Units I	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.20 mg/L	2	0.10	0.02	CRJ	07/06/2022 21:36	EPA 300.1 -1997, Rev. 1.0
Chloride	3.92 mg/L	2	0.04	0.02	CRJ	07/06/2022 21:36	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.05 mg/L	2	0.06	0.02 J1	CRJ	07/06/2022 21:36	EPA 300.1-1997, Rev. 1.0
Sulfate	20.5 mg/L	2	0.40	0.06	CRJ	07/06/2022 21:36	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	160 mg/L	1	50	20	SDW	06/27/2022 13:15	SM 2540C-2015

Customer Sample ID: AD-7 Customer Description:

Lab Number: 221989-004 Preparation:

Date Collected: 06/21/2022 10:47 EDT Date Received: 06/24/2022 11:56 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	3.56 mg/L	2	0.10	0.02	CRJ	07/06/2022 22:28	EPA 300.1 -1997, Rev. 1.0
Chloride	53.1 mg/L	10	0.2	0.1	CRJ	07/06/2022 22:02	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.30 mg/L	2	0.06	0.02	CRJ	07/06/2022 22:28	EPA 300.1-1997, Rev. 1.0
Sulfate	71.1 mg/L	10	2.0	0.3	CRJ	07/06/2022 22:02	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units Dil	ution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	290 mg/L	1	50	20	SDW	06/27/2022 13:15	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221989 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-12 Customer Description:

Lab Number: 221989-005 Preparation:

Date Collected: 06/20/2022 09:52 EDT Date Received: 06/24/2022 11:56 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.11 mg/L	2	0.10	0.02	CRJ	07/06/2022 23:19	EPA 300.1 -1997, Rev. 1.0
Chloride	7.59 mg/L	2	0.04	0.02	CRJ	07/06/2022 23:19	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.09 mg/L	2	0.06	0.02	CRJ	07/06/2022 23:19	EPA 300.1-1997, Rev. 1.0
Sulfate	4.81 mg/L	2	0.40	0.06	CRJ	07/06/2022 23:19	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	80 mg/L	1	50	20	SDW	06/27/2022 08:30	SM 2540C-2015

Customer Sample ID: AD-13 Customer Description:

Lab Number: 221989-006 Preparation:

Date Collected: 06/20/2022 09:43 EDT Date Received: 06/24/2022 11:56 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.30 mg/L	2	0.10	0.02	CRJ	07/07/2022 03:12	EPA 300.1 -1997, Rev. 1.0
Chloride	54.5 mg/L	25	0.5	0.3	CRJ	07/07/2022 02:46	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.26 mg/L	2	0.06	0.02	CRJ	07/07/2022 03:12	EPA 300.1 -1997, Rev. 1.0
Sulfate	138 mg/L	25	5.0	0.8	CRJ	07/07/2022 02:46	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units Di	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	270 mg/L	2	100	40	SDW	06/27/2022 08:30	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Customer: Pirkey Power Station Date Reported: 12/27/2022 Job ID: 221989

Customer Sample ID: AD-17 Customer Description:

Lab Number: 221989-007 Preparation:

Date Collected: 06/21/2022 11:40 EDT Date Received: 06/24/2022 11:56 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.20 mg/L	2	0.10	0.02	CRJ	07/06/2022 23:45	EPA 300.1 -1997, Rev. 1.0
Chloride	30.2 mg/L	2	0.04	0.02	CRJ	07/06/2022 23:45	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.30 mg/L	2	0.06	0.02	CRJ	07/06/2022 23:45	EPA 300.1 -1997, Rev. 1.0
Sulfate	5.78 mg/L	2	0.40	0.06	CRJ	07/06/2022 23:45	EPA 300.1-1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	90 mg/L	1	50	20	SDW	06/27/2022 13:22	SM 2540C-2015

Customer Description:

Customer Sample ID: AD-18

Preparation:

Lab Number: 221989-008

Date Received: 06/24/2022 11:56 EDT Date Collected: 06/21/2022 09:17 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.06 mg/L	2	0.10	0.02 J1	CRJ	07/07/2022 02:20	EPA 300.1 -1997, Rev. 1.0
Chloride	5.20 mg/L	2	0.04	0.02	CRJ	07/07/2022 02:20	EPA 300.1 -1997, Rev. 1.0
Fluoride	<0.02 mg/L	2	0.06	0.02 U1	CRJ	07/07/2022 02:20	EPA 300.1-1997, Rev. 1.0
Sulfate	6.47 mg/L	2	0.40	0.06	CRJ	07/07/2022 02:20	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	110 mg/L	1	50	20	SDW	06/27/2022 13:22	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221989 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-22 Customer Description:

Lab Number: 221989-009 Preparation:

Date Collected: 06/20/2022 10:53 EDT Date Received: 06/24/2022 11:56 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.79 mg/L	2	0.10	0.02	CRJ	07/07/2022 07:57	EPA 300.1 -1997, Rev. 1.0
Chloride	1 07 mg/L	25	0.5	0.3	CRJ	07/07/2022 05:47	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.32 mg/L	2	0.06	0.02	CRJ	07/07/2022 07:57	EPA 300.1 -1997, Rev. 1.0
Sulfate	293 mg/L	25	5.0	0.8	CRJ	07/07/2022 05:47	EPA 300.1-1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	580 mg/L	2	100	40	SDW	06/27/2022 08:48	SM 2540C-2015

Customer Description:

Customer Sample ID: AD-28

Lab Number: 221989-010 Preparation:

ab Number. 221969-010 Freparation

Date Collected: 06/21/2022 10:56 EDT Date Received: 06/24/2022 11:56 EDT

Ion Chromatography

Parameter	Result Units Dil	lution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.04 mg/L	2	0.10	0.02 J1	CRJ	07/07/2022 04:04	EPA 300.1 -1997, Rev. 1.0
Chloride	4.36 mg/L	2	0.04	0.02	CRJ	07/07/2022 04:04	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.61 mg/L	2	0.06	0.02	CRJ	07/07/2022 04:04	EPA 300.1 -1997, Rev. 1.0
Sulfate	28.0 mg/L	2	0.40	0.06	CRJ	07/07/2022 04:04	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units Dil	lution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	110 mg/L	1	50	20	SDW	06/27/2022 13:29	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 221989 Customer: Pirkey Power Station Date Reported: 12/27/2022

Customer Sample ID: AD-30 Customer Description:

Lab Number: 221989-011 Preparation:

Date Collected: 06/20/2022 12:29 EDT Date Received: 06/24/2022 11:56 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.34 mg/L	2	0.10	0.02	CRJ	07/07/2022 04:56	EPA 300.1 -1997, Rev. 1.0
Chloride	26.0 mg/L	2	0.04	0.02	CRJ	07/07/2022 04:56	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.06 mg/L	2	0.06	0.02	CRJ	07/07/2022 04:56	EPA 300.1 -1997, Rev. 1.0
Sulfate	1 77 mg/L	10	2.0	0.3	CRJ	07/07/2022 04:30	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS, Filterable Residue	340 mg/L	1	50	20	SDW	06/27/2022 09:01	SM 2540C-2015

Customer Sample ID: AD-31 Customer Description:

Lab Number: 221989-012 Preparation:

Date Collected: 06/20/2022 11:43 EDT Date Received: 06/24/2022 11:56 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.29 mg/L	5	0.25	0.05	CRJ	07/11/2022 15:51	EPA 300.1 -1997, Rev. 1.0
Chloride	23.2 mg/L	5	0.10	0.05	CRJ	07/11/2022 15:51	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.14 mg/L	5	0.15	0.05 J1	CRJ	07/11/2022 15:51	EPA 300.1 -1997, Rev. 1.0
Sulfate	89.0 mg/L	10	2.0	0.3	CRJ	07/07/2022 06:13	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/28/2022 10:03	SM 2320B-2011
TDS Filterable Residue	270 mg/l	1	50	20	SDW	06/27/2022 08:55	SM 2540C-2015

221989

Job Comments:

Original report issued 7/29/2022. Report reissued with amended Matrix Spike precision calculations.

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 221989 Customer: Pirkey Power Station Date Reported: 12/27/2022

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

- U1 Not detected at or above method detection limit (MDL).
- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.
- P1 The precision between duplicate results was above acceptance limits.
- H2 Sample analysis performed past holding time.

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Bixby Road				ਠਂ	Chain	of Cu	stody	n of Custody Record	ġ		
Grovaport, Ohio 43125				Program:		al Comb	ustion R	Coal Combustion Residuals (CCR)	(CCR)		
Contacts: Dave Conover (614-836-4184)						Site Contact:	H H		3	Date:	COC/Order #:
Project Name: Pirkey PP Semi-Annual CCR Contact Name: Leslie Fuerschbach Contact Phone: 318-673-2744	Analysis © Re	Furnaround	Analysis Turnaround Time (in Calendar Days)	ilendar Da Monitor		Wels)	250 mL bottle, pH<2, t	Field-filter 250 mL bottle, then pH<2, HNO3	1 L bottle, Cool, 0-6C	Three (six every 10th*) 1 L bottles, pH<2, HNO3	papagaga papidad
Sampler(s) Matt Hamilton Kenny McDonald					-	gleja		ыспіў	.Br, inity	822-1	
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) Inl	Метситу	M beviossid	F, CI, SO4,	Fa-226, Fa	Sample Specific Notes:
AD-2	6/21/2022	849	ŋ	GW	-				×	N A	
AD-3	6/21/2022	1123	9	МЭ	-		3000		×		
AD-4	621/2022	1034	၅	GW	-				×		
AD-7	6/21/2022	947	ຶ່	GW	-	\dashv			×		
AD-12	6/20/2022	852	ŋ	GW	-				×		
AD-13	6/20/2022	843	G	GW	-				×		
AD-17	8/21/2022	1040	၅	GW	-	1000			×		
AD-18	6/21/2022	817	ပ	GW	-				×		
AD-22	6/20/2022	953	g	GW	-				×		
AD-28	6/21/2022	956	g	GW	-				×		
AD-30	6/20/2022	1129	ပ	ВW	-			9	×		
AD-31	6/20/2022	1043	G	GW	-	1000			×		
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	4NO3; 5=Na	OH; 6= Ot	her	; F= filter	ilter in field	ield	4	F4	1	4	
Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.									

Special Instructions/QC Requirements & Comments:

Relinquished by: Bot Sam	Some	Date/Time 160 Received by:	Received by:	Date/Time:
Relinquished by:	Company	Je.	Received by:	Date/Time:
Relinquished by:	Company	Date/Time	Received in Abonatory by:	Date/Time: 122 10:30 PM
TANGET OF THE COMPANY OF THE PROPERTY OF THE P	Contraction of the Contraction o	To College State Of	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

MATER & WASTE SAMPLE RECEIPT FORM (IR#1)

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UP GOEX USPS
	Other
Plant/Customer Puney	Number of Plastic Containers:
Opened By MGK	Number of Glass Containers:
Date/Time 6/24/22 10:30 A	Number of Mercury Containers:
Were all temperatures within 0-6°C? N	or N/A Initial: M&K (on ice) no ice
(IR Gun Ser# 210441568, Expir.5/27/2023)	- If No, specify each deviation:
Was container in good condition? Y N	Comments
Was Chain of Custody received? Y/ N	Comments
Requested turnaround: Routine	If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) NO ₂ or (24 hr)	NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? (Y) N	Comments
Were samples labeled properly? (Y) N	Comments
Were correct containers used? (Y) N	Comments
Was pH checked & Color Coding done?	N or N/A Initial & Date: Work 6/24/22
pH paper (circle one): MQuant pH Cat 1. lot HC904495	09535.0001 [OR] Lab rat pH Cat # LRS -4801 Lot X000RWDG21
- Was Add'l Preservative needed? Y (N)	If Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / N	Comments(See Prep Book)
Was the customer contacted? If Yes	Person Contacted:
Lab ID# 221989 Initial 8	& Date & Time :
Logged by Comm	ents:

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Dolan Chemical Laboratory

Sample Receipt Form SOP-7102

Page I of I

÷.

Municipal Solid Waste Laboratory Review Checklist

This signature page, and the laboratory review checklist consisting of Table 1, Reportable Date (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. R1 Field chain-of-custody documentation R2 Sample identification cross-reference R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 20 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) R4 Surrogate recovery data including: (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits R5 Test reports/summary forms for blank samples R6 Test reports/summary forms for blank samples R6 Test reports/summary forms for blank samples (c) The laboratory's LCS QC limits (a) LCS spiking amounts (b) Calculated 'R6 for each analyte (c) The laboratory's LCS QC limits (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samp (d) Calculated '%Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates R9 List of method quantitation limits (MQLs) for each analyte for each method and matri R10 Other problems or anomalies R10 Other problems or anomalies T10 The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: 1 am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception responding to rule. The official	This da	ıta pack	age consists o	f:				
Image: Process of the content of the project of t	×	(which	includes the i	eportable data identifi				
R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Hems specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 20 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) R4 Surrogate recovery data including: (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits R5 Test reports/summary forms for blank samples R6 Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samp (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates R8 List of method quantitation limits (MQLs) for each analyte for each method and matrix R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory as having the potential to affect the quality of the data, have been indentified by the laboratory as having the	x	R1	Field chain-o	f-custody documentati	on			
R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Hems specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 20 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) R4 Surrogate recovery data including: (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits R5 Test reports/summary forms for blank samples R6 Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samp (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates R8 List of method quantitation limits (MQLs) for each analyte for each method and matrix R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory as having the potential to affect the quality of the data, have been indentified by the laboratory as having the	x	R2	Sample ident	ification cross-referenc	e			
(a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits R5 Test reports/summary forms for blank samples R6 Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samp (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates R9 List of method quantitation limits (MQLs) for each analyte for each method and matri R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, obser by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been		R3	(a) Items sp NELAC S(b) Dilution(c) Preparat(d) Cleanup	ecified in NELAC Chap Standard factors ion methods methods	ter 5 for	reporting results,	e.g., Sectio	
X R5 Test reports/summary forms for blank samples X R6 Test reports/summary forms for laboratory control samples (LCSs) including:	NA	R4	(a) Calculate	ed recovery (%R)	imits			
R6	х	R ₅				oles		
(a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samp (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits ■ R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates ■ R9 List of method quantitation limits (MQLs) for each analyte for each method and matri ■ R10 Other problems or anomalies ■ The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, obser by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly with that would affect the quality of the data. Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data used is responsible for releasing this data package and is by signature affirming the above release statement is true. Michael Ohilnger			(a) LCS spik (b) Calculate	ring amounts ed %R for each analyte	oratory	control samples (L	.CSs) inclu	ding:
(a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates R9 List of method quantitation limits (MQLs) for each analyte for each method and matri R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, obser by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly with that would affect the quality of the data. Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data used is responsible for releasing this data package and is by signature affirming the above release statement is true. Michael Ohilnger	X	R7	(a) Samples(b) MS/MSI(c) Concent(d) Calculate	associated with the MSD spiking amounts ration of each MS/MSI ed %Rs and relative pe	S/MSD of Danalytercent dif	clearly identified e measured in the p	·	_
R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, obserby the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly with that would affect the quality of the data. Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data used is responsible for releasing this data package and is by signature affirming the above release statement is true. Michael Ohilnger Chemist	X	R8	(a) The amo	ount of analyte measure ulated RPD	ed in the	duplicate	ecision:	
The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, obserby the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly with that would affect the quality of the data. Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data used is responsible for releasing this data package and is by signature affirming the above release statement is true. Michael Ohilnger Chemist	×	R9	List of metho	d quantitation limits (l	MQLs) f	or each analyte for	each meth	od and matrix
Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, obser by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly with that would affect the quality of the data. Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data used is responsible for releasing this data package and is by signature affirming the above release statement is true. Michael Ohilnger Chemist	x	R10	Other proble	ms or anomalies				
package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, obser by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly with that would affect the quality of the data. Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data used is responsible for releasing this data package and is by signature affirming the above release statement is true. Michael Ohilnger Chemist	x	The Ex	ception Repo	rt for every item for wh	ich the	result is "No" or "N	R" (Not Re	viewed)
responding to rule. The official signing the cover page of the rule-required report in which these data used is responsible for releasing this data package and is by signature affirming the above release statement is true. Michael Ohilnger Chemist	packag require reports by the laborat	ge as be ements s. By m laborat tory in t	en reviewed bof the method y signature botory as having the Laboratory	y the laboratory and is used, except where n elow, I affirm to the best the potential to affect to Review Checklist, and	comple oted by st of my the qual	te and technically on the laboratory in the knowledge, all pro ity of the data, have	compliant v ne attached blems/ano e been iden	vith the exception malies, observed tified by the
rame (printed) Signature / Official little pate /	respon used is statem Micha	ding to respon ent is to ael Oh	rule. The office sible for releat rue. nilnger	cial signing the cover pa	age of th	e rule-required rep y signature affirmin –	ort in which	ch these data are

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Michael Ohlinger

LRC Date: 7/29/22

Laboratory Job Number: 221989

Prep Batch Number(s): QC2206187

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	ļ
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Michael Ohlinger

LRC Date: 7/29/22

Laboratory Job Number: 221989

Prep Batch Number(s): QC2206187

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	0, 1	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	Ī	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
52	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	016-
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S 6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
58	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S 9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey PP Semi-Annual CCR
Reviewer Name: Michael Ohlinger

LRC Date: 7/29/22

Laboratory Job Number: 221989

Prep Batch Number(s): QC2206187

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB<0.5*MQL.
_	

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This da	ta pack	age consists of:			
X	(which		nd the laboratory review chec portable data identified on th ports.		
×	Rı		custody documentation		
×	R2		cation cross-reference		
X	R ₃	Test reports (an (a) Items spector NELAC State (b) Dilution far (c) Preparatio (d) Cleanup m	nalytical data sheets) for each ified in NELAC Chapter 5 for andard actors n methods	reporting results, e.g., Section	
X	R4	Surrogate reco	very data including: recovery (%R) story's surrogate QC limits	compounds (1100)	
×	R ₅	Test reports/su	ımmary forms for blank sam	ples	
X	R6	(a) LCS spikir (b) Calculated	nmmary forms for laboratory ng amounts . %R for each analyte ntory's LCS QC limits	control samples (LCSs) inclu	ding:
x	R7	(a) Samples a(b) MS/MSD(c) Concentra(d) Calculated	r project matrix spike/matrix ssociated with the MS/MSD of spiking amounts tion of each MS/MSD analyt l %Rs and relative percent dis atory's MS/MSD QC limits	clearly identified e measured in the parent and	_
X	R8	(a) The amou(b) The calcul	alytical duplicate (if applicabl nt of analyte measured in the ated RPD atory's QC limits for analytica	duplicate	
×	R9	List of method	quantitation limits (MQLs) f	or each analyte for each meth	od and matrix
×	R10	Other problem	s or anomalies	-	
×	The Ex	ception Report	for every item for which the	result is "No" or "NR" (Not R	eviewed)
packag require reports by the laborat	e as be ements s. By m laborat tory in t	en reviewed by of the methods y signature bel tory as having tl	esponsible for the release of the laboratory and is comple used, except where noted by ow, I affirm to the best of my ne potential to affect the qual Review Checklist, and no infof the data.	te and technically compliant the laboratory in the attached knowledge, all problems/andity of the data, have been iden	with the d exception omalies, observed ntified by the
respon used is	ding to	rule. The official sible for releasi	his laboratory is an in-house al signing the cover page of th ng this data package and is b	e rule-required report in whi	ich these data are
Timo	thy E.	Arnold	Juilly & Chalel	Chemist Principle	7/13/2022
Name	(printe	d)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey PP Semi-Annual CCR
Reviewer Name: Timothy E. Arnold
LRC Date: 7/13/2022
Laboratory Job Number: 221989
Prep Batch Number(s): QC2207051

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	1	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
•	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soll and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	Yes	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	YES	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	1	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
•	I	Was the LCSD RPD within QC limits?	Yes	
R7	0, 1	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	1	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	0, 1	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	:
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies	,	
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey PP Semi-Annual CCR
Reviewer Name: Timothy E. Arnold
LRC Date: 7/13/2022

Laboratory Job Number: 221989

Prep Batch Number(s): QC2207051

Result Exception (Yes, Analytes² Item¹ Description Report No, NA, No.4 NR)3 Initial calibration (ICAL) **S1** 0, I Were response factors and/or relative response NA I factors for each analyte within QC limits? Were percent RSDs or correlation coefficient criteria I Yes met? Was the number of standards recommended in the I Yes method used for all analytes? Were all points generated between the lowest and Ī Yes highest standard used to calculate the curve? Are ICAL data available for all instruments used? I Yes Has the initial calibration curve been verified using an Ī Yes appropriate second source standard? Initial and continuing calibration verification 0, I **S2** (ICCV and CCV) and continuing calibration blank (CCB): Was the CCV analyzed at the method-required Ĭ Yes frequency? Were percent differences for each analyte within the Yes I method-required QC limits? I Was the ICAL curve verified for each analyte? Yes Was the absolute value of the analyte concentration in I No ER1 the inorganic CCB < MDL? O Mass spectral tuning: **S**3 Was the appropriate compound for the method used NA I for tuning? Were ion abundance data within the method-required NA Ī QC limits? **S4** 0 Internal standards (IS): Were IS area counts and retention times within the NA I method-required QC limits? Raw data (NELAC section 1 appendix A glossary, **S5** O, I and section 5.) Were the raw data (for example, chromatograms, I Yes spectral data) reviewed by an analyst? Were data associated with manual integrations I NA flagged on the raw data?

