Annual Groundwater Monitoring Report

Southwestern Electric Power Company
H. W. Pirkey Power Plant
East Bottom Ash Pond CCR Management Unit
CN600126767; RN100214287

Registration No: CCR104

Hallsville, Texas

January 31, 2024

Prepared by:
American Electric Power Service Corporation
1 Riverside Plaza
Columbus, Ohio 43215

Page

Table of Contents

I.	Overview	1
II.	Groundwater Monitoring Well Locations and Identification Numbers	
III.	Monitoring Wells Installed or Decommissioned	
IV.	Groundwater Quality Data and Static Water Elevation Data, With Flow Rate and Direction and Discussion	
V.	Groundwater Quality Data Statistical Analysis	6
VI.	Alternate Source Demonstration	. 7
VII.	Discussion About Transition Between Monitoring Requirements or Alternate Monitoring Frequency.	8
VIII.	Other Information Required	. 8
IX.	Description of Any Problems Encountered in 2023 and Actions Taken	8
X.	A Projection of Key Activities for the Upcoming Year	. <u>c</u>

Appendix 1- Groundwater Data Tables and Figures

Appendix 2- Statistical Analyses

Appendix 3- Alternative Source Demonstrations

Appendix 4- Field Sheets

Appendix 5- Analytical Reports

Appendix 6- Well Installation/Decommissioning Logs

Abbreviations:

ASD - Alternate Source Demonstration

CCR – Coal Combustion Residual

GWPS - Groundwater protection standards

SSI - Statistically Significant Increase

SSL - Statistically Significant Level

TCEQ – Texas Commission on Environmental Quality

I. Overview

This Annual Groundwater Monitoring Report (Report) has been prepared to report the status of activities for the preceding year at the East Bottom Ash Pond (EBAP) CCR unit at Pirkey Power Plant. Southwestern Electric Power Company is wholly-owned subsidiary of American Electric Power Company (AEP). The Texas Commission on Environmental Quality's (TCEQ's) CCR rules require that the Annual Groundwater Monitoring Report be posted to the operating record for the preceding year no later than January 31, 2024.

In general, the following activities were completed:

- At the start of the current annual reporting period, the EBAP was operating under the Assessment monitoring program.
- At the end of the current annual reporting period, the EBAP was operating under the Assessment monitoring program.
- The EBAP initiated an assessment monitoring program on April 3, 2018.
- Groundwater samples were collected for AD-2, AD-4, AD-12, AD-18, AD-31, and AD-32 in February, June, and August 2023 and analyzed for Appendix III and Appendix IV constituents, as specified in 30 TAC §352.941 or §352.951et seq and AEP's Groundwater Sampling and Analysis Plan (2021).
- Groundwater data underwent various validation tests, including tests for completeness, valid values, transcription errors, and consistent units.
- Data and statistical analysis not available for the previous reporting period indicates that during the 2nd semi-annual 2022 sampling event (November 2022):

The following Appendix IV parameters exceeded established groundwater protection standards:

- o Lithium at AD-31 and AD-32
- o Cobalt at AD-2, AD-31 and AD-32

The following Appendix III parameters exceeded background:

- o Boron at AD-2 and AD-32
- o Calcium at AD-32
- o Chloride at AD-2, AD-31 and AD-32
- o Fluoride at AD-32
- o Sulfate at AD-2, AD-31, and AD-32
- o TDS concentrations at AD-2, AD-31, and AD-32

- A successful ASD for the 2nd semi-annual 2022 Appendix IV parameters that exceeded the GWPS was certified on June 27, 2023 and submitted to TCEQ June 27, 2023 for approval.
- During the 1st semi-annual sampling event held in June 2023:

The following Appendix IV parameters exceeded established groundwater protection standards:

- o Lithium at AD-31 and AD-32
- o Cobalt at AD-2, AD-31, and AD-32

The following Appendix III parameters exceeded background:

- o Boron at AD-2 and AD-32
- o Calcium at AD-2 and AD-32
- o Chloride at AD-2, AD-31, and AD-32
- o Sulfate at AD-2, AD-31, and AD-32
- o TDS concentrations at AD-2, AD-31, and AD-32
- A successful ASD for the 1st semi-annual 2023 Appendix IV parameters that exceeded the GWPS was certified October 16, 2023 and submitted to TCEQ November 14, 2023 for approval.
- During the 2nd semi-annual sampling event held in August 2023:

The following Appendix IV parameters exceeded established groundwater protection standards:

- o Lithium at AD-2, AD-31 and AD-32
- o Cobalt at AD-2, AD-31, and AD-32

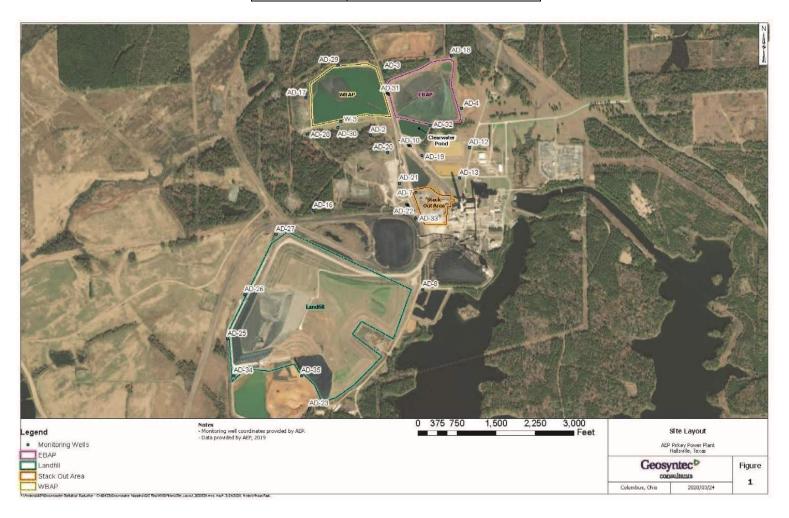
The following Appendix III parameters exceeded background:

- o Boron at AD-2 and AD-32
- o Calcium at AD-2 and AD-32
- o Chloride at AD-2, AD-31, and AD-32
- o Sulfate at AD-2, AD-31, and AD-32
- o TDS concentrations at AD-2, AD-31, and AD-32
- A successful ASD for the 2nd semi-annual 2023 Appendix IV parameters that exceeded the GWPS was certified October 17, 2023 and submitted to TCEQ November 14, 2023 for approval.

- Because an alternate source for the SSL(s) was identified, but no alternate source for the SSI(s) was identified, EBAP remained in Assessment Monitoring.
- A statistical process in accordance with 30 TAC §352.931 to evaluate groundwater data was updated, certified, and posted to AEP's CCR website in 2021 titled: AEP's Statistical Analysis Plan (Geosyntec 2021). The statistical process was guided by USEPA's Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance ("Unified Guidance," USEPA, 2009).
- On April 25, 2023, EBAP ceased receipt of CCR and non-CCR wastestreams and commenced closure by removal for this CCR Unit in accordance with the certified closure plan.
- The CCR material was removed from April to June of 2023 from the EBAP. An additional 12 inches of soil was then removed, finishing in July of 2023. The last inspection for the removal was completed on July 20, 2023. The groundwater monitoring samples for final closure were collected in August 2023.
- On October 17, 2023, the EBAP was closed by removal in accordance with 30 TAC §352.1221 (40 CFR 257.102) and the most recent Written Closure Plan. A Closure Completion Notification that was certified by a Professional engineer was submitted to TCEQ. Groundwater monitoring will continue until TCEQ's Executive Director issues a closure certification.

The major components of this annual report, to the extent applicable at this time, are presented in sections that follow:

- A map, aerial photograph or a drawing showing the CCR management unit(s), all groundwater monitoring wells and monitoring well identification numbers;
- All of the monitoring data collected, including the rate and direction of groundwater flow, plus a summary showing the number of samples collected per monitoring well, the dates the samples were collected and whether the sample was collected as part of detection monitoring or assessment monitoring programs (Attached as **Appendix 1**);
- Statistical comparison of monitoring data to determine if there have been SSI(s) or SSL(s) (Attached as **Appendix 2**);
- A discussion of whether any alternate source demonstrations were performed, and the conclusions (Attached as **Appendix 3**);
- A summary of any transition between monitoring programs, or an alternate monitoring frequency, for example the date and circumstances for transitioning from detection monitoring to assessment monitoring, in addition to identifying the constituents detected at a SSI over background concentrations (where applicable);


- Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a statement as to why that happened;
- Other information required to be included in the annual report such as field sheets, analytical reports, etc. (Appendix 4 and 5).

In addition, this report summarizes key actions completed, and where applicable, describes any problems encountered and actions taken to resolve those problems. The report includes a projection of key activities for the upcoming year.

II. Groundwater Monitoring Well Locations and Identification Numbers

The figure that follows depicts the PE-certified groundwater monitoring network, the monitoring well locations and their corresponding identification numbers.

EBA	P Monitoring Wells								
Up Gradient	Down Gradient								
AD-4 AD-2									
AD-12	AD-31								
AD-18	AD-32								

III. Monitoring Wells Installed or Decommissioned

Pirkey Power Plant ceased operation of its coal-fired boilers on March 31, 2023. The Plant is currently being demolished, and one the designated downgradient monitoring wells (AD-7) for the FGD Stack Out Area was decommissioned during September 2023 because it was located within the boundary (footprint) of the Stack Out Area where demolition activities are occurring.

There were no new groundwater monitoring wells installed during 2023. The network design, as summarized in the *Groundwater Monitoring Network Design Report* (May 25, 2016) and as posted at the CCR website for Pirkey Power Plant's EBAP, did not change. That network design report, viewable on the AEP CCR web site, discusses the facility location, the hydrogeological setting, the hydrostratigraphic units, the uppermost aquifer, downgradient monitoring well locations and the upgradient monitoring well locations.

IV. <u>Groundwater Quality Data and Static Water Elevation Data, With Flow Rate and Direction and Discussion</u>

Appendix 1 contains tables showing the groundwater quality data collected during the establishment of background quality, and during detection and assessment monitoring. Static water elevation data from each monitoring event also are shown in **Appendix 1**, along with the groundwater velocity calculations, groundwater flow direction and potentiometric maps developed after each sampling event.

The sampling event conducted February 2023 satisfies the requirement of 40 CFR 257.95(b)/30 TAC 352.951.

V. Groundwater Quality Data Statistical Analysis

Appendix 2 contains the statistical analysis report(s).

Data and statistical analysis not available for the previous reporting period indicates that during the 2nd semi-annual 2022 sampling event (November 2022):

The following Appendix IV parameters exceeded established groundwater protection standards:

- o Lithium at AD-31 and AD-32
- Cobalt at AD-2, AD-31 and AD-32

The following Appendix III parameters exceeded background:

- o Boron at AD-2 and AD-32
- o Calcium at AD-32
- o Chloride at AD-2, AD-31 and AD-32
- o Fluoride at AD-32

- o Sulfate at AD-2, AD-31, and AD-32
- o TDS concentrations at AD-2, AD-31, and AD-32

During the 1st semi-annual sampling event held in June 2023:

The following Appendix IV parameters exceeded established groundwater protection standards:

- Lithium at AD-31 and AD-32
- o Cobalt at AD-2, AD-31, and AD-32

The following Appendix III parameters exceeded background:

- o Boron at AD-2 and AD-32
- o Calcium at AD-2 and AD-32
- o Chloride at AD-2, AD-31, and AD-32
- o Sulfate at AD-2, AD-31, and AD-32
- o TDS concentrations at AD-2, AD-31, and AD-32

During the 2nd semi-annual sampling event held in August 2023:

The following Appendix IV parameters exceeded established groundwater protection standards:

- o Lithium at AD-2, AD-31 and AD-32
- o Cobalt at AD-2, AD-31, and AD-32

The following Appendix III parameters exceeded background:

- o Boron at AD-2 and AD-32
- o Calcium at AD-2 and AD-32
- o Chloride at AD-2, AD-31, and AD-32
- o Sulfate at AD-2, AD-31, and AD-32
- o TDS concentrations at AD-2, AD-31, and AD-32

VI. <u>Alternate Source Demonstration</u>

A successful ASD for the 2nd semi-annual 2022 Appendix IV parameters that exceeded the GWPS was certified on June 27, 2023 and submitted to TCEQ June 27, 2023 for approval.

A successful ASD for the 1st semi-annual 2023 Appendix IV parameters that exceeded the GWPS was certified October 16, 2023 and submitted to TCEQ November 14, 2023 for approval.

A successful ASD for the 2nd semi-annual 2023 Appendix IV parameters that exceeded the GWPS was certified October 17, 2023 and submitted to TCEQ November 14, 2023 for approval.

The successful ASDs are found in **Appendix 3**.

Because an alternate source for the SSL(s) was identified, but no alternate source for the SSI(s) was identified, EBAP remained in Assessment Monitoring.

VII. <u>Discussion About Transition Between Monitoring Requirements or Alternate</u> <u>Monitoring Frequency</u>

The EBAP will remain in assessment monitoring unless all Appendix III and IV parameters are below background values for two consecutive monitoring events (return to detection monitoring) as prescribed by 30 TAC §352.951(c). If an Appendix IV parameter exceeds its respective GWPS and an ASD is determined not to be satisfactory to the executive director, an assessment of corrective measures will be undertaken as required by 30 TAC §352.961.

Regarding defining an alternate monitoring frequency, the groundwater velocity and monitoring well production are high enough at this facility that no modification to the semiannual assessment monitoring frequency is needed.

VIII. Other Information Required

As required by the CCR assessment monitoring rules in 30 TAC §352.951, sampling all CCR wells for the required Appendix III and IV parameters was completed in 2023.

Appendix 2 also contains a memorandum that explains the reissuance of select analytical laboratory reports to correct laboratory equipment data quality assurance/quality control issues.

On April 25, 2023, EBAP ceased receipt of CCR and non-CCR wastestreams and commenced closure by removal for this CCR Unit in accordance with the certified closure plan.

The CCR material was removed from April to June of 2023 from the EBAP. An additional 12 inches of soil was then removed, finishing in July of 2023. The last inspection for the removal was completed on July 20, 2023. The groundwater monitoring samples for final closure were collected in August 2023.

On October 17, 2023, the EBAP was closed by removal in accordance with 30 TAC §352.1221 (40 CFR 257.102) and the most recent Written Closure Plan. A Closure Completion Notification certified by a Professional engineer was submitted to TCEQ. Groundwater monitoring will continue until TCEQ's Executive Director issues a closure certification.

IX. Description of Any Problems Encountered in 2023 and Actions Taken

No significant problems were encountered. The low flow sampling effort went smoothly, and the schedule was met to support the annual groundwater report preparation covering the year 2023 groundwater monitoring activities.

X. A Projection of Key Activities for the Upcoming Year

Key activities for next year include:

- Assessment monitoring sampling will be conducted;
- Conduct the annual groundwater sampling event for all constituents listed in appendix III and IV as required by 30 TAC 352.951;
- Perform statistical analysis on the sampling results for the Appendix III and Appendix IV parameters as required by 30 TAC 352.951;
- Conduct ASD(s) if GWPSs are exceeded;
- Responding to any new data received in light of CCR rule requirements;
- Preparation of the next annual groundwater report until TCEQ's Executive Director issues a closure certification.

APPENDIX 1- Groundwater Data Tables and Figures

Figures and Tables follow, showing the groundwater monitoring data collected, the rate and direction of groundwater flow, and a summary showing the number of samples collected per monitoring well. The dates that the samples were collected also is shown.

Table 1. Groundwater Data Summary: AD-2 Pirkey - EBAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/11/2016	Background	1.27	1.43	28	< 0.083 U1	4.4	68	238
7/14/2016	Background	1.34	1.38	28	< 0.083 U1	4.2	71	216
9/7/2016	Background	1.3	2.65	20	< 0.083 U1	4.2	49	216
10/13/2016	Background	1.48	1.29	31	< 0.083 U1	3.6	67	230
11/14/2016	Background	1.36	1.44	28	< 0.083 U1	3.9	72	240
1/12/2017	Background	1.48	1.6	30	< 0.083 U1	3.9	94	244
3/1/2017	Background	1.62	1.28	28	< 0.083 U1	4.1	80	262
4/11/2017	Background	1.65	1.71	50	< 0.083 U1	4.0	88	254
8/24/2017	Detection	1.46	2.06	24	< 0.083 U1	4.3	64	200
12/21/2017	Detection	1.38	2.92	24	< 0.083 U1		64	206
3/22/2018	Assessment	1.99	1.97	30	< 0.083 U1	4.2	105	220
8/21/2018	Assessment	2.14	1.65	46	< 0.083 U1	4.7	130	312
2/28/2019	Assessment	2.25	1.96	31.8	0.1 J1	3.5	129	384
5/22/2019	Assessment	2.17	2.19	29.6	0.1 J1	4.0	137	316
8/12/2019	Assessment	2.16	3.30	28.4	0.1 J1	4.6	128	306
3/11/2020	Assessment	2.78	2.50	29.7	0.14	4.0	178	374
6/3/2020	Assessment	2.44	2.44	29.3	0.15	4.6	174	387
11/2/2020	Assessment	2.62	1.99	29.2	0.11	3.9	158	347
3/9/2021	Assessment	2.76	2.48	30.2	0.23	4.0	209	450
5/25/2021	Assessment	2.78	2.7	29.8	0.22	3.6	215	430
11/16/2021	Assessment	2.62	2.63	29.2	0.15	3.4	200	410
3/29/2022	Assessment	3.02	3.13	31.4	0.20	3.9	241	460 L1
6/21/2022	Assessment	3.26	3.4	29.7	0.21	4.0	259	490
11/15/2022	Assessment	2.83	2.80	30.5	0.21	4.0	259	480
2/27/2023	Assessment	3.22	3.53	31.4	0.22	3.8	268	510
6/26/2023	Assessment	3.06	3.53	30.8	0.19	3.9	271	530
8/23/2023	Assessment	3.05	3.37	30.9	0.20	3.8	271	490

Table 1. Groundwater Data Summary: AD-2 Pirkey - EBAP Appendix IV Constituents

	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
Collection Date	Program	a/T	/T	/T	/T	/T	~/T	/1	Radium		/T		/T	/T	/Т	/T
5/11/2016	Background	μ g/L < 0.93 U1	μg/L < 1.05 U1	<u>µg/L</u> 38	μ g/L 0.514594 J1	μ g/L < 0.07 U1	μg/L < 0.23 U1	μg/L	pCi/L 1.446	mg/L < 0.083 U1	μg/L < 0.68 U1	mg/L < 0.00013 U1	μ g/L 0.098	μg/L < 0.29 U1	μ g/L 2.08256 J1	μ g/L < 0.86 U1
7/14/2016	8	< 0.93 U1	< 1.05 U1	38	0.314394 J1 0.46511 J1	< 0.07 U1	0.401928 J1	10 11	0.723	< 0.083 U1	< 0.68 U1	0.0013 01	0.098	0.862706 J1	< 0.99 U1	< 0.86 U1
.,,	Background															
9/7/2016	Background	< 0.93 U1	< 1.05 U1	39	0.439699 J1	< 0.07 U1	0.493592 J1	10	1.489	< 0.083 U1	< 0.68 U1	0.048	0.675	< 0.29 U1	< 0.99 U1	1.26444 J1
10/13/2016	Background	< 0.93 U1	< 1.05 U1	39	0.40165 J1	< 0.07 U1	0.885421 J1	11	2.65	< 0.083 U1	< 0.68 U1	0.052	0.048	< 0.29 U1	1.3807 J1	< 0.86 U1
11/14/2016	Background	< 0.93 U1	< 1.05 U1	34	0.367353 J1	< 0.07 U1	< 0.23 U1	10	2.121	< 0.083 U1	< 0.68 U1	0.048	0.154	< 0.29 U1	1.23147 J1	< 0.86 U1
1/12/2017	Background	< 0.93 U1	< 1.05 U1	37	0.376129 J1	< 0.07 U1	< 0.23 U1	10	1.656	< 0.083 U1	< 0.68 U1	0.052	0.093	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/1/2017	Background	< 0.93 U1	< 1.05 U1	37	0.413652 J1	< 0.07 U1	< 0.23 U1	10	1.267	< 0.083 U1	< 0.68 U1	0.051	0.037	< 0.29 U1	< 0.99 U1	< 0.86 U1
4/11/2017	Background	< 0.93 U1	< 1.05 U1	37	0.435396 J1	< 0.07 U1	0.243798 J1	11	0.807	< 0.083 U1	< 0.68 U1	0.052	0.028	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/22/2018	Assessment	< 0.93 U1	< 1.05 U1	33.28	0.45 J1	< 0.07 U1	< 0.23 U1	12.43	1.053	< 0.083 U1	< 0.68 U1	0.05379	0.042	< 0.29 U1	1.61 J1	< 0.86 U1
8/21/2018	Assessment	< 0.01 U1	0.52	29.0	0.428	0.06	0.406	13.6	1.059	< 0.083 U1	0.338	0.0479	0.02 J1	0.06 J1	1.1	0.096
2/28/2019	Assessment	0.02 J1	0.53	26.1	0.5 J1	0.06	0.1 J1	13.9	1.261	0.1 J1	0.355	0.0591	0.027	< 0.4 U1	1.5	< 0.1 U1
5/22/2019	Assessment	< 0.4 U1	< 0.6 U1	25.6	< 0.4 U1	< 0.2 U1	< 0.8 U1	15.5	0.832	0.1 J1	< 0.4 U1	0.0542	0.063	< 8 U1	0.9 J1	< 0.1 U1
8/12/2019	Assessment	< 0.02 U1	0.35	22.8	0.402	0.06	0.292	13.0	1.812	0.1 J1	0.288	0.0560	0.044	< 0.4 U1	0.8	0.1 J1
3/11/2020	Assessment	< 0.02 U1	0.52	21.9	0.499	0.08	0.247	17.7	0.1882	0.14	0.600	0.0476	0.056	4.37	1.5	0.1 J1
6/3/2020	Assessment	< 0.02 U1	0.45	19.7	0.474	0.07	0.243	16.5	1.412	0.15	0.389	0.0464	0.085	< 0.4 U1	1.5	0.1 J1
11/2/2020	Assessment	< 0.02 U1	0.41	21.5	0.463	0.07	0.254	16.9	0.961	0.11	0.435	0.0490	0.037	< 0.4 U1	1.3	0.1 J1
3/9/2021	Assessment	< 0.02 U1	0.68	19.6	0.564	0.09	0.280	20.2	0.681	0.23	0.517	0.0473	0.074	< 0.1 U1	2.3	0.1 J1
5/25/2021	Assessment	< 0.02 U1	0.55	18.9	0.541	0.094	0.38	21.7	1.16	0.22	0.46	0.0483	0.057	< 0.1 U1	1.68	0.09 J1
11/16/2021	Assessment	< 0.02 U1	0.62	19.2	0.575	0.078	0.37	21.2	1.69	0.15	0.51	0.0539	0.049	< 0.1 U1	1.75	0.11 J1
3/29/2022	Assessment	< 0.04 U1	0.82	18.2	0.75	0.102	0.90	22.7	1.76	0.20	0.5	0.0653	0.092	< 0.2 U1	2.7	0.10 J1
6/21/2022	Assessment	< 0.1 U1	2.0	17.5	0.85	0.11	0.5 J1	25.7	1.87	0.21	0.6 J1	0.0688	0.244	< 0.5 U1	2.7	0.3 J1
11/15/2022	Assessment	< 0.02 U1	0.40	16.8	0.561	0.086	0.43	19.6	1.41	0.21	0.60	0.0556	0.058	< 0.1 U1	1.28	0.11 J1
2/27/2023	Assessment	< 0.02 U1	0.90	15.9	0.787	0.128	0.52	28.9	1.03	0.22	0.68	0.0636	0.051	< 0.1 U1	2.65	0.12 J1
6/26/2023	Assessment	0.009 J1	1.14	13.5	0.744	0.119	0.49	27.3	1.36	0.19	0.60	0.0595	0.157	< 0.1 U1	4.32	0.11 J1
8/23/2023	Assessment	0.008 J1	0.78	13.8	0.715	0.116	0.48	25.8	2.49	0.20	0.64	0.0601	0.270	< 0.1 U1	2.72	0.11 J1

Table 1. Groundwater Data Summary: AD-4 Pirkey - EBAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/11/2016	Background	0.02	1.63	4	< 0.083 U1	5.4	23	148
7/14/2016	Background	0.02	2.32	4	< 0.083 U1	4.9	20	157
9/8/2016	Background	0.02	2.37	5	< 0.083 U1	4.9	20	136
10/13/2016	Background	0.03	2.87	6	< 0.083 U1	4.1	19	164
11/15/2016	Background	0.04	2.71	5	< 0.083 U1	4.3	19	152
1/12/2017	Background	0.03	2.94	5	< 0.083 U1	4.8	18	148
3/1/2017	Background	0.03	2.86	4	< 0.083 U1	4.7	18	148
4/10/2017	Background	0.04	1.91	5	< 0.083 U1	4.4	21	140
8/24/2017	Detection	0.06229	2.04	5	< 0.083 U1	4.6	20	94
3/22/2018	Assessment	0.0331	1.41	3	< 0.083 U1	4.8	23	132
8/21/2018	Assessment	0.018	2.38	7	< 0.083 U1	4.8	21	158
2/28/2019	Assessment	0.021	1.57	3.56	0.11	4.9	22.9	192
5/23/2019	Assessment	0.021	1.71	3.31	0.15	5.0	24.6	150
8/14/2019	Assessment	< 0.02 U1	1.97	6.22	0.12	5.5	21.7	146
3/11/2020	Assessment	< 0.02 U1	1.46	3.42	0.13	5.4	24.2	166
6/3/2020	Assessment	0.02 J1	1.72	3.65	0.14	5.4	24.7	168
11/4/2020	Assessment	0.02 J1	2.33	3.66	0.05 J1	4.9	18.7	162
3/9/2021	Assessment	0.02 J1	1.72	3.63	0.12	5.2	21.5	146
5/25/2021	Assessment	0.032 J1	1.7	3.60	0.14	4.6	22.6	150
11/16/2021	Assessment	0.012 J1	2.13	3.94	< 0.02 U1	4.3	17.2	130
3/29/2022	Assessment	0.019 J1	1.84	3.80	0.08	4.9	22.2	140 L1
6/21/2022	Assessment	0.020 J1	2.51	3.92	0.05 J1	4.4	20.5	160
11/16/2022	Assessment	0.019 J1	2.25	4.14	< 0.02 U1	4.7	16.6	130
2/28/2023	Assessment	0.028 J1	2.22	4.08	0.05 J1	4.9	19.9	140
6/27/2023	Assessment	0.018 J1	2.90	3.97	0.02 J1	4.5	18.9	150
8/23/2023	Assessment	0.027 J1	2.18	3.88	0.04 J1	4.6	18.5	130

Table 1. Groundwater Data Summary: AD-4 Pirkey - EBAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/11/2016	Background	< 0.93 U1	3.95918 J1	75	1	0.133362 J1	0.396808 J1	8	0.729	< 0.083 U1	< 0.68 U1	0.013	0.00891 J1	< 0.29 U1	1.79183 J1	< 0.86 U1
7/14/2016	Background	< 0.93 U1	8	127	1	< 0.07 U1	3	9	4.271	< 0.083 U1	< 0.68 U1	0.041	0.037	< 0.29 U1	1.73546 J1	1.87362 J1
9/8/2016	Background	< 0.93 U1	5	123	1	0.111076 J1	2	8	0.193	< 0.083 U1	< 0.68 U1	0.04	0.01151 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
10/13/2016	Background	< 0.93 U1	11	183	0.830588 J1	< 0.07 U1	7	7	2.381	< 0.083 U1	< 0.68 U1	0.034	0.01005 J1	< 0.29 U1	1.60451 J1	0.868603 J1
11/15/2016	Background	< 0.93 U1	< 1.05 U1	114	0.53145 J1	< 0.07 U1	0.446412 J1	6	1.072	< 0.083 U1	< 0.68 U1	0.035	0.01268 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
1/12/2017	Background	< 0.93 U1	< 1.05 U1	149	0.406228 J1	< 0.07 U1	0.305795 J1	4.5062 J1	2.599	< 0.083 U1	< 0.68 U1	0.03	0.01146 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/1/2017	Background	< 0.93 U1	< 1.05 U1	131	0.354085 J1	< 0.07 U1	< 0.23 U1	4.45689 J1	1.089	< 0.083 U1	< 0.68 U1	0.033	0.01224 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
4/10/2017	Background	< 0.93 U1	< 1.05 U1	94	0.915299 J1	0.0796 J1	0.240917 J1	8	0.684	< 0.083 U1	< 0.68 U1	0.047	0.00554 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/22/2018	Assessment	< 0.93 U1	< 1.05 U1	66.74	1.15	0.26 J1	< 0.23 U1	9.39	1.283	< 0.083 U1	< 0.68 U1	0.05374	< 0.005 U1	< 0.29 U1	1.99 J1	< 0.86 U1
8/21/2018	Assessment	< 0.01 U1	1.30	121	0.400	0.02 J1	0.198	4.43	1.331	< 0.083 U1	0.098	0.0294	0.005 J1	< 0.02 U1	0.04 J1	0.096
2/28/2019	Assessment	< 0.02 U1	0.26	70.5	0.9 J1	0.01 J1	0.1 J1	6.92	0.818	0.11	0.106	0.0513	< 0.005 U1	< 0.4 U1	0.03 J1	< 0.1 U1
5/23/2019	Assessment	< 0.4 U1	< 0.6 U1	61.7	0.5 J1	< 0.2 U1	1 J1	7.86	0.5173	0.15	< 0.4 U1	0.0516	< 0.005 U1	< 8 U1	< 0.6 U1	< 0.1 U1
8/14/2019	Assessment	< 0.02 U1	0.17	73.5	1.04	< 0.01 U1	0.08 J1	6.52	0.833	0.12	0.06 J1	0.0484	< 0.005 U1	< 0.4 U1	0.04 J1	< 0.1 U1
3/11/2020	Assessment	< 0.02 U1	1.16	69.0	0.965	< 0.01 U1	0.1 J1	7.89	0.2327	0.13	0.06 J1	0.0415	< 0.002 U1	< 0.4 U1	< 0.03 U1	< 0.1 U1
6/3/2020	Assessment	< 0.02 U1	0.52	67.9	0.527	< 0.01 U1	0.2 J1	7.15	0.87	0.14	0.06 J1	0.0380	< 0.002 U1	< 0.4 U1	< 0.03 U1	< 0.1 U1
11/4/2020	Assessment	0.03 J1	5.30	124	0.922	0.03 J1	0.433	4.40	1.45	0.05 J1	0.402	0.0274	0.008	< 0.4 U1	0.1 J1	0.1 J1
3/9/2021	Assessment	< 0.02 U1	0.30	87.9	0.679	0.01 J1	0.2 J1	6.50	0.576	0.12	< 0.05 U1	0.0331	0.002 J1	< 0.1 U1	< 0.09 U1	0.06 J1
5/25/2021	Assessment	< 0.02 U1	0.13	80.7	0.489 M1	0.012 J1	0.24	6.86	0.83	0.14	< 0.05 U1	0.0335 M1	< 0.002 U1	< 0.1 U1	< 0.09 U1	0.06 J1
11/16/2021	Assessment	< 0.02 U1	0.25	122 M1, P3	0.280	0.022	0.28	3.08	1.60	< 0.02 U1	< 0.05 U1	0.0211	0.015	< 0.1 U1	< 0.09 U1	0.08 J1
3/29/2022	Assessment	< 0.02 U1	1.10	93.2	0.641	0.010 J1	0.31	6.16	1.15	0.08	0.07 J1	0.0383	0.017	< 0.1 U1	< 0.09 U1	0.07 J1
6/21/2022	Assessment	< 0.02 U1	0.30	124	0.407	0.021	0.46	4.10	1.31	0.05 J1	< 0.05 U1	0.0220	0.004 J1	< 0.1 U1	< 0.09 U1	0.09 J1
11/16/2022	Assessment	< 0.02 U1	0.21	128	0.195	0.019 J1	0.44	3.00	0.40	< 0.02 U1	< 0.05 U1	0.0212	0.005	< 0.1 U1	< 0.09 U1	0.10 J1
2/28/2023	Assessment	< 0.02 U1	0.26	115	0.594	0.015 J1	0.41	5.60	1.90	0.05 J1	< 0.05 U1	0.0311	0.004 J1	< 0.1 U1	< 0.09 U1	0.09 J1
6/27/2023	Assessment	0.018 J1	1.23	132	0.376	0.021	0.56	3.89	1.72	0.02 J1	0.15 J1	0.0240	0.003 J1	< 0.1 U1	0.14 J1	0.09 J1
8/23/2023	Assessment	0.011 J1	0.36	117	0.246	0.021	0.40	3.63	2.24	0.04 J1	0.07 J1	0.0243	0.003 J1	< 0.1 U1	0.04 J1	0.08 J1

Table 1. Groundwater Data Summary: AD-12 Pirkey - EBAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/11/2016	Background	0.03	0.362	5	< 0.083 U1	4.4	4	94
7/13/2016	Background	0.03	0.26	6	< 0.083 U1	3.1	4	75
9/7/2016	Background	0.04	0.343	6	< 0.083 U1	3.9	7	63
10/12/2016	Background	0.03	0.271	7	1	3.4	8	92
11/14/2016	Background	0.04	0.331	8	< 0.083 U1	2.6	6	80
1/11/2017	Background	0.03	0.315	7	< 0.083 U1	4.8	6	76
2/28/2017	Background	0.04	0.434	5	< 0.083 U1	3.6	4	50
4/11/2017	Background	0.05	0.299	6	0.2565 J1	4.7	7	72
8/23/2017	Detection	0.0495	0.245	6	0.213 J1	4.8	6	52
3/21/2018	Assessment	0.01397	0.269	5	< 0.083 U1	4.2	3	< 2 U1
8/20/2018	Assessment	0.017	0.338	10	< 0.083 U1	4.4	4	94
2/27/2019	Assessment	0.03 J1	0.4 J1	6.08	0.09	5.2	3.6	36
5/21/2019	Assessment	0.020	0.3 J1	6.30	0.09	4.1	4.0	80
8/12/2019	Assessment	< 0.02 U1	0.278	7.24	0.06 J1	4.9	2.6	90
3/10/2020	Assessment	0.02 J1	0.3 J1	6.08	0.10	4.9	3.7	62
6/2/2020	Assessment	< 0.02 U1	0.2 J1	5.63	0.10	4.0	3.9	91
11/2/2020	Assessment	0.03 J1	0.3 J1	4.65	0.08	4.3	3.3	74
3/8/2021	Assessment	0.01 J1	0.2 J1	6.46	0.11	4.1	3.8	68
5/24/2021	Assessment	0.032 J1	0.2 J1	5.54	0.12	4.2	5.46	70
11/15/2021	Assessment	0.012 J1	0.28	8.03	0.07	3.5	2.90	90
3/28/2022	Assessment	0.021 J1	0.20	6.10	0.07	3.9	3.80	60 L1
6/20/2022	Assessment	0.042 J1	0.32	7.59	0.09	4.3	4.81	80
11/15/2022	Assessment	0.013 J1	0.36	8.03	0.08	4.7	3.39	70
2/27/2023	Assessment	0.021 J1	0.34	6.51	0.07	3.8	3.90	70
6/26/2023	Assessment	0.019 J1	0.21	4.68	0.06	4.6	2.9	80
8/23/2023	Assessment	0.017 J1	0.22	4.74	0.07	3.8	3.5	75
10/17/2023	Assessment	0.015 J1	0.27	6.74	0.07	3.8	2.7	58

Table 1. Groundwater Data Summary: AD-12 Pirkey - EBAP Appendix IV Constituents

	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
Collection Date	Program	· ·	/T		· ·	/T	/1		Radium	/T		/1	•			/7
5/11/2016	D 1 1	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/11/2016	Background	< 0.93 U1	< 1.05 U1	26	0.219521 J1	< 0.07 U1	0.710981 J1	1.58207 J1	0.2073	< 0.083 U1	< 0.68 U1	< 0.00013 U1	< 0.005 U1	< 0.29 U1	1.73953 J1	< 0.86 U1
7/13/2016	Background	< 0.93 U1	< 1.05 U1	23	0.190337 J1	< 0.07 U1	0.68835 J1	1.29444 J1	2.909	< 0.083 U1	< 0.68 U1	0.008	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
9/7/2016	Background	< 0.93 U1	< 1.05 U1	30	0.232192 J1	< 0.07 U1	0.353544 J1	1.66591 J1	0.881	< 0.083 U1	< 0.68 U1	0.01	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
10/12/2016	Background	< 0.93 U1	< 1.05 U1	27	0.149553 J1	< 0.07 U1	0.529033 J1	1.56632 J1	0.257	1	< 0.68 U1	0.012	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
11/14/2016	Background	< 0.93 U1	< 1.05 U1	28	0.152375 J1	< 0.07 U1	0.32826 J1	1.47282 J1	0.767	< 0.083 U1	< 0.68 U1	0.013	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
1/11/2017	Background	< 0.93 U1	< 1.05 U1	23	0.126621 J1	< 0.07 U1	0.650158 J1	1.09495 J1	1.536	< 0.083 U1	< 0.68 U1	0.01	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
2/28/2017	Background	< 0.93 U1	< 1.05 U1	26	0.149219 J1	< 0.07 U1	0.325811 J1	1.29984 J1	0.416	< 0.083 U1	< 0.68 U1	0.009	< 0.005 U1	< 0.29 U1	< 0.99 U1	0.994913 J1
4/11/2017	Background	< 0.93 U1	< 1.05 U1	24	0.159412 J1	< 0.07 U1	0.416007 J1	1.33344 J1	0.3895	0.2565 J1	< 0.68 U1	0.008	0.01364 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/21/2018	Assessment	< 0.93 U1	< 1.05 U1	25.82	0.16 J1	< 0.07 U1	1.05	1.49 J1	0.784	< 0.083 U1	< 0.68 U1	0.00722	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
8/20/2018	Assessment	< 0.01 U1	0.11	27.8	0.159	0.01 J1	0.330	1.72	1.128	< 0.083 U1	0.089	0.0143	< 0.005 U1	0.04 J1	0.1	0.04 J1
2/27/2019	Assessment	< 0.4 U1	< 0.6 U1	22.5	< 0.4 U1	< 0.2 U1	< 0.8 U1	1.37	0.225	0.09	< 0.4 U1	0.00688	< 0.005 U1	< 8 U1	< 0.6 U1	< 2 U1
5/21/2019	Assessment	< 0.4 U1	< 0.6 U1	21.7	< 0.4 U1	< 0.2 U1	< 0.8 U1	1.15	0.201	0.09	< 0.4 U1	0.00576	< 0.005 U1	< 8 U1	< 0.6 U1	< 0.1 U1
8/12/2019	Assessment	< 0.02 U1	0.07 J1	23.8	0.154	< 0.01 U1	0.204	1.30	0.237	0.06 J1	0.08 J1	0.00829	< 0.005 U1	< 0.4 U1	0.2 J1	< 0.1 U1
3/10/2020	Assessment	< 0.02 U1	0.09 J1	21.7	0.139	0.01 J1	0.2 J1	1.21	3.0706	0.10	0.09 J1	0.00547	< 0.002 U1	< 0.4 U1	0.2	< 0.1 U1
6/2/2020	Assessment	< 0.02 U1	0.09 J1	19.0	0.132	< 0.01 U1	0.208	1.02	0.799	0.10	0.09 J1	0.00505	< 0.002 U1	< 0.4 U1	0.3	< 0.1 U1
11/2/2020	Assessment	0.05 J1	0.09 J1	18.9	0.122	< 0.01 U1	0.204	1.04	0.929	0.08	0.09 J1	0.00510	< 0.002 U1	< 0.4 U1	0.3	< 0.1 U1
3/8/2021	Assessment	< 0.02 U1	0.07 J1	22.9	0.150	0.007 J1	0.2 J1	1.19	0.214	0.11	0.07 J1	0.00570	< 0.002 U1	< 0.1 U1	0.2 J1	< 0.04 U1
5/24/2021	Assessment	< 0.02 U1	0.08 J1	23.1	0.136	0.005 J1	0.24	1.19	0.60	0.12	0.07 J1	0.00500	< 0.002 U1	< 0.1 U1	0.31 J1	< 0.04 U1
11/15/2021	Assessment	< 0.02 U1	0.05 J1	26.5	0.148	0.01 J1	0.30	1.38	1.76	0.07	0.07 J1	0.0110	< 0.002 U1	< 0.1 U1	0.10 J1	< 0.04 U1
3/28/2022	Assessment	< 0.02 U1	0.09 J1	20.2	0.127	0.009 J1	0.35	1.01	0.76	0.07	0.09 J1	0.00604	< 0.002 U1	< 0.1 U1	0.33 J1	< 0.04 U1
6/20/2022	Assessment	< 0.02 U1	0.08 J1	24.2	0.135	0.008 J1	0.63	1.35	0.63	0.09	0.08 J1	0.00949	< 0.002 U1	< 0.1 U1	0.16 J1	< 0.04 U1
11/15/2022	Assessment	< 0.02 U1	0.06 J1	30.6	0.153	0.007 J1	0.45	1.59	1.46	0.08	0.08 J1	0.0119	< 0.002 U1	< 0.1 U1	0.23 J1	< 0.04 U1
2/27/2023	Assessment	< 0.02 U1	0.07 J1	27.5	0.155	0.013 J1	0.36	1.50	1.17	0.07	0.1 J1	0.00885	< 0.002 U1	< 0.1 U1	0.35 J1	< 0.04 U1
6/26/2023	Assessment	0.015 J1	0.11	16.3	0.110	0.007 J1	0.45	0.932	0.45	0.06	0.11 J1	0.00487	< 0.002 U1	0.7	0.23 J1	< 0.02 U1
8/23/2023	Assessment	0.013 J1	0.10	15.6	0.129	0.007 J1	0.45	0.855	1.34	0.07	0.11 J1	0.00494	< 0.002 U1	0.5	0.23 J1	< 0.02 U1
10/17/2023	Assessment	0.01 J1	0.06 J1	23.6	0.142	0.006 J1	0.31	1.19	1.08	0.07	0.07 J1	0.00891	< 0.002 U1	< 0.1 U1	0.21 J1	< 0.02 U1

Table 1. Groundwater Data Summary: AD-18 Pirkey - EBAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/10/2016	Background	0.01	0.548	8	< 0.083 U1	4.5	7	108
7/14/2016	Background	0.01	0.409	8	< 0.083 U1	4.7	7	116
9/8/2016	Background	0.01	0.343	8	< 0.083 U1	4.7	8	110
10/13/2016	Background	0.02	0.56	7	< 0.083 U1	4.1	10	124
11/15/2016	Background	0.02	0.59	7	< 0.083 U1	4.4	7	134
1/12/2017	Background	0.01	0.415	7	< 0.083 U1	4.7	10	128
3/1/2017	Background	0.01	0.224	6	< 0.083 U1	4.1	7	108
4/10/2017	Background	0.01	0.304	7	< 0.083 U1	4.1	8	102
8/24/2017	Detection	0.0278	0.435	8	< 0.083 U1	4.9	8	68
3/22/2018	Assessment	0.01642	0.292	6	< 0.083 U1	5.4	6	100
8/21/2018	Assessment	0.012	0.321	10	< 0.083 U1	5.1	8	118
2/28/2019	Assessment	< 0.02 U1	0.490	8.19	0.02 J1	5.0	6.1	84
5/23/2019	Assessment	0.013	0.684	8.82	0.02 J1	5.2	10.6	104
8/13/2019	Assessment	< 0.02 U1	0.647	8.49	0.01 J1	5.2	6.6	90
3/11/2020	Assessment	< 0.02 U1	0.3 J1	7.34	0.02 J1	4.4	6.1	90 J1
6/3/2020	Assessment	< 0.02 U1	0.2 J1	8.30	0.03 J1	4.5	6.3	119
11/3/2020	Assessment					4.4		
11/4/2020	Assessment	< 0.02 U1	0.2 J1	6.30	0.02 J1		6.3	100
3/9/2021	Assessment	0.009 J1	0.2 J1	6.61	0.02 J1	4.5	6.6	113
5/25/2021	Assessment	0.021 J1	0.3	7.16	0.02 J1	4.4	7.46	100 P1
11/16/2021	Assessment					3.9		
11/17/2021	Assessment	0.01 J1	0.20	5.99	< 0.02 U1		6.23	100
3/29/2022	Assessment	0.009 J1	0.24	5.26	< 0.02 U1	4.4	7.31	140 L1
6/21/2022	Assessment					4.6		
6/22/2022	Assessment	< 0.009 U1	1.49	5.20	< 0.02 U1	-	6.47	110
11/15/2022	Assessment					4.5		
11/16/2022	Assessment	0.011 J1	0.19	4.94	< 0.02 U1		6.55	90
2/28/2023	Assessment	< 0.009 U1	0.18	5.49	< 0.02 U1	4.4	7.52	100
6/27/2023	Assessment	0.009 J1	0.23	5.28	< 0.02 U1	4.4	8.2	110
8/23/2023	Assessment	0.012 J1	3.17	5.02	0.02 J1	4.4	6.9	88
10/18/2023	Assessment	0.011 J1	0.35	5.05	< 0.02 U1	3.9	10	98

Table 1. Groundwater Data Summary: AD-18 Pirkey - EBAP Appendix IV Constituents

Callection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
Collection Date	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	Radium pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/10/2016	Background	< 0.93 U1	< 1.05 U1	157	0.262755 J1	0.109247 J1	1	1.82932 J1	0.847	< 0.083 U1	< 0.68 U1	0.004	0.01536 J1	< 0.29 U1	1.71074 J1	< 0.86 U1
7/14/2016	Background	< 0.93 U1	3.77261 J1	139	0.243326 J1	< 0.07 U1	3	2.16037 J1	3.264	< 0.083 U1	< 0.68 U1	0.02	0.064	0.41347 J1	2.45009 J1	< 0.86 U1
9/8/2016	Background	< 0.93 U1	< 1.05 U1	115	0.226343 J1	< 0.07 U1	0.779959 J1	1.09947 J1	1.105	< 0.083 U1	< 0.68 U1	0.019	0.03	< 0.29 U1	< 0.99 U1	< 0.86 U1
10/13/2016	Background	< 0.93 U1	< 1.05 U1	112	0.192611 J1	< 0.07 U1	0.631027 J1	2.24885 J1	1.161	< 0.083 U1	< 0.68 U1	0.026	0.01416 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
11/15/2016	Background	< 0.93 U1	< 1.05 U1	94	0.107171 J1	< 0.07 U1	0.724569 J1	1.66054 J1	1.486	< 0.083 U1	< 0.68 U1	0.017	0.029	< 0.29 U1	< 0.99 U1	< 0.86 U1
1/12/2017	Background	< 0.93 U1	< 1.05 U1	99	0.169196 J1	< 0.07 U1	0.411433 J1	1.62881 J1	0.976	< 0.083 U1	< 0.68 U1	0.026	0.01887 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/1/2017	Background	< 0.93 U1	< 1.05 U1	99	0.105337 J1	< 0.07 U1	0.572874 J1	0.976724 J1	0.468	< 0.083 U1	< 0.68 U1	0.017	0.01086 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
4/10/2017	Background	< 0.93 U1	< 1.05 U1	105	0.130316 J1	< 0.07 U1	0.967681 J1	0.98157 J1	0.648	< 0.083 U1	< 0.68 U1	0.019	0.0096 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/22/2018	Assessment	< 0.93 U1	< 1.05 U1	97.75	0.09 J1	< 0.07 U1	< 0.23 U1	0.97 J1	0.942	< 0.083 U1	< 0.68 U1	0.01647	0.006 J1	< 0.29 U1	1.53 J1	< 0.86 U1
8/21/2018	Assessment	0.02 J1	1.01	99.8	0.129	0.02 J1	0.809	1.18	1.108	< 0.083 U1	0.280	0.0175	0.014 J1	0.08 J1	0.2	0.060
2/28/2019	Assessment	< 0.4 U1	< 0.6 U1	106	< 0.4 U1	< 0.2 U1	< 0.8 U1	1.11	0.615	0.02 J1	0.7 J1	0.0177	0.009 J1	< 8 U1	< 0.6 U1	< 2 U1
5/23/2019	Assessment	< 0.4 U1	< 0.6 U1	131	< 0.4 U1	< 0.2 U1	< 0.8 U1	1.47	0.492	0.02 J1	< 0.4 U1	0.0209	0.009 J1	< 8 U1	< 0.6 U1	< 0.1 U1
8/13/2019	Assessment	< 0.02 U1	0.45	100	0.118	0.02 J1	0.212	1.25	0.473	0.01 J1	0.2 J1	0.0183	0.023 J1	< 0.4 U1	0.09 J1	< 0.1 U1
3/11/2020	Assessment	< 0.02 U1	0.09 J1	97.1	0.09 J1	0.01 J1	0.1 J1	0.948	4.813	0.02 J1	< 0.05 U1	0.0134	0.003 J1	< 0.4 U1	0.05 J1	< 0.1 U1
6/3/2020	Assessment	< 0.02 U1	0.22	100	0.1 J1	0.01 J1	0.2 J1	0.950	0.728	0.03 J1	0.06 J1	0.0132	0.007	< 0.4 U1	0.09 J1	< 0.1 U1
11/4/2020	Assessment	< 0.02 U1	0.29	89.3	0.08 J1	0.01 J1	0.1 J1	0.917	1.169	0.02 J1	0.06 J1	0.0128	0.028	< 0.4 U1	0.2 J1	< 0.1 U1
3/9/2021	Assessment	< 0.02 U1	0.28	88.7	0.09 J1	0.01 J1	0.271	0.827	0.331	0.02 J1	0.08 J1	0.0131	0.006	< 0.1 U1	0.1 J1	< 0.04 U1
5/25/2021	Assessment	< 0.02 U1	0.42	103	0.088	0.014 J1	0.55	0.964	0.77	0.02 J1	0.15 J1	0.0127	0.014	< 0.1 U1	0.13 J1	0.05 J1
11/17/2021	Assessment	< 0.02 U1	0.19	82.2	0.078	0.011 J1	0.31	0.801	1.91	< 0.02 U1	< 0.05 U1	0.0124	0.030	< 0.1 U1	0.11 J1	< 0.04 U1
3/29/2022	Assessment	0.02 J1	1.55	90.1	0.106	0.01 J1	1.40	0.842	2.01	< 0.02 U1	0.53	0.0137	0.021	< 0.1 U1	0.38 J1	0.05 J1
6/22/2022	Assessment	< 0.02 U1	0.30	79.3	0.073	0.012 J1	0.47	0.790	0.73	< 0.02 U1	0.11 J1	0.0108	< 0.007 U1	< 0.1 U1	0.14 J1	< 0.04 U1
11/16/2022	Assessment	< 0.02 U1	0.25	77.4	0.071	0.009 J1	0.54	0.723	1.61	< 0.02 U1	0.08 J1	0.0125	0.018	< 0.1 U1	0.12 J1	< 0.04 U1
2/28/2023	Assessment	< 0.02 U1	0.26	77.9	0.085	0.01 J1	0.38	0.750	1.10	< 0.02 U1	0.18 J1	0.0123	0.006	< 0.1 U1	< 0.09 U1	< 0.04 U1
6/27/2023	Assessment	0.009 J1	0.55	89.0	0.132	0.013 J1	0.57	0.933	2.53	< 0.02 U1	0.13 J1	0.0138	0.010	< 0.1 U1	0.15 J1	0.04 J1
8/23/2023	Assessment	0.056 J1	0.54	70.6	0.115	0.015 J1	1.15	0.731	1.27	0.02 J1	0.43	0.0119	0.005	0.1 J1	0.18 J1	0.03 J1
10/18/2023	Assessment	0.023 J1	0.43	84.0	0.127	0.018 J1	0.52	1.26	1.27	< 0.02 U1	0.12 J1	0.0186	0.084	< 0.1 U1	0.17 J1	0.05 J1

Table 1. Groundwater Data Summary: AD-31
Pirkey - EBAP
Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/11/2016	Background	0.08	10.4	18	< 0.083 U1	4.5	63	286
7/13/2016	Background	0.03	4.27	18	< 0.083 U1	3.5	66	245
9/7/2016	Background	0.03	3.47	18	< 0.083 U1	3.7	60	260
10/12/2016	Background	0.04	4.41	18	< 0.083 U1	4.0	62	276
11/14/2016	Background	0.04	4.7	18	< 0.083 U1	3.2	66	266
1/11/2017	Background	0.03	4.43	19	< 0.083 U1	4.4	79	252
2/28/2017	Background	0.04	3.89	14	< 0.083 U1	3.6	68	212
4/11/2017	Background	0.04	3.64	16	< 0.083 U1	3.6	69	252
8/23/2017	Detection	0.01752	2.24	18	< 0.083 U1	4.5	52	228
12/21/2017	Detection			20	< 0.083 U1		58	224
3/22/2018	Assessment	0.04078	3.11	16	< 0.083 U1	4.5	76	260
8/21/2018	Assessment	0.022	2.86	25	< 0.083 U1	4.9	72	274
2/28/2019	Assessment	0.03 J1	2.77	18.8	0.1 J1	5.0	74.8	74
5/23/2019	Assessment	0.021	3.29	18.7	0.13	5.1	79.9	240
8/12/2019	Assessment	< 0.02 U1	2.86	21.6	0.16	4.1	70.0	250
3/10/2020	Assessment	0.03 J1	2.80	21.7	0.14	3.5	74.6	246
6/2/2020	Assessment	0.02 J1	2.92	22.1	0.16	4.2	81.4	288
11/2/2020	Assessment	0.03 J1	2.76	21.2	0.13	3.7	77.8	268
3/8/2021	Assessment	0.02 J1	2.69	18.5	0.17	3.8	81.1	279
5/24/2021	Assessment	0.026 J1	3.0	18.1	0.17	3.6	86.4	130
11/16/2021	Assessment	0.024 J1	2.68	20.1	0.13	2.8	76.6	250
3/28/2022	Assessment	0.026 J1	2.75	21.8	0.13	3.4	80.8	260 L1
6/20/2022	Assessment	0.028 J1	2.65	23.2	0.14 J1	3.5	89.0	270
11/15/2022	Assessment	0.035 J1	2.63	24.3	0.14	4.3	79.1	250
2/27/2023	Assessment	0.017 J1	2.70	23.4	0.13	3.5	82.2	260
6/26/2023	Assessment	0.025 J1	2.69	21.2	0.10	4.2	82.1	280
8/23/2023	Assessment	0.021 J1	2.10	21.9	0.10	4.0	69.4	240