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	1	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey PP Semi-Annual CCR
Reviewer Name: Timothy E. Arnold
LRC Date: 7/13/2022
Laboratory Job Number: 221989
Prep Batch Number(s): QC2207051

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: х This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. X Rı Field chain-of-custody documentation X R2 Sample identification cross-reference X Test reports (analytical data sheets) for each environmental sample that includes: R3 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA. Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits х R_5 Test reports/summary forms for blank samples X Test reports/summary forms for laboratory control samples (LCSs) including: **R6** (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits х Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits х R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates х R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix х R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Chemist Michael Ohlinger

Official Title

Name (printed)

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Michael Ohlinger

LRC Date: 7/29/22

Laboratory Job Number: 221989

Prep Batch Number(s): QC2207061 & QC2207063

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	NA	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	No	ER1
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	No	ER2
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Michael Ohlinger

LRC Date: 4/5/22

Laboratory Job Number: 221989

Prep Batch Number(s): QC2207061 & QC2207063

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	NA	
·	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S 2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
\$15	Ο, Ι	Verification/validation documentation for methods (NELAC Chap 5n 5)		
,	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
\$16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Michael Ohlinger

LRC Date: 7/29/22

Laboratory Job Number: 221989

Prep Batch Number(s): QC2207061 & QC2207063

Exception Report No.	Description									
ER1	Sample analysis performed past holding time for 221989-002.									
ER2	The precision between duplicate results was above acceptance limits for the duplicate analyzed on 221989-002									

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-2 Customer Description:

Lab Number: 222015-001 Preparation:

Date Collected: 06/21/2022 09:49 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.1 µg/L	5	0.5	0.1 U1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Arsenic	2.0 μg/L	5	0.5	0.2	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Barium	17. 5 μg/L	5	1.0	0.3	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Beryllium	0.85 µg/L	5	0.25	0.04	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Boron	3.26 mg/L	. 5	0.25	0.05	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Cadmium	0.11 µg/L	5	0.10	0.02	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Calcium	3.4 mg/L	. 5	0.3	0.1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Chromium	0.5 µg/L	5	1.0	0.2 J1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Cobalt	25.7 μg/L	5	0.10	0.02	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Lead	0.6 µg∕L	5	1.0	0.3 J1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Lithium	0.0688 mg/L	. 5	0.0010	0.0003	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Magnesium	7.1 mg/L	. 5	0.5	0.1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Mercury	244 ng/L	4	20	7	JAB	07/12/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.5 µg/L	5	2.5	0.5 U1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Potassium	1.4 mg/L	. 5	0.5	0.1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Selenium	2.7 μg/L	5	2.5	0.5	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Sodium	111 mg/l	. 5	1.0	0.3 M1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Strontium	0.048 mg/L	. 5	0.010	0.002	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4
Thallium	0.3 μg/L	5	1.0	0.2 J1	GES	07/12/2022 14:16	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.59 pCi/L	0.17	0.28	ST	06/30/2022 14:29	SW-846 9315-1986, Rev. 0
Carrier Recovery	95.1 %					
Radium-228	1.28 pCi/L	0.17	0.52	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	87.8 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-2 Customer Description:
Lab Number: 222015-001-01 Preparation: Dissolved

Date Collected: 06/21/2022 09:49 EDT Date Received: 06/27/2022 14:08 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.1 µg/L	5	0.5	0.1 U1	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Arsenic	1. 6 μg/L	5	0.5	0.2	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Barium	17.8 μg/L	5	1.0	0.3	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Beryllium	0.80 µg/L	5	0.25	0.04	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Cadmium	0.11 µg/L	5	0.10	0.02	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Chromium	0.5 μg/L	5	1.0	0.2 J1	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Cobalt	25.4 μg/L	5	0.10	0.02	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Iron	0.13 mg/L	5	0.10	0.03	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Lead	0.7 µg/L	5	1.0	0.3 J1	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Lithium	0.0673 mg/L	5	0.0010	0.0003	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Manganese	0.096 mg/L	5	0.005	0.001	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.5 µg/L	5	2.5	0.5 U1	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Selenium	2.2 μg/L	5	2.5	0.5 J1	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4
Thallium	<0.2 µg/L	5	1.0	0.2 U1	GES	07/12/2022 15:18	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-3 Customer Description:

Lab Number: 222015-002 Preparation:

Date Collected: 06/21/2022 12:23 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.1 µg/L	5	0.5	0.1 U1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Arsenic	0.2 μg/L	5	0.5	0.2 J1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Barium	55.6 μg/L	5	1.0	0.3	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Beryllium	0.22 μg/L	5	0.25	0.04 J1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Boron	0.08 mg/L	5	0.25	0.05 J1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.02 µg/L	5	0.10	0.02 U1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Calcium	3.1 mg/L	5	0.3	0.1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Chromium	0.3 μg/L	5	1.0	0.2 J1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Cobalt	2.70 μg/L	5	0.10	0.02	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Lead	<0.3 µg/L	5	1.0	0.3 U1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Lithium	0.0457 mg/L	5	0.0010	0.0003	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Magnesium	1.4 mg/L	5	0.5	0.1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Mercury	4 ng/L	1	5	2 J1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.5 µg/L	5	2.5	0.5 U1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Potassium	2.1 mg/L	5	0.5	0.1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Selenium	<0.5 µg/L	5	2.5	0.5 U1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Sodium	7.5 mg/L	5	1.0	0.3	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Strontium	0.020 mg/L	5	0.010	0.002	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4
Thallium	<0.2 µg/L	5	1.0	0.2 U1	GES	07/12/2022 15:23	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.04 pCi/L	0.23	0.29	ST	06/30/2022 14:29	SW-846 9315-1986, Rev. 0
Carrier Recovery	88.2 %					
Radium-228	0.64 pCi/L	0.14	0.45	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	90.1 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-3 Customer Description:
Lab Number: 222015-002-01 Preparation: Dissolved

Date Collected: 06/21/2022 12:23 EDT Date Received: 06/27/2022 14:08 EDT

motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.1 µg/L	5	0.5	0.1 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.2 µg/L	5	0.5	0.2 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Barium	49.5 μg/L	5	1.0	0.3	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Beryllium	0.14 µg/L	5	0.25	0.04 J1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.02 µg/L	5	0.10	0.02 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Chromium	0.4 μg/L	5	1.0	0.2 J1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Cobalt	2.2 5 μg/L	5	0.10	0.02	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Iron	<0.03 mg/L	5	0.10	0.03 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Lead	<0.3 µg/L	5	1.0	0.3 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Lithium	0.0459 mg/L	5	0.0010	0.0003	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Manganese	0.025 mg/L	5	0.005	0.001	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Mercury	3 ng/L	1	5	2 J1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.5 µg/L	5	2.5	0.5 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Selenium	<0.5 µg/L	5	2.5	0.5 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4
Thallium	<0.2 µg/L	5	1.0	0.2 U1	GES	07/12/2022 15:28	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-4 Customer Description:

Lab Number: 222015-003 Preparation:

Date Collected: 06/21/2022 11:34 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Arsenic	0.30 µg/L	1	0.10	0.03	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Barium	124 µg/L	1	0.20	0.05	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Beryllium	0.407 µg/L	1	0.050	0.007	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Boron	0.020 mg/L	1	0.050	0.009 J1	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Cadmium	0.021 µg/L	1	0.020	0.004	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Calcium	2.51 mg/L	1	0.05	0.02	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Chromium	0.46 µg/L	1	0.20	0.04	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Cobalt	4.10 µg/L	1	0.020	0.003	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Lithium	0.0220 mg/L	1	0.00020	0.00005	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Magnesium	0.76 mg/L	1	0.10	0.02	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Mercury	4 ng/L	1	5	2 J1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Potassium	2.21 mg/L	1	0.10	0.02	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Sodium	6.94 mg/L	1	0.20	0.05	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Strontium	0.0184 mg/L	1	0.0020	0.0004	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 µg/L	1	0.20	0.04 J1	GES	07/12/2022 14:47	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.66 pCi/L	0.18	0.26	ST	06/30/2022 14:29	SW-846 9315-1986, Rev. 0
Carrier Recovery	93.3 %					
Radium-228	0.65 pCi/L	0.14	0.47	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	89.0 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-4 Customer Description:
Lab Number: 222015-003-01 Preparation: Dissolved

Date Collected: 06/21/2022 11:34 EDT Date Received: 06/27/2022 14:08 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/L	1	0.10	0.03 U1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Barium	104 μg/L	1	0.20	0.05	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Beryllium	0.226 μg/L	1	0.050	0.007	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Cadmium	0.016 μg/L	1	0.020	0.004 J1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Chromium	0.27 μg/L	1	0.20	0.04	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Cobalt	3.12 µg/L	1	0.020	0.003	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Iron	0.019 mg/L	1	0.020	0.006 J1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Lead	0.14 μg/L	1	0.20	0.05 J1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Lithium	0.0233 mg/L	1	0.00020	0.00005	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Manganese	0.0289 mg/L	1	0.0010	0.0002	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 µg/L	1	0.20	0.04 J1	GES	07/12/2022 14:52	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-7 Customer Description:

Lab Number: 222015-004 Preparation:

Date Collected: 06/21/2022 10:47 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.1 µg/L	5	0.5	0.1 U1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Arsenic	1.3 µg/L	5	0.5	0.2	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Barium	58.7 μg/L	5	1.0	0.3	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Beryllium	4.66 μg/L	5	0.25	0.04	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Boron	6.13 mg/L	5	0.25	0.05	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Cadmium	0.95 µg∕L	5	0.10	0.02	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Calcium	5.4 mg/L	5	0.3	0.1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Chromium	0.4 μg/L	5	1.0	0.2 J1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Cobalt	36.4 µg/L	5	0.10	0.02	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Lead	1.0 μg/L	5	1.0	0.3	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Lithium	0.113 mg/L	5	0.0010	0.0003	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Magnesium	8.9 mg/L	5	0.5	0.1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Mercury	<400 ng/L	200	1000	400 U1	JAB	07/12/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.5 µg/L	5	2.5	0.5 U1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Potassium	3.2 mg/L	5	0.5	0.1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Selenium	2.3 µg/L	5	2.5	0.5 J1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Sodium	22.6 mg/L	5	1.0	0.3	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Strontium	0.058 mg/L	5	0.010	0.002	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4
Thallium	0.2 μg/L	5	1.0	0.2 J1	GES	07/12/2022 15:33	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.59 pCi/L	0.38	0.35	ST	06/30/2022 14:29	SW-846 9315-1986, Rev. 0
Carrier Recovery	79.1 %					
Radium-228	2.23 pCi/L	0.16	0.46	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	84.4 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-7 Customer Description:
Lab Number: 222015-004-01 Preparation: Dissolved

Date Collected: 06/21/2022 10:47 EDT Date Received: 06/27/2022 14:08 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Arsenic	1.38 µg/L	1	0.10	0.03	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Barium	54.1 μg/L	1	0.20	0.05	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Beryllium	3.55 µg∕L	1	0.050	0.007	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Cadmium	0.972 μg/L	1	0.020	0.004	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Chromium	0.34 μg/L	1	0.20	0.04	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Cobalt	35.4 μg/L	1	0.020	0.003	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Iron	0.324 mg/L	1	0.020	0.006	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Lead	1. 06 μg/L	1	0.20	0.05	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Lithium	0.0887 mg/L	1	0.00020	0.00005	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Manganese	0.142 mg/L	1	0.0010	0.0002	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Mercury	<20 ng/L	10	50	20 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.2 μg/L	1	0.5	0.1 J1	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Selenium	2.1 5 μg/L	1	0.50	0.09	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4
Thallium	0.21 µg/L	1	0.20	0.04	GES	07/12/2022 15:02	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-12 Customer Description:

Lab Number: 222015-005 Preparation:

Date Collected: 06/20/2022 09:52 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Arsenic	0.08 µg/L	1	0.10	0.03 J1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Barium	24.2 μg/L	1	0.20	0.05	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Beryllium	0.135 μg/L	1	0.050	0.007	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Boron	0.042 mg/L	1	0.050	0.009 J1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Cadmium	0.008 µg/L	1	0.020	0.004 J1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Calcium	0.32 mg/L	1	0.05	0.02	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Chromium	0.63 µg/L	1	0.20	0.04	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Cobalt	1.35 µg/L	1	0.020	0.003	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Lead	0.08 µg/L	1	0.20	0.05 J1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Lithium	0.00949 mg/L	1	0.00020	0.00005	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Magnesium	0.45 mg/L	1	0.10	0.02	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Potassium	0.53 mg/L	1	0.10	0.02	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Selenium	0.16 µg/L	1	0.50	0.09 J1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Sodium	5.28 mg/L	1	0.20	0.05	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Strontium	0.0030 mg/L	1	0.0020	0.0004	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 15:07	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.51 pCi/L	0.16	0.28	ST	06/30/2022 14:29	SW-846 9315-1986, Rev. 0
Carrier Recovery	93.1 %					
Radium-228	0.12 pCi/L	0.11	0.37	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	96.0 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-12 Customer Description:
Lab Number: 222015-005-01 Preparation: Dissolved

Date Collected: 06/20/2022 09:52 EDT Date Received: 06/27/2022 14:08 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Arsenic	0.06 μg/L	1	0.10	0.03 J1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Barium	24.4 μg/L	1	0.20	0.05	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Beryllium	0.131 µg/L	1	0.050	0.007	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Cadmium	0.009 μg/L	1	0.020	0.004 J1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Chromium	0.33 µg/L	1	0.20	0.04	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Cobalt	1.30 µg/L	1	0.020	0.003	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Iron	0.006 mg/L	1	0.020	0.006 J1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Lead	0.07 μg/L	1	0.20	0.05 J1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Lithium	0.00918 mg/L	1	0.00020	0.00005	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Manganese	0.0052 mg/L	1	0.0010	0.0002	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Selenium	0. 12 μg/L	1	0.50	0.09 J1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 15:13	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-13 Customer Description:

Lab Number: 222015-006 Preparation:

Date Collected: 06/20/2022 09:43 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Arsenic	4.30 μg/L	1	0.10	0.03	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Barium	41.4 µg/L	1	0.20	0.05	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Beryllium	0.409 μg/L	1	0.050	0.007	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Boron	0.075 mg/L	1	0.050	0.009	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Calcium	11.1 mg/L	1	0.05	0.02	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Chromium	0.31 μg/L	1	0.20	0.04	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Cobalt	56.2 μg/L	1	0.020	0.003 M1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Lithium	0.150 mg/L	1	0.00020	0.00005 M1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Magnesium	15.7 mg/L	1	0.10	0.02	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	1.1 µg/L	1	0.5	0.1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Potassium	5.19 mg/L	1	0.10	0.02	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Selenium	0.1 μg/L	1	0.50	0.09 J1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Sodium	21.4 mg/L	1	0.20	0.05	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Strontium	0.0509 mg/L	1	0.0020	0.0004	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 16:40	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.15 pCi/L	0.24	0.29	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	93.3 %					
Radium-228	1.07 pCi/L	0.14	0.45	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	95.1 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-13 Customer Description:
Lab Number: 222015-006-01 Preparation: Dissolved

Date Collected: 06/20/2022 09:43 EDT Date Received: 06/27/2022 14:08 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Arsenic	0.80 µg/L	1	0.10	0.03	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Barium	40.0 μg/L	1	0.20	0.05	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Beryllium	0.203 μg/L	1	0.050	0.007	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Cadmium	0.005 μg/L	1	0.020	0.004 J1	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Chromium	0.27 μg/L	1	0.20	0.04	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Cobalt	55.8 μg/L	1	0.020	0.003	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Iron	47.8 mg/L	1	0.020	0.006	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Lithium	0.146 mg/L	1	0.00020	0.00005	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Manganese	0.550 mg/L	1	0.0010	0.0002	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.8 μg/L	1	0.5	0.1	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 μg/L	1	0.20	0.04 J1	GES	07/12/2022 17:11	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-17 Customer Description:

Lab Number: 222015-007 Preparation:

Date Collected: 06/21/2022 11:40 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Arsenic	0.39 µg/L	1	0.10	0.03	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Barium	250 μg/L	1	0.20	0.05	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Beryllium	0.650 μg/L	1	0.050	0.007	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Boron	0.021 mg/L	1	0.050	0.009 J1	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Cadmium	0.063 µg/L	1	0.020	0.004	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Calcium	1.10 mg/L	1	0.05	0.02	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Chromium	0.51 µg/L	1	0.20	0.04	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Cobalt	12.2 μg/L	1	0.020	0.003	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Lead	0.13 µg/L	1	0.20	0.05 J1	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Lithium	0.0206 mg/L	1	0.00020	0.00005	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Magnesium	4.35 mg/L	1	0.10	0.02	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Mercury	200 ng/L	100	500	200 J1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Potassium	1.11 mg/L	1	0.10	0.02	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Selenium	0.44 µg/L	1	0.50	0.09 J1	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Sodium	8.53 mg/L	1	0.20	0.05	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Strontium	0.0206 mg/L	1	0.0020	0.0004	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 μg/L	1	0.20	0.04 J1	GES	07/12/2022 17:21	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	7.36 pCi/L	0.63	0.30	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	94.4 %					
Radium-228	4.60 pCi/L	0.17	0.41	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	94.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-17 Customer Description:
Lab Number: 222015-007-01 Preparation: Dissolved

Date Collected: 06/21/2022 11:40 EDT Date Received: 06/27/2022 14:08 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Arsenic	0.17 µg/L	1	0.10	0.03	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Barium	24 5 μg/L	1	0.20	0.05	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Beryllium	0.489 µg/L	1	0.050	0.007	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Cadmium	0.061 µg/L	1	0.020	0.004	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Chromium	0.47 μg/L	1	0.20	0.04	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Cobalt	11. 5 μg/L	1	0.020	0.003	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Iron	0.021 mg/L	1	0.020	0.006	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Lead	0.24 μg/L	1	0.20	0.05	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Lithium	0.0198 mg/L	1	0.00020	0.00005	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Manganese	0.0377 mg/L	1	0.0010	0.0002	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Mercury	<200 ng/L	100	500	200 U1	JAB	07/08/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Selenium	0.20 μg/L	1	0.50	0.09 J1	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 µg/L	1	0.20	0.04 J1	GES	07/12/2022 17:31	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-18 Customer Description:

Lab Number: 222015-008 Preparation:

Date Collected: 06/21/2022 09:17 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Arsenic	0.30 µg/L	1	0.10	0.03	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Barium	79.3 µg∕L	1	0.20	0.05	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Beryllium	0.073 μg/L	1	0.050	0.007	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Boron	<0.009 mg/L	1	0.050	0.009 U1	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012 μg/L	1	0.020	0.004 J1	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Calcium	1.49 mg/L	1	0.05	0.02	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Chromium	0.47 μg/L	1	0.20	0.04	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Cobalt	0.790 μg/L	1	0.020	0.003	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Lead	0.11 µg/L	1	0.20	0.05 J1	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Lithium	0.0108 mg/L	1	0.00020	0.00005	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Magnesium	0.30 mg/L	1	0.10	0.02	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Mercury	<7 ng/L	4	20	7 U1	JAB	07/12/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Potassium	0.70 mg/L	1	0.10	0.02	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Selenium	0.14 μg/L	1	0.50	0.09 J1	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Sodium	5.16 mg/L	1	0.20	0.05	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Strontium	0.0069 mg/L	1	0.0020	0.0004	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 17:42	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.55 pCi/L	0.17	0.30	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	96.7 %					
Radium-228	0.18 pCi/L	0.17	0.58	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	92.3 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-18 Customer Description:
Lab Number: 222015-008-01 Preparation: Dissolved

Date Collected: 06/21/2022 09:17 EDT Date Received: 06/27/2022 14:08 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Arsenic	0.05 μg/L	1	0.10	0.03 J1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Barium	31.8 μg/L	1	0.20	0.05	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.007 µg/L	1	0.050	0.007 U1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Chromium	0.29 µg/L	1	0.20	0.04	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Cobalt	0.237 μg/L	1	0.020	0.003	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Iron	0.024 mg/L	1	0.020	0.006	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Lead	0.07 μg/L	1	0.20	0.05 J1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Lithium	0.0107 mg/L	1	0.00020	0.00005	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Manganese	0.0008 mg/L	1	0.0010	0.0002 J1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Mercury	8 ng/L	4	20	7 J1	JAB	07/12/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 17:52	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-22 Customer Description:

Lab Number: 222015-009 Preparation:

Date Collected: 06/20/2022 10:53 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Arsenic	3.02 μg/L	1	0.10	0.03	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Barium	16.2 μg/L	1	0.20	0.05	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Beryllium	2.11 μg/L	1	0.050	0.007	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Boron	0.028 mg/L	1	0.050	0.009 J1	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Cadmium	0.587 μg/L	1	0.020	0.004	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Calcium	11.9 mg/L	1	0.05	0.02	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Chromium	0.66 μg/L	1	0.20	0.04	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Cobalt	69.6 μg/L	1	0.020	0.003	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Lead	0.18 μg/L	1	0.20	0.05 J1	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Lithium	0.110 mg/L	1	0.00020	0.00005	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Magnesium	15.6 mg/L	1	0.10	0.02	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Mercury	460 ng/L	10	50	20	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.1 μg/L	1	0.5	0.1 J1	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Potassium	3.63 mg/L	1	0.10	0.02	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Selenium	2.01 μg/L	1	0.50	0.09	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Sodium	90.5 mg/L	1	0.20	0.05	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Strontium	0.0955 mg/L	1	0.0020	0.0004	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4
Thallium	0.15 μg/L	1	0.20	0.04 J1	GES	07/12/2022 18:02	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.96 pCi/L	0.31	0.33	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	96.0 %					
Radium-228	1.99 pCi/L	0.19	0.58	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	92.5 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-22 Customer Description:
Lab Number: 222015-009-01 Preparation: Dissolved

Date Collected: 06/20/2022 10:53 EDT Date Received: 06/27/2022 14:08 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Arsenic	2.14 μg/L	1	0.10	0.03	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Barium	16.3 μg/L	1	0.20	0.05	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Beryllium	2.2 5 μg/L	1	0.050	0.007	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Cadmium	0.564 μg/L	1	0.020	0.004	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Chromium	0.41 µg/L	1	0.20	0.04	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Cobalt	74.5 μg/L	1	0.020	0.003	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Iron	38.1 mg/L	1	0.020	0.006	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Lead	0.1 µg/L	1	0.20	0.05 J1	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Lithium	0.125 mg/L	1	0.00020	0.00005	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Manganese	0.351 mg/L	1	0.0010	0.0002	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Mercury	4 ng/L	1	5	2 J1	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Selenium	2.13 μg/L	1	0.50	0.09	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4
Thallium	0.15 µg/L	1	0.20	0.04 J1	GES	07/12/2022 18:12	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-28 Customer Description:

Lab Number: 222015-010 Preparation:

Date Collected: 06/21/2022 10:56 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Arsenic	0.14 μg/L	1	0.10	0.03	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Barium	130 μg/L	1	0.20	0.05	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Beryllium	0.463 μg/L	1	0.050	0.007	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Boron	0.311 mg/L	1	0.050	0.009	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Cadmium	0.047 μg/L	1	0.020	0.004	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Calcium	1.40 mg/L	1	0.05	0.02	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Chromium	0.40 μg/L	1	0.20	0.04	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Cobalt	13.3 μg/L	1	0.020	0.003	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Lead	0.08 µg/L	1	0.20	0.05 J1	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Lithium	0.0213 mg/L	1	0.00020	0.00005	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Magnesium	2.95 mg/L	1	0.10	0.02	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Mercury	7 ng/L	1	5	2	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Potassium	0.78 mg/L	1	0.10	0.02	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Selenium	0.15 μg/L	1	0.50	0.09 J1	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Sodium	6.84 mg/L	1	0.20	0.05	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Strontium	0.0192 mg/L	1	0.0020	0.0004	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 18:23	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	5.02 pCi/L	0.51	0.30	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	85.4 %					
Radium-228	0.94 pCi/L	0.15	0.49	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	93.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-28 Customer Description:
Lab Number: 222015-010-01 Preparation: Dissolved

Date Collected: 06/21/2022 10:56 EDT Date Received: 06/27/2022 14:08 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Arsenic	0.11 μg/L	1	0.10	0.03	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Barium	131 µg/L	1	0.20	0.05	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Beryllium	0.486 μg/L	1	0.050	0.007	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Cadmium	0.054 μg/L	1	0.020	0.004	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Chromium	0.38 µg/L	1	0.20	0.04	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Cobalt	13.0 µg/L	1	0.020	0.003	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Iron	0.070 mg/L	1	0.020	0.006	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Lead	0.07 µg/L	1	0.20	0.05 J1	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Lithium	0.0226 mg/L	1	0.00020	0.00005	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Manganese	0.0530 mg/L	1	0.0010	0.0002	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Mercury	4 ng/L	1	5	2 J1	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Selenium	0. 21 μg/L	1	0.50	0.09 J1	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 18:33	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-30 Customer Description:

Lab Number: 222015-011 Preparation:

Date Collected: 06/20/2022 12:29 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Arsenic	0.23 µg/L	1	0.10	0.03	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Barium	106 μg/L	1	0.20	0.05	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Beryllium	0.089 µg/L	1	0.050	0.007	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Boron	2.49 mg/L	1	0.050	0.009	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Cadmium	0.014 µg/L	1	0.020	0.004 J1	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Calcium	0.75 mg/L	1	0.05	0.02	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Chromium	0.42 µg/L	1	0.20	0.04	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Cobalt	4.90 μg/L	1	0.020	0.003	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Lithium	0.0100 mg/L	1	0.00020	0.00005	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Magnesium	2.48 mg/L	1	0.10	0.02	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Mercury	14 ng/L	2	10	4	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Potassium	0.89 mg/L	1	0.10	0.02	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Selenium	0.34 µg/L	1	0.50	0.09 J1	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Sodium	87.2 mg/L	1	0.20	0.05	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Strontium	0.0114 mg/L	1	0.0020	0.0004	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 µg/L	1	0.20	0.04 J1	GES	07/12/2022 19:55	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.72 pCi/L	0.35	0.28	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	96.5 %					
Radium-228	0.99 pCi/L	0.15	0.47	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	91.7 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Reissued

4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Dolan Chemical Laboratory

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-30 Customer Description:
Lab Number: 222015-011-01 Preparation: Dissolved

Date Collected: 06/20/2022 12:29 EDT Date Received: 06/27/2022 14:08 EDT

otalo							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Arsenic	0.10 µg/L	1	0.10	0.03	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Barium	90.4 μg/L	1	0.20	0.05	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Beryllium	0.092 µg/L	1	0.050	0.007	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Cadmium	0.011 µg/L	1	0.020	0.004 J1	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Chromium	0.36 µg/L	1	0.20	0.04	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Cobalt	4.45 µg/L	1	0.020	0.003	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Iron	0.014 mg/L	1	0.020	0.006 J1	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Lead	0.05 µg/L	1	0.20	0.05 J1	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Lithium	0.00993 mg/L	1	0.00020	0.00005	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Manganese	0.0194 mg/L	1	0.0010	0.0002	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Mercury	6 ng/L	2	10	4 J1	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Selenium	0.18 µg/L	1	0.50	0.09 J1	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 20:00	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-31 Customer Description:

Lab Number: 222015-012 Preparation:

Date Collected: 06/20/2022 11:43 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Arsenic	0.42 μg/L	1	0.10	0.03	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Barium	34.1 μg/L	1	0.20	0.05	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Beryllium	1.03 μg/L	5	0.25	0.04	GES	07/14/2022 13:04	EPA 200.8-1994, Rev. 5.4
Boron	0.028 mg/L	1	0.050	0.009 J1	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Cadmium	0.071 μg/L	1	0.020	0.004	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Calcium	2.65 mg/L	1	0.05	0.02	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Chromium	0.59 μg/L	1	0.20	0.04	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Cobalt	9.61 μg/L	1	0.020	0.003	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Lead	0.35 μg/L	1	0.20	0.05	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Lithium	0.0844 mg/L	5	0.0010	0.0003	GES	07/14/2022 13:04	EPA 200.8-1994, Rev. 5.4
Magnesium	3.85 mg/L	1	0.10	0.02	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Mercury	89 ng/L	2	10	4	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Potassium	1.50 mg/L	1	0.10	0.02	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Selenium	0.33 μg/L	1	0.50	0.09 J1	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Sodium	30.7 mg/L	1	0.20	0.05	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Strontium	0.0376 mg/L	1	0.0020	0.0004	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4
Thallium	0.08 μg/L	1	0.20	0.04 J1	GES	07/12/2022 20:05	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.51 pCi/L	0.34	0.27	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	94.2 %					
Radium-228	2.09 pCi/L	0.15	0.42	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	90.8 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-31 Customer Description:
Lab Number: 222015-012-01 Preparation: Dissolved

Date Collected: 06/20/2022 11:43 EDT Date Received: 06/27/2022 14:08 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Arsenic	0.23 μg/L	1	0.10	0.03	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Barium	33.1 µg/L	1	0.20	0.05	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Beryllium	0.96 μg/L	5	0.25	0.04	GES	07/14/2022 13:09	EPA 200.8-1994, Rev. 5.4
Cadmium	0.061 µg/L	1	0.020	0.004	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Chromium	0.50 μg/L	1	0.20	0.04	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Cobalt	9.49 µg∕L	1	0.020	0.003	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Iron	0.114 mg/L	1	0.020	0.006	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Lead	0.31 µg/L	1	0.20	0.05	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Lithium	0.0860 mg/L	5	0.0010	0.0003	GES	07/14/2022 13:09	EPA 200.8-1994, Rev. 5.4
Manganese	0.0253 mg/L	1	0.0010	0.0002	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Mercury	9 ng/L	1	5	2	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Selenium	0.18 μg/L	1	0.50	0.09 J1	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4
Thallium	0.08 µg/L	1	0.20	0.04 J1	GES	07/12/2022 20:11	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-32 Customer Description:

Lab Number: 222015-013 Preparation:

Date Collected: 06/20/2022 10:51 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Arsenic	1.81 µg/L	1	0.10	0.03	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Barium	32.3 μg/L	1	0.20	0.05	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Beryllium	3.28 μg/L	5	0.25	0.04	GES	07/14/2022 13:14	EPA 200.8-1994, Rev. 5.4
Boron	0.909 mg/L	1	0.050	0.009	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Cadmium	0.318 μg/L	1	0.020	0.004	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Calcium	7.25 mg/L	1	0.05	0.02	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Chromium	0.68 μg/L	1	0.20	0.04	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Cobalt	27.2 μg/L	1	0.020	0.003	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Lead	0.43 μg/L	1	0.20	0.05	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Lithium	0.0923 mg/L	5	0.0010	0.0003	GES	07/14/2022 13:14	EPA 200.8-1994, Rev. 5.4
Magnesium	9.33 mg/L	1	0.10	0.02	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Mercury	2700 ng/L	100	500	200	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Potassium	3.05 mg/L	1	0.10	0.02	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Selenium	2.67 μg/L	1	0.50	0.09	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Sodium	33.8 mg/L	1	0.20	0.05	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Strontium	0.128 mg/L	1	0.0020	0.0004	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4
Thallium	0. 1 7 μg/L	1	0.20	0.04 J1	GES	07/12/2022 20:16	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	6.24 pCi/L	0.56	0.29	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	85.8 %					
Radium-228	7.63 pCi/L	0.23	0.55	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	89.7 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-32 Customer Description:
Lab Number: 222015-013-01 Preparation: Dissolved

Date Collected: 06/20/2022 10:51 EDT Date Received: 06/27/2022 14:08 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Arsenic	1.69 µg/L	1	0.10	0.03	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Barium	37.4 μg/L	1	0.20	0.05	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Beryllium	3.48 µg/L	5	0.25	0.04	GES	07/14/2022 13:19	EPA 200.8-1994, Rev. 5.4
Cadmium	0.342 µg/L	1	0.020	0.004	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Chromium	0.45 μg/L	1	0.20	0.04	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Cobalt	26.6 µg/L	1	0.020	0.003	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Iron	1.20 mg/L	1	0.020	0.006	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Lead	0.38 µg/L	1	0.20	0.05	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Lithium	0.0952 mg/L	5	0.0010	0.0003	GES	07/14/2022 13:19	EPA 200.8-1994, Rev. 5.4
Manganese	0.0517 mg/L	1	0.0010	0.0002	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Mercury	80 ng/L	20	100	40 J1	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Selenium	2.57 μg/L	1	0.50	0.09	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4
Thallium	0.18 µg/L	1	0.20	0.04 J1	GES	07/12/2022 20:21	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-33 Customer Description:

Lab Number: 222015-014 Preparation:

Date Collected: 06/20/2022 11:37 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.04 μg/L	1	0.10	0.02 J1	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Arsenic	1.19 µg/L	1	0.10	0.03	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Barium	42.0 μg/L	1	0.20	0.05	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Beryllium	0.939 μg/L	1	0.050	0.007	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Boron	0.093 mg/L	1	0.050	0.009	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Cadmium	0.039 μg/L	1	0.020	0.004	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Calcium	1. 06 mg/L	1	0.05	0.02	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Chromium	0.64 μg/L	1	0.20	0.04	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Cobalt	7.81 µg/L	1	0.020	0.003	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Lead	0.27 μg/L	1	0.20	0.05	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Lithium	0.0166 mg/L	1	0.00020	0.00005	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Magnesium	3.11 mg/L	1	0.10	0.02	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Mercury	3000 ng/L	100	500	200	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Potassium	0.27 mg/L	1	0.10	0.02	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Selenium	1.2 7 μg/L	1	0.50	0.09	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Sodium	16.7 mg/L	1	0.20	0.05	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Strontium	0.0218 mg/L	1	0.0020	0.0004	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 20:26	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.21 pCi/L	0.32	0.30	ST	06/30/2022 11:09	SW-846 9315-1986, Rev. 0
Carrier Recovery	93.6 %					
Radium-228	1.16 pCi/L	0.14	0.42	TTP	07/05/2022 17:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	90.0 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-33 Customer Description:
Lab Number: 222015-014-01 Preparation: Dissolved

Date Collected: 06/20/2022 11:37 EDT Date Received: 06/27/2022 14:08 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Arsenic	0.72 μg/L	1	0.10	0.03	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Barium	41.3 µg/L	1	0.20	0.05	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Beryllium	0.863 μg/L	1	0.050	0.007	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Cadmium	0.038 µg/L	1	0.020	0.004	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Chromium	0.33 µg/L	1	0.20	0.04	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Cobalt	7.29 µg/L	1	0.020	0.003	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Iron	0.553 mg/L	1	0.020	0.006	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Lead	0.22 μg/L	1	0.20	0.05	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Lithium	0.0183 mg/L	1	0.00020	0.00005	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Manganese	0.0059 mg/L	1	0.0010	0.0002	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Mercury	410 ng/L	20	100	40	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Selenium	0.77 μg/L	1	0.50	0.09	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 20:31	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: Duplicate 1 Customer Description:

Lab Number: 222015-015 Preparation:

Date Collected: 06/20/2022 15:00 EDT Date Received: 06/27/2022 14:08 EDT

motaro							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Arsenic	4.50 μg/L	1	0.10	0.03	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Barium	41. 7 μg/L	1	0.20	0.05	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Beryllium	0.427 μg/L	1	0.050	0.007 M1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Boron	0.083 mg/L	1	0.050	0.009	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Calcium	11. 6 mg/L	1	0.05	0.02 M1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Chromium	0.33 μg/L	1	0.20	0.04	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Cobalt	61.1 μg/L	1	0.020	0.003 M1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Lithium	0.163 mg/L	1	0.00020	0.00005 M1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Magnesium	16.9 mg/L	1	0.10	0.02 M1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	1.1 μg/L	1	0.5	0.1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Potassium	5.48 mg/L	1	0.10	0.02 M1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Selenium	0.09 μg/L	1	0.50	0.09 J1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Sodium	23.3 mg/L	1	0.20	0.05 M1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Strontium	0.0519 mg/L	1	0.0020	0.0004	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	07/12/2022 20:36	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: Duplicate 1 Customer Description:
Lab Number: 222015-015-01 Preparation: Dissolved

Date Collected: 06/20/2022 15:00 EDT Date Received: 06/27/2022 14:08 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Arsenic	0.84 μg/L	1	0.10	0.03	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Barium	39.6 μg/L	1	0.20	0.05	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Beryllium	0.203 μg/L	1	0.050	0.007	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Chromium	0.29 µg/L	1	0.20	0.04	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Cobalt	57.9 μg/L	1	0.020	0.003	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Iron	50.0 mg/L	1	0.020	0.006	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Lithium	0.147 mg/L	1	0.00020	0.00005	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Manganese	0.561 mg/L	1	0.0010	0.0002	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.8 μg/L	1	0.5	0.1	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4
Thallium	0.08 µg/L	1	0.20	0.04 J1	GES	07/12/2022 20:52	EPA 200.8-1994, Rev. 5.4

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 222015 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: Equipment Blank Customer Description:

Lab Number: 222015-016 Preparation:

Date Collected: 06/20/2022 11:13 EDT Date Received: 06/27/2022 14:08 EDT

Metals

Parameter	Result	Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02	μg/L	1	0.10	0.02	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03	µg/L	1	0.10	0.03	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Barium	<0.05	μg/L	1	0.20	0.05	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.007	μg/L	1	0.050	0.007	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Boron	<0.009	mg/L	1	0.050	0.009	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004	µg/L	1	0.020	0.004	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Calcium	<0.02	mg/L	1	0.05	0.02	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Chromium	0.41	μg/L	1	0.20	0.04		GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Cobalt	0.013	μg/L	1	0.020	0.003	J1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Lead	<0.05	μg/L	1	0.20	0.05	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Lithium	<0.00005	mg/L	1	0.00020	0.00005	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Magnesium	<0.02	mg/L	1	0.10	0.02	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Mercury	<2	ng/L	1	5	2	U1	JAB	07/18/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1	μg/L	1	0.5	0.1	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Potassium	<0.02	mg/L	1	0.10	0.02	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09	μg/L	1	0.50	0.09	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Sodium	<0.05	mg/L	1	0.20	0.05	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Strontium	<0.0004	mg/L	1	0.0020	0.0004	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04	μg/L	1	0.20	0.04	U1	GES	07/12/2022 21:43	EPA 200.8-1994, Rev. 5.4

222015 Job Comments:

Original report issued 8/9/2022. Report reissued with amended matrix spike precision calculations.

Job ID: 222015

Water Analysis Report

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Customer: Pirkey Power Station Date Reported: 12/22/2022

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

- U1 Not detected at or above method detection limit (MDL).
- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.
- M1 The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.

Chain of Custody Record

	Date: For Lab Use Only: COC/Order #:		HCL**,	+	ercury	- 75	×	×	×	×	×	×	×	×	×	×	×	×	63	
7	(CCR)			ųš	Phi-2,	×	4 2													
Chain of Custody Record Program: Coal Combustion Residuals (CCR)			Ę	+	'IT '04 '0;	Be, Cd, Cr, C	×	×	×	×	×	×	×	×	×	×	×	×	P2	
f Custo	CR)	ontact:	250 mL bottle.	pH<2,	HNO,	Sb, As, B, Ba, Be, Ca Cd, Cr, Co, K, Li, Mg,		×	×	×	×	×	×	×	×	×	×	×	×	
ain o	n: Coal	Site Co		-	_	stalti		Sample Sample (CarComp.) Sample (CarComp.) Feed of the carcomp. Feed of												
ភ	Prograr			dar Days)	ing Wells			11				_		1	_				7 W	
				ne (in Calen	tor Monitor														9	
				around Tir	e (ZB days		-	648	123	034	947	852	843	040	817	953	956	129	1043	
				Analysis Tum	• Koutn				-		_		_	_	-				6/20/2022	
Dolan Chemical Laboratory (DCL.) 4001 Bixby Road	Groveport, Ohio 43125	Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)	Project Name: Pirkey PP CCR	Contact Name: Leslie Fuerschbach			Sample Identification	AD-2	AD-3	AD-4	AD-7	AD-12	AD-13	AD-17	AD-18	AD-22	AD-28	AD-30		

Special Instructions/QC Requirements & Comments:

Six 1L Bottles must be collected for Radium for every 10th sample.

Relinquished by:	Company:	Date/Time:	Received by:
Relinquished by:	Company	Date/Time	Received in Laboratory by:

Date/Time:

Date/Time:

Date/Time:

Chain of Custody Record

Dolan Chemical Laboratory (DCL)

4001 Bixby Road				-	<u> </u>	iaiii oi custody Necold	stody		3				
Groveport, Ohio 43125				Prog	ram: C	Program: Coal Combustion Residuals (CCR)	Sustion R	esiduals	(CCR)				ĺ
Contacts: Dave Conover (614-836-4184)					io	Site Contact:				Date:		For Lab Use Only: COC/Order#:	100
Project Name: Pirkey PP CCR Contact Name: Leslie Fuerschbach Contact Phone: 318-673-2744	Analysis T	umaround ine (28 da)	Analysis Turnaround Time (in Calendar Days) G Routine (28 days for Monitoring Wells)	lendar Da	(s)	25C 55C FP	250 mL 25 bottle, bott pH<2, p	Field-filter (s 250 mL bottle, then 11 pH<2, HNO ₃	Three (six every 10th*) 1 L bottles, pH<2, HNO3	250 mL Glass bottle, HCL", pH<2	250 mL Glass bottle, HCL**,	510EEE	
Sampler(s): Matt Hamilton Kenny McDonald						60, 68 ,e	IT ,12 ,e3	(t] '64 '0;	822-	8	eucni		
Sample Identification	Sample Date	Sample	Sample Type (C=Comp, G=Grab)	Matrix	ont.	Sampter(s) Ini	Cd, Cr, Co, K	Be, Cd, Cr, C Mn, Mo, Pb, 1	요 - 226, 단8	Mercury	Dissolved Mi	Sample Specific Notes:	
AD-32	6/20/20/22	951	9	GW	7		×	×	×	×	×		
AD-33	6/20/2022	1037	9	GW	7		×	×	×	×	×		
Duplicate - 1	6/20/2022	1400	ပ	GW	4		×	×		×	×		1
Equipment Blank	6/20/2022	1013	O	Q.W	2	1	×			×			Т
						-							1
													П
							9						
						_							
				E (5				3					
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	INO3; 5=NaC)H; 6= Oth	er	.; F¤ fi	_; F= filter in field		4	F4	4	2	F2	1000	
	100												

^{*} Six 1L Bottles must be collected for Radium for every 10th sample.

Special Instructions/QC Requirements & Comments:

				The state of the s
Relinquished 9:	Company	Date/Time 160	box Received by:	Date/Time:
Relinquis fed by:	Company:	Date/Time:	Received by:	Date/Time:
Relinquished by:	Company:	Date/Time:	Received in Laboratory IV:	Date/Time; + 122 1:00pm

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 111 0/17

WATER & WASTE SAMPLE RECEIPT FORM (IR#1)

E.	
Package Type	<u>Delivery Type</u>
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer Pulsey	Number of Plastic Containers:
Opened By JAB JDB JWB	Number of Glass Containers:
Date/Time 6/27/22 1:00pm	Number of Mercury Containers: 31
Were all temperatures within 0-6°C? Y/N	o(N/A) Initial:on ice /(no ice
(IR Gun Ser# 210441568, Expir.5/27/2023) - If No, specify each deviation:
Was container in good condition (Y) N	Comments
Was Chain of Custody received (Y) N	Comments
Requested turnaround: Koutine	If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) NO₂ or (24 hr)	· NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? (Y) N	Comments
Were samples labeled properly? Y N	Comments
Were correct containers used? (Y)N	Comments
Was pH checked & Color Coding done?	Y) N or N/A Initial & Date: JWB 6/27/22
pH paper (circle one): MQuant pH Cat 1 lot HC904495	1.09535.0001 Lab rat pH Cat # LRS -4801 Lot X000RWDG21
- Was Add'l Preservative needed? Y N	f Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y	Comments(See Prep Book
Was the customer contacted? If Yes	s: Person Contacted:
Lab ID# 22015 Initial	& Date & Time :
	ments:
Logged by	
- Designed by	<u> </u>
Reviewed by	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Dolan Chemical Laboratory

Sample Receipt Form SOP-7102

Page I of I

4.

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

X	(which	ignature page, and the laboratory review checklist consisting of Table 1, Reportable Data n includes the reportable data identified on this page), Table 2, Supporting Data, and 3, Exception Reports.
X	R1	Field chain-of-custody documentation
Х	R2	Sample identification cross-reference
X	R3	 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs)
NA	R4	Surrogate recovery data including: (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits
X	R5	Test reports/summary forms for blank samples
X	R6	Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits
X	R7	Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits
X	R8	Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates
Х	R9	List of method quantitation limits (MQLs) for each analyte for each method and matrix
X	R10	Other problems or anomalies
X	The Ex	sception Report for every item for which the result is "No" or "NR" (Not Reviewed)
packag requir report by the labora	ge as be ements s. By m labora tory in t	tement: I am responsible for the release of this laboratory data package. This data een reviewed by the laboratory and is complete and technically compliant with the of the methods used, except where noted by the laboratory in the attached exception by signature below, I affirm to the best of my knowledge, all problems/anomalies, observed tory as having the potential to affect the quality of the data, have been identified by the the Laboratory Review Checklist, and no information or data have been knowingly withheld fect the quality of the data.
Check	x, if ap nding to	plicable: This laboratory is an in-house laboratory controlled by the person rule. The official signing the cover page of the rule-required report in which these data are

used is responsible for releasing this data package and is by signature affirming the above release

Lab Supervisor

Official Title

statement is true.

Name (printed)

Jonathan Barnhill

12-12-2022

Date

Table 1. Reportable Data.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name:	
Reviewer Name:	onathan Barnhill
LRC Date: 12-12-2	022
Laboratory Job Nu	mber: 222015
<u> </u>	PB22070101 PB2207151 QC2207105 QC2207151

Item¹	Analytes. ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?		
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER1
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes. ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	Ι	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NO	ER3
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name:	
Reviewer Name:	onathan Barnhill

Laboratory Job Number: 222015

Prep Batch Number(s): PB22070101 PB2207151 QC2207105 QC2207151

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	Yes	
	I	Were ion abundance data within the method-required QC limits?	Yes	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	Yes	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name:	
Reviewer Name: 👤	onathan Barnhill
LRC Date: 12-12-2	
Laboratory Job Nu	
	PB22070101 PB2207151 QC2207105 QC2207151

Exception Report No.	Description
ER1	Linear Dynamic Range (LDR) study used to determine upper limit of analyte calibration.
ER2	CCB acceptance criteria is CCB<2.2*MDL.
ER3	Matrix Spike failure for Na on sample 222015-001
	Matrix Spike failure for Co Li on sample 222015-006
	Matrix Spike failure for Ca Li Mg Na Co K on sample 222015-015

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: Х This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. х R₁ Field chain-of-custody documentation Х R_2 Sample identification cross-reference х R₃ Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: R4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits X **R**5 Test reports/summary forms for blank samples X R6 Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits X **R**7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD OC limits х Laboratory analytical duplicate (if applicable) recovery and precision: **R8** (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates List of method quantitation limits (MOLs) for each analyte for each method and matrix R9 |x| $|\mathbf{x}|$ **R10** Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) **Release Statement:** I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. **Check, if applicable:** () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Tamisha T. Palmer Chemical Technician, Principal 07/07/2022

Official Title

Name (printed)

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 07/07/2022

Laboratory Job Number: 222015

Prep Batch Number(s): PB22062803, PB22062804

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	1
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
_	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes, No	ER1
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 07/07/2022

Laboratory Job Number: 222015

Prep Batch Number(s): PB22062803, PB22062804

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA.	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S 6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	S I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
58	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9 -	I	Serial dilutions, post digestion spikes, and method of standard additions	()	
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	NA	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	NA	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
\$16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 07/07/2022

Laboratory Job Number: 222015

Prep Batch Number(s): PB22062803, PB22062804

Exception Report No.	Description
ER1	PB22062804 the RPD was slightly above 25%
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

х	(which	signature page, and the laboratory review checklist consisting of Table 1, Reportable Data ich includes the reportable data identified on this page), Table 2, Supporting Data, and e 3, Exception Reports.							
X	R1	Field chain-o	f-custody documentation						
X	R2	Sample identi	aple identification cross-reference						
X	R3	(a) Items spender(b) Dilution(c) Preparate(d) Cleanup	tion methods						
NA	R4	(a) Calculate	overy data including: ed recovery (%R) ratory's surrogate QC limi	ts					
X	R5	Test reports/s	summary forms for blank	samples					
X	R6	(a) LCS spik(b) Calculate		ntory control samples (LCSs) inc	luding:				
X	R7	(a) Samples(b) MS/MSI(c) Concentro(d) Calculate	(b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs)						
X	R8	(a) The amo	unt of analyte measured in	-					
X	R9	List of metho	d quantitation limits (MQ	Ls) for each analyte for each me	thod and matrix				
X	R10	Other problem	ns or anomalies						
X	The Ex	ception Repor	t for every item for which	the result is "No" or "NR" (Not	Reviewed)				
packag require reports by the laborat	ge as be ements s. By m laborat tory in t	en reviewed by of the methods y signature be cory as having	y the laboratory and is cors s used, except where noted slow, I affirm to the best of the potential to affect the Review Checklist, and no	e of this laboratory data package nplete and technically complian d by the laboratory in the attache f my knowledge, all problems/ar quality of the data, have been id information or data have been i	t with the ed exception nomalies, observed entified by the				
respon used is statem	Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.								
	a Tims		a: The state of th	Chemist Associate	07/07/2022				
Name (printed) Signature Official Title Date					Date				

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 07/07/2022

Laboratory Job Number: 222015

Prep Batch Number(s): PB22062806

Item¹	Analytes. ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes. ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	N/A	
	I	Were analytical duplicates analyzed at the appropriate frequency?	N/A	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	N/A	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	Ι	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 07/07/2022

Laboratory Job Number: 222015

Prep Batch Number(s): PB22062806

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	NA	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	NA	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name: Pirl	key Power Station
Reviewer Name:	Sunita Timsina
LRC Date: 07/07/2	022
Laboratory Job Nu	mber: 222015
· · · · · · · · · · · · · · · · · · ·	r(s): PB22062806

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: X This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. \square R1 Field chain-of-custody documentation $|\mathbf{x}|$ R₂ Sample identification cross-reference x R₃ Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: R4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits [x]**R**5 Test reports/summary forms for blank samples х R6 Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits X **R7** Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits × R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates х R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix X R₁₀ Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Susann Sultmann Senior Chemist Susann Sulzmann 08-03-2022

Official Title

Name (printed)

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Susann Sulzmann

LRC Date: 8-03-2022

Laboratory Job Number: 222015

Prep Batch Number(s): PB22070805, PB22070708, PB22071112

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	yes	
	1	Other than those results < MQL, were all other raw values bracketed by calibration standards?	yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
<u> </u>	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
. <u>-</u>	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?		144
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	99.
	I	Was the LCSD RPD within QC limits?	yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	yes	
	I	Were MS/MSD RPDs within laboratory QC limits?		
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	1	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Susann Sulzmann

LRC Date: 8-03-2022

Laboratory Job Number: 222015

Prep Batch Number(s): PB22070805, PB22070708, PB22071112

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		1
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S 3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	Ī	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Susann Sulzmann

LRC Date: 8-03-2022

Laboratory Job Number: 222015

Prep Batch Number(s): PB22070805, PB22070708, PB22071112

Exception Report No.	Description							
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>							
,								

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

4001 Bixby Road Groveport, OH 43125

Phone: 614-836-4221 Audinet: 210-4221

Dolan Chemical Laboratory

Reissued

Customer: Pirkey Power Station Date Reported: 01/23/2023 Job ID: 223664

Customer Sample ID: AD-2 Customer Description: TG-32

Lab Number: 223664-001 Preparation:

Date Collected: 11/15/2022 11:05 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Arsenic	0.40 μg/L	1	0.10	0.03	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Barium	16.8 μg/L	1	0.20	0.05	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Beryllium	0.561 μg/L	1	0.050	0.007	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Boron	2.83 mg/L	1	0.050	0.009	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Cadmium	0.086 µg/L	1	0.020	0.004	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Calcium	2.80 mg/L	1	0.05	0.02	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Chromium	0.43 μg/L	1	0.20	0.04	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Cobalt	19. 6 μg/L	1	0.020	0.003	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Lead	0.60 μg/L	1	0.20	0.05	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Lithium	0.0556 mg/L	1	0.00020	0.00005	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Magnesium	5.23 mg/L	1	0.10	0.02	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Mercury	58 ng/L	2	10	4	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Potassium	1.43 mg/L	1	0.10	0.02	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Selenium	1.28 µg/L	1	0.50	0.09	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Sodium	90.6 mg/L	1	0.20	0.05 M1	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Strontium	0.0408 mg/L	1	0.0020	0.0004	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4
Thallium	0.11 μg/L	1	0.20	0.04 J1	GES	11/30/2022 13:58	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.40 pCi/L	0.12	0.23	ST	12/07/2022 10:18	SW-846 9315-1986, Rev. 0
Carrier Recovery	77.9 %					
Radium-228	1.01 pCi/L	0.13	0.39	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	85.0 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-2 Customer Description: TG-32