Table 1. Groundwater Data Summary: AD-31 Pirkey - EBAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/11/2016	Background	< 0.93 U1	93	712	10	0.858875 J1	212	50	7.32	< 0.083 U1	57	0.077	1.797	0.893978 J1	1.84045 J1	< 0.86 U1
7/13/2016	Background	< 0.93 U1	3.41559 J1	69	1	< 0.07 U1	10	11	3.38	< 0.083 U1	< 0.68 U1	0.096	0.32	0.316083 J1	1.11301 J1	< 0.86 U1
9/7/2016	Background	< 0.93 U1	4.34007 J1	88	2	< 0.07 U1	15	11	2.345	< 0.083 U1	< 0.68 U1	0.094	0.284	< 0.29 U1	< 0.99 U1	< 0.86 U1
10/12/2016	Background	< 0.93 U1	6	76	1	< 0.07 U1	14	11	3.88	< 0.083 U1	1.54023 J1	0.097	0.347	< 0.29 U1	< 0.99 U1	< 0.86 U1
11/14/2016	Background	< 0.93 U1	11	125	2	0.174662 J1	30	14	3.202	< 0.083 U1	3.93298 J1	0.096	0.523	0.401556 J1	1.03392 J1	< 0.86 U1
1/11/2017	Background	< 0.93 U1	3.92088 J1	77	1	< 0.07 U1	12	10	2.725	< 0.083 U1	< 0.68 U1	0.093	0.384	< 0.29 U1	< 0.99 U1	1.01921 J1
2/28/2017	Background	< 0.93 U1	< 1.05 U1	44	0.998308 J1	< 0.07 U1	3	9	2.684	< 0.083 U1	< 0.68 U1	0.09	0.138	< 0.29 U1	< 0.99 U1	< 0.86 U1
4/11/2017	Background	< 0.93 U1	3.31744 J1	73	1	0.0944 J1	12	11	3.521	< 0.083 U1	< 0.68 U1	0.097	0.333	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/22/2018	Assessment	< 0.93 U1	3.32 J1	70.83	1.24	0.12 J1	9.62	11.12	2.955	< 0.083 U1	< 0.68 U1	0.09732	1.389	< 0.29 U1	1.98 J1	< 0.86 U1
8/21/2018	Assessment	0.02 J1	1.92	57.7	0.729	0.06	2.39	9.29	4.13	< 0.083 U1	1.41	0.0556	1.112	0.24	2.5	0.113
2/28/2019	Assessment	< 0.4 U1	< 0.6 U1	33.1	1 J1	< 0.2 U1	< 0.8 U1	9.38	3.156	0.1 J1	< 0.4 U1	0.0864	0.01 J1	< 8 U1	< 0.6 U1	< 2 U1
5/23/2019	Assessment	< 0.4 U1	< 0.6 U1	37.9	0.9 J1	< 0.2 U1	< 0.8 U1	10.3	3.40	0.13	< 0.4 U1	0.0928	0.057	< 8 U1	< 0.6 U1	< 0.1 U1
8/12/2019	Assessment	< 0.02 U1	0.53	35.0	0.850	0.06	0.365	8.69	2.196	0.16	0.325	0.0875	1.027	< 0.4 U1	0.4	< 0.1 U1
3/10/2020	Assessment	< 0.02 U1	0.27	34.8	0.835	0.07	0.357	9.56	3.814	0.14	0.260	0.0669	0.183	< 0.4 U1	0.4	< 0.1 U1
6/2/2020	Assessment	< 0.02 U1	0.21	32.7	0.868	0.06	0.292	9.62	2.656	0.16	0.2 J1	0.0682	0.046	< 0.4 U1	0.4	< 0.1 U1
11/2/2020	Assessment	< 0.02 U1	0.26	34.0	1.10	0.07	0.2 J1	11.2	3.02	0.13	0.211	0.0895	0.144	< 0.4 U1	0.3	0.1 J1
3/8/2021	Assessment	< 0.02 U1	0.22	33.6	0.857	0.07	0.282	9.78	1.697	0.17	0.218	0.0664	0.095	< 0.1 U1	0.4	0.08 J1
5/24/2021	Assessment	< 0.02 U1	0.23	33.2	0.723	0.066	0.41	10.4	1.60	0.17	0.20	0.0638	0.059	0.1 J1	0.28 J1	0.09 J1
11/16/2021	Assessment	< 0.02 U1	0.26	32.1	0.801	0.063	0.39	9.18	3.39	0.13	0.34	0.0648	1.790	< 0.1 U1	0.33 J1	0.08 J1
3/28/2022	Assessment	< 0.02 U1	0.26	32.8	0.854	0.068	0.51	9.14	2.41	0.13	0.29	0.0687	0.103	< 0.1 U1	0.38 J1	0.09 J1
6/20/2022	Assessment	< 0.02 U1	0.42	34.1	1.03	0.071	0.59	9.61	4.60	0.14 J1	0.35	0.0844	0.089	< 0.1 U1	0.33 J1	0.08 J1
11/15/2022	Assessment	< 0.02 U1	0.30	35.8	0.863	0.066	0.74	9.41	3.81	0.14	0.34	0.0681	0.610	< 0.1 U1	0.38 J1	0.10 J1
2/27/2023	Assessment	< 0.02 U1	0.30	35.6	0.935	0.079	0.62	10.5	4.05	0.13	0.31	0.0737	0.130 J1	< 0.1 U1	0.27 J1	0.09 J1
6/26/2023	Assessment	0.009 J1	0.36	32.9	1.08	0.064	0.63	10.1	4.29	0.10	0.33	0.0889	0.077	< 0.1 U1	0.78	0.09 J1
8/23/2023	Assessment	< 0.008 U1	0.32	31.7	0.818	0.052	0.56	8.14	5.50	0.10	0.32	0.0644	0.890	< 0.1 U1	0.33 J1	0.08 J1

Table 1. Groundwater Data Summary: AD-32
Pirkey - EBAP
Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/11/2016	Background	0.708	7.41	12	< 0.083 U1	4.3	124	206
7/13/2016	Background	5.23	33.9	32	0.67 J1	3.3	461	835
9/7/2016	Background	5.78	37.4	35	< 0.083 U1	3.1	479	884
10/12/2016	Background	4.26	27.1	29	0.8585 J1	3.3	430	720
11/14/2016	Background	5.52	35.9	34	0.7468 J1	3.0	621	922
1/11/2017	Background	5.05	40	35	< 0.083 U1	3.9	683	894
2/28/2017	Background	2.73	18.4	19	< 0.083 U1	3.1	285	490
4/11/2017	Background	1.46	11	15	0.4468 J1	3.2	200	372
8/23/2017	Detection	0.716	7.15	14	1.962	4.3	115	288
12/21/2017	Detection	2.56	17.1	22	0.5932 J1		324	504
3/21/2018	Assessment	0.628	6.32	15	< 0.083 U1	4.1	113	288
8/21/2018	Assessment	2.45	17.8	28	< 0.083 U1	3.9	321	548
2/28/2019	Assessment	0.679	6.62	17.5	0.40	3.2	121	222
5/21/2019	Assessment	0.555	5.35	18.6	0.31	3.2	105	292
8/12/2019	Assessment	1.77	13.3	24.9	0.67	4.0	228	448
8/16/2019	Assessment	1.92	14.6	26.1	0.83		273	522
3/10/2020	Assessment	0.656	6.84	20.5	0.39	3.7	117	286
6/2/2020	Assessment	0.557	5.75	24.1	0.41	3.9	93.6	327
11/2/2020	Assessment	4.04	34.3	36.2	1.40	3.4	690	1,070
3/8/2021	Assessment	2.87	34.2	33.5	1.08	3.5	714	1,020
5/24/2021	Assessment	2.11	21.7	25.4	1.25	3.3	452	340
11/15/2021	Assessment	1.70	16.8	24.3	0.78	2.8	334	580
3/28/2022	Assessment	0.773	8.05	25.2	0.44	3.1	157	330 L1
6/20/2022	Assessment	0.909	7.25	30.6	0.42	3.0	147	320
11/15/2022	Assessment	1.26	12.0	22.7	0.49	4.0	244	450
2/27/2023	Assessment	0.767	7.69	25.1	0.44	3.3	151	340
6/26/2023	Assessment	0.595	5.26	14.5	0.13	3.8	119	260
8/23/2023	Assessment	0.418	3.71	12.7	0.07	3.6	73.0	190

Table 1. Groundwater Data Summary: AD-32 Pirkey - EBAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/11/2016	Background	< 0.93 U1	3.77019 J1	35	3	0.293016 J1	5	27	2.501	< 0.083 U1	< 0.68 U1	0.016	0.925	< 0.29 U1	< 0.99 U1	< 0.86 U1
7/13/2016	Background	< 0.93 U1	13	58	8	0.729634 J1	18	74	6.41	0.67 J1	< 0.68 U1	0.119	13.916	0.76212 J1	3.88793 J1	< 0.86 U1
9/7/2016	Background	< 0.93 U1	3.25886 J1	35	8	0.601583 J1	6	70	4.846	< 0.083 U1	< 0.68 U1	0.111	1.68	< 0.29 U1	< 0.99 U1	1.09263 J1
10/12/2016	Background	< 0.93 U1	10	50	7	0.589066 J1	15	65	17.32	0.8585 J1	< 0.68 U1	0.972	7.285	< 0.29 U1	1.93488 J1	< 0.86 U1
11/14/2016	Background	< 0.93 U1	6	37	9	0.78793 J1	8	75	3.731	0.7468 J1	< 0.68 U1	0.114	3.624	< 0.29 U1	< 0.99 U1	1.078 J1
1/11/2017	Background	< 0.93 U1	6	37	7	0.602157 J1	9	69	4.342	< 0.083 U1	< 0.68 U1	0.115	7.202	< 0.29 U1	< 0.99 U1	0.991051 J1
2/28/2017	Background	< 0.93 U1	4.56273 J1	30	5	0.389491 J1	5	45	4.001	< 0.083 U1	< 0.68 U1	0.095	7.927	< 0.29 U1	2.53854 J1	< 0.86 U1
4/11/2017	Background	< 0.93 U1	< 1.05 U1	26	4	0.440252 J1	3	35	4.32	0.4468 J1	< 0.68 U1	0.095	2.755	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/21/2018	Assessment	< 0.93 U1	3.05 J1	41.25	3.17	0.55 J1	5.38	25.8	4.922	< 0.083 U1	< 0.68 U1	0.103	6.4	< 0.29 U1	2.18 J1	< 0.86 U1
8/21/2018	Assessment	0.01 J1	4.81	17.2	3.70	0.47	0.646	43.5	6.01	< 0.083 U1	0.714	0.0689	2.649	0.04 J1	15.0	0.238
2/28/2019	Assessment	< 0.4 U1	2 J1	28.9	3.34	0.2 J1	2 J1	25.0	4.67	0.40	< 0.4 U1	0.0919	1.135	< 8 U1	3 J1	< 2 U1
5/21/2019	Assessment	< 0.4 U1	0.8 J1	35.6	2.77	0.3 J1	1 J1	23.5	5.37	0.31	0.4 J1	0.0897	1.371	< 8 U1	1 J1	0.2 J1
8/12/2019	Assessment	< 0.02 U1	3.43	38.5	3.65	0.40	1.70	33.7	5.70	0.67	0.996	0.0964	4.127	< 0.4 U1	7.3	0.2 J1
8/16/2019	Assessment	< 0.1 U1	2.77	27.9	4.88	0.46	0.5 J1	40.4		0.83	0.6 J1	0.103		< 2 U1	7.8	< 0.5 U1
3/10/2020	Assessment	< 0.02 U1	0.88	28.7	2.51	0.30	0.379	23.9	5.741	0.39	0.343	0.0711	1.70	< 0.4 U1	2.6	0.2 J1
6/2/2020	Assessment	< 0.02 U1	0.98	31.9	2.35	0.25	0.675	20.8	4.445	0.41	0.405	0.0696	3.97	< 0.4 U1	2.3	0.2 J1
11/2/2020	Assessment	0.02 J1	6.29	22.0	8.90	0.79	1.17	74.0	8.88	1.40	1.23	0.0987	1.40	< 0.4 U1	25.3	0.4 J1
3/8/2021	Assessment	< 0.02 U1	5.54	18.5	5.78	0.66	0.754	61.9	3.701	1.08	0.970	0.0618	1.07	< 0.1 U1	22.2	0.3 J1
5/24/2021	Assessment	< 0.02 U1	2.39	16.9	3.96 M1	0.529	0.71	50.5	5.38	1.25	0.52	0.0629 M1	0.800	< 0.1 U1	9.21	0.21
11/15/2021	Assessment	< 0.02 U1	2.39	22.5	3.90	0.452	0.75	39.9	4.60	0.78	0.52	0.0698	1.400	< 0.1 U1	7.70	0.25
3/28/2022	Assessment	< 0.02 U1	1.05	30.0	2.89	0.323	0.60	25.1	5.90	0.44	0.38	0.0731	1.900	< 0.1 U1	3.42	0.17 J1
6/20/2022	Assessment	< 0.02 U1	1.81	32.3	3.28	0.318	0.68	27.2	13.87	0.42	0.43	0.0923	2.700	< 0.1 U1	2.67	0.17 J1
11/15/2022	Assessment	< 0.02 U1	1.73	24.4	3.77	0.404	0.82	34.8	5.28	0.49	0.66	0.0812	1.500	< 0.1 U1	5.95	0.24
2/27/2023	Assessment	< 0.02 U1	0.89	26.3	3.19	0.360	0.44	29.4	5.83	0.44	0.40	0.0837	2.200	< 0.1 U1	2.68	0.18 J1
6/26/2023	Assessment	0.012 J1	1.53	23.4	0.905	0.042	0.61	15.9	3.93	0.13	0.17 J1	0.0500	0.760	< 0.1 U1	1.59	0.11 J1
8/23/2023	Assessment	0.013 J1	2.19	22.7	0.921	0.071	0.83	11.3	5.16	0.07	0.26	0.0482	0.950	< 0.1 U1	1.04	0.10 J1

Table 1. Groundwater Data Summary Pirkey - EBAP

Notes:

- -: Not analyzed

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

L1: The associated laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) recovery was outside acceptance limits.

M1: The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.

mg/L: milligrams per liter

P1: The precision between duplicate results was above acceptance limits.

P3: The precision on the matrix spike duplicate (MSD) was above acceptance limits.

pCi/L: picocuries per liter

SU: standard unit

μg/L: micrograms per liter

Table 1. Groundwater Elevation Data Summary Pirkey Power Plant

Unit	All Units		Eas	t Bottom Ash F	ond			West Bottom Ash Pond					
Gradient	Upgradient	Upgra	adient		Downgradient		Upgra	adient		Downgradient			
Well	AD-12	AD-4	AD-18	AD-2	AD-31	AD-32	AD-3	AD-18	AD-17	AD-28	AD-30		
Jan-2016	371.05	359.16	360.52	328.55	346.60	352.32	347.03	360.52		321.39	323.70		
May-2016	372.17	360.07	359.26	328.35	348.21	352.74	348.04	359.26	329.38	321.82	324.26		
Jul-2016	365.68	352.34	356.99	327.46	345.46	348.53	346.00	356.99	325.93	320.44	322.49		
Jan-2017	365.11	353.27	357.06	327.65	343.78	347.44	344.19	357.06	324.70	320.27	322.23		
Feb-2017	368.79	355.32	359.21	327.96	344.53	348.44	345.53	359.21	326.27	320.59	322.88		
Apr-2017	372.97	356.62	358.63	329.09	344.58	349.09	345.53	358.63	326.27	320.69	322.88		
Aug-2017	367.68	353.58	358.23	327.63	343.57	349.73	343.49	358.23	324.18	320.07	322.04		
Mar-2018	370.57	359.04	360.00	328.36	344.10	351.42	344.56	360.00	327.13	321.79	323.29		
Aug-2018	357.99	350.39	355.99	326.99	342.73	347.58	343.28	355.99	324.12	319.93	321.70		
Feb-2019	372.43	360.40	354.61	329.21	348.31	352.86	348.36	354.61	331.11	321.86	324.54		
May-2019	373.12	361.18	360.74	328.91	349.68	354.14	349.37	360.74	331.66	322.61	325.21		
Aug-2019	361.90	354.10	357.09	327.60	346.63	353.12	346.08	357.09	326.45	320.40	322.63		
Mar-2020	373.10	360.56	360.58	329.23	346.95	352.55	347.22	360.58	336.07	321.98	323.94		
Jun-2020	381.55	360.25	359.98	328.06	347.95	352.87	347.76	359.98	328.04	321.28	323.40		
Nov-2020	361.86	349.70	354.98	327.57	342.84	346.13	342.89	354.98	324.36	319.99	321.90		
Mar-2021	373.52	359.14	359.99	329.00	346.24	350.30	346.58	359.99	329.37	322.06	324.19		
May-2021	375.56	360.45	360.46	329.57	347.27	351.28	347.46	360.46	329.03	323.10	324.94		
Jul-2021													
Nov-2021	358.32	351.40	355.55	327.36	342.79	348.72	342.60	355.55	323.77	319.98	321.80		
Jan-2022				-									
Mar-2022	373.28	359.58	359.17	328.17	344.58	351.73	344.19	359.17	325.80	321.05	323.14		
Jun-2022	360.55	351.31	356.01	327.07	342.36	349.94	342.22	356.01	323.48	320.11	321.54		
Aug-2022							341.84						
Nov-2022	363.46	351.15	355.11	327.52	341.97	348.00	340.85	355.11	322.61	319.73	321.81		
Feb-2023	368.74	356.04	359.57	328.12	344.34	349.48		359.57					
Mar-2023													
Jun-2023	369.17	352.66	357.96	327.55	340.46	343.36	341.82	357.96	325.13	320.45	322.07		
Aug-2023	362.47	347.25	354.17	326.59	337.74	341.46		354.17					
Oct-2023	360.29		352.80				338.07	352.80	322.93	319.77	321.28		

Notes:

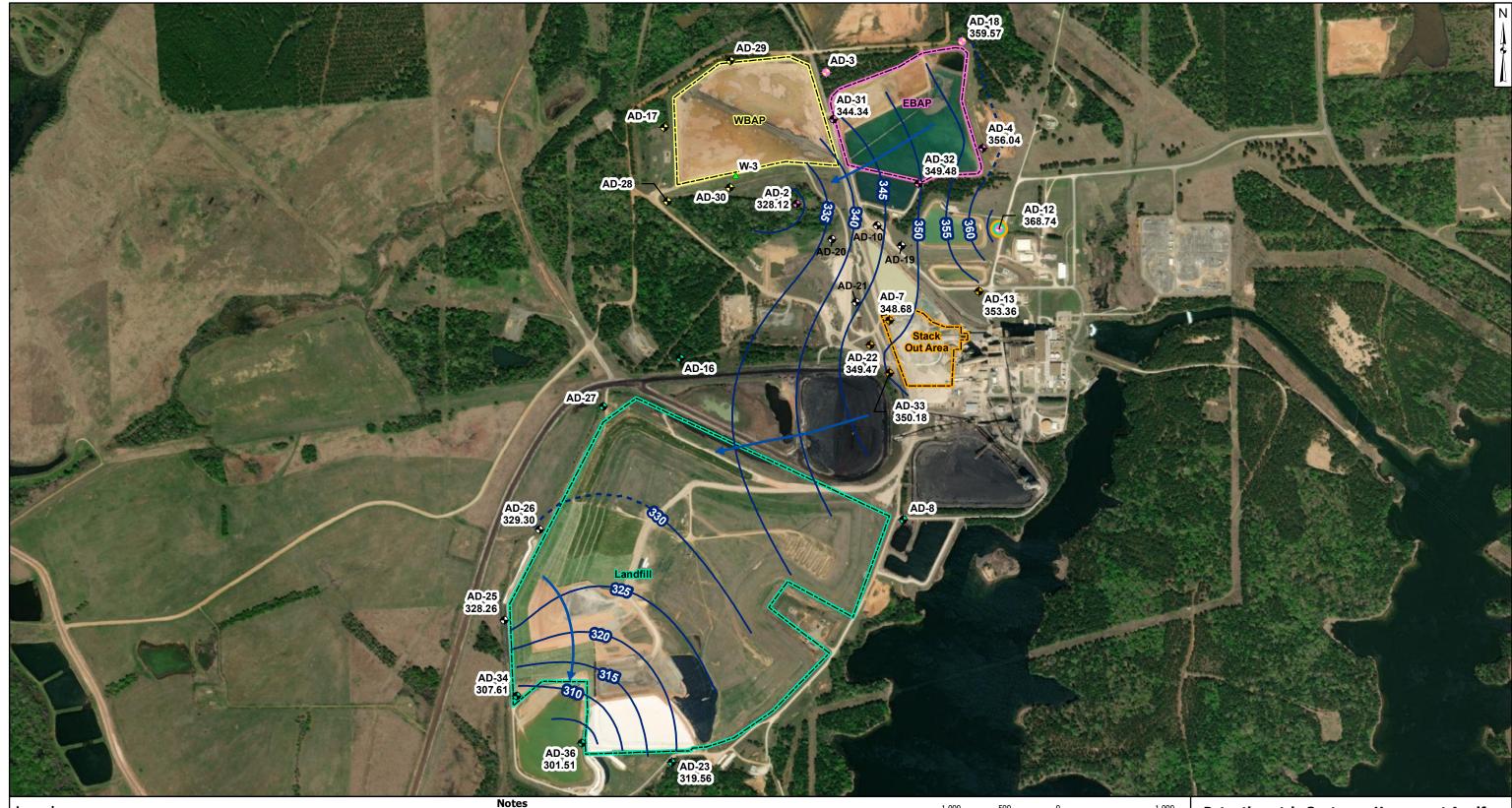
1. Groundwater elevation measured in feet above mean sea level.

Table 1. Groundwater Elevation Data Summary Pirkey Power Plant

Unit		Stacko	out Pad		Landfill							
Gradient	Upgradient		Downgradient			Upgradient		Downgradient				
Well	AD-13	AD-7	AD-22	AD-33	AD-8	AD-16	AD-27	AD-23	AD-34	AD-36		
Jan-2016	354.15	349.31	350.29	351.13	347.21	347.68		321.23	307.61			
May-2016	355.11	349.98	350.83	351.62	348.03	350.97	335.29	321.98	307.61			
Jul-2016	352.31	347.54	347.55	349.88	347.10	343.32	331.47	321.97	307.61			
Jan-2017	352.01	347.04	347.20	348.56	345.74	343.09	330.04	320.99	307.61			
Feb-2017	352.81	347.96	348.52	349.32	346.00	344.54	331.59	321.00	307.61			
Apr-2017	352.68	347.87	348.45	349.25	345.81	344.69	331.24	320.85	307.61			
Aug-2017	352.62	347.40	347.37	349.31	346.31	342.71	330.05	320.77	307.61			
Mar-2018	353.25	348.46	349.62	350.10	346.11	344.63	332.49	320.17	307.61			
Aug-2018	349.14	344.57	344.05	347.23	345.24	340.03	328.61	320.31	306.66			
Feb-2019	355.63	350.21	350.90	351.99	348.05	351.21	335.03	320.88	307.61			
May-2019	355.87	350.82	351.99	352.95	348.60	351.92	336.53	320.99				
Aug-2019	350.87	346.85	346.70	349.96	347.33	343.92	330.71	321.29	305.87	303.16		
Mar-2020	355.71	350.64	351.80	352.68					DRY	303.21		
Jun-2020	355.17	350.25	350.95	352.54	348.61	349.39		320.79	307.61	303.78		
Nov-2020	350.93	346.45	346.12	348.71	346.63	343.07	329.77	320.83	307.00	302.88		
Mar-2021	355.22	350.13	351.33	351.84								
May-2021	356.42	350.97	352.31	352.95	348.58	350.52	337.25	320.32	307.61	302.22		
Jul-2021									307.61	302.42		
Nov-2021	349.43	345.08	345.25	348.40	346.48	341.99	329.69	320.49	307.20	301.66		
Jan-2022		-						320.00	307.61			
Mar-2022	353.99	348.66	349.66	350.15					307.61			
Jun-2022	349.75	345.35	345.49	348.35	346.27	342.41	330.10	319.87	307.00	301.49		
Aug-2022								319.81	306.84	301.35		
Nov-2022	349.93	345.56	345.20	347.43	344.23	341.65	328.48	319.72	307.61	301.35		
Feb-2023	353.36	348.68	349.47	350.18				319.56	307.61	301.51		
Mar-2023	354.24		350.03	350.48								
Jun-2023	352.47	347.83	348.29	349.81	346.88	342.44	332.67	320.13		299.99		
Aug-2023								320.39	307.61	302.91		
Oct-2023	348.85		344.70	346.93	345.07	339.45	328.43	320.35	307.61	300.48		

Notes:

1. Groundwater elevation measured in feet above mean sea level.

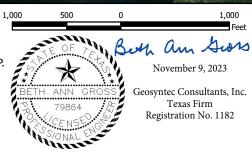

Table 1: Residence Time Calculation Summary Pirkey East Bottom Ash Pond

			2023-02		2023-06		202.	3-08	2023-10	
CCR Management Unit	Monitoring Well	Well Diameter (inches)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)
	AD-2 [2]	4.0	27.2	4.5	22.8	5.3	17.1	7.1	NC	NC
T	AD-4 [1]	4.0	10.1	12.1	10.1	12.0	6.3	19.3	NC	NC
East	AD-12 [1]	4.0	35.7	3.4	44.0	2.8	30.4	4.0	20.3	6.0
Bottom Ash Pond	AD-18 [1]	2.0	12.1	5.0	15.8	3.8	15.0	4.0	10.4	5.9
	AD-31 [2]	2.0	20.8	2.9	20.6	3.0	14.9	4.1	NC	NC
	AD-32 ^[2]	2.0	14.0	4.4	26.7	2.3	20.3	3.0	NC	NC

Notes:

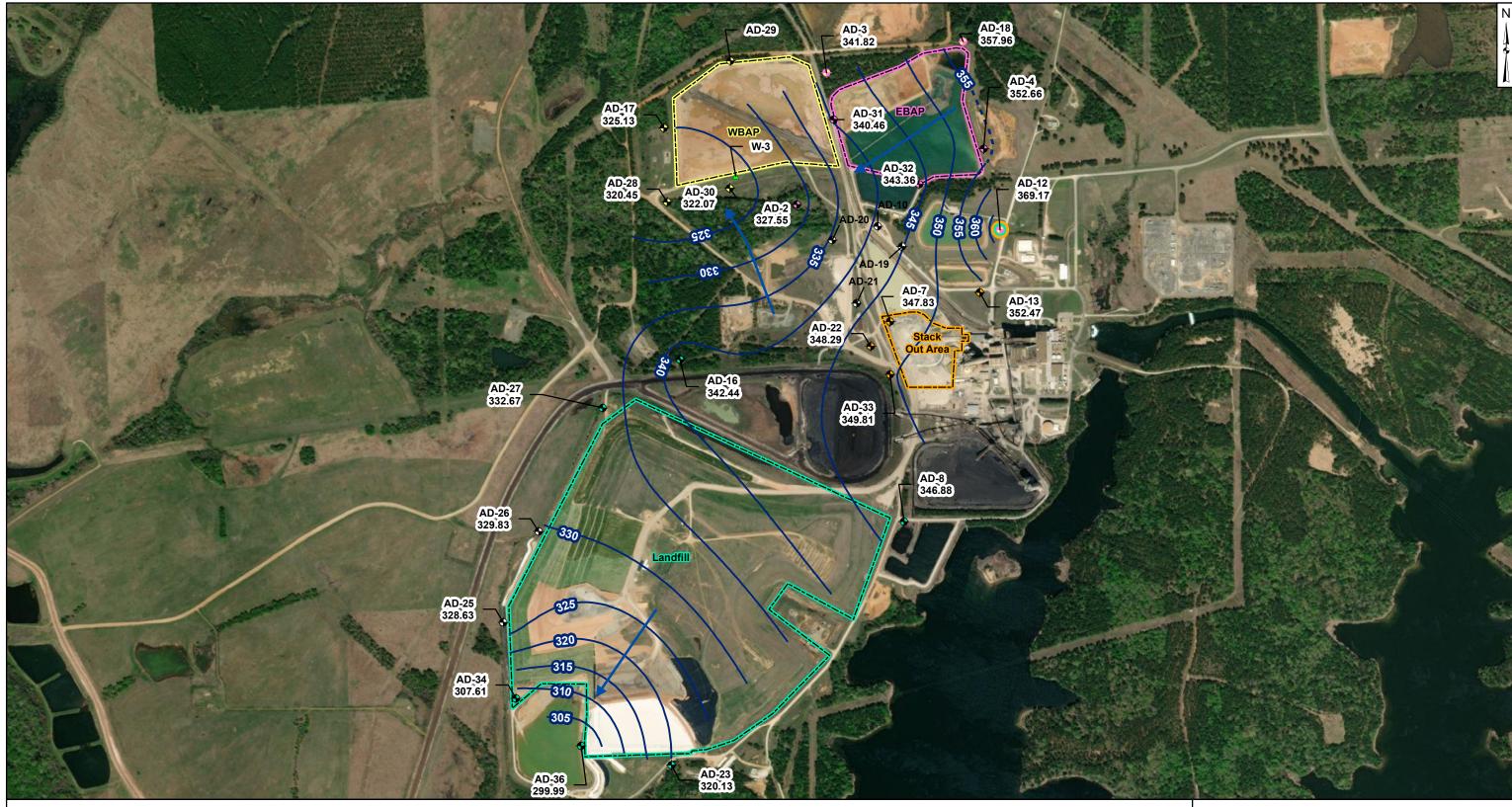
[1] - Background Well

[2] - Downgradient Well



Legend

- Out of Network
- EBAP
- ◆ WBAP
- Landfill
- Stackout Area EBAP and WBAP


- Piezometer
- Groundwater Elevation Contour
- - Groundwater Elevation Contours (Inferred)
- → Approximate Groundwater Flow Direction
- 1. Monitoring well coordinates and water level data (collected on February 27 and 28, 2023) provided by American Electric Power (AEP).
- 2. Site features based on information available in coal combustion residuals
- (CCR)Groundwater Monitoring Well Network Evaluation Update (Arcadis 2022) provided by AEP.
- 3. Groundwater elevation units are feet above mean sea level.
 4. AD-3, AD-8, AD-10, AD-16, AD-17, AD-19, AD-20, AD-21, AD-27, AD-28, AD-29, AD-30, and W-3 were not gauged during the February 2023 event.
- 5. AD-35 was abandoned on November 13, 2018.
- 6. Removal of CCR plus one foot of material was completed on July 26, 2022 for the West Bottom Ash Pond (WBAP). EBAP: East Bottom Ash Pond.

Potentiometric Contours: Uppermost Aquifer February 2023

AEP Pirkey Power Plant Hallsville, Texas

Geosyntec[▶] Figure consultants 1 Columbus, Ohio 2023/10/05

Legend

- Out of Network
- **♦** EBAP
- ◆ WBAP
- Landfill
- Stackout Area
- EBAP and WBAP

- Piezometer
- Groundwater Elevation Contour
- - Groundwater Elevation Contours (Inferred)
- → Approximate Groundwater Flow Direction

Notes

- 1. Monitoring well coordinates and water level data (collected on June 26 and 27, 2023) provided by American Electric Power (AEP).
- Site features based on information available in coal combustion residuals (CCR)
 Groundwater Monitoring Well Network Evaluation Update (Arcadis 2022) provided by AEP.
 Groundwater elevation units are feet above mean sea level.
- 4. AD-10, AD-19, AD-20, AD-21, AD-29, and W-3 were not gauged during the June 2023 event.
- 5. AD-35 was abandoned on November 13, 2018.
- 6. Removal of CCR plus one foot of material was completed on July 26, 2022 for the West Bottom Ash Pond (WBAP). EBAP: East Bottom Ash Pond.

Both am Stors
November 9, 2023 Geosyntec Consultants, Inc. Texas Firm Registration No. 1182 SSIONAL EN

Potentiometric Contours: Uppermost Aquifer June 2023

AEP Pirkey Power Plant Hallsville, Texas

Geosyntec^D Figure consultants 2 Columbus, Ohio 2023/10/06

P:\Projects\AEP\Groundwater Statistical Evaluation - CHA8423\Groundwater Mapping\GIS Files\MXD\Pirkey\2023\AEP-Pirkey_GW_2023-06Pirkey.mxd. ASoltero. 10/6/2023. Project/Phase/Task

Legend

- Out of Network
- **♦** EBAP
- ◆ WBAP
- Landfill
- Stackout Area
- EBAP and WBAP

Notes

- 1. Monitoring well coordinates and water level data (collected on August 23, 2023) provided by American Electric Power (AEP).
- 2. Site features based on information available in coal combustion residuals (CCR) Groundwater Monitoring Well Network Evaluation Update (Arcadis 2022) provided by AEP.
- 3. Groundwater elevation units are feet above mean sea level.
- 4. AD-03, AD-07, AD-08, AD-13, AD-16, AD-17, AD-22, AD-25, AD-26, AD-27, AD-28, AD-29, AD-30, AD-33 and W-3 were not gauged during the August 2023 event.

 5. AD-35 was abandoned on November 13, 2018. - - Groundwater Elevation Contours (Inferred)
- Approximate Groundwater Flow Direction 6. Removal of CCR plus one foot of material was completed on July 26, 2022 for the West Bottom Ash Pond
 - 7. Removal of CCR plus one foot of material was completed on July 20, 2023 for the East Bottom Ash Pond (EBAP).

Both am Sions November 9, 2023 Geosyntec Consultants, Inc. Texas Firm Registration No. 1182 SONAL EN

Potentiometric Contours: Uppermost Aquifer August 2023

AEP Pirkey Power Plant Hallsville, Texas

Geosyntec[▶] Figure consultants 3 Columbus, Ohio 2023/10/06

P:\Projects\AEP\Groundwater Statistical Evaluation - CHA8423\Groundwater Mapping\GIS Files\MXD\Pirkey\2023\AEP-Pirkey_GW_2023-08Pirkey.mxd. ASoltero. 10/6/2023. Project/Phase/Tas

Groundwater Elevation Contour

Piezometer

APPENDIX 2- Statistical Analyses

The reports summarizing the statistical evaluation follow.

engineers | scientists | innovators

STATISTICAL ANALYSIS SUMMARY, EAST BOTTOM ASH POND

H.W. Pirkey Power Plant Hallsville, Texas

Prepared for

American Electric Power

1 Riverside Plaza Columbus, Ohio 43215-2372

Prepared by

Geosyntec Consultants, Inc. 500 West Wilson Bridge Road, Suite 250 Worthington, Ohio 43085

Project Number: CHA8500B

March 29, 2023

TABLE OF CONTENTS

1.	INT	RODUC	CTION	1
			ΓΟΜ ASH POND EVALUATION	
			cal Analysis	
		2.2.1	Establishment of GWPSs	
		2.2.2	Evaluation of Potential Appendix IV SSLs	
		2.2.3	Establishment of Appendix III Prediction Limits	3
		2.2.4	Evaluation of Potential Appendix III SSIs	4
	2.3	Conclu	isions	5
3.	REF	ES	6	
			LIST OF TABLES	
Table 1:			Groundwater Data Summary	
Table 2:			Appendix IV Groundwater Protection Standards	
Table 3:			Appendix III Data Summary	
			LIST OF ATTACHMENTS	
Atta	achme	ent A:	Certification by Qualified Professional Engineer	
Atta	achme	ent B:	Data Quality Review Memorandum	
Atta	achme	ent C:	Statistical Analysis Output	

ACRONYMS AND ABBREVIATIONS

ASD alternative source demonstration

CCR coal combustion residuals

EBAP East Bottom Ash Pond

GWPS groundwater protection standard

LCL lower confidence limit
LPL lower prediction limit
mg/L milligrams per liter

PQL practical quantitation limit

QA/QC quality assurance and quality control

SSI statistically significant increase
SSL statistically significant level
TAC Texas Administrative Code

TCEQ Texas Commission on Environmental Quality

TDS total dissolved solids
UPL upper prediction limit

1. INTRODUCTION

In accordance with Texas Commission on Environmental Quality (TCEQ) regulations regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (Texas Administrative Code [TAC] Title 30, Chapter 352), groundwater monitoring has been conducted at the East Bottom Ash Pond (EBAP), an existing CCR unit at the H.W. Pirkey Power Plant in Hallsville, Texas. Recent groundwater monitoring results were compared to site-specific groundwater protection standards (GWPSs) to identify potential exceedances.

Based on detection monitoring conducted in 2017 and 2018, statistically significant increases (SSIs) over background were concluded for boron, calcium, chloride, total dissolved solids (TDS), and sulfate at the EBAP. An alternative source was not identified at the time, so the EBAP initiated assessment monitoring in 2018. GWPSs were set in accordance with 30 TAC § 352.951(b) and a statistical evaluation of the assessment monitoring data was conducted. During 2022, sampling events for both Appendix III parameters and Appendix IV parameters, as required by § 352.951(a), were completed in March and June. During the June 2022 assessment monitoring event, statistically significant levels (SSLs) were observed for cobalt and lithium (Geosyntec 2022a). In accordance with § 352.951(e), an alternative source demonstration (ASD) was successfully completed (Geosyntec 2022b). Therefore, the unit remained in assessment monitoring. One assessment monitoring event was conducted at the EBAP in November 2022 in accordance with § 352.951(a). The results of the November 2022 assessment event are documented in this report.

Prior to conducting the statistical analyses, the groundwater data underwent several validation tests, including those for completeness, sample tracking accuracy, transcription errors, and consistent use of measurement units. No data quality issues were identified which would impact data usability.

The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. GWPSs were reestablished for the Appendix IV parameters. Confidence intervals were calculated for Appendix IV parameters at the compliance wells to assess whether SSLs of Appendix IV parameters were present above the GWPS. SSLs were identified for cobalt and lithium for the November 2022 event. Thus, either the unit will move to an assessment of corrective measures or an ASD will be conducted to evaluate if the unit can remain in assessment monitoring. Certification of the selected statistical methods by a qualified professional engineer is documented in Attachment A.

2. EAST BOTTOM ASH POND EVALUATION

2.1 Data Validation and QA/QC

During the November 2022 assessment monitoring event, one set of samples was collected for analysis from each background and compliance well to meet the requirements of § 352.951(a). Samples from November 2022 were analyzed for all Appendix III and Appendix IV parameters. A summary of data collected during this assessment monitoring event may be found in Table 1.

Chemical analysis was completed by an analytical laboratory certified by the National Environmental Laboratory Accreditation Program. Quality assurance and quality control (QA/QC) samples completed by the analytical laboratory included the use of laboratory reagent blanks, continuing calibration verification samples, and laboratory-fortified blanks.

A data quality review was completed to assess whether the data met the objectives outlined in TCEQ Draft Technical Guidance No. 32 related to groundwater sampling and analysis (TCEQ 2020). As noted in the review memorandum (Attachment B), the data were deemed usable for supporting project objectives. The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.9.6.36 statistics software. The export file was checked against the analytical data for transcription errors and completeness. No QA/QC issues were noted which would impact data usability.

2.2 Statistical Analysis

Statistical analyses for the EBAP were conducted in accordance with the November 2021 Statistical Analysis Plan (Geosyntec 2021a). Time series plots and results for all completed statistical tests are provided in Attachment C.

The data obtained in November 2022 were screened for potential outliers. No outliers were identified for this event.

2.2.1 Establishment of GWPSs

A GWPS was established for each Appendix IV parameter in accordance with the Statistical Analysis Plan (Geosyntec 2021a). The established GWPS was set to whichever was greater of the background concentration and the maximum contaminant level for each Appendix IV parameter. To determine background concentrations, an upper tolerance limit was calculated using data that were pooled from the background wells collected during the background monitoring and assessment monitoring events. Tolerance limits were calculated parametrically with 95% coverage and 95% confidence for chromium, combined radium, and lithium. Nonparametric tolerance limits were calculated for arsenic, barium, beryllium, cadmium, cobalt, fluoride, lead, mercury, and selenium due to apparent nonnormal distributions, and for antimony, molybdenum, and thallium due to a high nondetect frequency. Upper tolerance limits and the final GWPSs are summarized in Table 2.

2.2.2 Evaluation of Potential Appendix IV SSLs

A confidence interval was constructed for each Appendix IV parameter at each compliance well. Confidence limits were generally calculated parametrically ($\alpha = 0.01$). However, nonparametric confidence limits were calculated in some cases (e.g., when the data did not appear to be normally distributed or when the nondetect frequency was too high). An SSL was concluded if the lower confidence limit (LCL) exceeded the GWPS (i.e., if the entire confidence interval was above the GWPS). Calculated confidence limits are shown in Attachment C.

The following SSLs were identified at the Pirkey EBAP:

- The LCL for cobalt exceeded the GWPS of 0.00939 milligrams per liter (mg/L) at AD-2 (0.0125 mg/L), AD-31 (0.00952 mg/L), and AD-32 (0.0324 mg/L).
- The LCL for lithium exceeded the GWPS of 0.0519 mg/L at AD-31 (0.0681 mg/L) and AD-32 (0.0786 mg/L).

As a result, either the Pirkey EBAP will move to an assessment of corrective measures or an ASD will be conducted to evaluate whether the unit can remain in assessment monitoring.

2.2.3 Establishment of Appendix III Prediction Limits

Upper prediction limits (UPLs) were previously established for all Appendix III parameters following the background monitoring period. Intrawell tests were used to evaluate potential SSIs for pH, and interwell tests were used to evaluate potential SSIs for boron, calcium, chloride, fluoride, sulfate, and TDS. Interwell and intrawell prediction limits are updated periodically during the assessment monitoring period as sufficient data become available.

Mann-Whitney tests (Wilcoxon rank-sum tests) were performed to determine whether the newer data are affected by a release from the EBAP. Because the interwell Appendix III limits and the Appendix IV GWPSs are based on data from upgradient wells, which were not expected to have been impacted by a release, these tests were used for intrawell Appendix III tests only. Mann-Whitney tests were used to compare the medians of historical data (May 2016–June 2020) with the more recent compliance samples (November 2020–June 2022). Results were evaluated to determine whether the medians of the two groups were similar at the 99% confidence level. Where no significant difference was found, the new compliance data were added to the background data set.

The complete Mann-Whitney test results and a summary of the significant findings can be found in Attachment C. No statistically significant differences were found between the two groups. Therefore, the background data sets for pH were updated to include all available data through June 2022.

Prediction limits for the interwell tests were recalculated using historical data collected through November 2022 during assessment monitoring events. New background well data were tested for outliers before being added to the background data set. Background well data were also evaluated for statistically significant trends using the Sen's Slope/Mann-Kendall trend test, and the results are included in Attachment C.

After the revised background set was established, a parametric or nonparametric analysis was selected based on the distribution of the data and the frequency of nondetect data. Estimated results under the reporting limit (i.e., practical quantitation limit [PQL]) but above the method detection limit—that is, "J-flagged" data—were considered detections and the estimated results were used in the statistical analyses. Nonparametric analyses were selected for data sets with at least 50% nondetect data or data sets that could not be normalized. Parametric analyses were selected for data sets (either transformed or untransformed) that passed the Shapiro-Wilk/Shapiro-Francía test for normality. The Kaplan-Meier nondetect adjustment was applied to data sets with between 15% and 50% nondetect data. For data sets with fewer than 15% nondetect data, nondetect data were replaced with one half of the PQL. The selected analysis (i.e., parametric or nonparametric) and transformation (where applicable) for each background data set are shown in Attachment C.

Interwell UPLs were updated for boron, calcium, chloride, fluoride, sulfate, and TDS using historical data through November 2022. Intrawell UPLs and lower prediction limits (LPLs) were updated for pH using the historical data through June 2022. The updated prediction limits are summarized in Table 3. The prediction limits were calculated for a one-of-two retesting procedure: If at least one sample in a series of two is not above the UPL (or, in the case of pH, is neither less than the LPL nor greater than the UPL), then it can be concluded that an SSI has not occurred. In practice, where the initial result does not exceed the UPL (or, in the case of pH, is neither less than the LPL nor greater than the UPL), a second sample will not be collected. The retesting procedures allow achieving an acceptably high statistical power to detect changes at compliance wells for constituents evaluated using intrawell prediction limits.

2.2.4 Evaluation of Potential Appendix III SSIs

While SSLs were identified for the Appendix IV parameters, a review of the Appendix III results was also completed to assess whether concentrations of Appendix III parameters at the compliance wells were above background concentrations.

Data collected during the November 2022 assessment monitoring event from each compliance well were compared to the recalculated prediction limits to evaluate results above background values. The results from this event and the prediction limits are summarized in Table 3. The following were detected above the UPLs:

- Boron concentrations were detected above the interwell UPL of 0.0437 mg/L at AD-2 (2.83 mg/L) and AD-32 (1.26 mg/L).
- Calcium concentrations were detected above the interwell UPL of 2.94 mg/L at AD-32 (12.0 mg/L).
- Chloride concentrations were detected above the interwell UPL of 8.84 mg/L at AD-2 (30.5 mg/L), AD-31 (24.3 mg/L), and AD-32 (22.7 mg/L).
- Fluoride concentrations were detected above the interwell UPL of 0.257 mg/L at AD-32 (0.49 mg/L).
- Sulfate concentrations were detected above the interwell UPL of 24.7 mg/L at AD-2 (259 mg/L), AD-31 (79.1 mg/L), and AD-32 (244 mg/L).

• TDS concentrations were detected above the interwell UPL of 170 mg/L at AD-2 (480 mg/L), AD-31 (250 mg/L), and AD-32 (450 mg/L).

While the prediction limits were calculated for a one-of-two retesting procedure, SSIs were conservatively assumed if the November 2022 sample was above the UPL or below the LPL. Based on these results, concentrations of Appendix III constituents appear to be above background levels at compliance wells.

2.3 Conclusions

A semiannual assessment monitoring event was conducted at the EBAP in accordance with the CCR Rule. The laboratory and field data were reviewed prior to statistical analysis, with no QA/QC issues identified that impacted data usability. A review of outliers identified no potential outliers in the November 2022 data. GWPSs were reestablished for the Appendix IV parameters. A confidence interval was constructed at each compliance well for each Appendix IV parameter; SSLs were concluded if the entire confidence interval was above the GWPS. SSLs were identified for cobalt and lithium.

The interwell prediction limits for boron, calcium, chloride, fluoride, sulfate, and TDS and the intrawell prediction limits for pH were updated to incorporate more recent data. Appendix III results were compared to established prediction limits, with values above the UPL detected for boron, calcium, chloride, pH, sulfate, and TDS.

Based on this evaluation, either the Pirkey EBAP CCR unit will move to an assessment of corrective measures or an ASD will be conducted to evaluate whether the unit can remain in assessment monitoring.

3. REFERENCES

- TCEQ. 2020. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action Draft Technical Guidance No. 32. May.
- Geosyntec. 2021a. Statistical Analysis Plan H.W. Pirkey Power Plant. Geosyntec Consultants, Inc. November.
- Geosyntec. 2021b. Statistical Analysis Summary East Bottom Ash Pond, H.W. Pirkey Plant. Geosyntec Consultants, Inc. March.
- Geosyntec. 2022a. Statistical Analysis Summary East Bottom Ash Pond, Pirkey, Hallsville, Texas. Geosyntec Consultants, Inc. October.
- Geosyntec. 2022b. Alternative Source Demonstration Texas State CCR Rule. Pirkey East Bottom Ash Pond. Geosyntec Consultants, Inc. January.

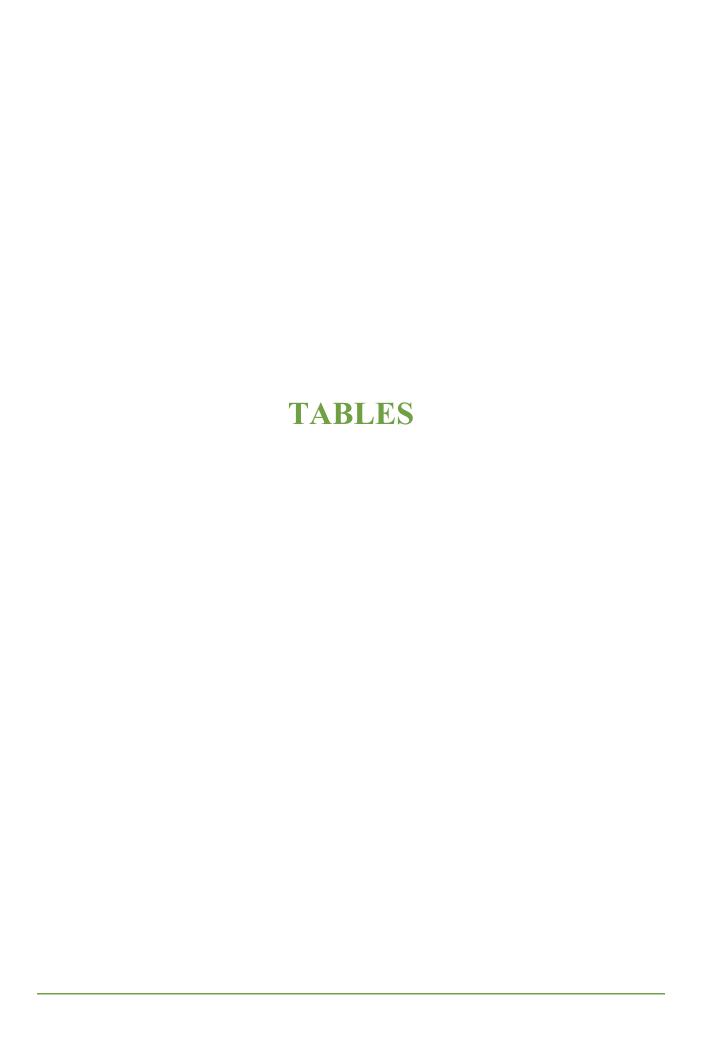


Table 1. Groundwater Data Summary Groundwater Statistical Summary Pirkey Plant - East Bottom Ash Pond

Well ID		AD-2	AD-4	AD-12	AD-18	AD-31	AD-32
Well Classification		Compliance	Background	Background	Background	Compliance	Compliance
Parameter	Unit	11/15/2022	11/16/2022	11/15/2022	11/16/2022	11/15/2022	11/15/2022
Antimony	μg/L	0.1 U1					
Arsenic	μg/L	0.40	0.21	0.06 J1	0.25	0.30	1.73
Barium	μg/L	16.8	128	30.6	77.4	35.8	24.4
Beryllium	μg/L	0.561	0.195	0.153	0.071	0.863	3.77
Boron	mg/L	2.83	0.019 J1	0.013 J1	0.011 J1	0.035 J1	1.26
Cadmium	μg/L	0.086	0.019 J1	0.007 J1	0.009 J1	0.066	0.404
Calcium	mg/L	2.80	2.25	0.36	0.19	2.63	12.0
Chloride	mg/L	30.5	4.14	8.03	4.94	24.3	22.7
Chromium	μg/L	0.43	0.44	0.45	0.54	0.74	0.82
Cobalt	μg/L	19.6	3.00	1.59	0.723	9.41	34.8
Combined Radium	pCi/L	1.41	0.4	1.46	1.61	3.81	5.28
Fluoride	mg/L	0.21	0.06 U1	0.08	0.06 U1	0.14	0.49
Lead	μg/L	0.60	0.2 U1	0.08 J1	0.08 J1	0.34	0.66
Lithium	mg/L	0.0556	0.0212	0.0119	0.0125	0.0681	0.0812
Mercury	μg/L	0.058	0.005	0.005 U1	0.018	0.610	1.500
Molybdenum	μg/L	0.5 U1					
Selenium	μg/L	1.28	0.5 U1	0.23 J1	0.12 J1	0.38 J1	5.95
Sulfate	mg/L	259	16.6	3.39	6.55	79.1	244
Thallium	μg/L	0.11 J1	0.10 J1	0.2 U1	0.2 U1	0.10 J1	0.24
Total Dissolved Solids	mg/L	480	130	70	90	250	450
рН	SU	3.96	4.68	4.73	4.46	4.28	3.99

Notes:

μg/L: micrograms per liter mg/L: milligrams per liter pCi/L: picocuries per liter

SU: standard unit

U1: Not detected at or above method detection limit (MDL). For statistical analysis, parameters that were not detected were replaced with the reporting limit.

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

Table 2. Appendix IV Groundwater Protection Standards Statistical Analysis Summary Pirkey Plant - East Bottom Ash Pond

Constituent Name	MCL	Calculated UTL	GWPS
Antimony, Total (mg/L)	0.00600	0.000100	0.00600
Arsenic, Total (mg/L)	0.0100	0.0110	0.0110
Barium, Total (mg/L)	2.00	0.183	2.00
Beryllium, Total (mg/L)	0.00400	0.00115	0.00400
Cadmium, Total (mg/L)	0.00500	0.000260	0.00500
Chromium, Total (mg/L)	0.100	0.00326	0.100
Cobalt, Total (mg/L)	n/a	0.00939	0.00939
Combined Radium, Total (pCi/L)	5.00	3.20	5.00
Fluoride, Total (mg/L)	4.00	0.257	4.00
Lead, Total (mg/L)	n/a	0.00500	0.00500
Lithium, Total (mg/L)	n/a	0.0520	0.0520
Mercury, Total (mg/L)	0.00200	0.0000640	0.00200
Molybdenum, Total (mg/L)	n/a	0.00500	0.00500
Selenium, Total (mg/L)	0.0500	0.00245	0.0500
Thallium, Total (mg/L)	0.00200	0.00187	0.00200

Notes:

Calculated UTL (upper tolerance limit) represents site-specific background values.

Grey cells indicate the GWPS is based on the calculated UTL. Either the UTL is higher than the MCL or an MCL does not exist.

mg/L: milligrams per liter pCi/L: picocuries per liter

MCL: maximum contaminant level

GWPS: groundwater protection standard

Table 3. Appendix III Data Summary Statistical Analysis Summary Pirkey - East Bottom Ash Pond

Analyte	Unit	Description	AD-2	AD-31	AD-32
Allaryte	Omt	Description	11/15/2022	11/15/2022	11/15/2022
Boron	mg/L	Interwell Background Value (UPL)	0.0437		
Doron		Analytical Result	2.83	0.035	1.26
Calcium	mg/L	Interwell Background Value (UPL) 2.94			
Calcium		Analytical Result	2.80	2.63	12.0
Chloride	mg/L	Interwell Background Value (UPL) 8.84			
		Analytical Result	30.5	24.3	22.7
Fluoride	mg/L	Interwell Background Value (UPL) 0.257			
		Analytical Result	0.21	0.14	0.49
рН	SU	Intrawell Background Value (UPL)	4.7	5.1	4.3
		Intrawell Background Value (LPL)	3.4	2.8	2.6
		Analytical Result	4.0	4.3	4.0
Sulfate	mg/L	Interwell Background Value (UPL) 24.7			
		Analytical Result	259	79.1	244
Total Dissolved Solids	mg/L	Interwell Background Value (UPL)	170		
		Analytical Result	480	250	450

Notes:

Bold values exceed the background value.

Background values are shaded gray.

 μ g/L: micrograms per liter mg/L: milligrams per liter

SU: standard units

UPL: upper prediction limit LPL: lower prediction limit

ATTACHMENT A Certification by Qualified Professional Engineer

Certification by Qualified Professional Engineer

I certify that selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Pirkey East Bottom Ash Pond CCR management area and that the requirements of 40 CFR 257.93(f) have been met.

David Anthony M	STATE OF	STATE OF TE		
Printed Name of Licens	sed Professional Engineer	5 • • • • • • • • • • • • • • • • • • •	ONY MILLER	
	thony Miller	SSIONI	IL ENGINE	
Signature				
112498	Texas	03.29.2023	-	
License Number	Licensing State	Date		

ATTACHMENT B Data Quality Review Memorandum

Memorandum

Date: January 20, 2023

To: David Miller (AEP)

Copies to: Leslie Fuerschbach (AEP)

From: Allison Kreinberg (Geosyntec)

Subject: Data Quality Review – H.W. Pirkey Power Plant

November 2022 Sampling Event

This memorandum summarizes the findings of a data quality review for groundwater samples collected at the H.W. Pirkey Power Plant, located in Pittsburg, Texas in November 2022. The groundwater samples were collected to comply with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR Rule"). The groundwater samples were analyzed for 40 CFR 257 Appendix III and IV constituents, plus additional constituents collected to support site evaluation efforts.

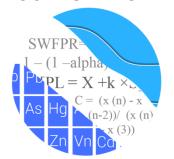
The following sample data groups (SDGs) were associated with the November 2022 sampling event and are reviewed in this memorandum:

- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223647
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223649
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223664
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223668

The laboratory reports for SDGs 223647 and 223649 were reissued in December 2022 with amended matrix spike precision calculations. The data included in the revised laboratory reports associated with these SDGs were reviewed to assess if they met the objectives outlined in TCEQ Draft Technical Guideline No. 32¹ prior to submittal of this data to TCEQ.

¹ TCEQ. 2020. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action Draft Technical Guidance No. 32. May.

Data Quality Review – Pirkey November 2022 Data January 20, 2023 Page 2


The following data quality issues were identified:

- As reported in SDG 223664, chromium, cobalt, and molybdenum were detected in the equipment blank sample "Equipment Blank" collected on 11/16/2022. The detected chromium concentration in the equipment blank (0.47 μg/L) was more than 10% of the detected values in the groundwater samples, which could result in high bias for all groundwater chromium results. The detected cobalt concentration in the equipment blank (0.143 μg/L) was more than 10% of the detected value in sample "AD-18" (0.723 μg/L), which could result in high bias in the "AD-18" cobalt results. The estimated molybdenum concentration in the equipment blank (0.2 μg/L) was more than 10% of the detected value in sample "Duplicate-2" (0.2 μg/L), which could result in high bias in the "Duplicate-2" molybdenum results. Molybdenum was not detected in the other groundwater samples.
- As reported in SDG 223649, the relative percent difference (RPD) for sulfate concentrations from parent sample "AD-36" and duplicate sample "Landfill Duplicate" was 86%. The "AD-36" sulfate results should be considered estimated.
- As reported in SDG 223664, the following matrix spike (MS) and matrix spike duplicate (MSD) recovery for sodium (160% and 223%, respectively) associated with sample "AD-2" was above the acceptable range of 75-125%. The MS recovery for sodium (50.4%) associated with sample "AD-30" was below the acceptable range of 75-125%. The associated samples ("AD-2" and "AD-30") were flagged M1: the associated MS or MSD recovery was outside acceptance limits. The "AD-2" and "AD-30" sodium results should be considered estimated. Sodium is not a regulated Appendix III or IV constituent.
- As reported in SDG 223664, the RPD for radium-226 (52.5%) in the laboratory duplicate was above the acceptable limit of 25%. The "AD-12" radium-226 result was flagged P1: the precision between duplicate results was above acceptance limits. The "AD-12" radium-226 results should be considered estimated.

Based on these findings, the majority of the data reported in these SDGs are considered accurate and complete. Although the QC failures mentioned above will result in some limitations of data use since the affected results are considered estimated or have elevated reporting limits, the data are considered usable for supporting project objectives.

ATTACHMENT C Statistical Analysis Output

GROUNDWATER STATS CONSULTING

February 23, 2023

Geosyntec Consultants Attn: Ms. Allison Kreinberg 500 W. Wilson Bridge Road, Suite 250 Worthington, OH 43085

Re: Pirkey EBAP - Assessment Monitoring Event & Background Update 2022

Dear Ms. Kreinberg,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the evaluation of groundwater data and the background update through 2022 for American Electric Power Company's Pirkey EBAP. The analysis complies with the Texas Commission of Environmental Quality rule 30 TAC 352 as well as with the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling at each of the wells below began at Pirkey EBAP for the Coal Combustion Residuals (CCR) program in 2016. The monitoring well network, as provided by Geosyntec Consultants, consists of the following:

Upgradient wells: AD-4, AD-12, and AD-18
 Downgradient wells: AD-2, AD-31, and AD-32

Data were sent electronically, and the statistical analysis was reviewed by Andrew Collins, Project Manager of Groundwater Stats Consulting. The analysis was conducted according to the Statistical Analysis Plan and initial screening evaluation prepared in November 2017 by GSC and approved by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to GSC.

The CCR program consists of the following constituents listed below. The terms "constituent" and "parameter" are interchangeable.

- Appendix III (Detection Monitoring) boron, calcium, chloride, fluoride, pH, sulfate, and TDS
- Appendix IV (Assessment Monitoring) antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Time series and box plots for Appendix III and IV parameters are provided for all wells and constituents, and are used to evaluate concentrations over the entire record (Figures A & B, respectively). A summary of the values identified as outliers in this report and through previous screenings follows this letter. These values are deselected prior to the statistical analysis. All flagged values may also be seen in a lighter font and disconnected symbol on the time series graphs (Figure C).

In earlier analyses, data at all wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix III parameters based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves were provided during the initial background screening and demonstrated that the selected statistical methods for Appendix III parameters comply with the USEPA Unified Guidance recommendations as discussed below. During this analysis, data were screened for updating Appendix III and IV background statistical limits, which was last performed in February 2022, as described below.

Summary of Statistical Methods:

Based on the original background screening described in the original screening report, the following statistical methods were selected for Appendix III parameters:

- 1) Intrawell prediction limits, combined with a 1-of-2 resample plan for pH
- 2) Interwell prediction limits, combined with a 1-of-2 resample plan for boron, calcium, chloride, fluoride, sulfate, and TDS

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the false positive rate associated with the parametric limits is based on an annual 10% (5% per semi-annual event) as recommended by the EPA Unified Guidance (2009), the false positive rate

associated with the nonparametric limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits.

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the intrawell case, data for all wells and constituents may be re-evaluated when a minimum of 4 new data points are available to determine whether earlier concentrations are representative of present-day groundwater quality. In the interwell case, prediction limits are updated with upgradient well data following each sampling event after careful screening for any new outliers. In some cases, deselecting the earlier portion of data may be necessary prior to construction of limits so that resulting statistical limits are conservative (lower) from a regulatory perspective and capable of rapidly detecting changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Note that while the most recent PQL is used for non-detect values, the historic reporting limit of 0.005 mg/L was used for lead and molybdenum in order to maintain statistical limits that are conservative from a regulatory perspective.

Appendix III Background Update Summaries

January 2021

Proposed background data were originally screened during December 2019. Prior to updating background data sets during the January 2021 background update, pH (which is evaluated using intrawell methods) at all wells and boron, calcium, chloride, fluoride, sulfate, and TDS (which are evaluated using interwell methods) at upgradient wells were re-evaluated using Tukey's outlier test and visual screening. Tukey's Outlier test did not identify any additional statistical outliers.

The Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through February 2019 to the new compliance samples at each well through June 2020 to evaluate whether the groups are significantly different at the 99% confidence level. A statistically significant difference was identified for pH in well AD-4. However, because this is an upgradient well and limited data are available, the background data were updated to include all data through June 2020.

The Sen's Slope/Mann Kendall trend test was used to evaluate data at upgradient wells for boron, calcium, chloride, fluoride, sulfate and TDS, which are tested using interwell prediction limits, to identify statistically significant increasing or decreasing trends. The results of the trend analyses showed all data are consistent over time. The statistically significant trends noted for boron at well AD-18 and fluoride and wells AD-4 and AD-12 were artificial trends that resulted from estimated values and non-detects, with no detections reported above the practical quantitation limit. No other statistically significant increasing or decreasing trends were noted. Interwell prediction limits, combined with a 1-of-2 resample plan, were updated using all available data through November 2020 from upgradient well for the constituents listed above.

February 2022

Upgradient well data through November 2021 were re-screened for the purpose of updating the interwell prediction limits for boron, calcium, chloride, fluoride, sulfate and TDS.

Outlier Analysis

Prior to updating background data, Tukey's outlier test and visual screening were used to evaluate data at all upgradient wells through November 2021, for boron, calcium, chloride, fluoride, sulfate, and TDS. Tukey's outlier test on pooled upgradient well data for

these constituents did not identify any additional statistical outliers since the last background update; therefore, no new outliers were flagged. Additionally, no changes to previously flagged outliers were made. As mentioned above, flagged data are displayed in a lighter font and as a disconnected symbol on the time series reports, as well as in a lighter font on the accompanying data pages. A summary of those findings was submitted with the report.

For pH, which uses intrawell prediction limits, values were not re-evaluated for new outliers as these records had insufficient samples for updating background during this evaluation period.

Intrawell – Prediction Limits

Intrawell prediction limits using all historical data through June 2020 combined with a 1-of-2 resample plan, were constructed for pH and a summary of the limits was provided with the report. As discussed earlier, background data sets for parameters utilizing intrawell prediction limits will be updated after the Fall 2022 sample event when a minimum of 4 compliance samples are available.

Interwell – Trend Test Evaluation

The Sen's Slope/Mann Kendall trend test was used to evaluate data at upgradient wells for boron, calcium, chloride, fluoride, sulfate, and TDS, which are tested using interwell prediction limits, to identify statistically significant increasing or decreasing trends. The results of the trend analyses showed all data are stable over time. The statistically significant trends noted for fluoride in wells AD-4, AD-12, and AD-18 were artificial trends that resulted from estimated values and non-detects, with no detections reported above the practical quantitation limit. No other statistically significant increasing or decreasing trends were noted.

Interwell – Prediction Limits

Interwell prediction limits, combined with a 1-of-2 resample plan, were updated using all available data through November 2021 from upgradient wells for the constituents listed above. Time series plots were included with the interwell prediction limit graphs to display concentrations at upgradient wells that were used to construct the statistical limits. Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent.

February 2023

During this analysis, Tukey's outlier test and visual screening were used to evaluate data through June 2022 at all wells for pH, which is tested using intrawell prediction limits, and through November 2022 at upgradient wells for boron, calcium, chloride, fluoride, sulfate, and TDS, which are tested using interwell prediction limits. (Figure C).

Outlier Analysis

Tukey's outlier test on all wells for pH did not identify any values; therefore, no new values were flagged (Figure C). Tukey's outlier test on pooled upgradient well data identified both high and low values for fluoride as outliers; however, no new values were flagged as the reported measurements were similar to remaining measurements within the record (Figure C). Additionally, no changes to previously flagged outliers were made. As mentioned above, flagged data are displayed in a lighter font and as a disconnected symbol on the time series reports, as well as in a lighter font on the accompanying data pages. A summary of Tukey's test results follows this letter.

<u>Intrawell – Mann-Whitney Test</u>

For pH, which is tested using intrawell prediction limits, the Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through June 2020 to the new compliance samples at each well through June 2022 to evaluate whether the medians are statistically similar at the 99% confidence level, in which case background data may be updated with compliance data (Figure D). No statistically significant differences were identified; therefore, all records were updated with compliance data. A summary of the Mann-Whitney results follows this report.

<u>Intrawell – Prediction Limits</u>

Intrawell prediction limits using all historical data through June 2022 combined with a 1-of-2 resample plan, were constructed for pH and a summary of the limits follows this letter (Figure E). No comparison of compliance measurements was made in this analysis.

<u>Interwell – Trend Test Evaluation</u>

The Sen's Slope/Mann Kendall trend test was used to evaluate data at upgradient wells for boron, calcium, chloride, fluoride, sulfate, and TDS, which are tested using interwell prediction limits, to identify statistically significant increasing or decreasing trends at the 99% confidence level (Figure F). The results of the trend analyses showed all data are

stable over time. The statistically significant decreasing trend noted for fluoride in well AD-12 resulted from elevated reporting limits early in the record with no detections reported above the practical quantitation limit. No other statistically significant increasing or decreasing trends were noted.

Interwell – Prediction Limits

Interwell prediction limits, combined with a 1-of-2 resample plan, were updated using all available data through November 2022 from upgradient wells for the constituents listed above (Figure G). Time series plots were included with the interwell prediction limit graphs to display concentrations at upgradient wells that were used to construct the statistical limits. Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent. A summary table of the updated limits may be found following this letter in the Prediction Limit Summary Table. No comparison of compliance data was made in this analysis.

Evaluation of Appendix IV Parameters – November 2022

Prior to evaluating Appendix IV parameters, background data are screened through visual screening and Tukey's outlier test on pooled upgradient wells for potential outliers and extreme trending patterns that would lead to artificially elevated statistical limits.

For the current analysis, Tukey's outlier test on pooled upgradient well data through November 2022 identified outliers for fluoride, as discussed earlier. No new values were flagged as outliers as they were similar to concentrations at neighboring upgradient wells or were below the MCL.

Additionally, downgradient well data through November 2022 were screened through visual screening using time series graphs. Since the downgradient well data are used to construct confidence intervals, a regulatory conservative approach is taken in that values that are marginally high relative to the rest of the data are retained unless there is particular justification for excluding them. No changes were to previously flagged data were made.

Interwell Upper Tolerance Limits

Interwell upper tolerance limits were used to calculate background limits from all available pooled upgradient well data through November 2022 for Appendix IV parameters to determine the background limit for each constituent (Figure H). For parametric limits a target of 95% confidence and 95% coverage is used. The confidence and coverage levels

for nonparametric tolerance limits are dependent upon the number of background samples.

Groundwater Protection Standards

Background limits were compared to the Maximum Contaminant Levels (MCLs) in the Groundwater Protection Standard (GWPS) table following this letter to determine the highest limit for use as the GWPS in the Confidence Interval comparisons (Figure I).

Confidence Intervals

Confidence intervals were then constructed on downgradient wells with data through November 2022 for each of the Appendix IV parameters using the highest limit of either the MCL or background as discussed above (Figure J). Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard. Complete results of the confidence interval results follow this letter. The following confidence interval exceedances were noted:

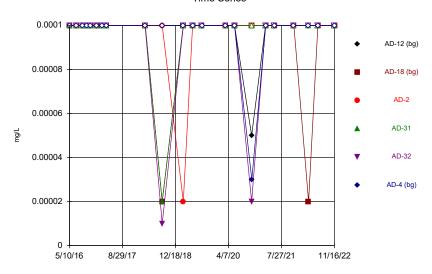
Cobalt: AD-2, AD-31, and AD-32

Lithium: AD-31 and AD-32

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Pirkey EBAP. If you have any questions or comments, please feel free to contact me.

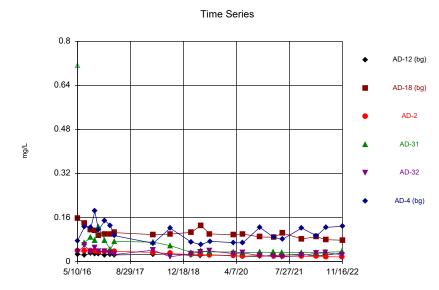
For Groundwater Stats Consulting,

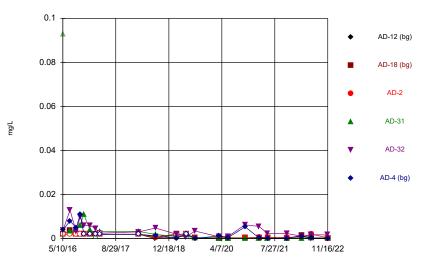
Easton Rayner


Groundwater Analyst

Andrew Collins
Project Manager

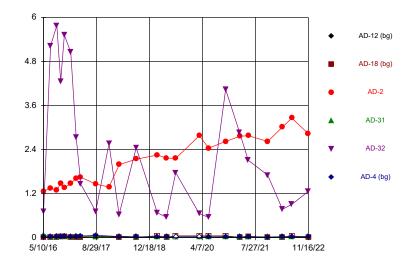
Pollina


FIGURE A Time Series


Constituent: Antimony, total Analysis Run 2/20/2023 2:21 PM View: Descriptive
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

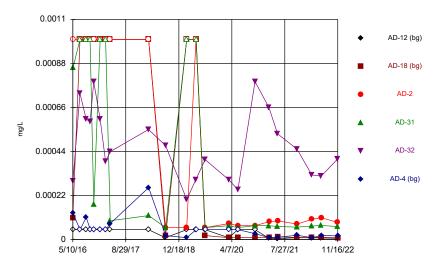
Sanitas™ v.9.6.36 . UG

Constituent: Barium, total Analysis Run 2/20/2023 2:21 PM View: Descriptive Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Constituent: Arsenic, total Analysis Run 2/20/2023 2:21 PM View: Descriptive Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

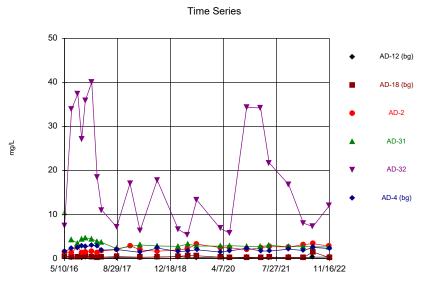
Sanitas™ v.9.6.36 . UG Hollow symbols indicate censored values.

Time Series 0.011 AD-12 (bg) 0.0088 AD-18 (bg) AD-2 0.0066 AD-31 mg/L 0.0044 AD-32 AD-4 (bg) 0.0022 4/7/20 5/10/16 8/29/17 12/18/18 7/27/21 11/16/22

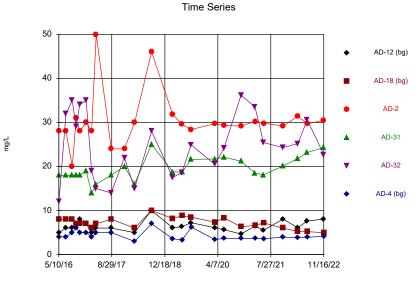

Constituent: Beryllium, total Analysis Run 2/20/2023 2:21 PM View: Descriptive
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Time Series

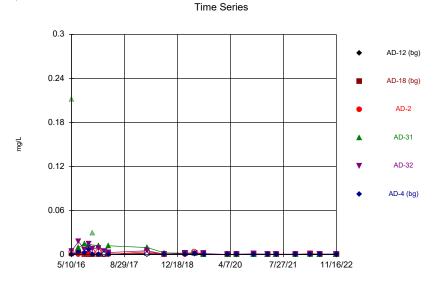
Constituent: Boron, total Analysis Run 2/20/2023 2:21 PM View: Descriptive
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Time Series

Constituent: Cadmium, total Analysis Run 2/20/2023 2:21 PM View: Descriptive
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.36 . UG

mg/L


Constituent: Calcium, total Analysis Run 2/20/2023 2:21 PM View: Descriptive Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG

Constituent: Chloride, total Analysis Run 2/20/2023 2:21 PM View: Descriptive
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG

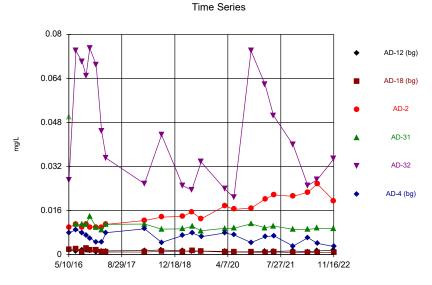
Constituent: Chromium, total Analysis Run 2/20/2023 2:21 PM View: Descriptive
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Time Series 20 AD-12 (bg) AD-18 (bg) AD-2 AD-32

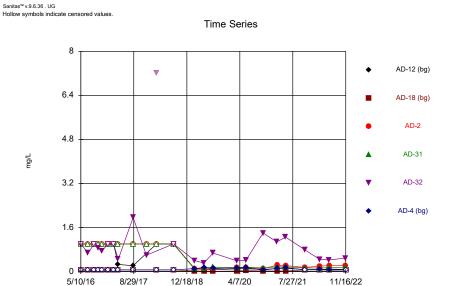
Constituent: Combined Radium 226 + 228 Analysis Run 2/20/2023 2:21 PM View: Descriptive
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

4/7/20

7/27/21

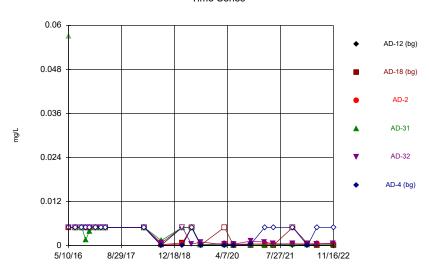

11/16/22

12/18/18

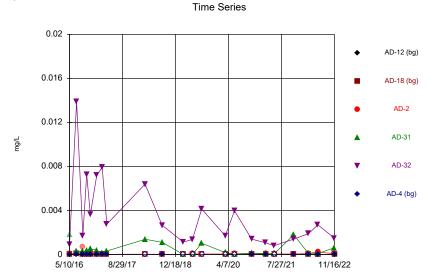

5/10/16

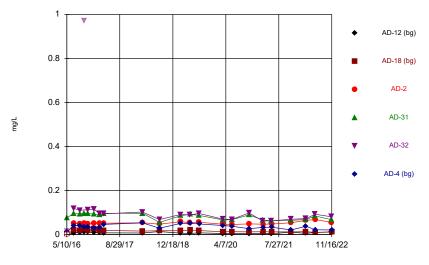
8/29/17

AD-4 (bg)

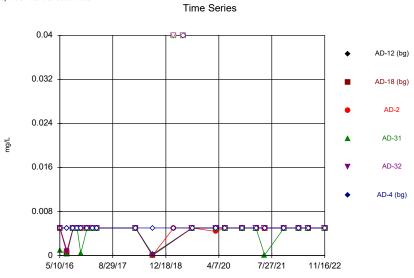


Constituent: Cobalt, total Analysis Run 2/20/2023 2:21 PM View: Descriptive
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

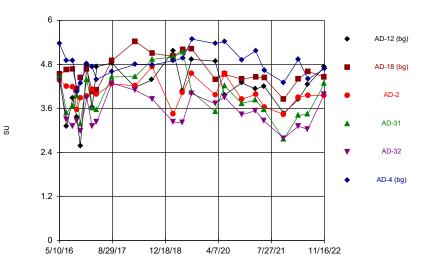

Constituent: Fluoride, total Analysis Run 2/20/2023 2:21 PM View: Descriptive Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Constituent: Lead, total Analysis Run 2/20/2023 2:21 PM View: Descriptive
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

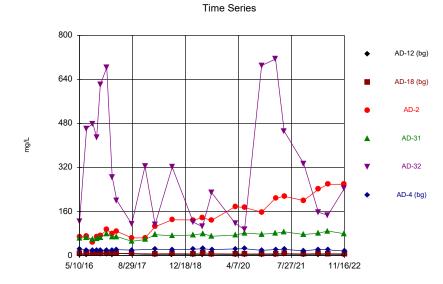
Sanitas™ v.9.6.36 . UG Hollow symbols indicate censored values.

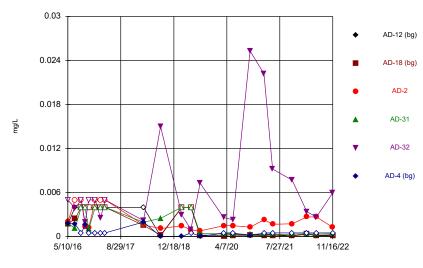

Constituent: Mercury, total Analysis Run 2/20/2023 2:21 PM View: Descriptive Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Time Series

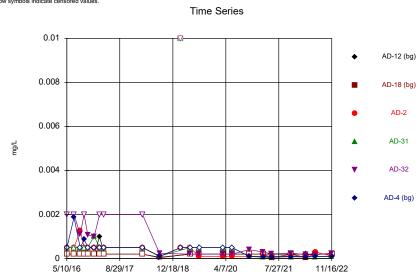

Constituent: Lithium, total Analysis Run 2/20/2023 2:21 PM View: Descriptive Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG Hollow symbols indicate censored values.

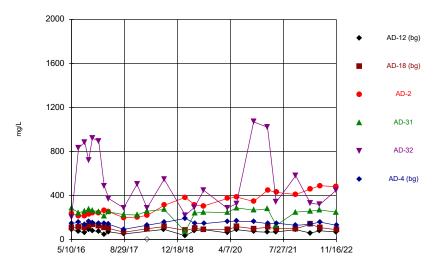

Constituent: Molybdenum, total Analysis Run 2/20/2023 2:21 PM View: Descriptive
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Constituent: pH, field Analysis Run 2/20/2023 2:21 PM View: Descriptive Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

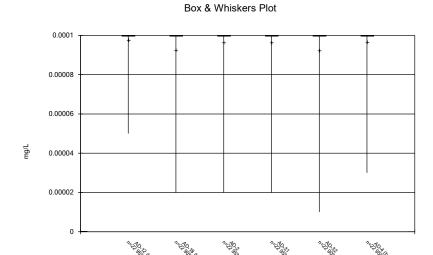
Sanitas™ v.9.6.36 . UG


Constituent: Sulfate, total Analysis Run 2/20/2023 2:21 PM View: Descriptive Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

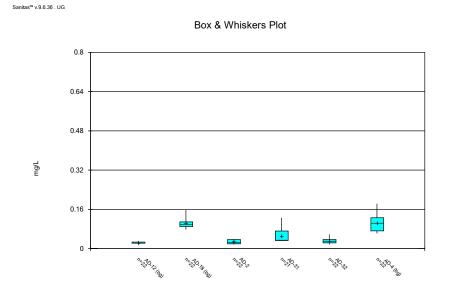
Time Series


Constituent: Selenium, total Analysis Run 2/20/2023 2:21 PM View: Descriptive
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG Hollow symbols indicate censored values.

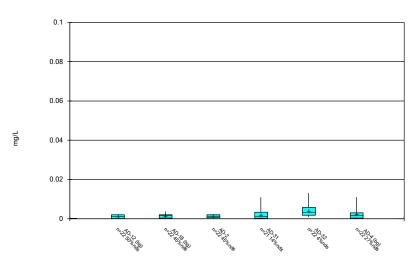

Constituent: Thallium, total Analysis Run 2/20/2023 2:21 PM View: Descriptive
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Time Series



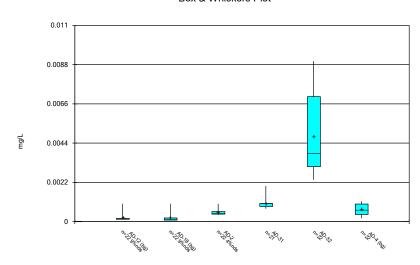
Constituent: Total Dissolved Solids Analysis Run 2/20/2023 2:21 PM View: Descriptive Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

FIGURE B Box Plots

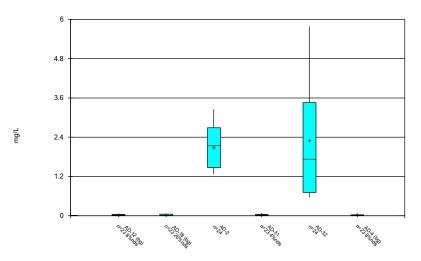


Constituent: Antimony, total Analysis Run 2/20/2023 2:22 PM View: Descriptive
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

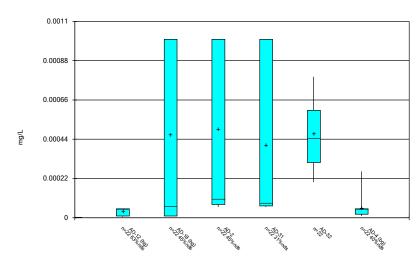
Constituent: Barium, total Analysis Run 2/20/2023 2:22 PM View: Descriptive Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Box & Whiskers Plot

Constituent: Arsenic, total Analysis Run 2/20/2023 2:22 PM View: Descriptive Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

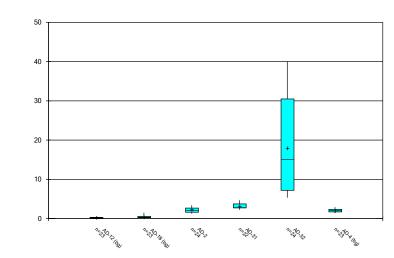

Sanitas™ v.9.6.36 . UG

Box & Whiskers Plot


Constituent: Beryllium, total Analysis Run 2/20/2023 2:22 PM View: Descriptive
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

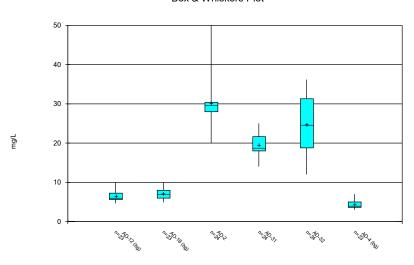
Box & Whiskers Plot

Constituent: Boron, total Analysis Run 2/20/2023 2:22 PM View: Descriptive Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

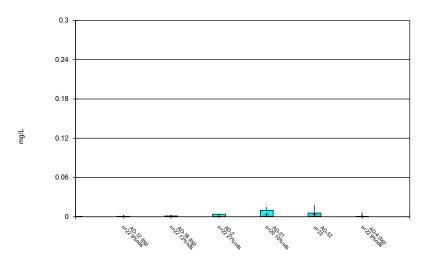

Box & Whiskers Plot

Constituent: Cadmium, total Analysis Run 2/20/2023 2:22 PM View: Descriptive
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG

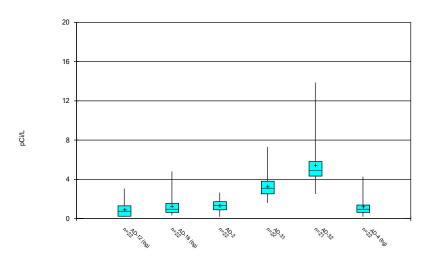

Box & Whiskers Plot

Constituent: Calcium, total Analysis Run 2/20/2023 2:22 PM View: Descriptive Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

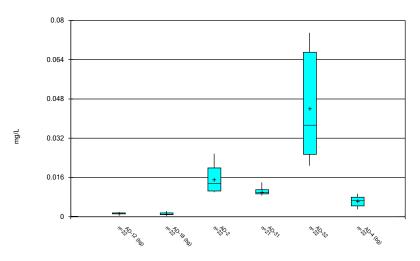

Sanitas™ v.9.6.36 . UG

Box & Whiskers Plot

Constituent: Chloride, total Analysis Run 2/20/2023 2:22 PM View: Descriptive Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Box & Whiskers Plot

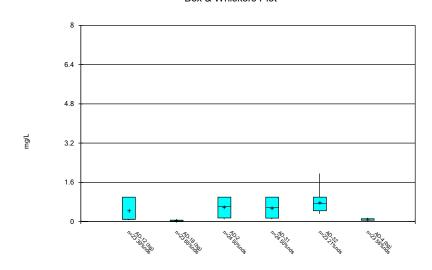
Constituent: Chromium, total Analysis Run 2/20/2023 2:22 PM View: Descriptive
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.36 . UG

Box & Whiskers Plot

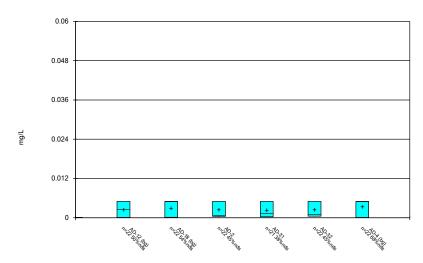
Constituent: Combined Radium 226 + 228 Analysis Run 2/20/2023 2:22 PM View: Descriptive Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Box & Whiskers Plot



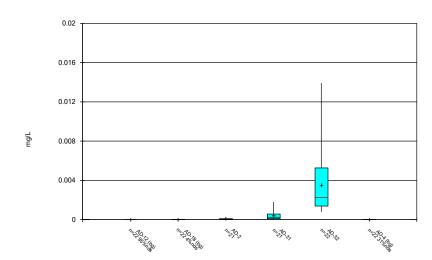
Constituent: Cobalt, total Analysis Run 2/20/2023 2:22 PM View: Descriptive
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG

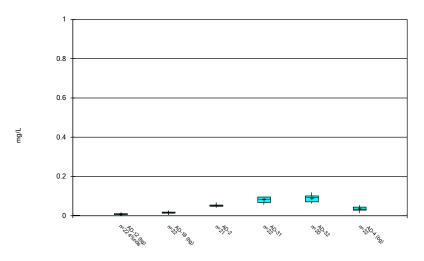

Sanitas™ v.9.6.36 . UG

Box & Whiskers Plot

Constituent: Fluoride, total Analysis Run 2/20/2023 2:22 PM View: Descriptive Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

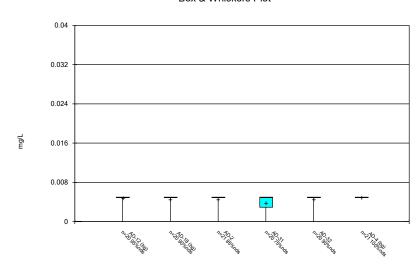


Constituent: Lead, total Analysis Run 2/20/2023 2:22 PM View: Descriptive
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

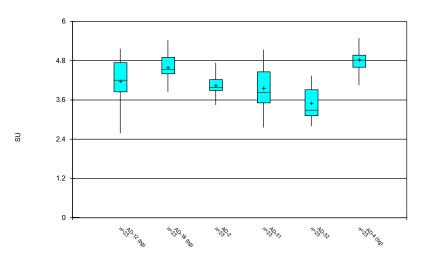

Sanitas™ v.9.6.36 . UG

Box & Whiskers Plot

Constituent: Mercury, total Analysis Run 2/20/2023 2:22 PM View: Descriptive Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

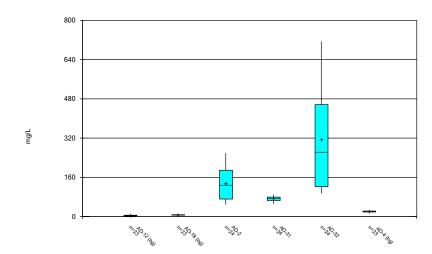

Box & Whiskers Plot

Constituent: Lithium, total Analysis Run 2/20/2023 2:22 PM View: Descriptive Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

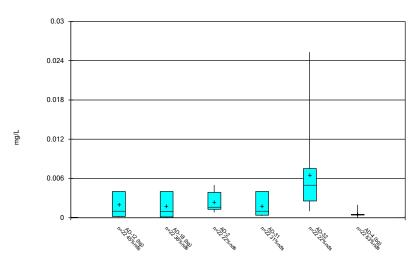

Sanitas™ v.9.6.36 . UG

Box & Whiskers Plot

Constituent: Molybdenum, total Analysis Run 2/20/2023 2:22 PM View: Descriptive Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP



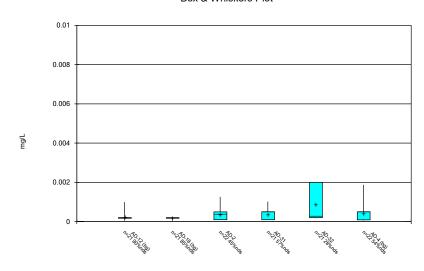
Constituent: pH, field Analysis Run 2/20/2023 2:22 PM View: Descriptive Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.36 . UG

Box & Whiskers Plot

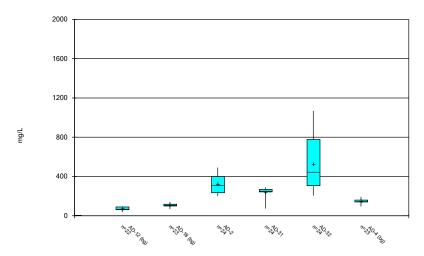
Constituent: Sulfate, total Analysis Run 2/20/2023 2:22 PM View: Descriptive Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Box & Whiskers Plot



Constituent: Selenium, total Analysis Run 2/20/2023 2:22 PM View: Descriptive
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG


Sanitas™ v.9.6.36 . UG

Box & Whiskers Plot

Constituent: Thallium, total Analysis Run 2/20/2023 2:22 PM View: Descriptive
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Box & Whiskers Plot

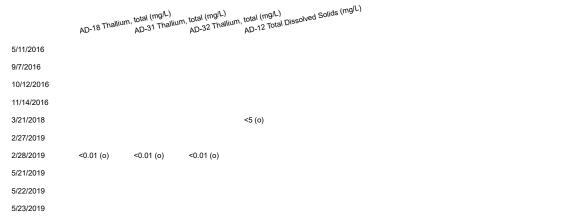
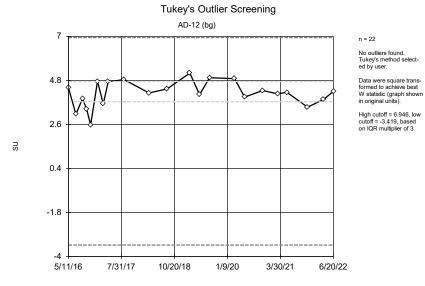

Constituent: Total Dissolved Solids Analysis Run 2/20/2023 2:22 PM View: Descriptive Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

FIGURE C Outlier Summary and Tukey's Outlier Test

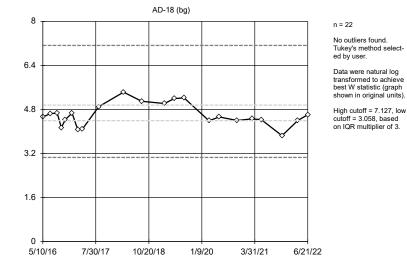
Outlier Summary


Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Printed 2/20/2023, 2:28 PM

	AD-31 Arseni	_{c, total} (mg/L) AD-31 Barium	, total (mg/L) AD-31 Berylliur	_{n, total} (mg/L) AD-31 Calcium	AD-31 Chromi	_{ium, total} (mg/L) AD-31 Cobalt,	total (mg/L) AD-32 Combin	ned Radium 226 + AD-32 Fluoride	total (mg/L) AD-31 Lead, to	otal (mg/L) AD-2 Lithium, total (mg/L
1/2016	0.093 (o)	0.712 (o)	0.01 (o)	10.4 (o)	0.212 (o)	0.05 (o)			0.057 (o)	<0.001 (o)
2016										
2/2016							17.32 (o)			
1/2016					0.03 (o)					
18								7.2 (o)		
19										
19										
019										
19										
)19										
	AD-32 Lithiur	n, total (mg/L) AD-2 Mercury.	total (mg/L) AD-31 Mercury	total (mg/L) AD-12 Molybde	_{enum, total} (mg/l AD-18 Molybd	L) Jenum, total (mg/L AD-2 Molybdet	.) num, total (mg/L AD-31 Molybo	enum, total (mg/L AD-32 Molybde) _{2num, total (mg/L AD-4 Molybde}	.) _{num, total} (mg/L) _{AD-12 Thallium, total (mg}
	AD-32 Lithiur 0.016 (o)	n, total (mg/L) AD-2 Mercury:	total (mg/L) AD-31 Mercury 0.001797 (o)	, _{total} (mg/L) AD-12 Molybde	_{enum,} total (mg/l AD-18 Molybd	L) lenum, total (mg/L AD-2 Molybdel	.) _{num, total} (mg/L ⁻ AD-31 Molybo	enum, total (mg/L AD-32 Molybde) _{enum, total (mg/L AD-4 Molybde}	.) _{num, total} (mg/L) _{AD-12} Thallium, total (mg
16		n, total (mg/L) AD-2 Mercury: 0.000675 (o)		, total (mg/L) AD-12 Molybde	_{enum, t} otal (mg/l AD-18 Moly ^{bd}	L) lenum, total (mg/L AD-2 Molybdet	.) _{num, total} (mg/L AD-31 Molybo	enum, total (mg/L AD-32 Molybde) _{эnum, total} (mg/l AD-4 Molybde	.) _{num,} total (mg/L) AD-12 Thallium, total (mg
16 6				, total (mg/L) AD-12 Molybde	_{enum, total} (mg/l AD-18 Molybd	L) lenum, total (mg/L AD-2 Molybdel	.) num, total (mg/L AD-31 Molybd	enum, total (mg/L AD-32 Molybde) _{gnum,} total (mg/L AD-4 Molybde	.) num, total (mg/L) num, total (mç AD-12 Thallium, total (mç
016 16 2016	0.016 (o)			, _{total} (mg/L) AD-12 Molyb ^{de}	_{enum,} total (mg/l AD-18 Molybd	L) Jenum, total (mg/L AD-2 Molybdet	.) _{num,} total (mg/L AD-31 Molybo	enum, total (mg/L AD-32 Molybdo) _{snum, total} (mg/l AD-4 Molybde	.) _{num, total} (mg/L) AD-12 Thallium, total (mg
016 16 2016 2016	0.016 (o)			, total (mg/L) AD-12 Molybde	_{enum, t} otal (mg/l AD-18 Molyb ^d	L) Jenum, total (mg/L AD-2 Molybdet	.) _{num, total (mg/L} AD-31 Molybd	enum, total (mg/L AD-32 Molybde) _{snum, total} (mg/l AD-4 Molybde	.) _{num,} total (mg/L) AD-12 Thallium, total (mg
2016 016 /2016 /2016 /2018 2019	0.016 (o)			total (mg/L) AD-12 Molybde AD-12 (mg/L) AD-12 Molybde	_{enum, t} otal (mg/l AD-18 Molyb ^d	L) Jenum, total (mg/L AD-2 Molybdel	.) num, total (mg/L AD-31 Molybo	enum, total (mg/L AD-32 Molybde) _{gnum,} total (mg/L AD-4 Molybde	.) num, total (mg/L) num, total (mg AD-12 Thallium, total (mg AD-12 Thallium, total (mg
016 16 2016 2016 018	0.016 (o)				_{enum} , total (mg/l AD-18 Molybd AD-18 onlybd	L-) Jenum, total (mg/L AD-2 Molybdet	.) _{num,} total (mg/L AD-31 Molybo AD-31 Molybo	enum, total (mg/L AD-32 Molybdo AD-36 Molybdo AD-32 Molybdo) _{snum, t} otal (mg ^{/L} AD-4 Molybde	
16 6 016 016 118 19	0.016 (o)					L) Jenum, total (mg/L AD-2 Molybdet) _{shum, total} (mg/l AD-4 Molybde	
16 6 016 016 18	0.016 (o)			<0.04 (o)		L) Jenum, total (mg/L AD-2 Molybdet AD-2 Molybdet		<0.04 (o)) _{gnum,} total (mg/L AD-4 Molybde	

Tukey's Outlier Test - All Results (No Significant)

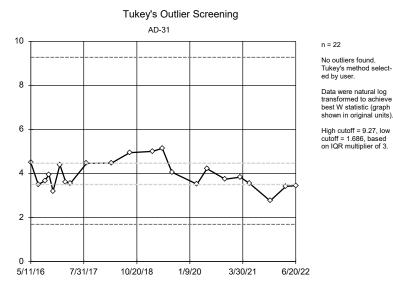
		Pirkey EBAP Client: G							
Constituent	Well	Outlier Value(s)	Date(s)	Method	<u>Alpha</u>	N Mean	Std. Dev.	Distrib	Normality Test
pH, field (SU)	AD-12 (bg)	No n/a	n/a	NP	NaN	22 4.145	0.6423	x^2	ShapiroWilk
pH, field (SU)	AD-18 (bg)	No n/a	n/a	NP	NaN	22 4.6	0.4076	In(x)	ShapiroWilk
pH, field (SU)	AD-2	No n/a	n/a	NP	NaN	22 4.036	0.3423	normal	ShapiroWilk
pH, field (SU)	AD-31	No n/a	n/a	NP	NaN	22 3.95	0.6207	ln(x)	ShapiroWilk
pH, field (SU)	AD-32	No n/a	n/a	NP	NaN	22 3.488	0.4512	ln(x)	ShapiroWilk
pH. field (SU)	AD-4 (ba)	No n/a	n/a	NP	NaN	22 4 826	0.3907	normal	ShapiroWilk


Constituent: pH, field Analysis Run 2/20/2023 9:14 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

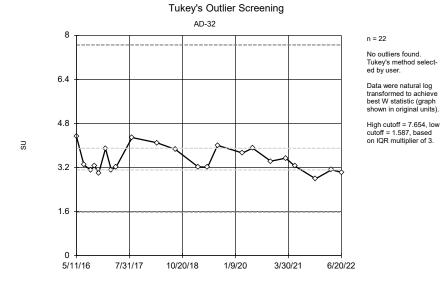
Sanitas™ v.9.6.36 . UG

Constituent: pH, field Analysis Run 2/20/2023 9:14 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Tukey's Outlier Screening

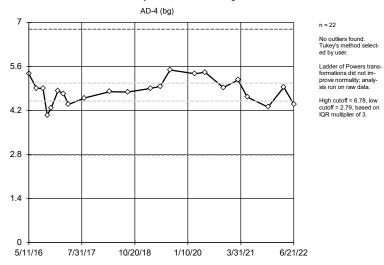


Constituent: pH, field Analysis Run 2/20/2023 9:14 AM View: Outlier Testing Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.36 . UG

SU

SU



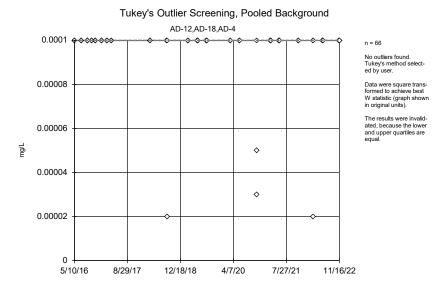
Constituent: pH, field Analysis Run 2/20/2023 9:14 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Constituent: pH, field Analysis Run 2/20/2023 9:14 AM View: Outlier Testing Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

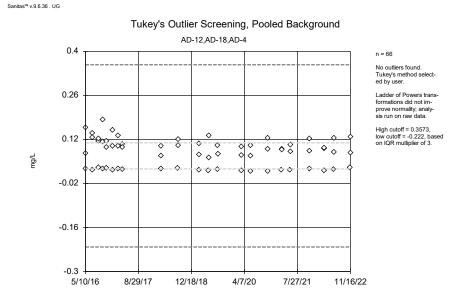
Tukey's Outlier Screening

SU

Constituent: pH, field Analysis Run 2/20/2023 9:14 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

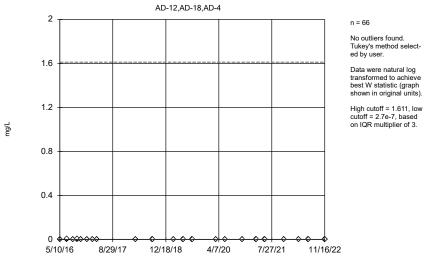

Tukey's Outlier Analysis - Upgradient Wells - Significant Results

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Printed 2/20/2023, 9:21 AM


Interwell and AIV Constituent Outlier Analysis - All Results

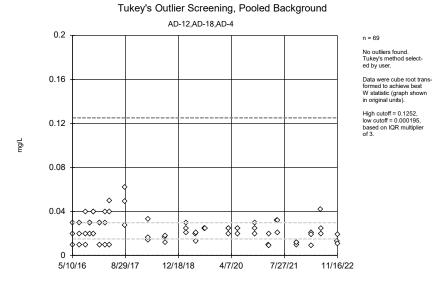
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Printed 2/20/2023, 9:21 AM

Constituent	Well Ou	tlier Value(s)	Date(s)	Method	<u>Alpha N</u>	Mean	Std. Dev.	Distrib	Normality Test
Antimony, total (mg/L)	AD-12,AD-18,AD-4 n/a	n/a	n/a w/combined bg	NP	NaN 66	0.0000957	60.0000171	l unknown	ShapiroFrancia
Arsenic, total (mg/L)	AD-12,AD-18,AD-4 No	n/a	n/a w/combined bg	NP	NaN 66	0.001555	0.001863	ln(x)	ShapiroFrancia
Barium, total (mg/L)	AD-12,AD-18,AD-4 No	n/a	n/a w/combined bg	NP	NaN 66	0.07702	0.04315	normal	ShapiroFrancia
Beryllium, total (mg/L)	AD-12,AD-18,AD-4 No	n/a	n/a w/combined bg	NP	NaN 66	0.0003754	0.0003455	5 ln(x)	ShapiroFrancia
Boron, total (mg/L)	AD-12,AD-18,AD-4 No	n/a	n/a w/combined bg	NP	NaN 69	0.02358	0.01105	x^(1/3)	ShapiroFrancia
Cadmium, total (mg/L)	AD-12,AD-18,AD-4 No	n/a	n/a w/combined bg	NP	NaN 66	0.0000409	0.0000379	9 3 n(x)	ShapiroFrancia
Calcium, total (mg/L)	AD-12,AD-18,AD-4 No	n/a	n/a w/combined bg	NP	NaN 69	0.9382	0.8872	In(x)	ShapiroFrancia
Chloride, total (mg/L)	AD-12,AD-18,AD-4 No	n/a	n/a w/combined bg	NP	NaN 69	5.988	1.681	sqrt(x)	ShapiroFrancia
Chromium, total (mg/L)	AD-12,AD-18,AD-4 No	n/a	n/a w/combined bg	NP	NaN 66	0.0008007	0.001047	ln(x)	ShapiroFrancia
Cobalt, total (mg/L)	AD-12,AD-18,AD-4 No	n/a	n/a w/combined bg	NP	NaN 66	0.002953	0.002642	ln(x)	ShapiroFrancia
Combined Radium 226 + 228 (pCi/l	L)AD-12,AD-18,AD-4 No	n/a	n/a w/combined bg	NP	NaN 66	1.122	0.9215	ln(x)	ShapiroFrancia
Fluoride, total (mg/L)	AD-12,AD-18,AD-4 Yes	s 0.2565,0.213,0.02,0.02,0.02,0.02,0.02,0.02,0.0	01n/a w/combined b	gNP	NaN 69	0.07246	0.04084	x^(1/3)	ShapiroFrancia
Lead, total (mg/L)	AD-12,AD-18,AD-4 No	n/a	n/a w/combined bg	NP	NaN 66	0.002939	0.002421	ln(x)	ShapiroFrancia
Lithium, total (mg/L)	AD-12,AD-18,AD-4 No	n/a	n/a w/combined bg	NP	NaN 66	0.01992	0.01362	x^(1/3)	ShapiroFrancia
Mercury, total (mg/L)	AD-12,AD-18,AD-4 No	n/a	n/a w/combined bg	NP	NaN 66	0.0000106	60.0000101	16n(x)	ShapiroFrancia
Molybdenum, total (mg/L)	AD-12,AD-18,AD-4 n/a	n/a	n/a w/combined bg	NP	NaN 66	0.004781	0.001013	unknown	ShapiroFrancia
Selenium, total (mg/L)	AD-12,AD-18,AD-4 No	n/a	n/a w/combined bg	NP	NaN 66	0.0005273	0.0005209	n(x)	ShapiroFrancia
Sulfate, total (mg/L)	AD-12,AD-18,AD-4 No	n/a	n/a w/combined bg	NP	NaN 69	10.9	7.382	In(x)	ShapiroFrancia
Thallium, total (mg/L)	AD-12,AD-18,AD-4 n/a	n/a	n/a w/combined bg	NP	NaN 66	0.0002241	0.0002495	unknown	ShapiroFrancia
Total Dissolved Solids (mg/L)	AD-12,AD-18,AD-4 No	n/a	n/a w/combined bg	NP	NaN 69	108.6	37.13	normal	ShapiroFrancia



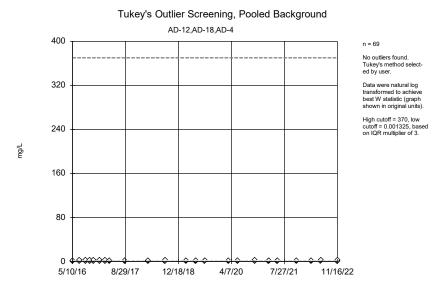
Constituent: Antimony, total Analysis Run 2/20/2023 9:16 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Constituent: Barium, total Analysis Run 2/20/2023 9:16 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP



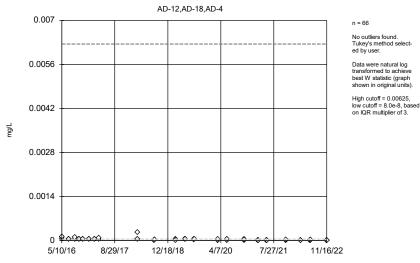
Constituent: Arsenic, total Analysis Run 2/20/2023 9:16 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG



Constituent: Beryllium, total Analysis Run 2/20/2023 9:16 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

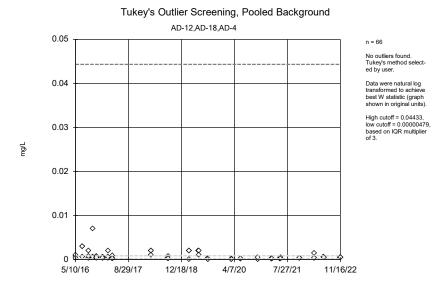
Constituent: Boron, total Analysis Run 2/20/2023 9:16 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.36 . UG

Constituent: Calcium, total Analysis Run 2/20/2023 9:16 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG

Tukey's Outlier Screening, Pooled Background

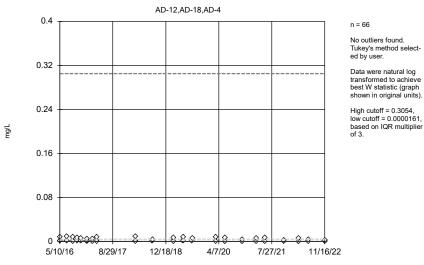

Constituent: Cadmium, total Analysis Run 2/20/2023 9:16 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG

mg/L

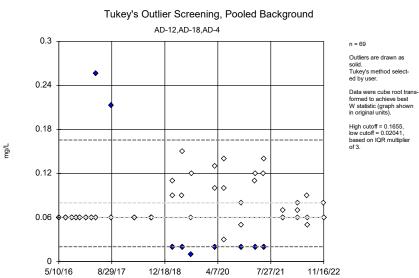
Tukey's Outlier Screening, Pooled Background AD-12,AD-18,AD-4 20 n = 69 No outliers found. Tukey's method selected by user. 16 Data were square root transformed to achieve best W statistic (graph shown in original units). 12 High cutoff = 15.64, low cutoff = 0.8742, based on IQR multiplier of 3. **◊ \$**\$ 0 -000 O \Diamond \Diamond \Diamond \Diamond \Diamond $\diamond \otimes \otimes$ \Diamond \Diamond l٥ \Diamond \Diamond $\Diamond \Diamond \Diamond \Diamond \Diamond \Diamond$ -0 \Diamond \Diamond \Diamond 0 0 5/10/16 8/29/17 12/18/18 4/7/20 7/27/21 11/16/22

Constituent: Chloride, total Analysis Run 2/20/2023 9:16 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

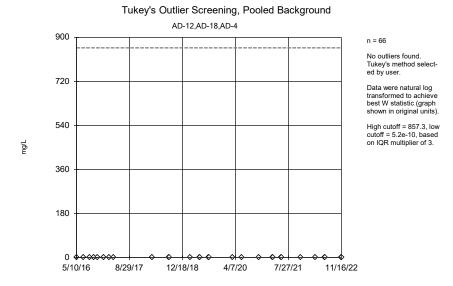

Constituent: Chromium, total Analysis Run 2/20/2023 9:16 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG

Tukey's Outlier Screening, Pooled Background AD-12,AD-18,AD-4 30 n = 66 No outliers found. Tukey's method selected by user. 24 Data were natural log transformed to achieve best W statistic (graph shown in original units). High cutoff = 22.87, low cutoff = 0.03315, based on IQR multiplier of 3. pCi/L 12 6 8 4/7/20 5/10/16 8/29/17 12/18/18 7/27/21 11/16/22


Constituent: Combined Radium 226 + 228 Analysis Run 2/20/2023 9:16 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

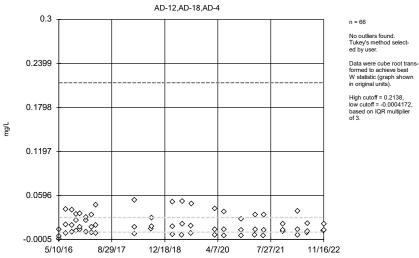
Tukey's Outlier Screening, Pooled Background



Constituent: Cobalt, total Analysis Run 2/20/2023 9:16 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

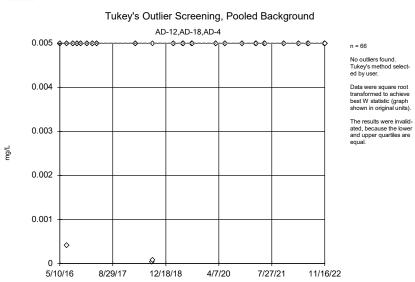
Sanitas™ v.9.6.36 . UG

Constituent: Fluoride, total Analysis Run 2/20/2023 9:16 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

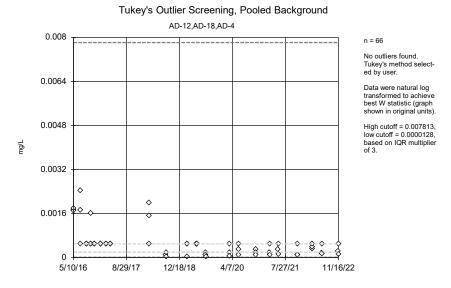


Constituent: Lead, total Analysis Run 2/20/2023 9:16 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG Tukey's Outlier Screening, Pooled Background AD-12,AD-18,AD-4 0.0003 n = 66 No outliers found. Tukey's method selected by user. 0.00024 Data were natural log transformed to achieve best W statistic (graph shown in original units). High cutoff = 0.0002917. low cutoff = 2.4e-7, based on IQR multiplier of 3. 0.00018 0.00012 0.00006 **\$**\$\$ \Diamond 0 8 Δ 5/10/16 8/29/17 12/18/18 4/7/20 7/27/21 11/16/22


Constituent: Mercury, total Analysis Run 2/20/2023 9:17 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

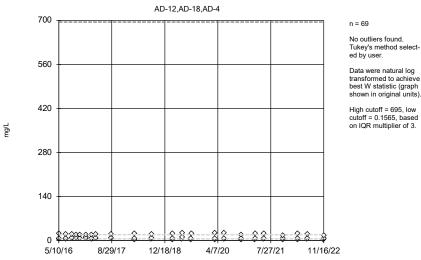
Tukey's Outlier Screening, Pooled Background



Constituent: Lithium, total Analysis Run 2/20/2023 9:17 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG

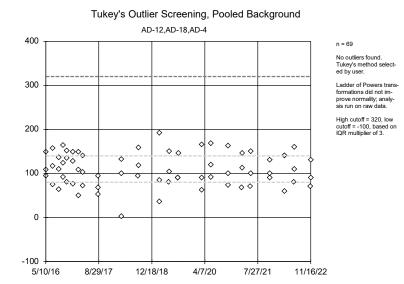
Constituent: Molybdenum, total Analysis Run 2/20/2023 9:17 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP



Constituent: Selenium, total Analysis Run 2/20/2023 9:17 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG Tukey's Outlier Screening, Pooled Background AD-12,AD-18,AD-4 0.002 n = 66 0 No outliers found. Tukey's method selected by user. 0.0016 Data were natural log transformed to achieve best W statistic (graph shown in original units). The results were invalidated, because the lower 0.0012 and upper quartiles are equal. \Diamond \Diamond 0.0008 0.0004 $\diamond \diamond \diamond \diamond \diamond \diamond \diamond \diamond$ \Diamond 4/7/20 5/10/16 8/29/17 12/18/18 7/27/21 11/16/22

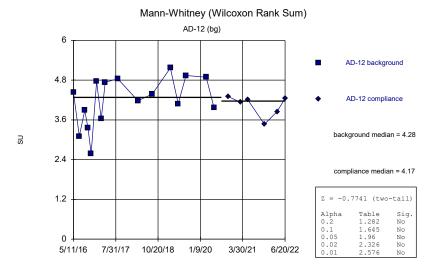
Constituent: Thallium, total Analysis Run 2/20/2023 9:17 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Tukey's Outlier Screening, Pooled Background

Constituent: Sulfate, total Analysis Run 2/20/2023 9:17 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG

ng/L



Constituent: Total Dissolved Solids Analysis Run 2/20/2023 9:17 AM View: Outlier Testing
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

FIGURE D Mann-Whitney

Mann Whitney - All Results (No Significant)