Lab Number: 223664-001-01 Preparation: Dissolved

Date Collected: 11/15/2022 11:05 EST Date Received: 11/21/2022 12:30 EST

Metals

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Arsenic	0.41 µg/L	1	0.10	0.03	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Barium	16.8 µg/L	1	0.20	0.05	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Beryllium	0.559 µg/L	1	0.050	0.007	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Cadmium	0.090 µg/L	1	0.020	0.004	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Chromium	0.41 µg/L	1	0.20	0.04	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Cobalt	19.9 µg/L	1	0.020	0.003	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Iron	0.257 mg/L	1	0.020	0.006	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Lead	0.60 µg/L	1	0.20	0.05	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Lithium	0.0554 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Manganese	0.0853 mg/L	1	0.0010	0.0002	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Selenium	1.30 µg/L	1	0.50	0.09	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4
Thallium	0.13 µg/L	1	0.20	0.04 J1	GES	11/30/2022 14:13	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-3 Customer Description: TG-32

Lab Number: 223664-002 Preparation:

Date Collected: 11/16/2022 12:45 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Arsenic	1.22 μg/L	1	0.10	0.03	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Barium	63.7 μg/L	1	0.20	0.05	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Beryllium	0.186 μg/L	1	0.050	0.007	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Boron	0.063 mg/L	1	0.050	0.009	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012 μg/L	1	0.020	0.004 J1	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Calcium	5.05 mg/L	1	0.05	0.02	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Chromium	0.63 μg/L	1	0.20	0.04	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Cobalt	7.40 µg∕L	1	0.020	0.003	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Lead	0.31 μg/L	1	0.20	0.05	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Lithium	0.0837 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Magnesium	4.15 mg/L	1	0.10	0.02	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Potassium	3.44 mg/L	1	0.10	0.02	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Selenium	0.09 μg/L	1	0.50	0.09 J1	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Sodium	12.3 mg/L	1	0.20	0.05	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Strontium	0.0380 mg/L	1	0.0020	0.0004	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 μg/L	1	0.20	0.04 J1	GES	11/30/2022 14:18	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.72 pCi/L	0.14	0.20	ST	12/07/2022 10:18	SW-846 9315-1986, Rev. 0
Carrier Recovery	89.9 %					
Radium-228	0.79 pCi/L	0.11	0.36	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	99.5 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-3 Customer Description: TG-32

Lab Number: 223664-002-01 Preparation: Dissolved

Date Collected: 11/16/2022 00:45 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Arsenic	0.91 µg/L	1	0.10	0.03	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Barium	61.6 µg/L	1	0.20	0.05	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Beryllium	0.139 µg/L	1	0.050	0.007	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012 µg/L	1	0.020	0.004 J1	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Chromium	0.29 µg/L	1	0.20	0.04	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Cobalt	7.92 µg/L	1	0.020	0.003	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Iron	9.45 mg/L	1	0.020	0.006	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Lithium	0.0933 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Manganese	0.115 mg/L	1	0.0010	0.0002	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 14:23	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-4 Customer Description: TG-32

Lab Number: 223664-003 Preparation:

Date Collected: 11/16/2022 12:32 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Arsenic	0.21 μg/L	1	0.10	0.03	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Barium	128 μg/L	1	0.20	0.05	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 1 95 μg/L	1	0.050	0.007	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Boron	0.019 mg/L	1	0.050	0.009 J1	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Cadmium	0.019 μg/L	1	0.020	0.004 J1	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Calcium	2.25 mg/L	1	0.05	0.02	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Chromium	0.44 μg/L	1	0.20	0.04	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Cobalt	3.00 μg/L	1	0.020	0.003	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Lithium	0.0212 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Magnesium	0.55 mg/L	1	0.10	0.02	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Mercury	5 ng/L	1	5	2	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Potassium	2.15 mg/L	1	0.10	0.02	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Sodium	6.41 mg/L	1	0.20	0.05	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Strontium	0.0183 mg/L	1	0.0020	0.0004	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4
Thallium	0.10 µg/L	1	0.20	0.04 J1	GES	11/30/2022 14:29	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.40 pCi/L	0.10	0.17	ST	12/07/2022 10:18	SW-846 9315-1986, Rev. 0
Carrier Recovery	96.5 %					
Radium-228	-0.01 pCi/L	0.13	0.46	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	89.2 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-4 Customer Description: TG-32

Lab Number: 223664-003-01 Preparation: Dissolved

Date Collected: 11/16/2022 12:32 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Arsenic	0.13 µg/L	1	0.10	0.03	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Barium	128 μg/L	1	0.20	0.05	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 1 97 µg/L	1	0.050	0.007	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Cadmium	0.021 µg/L	1	0.020	0.004	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Chromium	0.40 µg/L	1	0.20	0.04	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Cobalt	2.98 µg/L	1	0.020	0.003	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Iron	2.40 mg/L	1	0.020	0.006	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Lithium	0.0215 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Manganese	0.0291 mg/L	1	0.0010	0.0002	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4
Thallium	0.1 µg/L	1	0.20	0.04 J1	GES	11/30/2022 14:34	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-7 Customer Description: TG-32

Lab Number: 223664-004 Preparation:

Date Collected: 11/16/2022 10:10 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Uni	s Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/	. 1	0.10	0.02 U1	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Arsenic	0.43 μg/	. 1	0.10	0.03	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Barium	55.2 μg/	. 1	0.20	0.05	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Beryllium	2.49 µg/	. 1	0.050	0.007	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Boron	9.38 mg/	L 1	0.050	0.009	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Cadmium	0.880 µg/	. 1	0.020	0.004	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Calcium	5.20 mg/	L 1	0.05	0.02	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Chromium	0.35 µg/	. 1	0.20	0.04	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Cobalt	31.8 µg/	. 1	0.020	0.003	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Lead	0.27 μg/	. 1	0.20	0.05	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Lithium	0.110 mg/	L 1	0.00020	0.00005	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Magnesium	8.25 mg/	L 1	0.10	0.02	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Mercury	37 ng/	. 1	5	2	JAB	12/05/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/	. 1	0.5	0.1 U1	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Potassium	3.50 mg/	L 1	0.10	0.02	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Selenium	1.49 µg/	. 1	0.50	0.09	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Sodium	32.3 mg/	L 1	0.20	0.05	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Strontium	0.0575 mg/	L 1	0.0020	0.0004	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4
Thallium	0.19 µg/	. 1	0.20	0.04 J1	GES	11/30/2022 14:39	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.65 pCi/L	0.21	0.20	ST	12/07/2022 10:18	SW-846 9315-1986, Rev. 0
Carrier Recovery	93.9 %					
Radium-228	2.48 pCi/L	0.15	0.41	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	98.0 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-7 Customer Description: TG-32

Lab Number: 223664-004-01 Preparation: Dissolved

Date Collected: 11/16/2022 10:10 EST Date Received: 11/21/2022 12:30 EST

Metals

otalo							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Arsenic	0.43 µg/L	1	0.10	0.03	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Barium	54.5 μg/L	1	0.20	0.05	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Beryllium	2. 55 μg/L	1	0.050	0.007	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Cadmium	0.879 µg/L	1	0.020	0.004	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Chromium	0.35 µg/L	1	0.20	0.04	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Cobalt	31.8 μg/L	1	0.020	0.003	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Iron	10.8 mg/L	1	0.020	0.006	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Lead	0.23 µg/L	1	0.20	0.05	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Lithium	0.110 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Manganese	0.157 mg/L	1	0.0010	0.0002	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Mercury	4 ng/L	1	5	2 J1	JAB	12/05/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Selenium	1. 53 µg/L	1	0.50	0.09	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4
Thallium	0.17 µg/L	1	0.20	0.04 J1	GES	11/30/2022 14:44	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-12 Customer Description: TG-32

Lab Number: 223664-005 Preparation:

Date Collected: 11/15/2022 11:58 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Arsenic	0.06 μg/L	1	0.10	0.03 J1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Barium	30.6 μg/L	1	0.20	0.05	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Beryllium	0.153 μg/L	1	0.050	0.007	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Boron	0.013 mg/L	1	0.050	0.009 J1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Cadmium	0.007 μg/L	1	0.020	0.004 J1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Calcium	0.36 mg/L	1	0.05	0.02	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Chromium	0.45 μg/L	1	0.20	0.04	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Cobalt	1. 59 μg/L	1	0.020	0.003	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Lead	0.08 μg/L	1	0.20	0.05 J1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Lithium	0.0119 mg/L	1	0.00020	0.00005	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Magnesium	0.54 mg/L	1	0.10	0.02	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Potassium	0.81 mg/L	1	0.10	0.02	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Selenium	0.23 μg/L	1	0.50	0.09 J1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Sodium	5.83 mg/L	1	0.20	0.05	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Strontium	0.0035 mg/L	1	0.0020	0.0004	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 17:44	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.72 pCi/L	0.15	0.19 P1	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	102 %					
Radium-228	0.74 pCi/L	0.14	0.44	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	95.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-12 Customer Description: TG-32

Lab Number: 223664-005-01 Preparation: Dissolved

Date Collected: 11/15/2022 11:58 EST Date Received: 11/21/2022 12:30 EST

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Arsenic	0.05 μg/L	1	0.10	0.03 J1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Barium	30.0 μg/L	1	0.20	0.05	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Beryllium	0.149 µg/L	1	0.050	0.007	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Cadmium	0.008 µg/L	1	0.020	0.004 J1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Chromium	0.35 µg/L	1	0.20	0.04	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Cobalt	1. 59 μg/L	1	0.020	0.003	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Iron	<0.006 mg/L	1	0.020	0.006 U1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Lead	0.08 µg/L	1	0.20	0.05 J1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Lithium	0.0116 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Manganese	0.0061 mg/L	1	0.0010	0.0002	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Selenium	0.28 µg/L	1	0.50	0.09 J1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 µg/L	1	0.20	0.04 J1	GES	11/30/2022 18:00	EPA 200.8-1994, Rev. 5.4

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-13 Customer Description: TG-32

Lab Number: 223664-006 Preparation:

Date Collected: 11/15/2022 09:21 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Arsenic	1.62 µg/L	1	0.10	0.03	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Barium	44.2 μg/L	1	0.20	0.05	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Beryllium	0.131 μg/L	1	0.050	0.007	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Boron	0.095 mg/L	1	0.050	0.009	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Calcium	8.57 mg/L	1	0.05	0.02	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Chromium	0.35 μg/L	1	0.20	0.04	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Cobalt	45.9 μg/L	1	0.020	0.003	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Lithium	0.141 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Magnesium	12.4 mg/L	1	0.10	0.02	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Potassium	5.16 mg/L	1	0.10	0.02	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Sodium	16.3 mg/L	1	0.20	0.05	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Strontium	0.0402 mg/L	1	0.0020	0.0004	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 14:49	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.55 pCi/L	0.26	0.35	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	84.9 %					
Radium-228	-0.86 pCi/L	0.14	0.50	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	102 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-13 Customer Description: TG-32

Lab Number: 223664-006-01 Preparation: Dissolved

Date Collected: 11/15/2022 09:21 EST Date Received: 11/21/2022 12:30 EST

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Arsenic	1.43 µg/L	1	0.10	0.03	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Barium	44.7 μg/L	1	0.20	0.05	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Beryllium	0.116 µg/L	1	0.050	0.007	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Chromium	0.31 µg/L	1	0.20	0.04	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Cobalt	47.2 μg/L	1	0.020	0.003	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Iron	39.9 mg/L	5	0.10	0.03	GES	12/05/2022 09:18	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Lithium	0.140 mg/L	1	0.00020	0.00005	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Manganese	0.428 mg/L	1	0.0010	0.0002	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 14:54	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-17 Customer Description: TG-32

Lab Number: 223664-007 Preparation:

Date Collected: 11/16/2022 11:58 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result	Units	Dilution	RL	MDL Data Qual	ifiers Analyst	Analysis Date	Method
Antimony	<0.02	μg/L	1	0.10	0.02 U1	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Arsenic	0.13	μg/L	1	0.10	0.03	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Barium	276	μg/L	1	0.20	0.05	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Beryllium	0.662	µg/L	1	0.050	0.007	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Boron	0.026	mg/L	1	0.050	0.009 J1	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Cadmium	0.061	µg/L	1	0.020	0.004	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Calcium	1.23	mg/L	1	0.05	0.02	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Chromium	0.37	µg/L	1	0.20	0.04	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Cobalt	12.7	µg/L	1	0.020	0.003	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Lead	0.16	μg/L	1	0.20	0.05 J1	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Lithium	0.0267	mg/L	1	0.00020	0.00005	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Magnesium	4.53	mg/L	1	0.10	0.02	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Mercury	400	ng/L	100	500	200 J1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1	μg/L	1	0.5	0.1 U1	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Potassium	1.40	mg/L	1	0.10	0.02	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Selenium	0.36	μg/L	1	0.50	0.09 J1	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Sodium	9.35	mg/L	1	0.20	0.05	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Strontium	0.0231	mg/L	1	0.0020	0.0004	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4
Thallium	0.07	µg/L	1	0.20	0.04 J1	GES	11/30/2022 18:05	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	3.34 pCi/L	0.33	0.23	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	101 %					
Radium-228	3.41 pCi/L	0.19	0.52	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	95.3 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-17 Customer Description: TG-32

Lab Number: 223664-007-01 Preparation: Dissolved

Date Collected: 11/16/2022 11:58 EST Date Received: 11/21/2022 12:30 EST

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Arsenic	0.12 μg/L	1	0.10	0.03	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Barium	273 μg/L	1	0.20	0.05	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Beryllium	0.648 µg/L	1	0.050	0.007	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Cadmium	0.053 μg/L	1	0.020	0.004	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Chromium	0.39 µg/L	1	0.20	0.04	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Cobalt	12.3 μg/L	1	0.020	0.003	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Iron	0.269 mg/L	1	0.020	0.006	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Lead	0.16 μg/L	1	0.20	0.05 J1	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Lithium	0.0262 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Manganese	0.0545 mg/L	1	0.0010	0.0002	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Mercury	<200 ng/L	100	500	200 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Selenium	0.30 μg/L	1	0.50	0.09 J1	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 µg/L	1	0.20	0.04 J1	GES	11/30/2022 18:10	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-18 Customer Description: TG-32

Lab Number: 223664-008 Preparation:

Date Collected: 11/16/2022 11:13 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Arsenic	0.25 μg/L	1	0.10	0.03	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Barium	77.4 μg/L	1	0.20	0.05	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Beryllium	0.071 μg/L	1	0.050	0.007	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Boron	0.011 mg/L	1	0.050	0.009 J1	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Cadmium	0.009 µg/L	1	0.020	0.004 J1	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Calcium	0.19 mg/L	1	0.05	0.02	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Chromium	0.54 μg/L	1	0.20	0.04	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Cobalt	0.723 μg/L	1	0.020	0.003	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Lead	0.08 µg/L	1	0.20	0.05 J1	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Lithium	0.0125 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Magnesium	0.27 mg/L	1	0.10	0.02	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Mercury	18 ng/L	1	5	2	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Potassium	0.73 mg/L	1	0.10	0.02	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Selenium	0.12 μg/L	1	0.50	0.09 J1	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Sodium	5.46 mg/L	1	0.20	0.05	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Strontium	0.0040 mg/L	1	0.0020	0.0004	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 18:15	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1 pCi/L	0.18	0.21	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	103 %					
Radium-228	0.61 pCi/L	0.12	0.39	TTP	11/29/2022 16:21	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	92.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-18 Customer Description: TG-32

Lab Number: 223664-008-01 Preparation: Dissolved

Date Collected: 11/16/2022 11:13 EST Date Received: 11/21/2022 12:30 EST

otalo							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Arsenic	0.06 µg/L	1	0.10	0.03 J1	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Barium	77.2 μg/L	1	0.20	0.05	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Beryllium	0.069 µg/L	1	0.050	0.007	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012 µg/L	1	0.020	0.004 J1	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Chromium	0.34 µg/L	1	0.20	0.04	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Cobalt	0.719 µg/L	1	0.020	0.003	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Iron	0.060 mg/L	1	0.020	0.006	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Lithium	0.0127 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Manganese	0.0028 mg/L	1	0.0010	0.0002	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 18:20	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-22 Customer Description: TG-32

Lab Number: 223664-009 Preparation:

Date Collected: 11/14/2022 12:31 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualif	iers Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Arsenic	2.40 μg/L	1	0.10	0.03	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Barium	20.8 μg/L	1	0.20	0.05	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Beryllium	2.1 6 μg/L	1	0.050	0.007	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Boron	0.021 mg/L	1	0.050	0.009 J1	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Cadmium	0.494 μg/L	1	0.020	0.004	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Calcium	10.5 mg/L	1	0.05	0.02	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Chromium	0.47 μg/L	1	0.20	0.04	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Cobalt	60.3 μg/L	1	0.020	0.003	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Lead	0.22 µg/L	1	0.20	0.05	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Lithium	0.0905 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Magnesium	15.1 mg/L	1	0.10	0.02	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Mercury	410 ng/L	10	50	20	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Potassium	3.37 mg/L	1	0.10	0.02	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Selenium	1.93 µg/L	1	0.50	0.09	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Sodium	83.9 mg/L	1	0.20	0.05	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Strontium	0.0898 mg/L	1	0.0020	0.0004	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4
Thallium	0.14 µg/L	1	0.20	0.04 J1	GES	11/30/2022 18:25	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.96 pCi/L	0.21	0.31	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	76.7 %					
Radium-228	1.74 pCi/L	0.18	0.53	TTP	12/27/2022 14:41	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	88.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-22 Customer Description: TG-32

Lab Number: 223664-009-01 Preparation: Dissolved

Date Collected: 11/14/2022 12:31 EST Date Received: 11/21/2022 12:30 EST

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Arsenic	1.28 μg/L	1	0.10	0.03	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Barium	20.5 μg/L	1	0.20	0.05	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Beryllium	2.04 μg/L	1	0.050	0.007	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Cadmium	0.503 μg/L	1	0.020	0.004	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Chromium	0.46 µg/L	1	0.20	0.04	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Cobalt	60.0 µg/L	1	0.020	0.003	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Iron	29.8 mg/L	1	0.020	0.006	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Lead	0.12 µg/L	1	0.20	0.05 J1	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Lithium	0.0883 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Manganese	0.295 mg/L	1	0.0010	0.0002	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Mercury	51 ng/L	1	5	2	JAB	12/01/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Selenium	2.06 µg/L	1	0.50	0.09	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4
Thallium	0.13 µg/L	1	0.20	0.04 J1	GES	11/30/2022 18:30	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-28 Customer Description: TG-32

Lab Number: 223664-010 Preparation:

Date Collected: 11/16/2022 09:48 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Arsenic	0.10 μg/L	1	0.10	0.03	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Barium	12 5 μg/L	1	0.20	0.05	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Beryllium	0.459 μg/L	1	0.050	0.007	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Boron	0.334 mg/L	1	0.050	0.009	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Cadmium	0.046 μg/L	1	0.020	0.004	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Calcium	1.34 mg/L	1	0.05	0.02	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Chromium	0.54 μg/L	1	0.20	0.04	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Cobalt	11.8 μg/L	1	0.020	0.003	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Lead	0.1 5 μg/L	1	0.20	0.05 J1	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Lithium	0.0270 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Magnesium	2.76 mg/L	1	0.10	0.02	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Mercury	8 ng/L	1	5	2	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Potassium	0.85 mg/L	1	0.10	0.02	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Selenium	0.16 μg/L	1	0.50	0.09 J1	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Sodium	6.45 mg/L	1	0.20	0.05	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Strontium	0.0182 mg/L	1	0.0020	0.0004	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 18:36	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	3.79 pCi/L	0.35	0.26	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	95.0 %					
Radium-228	1.36 pCi/L	0.13	0.39	TTP	12/27/2022 14:41	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	96.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-28 Customer Description: TG-32

Lab Number: 223664-010-01 Preparation: Dissolved

Date Collected: 11/16/2022 09:48 EST Date Received: 11/21/2022 12:30 EST

ottailo							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Arsenic	0.06 µg/L	1	0.10	0.03 J1	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Barium	128 μg/L	1	0.20	0.05	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Beryllium	0.447 µg/L	1	0.050	0.007	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Cadmium	0.045 μg/L	1	0.020	0.004	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Chromium	0.47 µg/L	1	0.20	0.04	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Cobalt	11.8 μg/L	1	0.020	0.003	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Iron	0.493 mg/L	1	0.020	0.006	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Lead	0.08 µg/L	1	0.20	0.05 J1	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Lithium	0.0267 mg/L	1	0.00020	0.00005	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Manganese	0.0556 mg/L	1	0.0010	0.0002	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Selenium	0.17 µg/L	1	0.50	0.09 J1	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 18:41	EPA 200.8-1994, Rev. 5.4

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-30 Customer Description: TG-32

Lab Number: 223664-011 Preparation:

Date Collected: 11/16/2022 10:46 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Arsenic	0.16 µg/L	1	0.10	0.03	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Barium	89.4 μg/L	1	0.20	0.05	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Beryllium	0.108 μg/L	1	0.050	0.007	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Boron	2.86 mg/L	1	0.050	0.009	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Cadmium	0.013 µg/L	1	0.020	0.004 J1	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Calcium	0.71 mg/L	1	0.05	0.02	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Chromium	0.55 μg/L	1	0.20	0.04	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Cobalt	4.86 µg/L	1	0.020	0.003	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Lithium	0.0119 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Magnesium	2.58 mg/L	1	0.10	0.02	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Mercury	1 7 ng/L	2	10	4	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Potassium	1.01 mg/L	1	0.10	0.02	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Selenium	0.35 µg/L	1	0.50	0.09 J1	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Sodium	94.0 mg/L	1	0.20	0.05 M1	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Strontium	0.0113 mg/L	1	0.0020	0.0004	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 μg/L	1	0.20	0.04 J1	GES	11/30/2022 20:13	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.75 pCi/L	0.16	0.23	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	96.5 %					
Radium-228	0.77 pCi/L	0.14	0.46	TTP	12/27/2022 14:41	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	93.5 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-30 Customer Description: TG-32

Lab Number: 223664-011-01 Preparation: Dissolved

Date Collected: 11/16/2022 10:46 EST Date Received: 11/21/2022 12:30 EST

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Arsenic	0.14 µg/L	1	0.10	0.03	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Barium	79.7 μg/L	1	0.20	0.05	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Beryllium	0.108 μg/L	1	0.050	0.007	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Cadmium	0.012 µg/L	1	0.020	0.004 J1	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Chromium	0.50 µg/L	1	0.20	0.04	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Cobalt	4.76 μg/L	1	0.020	0.003	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Iron	0.033 mg/L	1	0.020	0.006	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Lithium	0.0119 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Manganese	0.0215 mg/L	1	0.0010	0.0002	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Mercury	<4 ng/L	2	10	4 U1	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Selenium	0.37 µg/L	1	0.50	0.09 J1	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4
Thallium	0.07 µg/L	1	0.20	0.04 J1	GES	11/30/2022 20:29	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-31 Customer Description: TG-32

Lab Number: 223664-012 Preparation:

Date Collected: 11/15/2022 11:02 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qual	ifiers Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Arsenic	0.30 µg/L	1	0.10	0.03	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Barium	35.8 μg/L	1	0.20	0.05	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Beryllium	0.863 µg/L	1	0.050	0.007	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Boron	0.035 mg/L	1	0.050	0.009 J1	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Cadmium	0.066 µg∕L	1	0.020	0.004	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Calcium	2.63 mg/L	1	0.05	0.02	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Chromium	0.74 μg/L	1	0.20	0.04	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Cobalt	9.41 µg/L	1	0.020	0.003	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Lead	0.34 μg/L	1	0.20	0.05	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Lithium	0.0681 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Magnesium	3.94 mg/L	1	0.10	0.02	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Mercury	610 ng/L	10	50	20	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Potassium	1. 67 mg/L	1	0.10	0.02	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Selenium	0.38 µg/L	1	0.50	0.09 J1	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Sodium	30.6 mg/L	1	0.20	0.05	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Strontium	0.0388 mg/L	1	0.0020	0.0004	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4
Thallium	0.10 µg/L	1	0.20	0.04 J1	GES	11/30/2022 20:34	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.05 pCi/L	0.18	0.24	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	95.4 %					
Radium-228	2.76 pCi/L	0.18	0.50	TTP	12/27/2022 14:41	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	94.8 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-31 Customer Description: TG-32

Lab Number: 223664-012-01 Preparation: Dissolved

Date Collected: 11/15/2022 11:02 EST Date Received: 11/21/2022 12:30 EST

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Arsenic	0.20 µg/L	1	0.10	0.03	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Barium	35.7 µg/L	1	0.20	0.05	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Beryllium	0.868 µg/L	1	0.050	0.007	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Cadmium	0.065 µg/L	1	0.020	0.004	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Chromium	0.44 µg/L	1	0.20	0.04	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Cobalt	9.60 µg/L	1	0.020	0.003	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Iron	0.113 mg/L	1	0.020	0.006	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Lead	0.27 μg/L	1	0.20	0.05	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Lithium	0.0694 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Manganese	0.0262 mg/L	1	0.0010	0.0002	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Mercury	4 ng/L	1	5	2 J1	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Selenium	0.35 µg/L	1	0.50	0.09 J1	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 µg/L	1	0.20	0.04 J1	GES	11/30/2022 20:39	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-32 Customer Description: TG-32

Lab Number: 223664-013 Preparation:

Date Collected: 11/15/2022 10:03 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Arsenic	1.73 µg/L	1	0.10	0.03	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Barium	24.4 μg/L	1	0.20	0.05	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Beryllium	3.77 µg/L	1	0.050	0.007	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Boron	1.26 mg/L	1	0.050	0.009	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Cadmium	0.404 µg/L	1	0.020	0.004	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Calcium	12.0 mg/L	1	0.05	0.02	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Chromium	0.82 µg/L	1	0.20	0.04	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Cobalt	34.8 μg/L	1	0.020	0.003	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Lead	0.66 µg/L	1	0.20	0.05	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Lithium	0.0812 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Magnesium	12.3 mg/L	1	0.10	0.02	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Mercury	1 500 ng/L	100	500	200	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Potassium	3.76 mg/L	1	0.10	0.02	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Selenium	5.95 µg∕L	1	0.50	0.09	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Sodium	48.7 mg/L	1	0.20	0.05	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Strontium	0.219 mg/L	1	0.0020	0.0004	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4
Thallium	0.24 μg/L	1	0.20	0.04	GES	11/30/2022 20:44	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.26 pCi/L	0.21	0.24	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	86.8 %					
Radium-228	4.02 pCi/L	0.19	0.46	TTP	12/27/2022 14:41	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	90.0 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-32 Customer Description: TG-32

Lab Number: 223664-013-01 Preparation: Dissolved

Date Collected: 11/15/2022 10:03 EST Date Received: 11/21/2022 12:30 EST

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Arsenic	1.57 µg/L	1	0.10	0.03	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Barium	23.9 µg/L	1	0.20	0.05	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Beryllium	3.79 µg/L	1	0.050	0.007	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Cadmium	0.409 µg/L	1	0.020	0.004	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Chromium	0.67 µg/L	1	0.20	0.04	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Cobalt	34.9 µg/L	1	0.020	0.003	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Iron	2.03 mg/L	1	0.020	0.006	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Lead	0.59 µg/L	1	0.20	0.05	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Lithium	0.0809 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Manganese	0.0661 mg/L	1	0.0010	0.0002	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Mercury	20 ng/L	2	10	4	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Selenium	5.88 μg/L	1	0.50	0.09	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4
Thallium	0.20 µg/L	1	0.20	0.04	GES	11/30/2022 20:49	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-33 Customer Description: TG-32

Lab Number: 223664-014 Preparation:

Date Collected: 11/15/2022 12:06 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Arsenic	0.37 μg/L	1	0.10	0.03	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Barium	49.4 μg/L	1	0.20	0.05	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Beryllium	0.945 μg/L	1	0.050	0.007	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Boron	0.086 mg/L	1	0.050	0.009	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Cadmium	0.038 μg/L	1	0.020	0.004	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Calcium	0.90 mg/L	1	0.05	0.02	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Chromium	0.44 μg/L	1	0.20	0.04	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Cobalt	6.83 μg/L	1	0.020	0.003	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Lead	0.22 μg/L	1	0.20	0.05	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Lithium	0.0185 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Magnesium	2.64 mg/L	1	0.10	0.02	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Mercury	5900 ng/L	100	500	200	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Potassium	0.28 mg/L	1	0.10	0.02	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Selenium	0.96 μg/L	1	0.50	0.09	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Sodium	14.9 mg/L	1	0.20	0.05	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Strontium	0.0201 mg/L	1	0.0020	0.0004	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 20:54	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.68 pCi/L	0.30	0.24	TTP	12/05/2022 11:11	SW-846 9315-1986, Rev. 0
Carrier Recovery	93.9 %					
Radium-228	0.98 pCi/L	0.13	0.40	TTP	12/27/2022 14:41	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	99.2 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: AD-33 Customer Description: TG-32

Lab Number: 223664-014-01 Preparation: Dissolved

Date Collected: 11/15/2022 12:06 EST Date Received: 11/21/2022 12:30 EST

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Arsenic	0.29 μg/L	1	0.10	0.03	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Barium	48. 7 μg/L	1	0.20	0.05	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Beryllium	0.936 μg/L	1	0.050	0.007	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Cadmium	0.035 μg/L	1	0.020	0.004	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Chromium	0.32 μg/L	1	0.20	0.04	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Cobalt	6.65 μg/L	1	0.020	0.003	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Iron	0.009 mg/L	1	0.020	0.006 J1	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Lead	0.22 μg/L	1	0.20	0.05	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Lithium	0.0182 mg/L	1	0.00020	0.00005	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Manganese	0.0054 mg/L	1	0.0010	0.0002	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Mercury	47 ng/L	1	5	2	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Selenium	0.91 μg/L	1	0.50	0.09	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 20:59	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: Duplicate - 2 Customer Description: TG-32

Lab Number: 223664-015 Preparation:

Date Collected: 11/15/2022 15:00 EST Date Received: 11/21/2022 12:30 EST

motaro							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Arsenic	1.69 µg/L	1	0.10	0.03	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Barium	45.3 μg/L	1	0.20	0.05	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Beryllium	0.129 μg/L	1	0.050	0.007	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Boron	0.061 mg/L	1	0.050	0.009	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Calcium	8.71 mg/L	1	0.05	0.02	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Chromium	0.40 μg/L	1	0.20	0.04	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Cobalt	46.5 μg/L	1	0.020	0.003	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Lithium	0.139 mg/L	1	0.00020	0.00005	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Magnesium	12.6 mg/L	1	0.10	0.02	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.2 μg/L	1	0.5	0.1 J1	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Potassium	5.32 mg/L	1	0.10	0.02	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Sodium	16.4 mg/L	1	0.20	0.05	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Strontium	0.0419 mg/L	1	0.0020	0.0004	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 21:05	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: Duplicate - 2 Customer Description: TG-32

Lab Number: 223664-015-01 Preparation: Dissolved

Date Collected: 11/15/2022 15:00 EST Date Received: 11/21/2022 12:30 EST

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Arsenic	1.44 µg/L	1	0.10	0.03	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Barium	45.2 μg/L	1	0.20	0.05	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 11 5 µg/L	1	0.050	0.007	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Chromium	0.42 µg/L	1	0.20	0.04	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Cobalt	46.3 µg/L	1	0.020	0.003	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Iron	39.7 mg/L	5	0.10	0.03	GES	12/05/2022 09:23	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Lithium	0.140 mg/L	1	0.00020	0.00005	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Manganese	0.420 mg/L	1	0.0010	0.0002	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	11/30/2022 21:10	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Customer Sample ID: Equipment Blank Customer Description: TG-32

Lab Number: 223664-016 Preparation:

Date Collected: 11/16/2022 11:22 EST Date Received: 11/21/2022 12:30 EST

Metals

Parameter	Result	Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02	μg/L	1	0.10	0.02	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03	μg/L	1	0.10	0.03	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Barium	<0.05	μg/L	1	0.20	0.05	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.007	μg/L	1	0.050	0.007	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Boron	<0.009	mg/L	1	0.050	0.009	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004	µg/L	1	0.020	0.004	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Calcium	<0.02	mg/L	1	0.05	0.02	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Chromium	0.47	μg/L	1	0.20	0.04		GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Cobalt	0.143	μg/L	1	0.020	0.003		GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Lead	<0.05	μg/L	1	0.20	0.05	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Lithium	<0.00005	mg/L	1	0.00020	0.00005	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Magnesium	<0.02	mg/L	1	0.10	0.02	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Mercury	<2	ng/L	1	5	2	U1	JAB	12/02/2022 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.2	μg/L	1	0.5	0.1	J1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Potassium	<0.02	mg/L	1	0.10	0.02	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09	μg/L	1	0.50	0.09	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Sodium	<0.05	mg/L	1	0.20	0.05	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Strontium	<0.0004	mg/L	1	0.0020	0.0004	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04	μg/L	1	0.20	0.04	U1	GES	11/30/2022 22:06	EPA 200.8-1994, Rev. 5.4

223664 Job Comments:

Original report issued 12/29/22 . Report reissued with boron added to TM on 1/23/23.

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 223664 Customer: Pirkey Power Station Date Reported: 01/23/2023

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

 Email:
 msohlinger@aep.com

 Phone:
 614-836-4184

 Audinet:
 8-210-4184

Muhuel & Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

- U1 Not detected at or above method detection limit (MDL).
- M1 The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.
- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.
- P1 The precision between duplicate results was above acceptance limits.

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Bixby Road

Groveport, Ohio 43125				Pro	mau:	Coal Cc	mbustio	Program: Coal Combustion Residuals (CCR)	Is (CCR)			
Contacts: Dave Conover (614-836-4184)						Site Contact:	ig:			Date:		For Lab Use Only: COC/Order #:
Project Name: Pirkey PP CCR					- 00		250 mL	Field-filter 250 mL	Three (six every 10th*)	250 mL Glass	250 mL Glass	
Contact Name: Leslie Fuerschbach	Analysis	umaround	Analysis Turnaround Time (in Calendar Days)	lendar D	ays)		Dottie,	뒮	1 L bottles,	bottle,	bottle,	カノブてん
Contact Phone: 318-673-2744	© Rou	tine (28 da	© Routine (28 days for Monitoring Wells)	oring We	î Î		HNO,	HNO.	HNO3	pH<2	pH<2	CC100
Sampler(s): Matt Hamilton Kenny McDonald						eleiti	'βW (') ')	, Аз, Вз, , С, Еб, Еб, Т, е́S	822-8		ercury	
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) In	Sb, As, B, B, Cd, Cr, Co, I Mo, Na, Pb,	Dissolved Si Mn, Mo, Pb,	Ra-226, Ra	Метситу	M beviossiQ	Sample Specific Notes.
AD-2	11/15/2022	1005	ဖ	ВW	7		×	×	×	×	×	
AD-3	11/16/2022	1145	g	GW	7		×	×	×	×	×	
AD-4	11/16/2022	1132	၅	GW	7		×	×	×	×	×	
AD-7	11/16/2022	910	9	GW	5		×	×	×	×	×	
AD-12	11/15/2022	1058	ပ	Αğ	5	6723	×	×	×	×	×	
AD-13	11/15/2022	821		₩S	7		×	×	×	×	×	
AD-17	11/16/2022	1058	9	OW.	7		×	×	×	×	×	
AD-18	11/16/2022	1013	g	ΝS	7		×	×	×	×	×	
AD-22	11/14/2022	1131	O	В	7		×	×	×	×	×	
AD-28	11/16/2022	848	O	AS OW	7		×	×	×	×	×	
AD-30	11/16/2022	946	ဖ	0W	_		×	×	×	×	×	
AD-31	11/15/2022	1002	ပ	ВW	7		×	×	×	×	×	
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HN03; 5=Na	OH; 6= Ott		; F= filter in field	ilter in f	Teld	4	74	4	2	F2	

Six 1L Bottles must be collected for Radium for every 10th sample.