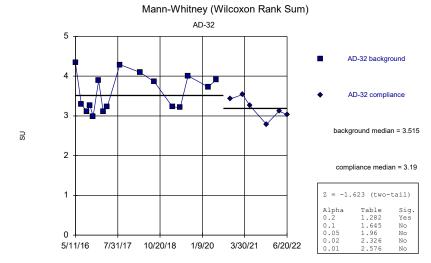
	Pirkey EBAP Client: Geosyntec	Data: Pirkey EBAP Printed 2/14/2	2023, 12:57 PM	
Constituent	Well	<u>Calc.</u>	0.01 Sig	. Method
pH, field (SU)	AD-12 (bg)	-0.7741	No No	Mann-W
pH, field (SU)	AD-18 (bg)	-1.771	No No	Mann-W
pH, field (SU)	AD-2	-2.36	No No	Mann-W
pH, field (SU)	AD-31	-2.286	No No	Mann-W
pH, field (SU)	AD-32	-1.623	No No	Mann-W
pH, field (SU)	AD-4 (bg)	-0.4057	No No	Mann-W

Constituent: pH, field Analysis Run 2/14/2023 12:56 PM View: AllI Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

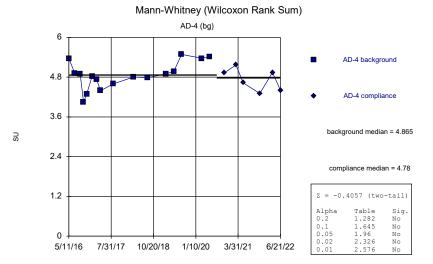
Mann-Whitney (Wilcoxon Rank Sum) AD-18 (bg) AD-18 background AD-18 compliance 3.6 background median = 4.66 S 2.4 compliance median = 4.415 1.2 Z = -1.771 (two-tail)Alpha 0.2 0.1 0.05 Sig. Yes Table 1.282 Yes 0.02 2.326 No 5/10/16 7/30/17 10/20/18 1/9/20 3/31/21 6/21/22 No

Constituent: pH, field Analysis Run 2/14/2023 12:56 PM View: AIII Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG


Mann-Whitney (Wilcoxon Rank Sum) AD-2 AD-2 background AD-2 compliance 3 background median = 4.15 SC 2 compliance median = 3.88 Z = -2.36 (two-tail) Alpha Table Sig. 1.282 0.2 Yes Yes 0.05 1.96 Yes 0.02 7/31/17 10/20/18 1/10/20 3/31/21 6/21/22

Sanitas™ v.9.6.36 . UG


5/11/16

Mann-Whitney (Wilcoxon Rank Sum) AD-31 AD-31 background 4.8 AD-31 compliance 3.6 background median = 4.14 SU 2.4 compliance median = 3.505 Z = -2.286 (two-tail) 1.2 Alpha Table Sig. 1.282 0.2 Yes Yes 0.05 1.96 Yes No 5/11/16 7/31/17 10/20/18 1/9/20 3/30/21 6/20/22 2.576 No

2.576

Constituent: pH, field Analysis Run 2/14/2023 12:56 PM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

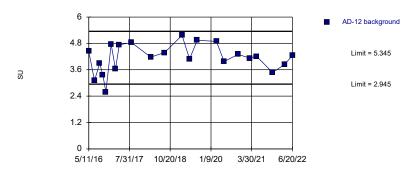
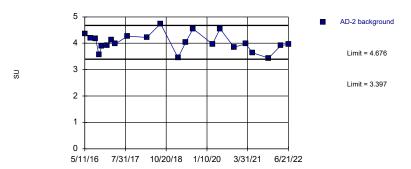

Constituent: pH, field Analysis Run 2/14/2023 12:56 PM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

FIGURE E Intrawell PL

Intrawell Prediction Limits

			Pirk	ey EBAP	Client: Geo	syntec I	Data: Pirke	ey EBAP	Printed 2/20/	2023, 9	:53 AM			
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig. Bg N	N Bg Wells	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	n <u>Alpha</u>	Method
pH, field (SU)	AD-12	5.345	2.945	n/a	1 future	n/a 22	n/a	4.145	0.6423	0	None	No	0.001253	Param Intra 1 of 2
pH, field (SU)	AD-18	5.361	3.838	n/a	1 future	n/a 22	n/a	4.6	0.4076	0	None	No	0.001253	Param Intra 1 of 2
pH, field (SU)	AD-2	4.676	3.397	n/a	1 future	n/a 22	n/a	4.036	0.3423	0	None	No	0.001253	Param Intra 1 of 2
pH, field (SU)	AD-31	5.11	2.791	n/a	1 future	n/a 22	n/a	3.95	0.6207	0	None	No	0.001253	Param Intra 1 of 2
pH, field (SU)	AD-32	4.331	2.645	n/a	1 future	n/a 22	n/a	3.488	0.4512	0	None	No	0.001253	Param Intra 1 of 2
pH, field (SU)	AD-4	5.556	4.096	n/a	1 future	n/a 22	n/a	4.826	0.3907	0	None	No	0.001253	Param Intra 1 of 2

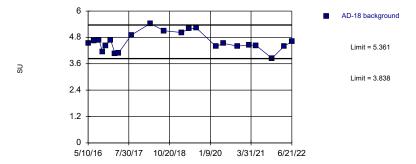
Prediction Limit Intrawell Parametric, AD-12 (bg)



Background Data Summary: Mean=4.145, Std. Dev.=0.6423, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9666, critical = 0.878. Kappa = 1.869 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: pH, field Analysis Run 2/20/2023 9:52 AM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

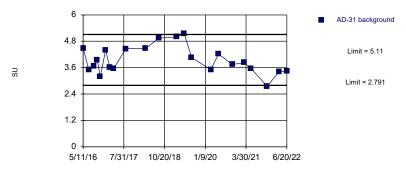
Sanitas™ v.9.6.36 . UG


Prediction Limit Intrawell Parametric, AD-2

Background Data Summary: Mean=4.036, Std. Dev.=0.3423, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9682, critical = 0.878. Kappa = 1.869 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

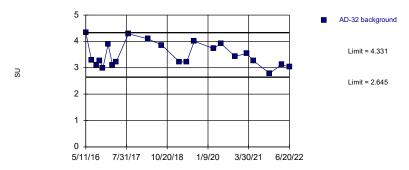
Prediction Limit

Intrawell Parametric, AD-18 (bg)



Background Data Summary: Mean=4.6, Std. Dev.=0.4076, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9632, critical = 0.878. Kappa = 1.869 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: pH, field Analysis Run 2/20/2023 9:52 AM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.36 . UG

Prediction Limit Intrawell Parametric, AD-31

Background Data Summary: Mean=3.95, Std. Dev.=0.6207, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9557, critical = 0.878. Kappa = 1.869 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Parametric, AD-32

Background Data Summary: Mean=3.488, Std. Dev.=0.4512, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.921, critical = 0.878. Kappa = 1.869 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: pH, field Analysis Run 2/20/2023 9:52 AM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG

Prediction Limit Intrawell Parametric, AD-4 (bg)

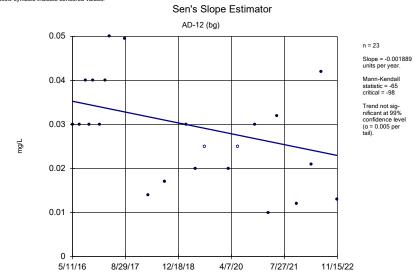
Background Data Summary: Mean=4.826, Std. Dev.=0.3907, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9625, critical = 0.878. Kappa = 1.869 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: pH, field Analysis Run 2/20/2023 9:52 AM View: AllI Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

FIGURE F Intrawell Trend Test

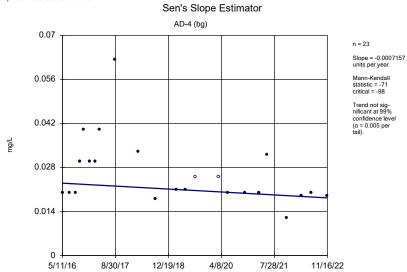
Trend Tests - Upgradient Wells - Significant Results

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Printed 2/20/2023, 2:25 PM

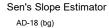

 Constituent
 Well
 Slope
 Calc.
 Critical
 Sig.
 N.
 %NDs
 Normality
 Xform
 Alpha
 Method

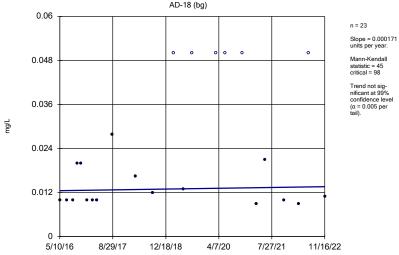
 Fluoride, total (mg/L)
 AD-12 (bg)
 -0.08408
 -145
 -98
 Yes
 23
 39.13
 n/a
 n/a
 0.01
 NP

Trend Tests - Upgradient Wells - All Results


Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Printed 2/20/2023, 2:25 PM Constituent <u>Well</u> Slope Calc. Critical Sig. <u>%NDs</u> <u>Normality</u> <u>Xform</u> <u>Alpha</u> Method AD-12 (bg) -0.001889 23 8.696 n/a NP Boron, total (mg/L) -65 -98 No 0.01 n/a Boron, total (mg/L) AD-18 (bg) 0.000171 45 98 No 23 26.09 n/a 0.01 NP Boron, total (mg/L) AD-4 (bg) -0.0007157 -71 -98 No 23 8.696 n/a n/a 0.01 NP -0.01054 -98 Calcium, total (mg/L) -50 23 0.01 NP AD-12 (bg) No 0 n/a n/a Calcium, total (mg/L) AD-18 (bg) -0.02978 -78 23 n/a 0.01 NP Calcium, total (mg/L) AD-4 (bg) -0.04432 -32 -98 No 23 0 n/a n/a 0.01 NP 0.09882 NP Chloride, total (mg/L) AD-12 (bg) 51 98 No 23 0 n/a n/a 0.01 Chloride, total (mg/L) AD-18 (bg) -0.3088 -82 No 0.01 n/a n/a Chloride, total (mg/L) AD-4 (bg) -0.07949 -46 -98 No 23 0 n/a n/a 0.01 NP -0.08408 Fluoride, total (mg/L) AD-12 (bg) -145 -98 Yes 23 39.13 n/a 0.01 NP n/a Fluoride, total (mg/L) 0 -98 No 23 65.22 NP AD-18 (bg) -53 n/a n/a 0.01 Fluoride, total (mg/L) AD-4 (bg) 0 42 98 No 23 56.52 n/a n/a 0.01 NP -0.2003 NP Sulfate, total (mg/L) -94 -98 23 0 AD-12 (bg) No n/a n/a 0.01 Sulfate, total (mg/L) AD-18 (bg) -0.1309 -61 No 0.01 n/a n/a Sulfate, total (mg/L) AD-4 (bg) 0.09682 12 98 No 23 0 n/a n/a 0.01 NP -0.7249 -92 NP AD-12 (bg) -27 22 0 n/a 0.01 Total Dissolved Solids (mg/L) No n/a Total Dissolved Solids (mg/L) AD-18 (bg) -1.992 -44 -98 No 23 0 n/a n/a 0.01 NP Total Dissolved Solids (mg/L) AD-4 (bg) -0.4922 -16 -98 No 23 0 n/a 0.01 NP

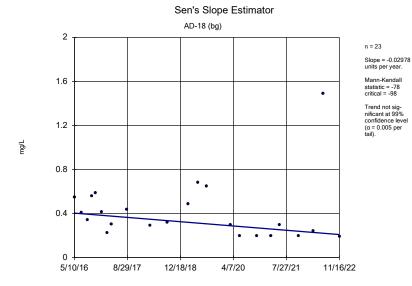
Sanitas™ v.9.6.36 . UG Hollow symbols indicate censored values


Constituent: Boron, total Analysis Run 2/20/2023 2:23 PM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP



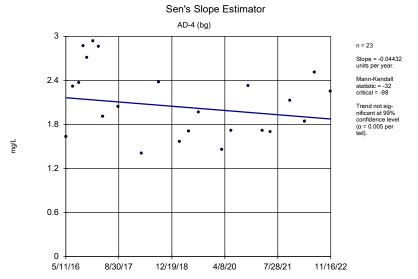
Constituent: Boron, total Analysis Run 2/20/2023 2:23 PM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

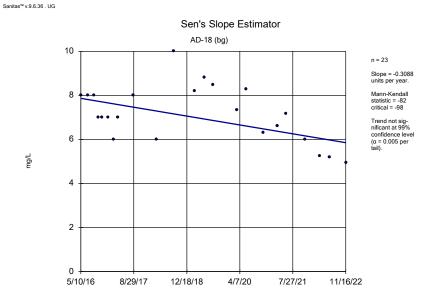
Sanitas™ v.9.6.36 . UG Hollow symbols indicate censored values.



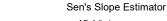
Constituent: Boron, total Analysis Run 2/20/2023 2:23 PM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

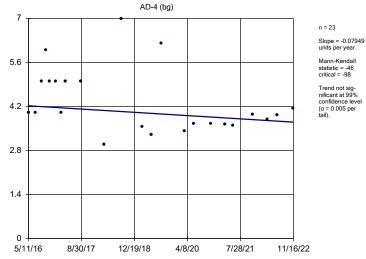
Sanitas™ v.9.6.36 . UG


Constituent: Calcium, total Analysis Run 2/20/2023 2:23 PM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

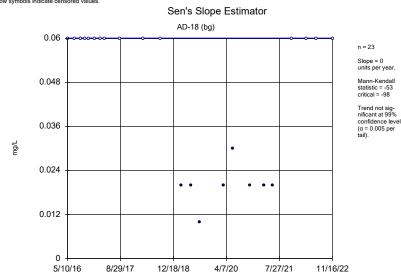

Constituent: Calcium, total Analysis Run 2/20/2023 2:23 PM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

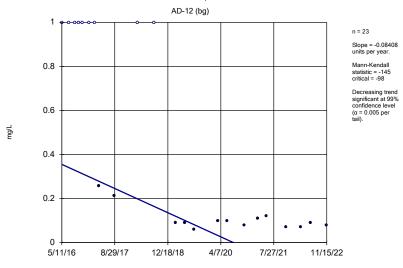
Constituent: Chloride, total Analysis Run 2/20/2023 2:23 PM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP



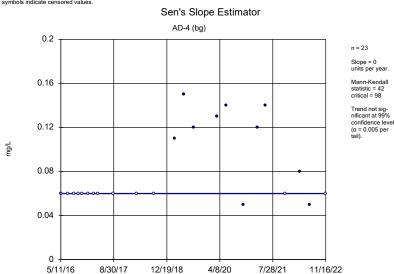

Constituent: Calcium, total Analysis Run 2/20/2023 2:23 PM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Constituent: Chloride, total Analysis Run 2/20/2023 2:23 PM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

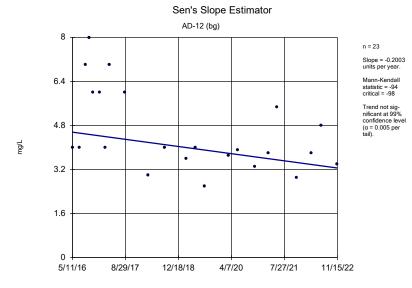

mg/L


Constituent: Chloride, total Analysis Run 2/20/2023 2:23 PM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG Hollow symbols indicate censored values.


Constituent: Fluoride, total Analysis Run 2/20/2023 2:23 PM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

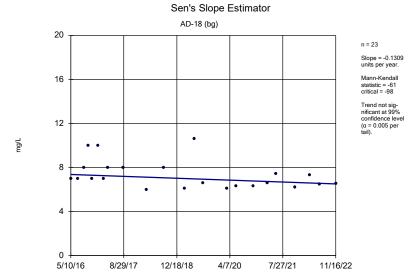
Sen's Slope Estimator



Constituent: Fluoride, total Analysis Run 2/20/2023 2:23 PM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG Hollow symbols indicate censored values.

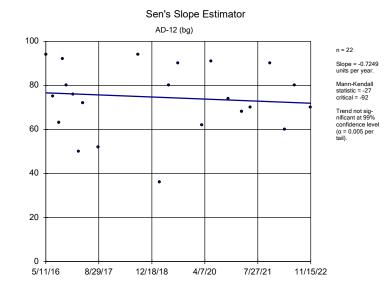
Constituent: Fluoride, total Analysis Run 2/20/2023 2:23 PM View: Alll Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

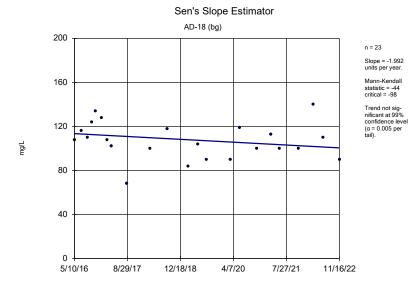


Constituent: Sulfate, total Analysis Run 2/20/2023 2:23 PM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

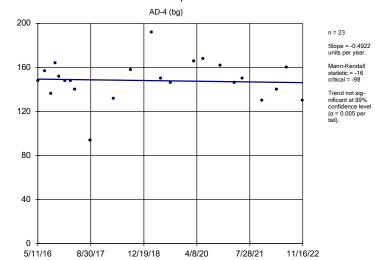
Sen's Slope Estimator AD-4 (bg) 30 n = 23 Slope = 0.09682 units per year. Mann-Kendall 24 statistic = 12 critical = 98 Trend not sig-nificant at 99% •• confidence level (α = 0.005 per tail). mg/L 12 6 5/11/16 8/30/17 12/19/18 4/8/20 7/28/21 11/16/22

Sanitas™ v.9.6.36 . UG


Constituent: Sulfate, total Analysis Run 2/20/2023 2:24 PM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Constituent: Sulfate, total Analysis Run 2/20/2023 2:24 PM View: AllI Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

mg/L



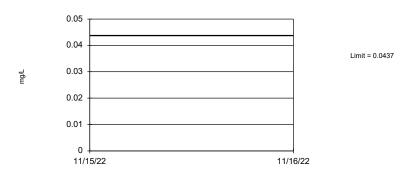
Constituent: Total Dissolved Solids Analysis Run 2/20/2023 2:24 PM View: Alll Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Constituent: Total Dissolved Solids Analysis Run 2/20/2023 2:24 PM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sen's Slope Estimator

mg/L

Constituent: Total Dissolved Solids Analysis Run 2/20/2023 2:24 PM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

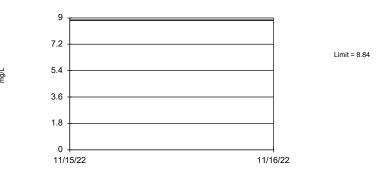

FIGURE G Interwell PL

Interwell Prediction Limits

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Printed 2/20/2023, 9:34 AM

Constituent	Well	Upper Lim.	<u>Date</u>	Observ.	Sig. Bg	N Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Boron, total (mg/L)	n/a	0.0437	n/a	3 future	n/a 69	0.1496	0.03504	14.49	None	sqrt(x)	0.002505	Param Inter 1 of 2
Calcium, total (mg/L)	n/a	2.94	n/a	3 future	n/a 69	n/a	n/a	0	n/a	n/a	0.000403	NP Inter (normality) 1 of 2
Chloride, total (mg/L)	n/a	8.84	n/a	3 future	n/a 69	5.988	1.681	0	None	No	0.002505	Param Inter 1 of 2
Fluoride, total (mg/L)	n/a	0.2565	n/a	3 future	n/a 69	n/a	n/a	53.62	n/a	n/a	0.000403	NP Inter (NDs) 1 of 2
Sulfate, total (mg/L)	n/a	24.7	n/a	3 future	n/a 69	n/a	n/a	0	n/a	n/a	0.000403	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	n/a	169.7	n/a	3 future	n/a 68	110.2	35.05	0	None	No	0.002505	Param Inter 1 of 2

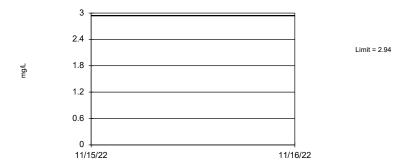
Prediction Limit Interwell Parametric



Background Data Summary (based on square root transformation): Mean=0.1496, Std. Dev.=0.03504, n=69, 14.49% NDs. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9598, critical = 0.951. Kappa = 1.697 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Assumes 3 future values.

Constituent: Boron, total Analysis Run 2/20/2023 2:26 PM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

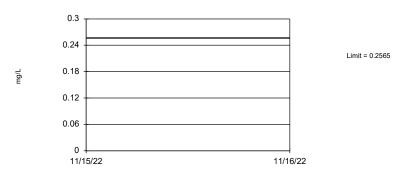
Sanitas™ v.9.6.36 . UG


Prediction Limit Interwell Parametric

Background Data Summary: Mean=5.988, Std. Dev.=1.681, n=69. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9754, critical = 0.951. Kappa = 1.697 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Assumes 3 future values.

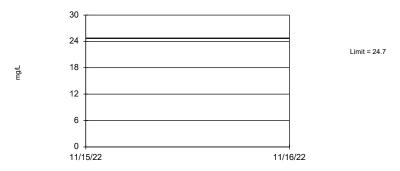
Prediction Limit

Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 69 background values. Annual per-constituent alpha = 0.002415. Individual comparison alpha =

Constituent: Calcium, total Analysis Run 2/20/2023 2:26 PM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

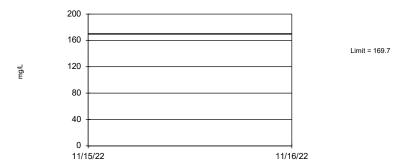
Sanitas™ v.9.6.36 . UG


Prediction Limit

Interwell Non-parametric

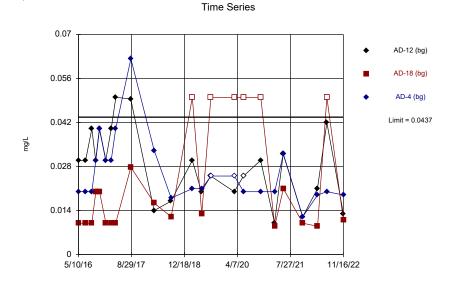
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 69 background values. 53.62% NDs. Annual per-constituent alpha = 0.002415. Individual comparison alpha = 0.000403 (1 of 2). Assumes 3 future values.

Prediction Limit Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 69 background values. Annual per-constituent alpha = 0.002415. Individual comparison alpha = 0.000403 (1 of 2). Assumes 3 future values.

Constituent: Sulfate, total Analysis Run 2/20/2023 2:26 PM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

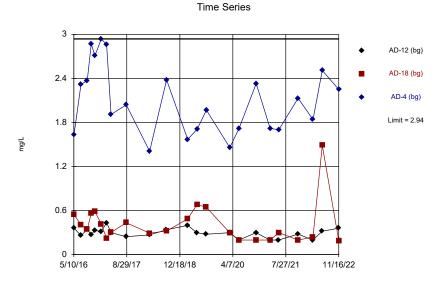
Sanitas™ v.9.6.36 . UG

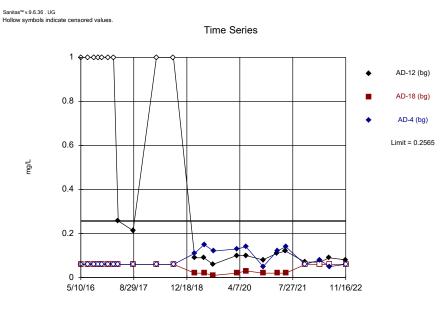

Prediction Limit

Interwell Parametric

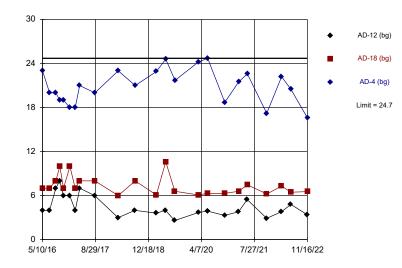


Background Data Summary: Mean=110.2, Std. Dev.=35.05, n=68. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9816, critical = 0.95. Kappa = 1.698 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Assumes 3 future values.


Constituent: Total Dissolved Solids Analysis Run 2/20/2023 2:26 PM View: AllI Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

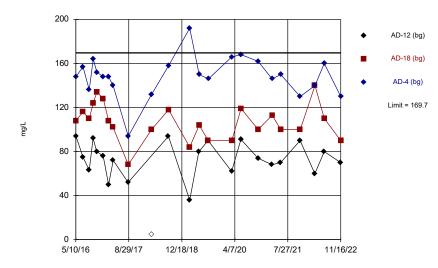

Constituent: Boron, total Analysis Run 2/20/2023 9:35 AM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Constituent: Chloride, total Analysis Run 2/20/2023 9:35 AM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Constituent: Calcium, total Analysis Run 2/20/2023 9:35 AM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Constituent: Fluoride, total Analysis Run 2/20/2023 9:35 AM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

mg/L



Constituent: Sulfate, total Analysis Run 2/20/2023 9:35 AM View: AIII
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG

Time Series

Constituent: Total Dissolved Solids Analysis Run 2/20/2023 9:35 AM View: Alll Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

FIGURE H UTL

Upper Tolerance Limits

		-	-					
	Pirkey EBAF	Clien	t: Geosyntec	Data: Pirkey I	EBAP Printe	ed 2/20/2023, 9:43	3 AM	
Constituent	Upper Lim.	Bg N	Std. Dev.	%NDs	ND Adj.	<u>Transform</u>	<u>Alpha</u>	Method
Antimony, total (mg/L)	0.0001	66	n/a	93.94	n/a	n/a	0.03387	NP Inter(NDs)
Arsenic, total (mg/L)	0.011	66	n/a	40.91	n/a	n/a	0.03387	NP Inter(normality)
Barium, total (mg/L)	0.183	66	n/a	0	n/a	n/a	0.03387	NP Inter(normality)
Beryllium, total (mg/L)	0.00115	66	n/a	6.061	n/a	n/a	0.03387	NP Inter(normality)
Cadmium, total (mg/L)	0.00026	66	n/a	50	n/a	n/a	0.03387	NP Inter(normality)
Chromium, total (mg/L)	0.003262	66	0.9517	10.61	None	ln(x)	0.05	Inter
Cobalt, total (mg/L)	0.00939	66	n/a	0	n/a	n/a	0.03387	NP Inter(normality)
Combined Radium 226 + 228 (pCi/L)	3.197	66	0.2481	0	None	x^(1/3)	0.05	Inter
Fluoride, total (mg/L)	0.2565	69	n/a	53.62	n/a	n/a	0.02904	NP Inter(normality)
Lead, total (mg/L)	0.005	66	n/a	57.58	n/a	n/a	0.03387	NP Inter(normality)
Lithium, total (mg/L)	0.05199	66	0.04756	1.515	None	sqrt(x)	0.05	Inter
Mercury, total (mg/L)	0.000064	66	n/a	43.94	n/a	n/a	0.03387	NP Inter(normality)
Molybdenum, total (mg/L)	0.005	61	n/a	95.08	n/a	n/a	0.04377	NP Inter(NDs)
Selenium, total (mg/L)	0.00245	66	n/a	48.48	n/a	n/a	0.03387	NP Inter(normality)
Thallium, total (mg/L)	0.001874	64	n/a	76.56	n/a	n/a	0.03752	NP Inter(NDs)

FIGURE I GWPS

PIRKEY	EBAP GWPS		
		Background	
Constituent Name	MCL	Limit	GWPS
Antimony, Total (mg/L)	0.006	0.0001	0.006
Arsenic, Total (mg/L)	0.01	0.011	0.011
Barium, Total (mg/L)	2	0.18	2
Beryllium, Total (mg/L)	0.004	0.0012	0.004
Cadmium, Total (mg/L)	0.005	0.00026	0.005
Chromium, Total (mg/L)	0.1	0.0033	0.1
Cobalt, Total (mg/L)	n/a	0.0094	0.0094
Combined Radium, Total (pCi/L)	5	3.2	5
Fluoride, Total (mg/L)	4	0.26	4
Lead, Total (mg/L)	n/a	0.005	0.005
Lithium, Total (mg/L)	n/a	0.052	0.052
Mercury, Total (mg/L)	0.002	0.000064	0.002
Molybdenum, Total (mg/L)	n/a	0.005	0.005
Selenium, Total (mg/L)	0.05	0.0025	0.05
Thallium, Total (mg/L)	0.002	0.0019	0.002

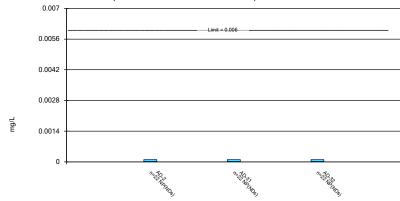
^{*}Grey cell indicates Background Limit is higher than MCL

^{*}MCL = Maximum Contaminant Level

^{*}GWPS = Groundwater Protection Standard

FIGURE J Confidence Intervals

Confidence Interval Summary Table - Significant Results

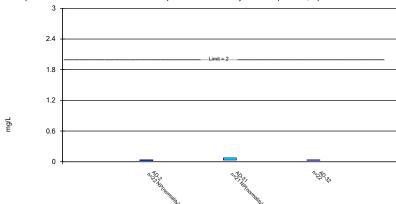

					-			_			
		Pirkey EB	BAP Client: G	eosyntec Da	ıta: Pir	key EB	AP Print	ed 2/20/2023,	9:49 AM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Cobalt, total (mg/L)	AD-2	0.0178	0.01253	0.0094	Yes	22	0	None	No	0.01	Param.
Cobalt, total (mg/L)	AD-31	0.01077	0.009523	0.0094	Yes	21	0	None	x^(1/3)	0.01	Param.
Cobalt, total (mg/L)	AD-32	0.05284	0.03244	0.0094	Yes	22	0	None	sqrt(x)	0.01	Param.
Lithium, total (mg/L)	AD-31	0.094	0.0681	0.052	Yes	22	0	None	No	0.01	NP (normality)
Lithium total (mg/L)	AD 22	0.00033	0.07964	0.052	Voc	20	0	None	No	0.01	Daram

Confidence Interval Summary Table - All Results

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Printed 2/20/2023, 9:49 AM Constituent <u>Well</u> Upper Lim. Lower Lim. Compliance Sig. Ν %NDs ND Adj. Transform <u>Alpha</u> Method NP (NDs) AD-2 0.0001 0.00002 22 0.01 Antimony, total (mg/L) 0.006 No 95.45 None No AD-31 0.0001 0.00002 22 NP (NDs) Antimony, total (mg/L) 0.006 No 95.45 None 0.01 Antimony, total (mg/L) AD-32 0.0001 0.00002 0.006 No 22 90.91 None No 0.01 NP (NDs) 0.00052 0.011 22 NP (normality) Arsenic, total (mg/L) AD-2 0.002 45.45 0.01 No None No Arsenic, total (mg/L) AD-31 0.001937 0.0004562 0.011 No 21 0.01 Arsenic, total (mg/L) AD-32 0.004998 0.002171 0.011 No 22 4.545 None sqrt(x) 0.01 Param Barium, total (mg/L) AD-2 0.037 0.0196 22 0 0.01 NP (normality) 2 No None No Barium, total (mg/L) AD-31 0.073 0.0332 No 21 None No 0.01 NP (normality) Barium, total (mg/L) AD-32 0.0371 0.02624 2 No 22 0 None No 0.01 Param. AD-2 0.000561 0.000428 22 4.545 0.01 NP (normality) Beryllium, total (mg/L) 0.004 Nο None Nο Beryllium, total (mg/L) AD-31 0.00103 0.00085 0.004 No 21 0 None Nο 0.01 NP (normality) Beryllium, total (mg/L) AD-32 0.005714 0.003525 0.004 No 22 0 None sqrt(x) 0.01 Param. Cadmium, total (mg/L) AD-2 22 NP (normality) 0.001 0.000078 0.005 No 45.45 None No 0.01 Cadmium, total (mg/L) AD-31 0.000066 0.005 No 22 31.82 None No 0.01 NP (normality) Cadmium, total (mg/L) AD-32 0.0005653 0.0003782 0.005 No 22 0 None No 0.01 Param. 22 Chromium, total (mg/L) AD-2 0.0009 0.00028 27.27 0.01 NP (normality) 0.1 No None No Chromium, total (mg/L) AD-31 0.01 0.000365 0.1 No 20 10 0.01 NP (normality) No None Chromium, total (mg/L) AD-32 0.003778 0.001058 No 22 0 0.01 Param 0.0178 22 Cobalt, total (mg/L) AD-2 0.01253 0.0094 Yes 0 None Nο 0.01 Param Cobalt, total (mg/L) AD-31 0.01077 0.009523 0.0094 Yes 21 0 None x^(1/3) 0.01 Param. Cobalt, total (mg/L) AD-32 0.05284 0.03244 0.0094 Yes 22 0 None 0.01 Param. sqrt(x) Combined Radium 226 + 228 (pCi/L) 22 0 Param. AD-2 1.626 1.038 5 No None No 0.01 Combined Radium 226 + 228 (pCi/L) AD-31 3.787 2.627 5 No 22 0 0.01 Param. None sqrt(x) Combined Radium 226 + 228 (pCi/L) AD-32 6.189 4.256 5 No 21 0 None 0.01 Param. Fluoride, total (mg/L) AD-2 0.15 4 No 24 50 None No 0.01 NP (normality) Fluoride, total (mg/L) AD-31 0.14 No 24 0.01 NP (normality) None Fluoride, total (mg/L) AD-32 0.8906 0.4763 No 23 21.74 Kaplan-Meier No 0.01 Param. Lead, total (mg/L) AD-2 0.005 0.00046 0.005 No 22 45.45 None No 0.01 NP (normality) Lead, total (mg/L) AD-31 0.005 0.00026 No 21 38.1 0.01 NP (normality) No None Lead, total (mg/L) AD-32 0.005 0.00043 0.005 No 22 45.45 0.01 NP (normality) 21 Lithium, total (mg/L) AD-2 0.05555 0.0495 0.052 Nο Ω None In(x) 0.01 Param Lithium, total (mg/L) AD-31 0.094 0.0681 0.052 Yes 22 0 None No 0.01 NP (normality) AD-32 0.09933 0.07861 0.01 Lithium, total (mg/L) 0.052 20 0 Param. 0 Mercury, total (mg/L) AD-2 0.00008849 0.00004345 0.002 No 21 None sqrt(x) 0.01 Param. AD-31 0.000568 No 21 0 0.01 Mercury, total (mg/L) 0.0001424 0.002 None Param. sqrt(x) AD-32 0.004313 0.00173 0.002 No 22 Mercury, total (mg/L) 0 None 0.01 Molybdenum, total (mg/L) AD-2 0.005 0.00437 0.005 No 21 85.71 None No 0.01 NP (NDs) NP (normality) Molybdenum, total (mg/L) AD-31 0.005 0.000894 0.005 20 0.01 No 75 None No Molybdenum, total (mg/L) AD-32 0.005 0.0007621 0.005 No 20 None 0.01 NP (NDs) 0.001681 Selenium, total (mg/L) AD-2 0.001186 0.05 Nο 22 22 73 Kanlan-Meier ln(x) 0.01 Param. AD-31 0.004 0.00038 22 31.82 0.01 NP (normality) Selenium, total (mg/L) 0.05 No None AD-32 0.007128 0.002603 22 22.73 0.01 Selenium, total (mg/L) 0.05 No x^(1/3) Thallium, total (mg/L) AD-2 0.0005 0.0001 0.002 No 22 45 45 None No 0.01 NP (normality) AD-31 0.0005 0.00009 0.002 21 57.14 0.01 NP (normality) Thallium, total (mg/L) No None No Thallium, total (mg/L) AD-32 0.0002 0.002 21 28.57 0.01 0.002 NP (normality)

Non-Parametric Confidence Interval

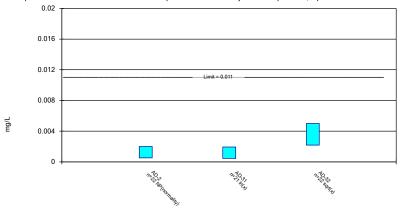
Compliance Limit is not exceeded. Per-well alpha = 0.01.



Constituent: Antimony, total Analysis Run 2/20/2023 9:47 AM View: AIV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG

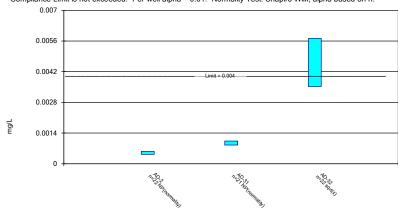
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Barium, total Analysis Run 2/20/2023 9:47 AM View: AIV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

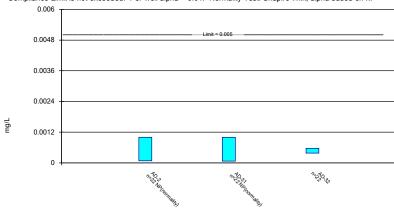
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Arsenic, total Analysis Run 2/20/2023 9:47 AM View: AIV

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

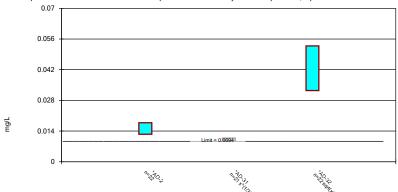
Sanitas™ v.9.6.36 . UG


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

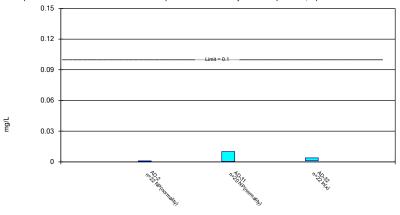
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Cadmium, total Analysis Run 2/20/2023 9:48 AM View: AIV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

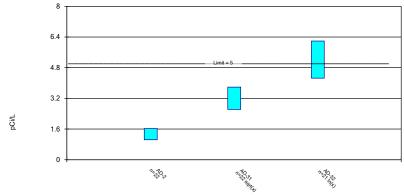
Sanitas™ v.9.6.36 . UG


Parametric Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Chromium, total Analysis Run 2/20/2023 9:48 AM View: AIV Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

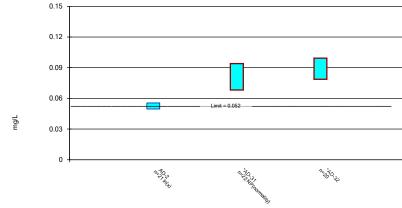
Sanitas™ v.9.6.36 . UG


Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

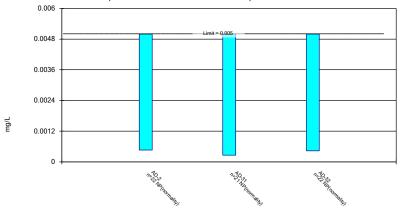
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Fluoride, total Analysis Run 2/20/2023 9:48 AM View: AIV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

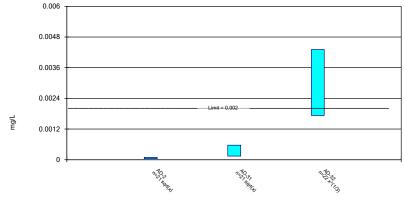
Sanitas™ v.9.6.36 . UG


Parametric and Non-Parametric (NP) Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.



Constituent: Lead, total Analysis Run 2/20/2023 9:48 AM View: AIV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG

Parametric Confidence Interval

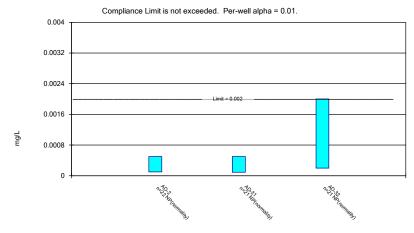
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

0.006

0.0048

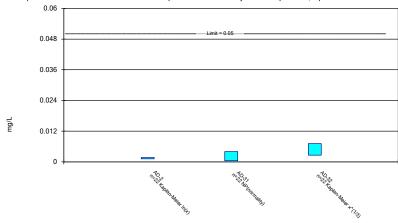

0.0024

0.0012

Constituent: Molybdenum, total Analysis Run 2/20/2023 9:48 AM View: AIV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG

Non-Parametric Confidence Interval



Constituent: Thallium, total Analysis Run 2/20/2023 9:48 AM View: AIV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.36 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Selenium, total Analysis Run 2/20/2023 9:48 AM View: AIV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Memorandum

Date: January 25, 2024

To: Leslie Fuerschbach (AEP)

Copies to: Brian Newton (AEP)

From: Allison Kreinberg (Geosyntec)

Subject: Evaluation of 2023 Reissued Analytical Laboratory Data for

H.W. Pirkey Power Plant's East Bottom Ash Pond

In accordance with Texas Commission on Environmental Quality (TCEQ) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR rule") groundwater sampling was completed in 2023 to support assessment monitoring at the East Bottom Ash Pond, an existing CCR unit at the H.W. Pirkey Power Plant in Hallsville, Texas. After statistical evaluations were completed using data from the first and second semiannual assessment monitoring event, select analytical laboratory reports were reissued to correct an inconsistent number of significant figures in electronic data deliverables and the published laboratory reports.

A review of the reissued analytical laboratory reports identified reported lithium results that had the number of significant figures changed (Table 1). The site-specific background value for lithium was updated as part of the second semiannual assessment monitoring event; therefore, the lithium result at background location AD-12 was used in the statistical evaluation prior to reissuance of the analytical laboratory reports. The upper tolerance limit (UTL) was recalculated using the revised lithium value at AD-12 to evaluate whether the change in the reported lithium result would affect the statistical outcome of the second semiannual assessment monitoring event (Attachment 1). The recalculated UTL of 0.0497 milligrams per liter (mg/L) was identical to the previously calculated UTL of 0.0497 mg/L using the initial AD-12 lithium value and no changes to the statistical outcomes of the second semiannual assessment monitoring event would occur.

¹ Geosyntec. 2023. *Statistical Analysis Summary – East Bottom Ash Pond. H.W. Pirkey Power Plant, Hallsville, Texas.* Geosyntec Consultants, Inc. October 7, 2023.

² Geosyntec. 2023. *Statistical Analysis Summary – East Bottom Ash Pond. H.W. Pirkey Power Plant, Hallsville, Texas.* Geosyntec Consultants, Inc. October 16, 2023.

2023 Reissued Data Evaluation – Pirkey EBAP January 25, 2024 Page 2

Both the initial reported lithium value and the revised lithium value at downgradient location AD-31 were above the site-specific groundwater protection standard and statistically significant levels of lithium were identified during the both first and second semiannual assessment monitoring event at AD-31.^{1,2} Therefore, no changes to the statistical outcome of the first or second semiannual assessment monitoring event would occur.

The revised lithium values in the reissued laboratory analytical reports will be used in future reporting and statistical evaluations.

Table 1. 2023 Revised Analytical Results H.W. Pirkey Plant - East Bottom Ash Pond

Sample Date	Well ID	Well Location	Constituent	Units	Initial Reported Value	Revised Value
6/26/2023	AD-12	Background	Lithium	mg/L	0.0049	0.00487
6/26/2023	AD-31	Downgradient	Lithium	mg/L	0.089	0.0889

Notes:

1. All results are reported in milligrams per liter (mg/L).

ATTACHMENT A Recalculated Lithium Upper Tolerance Limit

Upper Tolerance Limits Summary Table - Lithium

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Printed 12/11/2023, 10:16 AM

Constituent	Upper Lim.	<u>Date</u>	Observ.	Sig.	Bg N	Bg Mean Std. Dev.	%NDs	ND Adj.	Transform	n <u>Alpha</u>	Method
Lithium, total (mg/L)	0.04972	n/a	n/a	n/a	75	0.1312 0.04656	1.333	None	sqrt(x)	0.05	Inter

engineers | scientists | innovators

STATISTICAL ANALYSIS SUMMARY EAST BOTTOM ASH POND

H.W. Pirkey Power Plant Hallsville, Texas

Prepared for

American Electric Power

1 Riverside Plaza Columbus, Ohio 43215-2372

Prepared by

Geosyntec Consultants, Inc. 500 West Wilson Bridge Road, Suite 250 Worthington, Ohio 43085

Project Number: CHA8500B

October 7, 2023

TABLE OF CONTENTS

1. IN	TRODUCT	'ION	1
2. EA		OM ASH POND EVALUATIONlidation and QA/QC	
2.2		al Analysis	
		aluation of Potential Appendix IV SSLs	
	2.2.2 Ev	aluation of Potential Appendix III SSIs	3
2.3		ions	
3. RI	EFERENCE	S	5
		LIST OF TABLES	
Table 1	1:	Groundwater Data Summary	
Table 2	2:	Appendix IV Groundwater Protection Standards	
Table 3	3:	Appendix III Data Summary	
		LIST OF ATTACHMENTS	
Attach	ment A:	Certification by Qualified Professional Engineer	
Attach	ment B:	Data Quality Review Memoranda	
Attach	ment C:	Statistical Analysis Output	

ACRONYMS AND ABBREVIATIONS

ASD alternative source demonstration

coal combustion residuals CCR CFR

code of federal regulations

East Bottom Ash Pond **EBAP**

GWPS groundwater protection standard

LCL lower confidence limit

milligrams per liter mg/L

quality assurance and quality control QA/QC

statistically significant increase SSI

statistically significant level SSL

SU standard units

Texas Administrative Code TAC

Texas Commission on Environmental Quality **TCEQ**

total dissolved solids **TDS**

UPL upper prediction limit

1. INTRODUCTION

In accordance with Texas Commission on Environmental Quality (TCEQ) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Texas Administrative Code [TAC] Title 30, Chapter 352), groundwater monitoring has been conducted at the East Bottom Ash Pond (EBAP), an existing CCR unit at the Pirkey Power Plant in Hallsville, Texas. Recent groundwater monitoring results were used to identify concentrations of Appendix IV constituents that are above site-specific groundwater protection standards (GWPSs).

Based on detection monitoring conducted in 2017 and 2018, statistically significant increases (SSIs) over background were concluded for boron, calcium, chloride, total dissolved solids (TDS), and sulfate at the EBAP. An alternative source was not identified at the time, so assessment monitoring was initiated and GWPSs were set in accordance with § 352.951(b). Two assessment monitoring events were conducted at the EBAP in February and June 2023 in accordance with § 352.951(a). The results of these annual and semiannual assessment events are documented in this report.

Prior to conducting the statistical analyses, the groundwater data underwent several validation tests, including those for completeness, sample tracking accuracy, transcription errors, and consistent use of measurement units. No data quality issues were identified which would impact data usability.

The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. Confidence intervals were calculated for Appendix IV parameters at the compliance wells to assess whether Appendix IV parameters were present at SSLs above previously established GWPS. SSLs were identified for cobalt and lithium. Therefore, either the unit will move to an assessment of corrective measures or an alternative source demonstration (ASD) will be conducted to evaluate if the unit can remain in assessment monitoring. Certification of the selected statistical methods by a qualified professional engineer is documented in Attachment A.

2. EAST BOTTOM ASH POND EVALUATION

2.1 Data Validation and QA/QC

During the assessment monitoring program, two sets of samples (February and June 2023) were collected for analysis from each background and compliance well to meet the requirements of § 352.951(a). Samples from both sampling events were analyzed for all Appendix III and Appendix IV parameters. A summary of data collected during these assessment monitoring events are presented in Table 1.

Chemical analysis was completed by a National Environmental Laboratory Accreditation Program—certified analytical laboratory. The laboratory completed analysis of quality assurance and quality control (QA/QC) samples such as laboratory reagent blanks, continuing calibration verification samples, and laboratory fortified blanks.

A data quality review was completed to assess if the data met the objectives outlined in TCEQ Draft Technical Guidance No. 32 related to groundwater sampling and analysis (TCEQ 2020). The data were determined usable for supporting project objectives, as documented in the review memorandum provided in Attachment B. The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.9.6.36 statistics software. The export file was checked against the analytical data for transcription errors and completeness.

2.2 Statistical Analysis

Statistical analyses for the EBAP were conducted in accordance with the November 2021 *Statistical Analysis Plan* (Geosyntec 2021). Time series plots and results for all completed statistical tests are provided in Attachment C. The data obtained in February and June 2023 were screened for potential outliers. No outliers were identified for these events.

2.2.1 Evaluation of Potential Appendix IV SSLs

A confidence interval was constructed for each Appendix IV parameter at each compliance well. Confidence limits were generally calculated parametrically ($\alpha = 0.01$); however, nonparametric confidence limits were calculated in some cases (e.g., when the data did not appear to be normally distributed or when the nondetect frequency was too high). An SSL was concluded if the lower confidence limit (LCL) was above the GWPS (i.e., if the entire confidence interval was above the GWPS). The calculated confidence limits (Attachment C) were compared to the GWPSs provided in Table 2. The GWPSs were established during a previous statistical analysis as either the greater value of the background concentration or the maximum contaminant level (Geosyntec 2023).

The following SSLs were identified at the Pirkey EBAP:

• The LCL for cobalt was above the GWPS of 0.00939 mg/L at AD-2 (0.0132 mg/L), AD-31 (0.00959 mg/L), and AD-32 (0.0310 mg/L).

• The LCL for lithium exceeded the GWPS of 0.0520 mg/L at AD-31 (0.0760 mg/L) and AD-32 (0.0766 mg/L).

As a result, the Pirkey EBAP will either move to an assessment of corrective measures or an alternative source demonstration will be conducted to evaluate if the unit can remain in assessment monitoring.

2.2.2 Evaluation of Potential Appendix III SSIs

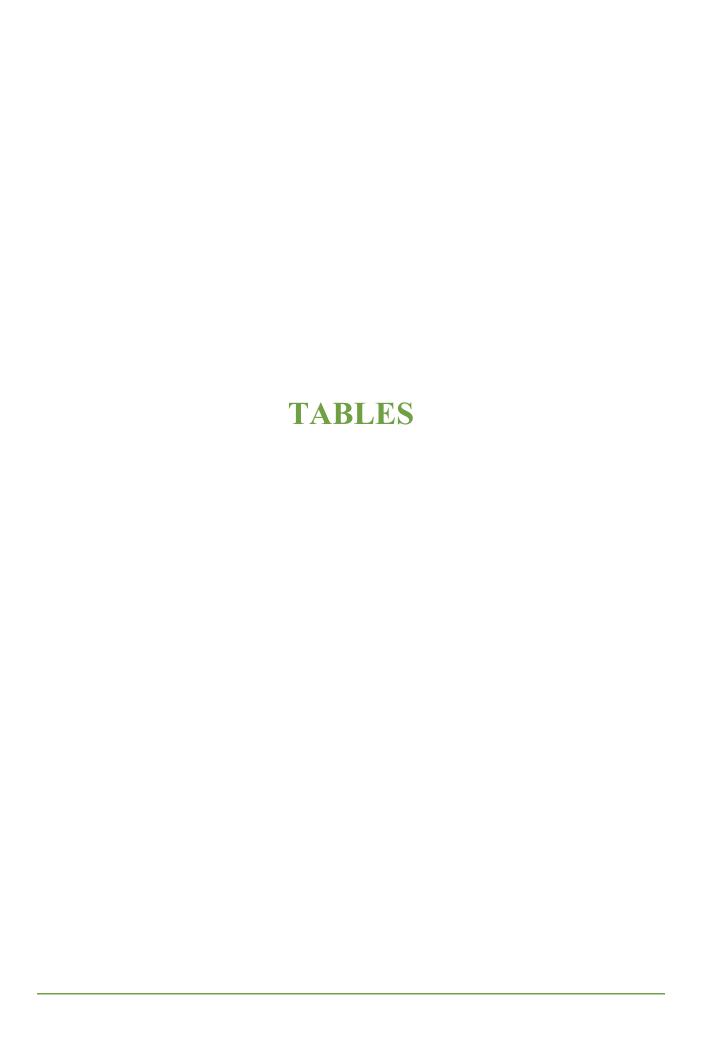
While SSLs were identified, a review of the Appendix III results were also completed to assess whether concentrations of Appendix III parameters at the compliance wells were above background concentrations. Data collected during the June 2023 assessment monitoring event from each compliance well were compared to previously established prediction limits to assess whether the results are above background values (Table 3). The following concentrations were above the upper prediction limits (UPLs):

- Boron concentrations were above the interwell UPL of 0.0437 mg/L at AD-2 (3.06 mg/L) and AD-32 (0.595 mg/L).
- Calcium concentrations were above the interwell UPL of 2.94 mg/L at AD-2 (3.53 mg/L) and AD-32 (5.26 mg/L).
- Chloride concentrations were above the interwell UPL of 8.84 mg/L at AD-2 (30.8 mg/L), AD-31 (21.2 mg/L), and AD-32 (14.5 mg/L).
- Sulfate concentrations were above the interwell UPL of 24.7 mg/L at AD-2 (271 mg/L), AD-31 (82.1 mg/L), and AD-32 (119 mg/L).
- TDS concentrations were above the interwell UPL of 170 mg/L at AD-2 (530 mg/L), AD-31 (280 mg/L), and AD-32 (260 mg/L).

While the prediction limits were calculated for a one-of-two retesting procedure, SSIs were conservatively assumed if the June 2023 sample was above the UPL or below the lower prediction limit in the case of pH. Based on these results, concentrations of Appendix III constituents appear to be above background concentrations.

2.3 Conclusions

An annual and semiannual assessment monitoring event were conducted in accordance with the CCR Rule. The laboratory and field data were reviewed prior to statistical analysis, and no QA/QC issues that impacted data usability were identified. A review of outliers identified no potential outliers in the February and June 2023 data. A confidence interval was constructed at each compliance well for each Appendix IV parameter; SSLs were concluded if the entire confidence interval was above the GWPS. SSLs were identified for cobalt, and lithium. Appendix III parameters were compared to calculated prediction limits, with exceedances identified for boron, calcium, chloride, sulfate, and TDS.



Based on this evaluation, the Pirkey EBAP CCR unit will either move to an assessment of corrective measures or an ASD will be conducted to evaluate if the unit can remain in assessment monitoring.

3. REFERENCES

- Geosyntec. 2021. Statistical Analysis Plan H.W. Pirkey Power Plant. Geosyntec Consultants, Inc. November.
- Geosyntec. 2023. Statistical Analysis Summary East Bottom Ash Pond, Pirkey, Hallsville, Texas. Geosyntec Consultants, Inc. March.
- TCEQ. 2020. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action Draft Technical Guidance No. 32. May.

Table 1. Groundwater Data Summary Statistical Analysis Summary Pirkey Plant - East Bottom Ash Pond

D	TT:4	AI)-2	AI)-4	AD)-12	AD	D-18	AD)-31	AD)-32
Parameter	Unit	2/27/2023	6/26/2023	2/28/2023	6/27/2023	2/27/2023	6/26/2023	2/28/2023	6/27/2023	2/27/2023	6/26/2023	2/27/2023	6/26/2023
Antimony	μg/L	0.1 U1	0.009 J1	0.1 U1	0.018 J1	0.1 U1	0.015 J1	0.1 U1	0.009 J1	0.1 U1	0.009 J1	0.1 U1	0.012 J1
Arsenic	μg/L	0.90	1.14	0.26	1.23	0.07 J1	0.11	0.26	0.55	0.30	0.36	0.89	1.53
Barium	μg/L	15.9	13.5	115	132	27.5	16.3	77.9	89	35.6	32.9	26.3	23.4
Beryllium	μg/L	0.787	0.744	0.594	0.376	0.155	0.11	0.085	0.132	0.935	1.08	3.19	0.905
Boron	mg/L	3.22	3.06	0.028 J1	0.018 J1	0.021 J1	0.019 J1	0.05 U1	0.009 J1	0.017 J1	0.025 J1	0.767	0.595
Cadmium	μg/L	0.128	0.119	0.015 J1	0.021	0.013 J1	0.007 J1	0.01 J1	0.013 J1	0.079	0.064	0.360	0.042
Calcium	mg/L	3.53	3.53	2.22	2.90	0.34	0.21	0.18	0.23	2.70	2.69	7.69	5.26
Chloride	mg/L	31.4	30.8	4.08	3.97	6.51	4.68	5.49	5.28	23.4	21.2	25.1	14.5
Chromium	μg/L	0.52	0.49	0.41	0.56	0.36	0.45	0.38	0.57	0.62	0.63	0.44	0.61
Cobalt	μg/L	28.9	27.3	5.60	3.89	1.50	0.932	0.750	0.933	10.5	10.1	29.4	15.9
Combined Radium	pCi/L	1.03	1.36	1.9	1.72	1.17	0.45	1.1	2.53	4.05	4.29	5.83	3.93
Fluoride	mg/L	0.22	0.19	0.05 J1	0.02 J1	0.07	0.06	0.06 U1	0.06 U1	0.13	0.1	0.44	0.13
Lead	μg/L	0.68	0.60	0.2 U1	0.15 J1	0.1 J1	0.11 J1	0.18 J1	0.13 J1	0.31	0.33	0.40	0.17 J1
Lithium	mg/L	0.0636	0.0595	0.0311	0.0240	0.00885	0.0049	0.0123	0.0138	0.0737	0.089	0.0837	0.0500
Mercury	μg/L	0.051	0.157	0.004 J1	0.003 J1	0.005 U1	0.005 U1	0.006	0.010	0.130 J1	0.077	2.200	0.760
Molybdenum	μg/L	0.5 U1	0.7	0.5 U1									
Selenium	μg/L	2.65	4.32	0.5 U1	0.14 J1	0.35 J1	0.23 J1	0.5 U1	0.15 J1	0.27 J1	0.78	2.68	1.59
Sulfate	mg/L	268	271	19.9	18.9	3.90	2.9	7.52	8.2	82.2	82.1	151	119
Thallium	μg/L	0.12 J1	0.11 J1	0.09 J1	0.09 J1	0.2 U1	0.2 U1	0.2 U1	0.04 J1	0.09 J1	0.09 J1	0.18 J1	0.11 J1
Total Dissolved Solids	mg/L	510	530	140	150	70	80	100	110	260	280	340	260
рН	SU	3.78	3.85	4.89	4.53	3.77	4.6	4.35	4.4	3.48	4.2	3.32	3.79

Notes:

 $\mu g/L$: micrograms per liter mg/L: milligrams per liter pCi/L: picocuries per liter

SU: standard unit

U1: Non-detect value. For statistical analysis, parameters which were not detected were replaced with the reporting limit.

J1: Estimated value. Parameter was detected in concentrations below the reporting limit.

M1: The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.

Table 2. Appendix IV Groundwater Protection Standards Statistical Analysis Summary Pirkey Plant - East Bottom Ash Pond

Constituent Name	MCL	Calculated UTL	GWPS
Antimony, Total (mg/L)	0.00600	0.000100	0.00600
Arsenic, Total (mg/L)	0.0100	0.0110	0.0110
Barium, Total (mg/L)	2.00	0.183	2.00
Beryllium, Total (mg/L)	0.00400	0.00115	0.00400
Cadmium, Total (mg/L)	0.00500	0.000260	0.00500
Chromium, Total (mg/L)	0.100	0.00326	0.100
Cobalt, Total (mg/L)	n/a	0.00939	0.00939
Combined Radium, Total (pCi/L)	5.00	3.20	5.00
Fluoride, Total (mg/L)	4.00	0.257	4.00
Lead, Total (mg/L)	n/a	0.00500	0.00500
Lithium, Total (mg/L)	n/a	0.0520	0.0520
Mercury, Total (mg/L)	0.00200	0.0000640	0.00200
Molybdenum, Total (mg/L)	n/a	0.00500	0.00500
Selenium, Total (mg/L)	0.0500	0.00245	0.0500
Thallium, Total (mg/L)	0.00200	0.00187	0.00200

Notes:

- 1. Calculated UTL (upper tolerance limit) represents site-specific background values.
- 2. Grey cells indicate the GWPS is based on the calculated UTL. Either the UTL is higher than the MCL or an MCL does not exist.

GWPS: groundwater protection standard

MCL: maximum contaminant level

mg/L: milligrams per liter pCi/L: picocuries per liter

n/a: not applicable

Table 3. Appendix III Data Summary Statistical Analysis Summary Pirkey - East Bottom Ash Pond

Analyte	Unit	Description	AD-2	AD-31	AD-32
Analyte	Omt	Description	6/26/2023	6/26/2023	6/26/2023
Boron	mg/L	Interwell Background Value (UPL)		0.0437	
DOIOII	mg/L	Analytical Result	3.06	0.025	0.595
Calcium	mg/L	Interwell Background Value (UPL)		2.94	
Calcium	mg/L	Analytical Result	3.53	2.69	5.26
Chloride	mg/L	Interwell Background Value (UPL)		8.84	
Chloride	IIIg/L	Analytical Result	30.8	21.2	14.5
Fluoride	mg/L	Interwell Background Value (UPL)		0.257	
Pluoffae	mg/L	Analytical Result	0.19	0.1	0.13
		Intrawell Background Value (UPL)	4.7	5.1	4.3
pН	SU	Intrawell Background Value (LPL)	3.4	2.8	2.6
		Analytical Result	3.9	4.2	3.8
Sulfate	mg/L	Interwell Background Value (UPL)		24.7	
Sulfate	mg/L	Analytical Result	271	82.1	119
Total Dissolved Solids	ma/I	Interwell Background Value (UPL)		170	
Total Dissolved Solids	mg/L	Analytical Result	530	280	260

Notes:

1. Bold values exceed the background value.

2. Background values are shaded gray.

LPL: Lower prediction limit mg/L: milligrams per liter

SU: standard units

UPL: Upper prediction limit

ATTACHMENT A Certification by Qualified Professional Engineer

Certification by Qualified Professional Engineer

I certify that selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Pirkey East Bottom Ash Pond CCR management area and that the requirements of § 352.931(a) have been met.

David Anthony Miller		A STATE OF THE	Ers. M.
Printed Name of Licens	sed Professional Engineer	DAVID ANTHONY N	IILLER I
David Lathony	Miller	SO ONAL EN	
Signature			
112498	Texas	10.08.2023	
License Number	Licensing State	Date	

ATTACHMENT BData Quality Review Memoranda

Memorandum

Date: April 28, 2023

To: David Miller (AEP)

Copies to: Jill Parker-Witt (AEP)

From: Allison Kreinberg (Geosyntec)

Subject: Data Quality Review – Pirkey Power Plant

February 2023 Sampling Event

This memorandum summarizes the findings of a data quality review for groundwater samples collected at the Pirkey Power Plant, located in Hallsville, Texas in February 2023. The groundwater samples were collected to comply with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR Rule"). 40 CFR 257 Appendix III and IV constituents were analyzed.

The following sample data groups (SDGs) were associated with the groundwater samples collected during the February 2023 sampling event and are reviewed in this memorandum:

- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 230658
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 230698

The data included in these SDGs were reviewed to assess if they met the objectives outlined in TCEQ Draft Technical Guideline No. 32¹ prior to submittal of this data to TCEQ.

The following data quality issues were identified:

 Mercury data for SDG 230698 had an inconsistent number of significant figures reported between the electronic data deliverables and the published laboratory reports. The

¹ TCEQ. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action: Technical Guidance No. 32. May 2020.

Data Quality Review – Pirkey February 2023 Data April 28, 2023 Page 2

published laboratory report for SDG 230698 will be reissued with the appropriate number of significant figures for mercury.

- As reported in SDG 230698, antimony, beryllium, chromium, cobalt, and lead were detected in the field blank sample "FIELD BLANK" collected on 2/27/23. The estimated detected beryllium concentration in the field blank (0.033 μg/L) was more than 10% of the detected values for beryllium in samples AD-12 (0.155 μg/L), AD-18 (0.085 μg/L), and "Duplicate 1" (0.155 μg/L), which could result in high bias in the AD-12, AD-18, and "Duplicate 1" beryllium results. The detected chromium concentration in the field blank (0.23 μg/L) was more than 10% of the detected values for chromium in all groundwater samples, which could result in high bias in the chromium results for all groundwater samples. The detected lead concentration in the field blank (2.57 μg/L) was more than 10% of the detected values for lead in all groundwater samples, which could result in high bias in the lead results for all groundwater samples
- As reported in SDG 230698, beryllium, chromium, cobalt, and lead were detected in the equipment blank sample "EQUIPMENT BLANK" collected on 2/27/23. The detected beryllium concentration in the equipment blank (0.034 μg/L) was more than 10% of the detected values for beryllium in samples AD-12 (0.155 μg/L), AD-18 (0.085 μg/L), and "Duplicate 1" (0.155 μg/L), which could result in high bias in the AD-12, AD-18, and "Duplicate 1" beryllium results. The detected chromium concentration in the equipment blank (0.44 μg/L) was more than 10% of the detected values for chromium in all groundwater samples, which could result in high bias in the chromium results for all groundwater samples. The detected lead concentration in the equipment blank (0.38 μg/L) was more than 10% of the detected values for lead in all groundwater samples, which could result in high bias in the lead results for all groundwater samples
- As reported in SDG 230698, the RPD for boron concentrations from parent sample "AD-12" and duplicate sample "Duplicate 1" was 55%. The RPD for selenium concentrations was 22%. The AD-12 results for boron and selenium should be considered estimated.
- As reported in SDG 230698, the RPD for boron concentrations from parent sample "AD-4" and duplicate sample "Duplicate 2" was 49%. The RPD for chromium concentrations was 52%. The RPD for mercury concentrations was 29%. The RPD for thallium concentrations was 20%. The AD-4 results for boron, chromium, mercury, and thallium should be considered estimated.
- As reported in SDG 230698, the matrix spike duplicate (MSD) for sodium was below the acceptable limit of 75%. The associated sample (AD-2) was flagged M1 for sodium: the

Data Quality Review – Pirkey February 2023 Data April 28, 2023 Page 3

associated matrix spike (MS) or MSD recovery outside acceptance limits. The AD-2 sodium result should be considered estimated. Sodium is not a regulated Appendix III or IV constituent.

- As reported in SDG 230698, the RPD for the laboratory duplicate for radium-226 was above the acceptable limit of 25%. The associated sample (AD-12) was flagged P1 for radium-226: the precision between duplicate results was above the acceptance limits. The AD-12 radium-226 result should be considered estimated.
- As reported in SDG 230698, the MSD RPD for radium-228 was above the acceptable limit of 25%. The associated sample (AD-12) was flagged P3 for radium-228: the precision on the MSD was above acceptance limits. The AD-12 radium-228 result should be considered estimated.

Based on these findings, the majority of the data reported in these SDGs are considered accurate and complete. Although the QC failures mentioned above will result in some limitations of data use since the affected results are considered estimated or have elevated reporting limits, the data are considered usable for supporting project objectives.

Memorandum

Date: September 19, 2023

To: David Miller (AEP)

Copies to: Leslie Fuerschbach (AEP)

From: Allison Kreinberg (Geosyntec)

Subject: Data Quality Review – Pirkey Power Plant

June 2023 Sampling Event

This memorandum summarizes the findings of a data quality review for groundwater samples collected at the Pirkey Power Plant in Hallsville, Texas in June 2023. The groundwater samples were collected to comply with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR Rule"). 40 CFR 257 Appendix III and IV constituents were analyzed.

The following sample data groups (SDGs) were associated with the groundwater samples collected during the June 2023 sampling event and are reviewed in this memorandum:

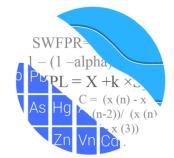
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 231960
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 231985

The data included in these SDGs were reviewed to assess if they met the objectives outlined in TCEQ Draft Technical Guideline No. 32¹ prior to submittal of this data to TCEQ.

The following data quality issues were identified:

• The chains of custody listed a sample collection date of 6/23/2023 for sample "AD-33", but a review of the sample bottles and the field forms noted that the sample was collected on 6/26/2023. The laboratory report used a sample collection date of 6/26/2023.

¹ TCEQ. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action: Technical Guidance No. 32. May 2020.


Data Quality Review – Pirkey June 2023 Data September 19, 2023 Page 2

- Mercury data for SDG 231985 had an inconsistent number of significant figures reported between the electronic data deliverables and the published laboratory reports. The published laboratory report for SDG 231985 was reissued with the appropriate number of significant figures for mercury.
- As reported in SDG 231960, chloride was detected in the field blank sample "FIELD BLANK" collected on 6/26/23. The detected chloride concentration in the field blank (0.27 mg/L) was less than 10% of the detected values for chloride in all groundwater samples.
- As reported in SDG 231985, beryllium, chromium, and cobalt were detected in the field blank sample "FIELD BLANK" collected on 6/26/23. The estimated detected beryllium concentration in the field blank (0.015 μg/L) was more than 10% of the detected values for beryllium in samples AD-12 (0.11 μg/L), AD-18 (0.132 μg/L), and AD-30 (0.086 μg/L), which could result in high bias in the AD-12, AD-18, and AD-30 beryllium results. The detected chromium concentration in the field blank (0.53 μg/L) was more than 10% of the detected values for chromium in all groundwater samples, which could result in high bias in the chromium results for all groundwater samples.
- As reported in SDG 231985, beryllium, chromium, and cobalt were detected in the equipment blank sample "EQUIPMENT BLANK" collected on 6/26/23. The estimated detected beryllium concentration in the equipment blank (0.027 μg/L) was more than 10% of the detected values for beryllium in samples AD-3 (0.2 μg/L), AD-12 (0.11 μg/L), AD-13 (0.234 μg/L), AD-18 (0.132 μg/L), AD-30 (0.086 μg/L) and "Duplicate 1" (0.223 μg/L), which could result in high bias in the AD-3, AD-12, AD-13, AD-18, AD-30, and "Duplicate 1" beryllium results. The detected chromium concentration in the equipment blank blank (0.32 μg/L) was more than 10% of the detected values for chromium in all groundwater samples, which could result in high bias in the chromium results for all groundwater samples.

Based on these findings, the majority of the data reported in these SDGs are considered accurate and complete. Although the QC failures mentioned above will result in some limitations of data use since the affected results are considered estimated or have elevated reporting limits, the data are considered usable for supporting project objectives.

ATTACHMENT C Statistical Analysis Output

GROUNDWATER STATS CONSULTING

September 21, 2023

Geosyntec Consultants Attn: Ms. Allison Kreinberg 500 W. Wilson Bridge Road, Ste. #250 Worthington, OH 43085

Re: Pirkey East Bottom Ash Pond

Assessment Monitoring Event – February & June 2023

Dear Ms. Kreinberg,

Groundwater Stats Consulting (GSC), formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the evaluation of groundwater data from the February and June 2023 sample events for American Electric Power Company's Pirkey East Bottom Ash Pond (EBAP). The analysis complies with the Texas Commission of Environmental Quality rule 30 TAC 352 as well as with the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling at each of the wells below began at Pirkey EBAP for the Coal Combustion Residual (CCR) program in 2016. The monitoring well network, as provided by Geosyntec Consultants, consists of the following:

Upgradient wells: AD-4, AD-12, and AD-18
 Downgradient wells: AD-2, AD-31, and AD-32

Data were sent electronically, and the statistical analysis was conducted according to the Statistical Analysis Plan and screening evaluation prepared by GSC and approved by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to GSC. The statistical analysis was reviewed by Andrew Collins, Project Manager of Groundwater Stats Consulting.

The CCR program consists of the following Assessment monitoring constituents:

 Appendix IV (Assessment Monitoring) – antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Time series graphs for Appendix IV parameters are provided for all wells and are used to evaluate concentrations over the entire record (Figure A). Additionally, box plots are included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells. Values in background, which have previously been flagged as outliers, may be seen in a lighter font and disconnected symbol on the graphs. Additionally, a summary of flagged values follows this letter (Figure C).

Summary of Statistical Methods

Assessment monitoring for Appendix IV parameters involves the comparison of a confidence interval for each parameter at downgradient wells against the corresponding Groundwater Protection Standard (GWPS). The GWPS is determined for each parameter as the highest limit of the Maximum Contaminant Levels (MCLs) or background limits determined from tolerance limits constructed from pooled upgradient well data.

Prior to computing tolerance limits on upgradient well data or confidence intervals on downgradient well data, the distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric tolerance limits and confidence intervals as appropriate, based on the following criteria.

- No statistical analyses are required on wells and analytes containing 100% non-detects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data for parametric limits. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.

 Nonparametric tolerance limits are used on data containing greater than 50% nondetects.

Note that while the most recent PQL is used for non-detect values, the historic reporting limit of 0.005 mg/L was used for lead and molybdenum in order to maintain statistical limits that are conservative from a regulatory perspective.

Summary of Background Update – Conducted in February 2023

Outlier Analysis

Prior to evaluating Appendix IV parameters, upgradient well data were screened through visual screening and Tukey's outlier test for potential outliers and extreme trending patterns that would lead to artificially elevated statistical limits. A discussion of those findings is provided below.

Tukey's outlier test on pooled upgradient well data did not identify any outliers through November 2022; however, high non-detect values of 0.04 mg/L for molybdenum in upgradient and downgradient wells were flagged in order to construct statistical limits that are conservative (i.e., lower) from a regulatory perspective and represent present-day groundwater quality at this facility.

Additionally, downgradient well data through November 2022 were screened through visual screening using time series graphs. Since the downgradient well data are used to construct confidence intervals, a regulatory conservative approach is taken in that values that are marginally high relative to the rest of the data are retained unless there is particular justification for excluding them. No changes were to previously flagged data were made. All flagged values may be seen on the Outlier Summary following this letter (Figure C).

Interwell Upper Tolerance Limits

Interwell upper tolerance limits were established in February 2023 using all available pooled upgradient well data for each Appendix IV parameter through November 2022 (Figure D). GWPS will be updated during the Fall 2023 analysis. When data followed a normal or transformed-normal distribution, parametric tolerance limits were used to calculate background limits for Appendix IV parameters with a target of 95% confidence and 95% coverage. Nonparametric tolerance limits are constructed when data do not follow a normal or transformed-normal distribution or when there are greater than 50%

non-detects. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples.

Groundwater Protection Standards

Background limits were compared to the MCLs in the GWPS table following this letter to determine the highest limit for use as the GWPS in the Confidence Interval comparisons (Figure E).

Evaluation of Appendix IV Parameters – February and June 2023

Time series plots were used to visually identify potential outliers in downgradient wells through the February and June 2023 sample events. When suspected outliers are identified, Tukey's outlier test is used to formally test whether measurements are statistically significant. As mentioned above, high outliers are 'cautiously' flagged in the downgradient wells when measurements are clearly much different from remaining data within a given well. This is intended to be a regulatory conservative approach in that it will reduce the variance and thus reduce the width of parametric confidence intervals; although it will also reduce the mean and thus lower the entire interval. The intent is to better represent the actual downgradient mean. No additional suspected outliers were identified.

Confidence intervals were then constructed on downgradient wells with data through June 2023 for each of the Appendix IV parameters using either parametric or nonparametric intervals depending on the data distribution and percentage of non-detects (Figure F). When data followed a normal or transformed-normal distribution, parametric confidence intervals were used for Appendix IV parameters. Nonparametric confidence intervals, which use the largest and smallest order statistics depending on the sample size as interval limits, were constructed when data did not follow a normal or transformed-normal distribution or when there were greater than 50% non-detects. The lower confidence limit, which is constructed with 99% confidence for parametric confidence intervals, is compared to the GWPS prepared as described above. The confidence level associated with nonparametric confidence intervals is dependent upon the number samples available.

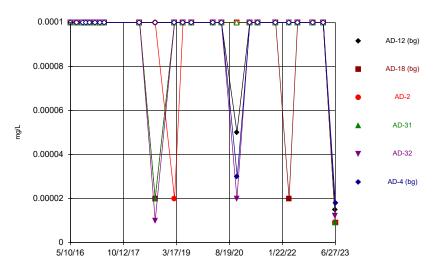
Only when the entire confidence interval is above the GWPS is the well/constituent pair considered to exceed its respective standard. Both a tabular summary and graphical presentation of the confidence interval results follow this letter. Exceedances were noted for the following well/constituent pairs:

• Cobalt: AD-2, AD-31, and AD-32

• Lithium: AD-31 and AD-32

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Pirkey EBAP. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,


Tristan Clark

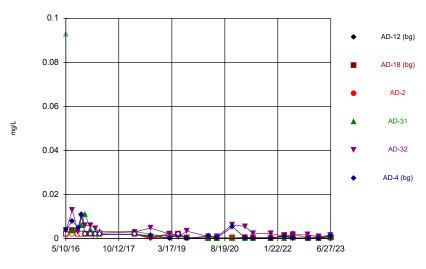
Groundwater Analyst

Tristan Clark

Andrew Collins Project Manager

FIGURE A Time Series

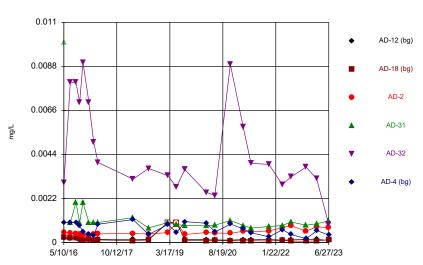
Constituent: Antimony, total Analysis Run 9/19/2023 2:52 PM View: Appendix IV

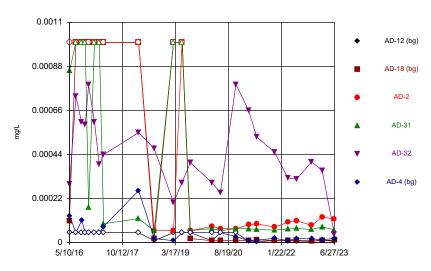

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG

Time Series 0.8 AD-12 (bg) 0.64 AD-18 (bg) AD-2 0.48 AD-31 0.32 AD-32 AD-4 (bg) 0.16 5/10/16 10/12/17 3/17/19 8/19/20 1/22/22 6/27/23

Constituent: Barium, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

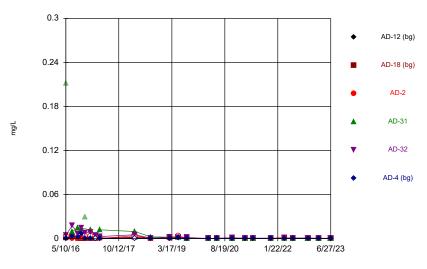

Time Series


Constituent: Arsenic, total Analysis Run 9/19/2023 2:52 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

Constituent: Beryllium, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Constituent: Cadmium, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Cobalt, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Time Series

Constituent: Chromium, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

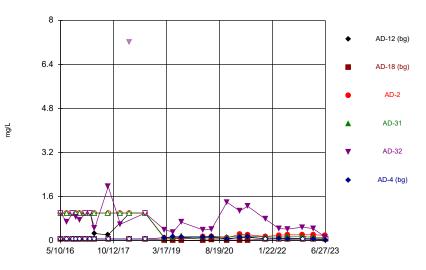
Time Series

Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG

5/10/16

10/12/17

20 AD-12 (bg) AD-18 (bg) AD-31 AD-32 AD-4 (bg)


Constituent: Combined Radium 226 + 228 Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

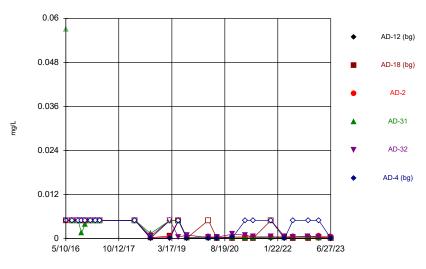
8/19/20

1/22/22

6/27/23

3/17/19

Constituent: Fluoride, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Time Series

Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

AD-12 (bg) 0.8 AD-18 (bg) AD-2 0.6 AD-31 0.4 AD-32 AD-4 (bg) 0.2 5/10/16 10/12/17 3/17/19 8/19/20 1/22/22 6/27/23

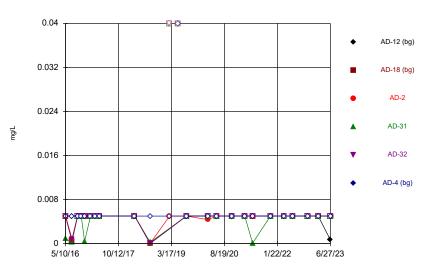
Constituent: Lithium, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Time Series

Constituent: Lead, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV

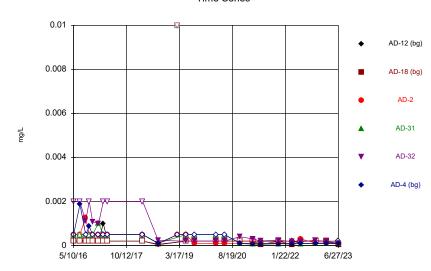
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

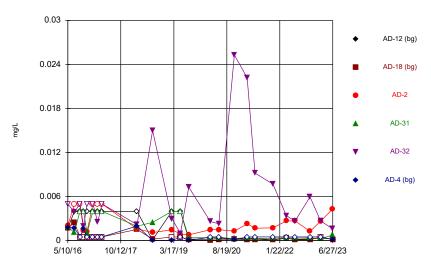

Time Series 0.02 AD-12 (bg) 0.016 AD-18 (bg) AD-2 0.012 AD-31 mg/L 0.008 AD-32 AD-4 (bg) 0.004 5/10/16 10/12/17 3/17/19 8/19/20 1/22/22 6/27/23

Constituent: Mercury, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

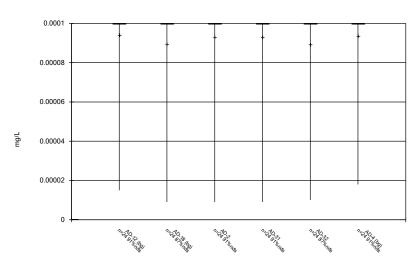

Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Molybdenum, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

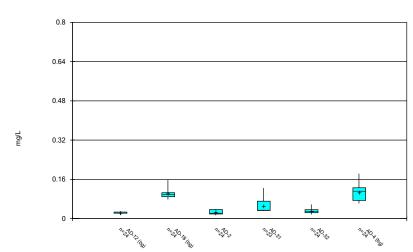
Constituent: Thallium, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

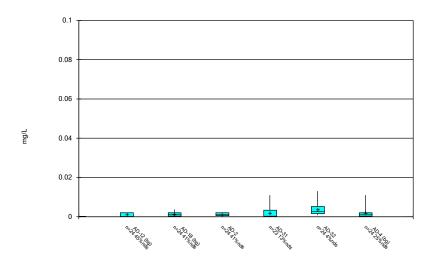

Time Series

Constituent: Selenium, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

FIGURE B Box Plots

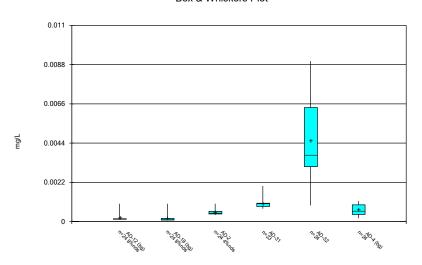


Constituent: Antimony, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

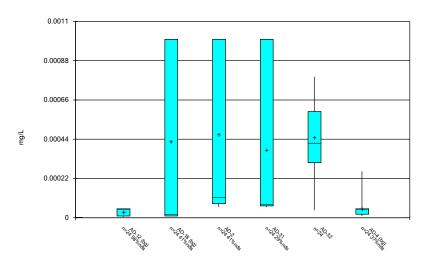

Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Barium, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

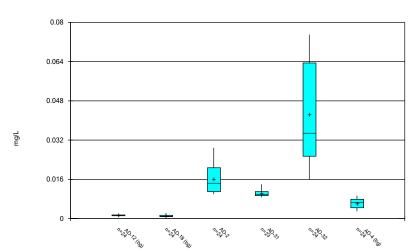

Box & Whiskers Plot

Constituent: Arsenic, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

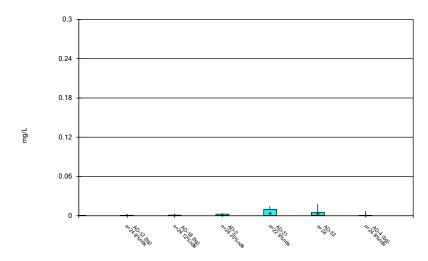

Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Beryllium, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Box & Whiskers Plot

Constituent: Cadmium, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

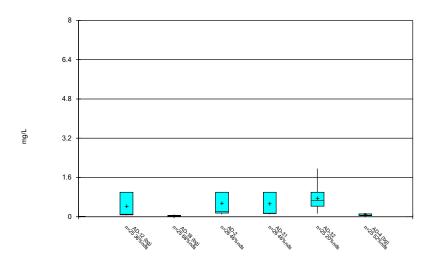

Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Cobalt, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

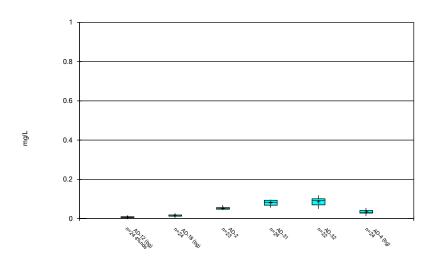

Box & Whiskers Plot

Constituent: Chromium, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

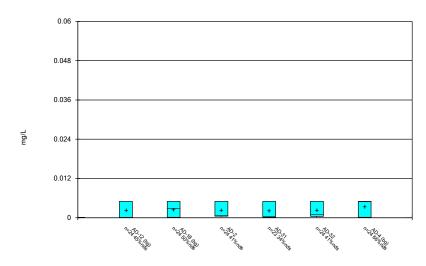

Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Combined Radium 226 + 228 Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Box & Whiskers Plot

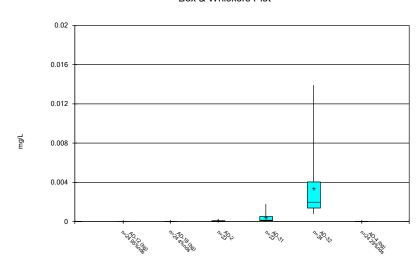
Constituent: Fluoride, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


 $Sanitas^{\text{\tiny{IM}}} \ v.9.6.37a \ Sanitas \ software \ utilized \ by \ Groundwater \ Stats \ Consulting. \ UG$

Box & Whiskers Plot

Constituent: Lithium, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

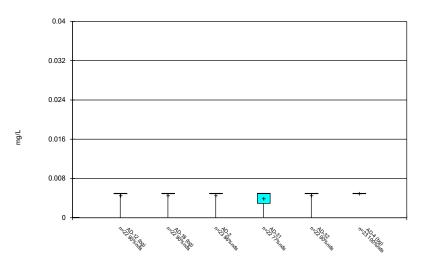
Box & Whiskers Plot



Constituent: Lead, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV

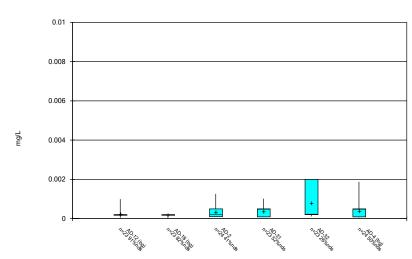
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG


Box & Whiskers Plot

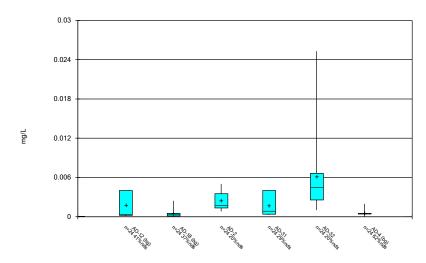
Constituent: Mercury, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Molybdenum, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

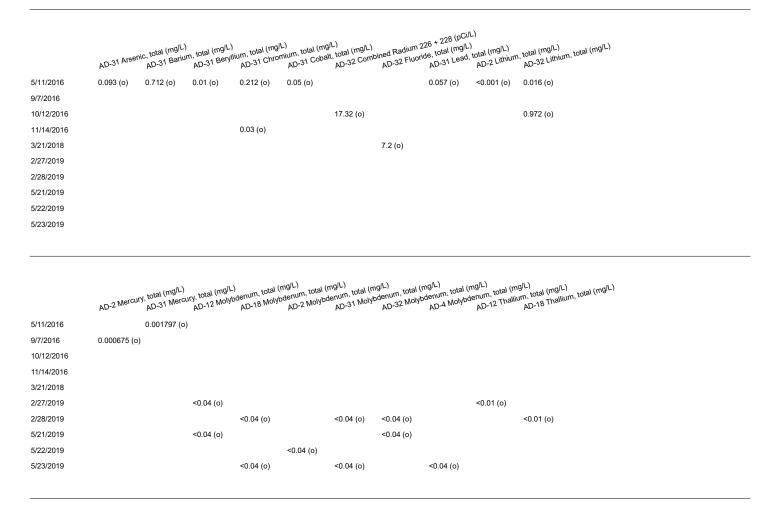
Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Thallium, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: Selenium, total Analysis Run 9/19/2023 2:53 PM View: Appendix IV
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

FIGURE C Outlier Summary

Outlier Summary

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Printed 9/19/2023, 2:56 PM

AD-31 Thallium, total (mg/L) AD-32 Thallium, total (mg/L)

5/11/2016 9/7/2016 10/12/2016 11/14/2016 3/21/2018 2/27/2019 2/28/2019 <0.01 (o) <0.01 (o) 5/21/2019 5/22/2019 5/23/2019

FIGURE D UTLs

Upper Tolerance Limits Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Printed 2/20/2023, 9:43 AM

	Pirkey EBAF	Clien	it: Geosyntec	Data: Pirkey I	EBAP Printe	ed 2/20/2023, 9:43	3 AM	
Constituent	Upper Lim.	Bg N	Std. Dev.	%NDs	ND Adj.	<u>Transform</u>	<u>Alpha</u>	Method
Antimony, total (mg/L)	0.0001	66	n/a	93.94	n/a	n/a	0.03387	NP Inter(NDs)
Arsenic, total (mg/L)	0.011	66	n/a	40.91	n/a	n/a	0.03387	NP Inter(normality)
Barium, total (mg/L)	0.183	66	n/a	0	n/a	n/a	0.03387	NP Inter(normality)
Beryllium, total (mg/L)	0.00115	66	n/a	6.061	n/a	n/a	0.03387	NP Inter(normality)
Cadmium, total (mg/L)	0.00026	66	n/a	50	n/a	n/a	0.03387	NP Inter(normality)
Chromium, total (mg/L)	0.003262	66	0.9517	10.61	None	In(x)	0.05	Inter
Cobalt, total (mg/L)	0.00939	66	n/a	0	n/a	n/a	0.03387	NP Inter(normality)
Combined Radium 226 + 228 (pCi/L)	3.197	66	0.2481	0	None	x^(1/3)	0.05	Inter
Fluoride, total (mg/L)	0.2565	69	n/a	53.62	n/a	n/a	0.02904	NP Inter(normality)
Lead, total (mg/L)	0.005	66	n/a	57.58	n/a	n/a	0.03387	NP Inter(normality)
Lithium, total (mg/L)	0.05199	66	0.04756	1.515	None	sqrt(x)	0.05	Inter
Mercury, total (mg/L)	0.000064	66	n/a	43.94	n/a	n/a	0.03387	NP Inter(normality)
Molybdenum, total (mg/L)	0.005	61	n/a	95.08	n/a	n/a	0.04377	NP Inter(NDs)
Selenium, total (mg/L)	0.00245	66	n/a	48.48	n/a	n/a	0.03387	NP Inter(normality)
Thallium, total (mg/L)	0.001874	64	n/a	76.56	n/a	n/a	0.03752	NP Inter(NDs)

FIGURE E GWPS

PIRKEY EBAP GWPS							
		Background					
Constituent Name	MCL	Limit	GWPS				
Antimony, Total (mg/L)	0.006	0.0001	0.006				
Arsenic, Total (mg/L)	0.01	0.011	0.011				
Barium, Total (mg/L)	2	0.18	2				
Beryllium, Total (mg/L)	0.004	0.0012	0.004				
Cadmium, Total (mg/L)	0.005	0.00026	0.005				
Chromium, Total (mg/L)	0.1	0.0033	0.1				
Cobalt, Total (mg/L)	n/a	0.0094	0.0094				
Combined Radium, Total (pCi/L)	5	3.2	5				
Fluoride, Total (mg/L)	4	0.26	4				
Lead, Total (mg/L)	n/a	0.005	0.005				
Lithium, Total (mg/L)	n/a	0.052	0.052				
Mercury, Total (mg/L)	0.002	0.000064	0.002				
Molybdenum, Total (mg/L)	n/a	0.005	0.005				
Selenium, Total (mg/L)	0.05	0.0025	0.05				
Thallium, Total (mg/L)	0.002	0.0019	0.002				

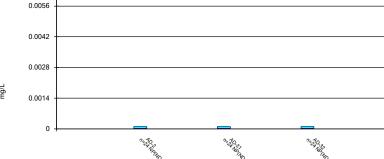
^{*}Grey cell indicates Background Limit is higher than MCL

^{*}MCL = Maximum Contaminant Level

^{*}GWPS = Groundwater Protection Standard

FIGURE F Confidence Interval

Confidence Intervals - Significant Results

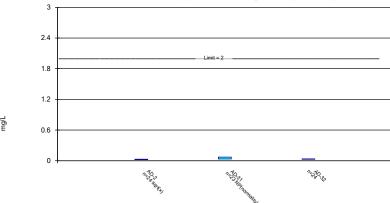

		Pirkey EBAP	Client: Geos	syntec Data: I	Pirkey EB	SAP	Printed 9/	19/2023, 2:55 PM			
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Cobalt, total (mg/L)	AD-2	0.01928	0.01321	0.0094	Yes	24	0	None	No	0.01	Param.
Cobalt, total (mg/L)	AD-31	0.01072	0.009593	0.0094	Yes	23	0	None	x^(1/3)	0.01	Param.
Cobalt, total (mg/L)	AD-32	0.05043	0.031	0.0094	Yes	24	0	None	sqrt(x)	0.01	Param.
Lithium, total (mg/L)	AD-31	0.08916	0.076	0.052	Yes	24	0	None	x^2	0.01	Param.
Lithium, total (mg/L)	AD-32	0.09729	0.07663	0.052	Yes	22	0	None	No	0.01	Param.

Confidence Intervals - All Results

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Printed 9/19/2023, 2:55 PM Constituent <u>Well</u> Upper Lim. Lower Lim. Sig. <u>N</u> %NDs ND Adj. Transform <u>Alpha</u> Method AD-2 NP (NDs) 0.0001 0.00002 24 91.67 0.01 Antimony, total (mg/L) 0.006 No None No AD-31 0.0001 0.00002 24 NP (NDs) Antimony, total (mg/L) 0.006 No 91.67 No 0.01 Antimony, total (mg/L) AD-32 0.0001 0.00002 0.006 No 24 87.5 None No 0.01 NP (NDs) 0.002 0.00053 0.011 24 NP (normality) Arsenic, total (mg/L) AD-2 41.67 0.01 No None No Arsenic, total (mg/L) AD-31 0.00332 0.00026 0.011 No 23 13.04 0.01 NP (normality) Arsenic, total (mg/L) AD-32 0.004643 0.002036 0.011 No 24 4.167 None sqrt(x) 0.01 Param Barium, total (mg/L) AD-2 0.03057 0.0216 No 24 0 None sqrt(x) 0.01 Param. 2 Barium, total (mg/L) AD-31 0.0708 0.0332 No 23 None No 0.01 NP (normality) Barium, total (mg/L) AD-32 0.03613 0.02607 2 No 24 0 None No 0.01 Param. AD-2 0.000599 0.0004541 0.004 24 4.167 Beryllium, total (mg/L) Nο None In(x) 0.01 Param Beryllium, total (mg/L) AD-31 0.00103 0.000854 0.004 No 23 0 None No 0.01 NP (normality) Beryllium, total (mg/L) AD-32 0.005454 0.003257 0.004 No 24 0 None sqrt(x) 0.01 Param AD-2 0.001 0.000078 24 41.67 NP (normality) Cadmium, total (mg/L) 0.005 No None No 0.01 0.0008589 Cadmium, total (mg/L) AD-31 0.000066 0.005 No 24 29.17 None No 0.01 NP (normality) Cadmium, total (mg/L) AD-32 0.0005457 0.0003527 0.005 No 24 0 None Nο 0.01 Param. 0.0009 0.00028 24 Chromium, total (mg/L) AD-2 25 NP (normality) 0.1 No None No 0.01 Chromium, total (mg/L) AD-31 0.00962 0.00039 0.1 No 22 9.091 None 0.01 NP (normality) Chromium, total (mg/L) AD-32 0.003289 0.0009703 0.1 No 24 0 0.01 Param None In(x) 24 AD-2 0.01928 0.01321 Param. Cobalt, total (mg/L) 0.0094 Yes O None 0.01 Cobalt, total (mg/L) AD-31 0.01072 0.009593 0.0094 Yes 23 None x^(1/3) 0.01 Param. Cobalt, total (mg/L) AD-32 0.05043 0.031 0.0094 Yes 24 0 None 0.01 Param. sqrt(x) Combined Radium 226 + 228 (pCi/L) AD-2 5 24 0 1.59 1.052 Nο None Nο 0.01 Param. Combined Radium 226 + 228 (pCi/L) AD-31 3.831 2.731 5 No 24 None 0.01 Param. sqrt(x) Combined Radium 226 + 228 (pCi/L) AD-32 6.061 4.293 5 No 23 0 None 0.01 Param 46.15 Fluoride, total (mg/L) AD-2 1 0.15 4 No 26 None No 0.01 NP (normality) Fluoride, total (mg/L) AD-31 0.14 No 26 46.15 None 0.01 NP (normality) No Fluoride, total (mg/L) AD-32 0.8411 0.436 No 25 20 Kaplan-Meier No 0.01 Param. 0.00046 Lead, total (mg/L) AD-2 0.005 0.005 No 24 41.67 None No 0.01 NP (normality) Lead, total (mg/L) AD-31 0.00029 No 23 34.78 0.01 NP (normality) None No Lead, total (mg/L) AD-32 0.005 0.000405 0.005 No 24 41.67 0.01 NP (normality) None No AD-2 0.05672 0.05027 23 Lithium, total (mg/L) 0.052 Nο 0 None Nο 0.01 Param Lithium, total (mg/L) AD-31 0.08916 0.076 0.052 Yes 24 0 None x^2 0.01 Param. Lithium, total (mg/L) AD-32 0.09729 0.07663 0.052 22 Param. Yes None 0.01 23 Mercury, total (mg/L) AD-2 0.0000908 0.00004609 0.002 Nο 0 None sqrt(x) 0.01 Param. AD-31 0.0005159 0.0001368 0.002 23 0 0.01 Param. Mercury, total (mg/L) No None sqrt(x) AD-32 0.004017 0.001674 0.002 No 24 0 None 0.01 Param. Mercury, total (mg/L) Molybdenum, total (mg/L) AD-2 0.005 0.00437 0.005 No 23 86.96 None Nο 0.01 NP (NDs) 77.27 NP (NDs) Molybdenum, total (mg/L) AD-31 0.005 0.000894 0.005 22 0.01 No None No Molybdenum, total (mg/L) AD-32 0.005 0.0007621 0.005 No 22 90.91 0.01 NP (NDs) 0.001918 Selenium, total (mg/L) AD-2 0.001254 0.05 Nο 24 20.83 Kanlan-Meier In(x) 0.01 Param. AD-31 0.0025 0.00038 0.05 24 29.17 0.01 Selenium, total (mg/L) No None NP (normality) No AD-32 0.00657 0.002516 0.05 24 20.83 0.01 Selenium, total (mg/L) No Kaplan-Meier x^(1/3) 0.0005 Thallium, total (mg/L) AD-2 0.0001 0.002 No 24 41 67 None Nο 0.01 NP (normality) AD-31 0.0005 0.00009 0.002 23 52.17 NP (normality) Thallium, total (mg/L) No None No 0.01 Thallium, total (mg/L) AD-32 0.001093 0.0002 0.002 23 26.09 No 0.01 NP (normality) 0.007

Non-Parametric Confidence Interval

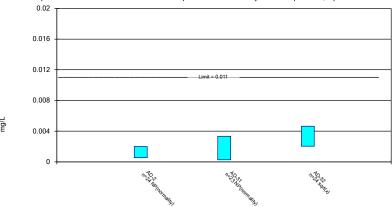
Compliance Limit is not exceeded. Per-well alpha = 0.01.



Constituent: Antimony, total Analysis Run 9/19/2023 2:54 PM View: Confidence Interval Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG

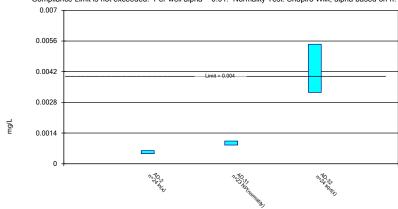
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

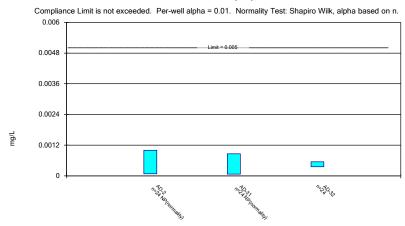
Constituent: Barium, total Analysis Run 9/19/2023 2:54 PM View: Confidence Interval Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

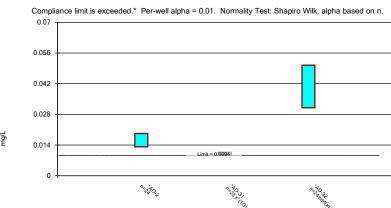


Constituent: Arsenic, total Analysis Run 9/19/2023 2:54 PM View: Confidence Interval Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

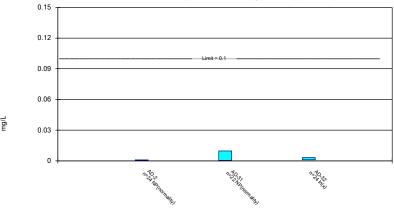

Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Parametric and Non-Parametric (NP) Confidence Interval

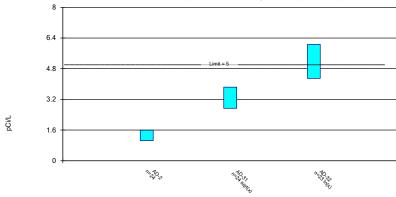
Constituent: Cadmium, total Analysis Run 9/19/2023 2:54 PM View: Confidence Interval
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP


Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG

Parametric Confidence Interval

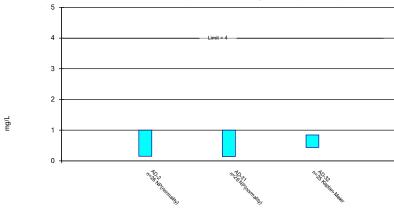
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Chromium, total Analysis Run 9/19/2023 2:54 PM View: Confidence Interval
Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

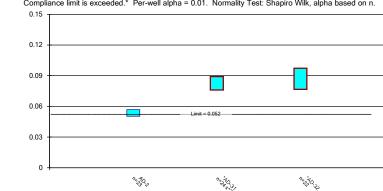
Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG


Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

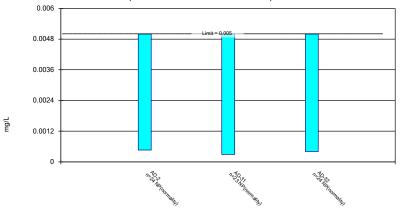
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Fluoride, total Analysis Run 9/19/2023 2:54 PM View: Confidence Interval Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

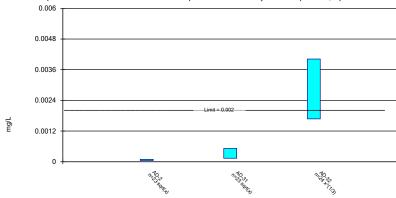
Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG


Parametric Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.



Constituent: Lead, total Analysis Run 9/19/2023 2:54 PM View: Confidence Interval Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

0.004

0.0024

0.0012

Constituent: Molybdenum, total Analysis Run 9/19/2023 2:54 PM View: Confidence Interval Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG

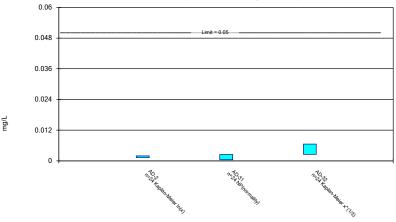
Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

0.003

0.0024

0.0012


0.0006

Constituent: Thallium, total Analysis Run 9/19/2023 2:54 PM View: Confidence Interval Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

Sanitas™ v.9.6.37a Sanitas software utilized by Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Selenium, total Analysis Run 9/19/2023 2:54 PM View: Confidence Interval Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP

engineers | scientists | innovators

STATISTICAL ANALYSIS SUMMARY EAST BOTTOM ASH POND

H.W. Pirkey Power Plant Hallsville, Texas

Prepared for

American Electric Power

1 Riverside Plaza Columbus, Ohio 43215-2372

Prepared by
Geosyntec Consultants, Inc.
500 West Wilson Bridge Road, Suite 250
Worthington, Ohio 43085

Project Number: CHA8500B

October 16, 2023

TABLE OF CONTENTS

1.	INTE	RODUCTION	1			
2.	EAS'	T BOTTOM ASH POND EVALUATION	2			
	2.1 Data Validation and QA/QC					
	2.2					
	2.2.1 Evaluation of Potential Appendix IV SSLs					
	2.2.2 Evaluation of Potential Appendix IV SSLs					
2.2.3 Evaluation of Potential Appendix III SSIs						
	2.3 Conclusions					
3.	REF	ERENCES	5			
		LIST OF TABLES				
Tab	le 1:	Groundwater Data Summary				
Tab	le 2:	Appendix IV Groundwater Protection Standards				
Tab	le 3:	Appendix III Data Summary				
		LIST OF ATTACHMENTS				
Atta	ichme	ent A: Certification by Qualified Professional Engineer				
Atta	ichme	ent B: Data Quality Review Memorandum				
Atta	achme	ent C: Statistical Analysis Output				

ACRONYMS AND ABBREVIATIONS

ASD alternative source demonstration

CCR coal combustion residuals

CFR code of federal regulations

EBAP East Bottom Ash Pond

GWPS groundwater protection standard

LCL lower confidence limit

mg/L milligrams per liter

QA/QC quality assurance and quality control

SSI statistically significant increase

SSL statistically significant level

SU standard units

TAC Texas Administrative Code

TCEQ Texas Commission on Environmental Quality

TDS total dissolved solids

UPL upper prediction limit

1. INTRODUCTION

In accordance with Texas Commission on Environmental Quality (TCEQ) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Texas Administrative Code [TAC] Title 30, Chapter 352), groundwater monitoring has been conducted at the East Bottom Ash Pond (EBAP), an existing CCR unit at the Pirkey Power Plant in Hallsville, Texas. Recent groundwater monitoring results were used to identify concentrations of Appendix IV constituents that are above site-specific groundwater protection standards (GWPSs).

Based on detection monitoring conducted in 2017 and 2018, statistically significant increases (SSIs) over background were concluded for boron, calcium, chloride, total dissolved solids (TDS), and sulfate at the EBAP. An alternative source was not identified at the time, so assessment monitoring was initiated and GWPSs were set in accordance with § 352.951(b). During 2023, sampling events for both Appendix III parameters and Appendix IV parameters, as required by § 352.951(a), were completed in February and June. During the June 2023 assessment monitoring event, statistically significant levels (SSLs) were observed for cobalt and lithium (Geosyntec 2023a). In accordance with § 352.951(e), an alternative source demonstration (ASD) was successfully completed (Geosyntec 2023b). Therefore, the unit remained in assessment monitoring. One assessment monitoring event was conducted at the EBAP in August 2023 in accordance with § 352.951(a). The results of the August 2023 assessment event are documented in this report.

Prior to conducting the statistical analyses, the groundwater data underwent several validation tests, including those for completeness, sample tracking accuracy, transcription errors, and consistent use of measurement units. No data quality issues were identified which would impact data usability.

The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. GWPSs were reestablished for the Appendix IV parameters. Confidence intervals were calculated for Appendix IV parameters at the compliance wells to assess whether SSLs of Appendix IV parameters were present above the GWPS. SSLs were identified for cobalt and lithium. Therefore, either the unit will move to an assessment of corrective measures, or an ASD will be conducted to evaluate if the unit can remain in assessment monitoring. Certification of the selected statistical methods by a qualified professional engineer is documented in Attachment A.

2. EAST BOTTOM ASH POND EVALUATION

2.1 Data Validation and QA/QC

During the August 2023 assessment monitoring event, one set of samples was collected for analysis from each background and compliance well to meet the requirements of § 352.951(a). Samples from the August 2023 sampling event were analyzed for all Appendix III and Appendix IV parameters. A summary of data collected during this assessment monitoring event are presented in Table 1.

Chemical analysis was completed by a National Environmental Laboratory Accreditation Program—certified analytical laboratory. The laboratory completed analysis of quality assurance and quality control (QA/QC) samples such as laboratory reagent blanks, continuing calibration verification samples, and laboratory fortified blanks.

A data quality review was completed to assess if the data met the objectives outlined in TCEQ Draft Technical Guidance No. 32 related to groundwater sampling and analysis (TCEQ 2020). The data were determined usable for supporting project objectives, as documented in the review memorandum provided in Attachment B. The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.10.0.12 statistics software. The export file was checked against the analytical data for transcription errors and completeness.

2.2 Statistical Analysis

Statistical analyses for the EBAP were conducted in accordance with the November 2021 *Statistical Analysis Plan* (Geosyntec 2021). Time series plots and results for all completed statistical tests are provided in Attachment C. The data obtained in August 2023 were screened for potential outliers. No outliers were identified for these events.

2.2.1 Establishment of GWPSs

A GWPS was established for each Appendix IV parameter in accordance with the Statistical Analysis Plan (Geosyntec 2021). The established GWPS was set to whichever was greater of the background concentration and the maximum contaminant level for each Appendix IV parameter. To determine background concentrations, an upper tolerance limit was calculated using data that were pooled from the background wells collected during the background monitoring and assessment monitoring events. Tolerance limits were calculated parametrically with 95% coverage and 95% confidence for chromium, combined radium, and lithium. Nonparametric tolerance limits were calculated for arsenic, barium, beryllium, cadmium, cobalt, fluoride, mercury, and selenium due to apparent nonnormal distributions, and for antimony, lead, molybdenum, and thallium due to a high nondetect frequency. Upper tolerance limits and the final GWPSs are summarized in Table 2.

2.2.2 Evaluation of Potential Appendix IV SSLs

A confidence interval was constructed for each Appendix IV parameter at each compliance well. Confidence limits were generally calculated parametrically ($\alpha = 0.01$). However, nonparametric confidence limits were calculated in some cases (e.g., when the data did not appear to be normally distributed or when the nondetect frequency was too high). An SSL was concluded if the lower confidence limit (LCL) exceeded the GWPS (i.e., if the entire confidence interval was above the GWPS). Calculated confidence limits are shown in Attachment C.

The following SSLs were identified at the Pirkey EBAP:

- The LCL for cobalt was above the GWPS of 0.00939 mg/L at AD-2 (0.0136 mg/L), AD-31 (0.00950 mg/L), and AD-32 (0.0309 mg/L).
- The LCL for lithium exceeded the GWPS of 0.0497 mg/L at AD-2 (0.0506 mg/L), AD-31 (0.0681 mg/L) and AD-32 (0.0746 mg/L).

As a result, the Pirkey EBAP will either move to an assessment of corrective measures or an alternative source demonstration will be conducted to evaluate if the unit can remain in assessment monitoring.

2.2.3 Evaluation of Potential Appendix III SSIs

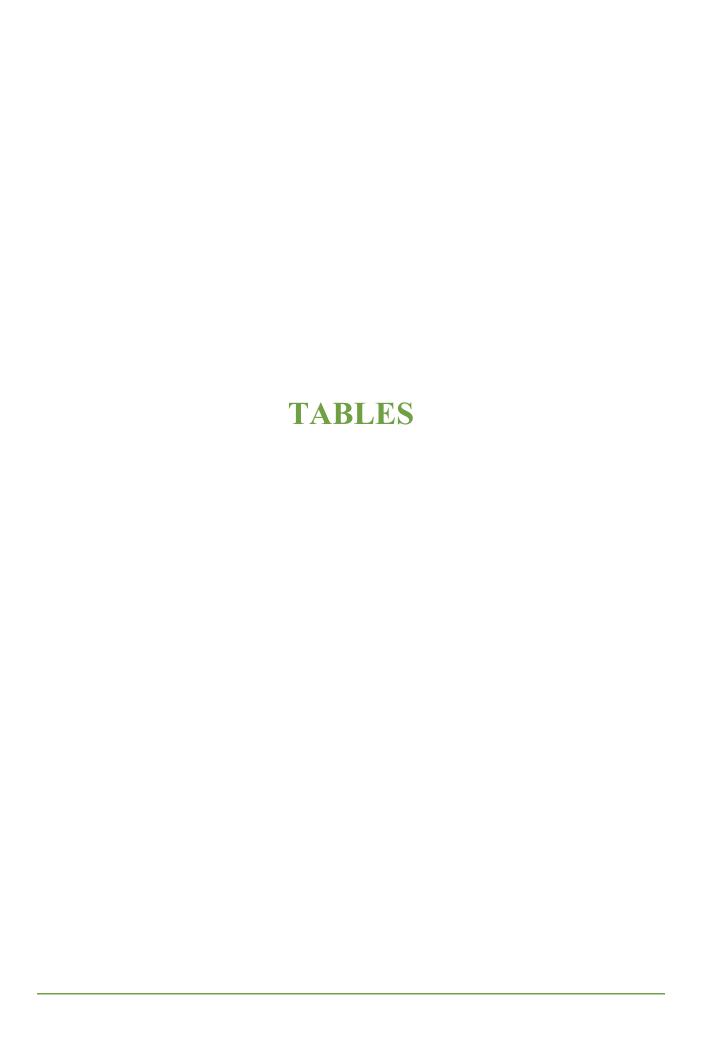
While SSLs were identified, a review of the Appendix III results were also completed to assess whether concentrations of Appendix III parameters at the compliance wells were above background concentrations. Data collected during the August 2023 assessment monitoring event from each compliance well were compared to previously established prediction limits to assess whether the results are above background values (Table 3). The following concentrations were above the upper prediction limits (UPLs):

- Boron concentrations were above the interwell UPL of 0.0437 mg/L at AD-2 (3.05 mg/L) and AD-32 (0.418 mg/L).
- Calcium concentrations were above the interwell UPL of 2.94 mg/L at AD-2 (3.37 mg/L) and AD-32 (3.71 mg/L).
- Chloride concentrations were above the interwell UPL of 8.84 mg/L at AD-2 (30.9 mg/L), AD-31 (21.9 mg/L), and AD-32 (12.7 mg/L).
- Sulfate concentrations were above the interwell UPL of 24.7 mg/L at AD-2 (271 mg/L), AD-31 (69.4 mg/L), and AD-32 (73.0 mg/L).
- TDS concentrations were above the interwell UPL of 170 mg/L at AD-2 (490 mg/L), AD-31 (240 mg/L), and AD-32 (190 mg/L).