TG-32 needed Special Instructions/QC Requirements & Comments:

Relinquished by American	Company	Date/Time. 13 c. Received by:		Date/Time:
Relinquished by:	Company: d	Date/Time:	Received by:	Date/Time:
Relinquished by:	Company:	Date/Time	Received in John Der J. Charles	Date(Time: 12/22 12/09/PM

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

Chain of Custody Record

Dolan Chemical Laboratory (DCL)	-				Chai	n of (Sustoc	Chain of Custody Record	ord			
4001 Bixby Road Groveport, Ohio 43125				Pro	gram:	Coal Co	mbustio	Program: Coal Combustion Residuals (CCR)	s (CCR)			
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)					ľ	Site Contact:	i;			Date:		For Lab Use Only: COC/Order #:
Project Name: Pirkey PP CCR							250 mL		Three (six every 10th*)	250 mL Glass	250 mL Glass	
Contact Name: Leslie Fuerschbach	Analysis	urmaround	Analysis Turnaround Time (in Calendar Days)	lendar E	ays)			두	1 L bottles, pH<2,	bottle, HCL™,	bottle, HCL**,	
Contact Phone: 318-673-2744	© Ron	ine (28 dayı	 Routine (28 days for Monitoring Wells) 	ng Wells	÷		HNO3	HNO	HNO3	pH<2	pH<2	「 が は 人体 」 にない 一 に 対して ラフド・ステンガ いかる
Sampler(s): Matt Hamilton Kenny McDonald						elaiti	(, Ll, Mg,	,o, Fe, Li,	822-6		ercury	
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	on (a)helqms2	Sb, As, B, B; Cd, Cr, Co, H Mo, Na, Pb, 3	Dissolved Si Be, Cd, Cr, C Mn, Mo, Pb,	Ra-226, Ra	Mercury	M bevlossid	Sample Specific Notes:
AD-32	11/15/2022	903	9	GW	2		×	×	×	×	×	
AD-33	11/15/2022	1106	S	GW	7		×	×	×	×	×	
Duplicate - 2	11/15/2022	1400	G	GW	4		×	×		×	×	
Equipment Blank	11/16/2022	1022	9	GW	2		×			×		
											,	
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	INO3; 5=Na	3H; 6= Oth	ier	; FE	; F= filter in field	ield	4	F4	4	2	F2	
* Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th	sample.										
Special Instructions/QC Requirements & Comments:	;;	~ ~	TG-32 necded	ded								
Relinquished by:	Company:	<u>ب</u> ای		Date/Time:	ne: 7.7.	13co R	Received by:				E	Date/Time:
Relinquished by:	Company:	 {†		Date/Time:	Je:		Received by:					Date/Time:

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

Date/Time:

Received in Laboratory by:

Date/Time:

Company:

Relinquished by:

MATER & WASTE SAMPLE RECEIPT FORM (IR#1)

- Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FEEEX USPS
	Other
Plant/Customer	Number of Plastic Containers: 79
Opened By MC	Number of Glass Containers: 3
Date/Time 11/21/22 12:00fM.	Number of Mercury Containers:
Were all temperatures within 0-6°C? Y/N	or N/A Initial:on ice I-no ice
(IR Gun Ser# 210441568, Expir.5/27/2023)	
Was container in good condition? (Y)/ N	Comments
Was Chain of Custody received?	Comments
Requested turnaround:	If RUSH, who was notified?
pH (15 min) Cr ⁴⁶ (pres) NO₂ or I (24 hr)	NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out property?	Comments
Were samples labeled property? VN	Comments
Were correct containers used? N	
=	N or N/A Initial & Date: Mirk 1/21/21
pH paper (circle one): MQuant pH Cat 1. lot HC904495	09535.0001 Lab rat pH Cat # LRS -4801 Lot X000RWDG21
	if Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab 10# 223664 Initial 8	& Date & Time :
Comm	ents;
Logged by	
Reviewed by	
(/ -	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Doinn Chemical Laboratory

Sample Receipt Form SOP-7102

Page I of I

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

х	(which	includ	e page, and the laboratory i les the reportable data iden ption Reports.			
Х	R1		chain-of-custody documen	tation		
X	R2	Sampl	le identification cross-refer	ence		
X	R3	(a) It N (b) D (c) P (d) C	eports (analytical data shee ems specified in NELAC C ELAC Standard ilution factors reparation methods leanup methods required for the project, to	hapter 5 for	reporting results, e.g	., Section 5.5.10 in 2003
NA	R4	(a) C	gate recovery data includin alculated recovery (%R) he laboratory's surrogate Q	_		
X	R5	Test re	eports/summary forms for	blank samp	oles	
X	R6	(a) L (b) C	eports/summary forms for CS spiking amounts alculated %R for each anal he laboratory's LCS QC lim	yte	control samples (LCS	s) including:
X	R7	(a) S.(b) M.(c) C.(d) C.	eports for project matrix spamples associated with the IS/MSD spiking amounts oncentration of each MS/Nalculated %Rs and relative he laboratory's MS/MSD (MS/MSD of MSD analyte percent dif	learly identified measured in the pare	-
X	R8	(a) T (b) T	atory analytical duplicate (he amount of analyte meas he calculated RPD he laboratory's QC limits fo	sured in the	duplicate	ion:
Х	R9		f method quantitation limit	•	-	ch method and matrix
х	R10	Other	problems or anomalies			
X	The Ex	ception	n Report for every item for	which the r	esult is "No" or "NR"	(Not Reviewed)
packag require reports by the laborar	ge as be ements s. By m laborat tory in t	en revi of the r y signa tory as the Lab	t: I am responsible for the ewed by the laboratory and methods used, except wher ature below, I affirm to the having the potential to afferoratory Review Checklist, a quality of the data.	d is complet e noted by t best of my l ect the quali	e and technically com he laboratory in the a knowledge, all probler ty of the data, have be	pliant with the ttached exception ms/anomalies, observed een identified by the
respon used is	ding to	rule. T sible fo	he official signing the cove or releasing this data packa	r page of th	e rule-required report	in which these data are
	than B		- Controller	arnhill	Lab Supervisor	12/14/2022
Name	(printed	d)	Signature		Official Title	Date

Table 1. Reportable Data.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name:	
Reviewer Name: Jo	onathan Barnhill
LRC Date: 12/14/20)22
Laboratory Job Nui	nber: 223664
<u>~</u>	PB22112206 PB22112207 QC2212035 QC2212036

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?		
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER1
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	No	ER3
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name:	
Reviewer Name: Jo	onathan Barnhill
LRC Date: 12/14/20	022
Laboratory Job Nu	

Prep Batch Number(s): PB22112206 PB22112207 QC2212035 QC2212036

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	Yes	
	I	Were ion abundance data within the method-required QC limits?	Yes	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	Yes	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: _	American Electric Power Dolan Chemical Laboratory
Project Name:	
Reviewer Name: Jo	nathan Barnhill
LRC Date: 12/14/202	
Laboratory Job Num	
	(s): PB22112206 PB22112207 QC2212035 QC2212036

Exception Report No.	Description
ER1	Linear Dynamic Range (LDR) study used to determine upper limit of analyte calibration.
ER2	CCB acceptance criteria is CCB<2.2*MDL.
ER3	Matrix Spike Failure for Na on sample 223664-001
	Matrix Spike Failure for Na on sample 223664-011

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

х	(which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.					
X	R1	Field chain-of-custody documentation				
X	R2	Sample identification cross-reference				
X	R3	 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) 				
NA	R4	Surrogate recovery data including: (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits				
X	R ₅	Test reports/summary forms for blank samples				
X	R6	Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits				
X	R7	Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits				
X	R8	Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates				
Х	R9	List of method quantitation limits (MQLs) for each analyte for each method and matrix				
X	R10	Other problems or anomalies				
X	The Ex	The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)				
packag require reports	ge as be ements s. By m	tement: I am responsible for the release of this laboratory data package. This data sen reviewed by the laboratory and is complete and technically compliant with the of the methods used, except where noted by the laboratory in the attached exception y signature below, I affirm to the best of my knowledge, all problems/anomalies, observed forwards having the potential to affect the quality of the data, have been identified by the				

the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Tamisha Palmer 12/20/2022 Chemical Technician, Prin Name (printed) Official Title Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 12/20/2022

Laboratory Job Number: PB22112803

Prep Batch Number(s): 223664

Item¹	Analytes.2	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?		
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 12/20/2022

Laboratory Job Number: PB22112803

Prep Batch Number(s): 223664

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: _	American Electric Power Dolan Chemical Laboratory
Project Name: Pirke	ey Power
Reviewer Name: Ta	ımisha Palmer
LRC Date: 12/20/20	22
Laboratory Job Nun	nber: PB22112803
Prep Batch Number	

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

X	(which	ignature page, and the laboratory review checklist consisting of Table 1, Reportable Data h includes the reportable data identified on this page), Table 2, Supporting Data, and 3, Exception Reports.					
х	R1	· -	-	y documentation			
х	R2	Sample iden	tification	cross-reference			
х	R3	(a) Items synthems(b) Dilution(c) Prepara(d) Cleanup	pecified in Standard factors tion method	n NELAC Chapter 5 : l hods s	ich environmental sample t for reporting results, e.g., So ridentified compounds (TIC	ection 5.5.10 in 2003	
NA	R4	(a) Calcula	ted recov	ata including: ery (%R) surrogate QC limits			
X	R ₅	Test reports	/summar	y forms for blank sa	mples		
X	R6	(a) LCS spi (b) Calcula	king amo		ry control samples (LCSs) in	ncluding:	
X	R7	(a) Sample(b) MS/MS(c) Concen(d) Calcula	s associated spiking tration of the spiking tration of the spiking and the spiking are spiking as a spiking as	ted with the MS/MS g amounts	yte measured in the parent	J	
X	R8	(a) The am(b) The calc	ount of a culated R	nalyte measured in t	-	:	
Х	R9	List of meth	od quant	itation limits (MQLs) for each analyte for each n	nethod and matrix	
X	R10	Other proble	ems or an	omalies			
Х	The Ex	ception Repo	ort for eve	ery item for which th	e result is "No" or "NR" (No	t Reviewed)	
packag require reports by the laborat	e as be ements of s. By my laborat cory in t	en reviewed of the methody of the methody ory as having	by the lab ds used, e pelow, I a g the pote y Review	ooratory and is comp except where noted b ffirm to the best of m ential to affect the qu Checklist, and no in	of this laboratory data packa lete and technically complic by the laboratory in the attac ny knowledge, all problems/ ality of the data, have been formation or data have been	ant with the ched exception anomalies, observed identified by the	
respon used is	ding to	rule. The offi sible for relea	cial signi	ng the cover page of	se laboratory controlled by t the rule-required report in by signature affirming the	which these data are	
	a Tims		A	bysina	Chemist Associate	12/20/2022	
Name	(printed	l)	Signat	ure	Official Title	Date	

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 12/20/2022

Laboratory Job Number: 223664

Prep Batch Number(s): PB22112804

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes. ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	NO	ER1
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 12/20/2022

Laboratory Job Number: 223664

Prep Batch Number(s): PB22112804

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	NA	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	NA	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name:American Electric Power Dolan Chemical LaboratoryProject Name:Pirkey Power StationReviewer Name:Sunita TimsinaLRC Date:12/20/2022Laboratory Job Number:223664Prep Batch Number(s):PB22112804

Exception Report No.	Description
ER1	RPD for duplicate sample exceeds 25%.

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

х	(which	signature page, and the laboratory review checklist consisting of Table 1, Reportable Data ch includes the reportable data identified on this page), Table 2, Supporting Data, and e 3, Exception Reports.					
х	R1	Field chain-of	-custody documentation	l			
X	R2	Sample identi	fication cross-reference				
X	R3	(a) Items spectrum(b) Dilution f(c) Preparati(d) Cleanup f	cified in NELAC Chapte tandard actors on methods nethods	or each environmental sample t r 5 for reporting results, e.g., So vely identified compounds (TIC	ection 5.5.10 in 2003		
NA	R4	(a) Calculate	overy data including: d recovery (%R) atory's surrogate QC lim	nits			
X	R ₅	Test reports/s	ummary forms for blanl	x samples			
X	R6	(a) LCS spiki(b) Calculate		ratory control samples (LCSs) is	ncluding:		
X	R7	(a) Samples ((b) MS/MSD(c) Concentr(d) Calculate	 (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) 				
X	R8	(a) The amou(b) The calcu	ant of analyte measured	-	:		
X	R9	List of method	l quantitation limits (Mo	QLs) for each analyte for each n	nethod and matrix		
X	R10	Other problem	ns or anomalies				
X	The Ex	ception Repor	t for every item for which	h the result is "No" or "NR" (No	ot Reviewed)		
packag require reports by the laborat	ge as be ements s. By m laborat tory in t	en reviewed by of the methods y signature be ory as having t	the laboratory and is co sused, except where note low, I affirm to the best he potential to affect the Review Checklist, and n	se of this laboratory data packa omplete and technically complia ed by the laboratory in the attac of my knowledge, all problems, e quality of the data, have been o information or data have bee	ant with the ched exception /anomalies, observed identified by the		
respon used is	Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.						
Sunit	a Tim	sina	C WAIRING TO THE PARTY OF THE P	Chemist Associate	12/29/2022		
Name	(printed	d)	Signature	Official Title	Date		

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 12/29/2022

Laboratory Job Number: 223664

Prep Batch Number(s): PB22112203, PB22112805

Item¹	Analytes. ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes. ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	N/A	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	Ι	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 12/29/2022

Laboratory Job Number: 223664

Prep Batch Number(s): PB22112203, PB22112805

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴	
S1	O, I	Initial calibration (ICAL)			
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA		
	I	Were percent RSDs or correlation coefficient criteria met?	Yes		
	I	Was the number of standards recommended in the method used for all analytes?	Yes		
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA		
	I	Are ICAL data available for all instruments used?	Yes		
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes		
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):			
	I	Was the CCV analyzed at the method-required frequency?	NA		
	I	Were percent differences for each analyte within the method-required QC limits?	NA		
	I	Was the ICAL curve verified for each analyte?	NA		
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA		
S3	0	Mass spectral tuning:			
	I	Was the appropriate compound for the method used for tuning?	NA		
	I	Were ion abundance data within the method-required QC limits?	NA		
S4	0	Internal standards (IS):			
	I	Were IS area counts and retention times within the method-required QC limits?	NA		
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)			
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes		
	I	Were data associated with manual integrations flagged on the raw data?	NA		

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	NA	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	NA	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory					
Project Name: Pirke						
Reviewer Name: St	unita Timsina					
LRC Date: 12/29/20						
Laboratory Job Number: 223664						
	PB22112203, PB22112805					

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

 This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.

 R₁ Field chain-of-custody documentation

 R₂ Sample identification cross-reference

R3 Test reports (analytical data sheets) for each environmental sample that includes:

(a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003

NELAC Standard

(b) Dilution factors

(c) Preparation methods

(d) Cleanup methods

(e) If required for the project, tentatively identified compounds (TICs)

R4 Surrogate recovery data including:
(a) Calculated recovery (%R)

(b) The laboratory's surrogate QC limits

R5 Test reports/summary forms for blank samples

R6 Test reports/summary forms for laboratory control samples (LCSs) including:

(a) LCS spiking amounts

(b) Calculated %R for each analyte

(c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

(a) Samples associated with the MS/MSD clearly identified

(b) MS/MSD spiking amounts

(c) Concentration of each MS/MSD analyte measured in the parent and spiked samples

(d) Calculated %Rs and relative percent differences (RPDs)

(e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) recovery and precision:

(a) The amount of analyte measured in the duplicate

(b) The calculated RPD

(c) The laboratory's QC limits for analytical duplicates

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix

x R10 Other problems or anomalies

The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Susann Sulzmann
Name (printed)
Signature
Senior Chemist
12-20-2022
Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power station

Reviewer Name: Susann Sulzmann

LRC Date: 12-20-2022

Laboratory Job Number: 223664

Prep Batch Number(s): PB22112503,-906,-907,-908

Item¹	Analytes ²	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴	
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
-	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		,
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	÷
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power station

Reviewer Name: Susann Sulzmann

LRC Date: 12-20-2022

Laboratory Job Number: 223664

Prep Batch Number(s): PB22112503,-906,-907,-908

Item¹	Analytes ²	Result (Yes, No, NA, NR) ³	Exception Report No.4	
\$ 1	O, I	Initial calibration (ICAL)		
	Ī	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):	W 22	
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
_S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4	
S6	0	Dual column confirmation			
	I	Did dual column confirmation results meet the method-required QC?	NA		
S 7	0	Tentatively identified compounds (TICs):			
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA		
S8	I	Interference Check Sample (ICS) results:			
	I	Were percent recoveries within method QC limits?	NA		
S9	I	Serial dilutions, post digestion spikes, and method of standard additions			
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA		
S10	O, I	Method detection limit (MDL) studies			
	I	Was a MDL study performed for each reported analyte?	Yes		
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes		
S11	O, I	Proficiency test reports:			
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes		
S12	O, I	Standards documentation			
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes		
S13	O, I	Compound/analyte identification procedures			
	I	Are the procedures for compound/analyte identification documented?	Yes		
S14	O, I	Demonstration of analyst competency (DOC)			
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes		
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes		
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)			
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes		
S16	O, I	Laboratory standard operating procedures (SOPs):			
	I	Are laboratory SOPs current and on file for each method performed?	Yes		

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey Power station

Reviewer Name: Susann Sulzmann

LRC Date: 12-20-2022

Laboratory Job Number: 223664

Prep Batch Number(s): PB22112503,-906,-907,-908

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< td=""></mql.<>

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223647 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-2 Customer Description: TG-32

Lab Number: 223647-001 Preparation:

Date Collected: 11/15/2022 11:05 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.37 mg/L	2	0.10	0.02	CRJ	11/30/2022 14:27	EPA 300.1 -1997, Rev. 1.0
Chloride	30.5 mg/L	2	0.04	0.02	CRJ	11/30/2022 14:27	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.21 mg/L	2	0.06	0.02	CRJ	11/30/2022 14:27	EPA 300.1-1997, Rev. 1.0
Sulfate	259 mg/L	10	2.0	0.3	CRJ	11/30/2022 13:54	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	480 mg/L	1	50	20	SDW	11/20/2022 10:00	SM 2540C-2015

Customer Sample ID: AD-3 Customer Description: TG-32

Lab Number: 223647-002 Preparation:

Date Collected: 11/16/2022 12:45 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.07 mg/L	2	0.10	0.02 J1	CRJ	11/30/2022 13:21	EPA 300.1 -1997, Rev. 1.0
Chloride	7.40 mg/L	2	0.04	0.02	CRJ	11/30/2022 13:21	EPA 300.1-1997, Rev. 1.0
Fluoride	0.18 mg/L	2	0.06	0.02	CRJ	11/30/2022 13:21	EPA 300.1 -1997, Rev. 1.0
Sulfate	34.4 mg/L	2	0.40	0.06	CRJ	11/30/2022 13:21	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units Di	lution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	29 mg/L	1	20	5	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	160 mg/L	1	50	20	SDW	11/20/2022 10:05	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223647 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-4 Customer Description: TG-32

Lab Number: 223647-003 Preparation:

Date Collected: 11/16/2022 12:32 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.19 mg/L	2	0.10	0.02	CRJ	11/30/2022 15:33	EPA 300.1 -1997, Rev. 1.0
Chloride	4.14 mg/L	2	0.04	0.02	CRJ	11/30/2022 15:33	EPA 300.1 -1997, Rev. 1.0
Fluoride	<0.02 mg/L	2	0.06	0.02 U1	CRJ	11/30/2022 15:33	EPA 300.1 -1997, Rev. 1.0
Sulfate	16.6 mg/L	2	0.40	0.06	CRJ	11/30/2022 15:33	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	130 mg/L	1	50	20	SDW	11/20/2022 10:10	SM 2540C-2015

Customer Sample ID: AD-7 Customer Description: TG-32

Lab Number: 223647-004 Preparation:

Date Collected: 11/16/2022 10:10 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	4.29 mg/L	2	0.10	0.02	CRJ	11/30/2022 17:45	EPA 300.1 -1997, Rev. 1.0
Chloride	69.7 mg/L	10	0.2	0.1	CRJ	12/01/2022 08:54	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.23 mg/L	2	0.06	0.02	CRJ	11/30/2022 17:45	EPA 300.1 -1997, Rev. 1.0
Sulfate	60.5 mg/L	2	0.40	0.06	CRJ	11/30/2022 17:45	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	300 mg/L	1	50	20	SDW	11/20/2022 10:10	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223647 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-12 Customer Description: TG-32

Lab Number: 223647-005 Preparation:

Date Collected: 11/15/2022 11:58 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.14 mg/L	2	0.10	0.02	CRJ	11/30/2022 18:17	EPA 300.1 -1997, Rev. 1.0
Chloride	8.03 mg/L	2	0.04	0.02	CRJ	11/30/2022 18:17	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.08 mg/L	2	0.06	0.02	CRJ	11/30/2022 18:17	EPA 300.1 -1997, Rev. 1.0
Sulfate	3.39 mg/L	2	0.40	0.06	CRJ	11/30/2022 18:17	EPA 300.1-1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	70 mg/L	1	50	20	SDW	11/20/2022 10:15	SM 2540C-2015

Customer Sample ID: AD-13 Customer Description: TG-32

Lab Number: 223647-006 Preparation:

Date Collected: 11/15/2022 09:21 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units Di	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.23 mg/L	2	0.10	0.02	CRJ	11/30/2022 16:39	EPA 300.1 -1997, Rev. 1.0
Chloride	41.3 mg/L	2	0.04	0.02	CRJ	11/30/2022 16:39	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.36 mg/L	2	0.06	0.02	CRJ	11/30/2022 16:39	EPA 300.1 -1997, Rev. 1.0
Sulfate	69.6 mg/L	2	0.40	0.06	CRJ	11/30/2022 16:39	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units Dil	lution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	66 mg/L	1	20	5	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	260 mg/L	1	50	20	SDW	11/20/2022 10:15	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223647 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-17 Customer Description: TG-32

Lab Number: 223647-007 Preparation:

Date Collected: 11/16/2022 11:58 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.20 mg/L	2	0.10	0.02	CRJ	11/30/2022 18:50	EPA 300.1 -1997, Rev. 1.0
Chloride	35.0 mg/L	2	0.04	0.02	CRJ	11/30/2022 18:50	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.26 mg/L	2	0.06	0.02	CRJ	11/30/2022 18:50	EPA 300.1 -1997, Rev. 1.0
Sulfate	2.91 mg/L	2	0.40	0.06	CRJ	11/30/2022 18:50	EPA 300.1-1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	80 mg/L	1	50	20	SDW	11/20/2022 10:23	SM 2540C-2015

Customer Sample ID: AD-18 Customer Description: TG-32

Lab Number: 223647-008 Preparation:

Date Collected: 11/16/2022 11:13 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units Di	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.04 mg/L	2	0.10	0.02 J1	CRJ	11/30/2022 19:56	EPA 300.1 -1997, Rev. 1.0
Chloride	4.94 mg/L	2	0.04	0.02	CRJ	11/30/2022 19:56	EPA 300.1 -1997, Rev. 1.0
Fluoride	<0.02 mg/L	2	0.06	0.02 U1	CRJ	11/30/2022 19:56	EPA 300.1 -1997, Rev. 1.0
Sulfate	6.55 mg/L	2	0.40	0.06	CRJ	11/30/2022 19:56	EPA 300.1-1997, Rev. 1.0

Parameter	Result Units Dil	ution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	90 mg/L	1	50	20	SDW	11/20/2022 10:23	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223647 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-22 Customer Description: TG-32

Lab Number: 223647-009 Preparation:

Date Collected: 11/14/2022 12:31 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.79 mg/L	2	0.10	0.02	CRJ	11/30/2022 23:47	EPA 300.1 -1997, Rev. 1.0
Chloride	101 mg/L	25	0.5	0.3	CRJ	11/30/2022 23:14	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.28 mg/L	2	0.06	0.02	CRJ	11/30/2022 23:47	EPA 300.1-1997, Rev. 1.0
Sulfate	251 mg/L	25	5.0	0.8	CRJ	11/30/2022 23:14	EPA 300.1-1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	570 mg/L	1	50	20	SDW	11/20/2022 10:29	SM 2540C-2015

Customer Sample ID: AD-28 Customer Description: TG-32

Lab Number: 223647-010 Preparation:

Date Collected: 11/16/2022 09:48 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units Di	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.07 mg/L	2	0.10	0.02 J1	CRJ	12/01/2022 00:53	EPA 300.1 -1997, Rev. 1.0
Chloride	4.96 mg/L	2	0.04	0.02	CRJ	12/01/2022 00:53	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.48 mg/L	2	0.06	0.02	CRJ	12/01/2022 00:53	EPA 300.1 -1997, Rev. 1.0
Sulfate	23.3 mg/L	2	0.40	0.06	CRJ	12/01/2022 00:53	EPA 300.1-1997, Rev. 1.0

Parameter	Result Units Dil	ution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	80 mg/L	1	50	20	SDW	11/20/2022 10:29	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223647 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-30 Customer Description: TG-32

Lab Number: 223647-011 Preparation:

Date Collected: 11/16/2022 10:46 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.37 mg/L	2	0.10	0.02	CRJ	12/01/2022 01:58	EPA 300.1 -1997, Rev. 1.0
Chloride	27.4 mg/L	2	0.04	0.02	CRJ	12/01/2022 01:58	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.07 mg/L	2	0.06	0.02	CRJ	12/01/2022 01:58	EPA 300.1 -1997, Rev. 1.0
Sulfate	177 mg/L	10	2.0	0.3	CRJ	12/01/2022 01:25	EPA 300.1-1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	340 mg/L	1	50	20	SDW	11/20/2022 10:35	SM 2540C-2015

Customer Sample ID: AD-31 Customer Description: TG-32

Lab Number: 223647-012 Preparation:

Date Collected: 11/15/2022 11:02 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units D	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.35 mg/L	2	0.10	0.02	CRJ	12/01/2022 03:04	EPA 300.1 -1997, Rev. 1.0
Chloride	24.3 mg/L	2	0.04	0.02	CRJ	12/01/2022 03:04	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.14 mg/L	2	0.06	0.02	CRJ	12/01/2022 03:04	EPA 300.1-1997, Rev. 1.0
Sulfate	79.1 mg/L	2	0.40	0.06	CRJ	12/01/2022 03:04	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units Dil	ution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	250 mg/L	1	50	20	SDW	11/20/2022 10:35	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 223647 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: AD-32 Customer Description: TG-32

Lab Number: 223647-013 Preparation:

Date Collected: 11/15/2022 10:03 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	2.58 mg/L	2	0.10	0.02	CRJ	12/01/2022 05:49	EPA 300.1 -1997, Rev. 1.0
Chloride	22. 7 mg/L	2	0.04	0.02	CRJ	12/01/2022 05:49	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.49 mg/L	2	0.06	0.02	CRJ	12/01/2022 05:49	EPA 300.1 -1997, Rev. 1.0
Sulfate	244 mg/L	25	5.0	0.8	CRJ	12/01/2022 05:16	EPA 300.1-1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	450 mg/L	1	50	20	SDW	11/20/2022 10:40	SM 2540C-2015

Customer Sample ID: AD-33 Customer Description: TG-32

Lab Number: 223647-014 Preparation:

Date Collected: 11/15/2022 12:06 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units D	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.25 mg/L	2	0.10	0.02	CRJ	12/01/2022 06:55	EPA 300.1 -1997, Rev. 1.0
Chloride	9.18 mg/L	2	0.04	0.02	CRJ	12/01/2022 06:55	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.16 mg/L	2	0.06	0.02	CRJ	12/01/2022 06:55	EPA 300.1-1997, Rev. 1.0
Sulfate	42.7 mg/L	2	0.40	0.06	CRJ	12/01/2022 06:55	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units Dil	lution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	140 mg/L	1	50	20	SDW	11/20/2022 10:40	SM 2540C-2015

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 223647 Customer: Pirkey Power Station Date Reported: 12/22/2022

Customer Sample ID: Duplicate - 2 Customer Description: TG-32

Lab Number: 223647-015 Preparation:

Date Collected: 11/15/2022 15:00 EST Date Received: 11/18/2022 10:20 EST

Ion Chromatography

Parameter	Result Units Dilu	ition	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.23 mg/L	2	0.10	0.02	CRJ	12/01/2022 04:10	EPA 300.1 -1997, Rev. 1.0
Chloride	41.3 mg/L	2	0.04	0.02	CRJ	12/01/2022 04:10	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.36 mg/L	2	0.06	0.02	CRJ	12/01/2022 04:10	EPA 300.1 -1997, Rev. 1.0
Sulfate	70.2 mg/L	2	0.40	0.06	CRJ	12/01/2022 04:10	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	65 mg/L	1	20	5	MGK	11/21/2022 10:18	SM 2320B-2011
TDS, Filterable Residue	270 mg/L	1	50	20	SDW	11/20/2022 10:47	SM 2540C-2015

223647

Job Comments:

Original report issued 12/21/22. Report reissued without P1 flag for alkalinity as sample and duplicate results < RL.

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Job ID: 223647

Water Analysis Report

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Customer: Pirkey Power Station Date Reported: 12/22/2022

Data Qualifer Legend

U1 - Not detected at or above method detection limit (MDL).

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Bixby Road

Groveport, Ohio 43125				rogran	n: Coal	Combus	stion Re	Program: Coal Combustion Residuals (CCR)	CCR)	10000000		
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)					Site	Site Contact:				Date:	For Lab Use Only: COC/Order #:	0.00
Project Name: Pirkey PP Semi-Annual CCR Contact Name: Leslie Fuerschbach Contact Phone: 318-673-2744	Analysis 1	Anatysis Turnaround Time (in		Calendar Days) for Monitorir	Calendar Days) for Monitoring Wells)		250 mL bottle, pH<2, th	Field-filter 250 mL bottle, then pH<2, HNO3	Th 1 L bottle, (six. Cool, 0-6C 10th*) L bottle	Three (six every loth") 1 Lbottles, pH<2, HNO3	1.522647	U DI SUL SI
Sampler(s): Matt Hamilton Kenny McDonald						Sieur	-	eıcnıλ	,18 , thinity	822-e		
Sample Identification	Sample Date	Sample Time	Sample Type (CaComp, GaGrab)	Matrix	Comt.	Sampler(s) ini	Mercury	M beviossiQ	LDS' YIK9 E' CI' 204	R≉-226, Ra	Sample Specific Notes:	
AD-2	11/15/2022	1005	၅	GW	-	H			×			
AD-3	11/16/2022	1145	9	GW	-				×			
AD-4	11/16/2022	1132	ပ	GW	-	\dashv			×			
AD-7	11/16/2022	910	o	GW	-	-			×			
AD-12	11/15/2022	1058	9	GW.	-				×			\neg
AD-13	11/15/2022	821	v	GW	-	-			×			$\neg \top$
AD-17	11/16/2022	1058	9	GW	-				×			
AD-18	11/16/2022	1013	9	GW	-				×			1
AD-22	11/14/2022	1131	ပ	NS CW	-				×			
AD-28	11/16/2022	848	v	GW	-	-			×			
AD-30	11/16/2022	946	o	Q.W	-				×			
AD-31	11/15/2022	1002	9	GW	-				×			
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3; 5=Na	OH; 6= Otl		; F= fi	; F= filter in field		4	F4	-	4		
Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.		ĺ								

Special Instructions/QC Requirements & Comments:

TG-32 needed

Relinquished by X	Company F. 16	Date/Time: 13c Received by:	Received by:	Date/Time:	
Relinquished by	Company.	Date/Time	Received by:	Date/Time:	
Relinqu shed by	Company:	Date/Time:	Received in Laboratory by	M €05,01 12/8/11	

Chain of Custody Record

Dolan Chemical Laboratory (DCL)

10,30Am Sample Specific Notes: For Lab Use Only: Date/Time/ 18/22 COC/Order # Date/Time: Date/Time: Date: L bottles, pH<2, HNO3 1 L bottle, (six every Cool, 0-6C 10th*) Ra-226, Ra-228 TDS, Alkalinity Program: Coal Combustion Residuals (CCR) × E' CI' 204' BL' Received in Caboratory by: Field-filter 250 mL bottle, then pH<2, HNO3 Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17 Dissolved Mercury 7 Received by Received by 250 mL bottle, pH<2, HN03 Mercury 4 Site Contact: Sampter(s) initials ; F= filter in field 7 Conf. Analysis Turnaround Time (in Calendar Days) Date/Time: © Routine (28 days for Monitoring Wells) Date/Time: Date/Time: Sample
Type
(C=Comp,
G=Grab) Matrix გ Š ₿ Ø Ö Ö TG-32 needed reservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Sample Six 1L Bottles must be collected for Radium for every 10th sample. 1106 1400 Time 903 11/15/2022 11/15/2022 Company: 11/15/2022 Company: Sample Date Special Instructions/QC Requirements & Comments: Michael Ohlinger (614-836-4184) Matt Hamilton Kenny McDonald Dave Conover (614-836-4219) Groveport, Ohlo 43125 Leslie Fuerschbach Sample Identification 4001 Bixby Road 318-673-2744 Duplicate - 2 Project Name: Pirk ey PP CCR AD-33 AD-32 Relinquished by: Contact Phone: Relinquished by: Relinquished by Contact Name: Sampler(s):

WATER & WASTE SAMPLE RECEIPT FORM (Temp Gun 1)

22	1
Package Type	Delivery Type
Cooler Box Bag Envelope	PONY (UPS) FedEX USPS
Pulsen	Other
Plant/Customer W	Number of Plastic Containers:
Opened By MSS	Number of Glass Containers:
Date/Time 11/18/22 10:20	Number of Mercury Containers:
Were all temperatures within 0-6°C?(Y)	N or N/A Initial: On ice / no
	22/2024) - If No, specify each deviation:
	N Comments
Was Chain of Custody received? Y/	N Comments
Requested turnaround: Routine	If RUSH, who was notified?
	or NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? (Y) N	Comments
Were samples labeled properly? Y/N	Comments
Were correct containers used?	Comments
Was pH checked & Color Coding done?	Y/N or N/A Initial & Date: 9/16 11/18/22
pH paper (circle one): MQuant,PN1.09535.00	01,LOT# HC904495 [OR] Lab Rat,PN4801,LOT# X000RWDG21
	If Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y /	Comments(See Prep Book)
Was the customer contacted?	es: Person Contacted:
Lab ID#	al & Date & Time :
Logged by MS®	AD 4 Bottle samy Sup 11:33 coc 1132
Reviewed by	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

AEP- Dolan Chemical Laboratory

.

Sample Receipt Form SOP-7102

Page 1 of 1

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data Х (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. X Field chain-of-custody documentation R₁ X R_2 Sample identification cross-reference X Test reports (analytical data sheets) for each environmental sample that includes: R_3 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) Surrogate recovery data including: × R4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits X Test reports/summary forms for blank samples R5 х Test reports/summary forms for laboratory control samples (LCSs) including: R6 (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits X Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits X Laboratory analytical duplicate (if applicable) recovery and precision: R8 (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's OC limits for analytical duplicates List of method quantitation limits (MQLs) for each analyte for each method and matrix X R9 X Other problems or anomalies R10 × The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. **Prin Chemist** 12/21/2022 Timothy E Arnold Date Name (printed)

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Timothy E Arnold

LRC Date: 12/21/2022

Laboratory Job Number: 223647

Prep Batch Number(s): QC2212004

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	Yes	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	1	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	0, 1	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Timothy E Arnold

LRC Date: 12/21/2022

Laboratory Job Number: 223647

Prep Batch Number(s): QC2212004

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	1	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	О, І	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S 3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
_	I	Were ion abundance data within the method-required QC limits?	NA	
S 4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Ion Chromatography Laboratory Review Checklist

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	Ī	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
\$9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	632
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	Ο, Ι	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Ion Chromatography Laboratory Review Checklist

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Timothy E Arnold

LRC Date: 12/21/2022

Laboratory Job Number: 223647

Prep Batch Number(s): QC2212004

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: X This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. Field chain-of-custody documentation $\left[X \right]$ X R₂ Sample identification cross-reference X Test reports (analytical data sheets) for each environmental sample that includes: **R**3 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) Surrogate recovery data including: NA **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits X Test reports/summary forms for blank samples **R**5 х Test reports/summary forms for laboratory control samples (LCSs) including: R6 (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: X **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits х Laboratory analytical duplicate (if applicable) recovery and precision: **R8** (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates X List of method quantitation limits (MQLs) for each analyte for each method and matrix R9 X R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) X Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. **Check, if applicable:** () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Michael Ohlinger Name (printed)

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Michael Ohlinger

LRC Date: 12/20/2022

Laboratory Job Number: 223647

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	NA	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	_
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	!
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Michael Ohlinger

LRC Date: 4/5/22

Laboratory Job Number: 223647

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
5 2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S 3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
\$ 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S 6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
58	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA _	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
- 	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
\$12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory	Name: American Electric Power Dolan Chemical Laboratory
Project Nan	ne: Pirkey CCR
Reviewer N	ame: Michael Ohlinger
LRC Date:	12/20/2022
Laboratory	Job Number: 223647
Prep Batch	Number(s): QC2211231

Exception Report No.	Description

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: X This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. Field chain-of-custody documentation $\left[\times \right]$ R₁ X R₂ Sample identification cross-reference Х Test reports (analytical data sheets) for each environmental sample that includes: R_3 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: R4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits Test reports/summary forms for blank samples X R₅ X R6 Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits $\left[\times \right]$ Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: R7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits X Laboratory analytical duplicate (if applicable) recovery and precision: R8 (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates х R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix $\left[\times \right]$ R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. **Check, if applicable:** This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. **Chemist** Michael Ohilnger 12/22/2022 Official Title Name (printed) Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Michael Ohlinger

LRC Date: 12/22/2022

Laboratory Job Number: 223647

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
_	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
•	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	:
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	No	ER1
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Michael Ohlinger

LRC Date: 12/22/2022

Laboratory Job Number: 223647

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
_	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	77.830
S 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		1
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		The Action
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR

Reviewer Name: Michael Ohlinger

LRC Date: 12/22/2022

Laboratory Job Number: 223647

Prep Batch Number(s): QC2211194

Exception Report No.	Description
ER1	The RPD between duplicate results > acceptance limits, not flagged as results < MQL.
ER2	CCB acceptance criteria is CCB<0.5*MQL.

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."