While the prediction limits were calculated for a one-of-two retesting procedure, SSIs were conservatively assumed if the August 2023 sample was above the UPL or below the lower

prediction limit in the case of pH. Based on these results, concentrations of Appendix III constituents appear to be above background concentrations.

2.3 Conclusions


A semiannual assessment monitoring event was conducted in accordance with the CCR Rule. The laboratory and field data were reviewed prior to statistical analysis, and no QA/QC issues that impacted data usability were identified. A review of outliers identified no potential outliers in the August 2023 data. GWPSs were reestablished for the Appendix IV parameters. A confidence interval was constructed at each compliance well for each Appendix IV parameter; SSLs were concluded if the entire confidence interval was above the GWPS. SSLs were identified for cobalt and lithium. Appendix III parameters were compared to calculated prediction limits, with exceedances identified for boron, calcium, chloride, sulfate, and TDS.

Based on this evaluation, the Pirkey EBAP CCR unit will either move to an assessment of corrective measures or an ASD will be conducted to evaluate if the unit can remain in assessment monitoring.

3. REFERENCES

- Geosyntec. 2021. Statistical Analysis Plan H.W. Pirkey Power Plant. Geosyntec Consultants, Inc. November.
- Geosyntec. 2023a. Statistical Analysis Summary East Bottom Ash Pond, Pirkey, Hallsville, Texas. Geosyntec Consultants, Inc. October
- Geosyntec. 2023b. Alternative source Demonstration Report Texas State CCR Rule. H.W. Pirkey Power Plant, East Bottom Ash Pond, Hallsville, Texas. Geosyntec Consultants, Inc. October.
- TCEQ. 2020. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action Draft Technical Guidance No. 32. May.

Table 1. Groundwater Data Summary Statistical Analysis Summary Pirkey Plant - East Bottom Ash Pond

Parameter	Unit	AD-2	AD-4	AD-12	AD-18	AD-31	AD-32
rarameter	Unit	8/23/2023	8/23/2023	8/23/2023	8/23/2023	8/23/2023	8/23/2023
Antimony	μg/L	0.008 J1	0.011 J1	0.013 J1	0.056 J1	0.1 U1	0.013 J1
Arsenic	μg/L	0.78	0.36	0.1	0.54	0.32	2.19
Barium	μg/L	13.8	117	15.6	70.6	31.7	22.7
Beryllium	μg/L	0.715	0.246	0.129	0.115	0.818	0.921
Boron	mg/L	3.05	0.027 J1	0.017 J1	0.012 J1	0.021 J1	0.418
Cadmium	μg/L	0.116	0.021	0.007 J1	0.015 J1	0.052	0.071
Calcium	mg/L	3.37	2.18	0.22	3.17	2.10	3.71
Chloride	mg/L	30.9	3.88	4.74	5.02	21.9	12.7
Chromium	μg/L	0.48	0.40	0.45	1.15	0.56	0.83
Cobalt	μg/L	25.8	3.63	0.855	0.731	8.14	11.3
Combined Radium	pCi/L	2.49	2.24	1.34	1.27	5.5	5.16
Fluoride	mg/L	0.20	0.04 J1	0.07	0.02 J1	0.1	0.07
Lead	μg/L	0.64	0.07 J1	0.11 J1	0.43	0.32	0.26
Lithium	mg/L	0.0601	0.0243	0.00494	0.0119	0.0644	0.0482
Mercury	μg/L	0.270	0.003 J1	0.005 U1	0.005	0.890	0.950
Molybdenum	μg/L	0.5 U1	0.5 U1	0.5	0.1 J1	0.5 U1	0.5 U1
Selenium	μg/L	2.72	0.04 J1	0.23 J1	0.18 J1	0.33 J1	1.04
Sulfate	mg/L	271	18.5	3.5	6.9	69.4	73.0
Thallium	μg/L	0.11 J1	0.08 J1	0.2 U1	0.03 J1	0.08 J1	0.10 J1
Total Dissolved Solids	mg/L	490	130	75	88	240	190
рН	SU	3.77	4.61	3.84	4.37	4.01	3.61

Notes:

μg/L: micrograms per liter mg/L: milligrams per liter pCi/L: picocuries per liter

SU: standard unit

U1: Non-detect value. For statistical analysis, parameters which were not detected were replaced with the reporting limit.

J1: Estimated value. Parameter was detected in concentrations below the reporting limit.

Table 2. Appendix IV Groundwater Protection Standards Statistical Analysis Summary Pirkey Plant - East Bottom Ash Pond

Constituent Name	MCL	Calculated UTL	GWPS
Antimony, Total (mg/L)	0.00600	0.000100	0.00600
Arsenic, Total (mg/L)	0.0100	0.0110	0.0110
Barium, Total (mg/L)	2.00	0.183	2.00
Beryllium, Total (mg/L)	0.00400	0.00115	0.00400
Cadmium, Total (mg/L)	0.00500	0.000260	0.00500
Chromium, Total (mg/L)	0.100	0.00288	0.100
Cobalt, Total (mg/L)	n/a	0.00939	0.00939
Combined Radium, Total (pCi/L)	5.00	3.23	5.00
Fluoride, Total (mg/L)	4.00	0.257	4.00
Lead, Total (mg/L)	n/a	0.00070	0.00070
Lithium, Total (mg/L)	n/a	0.0497	0.0497
Mercury, Total (mg/L)	0.00200	0.0000640	0.00200
Molybdenum, Total (mg/L)	n/a	0.00070	0.00070
Selenium, Total (mg/L)	0.0500	0.00245	0.0500
Thallium, Total (mg/L)	0.00200	0.00187	0.00200

Notes:

- 1. Calculated UTL (upper tolerance limit) represents site-specific background values.
- 2. Grey cells indicate the GWPS is based on the calculated UTL. Either the UTL is higher than the MCL or an MCL does not exist.

GWPS: groundwater protection standard

MCL: maximum contaminant level

mg/L: milligrams per liter pCi/L: picocuries per liter

n/a: not applicable

Table 3. Appendix III Data Summary Statistical Analysis Report Pirkey - East Bottom Ash Pond

Analyte	Unit	Description	AD-2	AD-31	AD-32
Analyte	Omt	Description	8/23/2023	8/23/2023	8/23/2023
Boron	mg/L	Interwell Background Value (UPL)		0.0437	
Doron	mg/L	Analytical Result	3.05	0.021	0.418
Calcium	mg/L	Interwell Background Value (UPL)		2.94	
Calcium	mg/L	Analytical Result	3.37	2.10	3.71
Chloride	mg/L	Interwell Background Value (UPL)		8.84	
Cilioride	mg/L	Analytical Result	30.9	21.9	12.7
Fluoride	mg/L	Interwell Background Value (UPL)		0.257	
Tuoride	mg/L	Analytical Result	0.20	0.1	0.07
		Intrawell Background Value (UPL)	4.7	5.1	4.3
pН	SU	Intrawell Background Value (LPL)	3.4	2.8	2.6
		Analytical Result	3.8	4.0	3.6
Sulfate	mg/L	Interwell Background Value (UPL)		24.7	
Surface	mg/L	Analytical Result	271	69.4	73.0
Total Dissalved Colida		Interwell Background Value (UPL)		170	
Total Dissolved Solids	mg/L	Analytical Result	490	240	190

Notes:

1. Bold values exceed the background value.

2. Background values are shaded gray.

LPL: lower prediction limit mg/L: milligrams per liter

SU: standard units

UPL: upper prediction limit

ATTACHMENT A Certification by Qualified Professional Engineer

Certification by Qualified Professional Engineer

I certify that selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Pirkey East Bottom Ash Pond CCR management area and that the requirements of § 352.931(a) have been met.

David Anthony Mill		STATE OF TELL	
Printed Name of Licens		DAVID ANTHONY MILLER 112498	
David Lothony		SO ONAL ENG	
Signature			
112498	Texas	10.16	.2023
License Number	Licensing State	Date	

ATTACHMENT B Data Quality Review Memorandum

Memorandum

Date: October 8, 2023

To: David Miller (AEP)

Copies to: Leslie Fuerschbach (AEP)

From: Allison Kreinberg (Geosyntec)

Subject: Data Quality Review – Pirkey Power Plant

August 2023 Sampling Event - EBAP

This memorandum summarizes the findings of a data quality review for groundwater samples collected at the Pirkey Power Plant in Hallsville, Texas in August 2023. The groundwater samples were collected to comply with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR Rule") for the East Bottom Ash Pond (EBAP) regulated unit. 40 CFR 257 Appendix III and IV constituents were analyzed.

The following sample data groups (SDGs) were associated with the groundwater samples collected during the August 2023 sampling event and are reviewed in this memorandum:

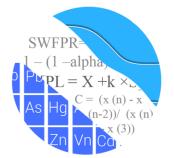
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 232660
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 232672

The data included in these SDGs were reviewed to assess if they met the objectives outlined in TCEQ Draft Technical Guideline No. 32¹ prior to submittal of this data to TCEQ.

The following data quality issues were identified:

• As reported in SDG 232672, radium-228 was detected in the method blank at levels above the method criteria. All radium-228 samples associated with this SDG were flagged B1: Analyte detected in method blank (MB) at or above the method criteria. The detected

¹ TCEQ. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action: Technical Guidance No. 32. May 2020.


Data Quality Review – Pirkey August 2023 EBAP Data October 8, 2023 Page 2

radium-228 concentration in the method blank was more than 10% of the detected values for radium-228 in all groundwater samples, which could result in high bias in the radium-228 results for all groundwater samples.

Based on these findings, the majority of the data reported in these SDGs are considered accurate and complete. Although the QC failures mentioned above will result in some limitations of data use since the affected results are considered estimated or have elevated reporting limits, the data are considered usable for supporting project objectives.

ATTACHMENT C Statistical Analysis Output

GROUNDWATER STATS CONSULTING

October 16, 2023

Geosyntec Consultants Attn: Ms. Allison Kreinberg 500 W. Wilson Bridge Road, Suite 250 Worthington, OH 43085

Re: Pirkey EBAP - Assessment Monitoring Event & Background Update 2023

Dear Ms. Kreinberg,

Groundwater Stats Consulting (GSC), formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the evaluation of groundwater data and the background update through 2023 for American Electric Power Company's Pirkey East Bottom Ash Pond (EBAP). The analysis complies with the Texas Commission of Environmental Quality rule 30 TAC 352 as well as with the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling at each of the wells below began at Pirkey EBAP for the Coal Combustion Residuals (CCR) program in 2016. The monitoring well network, as provided by Geosyntec Consultants, consists of the following:

Upgradient wells: AD-4, AD-12, and AD-18
 Downgradient wells: AD-2, AD-31, and AD-32

Data were sent electronically, and the statistical analysis was reviewed by Kristina Rayner, Senior Statistician and Founder of Groundwater Stats Consulting. The analysis was conducted according to the Statistical Analysis Plan and initial screening evaluation prepared in November 2017 by GSC and approved by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to GSC.

The CCR program consists of the following constituents listed below. The terms "constituent" and "parameter" are interchangeable.

- Appendix III (Detection Monitoring) boron, calcium, chloride, fluoride, pH, sulfate, and TDS
- Appendix IV (Assessment Monitoring) antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Time series and box plots for Appendix IV parameters are provided for all wells and constituents and are used to evaluate concentrations over the entire record (Figures A & B, respectively). A summary of the values identified as outliers in this report and through previous screenings follows this letter. These values are deselected prior to the statistical analysis. All flagged values may also be seen in a lighter font and disconnected symbol on the time series graphs (Figure C).

Statistical limits for Appendix IV constituents are updated annually with the last update performed in February 2023 using data through November 2022. During this analysis, pooled upgradient well data were screened, as described below, through August 2023 for the purpose of updating background limits. Due to recent pond closure activities, statistical limits for Appendix III constituents will be updated during the Fall 2024.

Summary of Statistical Methods

Assessment monitoring for Appendix IV parameters involves the comparison of a confidence interval for each parameter at downgradient wells against the corresponding Groundwater Protection Standard (GWPS). The GWPS is determined for each parameter as the highest limit of the Maximum Contaminant Levels (MCLs) or background limits determined from tolerance limits constructed from pooled upgradient well data.

Prior to computing tolerance limits on upgradient well data or confidence intervals on downgradient well data, the distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric tolerance limits and confidence intervals as appropriate, based on the following criteria.

• No statistical analyses are required on wells and analytes containing 100% non-detects (USEPA Unified Guidance, 2009, Chapter 6).

- When data contain <15% non-detects, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data for parametric limits. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric tolerance limits are used on data containing greater than 50% nondetects.

Evaluation of Appendix IV Parameters – Conducted in October 2023

Prior to evaluating Appendix IV parameters, background data are screened through visual screening and Tukey's outlier test on pooled upgradient wells for potential outliers and extreme trending patterns that would lead to artificially elevated statistical limits.

For the current analysis, Tukey's outlier test on pooled upgradient well data through August 2023 identified outliers for fluoride; however, these low-level measurements were similar to remaining concentrations among upgradient wells; therefore, these values were not flagged as outliers. No additional values were flagged as outliers as they were similar to concentrations at neighboring upgradient wells or were below the MCL.

Additionally, downgradient well data through August 2023 were screened through visual screening using time series graphs. Since the downgradient well data are used to construct confidence intervals, a regulatory conservative approach is taken in that values that are marginally high relative to the rest of the data are retained unless there is particular justification for excluding them. No changes were to previously flagged data were made.

Interwell Upper Tolerance Limits

Interwell upper tolerance limits were used to calculate background limits from all available pooled upgradient well data through August 2023 for Appendix IV parameters to determine the background limit for each constituent (Figure D). For parametric limits a target of 95% confidence and 95% coverage is used. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples.

Groundwater Protection Standards

Background limits were compared to the Maximum Contaminant Levels (MCLs) in the Groundwater Protection Standard (GWPS) table following this letter to determine the highest limit for use as the GWPS in the Confidence Interval comparisons (Figure E).

Confidence Intervals

Confidence intervals were then constructed on downgradient wells with data through August 2023 for each of the Appendix IV parameters using either parametric or nonparametric intervals depending on the data distribution and percentage of non-detects (Figure F). When data followed a normal or transformed-normal distribution, parametric confidence intervals were used for Appendix IV parameters. Nonparametric confidence intervals, which use the largest and smallest order statistics depending on the sample size as interval limits, were constructed when data did not follow a normal or transformed-normal distribution or when there were greater than 50% non-detects. The lower confidence limit, which is constructed with 99% confidence for parametric confidence intervals, is compared to the GWPS prepared as described above. The confidence level associated with nonparametric confidence intervals is dependent upon the number samples available.

Only when the entire confidence interval is above the GWPS is the well/constituent pair considered to exceed its respective standard. Both a tabular summary and graphical presentation of the confidence interval results follow this letter. Exceedances were noted for the following well/constituent pairs:

Cobalt: AD-2, AD-31, and AD-32
 Lithium: AD-2, AD-31, and AD-32

<u>Trend Test Evaluation – Appendix IV</u>

When confidence interval exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable at the 95% confidence level (Figure G). Utilizing the 95% confidence level for trend tests readily identifies significant trends and is more sensitive than the 99% confidence level without drastically increasing the false negative rate. Upgradient wells are included in the trend analyses for all parameters found to exceed their prediction limit in downgradient wells. When similar patterns exist upgradient of the site, it is an indication of variability in groundwater which

may be unrelated to practices at the site. Statistically significant trends were identified for the following well/constituent pairs:

Increasing

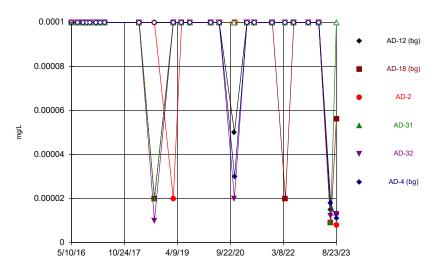
Cobalt: AD-2Lithium: AD-2

Decreasing

Cobalt: AD-12, AD-18, AD-4 (all three upgradient), and AD-32

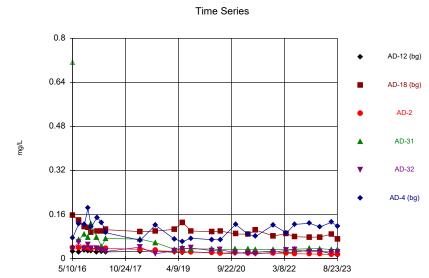
• Lithium: AD-18 (upgradient), AD-31, and AD-32

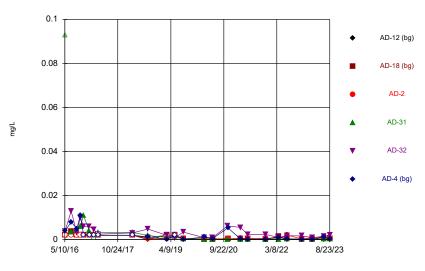
Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Pirkey EBAP. If you have any questions or comments, please feel free to contact me.


For Groundwater Stats Consulting,

Andrew T. Collins Project Manager Kristina L. Rayner Senior Statistician

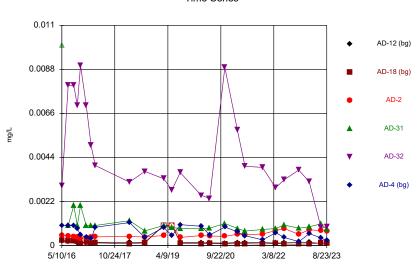
Kristina Rayner


FIGURE A Time Series

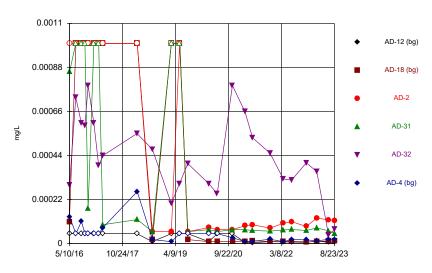

Constituent: Antimony, total Analysis Run 10/10/2023 10:05 AM
Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG

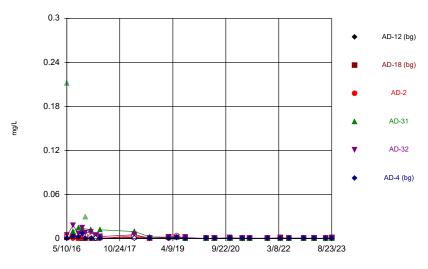
Constituent: Barium, total Analysis Run 10/10/2023 10:05 AM
Pirkey EBAP Data: Pirkey EBAP

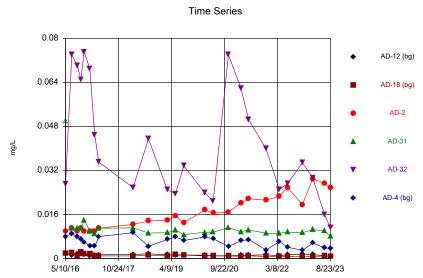

Time Series

Constituent: Arsenic, total Analysis Run 10/10/2023 10:05 AM
Pirkey EBAP Data: Pirkey EBAP

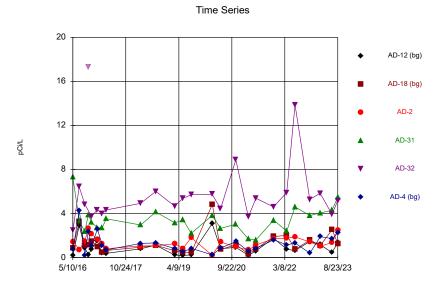

Sanitas™ v.10.0.12 Software licensed to . UG Hollow symbols indicate censored values.

Time Series

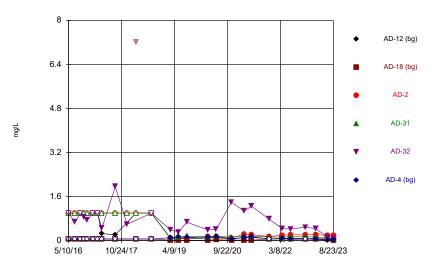

Constituent: Beryllium, total Analysis Run 10/10/2023 10:05 AM
Pirkey EBAP Data: Pirkey EBAP


Constituent: Cadmium, total Analysis Run 10/10/2023 10:05 AM
Pirkey EBAP Data: Pirkey EBAP

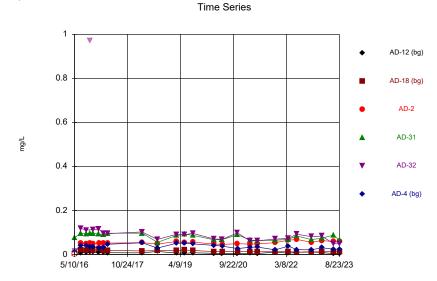
Time Series

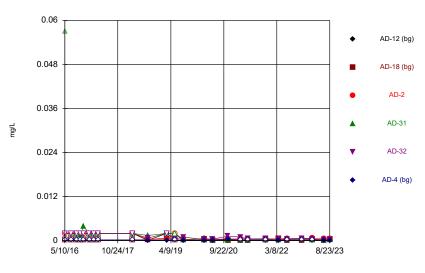

Constituent: Chromium, total Analysis Run 10/10/2023 10:05 AM
Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG

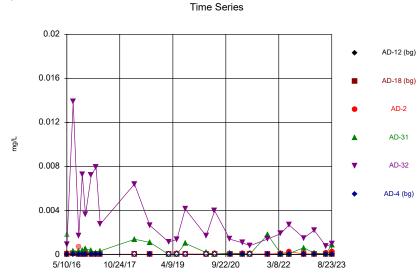

Constituent: Cobalt, total Analysis Run 10/10/2023 10:05 AM
Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG

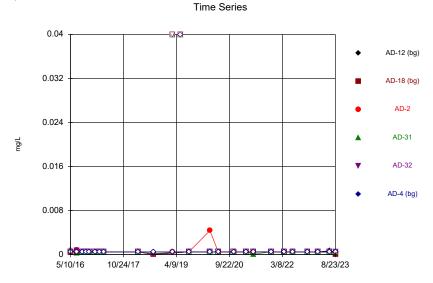

Constituent: Combined Radium 226 + 228 Analysis Run 10/10/2023 10:05 AM
Pirkey EBAP Data: Pirkey EBAP


Constituent: Fluoride, total Analysis Run 10/10/2023 10:05 AM
Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG Hollow symbols indicate censored values.


Constituent: Lithium, total Analysis Run 10/10/2023 10:05 AM
Pirkey EBAP Data: Pirkey EBAP

Time Series


Constituent: Lead, total Analysis Run 10/10/2023 10:05 AM
Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG Hollow symbols indicate censored values.

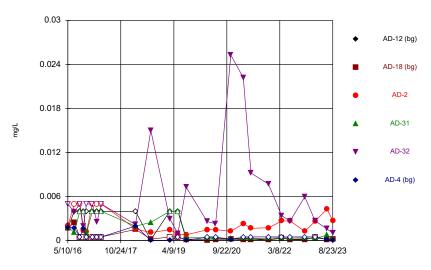
Constituent: Mercury, total Analysis Run 10/10/2023 10:05 AM
Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG Hollow symbols indicate censored values

Constituent: Molybdenum, total Analysis Run 10/10/2023 10:05 AM
Pirkey EBAP Data: Pirkey EBAP

Time Series

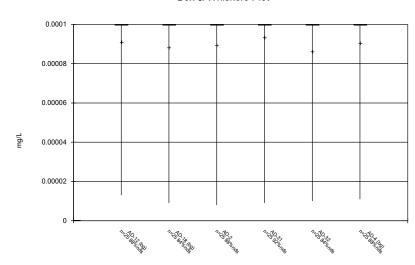
Sanitas™ v.10.0.12 Software licensed to . UG Hollow symbols indicate censored values.


0.01 AD-12 (bg) 0.008 AD-18 (bg) AD-2 0.006 AD-31 mg/L 0.004 AD-32 AD-4 (bg) 0.002 5/10/16 10/24/17 4/9/19 9/22/20 3/8/22 8/23/23

Constituent: Thallium, total Analysis Run 10/10/2023 10:05 AM

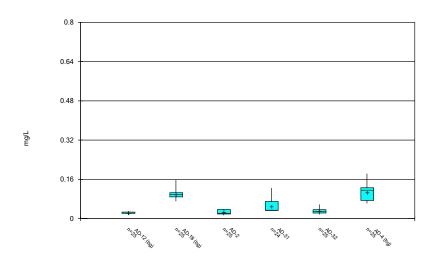
Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG Hollow symbols indicate censored values.

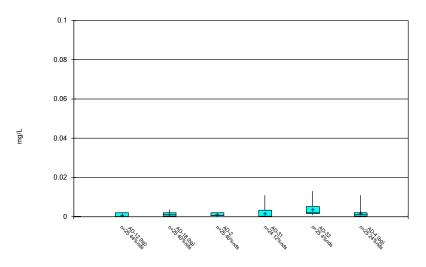

Time Series

Constituent: Selenium, total Analysis Run 10/10/2023 10:05 AM
Pirkey EBAP Data: Pirkey EBAP

FIGURE B Box Plots

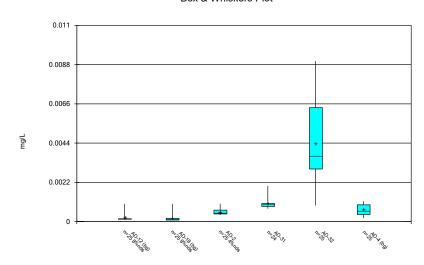

Box & Whiskers Plot

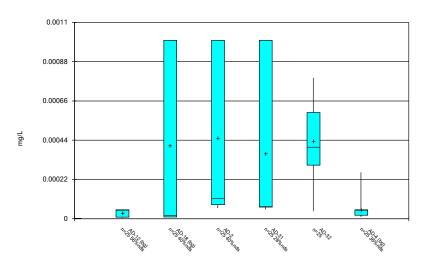
Constituent: Antimony, total Analysis Run 10/10/2023 10:08 AM
Pirkey EBAP Data: Pirkey EBAP


Sanitas™ v.10.0.12 Software licensed to . UG

Box & Whiskers Plot

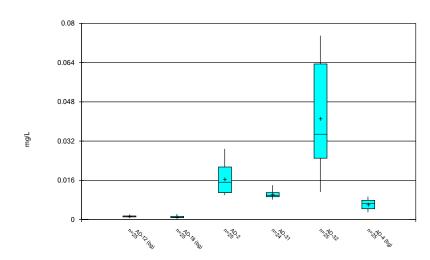
Constituent: Barium, total Analysis Run 10/10/2023 10:08 AM
Pirkey EBAP Data: Pirkey EBAP


Box & Whiskers Plot

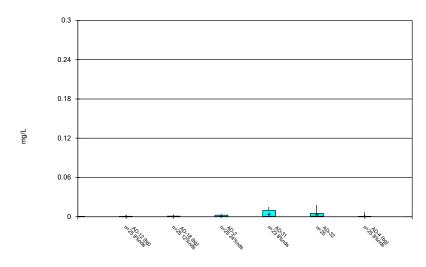

Constituent: Arsenic, total Analysis Run 10/10/2023 10:08 AM
Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG

Box & Whiskers Plot

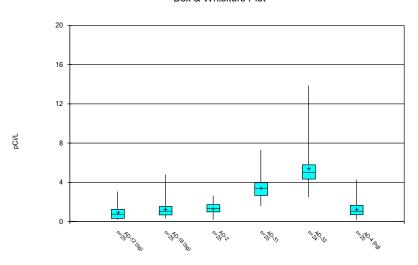

Box & Whiskers Plot

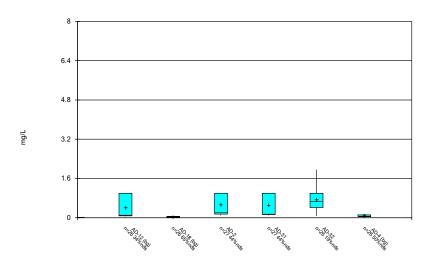
Constituent: Cadmium, total Analysis Run 10/10/2023 10:08 AM
Pirkey EBAP Data: Pirkey EBAP


Sanitas™ v.10.0.12 Software licensed to . UG

Box & Whiskers Plot

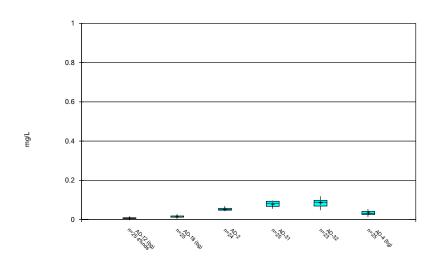
Constituent: Cobalt, total Analysis Run 10/10/2023 10:09 AM
Pirkey EBAP Data: Pirkey EBAP


Box & Whiskers Plot

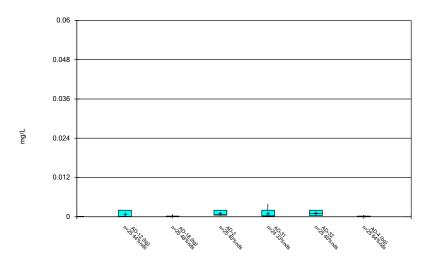

Constituent: Chromium, total Analysis Run 10/10/2023 10:08 AM
Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG

Box & Whiskers Plot

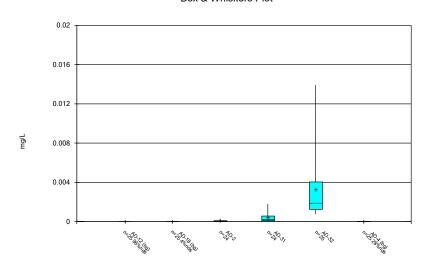

Box & Whiskers Plot

Constituent: Fluoride, total Analysis Run 10/10/2023 10:09 AM
Pirkey EBAP Data: Pirkey EBAP


Sanitas™ v.10.0.12 Software licensed to . UG

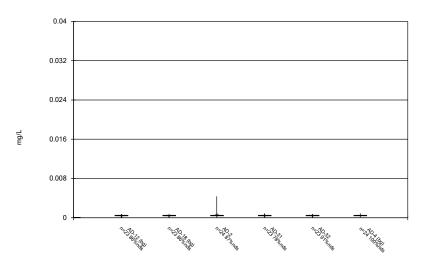
Box & Whiskers Plot

Constituent: Lithium, total Analysis Run 10/10/2023 10:09 AM
Pirkey EBAP Data: Pirkey EBAP


Box & Whiskers Plot

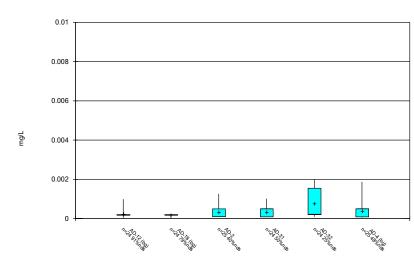
Constituent: Lead, total Analysis Run 10/10/2023 10:09 AM
Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG


Box & Whiskers Plot

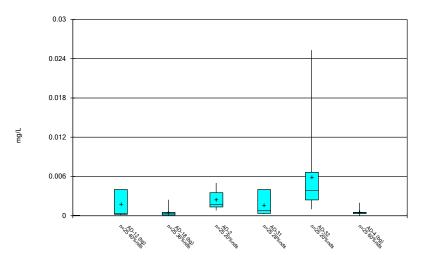
Constituent: Mercury, total Analysis Run 10/10/2023 10:09 AM
Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG



Constituent: Molybdenum, total Analysis Run 10/10/2023 10:09 AM
Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG


Box & Whiskers Plot

Constituent: Thallium, total Analysis Run 10/10/2023 10:09 AM
Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG

Box & Whiskers Plot

Constituent: Selenium, total Analysis Run 10/10/2023 10:09 AM Pirkey EBAP Data: Pirkey EBAP

FIGURE C Outlier Summary

Outlier Summary

Pirkey EBAP Data: Pirkey EBAP Printed 10/10/2023, 10:13 AM

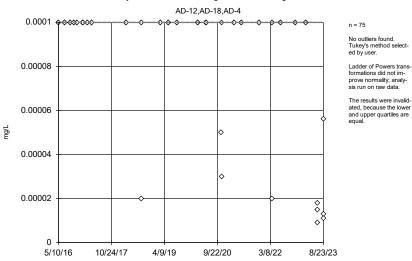
		tol (mg/L) sa (mg/L	e _{tal} (mg	IL) total (m	ig/L) (mg/L)	. padium	226 + 228 (pCi ride, total (mg/L AD-31 Lead	L) . (ma/L)	(mg/L) (mg/L)
	AD-31 Arse	nic, total (mg/L AD-31 Bariu) _{lim, total (mg/L AD-31 Ber)}	.) _{Villium, total} (mg AD-31 Chro	/L) mium, total (m AD-31 Cob	ig/L) alt, total (mg/L) AD-32 Com	bined Radii AD-32 Fluo	226 + 226 (ing/L ride, total (mg/L AD-31 Lead	AD-2 Lithiun	n, total (mg/L) AD-32 Lithium, total (mg/L)
5/11/2016	0.093 (o)	0.712 (o)	0.01 (o)	0.212 (o)	0.05 (o)			0.057 (o)	<0.001 (o)	0.016 (o)
9/7/2016										
10/12/2016						17.32 (o)				0.972 (o)
11/14/2016				0.03 (o)						
3/21/2018							7.2 (o)			
2/27/2019										
2/28/2019										
21/2019										
22/2019										
/23/2019										
	AD-2 Mercu	_{ary, total} (mg/L) AD-31 Merc	bury, total (mg/ AD-12 Mol	L) ybdenum, total AD-18 Moly	(mg/L) bdenum, total AD-2 Molyt	(mg/L) odenum, total (r AD-31 Moly	ng/L) bdenum, total AD-32 Moly	(mg/L) bdenum, total (AD-4 Molyb	mg/L) Henum, total (m AD-12 Thalli	ng/L) um, total (mg/L) AD-18 Thallium, total (mg/L
'11/2016	AD-2 Mercu	_{hry, total} (mg/L) AD-31 Merc 0.001797 (c		L) _{/bdenum, total} AD-18 Moly	(mg/L) bdenum, total AD-2 Moly ^t	(mg/L) _{denum,} _{total} (r AD-31 Moly	ng/L) bdenum, total AD-32 Moly	(mg/L) bdenum, total (AD-4 Molyb	mg/L) Henum, total (m AD-12 Thalli	ng/L) um, total (mg/L) AD-18 Thallium, total (mg/L
	AD-2 Mercu 0.000675 (c	0.001797 (c		L) ybdenum, total AD-18 Moly	_(mg/L) _{bdenum, total} AD-2 Moly ^r	(mg/L) _{odenum, total} (r AD-31 Moly	ng/L) bdenum, total AD-32 Moly	(mg/L) bdenum, total (AD-4 Molyb ^o	mg/L) denum, total (n AD-12 Thalli	ng/L) um, total (mg/L) AD-18 Thallium, total (mg/L
/7/2016		0.001797 (c		L) ybdenum, total AD-18 Moly	_(mg/L) bdenum, total AD-2 Moly ^t	(mg/L) odenum, total (r AD-31 Moly	ngIL) bdenum, total AD-32 Moly	(mg/L) bdenum, total (AD-4 Molyb	mg/L) Henum, total (m AD-12 Thalli	ng/L) um, total (mg/L) AD-18 Thallium, total (mg/L
77/2016 0/12/2016		0.001797 (c		L) pdenum, total AD-18 Moly	_(mg/L) bde _{num, t} otal AD-2 Moly ^t	(mg/L) odenum, total (r AD-31 Moly	ng/L) bdenum, total AD-32 Moly	(mg/L) bdenum, total (AD-4 Molyb	mg/L) Jenum, total (n AD-12 Thalli	ng/L) um, _{total} (mg/L) AD-18 Thallium, total (mg/L
/7/2016 0/12/2016 1/14/2016		0.001797 (c		L) pdenum, total AD-18 Moly	(mg/L) bdenum, total AD-2 Molyf	(mg/L) denum, total (r AD-31 Moly	_{ng} lL) bdenum, total AD-32 Moly	(mg/L) bdenum, total (AD-4 Molyb	mg/L) Jenum, total (m AD-12 Thalli	ng/L) um, _{total} (mg/L) AD-18 Thallium, total (mg/L
/7/2016 0/12/2016 1/14/2016 /21/2018		0.001797 (c		L) bdenum, total AD-18 Moly	(mg/L) bdenum, total AD-2 Molyf	(mg/L) ddenum, total (r AD-31 Moly	ng/L) bdenum, total AD-32 Moly	(mg/L) bdenum, total (AD-4 Molyb	mg/L) Jenum, total (n AD-12 Thalli AD-10 Thalli	ng/L) um, total (mg/L) AD-18 Thallium, total (mg/L
/7/2016 0/12/2016 1/14/2016 /21/2018 /27/2019		0.001797 (c))	L) pdenum, total AD-18 Moly AD-18 Moly	(mg/L) bdenum, total AD-2 Moly ^t	(mg/L) denum, total (r AD-31 Moly AD-36 Moly	ng/L) bdenum, total bD-32 Moly AD-32 Moly	(mg/L) ibdenum, total (AD-4 Molybi		ng/L) um, total (mg/L) AD-18 Thallium, total (mg/L AO-18 (mg/L)
/7/2016 0/12/2016 1/14/2016 //21/2018 //27/2019 //28/2019		0.001797 (c))		(mg/L) bdenum, total AD-2 Molyf			(mg/L) ibdenum, total (AD-4 Molyb		
5/11/2016 9/7/2016 10/12/2016 11/14/2016 3/21/2018 2/27/2019 2/28/2019 5/21/2019 5/22/2019		0.001797 (c	<0.04 (o)		(mg/L) bdenum, total AD-2 Molyt 		<0.04 (o)	(mg/L) bdenum, total (AD-4 Molyb		

AD-31 Thailium, total (mg/L) AD-32 Thailium, total (mg/L)

5/11/2016 9/7/2016 10/12/2016 11/14/2016 3/21/2018 2/27/2019 2/28/2019 <0.01 (o) <0.01 (o) 5/21/2019 5/22/2019 5/23/2019

Tukey's Outlier Test - Upgradient Wells - Significant Results

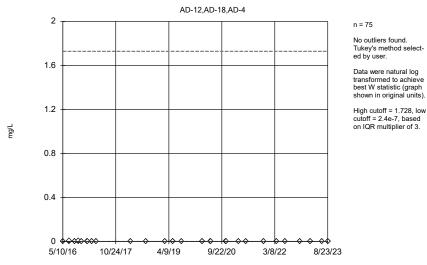
Pirkey EBAP Data: Pirkey EBAP Printed 10/10/2023, 10:11 AM


Constituent	Well	<u>Outlier</u>	Value(s)	Metho	d Alpha 1	<u>1</u>	<u>Mean</u>	Std. Dev.	Distribution	Normality Test
Fluoride, total (mg/L)	AD-12,AD-18,AD-4	Yes	0.2565,0.213,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0	NP	NaN 7	78 (0.06987	0.03955	x^(1/3)	ShapiroFrancia

Tukey's Outlier Test - Upgradient Wells - All Results

Pirkey EBAP Data: Pirkey EBAP Printed 10/10/2023, 10:11 AM

Constituent	Well	Outlier	Value(s)	Method	<u>Alpha</u>	<u>N</u>	Mean	Std. Dev.	Distribution	Normality Test
Antimony, total (mg/L)	AD-12,AD-18,AD-4	n/a	n/a	NP	NaN	75	0.0000898	90.0000265	6 unknown	ShapiroFrancia
Arsenic, total (mg/L)	AD-12,AD-18,AD-4	No	n/a	NP	NaN	75	0.001415	0.001791	ln(x)	ShapiroFrancia
Barium, total (mg/L)	AD-12,AD-18,AD-4	No	n/a	NP	NaN	75	0.07659	0.04305	normal	ShapiroFrancia
Beryllium, total (mg/L)	AD-12,AD-18,AD-4	No	n/a	NP	NaN	75	0.0003563	0.0003327	ln(x)	ShapiroFrancia
Cadmium, total (mg/L)	AD-12,AD-18,AD-4	No	n/a	NP	NaN	75	0.0000376	20.0000367	ln(x)	ShapiroFrancia
Chromium, total (mg/L)	AD-12,AD-18,AD-4	No	n/a	NP	NaN	75	0.0007677	0.0009891	ln(x)	ShapiroFrancia
Cobalt, total (mg/L)	AD-12,AD-18,AD-4	No	n/a	NP	NaN	75	0.002849	0.002562	ln(x)	ShapiroFrancia
Combined Radium 226 + 228 (pCi/L)	AD-12,AD-18,AD-4	No	n/a	NP	NaN	75	1.17	0.8985	ln(x)	ShapiroFrancia
Fluoride, total (mg/L)	AD-12,AD-18,AD-4	Yes	0.2565,0.213,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0	NP	NaN	78	0.06987	0.03955	x^(1/3)	ShapiroFrancia
Lead, total (mg/L)	AD-12,AD-18,AD-4	No	n/a	NP	NaN	75	0.0001745	0.0001033	ln(x)	ShapiroFrancia
Lithium, total (mg/L)	AD-12,AD-18,AD-4	No	n/a	NP	NaN	75	0.01934	0.01322	x^(1/3)	ShapiroFrancia
Mercury, total (mg/L)	AD-12,AD-18,AD-4	No	n/a	NP	NaN	75	0.0000099	98.0000097	1 7 h(x)	ShapiroFrancia
Molybdenum, total (mg/L)	AD-12,AD-18,AD-4	n/a	n/a	NP	NaN	75	0.0004844	0.0000883	3 unknown	ShapiroFrancia
Selenium, total (mg/L)	AD-12,AD-18,AD-4	No	n/a	NP	NaN	75	0.000495	0.0004989	ln(x)	ShapiroFrancia
Thallium, total (mg/L)	AD-12,AD-18,AD-4	n/a	n/a	NP	NaN	75	0.0002123	0.0002372	unknown	ShapiroFrancia

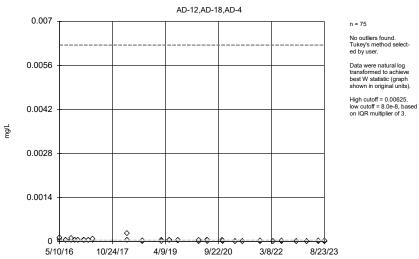

Constituent: Antimony, total Analysis Run 10/10/2023 10:10 AM View: Outliers - Upgradient Wells
Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG

Tukey's Outlier Screening, Pooled Background AD-12,AD-18,AD-4 0.4 n = 75 No outliers found. Tukey's method selected by user. 0.26 Ladder of Powers transformations did not improve normality; analysis run on raw data. \Diamond **\$** High cutoff = 0.3685. low cutoff = -0.23, based 0.12 800 S $\Diamond \Diamond$ ♦ ♦ ♦ on IQR multiplier of 3. \Diamond |_♦ ♦ $\Diamond \Diamond$ o‱∞ - 0-00-0 000 0 ¢¢. -0.02 -0.16 -0.3 5/10/16 10/24/17 4/9/19 9/22/20 3/8/22 8/23/23

Constituent: Barium, total Analysis Run 10/10/2023 10:10 AM View: Outliers - Upgradient Wells
Pirkey EBAP Data: Pirkey EBAP

Tukey's Outlier Screening, Pooled Background

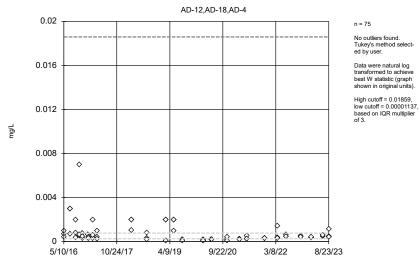

Constituent: Arsenic, total Analysis Run 10/10/2023 10:10 AM View: Outliers - Upgradient Wells
Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG

Tukey's Outlier Screening, Pooled Background AD-12,AD-18,AD-4 0.04 n = 75 No outliers found. Tukev's method selected by user. 0.032 Data were natural log transformed to achieve best W statistic (graph shown in original units). High cutoff = 0.03766, low cutoff = 0.000001777, based on IQR multiplier 0.024 mg/L 0.016 0.008 0 \$555 5/10/16 10/24/17 4/9/19 9/22/20 3/8/22 8/23/23

Constituent: Beryllium, total Analysis Run 10/10/2023 10:10 AM View: Outliers - Upgradient Wells
Pirkey EBAP Data: Pirkey EBAP

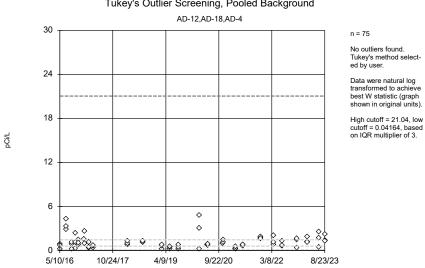
Tukey's Outlier Screening, Pooled Background


Constituent: Cadmium, total Analysis Run 10/10/2023 10:10 AM View: Outliers - Upgradient Wells Pirkey EBAP Data: Pirkey EBAP

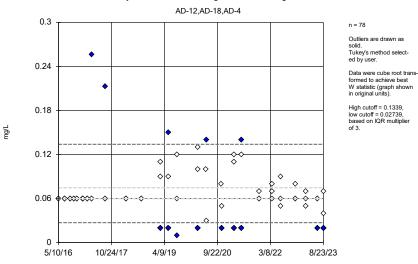
Sanitas™ v.10.0.12 Software licensed to . UG

Tukey's Outlier Screening, Pooled Background AD-12,AD-18,AD-4 0.4 n = 75 No outliers found. Tukey's method selected by user. 0.32 Data were natural log transformed to achieve best W statistic (graph shown in original units). High cutoff = 0.3629. low cutoff = 0.00001245, 0.24 based on IQR multiplier 0.16 0.08 5/10/16 10/24/17 4/9/19 9/22/20 3/8/22 8/23/23

Constituent: Cobalt, total Analysis Run 10/10/2023 10:10 AM View: Outliers - Upgradient Wells Pirkey EBAP Data: Pirkey EBAP


Tukey's Outlier Screening, Pooled Background

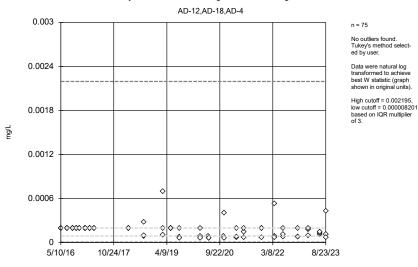
Constituent: Chromium, total Analysis Run 10/10/2023 10:10 AM View: Outliers - Upgradient Wells Pirkey EBAP Data: Pirkey EBAP


Sanitas™ v.10.0.12 Software licensed to . UG

Tukey's Outlier Screening, Pooled Background

Constituent: Combined Radium 226 + 228 Analysis Run 10/10/2023 10:10 AM View: Outliers - Upgradient Pirkey EBAP Data: Pirkey EBAP

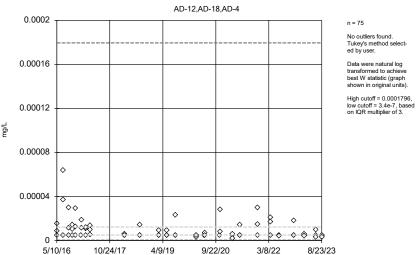
Tukey's Outlier Screening, Pooled Background


Constituent: Fluoride, total Analysis Run 10/10/2023 10:10 AM View: Outliers - Upgradient Wells Pirkey EBAP Data: Pirkey EBAP

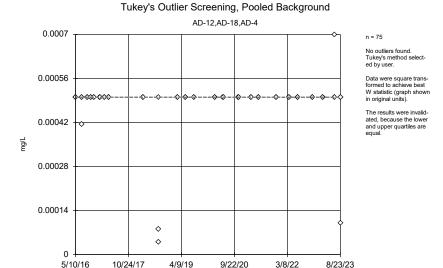
Sanitas™ v.10.0.12 Software licensed to . UG

Tukey's Outlier Screening, Pooled Background AD-12,AD-18,AD-4 0.2 n = 75 No outliers found. Tukey's method selected by user. 0.15996 Data were cube root transformed to achieve best W statistic (graph shown in original units). High cutoff = 0.1859. low cutoff = -0.0001907, 0.11992 based on IQR multiplier 0.07988 \Diamond $\diamond | \diamond \diamond$ \Diamond 0.03984 (A) (A) $\Diamond \Diamond$ \Diamond $\Diamond \Diamond$ \Diamond \Diamond ♦ \$ $\Diamond \Diamond$ $\Diamond \Diamond$ ٥ \Diamond 00 $\Diamond \Diamond$ -0.0002 5/10/16 10/24/17 4/9/19 9/22/20 3/8/22 8/23/23

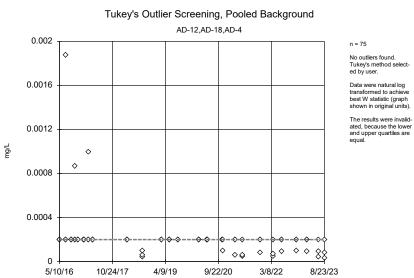
Constituent: Lithium, total Analysis Run 10/10/2023 10:10 AM View: Outliers - Upgradient Wells Pirkey EBAP Data: Pirkey EBAP


Tukey's Outlier Screening, Pooled Background

Constituent: Lead, total Analysis Run 10/10/2023 10:10 AM View: Outliers - Upgradient Wells Pirkey EBAP Data: Pirkey EBAP

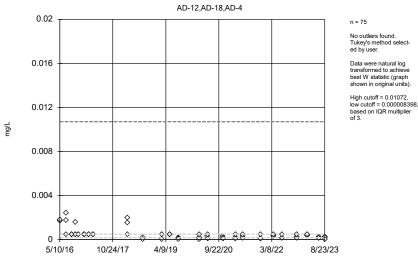

Sanitas™ v.10.0.12 Software licensed to . UG

Tukey's Outlier Screening, Pooled Background AD-12,AD-18,AD-4


Constituent: Mercury, total Analysis Run 10/10/2023 10:10 AM View: Outliers - Upgradient Wells Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG

Constituent: Molybdenum, total Analysis Run 10/10/2023 10:10 AM View: Outliers - Upgradient Wells
Pirkey EBAP Data: Pirkey EBAP


Sanitas™ v.10.0.12 Software licensed to . UG

Constituent: Thallium, total Analysis Run 10/10/2023 10:10 AM View: Outliers - Upgradient Wells
Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG

Tukey's Outlier Screening, Pooled Background

Constituent: Selenium, total Analysis Run 10/10/2023 10:10 AM View: Outliers - Upgradient Wells
Pirkey EBAP Data: Pirkey EBAP

FIGURE D UTLs

Upper Tolerance Limits - Summary Table

Pirkey EBAP Data: Pirkey EBAP Printed 10/10/2023, 10:19 AM

Constituent	Well	Upper Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	ND Adj.	Transfor	m Alpha	Method
Antimony, total (mg/L)	n/a	0.0001	n/a	n/a	n/a	75	86.67	n/a	n/a	0.02134	NP Inter(NDs)
Arsenic, total (mg/L)	n/a	0.011	n/a	n/a	n/a	75	36	n/a	n/a	0.02134	NP Inter(normality)
Barium, total (mg/L)	n/a	0.183	n/a	n/a	n/a	75	0	n/a	n/a	0.02134	NP Inter(normality)
Beryllium, total (mg/L)	n/a	0.00115	n/a	n/a	n/a	75	5.333	n/a	n/a	0.02134	NP Inter(normality)
Cadmium, total (mg/L)	n/a	0.00026	n/a	n/a	n/a	75	44	n/a	n/a	0.02134	NP Inter(normality)
Chromium, total (mg/L)	n/a	0.002876	n/a	n/a	n/a	75	9.333	None	ln(x)	0.05	Inter
Cobalt, total (mg/L)	n/a	0.00939	n/a	n/a	n/a	75	0	n/a	n/a	0.02134	NP Inter(normality)
Combined Radium 226 + 228 (pCi/L)	n/a	3.23	n/a	n/a	n/a	75	0	None	x^(1/3)	0.05	Inter
Fluoride, total (mg/L)	n/a	0.2565	n/a	n/a	n/a	78	50	n/a	n/a	0.0183	NP Inter(normality)
Lead, total (mg/L)	n/a	0.0007	n/a	n/a	n/a	75	52	n/a	n/a	0.02134	NP Inter(NDs)
Lithium, total (mg/L)	n/a	0.04972	n/a	n/a	n/a	75	1.333	None	sqrt(x)	0.05	Inter
Mercury, total (mg/L)	n/a	0.000064	n/a	n/a	n/a	75	42.67	n/a	n/a	0.02134	NP Inter(normality)
Molybdenum, total (mg/L)	n/a	0.0007	n/a	n/a	n/a	70	91.43	n/a	n/a	0.02758	NP Inter(NDs)
Selenium, total (mg/L)	n/a	0.00245	n/a	n/a	n/a	75	45.33	n/a	n/a	0.02134	NP Inter(normality)
Thallium, total (mg/L)	n/a	0.001874	n/a	n/a	n/a	73	72.6	n/a	n/a	0.02365	NP Inter(NDs)

FIGURE E GWPS

PIRKEY	EBAP GWPS		
		Background	
Constituent Name	MCL	Limit	GWPS
Antimony, Total (mg/L)	0.006	0.0001	0.006
Arsenic, Total (mg/L)	0.01	0.011	0.011
Barium, Total (mg/L)	2	0.18	2
Beryllium, Total (mg/L)	0.004	0.0012	0.004
Cadmium, Total (mg/L)	0.005	0.00026	0.005
Chromium, Total (mg/L)	0.1	0.0029	0.1
Cobalt, Total (mg/L)	n/a	0.0094	0.0094
Combined Radium, Total (pCi/L)	5	3.2	5
Fluoride, Total (mg/L)	4	0.26	4
Lead, Total (mg/L)	n/a	0.0007	0.0007
Lithium, Total (mg/L)	n/a	0.05	0.05
Mercury, Total (mg/L)	0.002	0.000064	0.002
Molybdenum, Total (mg/L)	n/a	0.0007	0.0007
Selenium, Total (mg/L)	0.05	0.0025	0.05
Thallium, Total (mg/L)	0.002	0.0019	0.002

^{*}Grey cell indicates Background Limit is higher than MCL

^{*}MCL = Maximum Contaminant Level

^{*}GWPS = Groundwater Protection Standard

FIGURE F Confidence Interval

Appendix IV Confidence Intervals - Significant Results

0.05

Yes 23 0

No

0.01 Param.

Pirkey EBAP Data: Pirkey EBAP Printed 10/10/2023, 10:27 AM Well Sig. N %NDs ND Adj. Constituent Upper Lim. Lower Lim. Compliance <u>Transform</u> <u>Alpha</u> Method Cobalt, total (mg/L) AD-2 0.01968 0.01357 0.0094 Yes 25 0 0.01 Param. None No Cobalt, total (mg/L) AD-31 0.0107 0.009495 0.0094 Yes 24 0 0.01 Param. None No Cobalt, total (mg/L) AD-32 0.05122 0.03088 0.0094 Yes 25 0 None No 0.01 Param. AD-2 0.05692 0.05061 Lithium, total (mg/L) 0.05 Yes 24 0 None No 0.01 AD-31 0.0681 0.05 Lithium, total (mg/L) 0.093 Yes 25 0 None No 0.01 NP (normality)

0.07457

0.09598

AD-32

Lithium, total (mg/L)

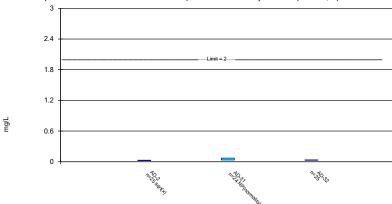
Appendix IV Confidence Intervals - All Results

Pirkey EBAP Data: Pirkey EBAP Printed 10/10/2023, 10:27 AM

Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig. N	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Antimony, total (mg/L)	AD-2	0.0001	0.00002	0.006	No 25	88	None	No	0.01	NP (NDs)
Antimony, total (mg/L)	AD-31	0.0001	0.00002	0.006	No 25	92	None	No	0.01	NP (NDs)
Antimony, total (mg/L)	AD-32	0.0001	0.00002	0.006	No 25	84	None	No	0.01	NP (NDs)
Arsenic, total (mg/L)	AD-2	0.002	0.00053	0.011	No 25	40	None	No	0.01	NP (normality)
Arsenic, total (mg/L)	AD-31	0.00332	0.00027	0.011	No 24	12.5	None	No	0.01	NP (normality)
Arsenic, total (mg/L)	AD-32	0.004527	0.002042	0.011	No 25	4	None	sqrt(x)	0.01	Param.
Barium, total (mg/L)	AD-2	0.02999	0.02107	2	No 25	0	None	sqrt(x)	0.01	Param.
Barium, total (mg/L)	AD-31	0.0708	0.0331	2	No 24	0	None	No	0.01	NP (normality)
Barium, total (mg/L)	AD-32	0.03565	0.02588	2	No 25	0	None	No	0.01	Param.
Beryllium, total (mg/L)	AD-2	0.0006178	0.0004637	0.004	No 25	4	None	sqrt(x)	0.01	Param.
Beryllium, total (mg/L)	AD-31	0.00103	0.00085	0.004	No 24	0	None	No	0.01	NP (normality)
Beryllium, total (mg/L)	AD-32	0.005557	0.003242	0.004	No 25	0	None	No	0.01	Param.
Cadmium, total (mg/L)	AD-2	0.001	0.00008	0.005	No 25	40	None	No	0.01	NP (normality)
Cadmium, total (mg/L)	AD-31	0.0008589	0.000064	0.005	No 25	28	None	No	0.01	NP (normality)
Cadmium, total (mg/L)	AD-32	0.0005338	0.0003344	0.005	No 25	0	None	No	0.01	Param.
Chromium, total (mg/L)	AD-2	0.0009	0.000292	0.1	No 25	24	None	No	0.01	NP (normality)
Chromium, total (mg/L)	AD-31	0.00962	0.00039	0.1	No 23	8.696	None	No	0.01	NP (normality)
Chromium, total (mg/L)	AD-32	0.00538	0.00068	0.1	No 25	0	None	No	0.01	NP (normality)
Cobalt, total (mg/L)	AD-2	0.01968	0.01357	0.0094	Yes 25	0	None	No	0.01	Param.
Cobalt, total (mg/L)	AD-31	0.0107	0.009495	0.0094	Yes 24	0	None	No	0.01	Param.
Cobalt, total (mg/L)	AD-32	0.05122	0.03088	0.0094	Yes 25	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	AD-2	1.65	1.085	5	No 25	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	AD-31	4.033	2.826	5	No 25	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	AD-32	6.016	4.329	5	No 24	0	None	ln(x)	0.01	Param.
Fluoride, total (mg/L)	AD-2	1	0.19	4	No 27	44.44	None	No	0.01	NP (normality)
Fluoride, total (mg/L)	AD-31	1	0.13	4	No 27	44.44	None	No	0.01	NP (normality)
Fluoride, total (mg/L)	AD-32	0.813	0.404	4	No 26	19.23	Kaplan-Meier	No	0.01	Param.
Lead, total (mg/L)	AD-2	0.002	0.0005	0.0007	No 25	40	None	No	0.01	NP (normality)
Lead, total (mg/L)	AD-31	0.002	0.00029	0.0007	No 24	33.33	None	No	0.01	NP (normality)
Lead, total (mg/L)	AD-32	0.002	0.000405	0.0007	No 25	40	None	No	0.01	NP (normality)
Lithium, total (mg/L)	AD-2	0.05692	0.05061	0.05	Yes 24	0	None	No	0.01	Param.
Lithium, total (mg/L)	AD-31	0.093	0.0681	0.05	Yes 25	0	None	No	0.01	NP (normality)
Lithium, total (mg/L)	AD-32	0.09598	0.07457	0.05	Yes 23	0	None	No	0.01	Param.
Mercury, total (mg/L)	AD-2	0.00009754	0.00004766	0.002	No 24	0	None	x^(1/3)	0.01	Param.
Mercury, total (mg/L)	AD-31	0.0005359	0.0001516	0.002	No 24	0	None	sqrt(x)	0.01	Param.
Mercury, total (mg/L)	AD-32	0.003861	0.001625	0.002	No 25	0	None	x^(1/3)	0.01	Param.
Molybdenum, total (mg/L)	AD-2	0.0008627	0.00006	0.0007	No 24	87.5	None	No	0.01	NP (NDs)
Molybdenum, total (mg/L)	AD-31	0.0005	0.0004016	0.0007	No 23	78.26	None	No	0.01	NP (NDs)
Molybdenum, total (mg/L)	AD-32	0.0007621	0.00004	0.0007	No 23	91.3	None	No	0.01	NP (NDs)
Selenium, total (mg/L)	AD-2	0.001971	0.001292	0.05	No 25	20	Kaplan-Meier	ln(x)	0.01	Param.
Selenium, total (mg/L)	AD-31	0.0025	0.00038	0.05	No 25	28	None	No	0.01	NP (normality)
Selenium, total (mg/L)	AD-32	0.006246	0.002369	0.05	No 25	20	Kaplan-Meier	x^(1/3)	0.01	Param.
Thallium, total (mg/L)	AD-2	0.0005	0.0001	0.002	No 25	40	None	No	0.01	NP (normality)
Thallium, total (mg/L)	AD-31	0.0005	0.00009	0.002	No 24	50	None	No	0.01	NP (normality)
Thallium, total (mg/L)	AD-32	0.001093	0.0002	0.002	No 24	25	None	No	0.01	NP (normality)

Non-Parametric Confidence Interval

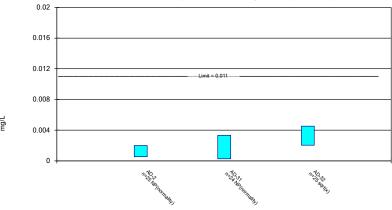
Compliance Limit is not exceeded. Per-well alpha = 0.01.



Constituent: Antimony, total Analysis Run 10/10/2023 10:26 AM View: Confidence Intervals Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG

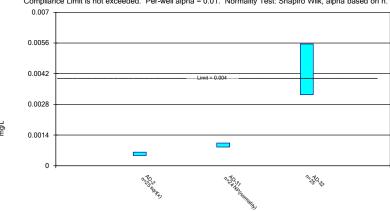
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

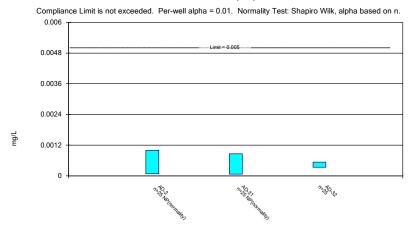
Constituent: Barium, total Analysis Run 10/10/2023 10:26 AM View: Confidence Intervals Pirkey EBAP Data: Pirkey EBAP

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

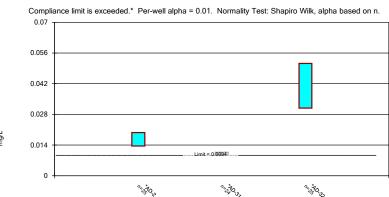


Constituent: Arsenic, total Analysis Run 10/10/2023 10:26 AM View: Confidence Intervals Pirkey EBAP Data: Pirkey EBAP

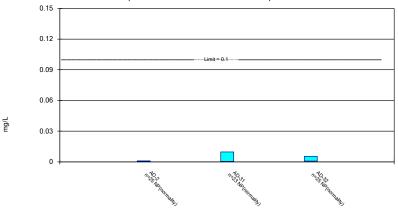

Sanitas™ v.10.0.12 Software licensed to . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Parametric and Non-Parametric (NP) Confidence Interval

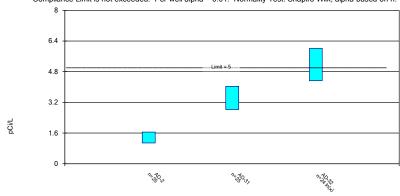
Constituent: Cadmium, total Analysis Run 10/10/2023 10:26 AM View: Confidence Intervals Pirkey EBAP Data: Pirkey EBAP


Sanitas™ v.10.0.12 Software licensed to . UG

Parametric Confidence Interval

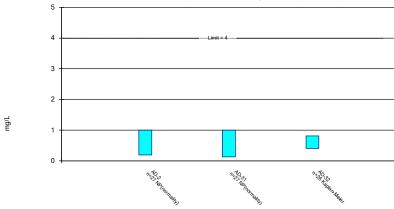
Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.



Constituent: Chromium, total Analysis Run 10/10/2023 10:26 AM View: Confidence Intervals
Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG


Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Fluoride, total Analysis Run 10/10/2023 10:26 AM View: Confidence Intervals
Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG

Parametric and Non-Parametric (NP) Confidence Interval

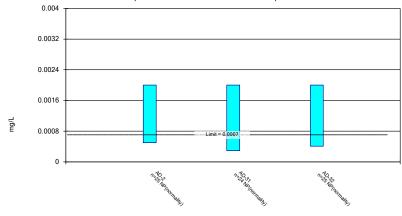
Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

0.15

0.12

0.09

0.06


Limit = 0.05

0.03

Constituent: Lithium, total Analysis Run 10/10/2023 10:26 AM View: Confidence Intervals Pirkey EBAP Data: Pirkey EBAP

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

Constituent: Lead, total Analysis Run 10/10/2023 10:26 AM View: Confidence Intervals
Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

0.005

0.004

0.003

0.002

Limit = 0.002

Sanitas™ v.10.0.12 Software licensed to . UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

0.001

0.0006

0.0004

0.0002

Constituent: Molybdenum, total Analysis Run 10/10/2023 10:26 AM View: Confidence Intervals
Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG

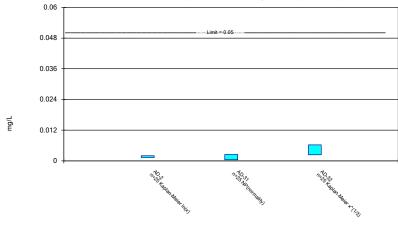
Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

0.0024

0.0018

0.0012


0.0006

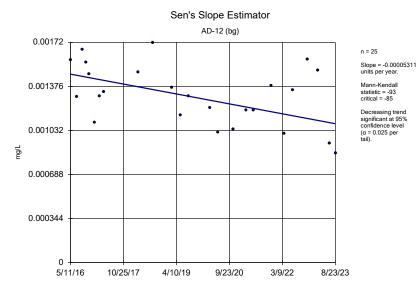
Constituent: Thallium, total Analysis Run 10/10/2023 10:26 AM View: Confidence Intervals
Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG

Parametric and Non-Parametric (NP) Confidence Interval

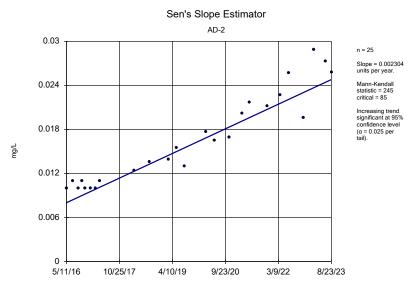
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Selenium, total Analysis Run 10/10/2023 10:26 AM View: Confidence Intervals
Pirkey EBAP Data: Pirkey EBAP

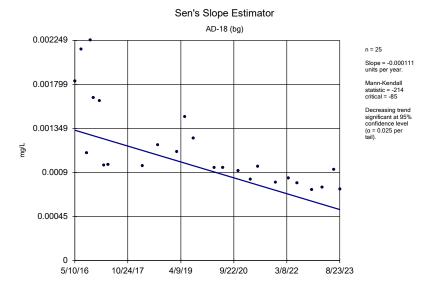

FIGURE G Trend Tests

Appendix IV Trend Tests - Confidence Interval Exceedances - Significant Results Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Printed 10/10/2023, 1:35 PM

		Pirkey EBAP	Client: Geosyntec	Data: Pir	key EBAP	Printed	10/10/2023	, 1:35 PM			
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Alpha</u>	Method
Cobalt, total (mg/L)	AD-12 (bg)		-0.00005311	-93	-85	Yes	25	0	n/a	0.05	NP
Cobalt, total (mg/L)	AD-18 (bg)		-0.000111	-214	-85	Yes	25	0	n/a	0.05	NP
Cobalt, total (mg/L)	AD-2		0.002304	245	85	Yes	25	0	n/a	0.05	NP
Cobalt, total (mg/L)	AD-32		-0.004719	-123	-85	Yes	25	0	n/a	0.05	NP
Cobalt, total (mg/L)	AD-4 (bg)		-0.0004597	-153	-85	Yes	25	0	n/a	0.05	NP
Lithium, total (mg/L)	AD-18 (bg)		-0.001068	-153	-85	Yes	25	0	n/a	0.05	NP
Lithium, total (mg/L)	AD-2		0.001276	95	81	Yes	24	0	n/a	0.05	NP
Lithium, total (mg/L)	AD-31		-0.002827	-124	-85	Yes	25	0	n/a	0.05	NP
Lithium, total (mg/L)	AD-32		-0.007217	-138	-76	Yes	23	0	n/a	0.05	NP

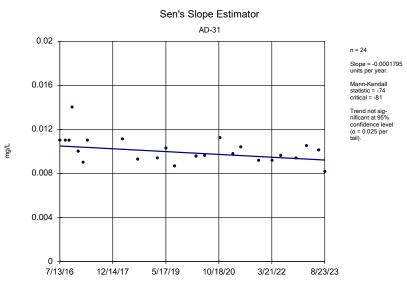

Appendix IV Trend Tests - Confidence Interval Exceedances - All Results

		Pirkey EBAP	Client: Geosyntec	Data: Pir	key EBAP	Printed	10/10/2023	, 1:35 PM			
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	Alpha	Method
Cobalt, total (mg/L)	AD-12 (bg)		-0.00005311	-93	-85	Yes	25	0	n/a	0.05	NP
Cobalt, total (mg/L)	AD-18 (bg)		-0.000111	-214	-85	Yes	25	0	n/a	0.05	NP
Cobalt, total (mg/L)	AD-2		0.002304	245	85	Yes	25	0	n/a	0.05	NP
Cobalt, total (mg/L)	AD-31		-0.0001795	-74	-81	No	24	0	n/a	0.05	NP
Cobalt, total (mg/L)	AD-32		-0.004719	-123	-85	Yes	25	0	n/a	0.05	NP
Cobalt, total (mg/L)	AD-4 (bg)		-0.0004597	-153	-85	Yes	25	0	n/a	0.05	NP
Lithium, total (mg/L)	AD-12 (bg)		-0.0004312	-74	-85	No	25	4	n/a	0.05	NP
Lithium, total (mg/L)	AD-18 (bg)		-0.001068	-153	-85	Yes	25	0	n/a	0.05	NP
Lithium, total (mg/L)	AD-2		0.001276	95	81	Yes	24	0	n/a	0.05	NP
Lithium, total (mg/L)	AD-31		-0.002827	-124	-85	Yes	25	0	n/a	0.05	NP
Lithium, total (mg/L)	AD-32		-0.007217	-138	-76	Yes	23	0	n/a	0.05	NP
Lithium, total (mg/L)	AD-4 (bg)		-0.001773	-80	-85	No	25	0	n/a	0.05	NP

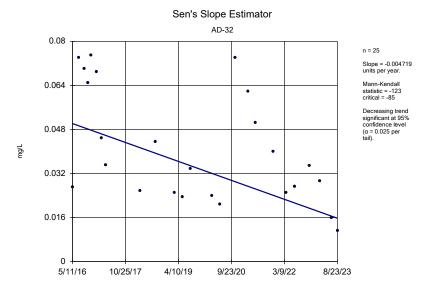


Constituent: Cobalt, total Analysis Run 10/10/2023 10:33 AM View: Trend Tests
Pirkey EBAP Data: Pirkey EBAP

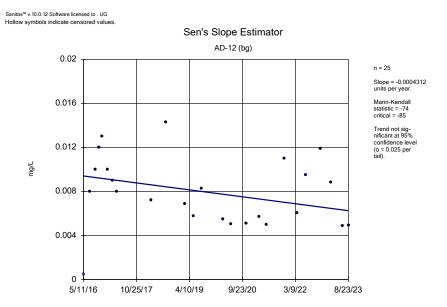
Sanitas™ v.10.0.12 Software licensed to . UG

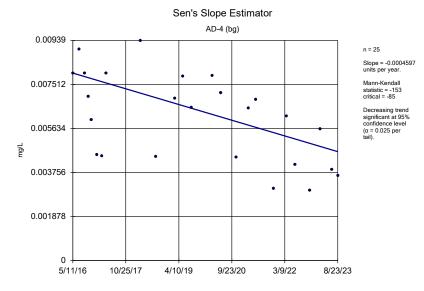


Constituent: Cobalt, total Analysis Run 10/10/2023 10:33 AM View: Trend Tests
Pirkey EBAP Data: Pirkey EBAP

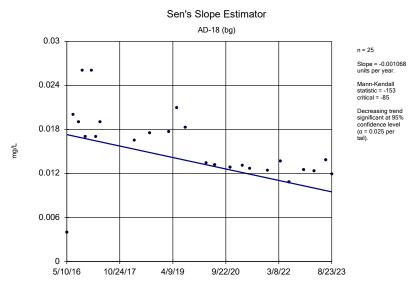


Constituent: Cobalt, total Analysis Run 10/10/2023 10:33 AM View: Trend Tests
Pirkey EBAP Data: Pirkey EBAP

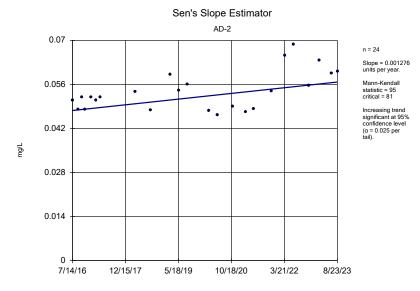

Sanitas™ v.10.0.12 Software licensed to . UG


Constituent: Cobalt, total Analysis Run 10/10/2023 10:33 AM View: Trend Tests
Pirkey EBAP Data: Pirkey EBAP

Constituent: Cobalt, total Analysis Run 10/10/2023 10:33 AM View: Trend Tests
Pirkey EBAP Data: Pirkey EBAP

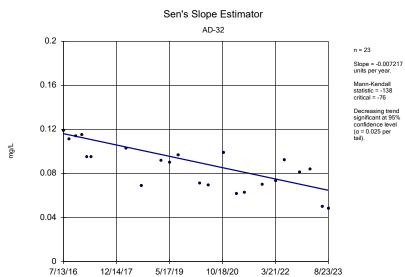


Constituent: Lithium, total Analysis Run 10/10/2023 10:33 AM View: Trend Tests
Pirkey EBAP Data: Pirkey EBAP

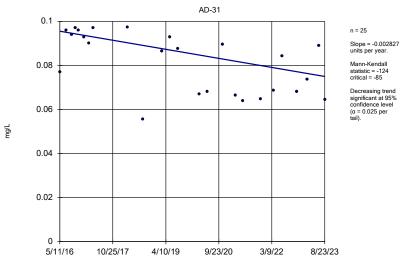


Constituent: Cobalt, total Analysis Run 10/10/2023 10:33 AM View: Trend Tests
Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG



Constituent: Lithium, total Analysis Run 10/10/2023 10:33 AM View: Trend Tests
Pirkey EBAP Data: Pirkey EBAP


Constituent: Lithium, total Analysis Run 10/10/2023 10:33 AM View: Trend Tests
Pirkey EBAP Data: Pirkey EBAP

Constituent: Lithium, total Analysis Run 10/10/2023 10:33 AM View: Trend Tests
Pirkey EBAP Data: Pirkey EBAP

Sen's Slope Estimator

Constituent: Lithium, total Analysis Run 10/10/2023 10:33 AM View: Trend Tests Pirkey EBAP Data: Pirkey EBAP

Sanitas™ v.10.0.12 Software licensed to . UG

Constituent: Lithium, total Analysis Run 10/10/2023 10:33 AM View: Trend Tests
Pirkey EBAP Data: Pirkey EBAP

APPENDIX 3- Alternate Source Demonstrations

Alternate source demonstrations are included in this appendix. Alternate sources are sources or reasons that explain that statistically significant increases over background or statistically significant levels above the groundwater protection standard are not attributable to the CCR unit.

engineers | scientists | innovators

ALTERNATIVE SOURCE DEMONSTRATION REPORT TEXAS STATE CCR RULE

H.W. Pirkey Power Plant East Bottom Ash Pond Hallsville, Texas

Prepared for

American Electric Power

1 Riverside Plaza Columbus, Ohio 43215-2372

Prepared by

Geosyntec Consultants, Inc. 500 West Wilson Bridge Road, Suite 250 Worthington, Ohio 43085

Project CHA8495

June 2023

TABLE OF CONTENTS

1.	INTI 1.1	RODUCTION AND SUMMARY
	1.2	Demonstration of Alternative Sources
2.	SUM 2.1 2.2 2.3	IMARY OF SITE CONDITIONS
3.	ALT 3.1	ERNATIVE SOURCE DEMONSTRATION 5 Proposed Alternative Source 5 3.1.1 Cobalt 5 3.1.2 Lithium 7 Sampling Requirements 8
4.	CON	ICLUSIONS AND RECOMMENDATIONS9
5.	REF.	ERENCES
		LIST OF TABLES
Tab	ole 1	Summary of Key Cobalt Analytical Data
Tab	ole 2	Soil Cobalt Data
Tab	ole 3	X-Ray Diffraction Results
Tab	ole 4	Summary of Key Lithium Analytical Data
Tab	ole 5	Soil Lithium Data
Tab	ole 6	Calculated Site-Specific Partition Coefficients
		LIST OF FIGURES
Fig	ure 1	Potentiometric Contours: Uppermost Aquifer November 2022 (from AEP 2023)
Fig	ure 2	Aqueous Cobalt Distribution
Fig	ure 3	Cobalt Distribution in Soil
Fig	ure 4	B-3 Visual Boring Log
Fig	ure 5	Aqueous Lithium Distribution

LIST OF ATTACHMENTS

Attachment A Geologic Cross Section A-A'

Attachment B SB-2 Boring Log

Attachment C SB-2 Boring Photographic Log

Attachment D SEM/EDS Analysis

Attachment E Certification by a Qualified Professional Engineer

LIST OF ACRONYMS

Å angstrom

ASD alternative source demonstration

bgs below ground surface

CCR coal combustion residuals

EBAP East Bottom Ash Pond

EDS energy-dispersive spectroscopy
EPRI Electric Power Research Institute
GWPS groundwater protection standard

LCL lower confidence limit

MCL maximum contaminant level

mg/kg milligram per kilogram

mg/L milligram per liter

SEM scanning electron microscopy

SPLP Synthetic Precipitation Leaching Procedure

SSL statistically significant level
TAC Texas Administrative Code

TCEQ Texas Commission on Environmental Quality
USEPA United States Environmental Protection Agency

VAP vertical aquifer profiling WBAP West Bottom Ash Pond

XRD X-ray diffraction

1. INTRODUCTION AND SUMMARY

This alternative source demonstration (ASD) report has been prepared to address statistically significant levels (SSLs) for cobalt and lithium in the groundwater monitoring network at the H.W. Pirkey Plant East Bottom Ash Pond (EBAP) in Hallsville, Texas, following the second semiannual assessment monitoring event of 2022. The H.W. Pirkey Plant has four coal combustion residuals (CCR) storage units, including the EBAP, regulated by the Texas Commission on Environmental Quality (TCEQ) under Registration No. CCR104 (**Figure 1**).

In November 2022, a semiannual assessment monitoring event was conducted at the EBAP in accordance with the Title 30, §352.951(a) of the Texas Administrative Code (TAC). The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. Groundwater protection standards (GWPSs) were established for each Appendix IV parameter in accordance with the statistical analysis plan developed for the unit (Geosyntec 2020a) and the United States Environmental Protection Agency (USEPA) document *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance* (USEPA 2009). The GWPS for each parameter was established as the greater of either the background concentration or the maximum contaminant level (MCL). To determine background concentrations, an upper tolerance limit was calculated using pooled data from the background wells collected during the background monitoring and assessment monitoring events.

Confidence intervals were recalculated for the Appendix IV parameters at the compliance wells to assess whether these parameters were present at SSLs above the GWPSs. An SSL was attributed to a parameter if its lower confidence limit (LCL) exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). The following SSLs were identified at the Pirkey EBAP (Geosyntec 2023a):

- The LCLs for cobalt exceeded the GWPS of 0.00939 milligrams per liter (mg/L) at AD-2 (0.0125 mg/L), AD-31 (0.00952 mg/L), and AD-32 (0.0324 mg/L).
- The LCL for lithium exceeded the GWPS of 0.0519 mg/L at AD-31 (0.0681 mg/L) and AD-32 (0.0786 mg/L).

No other SSLs were identified.

1.1 CCR Rule Requirements

TCEQ regulations regarding assessment monitoring programs for CCR landfills and surface impoundments provide owners and operators with the option to make an ASD when an SSL is identified:

In making a demonstration under this subsection, the owner or operator must, within 90 days of detecting a statistically significant level above the groundwater protection standard of any constituent listed in Appendix IV adopted by reference in §352.1431 of this title, submit a report prepared and certified in accordance with §352.4 of this title (relating to Engineering and Geoscientific Information) to the executive director, and any local pollution agency with jurisdiction that has requested to be notified, demonstrating that a source other than a CCR unit caused the exceedance or that the exceedance resulted from

error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. (30 TAC §352.951(e))

Pursuant to 30 TAC §352.951(e), Geosyntec Consultants, Inc. (Geosyntec) has prepared this ASD report to document that the SSLs identified for cobalt and lithium in the groundwater monitoring network for the EBAP are from a source other than the EBAP.

1.2 Demonstration of Alternative Sources

An evaluation was completed to assess possible alternative sources to which the identified SSLs could be attributed. Alternative sources were categorized into the following five types, based on methodology provided by the Electric Power Research Institute (EPRI 2017):

- ASD Type I: Sampling Causes
- ASD Type II: Laboratory Causes
- ASD Type III: Statistical Evaluation Causes
- ASD Type IV: Natural Variation
- ASD Type V: Alternative Sources

A demonstration was conducted to show that the SSLs identified for cobalt and lithium were based on a Type IV cause and not by a release from the Pirkey EBAP.

2. SUMMARY OF SITE CONDITIONS

The EBAP design and construction, regional geology and site hydrogeology, and groundwater monitoring system and flow conditions are described below.

2.1 EBAP Design and Construction

The EBAP is a 31.5-acre CCR surface impoundment located at the north end of the Pirkey Plant, immediately east of the West Bottom Ash Pond (WBAP) (**Figure 1**). It was constructed while the Pirkey Plant was being developed in 1983 and 1984 and placed into operation in 1985 to receive bottom ash and economizer ash sluiced from the plant boiler. Bottom ash and economizer ash are periodically excavated from the EBAP and either removed via truck to the on-site landfill or sold for off-site beneficial reuse.

The EBAP was developed by excavating part of its perimeter into native soils to create an embankment height of approximately 4 feet, constructing compacted clay perimeter embankments, and constructing a compacted clay liner over the base of the pond (Arcadis 2016). Multiple lithological borings advanced after the installation of the clay liner confirm that at least 6 feet of clay is present below the base of the EBAP (Arcadis 2016). The bottom elevation of the EBAP is approximately 347 feet above mean sea level, and the elevation of the top of the pond embankment is approximately 357 feet above mean sea level. The unit was designed to have a maximum storage capacity of 188 acre-feet.

2.2 Regional Geology / Site Hydrogeology

The EBAP is positioned on an outcrop of the Eocene-age Recklaw Formation, which consists predominantly of clay and fine-grained sand (Arcadis 2016). The Recklaw Formation is underlain by the Carrizo Sand, which crops out in the topographically lower southern portion of the plant. Regionally, the Carrizo Sand consists of fine- to medium-grained sand interbedded with silt and clay.

The very-fine- to fine-grained clayey and silty sand found beneath an upper silty to silty sandy clay layer in the vicinity of the EBAP is considered to be the Uppermost Aquifer below this CCR unit (Arcadis, 2016). Here it is approximately 15-feet thick and located between an elevation of 325 and 340 feet mean sea level.

2.3 Groundwater Monitoring History and Flow Conditions

The EBAP monitoring well network monitors groundwater within the Uppermost Aquifer.. Geologic cross section A-A' from the EBAP Groundwater Monitoring Well Network Report (Arcadis 2016), provided herein as **Attachment A**, shows the subsurface geometry of the Uppermost Aquifer (indicated on the figure as clayey silty sand, tan to gray) underlying the EBAP and the WBAP and demonstrates lateral continuity of the Uppermost Aquifer spanning the entire length of the EBAP.

Groundwater flow direction in the area of the EBAP is west-southwesterly (**Figure 1**). Seasonal variability in groundwater flow has not been observed since the monitoring well network was installed. Groundwater flow velocities in the uppermost aquifer in the vicinity of the Stackout Area have been reported as approximately 9 to 36 feet per year. The EBAP monitoring well network

consists of upgradient monitoring wells AD-4, AD-12, and AD-18 and compliance wells AD-2, AD-3, AD-31, and AD-32, all of which are screened within the Uppermost Aquifer.

3. ALTERNATIVE SOURCE DEMONSTRATION

The ASD evaluation method and proposed alternative source of cobalt or lithium in AD-2, AD-31, and AD-32 and the future groundwater sampling requirements are described below.

3.1 Proposed Alternative Source

An initial review of site geochemistry, site historical data, and laboratory quality assurance and quality control data did not identify alternative sources for cobalt and lithium due to Type I (sampling), Type II (laboratory), Type III (statistical evaluation), or Type V (anthropologic) issues. Groundwater sampling, laboratory analysis, and statistical evaluations were generally completed in accordance with 30 TAC §352.931 and the draft TCEQ guidance for groundwater monitoring (TCEQ 2020). As described below, the SSLs have been attributed to natural variation associated with the underlying geology, which is a Type IV (natural variation) issue.

3.1.1 Cobalt

Previous ASDs for cobalt at the EBAP provided evidence that cobalt is present in the aquifer geologic media at the site and that the observed cobalt concentrations in groundwater were due to natural variation of native geogenic sources (Geosyntec 2019a, Geosyntec 2019b, Geosyntec 2020b, Geosyntec 2020c, Geosyntec 2021, Geosyntec 2021b, Geosyntec 2022, Geosyntec 2023b). The previous ASDs demonstrated how the EBAP was not a source for cobalt in downgradient groundwater, based on observed concentrations of cobalt both in the ash material and in leachate from Synthetic Precipitation Leaching Procedure (SPLP) analysis (SW-846 Test Method 1312 [USEPA 1994]) of the ash material. Cobalt was not detected in the most recent SPLP ash leachate sample, collected in 2019, above the reporting limit of 0.01 mg/L, which is lower than the average concentrations observed at the wells of interest (**Table 1**). No changes to material handling or plant operations have occurred that would change the anticipated cobalt concentrations in the pond since this sample was collected.

In a June 2022 surface water sample collected from the EBAP to characterize the total cobalt concentrations, cobalt was detected at a concentration of 0.00128 mg/L (**Table 1**). This concentration is lower than the reported cobalt concentrations for multiple in-network wells from the November 2022 sampling event, including the upgradient monitoring wells AD-4 (0.00300 mg/L; **Figure 2**) and AD-12 (0.00159 mg/L; **Figure 2**). The EBAP sample was also found to be approximately an order of magnitude lower than the average concentration in groundwater at the wells of interest (**Table 1**). Therefore, the EBAP is not the likely source of cobalt at AD-2, AD-31, or AD-32.

As noted in the previous ASDs, soil samples collected across the site, including from locations near the EBAP, identified cobalt in the aquifer solids at concentrations ranging from 0.59–23.5 milligrams per kilogram (mg/kg), with the highest value reported at AD-41, which is upgradient of the EBAP (**Figure 3**). SB-2 was advanced in the vicinity of AD-2 in April 2020 to re-log the geology at AD-2 and collect samples for laboratory analysis of total metals and mineralogy. The SB-2 field boring log, which was generated by Auckland Consulting LLC, is provided as **Attachment B**. Cobalt was detected at SB-2 at concentrations of 9.45 mg/kg at 25–27 feet below ground surface (bgs) and 19.2 mg/kg at 31–33 feet bgs (**Table 2**). These cobalt concentrations are greater than the concentration of cobalt present in the bottom ash (6.1 mg/kg; **Table 1**). Both

samples correlate to the depth of the monitoring well screen of AD-2 (20–40 feet bgs), indicating that naturally occurring cobalt is present in aquifer solids within the AD-2 screened interval.

In addition to the analysis of total cobalt, soil samples were submitted for mineralogical analysis to determine the mineral composition of soils near the EBAP. X-ray diffraction (XRD) analysis of soils from SB-2 identified pyrite (an iron sulfide) in samples collected at 25–27 feet bgs and 31–33 feet bgs at concentrations up to 7% by weight (**Figure 3**). Cobalt is known to undergo isomorphic substitution for iron in crystalline iron minerals such as pyrite due to their similar ionic radii of approximately 1.56 angstroms (Å) for iron and 1.52 Å for cobalt (Clementi and Raimondi 1963, Krupka and Serne 2002, Hitzman et al. 2017). The presence of iron-bearing minerals in soil near the EBAP constitutes a potential source of naturally occurring cobalt.

The aquifer solids at SB-2 are distinctly red in color at shallow depths, as illustrated in the photolog of soil cores provided in **Attachment C**. While shallow samples were not collected for mineralogical analysis, red color in soils is often associated with the presence of oxidized iron-bearing minerals such as hematite and goethite. The red color of the soil suggests the presence of iron oxide and hydroxide minerals within the shallow depth interval. The alteration of pyrite to these iron oxide and hydroxide minerals under oxidizing conditions is also a well-understood phenomenon, including in formations in East Texas (Senkayi et al. 1986, Dixon et al. 1982). It is likely that the pyrite weathering process is resulting in the release of isomorphically substituted cobalt from the pyrite crystal structure as it undergoes oxidative transformation to iron oxide/hydroxide minerals.

As described in the previous ASDs, vertical aquifer profiling (VAP) was used to collect groundwater samples from upgradient locations B-2 and B-3 during the soil boring and sample collection process (Geosyntec 2019b). A groundwater sample was also collected from AD-32, one of the existing compliance wells within the EBAP groundwater monitoring network where a cobalt SSL was identified. Solid-phase materials within these groundwater samples were separated and submitted for analysis of chemical composition. For the VAP samples, because of the high abundance of suspended solids, separation was completed using a centrifuge. For the groundwater sample at AD-32, the sample was filtered using a 1.5-micron filter. Based on total metals analysis, cobalt was identified both in the centrifuged solid material collected from upgradient VAP location B-3 (VAP-B3-[40-45]) and in the material retained on the filter after processing groundwater from permanent monitoring wells B-2 and B-3 (Table 2). The concentrations of cobalt in the solid material retained after filtration were comparable to concentrations in the bulk soil samples collected from the same locations.

The solid sample VAP-B3-(40-45) was submitted for mineralogical analysis via XRD and scanning electron microscopy (SEM) using an energy-dispersive spectroscopy (EDS) analyzer. The XRD results identified pyrite as approximately 3% of the solid phase (**Table 3**). Pyrite was identified during SEM/EDS analysis of lignite, which is mined immediately adjacent to the site. Logging completed while the VAP boring was advanced identified coal at several intervals, including 45 and 48 feet bgs (**Figure 4**). Furthermore, SEM/EDS of both centrifuged solid samples VAP-B3-(40-45) and VAP-B3-(50-55) identified pyrite in backscattered electron micrographs by the distinctive framboidal morphology (Harris et al. 1981, Sawlowicz 2000). Major peaks representing iron and sulfur were identified in the EDS spectrum, which further support the identification of pyrite (**Attachment D**). While cobalt was not identified in the EDS spectrum, it is likely present at concentrations below the detection limit.

The EBAP was not identified as the source of cobalt at wells in the EBAP network based on the low concentrations of cobalt in the pond itself and the ubiquity of naturally occurring cobalt, especially in soil and groundwater samples upgradient from the EBAP. Cobalt in the EBAP network groundwater is believed to be a result of natural variability within the aquifer. Naturally occurring cobalt is known to substitute for iron in iron-bearing minerals. The presence of iron sulfide (as pyrite) and iron oxides/hydroxides hematite and goethite has been confirmed at AD-2 and across the site. The weathering of pyritic minerals to iron oxide/hydroxide minerals may be resulting in the release of cobalt into groundwater from the crystal structure of these aquifer minerals.

3.1.2 Lithium

Previous ASDs for lithium at the EBAP attributed the observed lithium exceedances to variations in lithium associated with the suspended native aquifer solids that likely originate from naturally occurring lignite present in these soils. These native lithium-containing aquifer solids are ubiquitous in the aquifer based on the presence of both solid-phase and dissolved lithium at upgradient locations (Geosyntec 2019b, Geosyntec 2020b, Geosyntec 2020c, Geosyntec 2021a, Geosyntec 2021b, Geosyntec 2022, Geosyntec 2023b). Data gathered in support of the prior ASDs and recent results provide additional evidence that the observed lithium groundwater concentrations at AD-31 and AD-32 are naturally occurring and are due to natural variation in the aquifer (Type IV ASD).

As discussed in Section 3.1.1, a surface water sample was collected directly from the EBAP in June 2022. Lithium was detected in the June 2022 EBAP sample at a concentration of 0.0463 mg/L (**Figure 5, Table 4**). The labile fraction identified in the bottom ash by SPLP from a February 2019 sample was even lower, with an estimated (J-flagged) lithium concentration of 0.011 mg/L. These concentrations are below the average lithium concentrations at AD-31 (0.0818 mg/L) and AD-32 (0.125 mg/L) (**Table 4**). Therefore, the EBAP is not the likely source of lithium at AD-31 and AD-32.

Groundwater samples collected from upgradient wells B-2 and B-3 in November 2022 had total lithium concentrations of 0.0545 mg/L and 0.0814 mg/L, respectively. The reported concentration at B-3 is greater than the GWPS of 0.0590 mg/L and the concentrations of lithium observed at AD-31 and AD-32 (**Figure 5**). Because B-2 and B-3 were installed at locations upgradient to and unimpacted by site activities, these lithium concentrations suggest that dissolved lithium is naturally present at concentrations above the GWPS across the site at variable concentrations and not limited to AD-31 and AD-32. It is noted that B-2 and B-3 are not part of the monitoring network for the EBAP, and as such the lithium concentrations in groundwater from these wells are not considered in calculating the GWPS for the CCR unit.

As described in Section 3.1.1, groundwater samples were collected from B-2, B-3, and AD-32 and filtered to separate solids. Groundwater was also collected from a VAP boring (VAP-B3-[40-45]) and centrifuged to separate solids. Lithium was detected in the solid material separated from these groundwater samples at concentrations comparable to bulk soil at all locations, providing evidence that the particulates captured during groundwater sampling contain lithium (**Table 5**).

3.1.2.1 Calculated Partition Coefficients

A previous ASD for lithium at the EBAP discussed lithium mobility in groundwater due to desorption from cation exchange complexes associated with clay minerals within naturally

occurring lignite material. This mechanism was posited as the source of lithium in both upgradient and downgradient wells at the EBAP (Geosyntec 2019b). Previously completed XRD analysis of centrifuged solid material samples (VAP-B3-[40-45]) found that clay minerals, including kaolinite, smectite, and illite/mica, made up at least 60% of the aquifer solid (**Table 3**). SEM/EDS analysis also identified the presence of silicon, aluminum, and oxygen, all of which are components of clay minerals (**Attachment D**). The backscattered electron micrographs of these samples also identified clay particles by morphology. The largest clay particles (greater than 5 micrometers) are likely kaolinite, while smectite and illite dominate the smaller fraction. These clay minerals, particularly smectite and illite, are known to retain cations such as lithium via incorporation into the octahedral layer of the mineral structure and through cation exchange processes.

Partition coefficients values (K_d) for lithium, potassium, and sodium were calculated using mass measurements and total metal concentrations in the solid materials separated from the groundwater samples during filtration and the filtered groundwater concentrations. Details about the K_d calculation are provided in the previous ASD (Geosyntec 2019b). K_d values for groundwater and particulates collected from wells B-2, B-3, and AD-32 were comparable to literature K_d values reported for organic-rich media such as bogs and peat beds (Sheppard et al. 2009, Sheppard et al. 2011), providing further evidence that lithium mobility in site groundwater is similar to other sites with organic-rich soils (**Table 6**). Additionally, the calculated K_d values for Pirkey soils were consistent with the literature, with potassium having the highest K_d (greatest affinity for sorption) and sodium the lowest K_d (least affinity for sorption). Furthermore, the values are similar for groundwater from all three wells, suggesting a universal mechanism controlling lithium, sodium, and potassium mobility in groundwater.

These multiple lines of evidence show that elevated lithium concentrations at AD-31 and AD-32 are likely not due to a release from the EBAP but can instead be attributed to natural variation (Type IV ASD). This variation appears related to the distribution of clay fractions associated with lignite materials in the soil aquifer material.

3.2 Sampling Requirements

As the ASD presented above supports the position that the identified SSLs are not due to a release from the Pirkey EBAP, the unit will remain in the assessment monitoring program. Groundwater at the unit will continue to be sampled for Appendix IV parameters semiannually.

4. CONCLUSIONS AND RECOMMENDATIONS

The preceding information serves as the ASD prepared in accordance with 30 TAC §352.951(e) and supports the position that the SSLs for cobalt and lithium identified during assessment monitoring in November 2022 were not due to a release from the EBAP. The identified SSLs should instead be attributed to natural variation in the underlying geology. Therefore, no further action is warranted, and the Pirkey EBAP will remain in the assessment monitoring program. Certification of this ASD by a qualified professional engineer is provided in **Attachment E.**

5. REFERENCES

- AEP. 2023. Annual Groundwater Monitoring Report. Southwestern Electric Power Company H.W. Pirkey Power Plant East Bottom Ash Pond CCR Management Unit. January.
- Arcadis. 2016. East Bottom Ash Pond CCR Groundwater Monitoring Well Network Evaluation. H.W. Pirkey Power Plant. May.
- Arcadis, 2022. Landfill CCR Groundwater Monitoring Well Network Evaluation. H.W. Pirkey Power Plant. January.
- Clementi, E., and D. L. Raimdoni. 1963. "Atomic Screening Constants from SCF Functions." *J. Chem. Phys.* 38(11): 2686–2689.
- Dixon, J.B., L.R. Hossner, A.L. Senkayi, and K. Egashira. 1982. "Mineralogical Properties of Lignite Overburden as They Relate to Mine Spoil Reclamation." In *Acid Sulfate Weathering*, edited by J.A. Kittrick, D.S. Fanning, and L.R. Hossner, 169–191. Soil Science Society of America Special Publications.
- EPRI. 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites. 3002010920. Electric Power Research Institute. October.
- Geosyntec. 2019a. Alternative Source Demonstration Federal CCR Rule. H.W. Pirkey Power Plant. East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. April.
- Geosyntec. 2019b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. September.
- Geosyntec. 2020a. Statistical Analysis Plan Revision 1. Geosyntec Consultants. October.
- Geosyntec. 2020b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. April.
- Geosyntec. 2020c. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. December.
- Geosyntec. 2021a. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. May.
- Geosyntec. 2021b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. December.
- Geosyntec. 2022. Alternative Source Demonstration Report Texas State CCR Rule. H.W. Pirkey Power Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. June.
- Geosyntec. 2023a. Statistical Analysis Summary East Bottom Ash Pond. H.W. Pirkey Plant. Hallsville, Texas. Geosyntec Consultants. March.
- Geosyntec. 2023b. Alternative Source Demonstration Report Texas State CCR Rule. H.W. Pirkey Power Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. January.

- Harris, L.A, E.A. Kenik, and C.S. Yust. 1981. "Reactions in Pyrite Framboids Induced by Electron Beam Heating in a HVEM." *Scanning Electron Microscopy* 1: 657–662.
- Hitzman, M.W., A.A. Bookstrom, J.F. Slack, and M.L. Zientek. 2017. Cobalt Styles of Deposits and the Search for Primary Deposits. United States Geological Survey Open File Report 2017-1155.
- Krupka, K.M., and R.J. Serne. 2002. Geochemical Factors Affecting the Behavior of Antimony, Cobalt, Europium, Technetium, and Uranium in Vadose Sediments. Pacific Northwest National Lab, PNNL-14126. December.
- Sawlowicz, Z. 2000. "Framboids: From Their Origin to Application." *Mineralogical Transactions* 88. ISSN 0079-3396.
- Senkayi, A.L., J.B. Dixon, and L.R. Hossner. 1986. "Todorokite, Goethite, and Hematite: Alteration Products of Siderite in East Texas Lignite Overburden." *Soil Science* 142(1): 36–43.
- Sheppard, S., J. Long, B. Sanipelli, and G. Sohlenius. 2009. Solid/Liquid Partition Coefficients (K_d) for Selected Soil and Sediments at Forsmark and Laxemar-Simpevarp. R-09-27. Swedish Nuclear Fuel and Waste Management Co. March.
- Sheppard, S., G. Sohlenius, L.G. Omberg, M. Borgiel, S. Grolander, and S. Nordén. 2011. Solid/Liquid Partition Coefficients (K_d) and Plant/Soil Concentration Ratios (CR) for Selected Soil, Tills, and Sediments at Forsmark. R-11-24. Swedish Nuclear Fuel and Waste Management Co. November.
- TCEQ. 2020. Coal Combustion Residuals Groundwater Monitoring and Corrective Action Draft Technical Guideline No. 32. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action. Texas Commission on Environmental Quality, Waste Permits Division. May.
- USEPA 1994. Method 1312 Synthetic Precipitation Leaching Procedure, Revision 0. Update to the Third Edition of the Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. United States Environmental Protection Agency. Publication SW-846. September.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance. United States Environmental Protection Agency. USEPA 530/R-09/007. March.

TABLES

Table 1. Summary of Key Cobalt Analytical Data Alternative Source Demonstration Report: Texas State CCR Rule East Bottom Ash Pond, H.W. Pirkey Plant

ation						
Cobalt Concentration	6.1	<0.01	0.00128	0.0152	0.0120	0.0439
Unit	mg/kg	mg/L	mg/L	mg/L	mg/L	mg/L
Sample Date	2/11/2019	2/11/2019	6/24/2022	May 2016—November 2022	May 2016—November 2022	May 2016—November 2022
Sample	Bottom Ash (Solid Material)	SPLP Leachate of Bottom Ash	EBAP Pond Water	AD-2 - Average	AD-31 - Average	AD-32 - Average

1. Average values were calculated using all cobalt data collected under 40 CFR 257 Subpart D, excluding any identified outliers.

CCR: coal combustion residuals

EBAP: East Bottom Ash Pond

mg/kg: milligram per kilogram

mg/L: milligram per liter

SPLP: Synthetic Precipitation Leaching Procedure

Table 2. Soil Cobalt Data Alternative Source Demonstration Report East Bottom Ash Pond, H.W. Pirkey Plant

Location ID	Location	Sample Depth (ft bgs)	Cobalt (mg/kg)			
	Bulk	Soil Samples				
AD-2	EBAP Network	25–27	9.45			
AD-2	EDAP Network	31–33	19.2			
AD-18	EBAP Network	8	3.60			
AD-10	EDAF Network	22	2.90			
AD-31	EBAP Network	12	1.90			
AD-31	EDAI Network	26	0.83			
AD-32	EBAP Network	11	1.70			
AD-32	EDAF Network	20–25	9.10			
		15	< 1.0			
AD-41	Upgradient	35	23.5			
		95	1.90			
		10	2.36			
		16	3.62			
B-2	Upgradient	71	10.30			
		82	7.21			
		87	3.11			
		10	1.30			
B-3	Upgradient	20	0.59			
		97	1.11			
Solid Material Retained After Filtration						
AD-32	EBAP Network	13–33	5.4			
B-2	Upgradient	38–48	4.3			
B-3	Upgradient	29–34	12.0			
D-3	Opgradient	VAP 40–45	18.0			

- 1. For AD-XX locations, samples were collected from additional boreholes advanced in the immediate area of the location identified by the well ID. Samples were not collected from the cuttings of the borings advanced for well installation. Samples for B-2 and B-3 locations were collected from cores removed from the borehole during well lithology logging.
- 2. Depths for samples collected after filtration represent the screened interval for the permanent well where the sample was collected.

EBAP: East Bottom Ash Pond ft bgs: feet below ground surface mg/kg: milligram per kilogram

Table 3. X-Ray Diffraction Results Alternative Source Demonstration Report East Bottom Ash Pond, H.W. Pirkey Plant

Constituent	VAP-B3-(40-45)
Quartz	15
Plagioclase Feldspar	0.5
Orthoclase	ND
Calcite	ND
Dolomite	ND
Siderite	0.5
Goethite	ND
Hematite	2
Pyrite	3
Kaolinte	42
Chlorite	4
Illite/Mica	6
Smectite	12
Amorphous	15

- 1. Results given in units of relative % abundance.
- 2. VAP-B3-(40-45) is the centrifuged solid material from the groundwater sample collected at that interval.

ND: Not detected

Table 4. Summary of Key Lithium Analytical Data Alternative Source Demonstration Report: Texas State CCR Rule East Bottom Ash Pond, H.W. Pirkey Plant

Sample	Sample Date	Unit	Lithium Concentration
Bottom Ash (Solid Material)	2/11/2019	mg/kg	0.82 J
SPLP Leachate of Bottom Ash	2/11/2019	mg/L	0.011 J
EBAP Pond Water	6/24/2022	mg/L	0.0463
AD-31 - Average	May 2016–November 2022	mg/L	0.0818
AD-32 - Average	May 2016–November 2022	mg/L	0.0863
VI. 4			

1. Average lithium values for monitoring wells AD-31 and AD-32 were calculated using all lithium data collected under 40 CFR 257 Subpart D, excluding statistically identified outliers.

CCR: coal combustion residuals

EBAP: East Bottom Ash Pond

J: Estimated value. Result is less than the reporting limit but greater than or equal to the method detection limit.

mg/kg: milligram per kilogram

mg/L: milligram per liter

SPLP: Synthetic Precipitation Leaching Procedure

Table 5. Soil Lithium Data Alternative Source Demonstration Report East Bottom Ash Pond, H.W. Pirkey Plant

Location ID	Sample Depth (ft bgs)	Lithium (mg/kg)			
	Bulk Soil Sample				
AD-32*	11	0.53			
AD-32	20–25	1.60			
	10	5.30			
B-2	16	3.97			
B-2	71	7.42			
	87	13.10			
	10	3.64			
B-3	20	2.59			
	97	11.10			
Lignite	N/A	2.9 J			
Solid Material Retained After Filtration					
AD-32*	13–33	9.8 J			
B-2	38–48	6.5 J			
D 2	29–34	7.8 J			
B-3	VAP 40–45	13.0			

Notes:

- 1. Depths for samples collected after filtration represent the screened interval for the permanent well where the sample was collected.
- *: AD-32 samples were collected from a seperate borehole advanced near monitoring well AD-32

ft bgs: feet below ground surface

J: estimated value

mg/kg: milligram per kilogram VAP: vertical aquifer profiling

Table 6. Calculated Site-Specific Partition Coefficients East Bottom Ash Pond, H.W. Pirkey Plant Alternative Source Demonstration Report

Literature Value	L/kg	Kd	43–370	42–1200	5.2–82
	L/kg	Kd	80	423	6
B-2	mg/kg	Adsorbed	6.5	1100	130
	mg/L	Aqueous Phase	0.081	2.6	14
Source	Unit	Element	Li	K	Na

Literature Value	L/kg	Kd	43–370	42–1200	5.2–82
	L/kg	Kd	80	379	8
B-3	mg/kg	Adsorbed	7.8	1100	240
	mg/L	Aqueous Phase	0.097	2.9	32
Source	Unit	Element	Li	K	Na

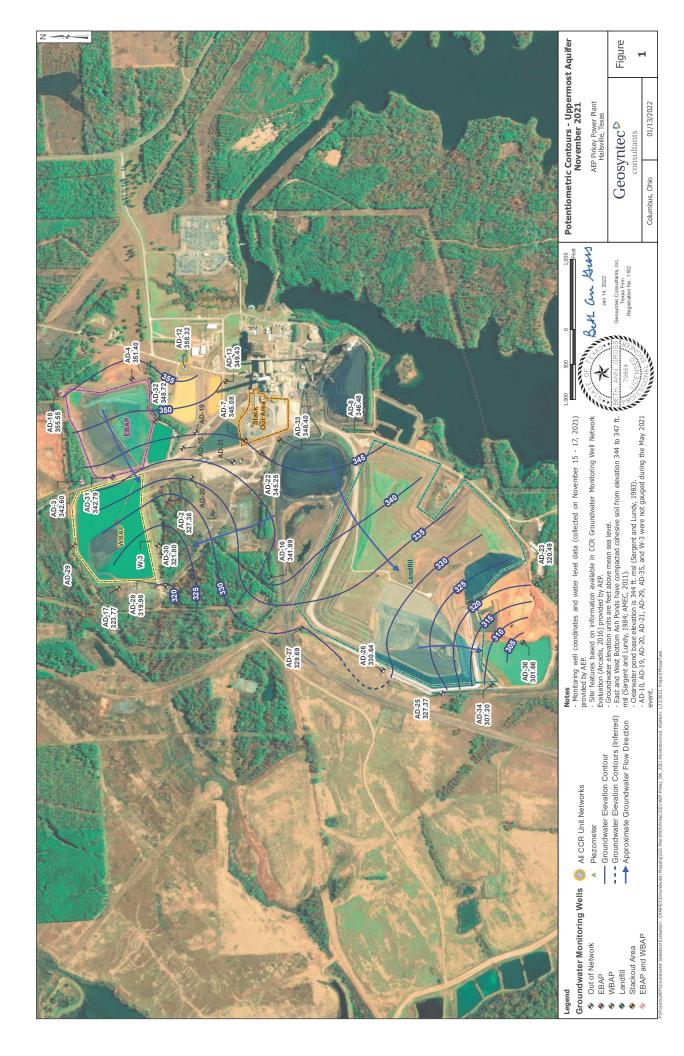
Literature Value	L/kg	Kd	43–370	42–1200	5.2–82
	L/kg	Kd	68	462	4
AD-32*	mg/kg	Adsorbed	8.6	1800	220
	mg/L	Aqueous Phase	0.11	3.9	57
Source	Unit	Element	Li	K	Na

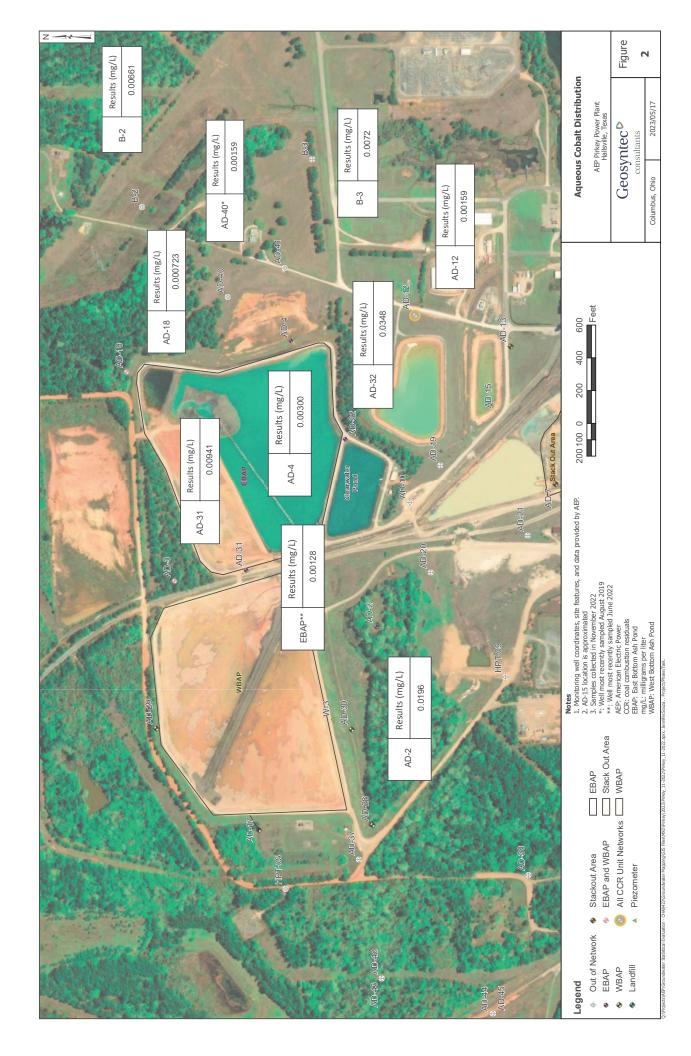
Notes:

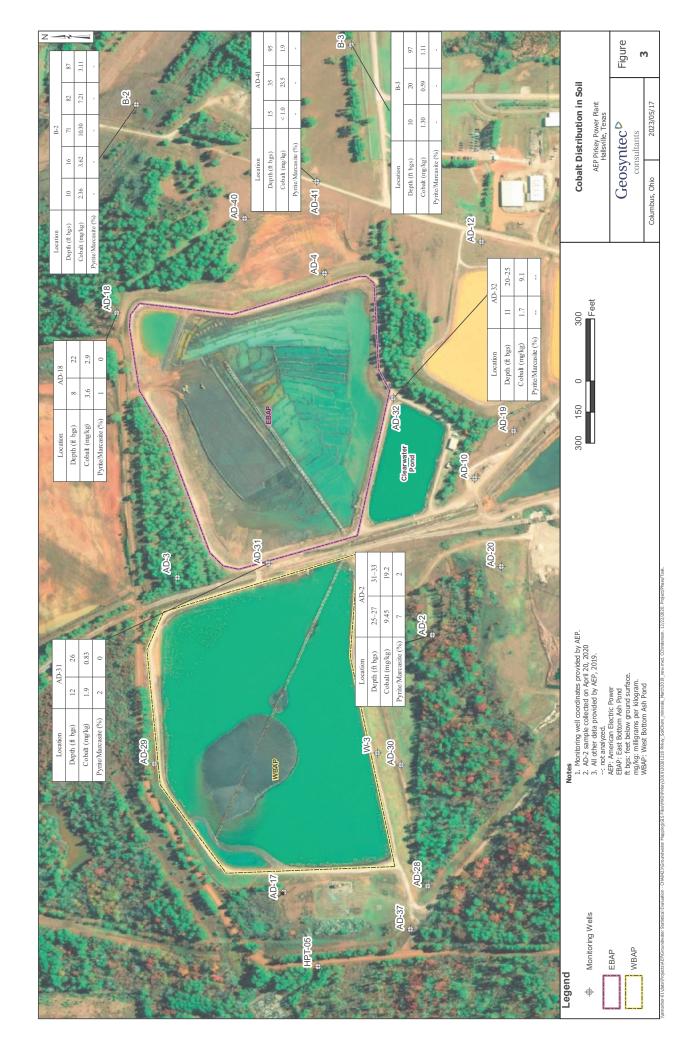
1. Adsorbed values are total metals concentrations reported by USEPA Method 6010B.

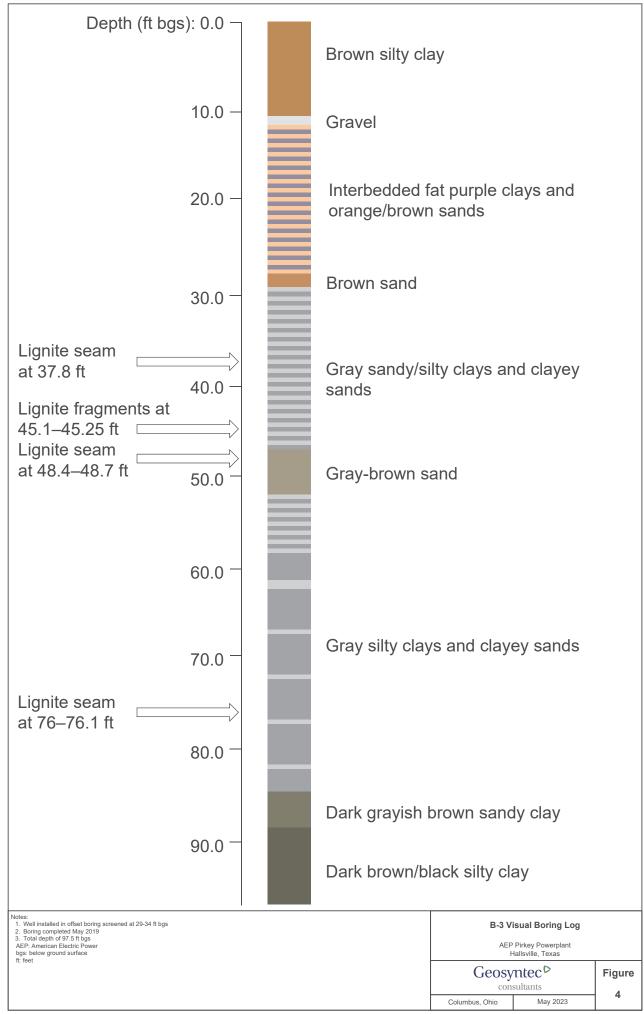
2. Literature values represent maximum and minimum values for the parameter as reported in Sheppard et al. (2009) (Table 4-1, all sites) and Sheppard et al. (2011) (Table 3-3 cultivated peat and wetland peat only).

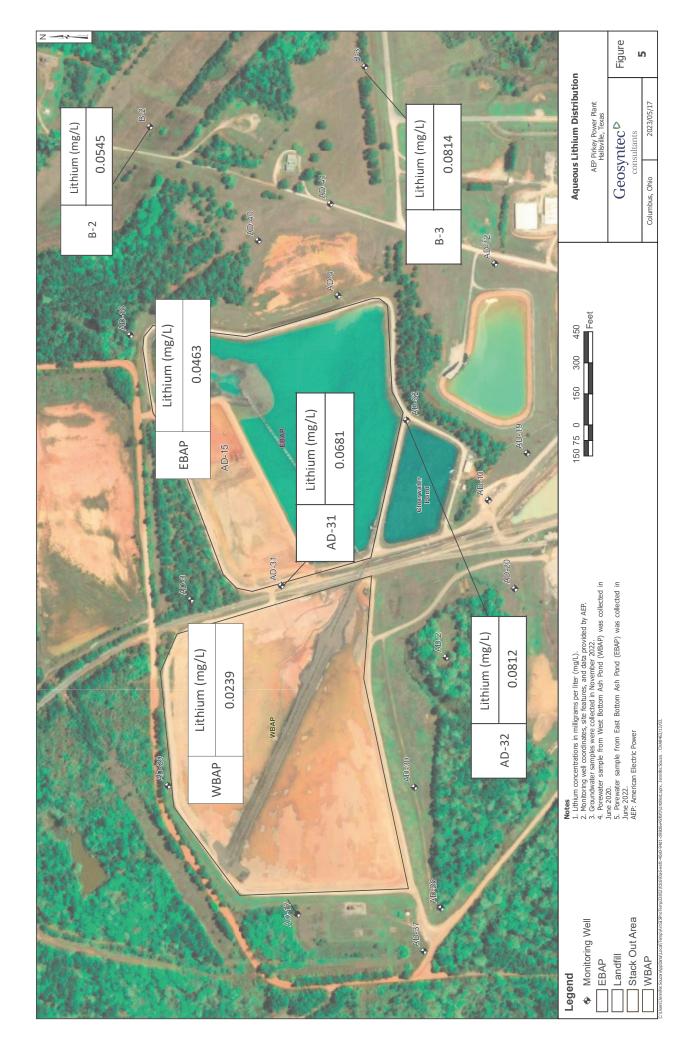
*: AD-32 samples were collected from a separate borehole advanced near monitoring well AD-32

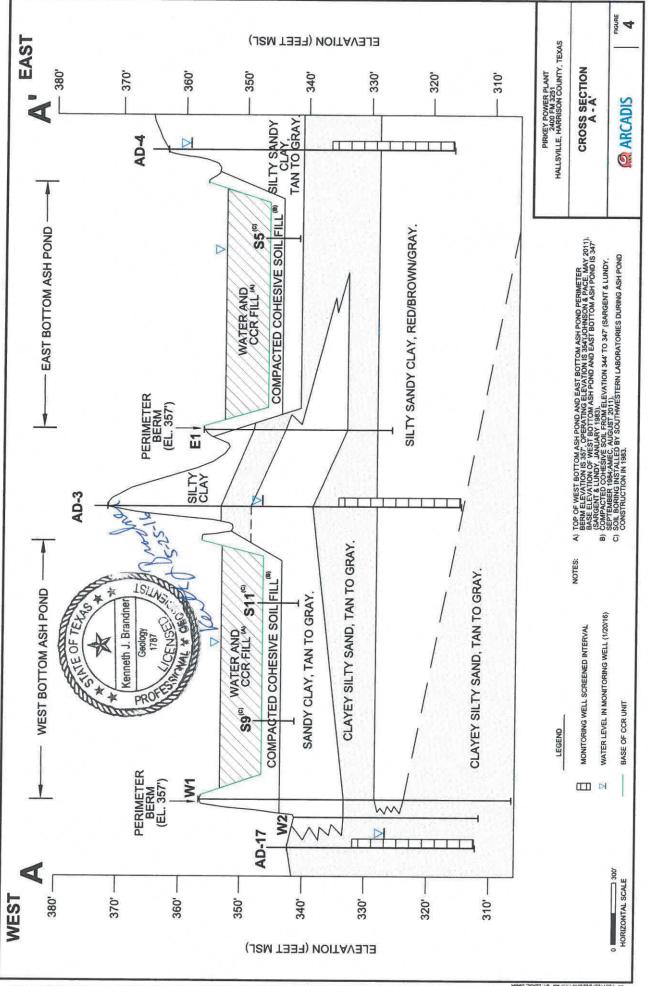

Kd: partition coefficient


L/kg: liters per kilogram


mg/kg: milligrams per kilogram


mg/L: milligrams per liter USEPA: United States Environmental Protection Agency


FIGURES



ATTACHMENT A Geologic Cross Section A-A'

ATTACHMENT B SB-2 Boring Log

SILT: CO VLo V Lo L	oose fed. Dense Dense		Vso So Mst St VSt	COHE COHE CONSISTENCY Very Soft Soft Stiff Very Stiff Hard	PENETROMET 0 - 0.25 0.25 - 0.5 0.5 - 1.0 1.0 - 2.0	ER N - VA	LUE Li. Dk 4 G 8 T 15 R	ELEV. COLORS Light Br Brown Dark Bk Black Grey Bl Blue Tan Gr Grenn Red Y Yellow th Reddish Wh White COLORS MATERIALS CI Clay, Claye Si Silt, Silty Sa Sand, Sand Ls Limestone Gr Gravel SiS Siltstone SS Sandstone Sh Shale, Shal	r y	FI MN	D ADJ inc dediun	Calc C Lig L Org O Lam L Sls Sl	TERTICS alcareous ignite rganic aminate ickenside ightly am (s)				
Lintent ENT-	NO.	NO.	NO.	0	9	1	S			STRAT	UM DES	CRIPTION		AND	ARD METER	L ON	2
ASSIGNMENT	RECENERY	DEPTH	SAMPL	CONDITION OR CONSISTENCY	COLOR	MINOR MATERIALS OR ADJECTIVES	PREDOMINATE MATERIAL	CHARACTERISTICS OR MODIFICATIONS	SEAT - 6"	1st - 6"	2nd - 6"	UNIFIED SOIL CLASSIFICATION	N - VALUE OR HAND				
0-5	2' Rec	0		0-81	Br. Lt. Rd Br	Si	Sa	Silty Sand-time clay,									
5-10	2.5 Rec		H		Lt. Rd Br			- than lenger (less than 1/4"	-	-		moist	15-11				
2 10					#		-	at 7.5' trace iconsta	100			mojot	(B-18				
10-15	41 RK	-8-	H	8-143	Br. Gray	Sasi	CI	Clay-spor sand and	97/			MOST	10-				
					7 7			to 14,5, trace iron or	C ONE	rel							
15-20	2'Rec	ULE	H	145	RAPA-YILW.	C 21		in sand seams (1005	1/2	1,12	,51		, ,				
12-20	2 NO.	170		391	Br. Gray	Si,Cl	Sa	les in converted sand	16.5	1		Weist	15				
20 25	# No Re						10	and ironstone 17 (1.5	11)			700				
20-25	A NO NO				alla lis		> (- remerted sand trains	151	1)	VIMBIR	(24-				
25-30	2.5 R	C			Bry DKG	(19)		-gravel tremental sound so	NR	25	16	1) sati	125%				
		-	Н		(25-3	9/)	724	dayry silty and ext.	EU	AASI	20	I MOIST	25				
								- dary apply tilty set son	1 50	Alla	12		227				
30-35	31800		Н		en 100			- sot sill said seames	n E	1/10		Salt 0	132.5				
					de la	A PLANT		- ort out said seaved	121	124			30				
			Н					* some infrappour cry return sat sand sh	tal	Car	de	ex sand	40.04				
35-40	4' Rec	37		37-46	4. STAY, 6	my CIS	Si	Clavey Sandy Sily				Ind As a	lete t				
			H		(39-46)			-interpredent soft i do	he.	391	s46	M275	(37				
								BIT. CHO'									
			H														
			Н					*25-27 allected	15/15								
								* 31-33' collected = 11									
													-				

* GPS: 32,46522, -94,49032 (12'E')
3.5'N
of ND-2/MW-2

ATTACHMENT C SB-2 Boring Photographic Log

Geosyntec consultants

Client: AEP Project Number: CHA8495

Site Name: Pirkey East Bottom Ash Pond Site Location: Hallsville, Texas

Photograph 1

Date: 4/21/2020

Direction: N/A

Comments:

0-5 foot interval of SB-2.

Photograph 2

Date: 4/21/2020

Direction: N/A

Comments:

5-10 foot interval of

SB-2.

Geosyntec consultants

20.12.22

Client: AEP Project Number: CHA8495

Site Name: Pirkey East Bottom Ash Pond Site Location: Hallsville, Texas

Photograph 3

Date: 4/21/2020

Direction: N/A

Comments:

10-15 foot interval of

SB-2.

Photograph 4

Date: 4/21/2020

Direction: N/A

Comments:

15-20 foot interval of SB-2. Recovery of this interval was limited.

Geosyntec consultants

Client: AEP Project Number: CHA8495

Site Name: Pirkey East Bottom Ash Pond Site Location: Hallsville, Texas

Photograph 5

Date: 4/21/2020

Direction: N/A

Comments:

20-25 foot interval of SB-2. Recovery of this interval was limited.

Photograph 6

Date: 4/21/2020

Direction: N/A

Comments:

25-30 foot interval of SB-2. Very little of this interval was recovered. A color change was observed from red to dark brown/black. A sample was collected from this interval.

Geosyntec consultants

Client: AEP Project Number: CHA8495

Site Name: Pirkey East Bottom Ash Pond Site Location: Hallsville, Texas

Photograph 9

Date: 4/21/2020

Direction: N/A

Comments:

30-35 foot interval of SB-2. Very little of this interval was recovered.. A sample was collected from this interval.

Photograph 10

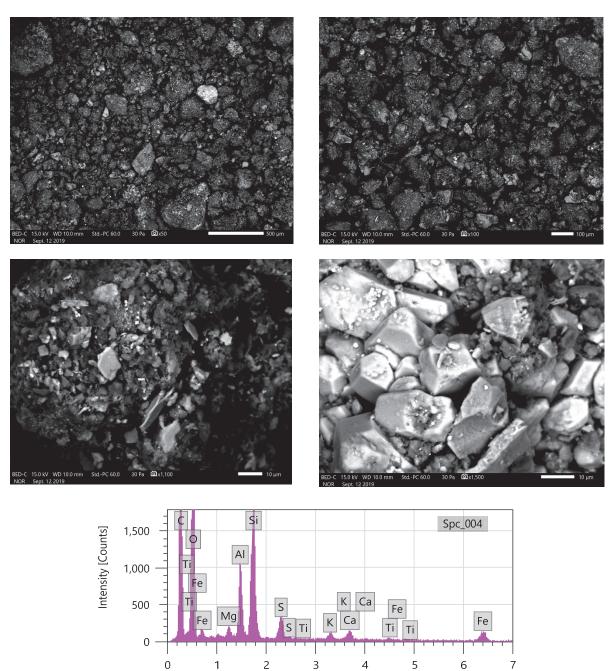
Date: 4/21/2020

Direction: N/A

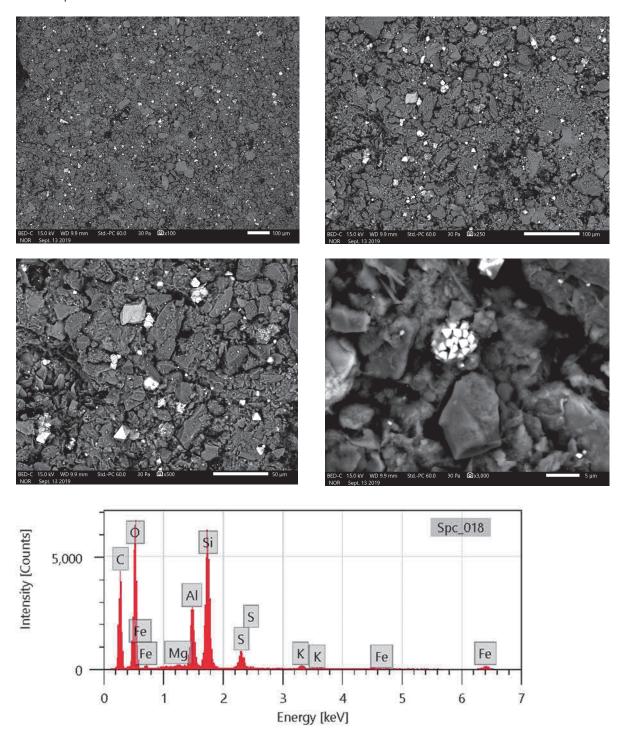
Comments:

35-40 foot interval of

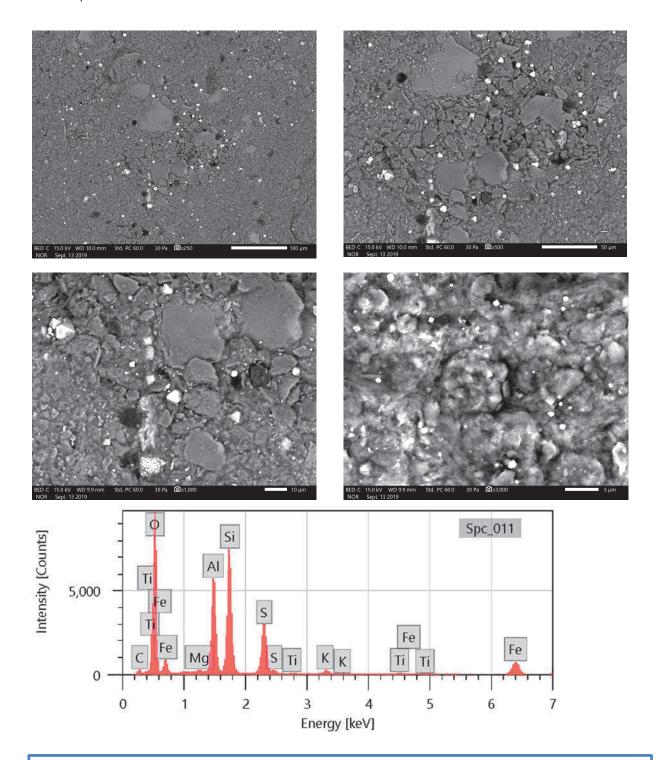
SB-2


ATTACHMENT DSEM/EDS Analysis

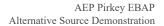
via Email: BSass@geosyntec.com



Dr. Bruce Sass 941 Chatham Lane, Suite 103, Columbus, OH 43221


Lignite. Backscattered electron micrographs show the sample at 100X, 1,100X, and 1,500X. EDS spectrum at bottom is an area scan of the region shown in top right micrograph. Bright particles are mostly quartz and feldspar. Major peaks for carbon, oxygen, silicon, and aluminum suggest coal and clay.

Energy [keV]


Sample VAP B3 40-45. Backscattered electron micrographs show the sample at 100X, 250X, 500X, and 3000X. EDS spectrum at bottom is an area scan of the region shown at 500X. Bright particles are pyrite (framboid in bottom right micrograph). Major peaks for carbon, oxygen, silicon, and aluminum suggest coal and clay.

Sample VAP B3 50-55. Backscattered electron micrographs show the sample at 250X, 500X, 1000X, and 3000X. EDS spectrum at bottom is an area scan of the region shown at 3000X. Bright particles are mostly pyrite (framboid in bottom left micrograph); occasional particles of Fe-Ti oxide are detected. Major peaks for oxygen, silicon, and aluminum suggest clay. Large blocky particles are mostly quartz, feldspar, and clay.

ATTACHMENT E Certification by a Qualified Professional Engineer

CERTIFICATION BY A QUALIFIED PROFESSIONAL ENGINEER

I certify that the above described alternative source demonstration is appropriate for evaluating the groundwater monitoring data for the Pirkey East Bottom Ash Pond CCR management area and that the requirements of 30 TAC §352.951(e) have been met.

Signature

Printed Name of Licensed Professional Engineer

Bets am Geors

Geosyntec Consultants 2039 Centre Pointe Blvd, Suite 103

Texas Registered Engineering Firm No. F-1182

Tallahassee, Florida 32308

79864 Texas License Number

Licensing State

June 27, 2023

Date

engineers | scientists | innovators

ALTERNATIVE SOURCE DEMONSTRATION REPORT TEXAS STATE CCR RULE

H.W. Pirkey Power Plant East Bottom Ash Pond Registration No. CCR104 Hallsville, Texas

Prepared for

American Electric Power

1 Riverside Plaza Columbus, Ohio 43215-2372

Prepared by

Geosyntec Consultants, Inc. 500 West Wilson Bridge Road, Suite 250 Worthington, Ohio 43085

Project CHA8495B

October 2023

TABLE OF CONTENTS

1.	INTF 1.1	CCR Rule Requirements							
	1.2	nonstration of Alternative Sources2							
	SUMMARY OF SITE CONDITIONS								
3.	ALT) 3.1	ERNATIVE SOURCE DEMONSTRATION 5 Proposed Alternative Source 5 3.1.1 Cobalt 5 3.1.2 Lithium 7 Sampling Requirements 9							
4.	CON	CLUSIONS AND RECOMMENDATIONS							
5.	REFERENCES								
		LIST OF TABLES							
Tab	le 1	Summary of Key Cobalt Analytical Data							
Tab	le 2	Soil Cobalt Data							
Tab	le 3	X-Ray Diffraction Results							
Tab	le 4	Summary of Key Lithium Analytical Data							
Tab	le 5	Soil Lithium Data							
Tab	le 6	Calculated Site-Specific Partition Coefficients							
		LIST OF FIGURES							
Figu	ire 1	Potentiometric Contours: Uppermost Aquifer June 2023							
Figu	ire 2	Aqueous Cobalt Distribution							
Figu	ire 3	Cobalt Distribution in Soil							
Figu	ıre 4	B-3 Visual Boring Log							
Figu	ire 5	Aqueous Lithium Distribution							

LIST OF ATTACHMENTS

Attachment A Geologic Cross Section A-A'

Attachment B SB-2 Boring Log

Attachment C SB-2 Boring Photographic Log

Attachment D SEM/EDS Analysis

Attachment E Certification by a Qualified Professional Engineer

LIST OF ACRONYMS

Å angstrom

ASD alternative source demonstration

bgs below ground surface

CCR coal combustion residuals

EBAP East Bottom Ash Pond

EDS energy-dispersive spectroscopy
EPRI Electric Power Research Institute

GWPS groundwater protection standard

LCL lower confidence limit mg/kg milligram per kilogram

mg/L milligram per liter

SEM scanning electron microscopy

SPLP Synthetic Precipitation Leaching Procedure

SSL statistically significant level
TAC Texas Administrative Code

TCEQ Texas Commission on Environmental Quality
USEPA United States Environmental Protection Agency

VAP vertical aquifer profiling WBAP West Bottom Ash Pond

XRD X-ray diffraction

1. INTRODUCTION AND SUMMARY

This Alternative Source Demonstration (ASD) report has been prepared to address statistically significant levels (SSLs) for cobalt and lithium in the groundwater monitoring network at the H.W. Pirkey Plant East Bottom Ash Pond (EBAP) in Hallsville, Texas, following the first semiannual assessment monitoring event of 2023. The H.W. Pirkey Plant has four coal combustion residuals (CCR) storage units, including the EBAP, regulated by the Texas Commission on Environmental Quality (TCEQ) under Registration No. CCR104 (**Figure 1**).

In June 2023, a semiannual assessment monitoring event was conducted at the EBAP in accordance with Title 30 §352.951(a) of the Texas Administrative Code (TAC). The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. Confidence intervals were recalculated for the Appendix IV parameters at the compliance wells to assess whether these parameters were present at an SSL above previously calculated groundwater protection standards (GWPSs). An SSL was concluded if the lower confidence limit (LCL) of a parameter exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). The following SSLs were identified at the Pirkey EBAP (Geosyntec 2023a):

- The LCLs for cobalt exceeded the GWPS of 0.00939 mg/L at AD-2 (0.0132 mg/L), AD-31 (0.00959 mg/L), and AD-32 (0.0310 mg/L).
- The LCL for lithium exceeded the GWPS of 0.0520 mg/L at AD-31 (0.0760 mg/L) and AD-32 (0.0766 mg/L).

No other SSLs were identified.

1.1 CCR Rule Requirements

TCEQ regulations regarding assessment monitoring programs for CCR landfills and surface impoundments provide owners and operators with the option to make an ASD when an SSL is identified:

In making a demonstration under this subsection, the owner or operator must, within 90 days of detecting a statistically significant level above the groundwater protection standard of any constituent listed in Appendix IV adopted by reference in §352.1431 of this title, submit a report prepared and certified in accordance with §352.4 of this title (relating to Engineering and Geoscientific Information) to the executive director, and any local pollution agency with jurisdiction that has requested to be notified, demonstrating that a source other than a CCR unit caused the exceedance or that the exceedance resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. (30 TAC §352.951(e))

Pursuant to 30 TAC §352.951(e), Geosyntec Consultants, Inc. (Geosyntec) has prepared this ASD report to document that the SSLs identified for cobalt and lithium in the groundwater monitoring network for the EBAP are from a source other than the EBAP.

1.2 Demonstration of Alternative Sources

An evaluation was completed to assess possible alternative sources to which the identified SSLs could be attributed. Alternative sources were categorized into the following five types, based on methodology provided by the Electric Power Research Institute (EPRI 2017):

- ASD Type I: Sampling Causes
- ASD Type II: Laboratory Causes
- ASD Type III: Statistical Evaluation Causes
- ASD Type IV: Natural Variation
- ASD Type V: Alternative Sources

A demonstration was conducted to show that the SSLs identified for cobalt and lithium were based on a Type IV cause and not by a release from the Pirkey EBAP.

2. SUMMARY OF SITE CONDITIONS

The EBAP design and construction, regional geology and site hydrogeology, and groundwater monitoring system and flow conditions are described below.

2.1 EBAP Design and Construction

The EBAP is a 31.5-acre CCR surface impoundment located at the north end of the Pirkey Plant, immediately east of the West Bottom Ash Pond (WBAP) (**Figure 1**). It was constructed while the Pirkey Plant was being developed in 1983 and 1984 and placed into operation in 1985 to receive bottom ash and economizer ash sluiced from the plant boiler. Bottom ash and economizer ash were periodically excavated from the EBAP and either removed via truck to the on-site landfill or sold for off-site beneficial reuse.

The EBAP was developed by excavating part of its perimeter into native soils to create an embankment height of approximately 4 feet, constructing compacted clay perimeter embankments, and constructing a compacted clay liner over the base of the pond (Arcadis 2016). Multiple lithological borings advanced after the installation of the clay liner confirm that at least 6 feet of clay was present below the base of the EBAP (Arcadis 2016). The bottom elevation of the EBAP was approximately 347 feet above mean sea level, and the elevation of the top of the pond embankment was approximately 357 feet above mean sea level. The unit was designed to have a maximum storage capacity of 188 acre-feet.

A Closure Plan was developed in October 2016 and revised in December 2021 (AEP 2021). This document detailed the closure activities which were to take place throughout the closure of the EBAP. AEP submitted a certified notification that the receival of CCR materials had ceased as of April 25, 2023 and the closure activities had been initiated (AEP 2023). As of October 2023, the EBAP has been dewatered and CCR materials plus one foot of underlying soil have been removed.

2.2 Regional Geology / Site Hydrogeology

The EBAP is positioned on an outcrop of the Eocene-age Recklaw Formation, which consists predominantly of clay and fine-grained sand (Arcadis 2016). The Recklaw Formation is underlain by the Carrizo Sand, which crops out in the topographically lower southern portion of the plant. The Carrizo Sand consists of fine to medium grained sand interbedded with silt and clay.

The very-fine- to fine-grained clayey and silty sand found beneath an upper silty to silty sandy clay layer in the vicinity of the EBAP is considered to be the Uppermost Aquifer below this CCR unit (Arcadis, 2016). Here it is approximately 15-feet thick and located between an elevation of 325 and 340 feet mean sea level.

2.3 Groundwater Monitoring History and Flow Conditions

The EBAP monitoring well network monitors groundwater within the Uppermost Aquifer. Geologic cross section A-A' from the EBAP Groundwater Monitoring Well Network Report (Arcadis 2016), provided herein as **Attachment A**, shows the subsurface geometry of the

Uppermost Aquifer (indicated on the figure as clayey silty sand, tan to gray) underlying the EBAP and the WBAP and demonstrates lateral continuity of the Uppermost Aquifer spanning the entire length of the EBAP.

Groundwater flow direction in the area of the EBAP is west-southwesterly (**Figure 1**). Seasonal variability in groundwater flow has not been observed since the monitoring well network was installed. Groundwater flow velocities in the uppermost aquifer in the vicinity of the EBAP have been reported as approximately 10 to 44 feet per year. The EBAP monitoring well network consists of upgradient monitoring wells AD-4, AD-12, and AD-18 and compliance wells AD-2, AD-3, AD-31, and AD-32, all of which are screened within the Uppermost Aquifer.

3. ALTERNATIVE SOURCE DEMONSTRATION

The ASD evaluation method and proposed alternative source of cobalt or lithium in AD-2, AD-31, and AD-32 and the future groundwater sampling requirements are described below.

3.1 Proposed Alternative Source

An initial review of site geochemistry, site historical data, and laboratory quality assurance and quality control data did not identify alternative sources for cobalt and lithium due to Type I (sampling), Type II (laboratory), Type III (statistical evaluation), or Type V (anthropologic) issues. Groundwater sampling, laboratory analysis, and statistical evaluations were generally completed in accordance with 30 TAC §352.931 and the draft TCEQ guidance for groundwater monitoring (TCEQ 2020). As described below, the SSLs have been attributed to natural variation associated with the underlying geology, which is a Type IV (natural variation) issue.

3.1.1 Cobalt

Previous ASDs for cobalt at the EBAP provided evidence that cobalt is present in the aquifer geologic media at the site and that the observed cobalt concentrations in groundwater were due to natural variation of native geogenic sources (Geosyntec 2019a, Geosyntec 2019b, Geosyntec 2020a, Geosyntec 2020b, Geosyntec 2021a, Geosyntec 2021b, Geosyntec 2022b, Geosyntec 2023b, Geosyntec 2023c). The previous ASDs demonstrated how the EBAP was not a source for cobalt in downgradient groundwater, based on observed concentrations of cobalt both in the ash material and in leachate from Synthetic Precipitation Leaching Procedure (SPLP) analysis (SW-846 Test Method 1312 [USEPA, 1994]) of the ash material. Cobalt was not detected in the most recent SPLP ash leachate sample, collected in 2019, above the reporting limit of 0.01 mg/L, which is lower than the average concentrations observed at the wells of interest (**Table 1**). No changes to material handling or plant operations have occurred which would have changed the anticipated cobalt concentrations in CCR ash since this sample was collected.

In a February 2023 surface water sample collected from the EBAP to characterize the total cobalt concentrations, cobalt was detected at a concentration of 0.00350 mg/L (**Table 1**). The surface water sample data from the February 2023 sampling event was used during this evaluation as the EBAP had been dewatered prior to the June 2023 sampling event. This concentration is lower than the reported cobalt concentrations for multiple in-network wells from the June 2023 sampling event, including the upgradient monitoring well AD-4 (0.00389 mg/L; **Figure 2**). The EBAP sample was also found to be lower than the average concentration in groundwater at the wells of interest, including almost an order of magnitude lower than the average concentration at AD-32 (**Table 1**). Therefore, the EBAP is not the likely source of cobalt at AD-2, AD-31, or AD-32.

As noted in the previous ASDs, soil samples collected across the site, including from locations near the EBAP, identified cobalt in the aquifer solids at concentrations ranging from 0.59 - 23.5 milligrams per kilogram (mg/kg) with the highest value reported at AD-41, which is upgradient of the EBAP (**Figure 3**). SB-2 was advanced in the vicinity of AD-2 in April 2020 to re-log the

geology at AD-2 and collect samples for laboratory analysis of total metals and mineralogy. The SB-2 field boring log, which was generated by Auckland Consulting LLC, is provided as **Attachment B**. Cobalt was detected at SB-2 at concentrations of 9.45 mg/kg at 25-27 feet below ground surface (bgs) and 19.2 mg/kg at 31-33 feet bgs (**Table 2**). These cobalt concentrations are greater than the concentration of cobalt present in the bottom ash (6.1 mg/kg; **Table 1**). Both samples correlate to the depth of the monitoring well screen of AD-2 (20-40 feet bgs), indicating that naturally occurring cobalt is present in aquifer solids within the AD-2 screened interval.

In addition to the analysis of total cobalt, soil samples were submitted for mineralogical analysis to determine the mineral composition of soils near the EBAP. X-ray diffraction (XRD) analysis of soils from SB-2 identified pyrite (an iron sulfide) in samples collected at 25-27 feet bgs and 31-33 feet bgs at concentrations up to 7% by weight (**Figure 3**). Cobalt is known to undergo isomorphic substitution for iron in crystalline iron minerals such as pyrite due to their similar ionic radii of approximately 1.56 angstroms (Å) for iron vs. 1.52 Å for cobalt (Clementi and Raimondi 1963; Krupka and Serne 2002; Hitzman et al. 2017). The presence of iron-bearing minerals in soil near the EBAP constitutes a potential source of naturally occurring cobalt.

The aquifer solids at SB-2 are distinctly red in color at shallow depths, as illustrated in the photolog of soil cores provided in **Attachment C**. While shallow samples were not collected for mineralogical analysis, red color in soils is often associated with the presence of oxidized iron-bearing minerals such as hematite and goethite. The red color of the soil suggests the presence of iron oxide and hydroxide minerals within the shallow depth interval. The alteration of pyrite to these iron oxide and hydroxide minerals under oxidizing conditions is also a well-understood phenomenon, including in formations in east Texas (Senkayi et al. 1986, Dixon et al. 1982). It is likely that the pyrite weathering process is resulting in the release of isomorphically substituted cobalt from the pyrite crystal structure as it undergoes oxidative transformation to iron oxide/hydroxide minerals.

As described in the previous ASDs, vertical aquifer profiling (VAP) was used to collect groundwater samples from upgradient locations B-2 and B-3 during the soil boring and sample collection process (Geosyntec 2019b). A groundwater sample was also collected from AD-32, one of the existing compliance-wells within the EBAP groundwater monitoring network where a cobalt SSL was identified. Solid phase materials within these groundwater samples were separated and submitted for analysis of chemical composition. For the VAP samples, separation was completed using a centrifuge due to the high abundance of suspended solids. For the groundwater sample at AD-32, the sample was filtered using a 1.5-micron filter. Based on total metals analysis, cobalt was identified both in the centrifuged solid material collected from upgradient VAP location B-3 [VAP-B3-(40-45)] and in the material retained on the filter after processing groundwater from permanent monitoring wells B-2 and B-3 (Table 2). The concentrations of cobalt in the solid material retained after filtration were comparable to the bulk soil samples collected from the same locations.

The solid sample [VAP-B3-(40-45)] was submitted for mineralogical analysis via XRD and scanning electron microscopy (SEM) using an energy dispersive spectroscopic analyzer (EDS). The XRD results identified pyrite as approximately 3% of the solid phase (**Table 3**). Pyrite was identified during SEM/EDS analysis of lignite which is mined immediately adjacent to the site. Logging completed while the VAP boring was advanced identified coal at several intervals, including 45 and 48 feet bgs (**Figure 4**). Furthermore, SEM/EDS of both centrifuged solid samples [VAP-B3-(40-45) and VAP-B3-(50-55)] identified pyrite in backscattered electron micrographs by the distinctive framboidal morphology (Harris et al. 1981; Sawlowicz 2000). Major peaks representing iron and sulfur were identified in the EDS spectrum, which further support the identification of pyrite (**Attachment D**). While cobalt was not identified in the EDS spectrum, it is likely present at concentrations below the detection limit.

The EBAP was not identified as the source of cobalt at wells in the EBAP network based on the low concentrations of cobalt in the pond itself and the ubiquity of naturally occurring cobalt, especially in soil and groundwater samples upgradient from the EBAP. Cobalt in the EBAP network groundwater is believed to be a result of natural variability within the aquifer. Naturally occurring cobalt is known to substitute for iron in iron-bearing minerals. The presence of iron sulfide (as pyrite) and iron oxides/hydroxides hematite and goethite have been confirmed at AD-2 and across the Site. The weathering of pyritic minerals to iron oxide/hydroxide minerals may be resulting in the release of cobalt into groundwater from the crystal structure of these aquifer minerals.

3.1.2 Lithium

Previous ASDs for lithium at the EBAP attributed the observed lithium exceedances to variations in lithium associated with the suspended native aquifer solids that likely originate from naturally occurring lignite present in these soils. These native lithium-containing aquifer solids are ubiquitous in the aquifer based on the presence of both solid-phase and dissolved lithium at upgradient locations (Geosyntec 2019b, Geosyntec 2020a, Geosyntec 2020b, Geosyntec 2021a, Geosyntec 2021b, Geosyntec 2022a, Geosyntec 2022b, Geosyntec 2023b, Geosyntec 2023c). Data gathered in support of the prior ASDs and recent results provide additional evidence that the observed lithium groundwater concentrations at AD-31 and AD-32 are naturally occurring and are due to natural variation in the aquifer (Type IV ASD).

As discussed in Section 3.3.1, a surface water sample was collected directly from the EBAP in February 2023. Lithium was detected in the February 2023 EBAP sample at a concentration of 0.0653 mg/L (**Figure 5, Table 4**). The labile fraction identified in the bottom ash by SPLP from a February 2019 sample was even lower, with an estimated (J-flagged) lithium concentration of 0.011 mg/L. These concentrations are below the average lithium concentrations at AD-31 (0.0818 mg/L) and AD-32 (0.0843 mg/L) (**Table 4**). Thus, the EBAP is not the likely source of lithium at AD-31 and AD-32.

Groundwater samples collected from upgradient wells B-2 and B-3 in June 2023 had total lithium concentrations of 0.0485 mg/L and 0.0641 mg/L, respectively. The reported concentration at B-3

October 2023

is greater than the GWPS of 0.0520 mg/L and only slightly lower than the concentration of lithium observed at AD-31 (0.089 mg/L). Furthermore, the lithium concentration detected at B-3 is greater than the value found at AD-32 (0.0500 mg/L) (**Figure 5**). Because B-2 and B-3 were installed at locations upgradient to and unimpacted by site activities, these lithium concentrations suggest that aqueous lithium is naturally present at concentrations above the GWPS across the site at variable concentrations and not limited to AD-31 and AD-32. It is noted that B-2 and B-3 are not part of the monitoring network for the EBAP, and as such the lithium concentrations in groundwater from these wells are not considered in calculating the GWPS for the CCR unit.

As described in Section 3.3.1, groundwater samples were collected from B-2, B-3, and AD-32 and filtered to separate solids. Groundwater was also collected from a VAP boring (VAP-B3-(40-45)) and centrifuged to separate solids. Lithium was detected in the solid material separated from these groundwater samples at concentrations comparable to bulk soil at all locations, providing evidence that the particulates captured during groundwater sampling contain lithium (**Table 5**).

3.1.2.1 Calculated Partition Coefficients

A previous ASD for lithium at the EBAP discussed lithium mobility in groundwater due to desorption from cation exchange complexes associated with clay minerals within naturally occurring lignite material. This mechanism was posited as the source of lithium in both upgradient and downgradient wells at the EBAP (Geosyntec 2019b). Previously completed XRD analysis of centrifuged solid material samples (VAP-B3-(40-45)) found that clay minerals, including kaolinite, smectite, and illite/mica, made up at least 60% of the aquifer solid (**Table 3**). SEM/EDS analysis also identified the presence of silicon, aluminum, and oxygen, all of which are components of clay minerals (**Attachment D**). The backscattered electron micrographs of these samples also identified clay particles by morphology. The largest clay particles (> 5 μ m) are likely kaolinite, while smectite and illite dominate the smaller size fraction. These clay minerals, particularly smectite and illite, are known to retain cations such as lithium via incorporation into the octahedral layer of the mineral structure and through cation exchange processes.

Partition coefficients values (K_d) for lithium, potassium, and sodium were calculated using mass measurements and total metal concentrations in the solid materials separated from the groundwater samples during filtration and the filtered groundwater concentrations. Details about the K_d calculation are provided in the previous ASD (Geosyntec 2019b). K_d values for groundwater and particulates collected from wells B-2, B-3, and AD-32 were comparable to literature K_d values reported for organic-rich media such as bogs and peat beds (Sheppard et al. 2009, Sheppard et al. 2011), providing further evidence that lithium mobility in site groundwater is similar to other sites with organic-rich soils (**Table 6**). Additionally, the calculated K_d values for Pirkey soils were consistent with the literature, with potassium having the highest K_d (greatest affinity for sorption) and sodium the lowest K_d (least affinity for sorption). Furthermore, the values are similar for groundwater from all three wells, suggesting a universal mechanism controlling lithium, sodium, and potassium mobility in groundwater.

These multiple lines of evidence show that elevated lithium concentrations at AD-31 and AD-32 are likely not due to a release from the EBAP, and instead can be attributed to natural variation (Type IV ASD). This variation appears related to the distribution of clay fractions associated with lignite materials in the soil aquifer material.

3.2 Sampling Requirements

As the ASD presented above supports the position that the identified SSLs are not due to a release from the Pirkey EBAP, the unit will remain in the assessment monitoring program. Groundwater at the unit will continue to be sampled for Appendix IV parameters semiannually.

4. CONCLUSIONS AND RECOMMENDATIONS

The preceding information serves as the ASD prepared in accordance with 30 TAC §352.951(e) and supports the position that the SSLs for cobalt and lithium identified during assessment monitoring in June 2023 were not due to a release from the EBAP. The identified SSLs should instead be attributed to natural variation in the underlying geology. Therefore, no further action is warranted, and the Pirkey EBAP will remain in the assessment monitoring program. Certification of this ASD by a qualified professional engineer is provided in **Attachment E.**

5. REFERENCES

- AEP. 2021. Closure Plan. East and West Bottom Ash Ponds Pirkey Power Plant, Hallsville, Texas. December.
- AEP. 2023. Notification of Intent to Close a CCR Unit. Pirkey Power Plant, East Bottom Ash Pond. April.
- Arcadis. 2016. East Bottom Ash Pond CCR Groundwater Monitoring Well Network Evaluation. H.W. Pirkey Power Plant. May.
- Arcadis, 2022. Landfill CCR Groundwater Monitoring Well Network Evaluation. H.W. Pirkey Power Plant. January.
- Clementi, E., and D. L. Raimdoni. 1963. "Atomic Screening Constants from SCF Functions." *J. Chem. Phys.* 38(11): 2686–2689.
- Dixon, J.B., L.R. Hossner, A.L. Senkayi, and K. Egashira. 1982. "Mineralogical Properties of Lignite Overburden as They Relate to Mine Spoil Reclamation." In *Acid Sulfate Weathering*, edited by J.A. Kittrick, D.S. Fanning, and L.R. Hossner, 169–191. Soil Science Society of America Special Publications.
- EPRI. 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites. 3002010920. Electric Power Research Institute. October.
- Geosyntec. 2019a. Alternative Source Demonstration Federal CCR Rule. H.W. Pirkey Power Plant. East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. April.
- Geosyntec. 2019b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. September.
- Geosyntec. 2020a. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. April.
- Geosyntec. 2020b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. December.
- Geosyntec. 2021a. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. May.
- Geosyntec. 2021b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. December.
- Geosyntec. 2022a. Alternative Source Demonstration Report Texas State CCR Rule. H.W. Pirkey Power Plant, East Bottom Ash Pond. Hallsville, Texas. June.
- Geosyntec. 2022b. Alternative Source Demonstration Report Texas State CCR Rule. H.W. Pirkey Power Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. October.
- Geosyntec. 2023a. Statistical Analysis Summary East Bottom Ash Pond. H.W. Pirkey Plant. Hallsville, Texas. Geosyntec Consultants. October.

- Geosyntec. 2023b. Alternative Source Demonstration Report Texas State CCR Rule. H.W. Pirkey Power Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. January.
- Geosyntec. 2023c. Alternative Source Demonstration Report Texas State CCR Rule. H.W. Pirkey Power Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. June.
- Harris, L.A, E.A. Kenik, and C.S. Yust. 1981. "Reactions in Pyrite Framboids Induced by Electron Beam Heating in a HVEM." *Scanning Electron Microscopy* 1: 657–662.
- Hitzman, M.W., A.A. Bookstrom, J.F. Slack, and M.L. Zientek. 2017. Cobalt Styles of Deposits and the Search for Primary Deposits. United States Geological Survey Open File Report 2017-1155.
- Krupka, K.M., and R.J. Serne. 2002. Geochemical Factors Affecting the Behavior of Antimony, Cobalt, Europium, Technetium, and Uranium in Vadose Sediments. Pacific Northwest National Lab, PNNL-14126. December.
- Sawlowicz, Z. 2000. "Framboids: From Their Origin to Application." *Mineralogical Transactions* 88. ISSN 0079-3396.
- Senkayi, A.L., J.B. Dixon, and L.R. Hossner. 1986. "Todorokite, Goethite, and Hematite: Alteration Products of Siderite in East Texas Lignite Overburden." *Soil Science* 142(1): 36–43.
- Sheppard, S., J. Long, B. Sanipelli, and G. Sohlenius. 2009. Solid/Liquid Partition Coefficients (K_d) for Selected Soil and Sediments at Forsmark and Laxemar-Simpevarp. R-09-27. Swedish Nuclear Fuel and Waste Management Co. March.
- Sheppard, S., G. Sohlenius, L.G. Omberg, M. Borgiel, S. Grolander, and S. Nordén. 2011. Solid/Liquid Partition Coefficients (K_d) and Plant/Soil Concentration Ratios (CR) for Selected Soil, Tills, and Sediments at Forsmark. R-11-24. Swedish Nuclear Fuel and Waste Management Co. November.
- TCEQ. 2020. Coal Combustion Residuals Groundwater Monitoring and Corrective Action Draft Technical Guideline No. 32. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action. Texas Commission on Environmental Quality, Waste Permits Division. May.
- USEPA 1994. Method 1312 Synthetic Precipitation Leaching Procedure, Revision 0. Update to the Third Edition of the Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. United States Environmental Protection Agency. Publication SW-846. September.

TABLES

Table 1: Summary of Key Cobalt Analytical Data East Bottom Ash Pond - H.W. Pirkey Plant

Sample	Sample Date	Unit	Cobalt Concentration
Bottom Ash (Solid Material)	2/11/2019	mg/kg	6.1
SPLP Leachate of Bottom Ash	2/11/2019	mg/L	< 0.01
EBAP Pond Water	2/28/2023	mg/L	0.0035
AD-2 - Average	May 2016 - June 2023	mg/L	0.0155
AD-31 - Average	May 2016 - June 2023	mg/L	0.0121
AD-32 - Average	May 2016 - June 2023	mg/L	0.0413

Notes:

1. Average values were calculated using all cobalt data collected under 40 CFR 257 Subpart D, excluding any identified outliers.

mg/kg : milligram per kilogram mg/L : milligram per liter

SPLP: synthetic precipitation leaching procedure

Table 2: Soil Cobalt Data East Bottom Ash Pond - H.W. Pirkey Plant

Location ID	Location	Sample Depth (ft bgs)	Cobalt (mg/kg)					
	Bulk Soil Samples							
AD 2		25_27 0.45						
AD-2	EBAP Network	31-33	19.2					
AD-18	EBAP Network	8	3.60					
AD-16	EDAF Network	22	2.90					
AD-31	EBAP Network	12	1.90					
AD-31	EDAI NELWOIK	26	0.83					
AD-32	EBAP Network	11	1.70					
AD-32	EDAI NELWOIK	20-25	9.10					
		15	< 1.0					
AD-41	Upgradient	35	23.5					
		95	1.90					
		10	2.36					
	Upgradient	16	3.62					
B-2		71	10.30					
		82	7.21					
		87	3.11					
		10	1.30					
B-3	Upgradient	20	0.59					
		97	1.11					
Solid Material Retained After Filtration								
AD-32	EBAP Network	13-33	5.4					
B-2	Upgradient	38-48	4.3					
B-3	Ungradient	29-34	12.0					
D-3	Upgradient	VAP 40-45	18.0					

Notes:

- 1. For AD-XX locations, samples were collected from additional boreholes advanced in the immediate area of the location identified by the well ID. Samples were not collected from the cuttings of the borings advanced for well installation. Samples for B-2 and B-3 locations were collected from cores removed from the borehole during well lithology logging.
- 2. Depths for samples collected after filtration represent the screened interval for the permanent well where the sample was collected.

ft bgs: feet below ground surface mg/kg: milligram per kilogram

Table 3: X-Ray Diffraction Results East Bottom Ash Pond - H. W. Pirkey Plant

Constituent	VAP-B3-(40-45)
Quartz	15
Plagioclase Feldspar	0.5
Orthoclase	ND
Calcite	ND
Dolomite	ND
Siderite	0.5
Goethite	ND
Hematite	2
Pyrite	3
Kaolinite	42
Chlorite	4
Illite/Mica	6
Smectite	12
Amorphous	15

Notes:

- 1. Results given in units of relative % abundance
- 2. VAP-B3-(40-45) is the centrifuged solid material from the groundwater sample collected at that interval.

ND: Not detected

Table 4: Summary of Key Lithium Analytical Data East Bottom Ash Pond - H.W. Pirkey Plant

Sample	Sample Date	Unit	Lithium Concentration
Bottom Ash (Solid Material)	2/11/2019	mg/kg	0.82 J
SPLP Leachate of Bottom Ash	2/11/2019	mg/L	0.011 J
EBAP Pond Water	2/28/2023	mg/L	0.0653
AD-31 - Average	May 2016 - June 2023	mg/L	0.0818
AD-32 - Average	May 2016 - June 2023	mg/L	0.0843

Notes:

- 1. Average lithium values for monitoring wells AD-31 and AD-32 were calculated using all lithium data collected under 40 CFR 257 Subpart D, excluding statistically identified outliers.
- J: Estimated value. Result is less than the reporting limit but greater than or equal to the method detection limit.

mg/kg : milligram per kilogram

mg/L : milligram per liter

Table 5: Soil Lithium Data East Bottom Ash Pond - H.W. Pirkey Plant

Location ID	Sample Depth (ft bgs)	Lithium (mg/kg)
	Bulk Soil Sample	
AD-32*	11	0.53
AD-32 ·	20-25	1.60
	10	5.30
D 2	16	3.97
B-2	71	7.42
	87	13.10
	10	3.64
B-3	20	2.59
	97	11.10
Lignite	N/A	2.9 J
Solid	d Material Retained After Filts	ration
AD-32*	13-33	9.8 J
B-2	38-48	6.5 J
D 2	29-34	7.8 J
B-3	VAP 40-45	13.0

Notes:

- 1. Depths for samples collected after filtration represent the screened interval for the permanent well where the sample was collected.
- * : AD-32 samples were collected from a seperate borehole advanced near monitoring well AD-32

ft bgs : feet below ground surface

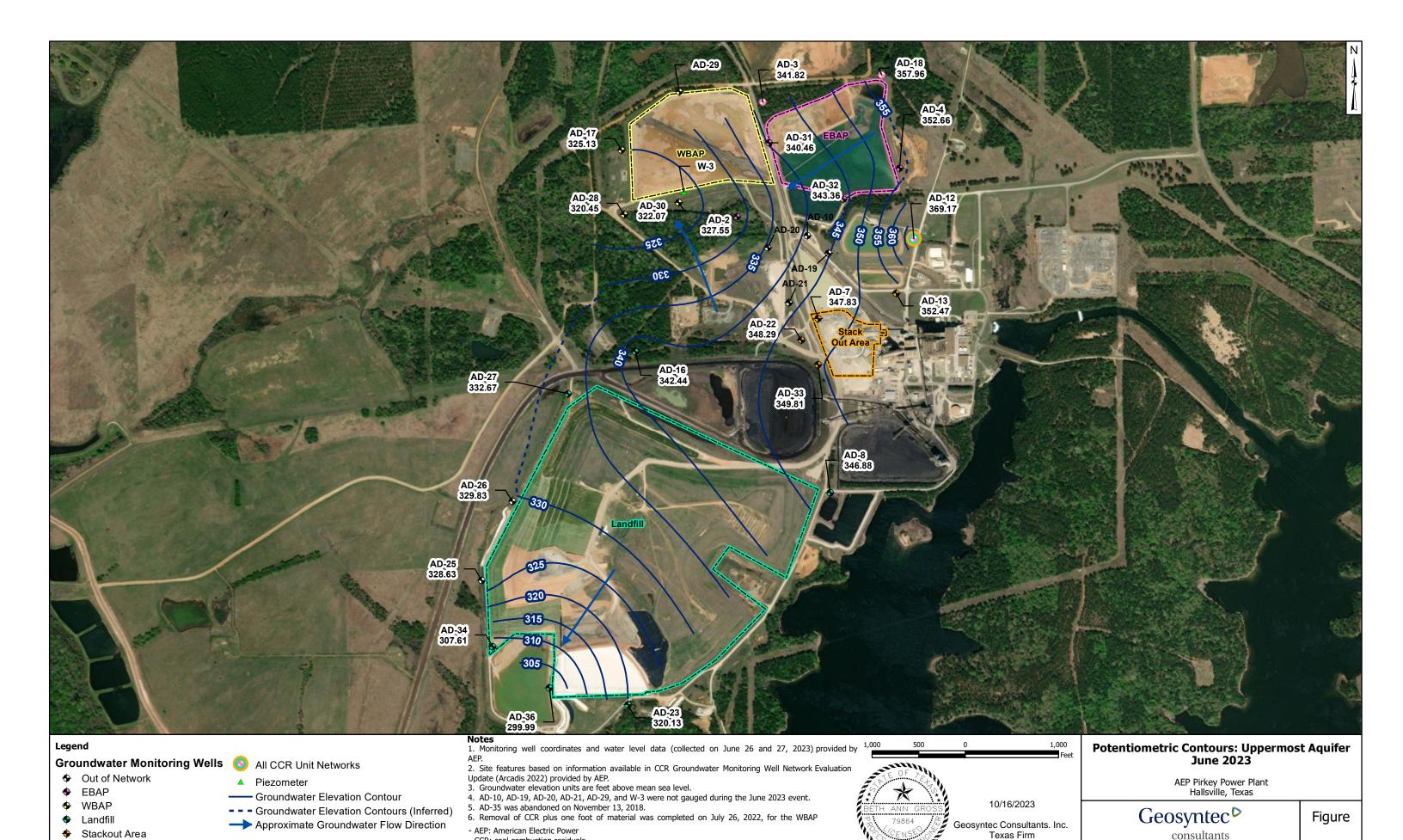
J : estimated value

mg/kg: milligram per kilogram VAP: vertical aquifer profiling

Table 6: Calculated Site-Specific Partition Coefficients
Pirkey Plant - East Bottom Ash Pond

Source		B-2		Literature Value
Unit	mg/L	mg/kg	L/kg	L/kg
Element	Aqueous Phase	Adsorbed	Kd	Kd
Li	0.081	6.5	80	43-370
K	2.6	1100	423	42-1200
Na	14	130	9	5.2-82

Source		B-3		Literature Value
Unit	mg/L	mg/kg	L/kg	L/kg
Element	Aqueous Phase	Adsorbed	Kd	Kd
Li	0.097	7.8	80	43-370
K	2.9	1100	379	42-1200
Na	32	240	8	5.2-82


Source		AD-32*		Literature Value
Unit	mg/L	mg/kg	L/kg	L/kg
Element	Aqueous Phase	Adsorbed	Kd	Kd
Li	0.11	9.8	89	43-370
K	3.9	1800	462	42-1200
Na	57	220	4	5.2-82

Notes:

- 1. Adsorbed values are total metals concentrations reported by USEPA Method 6010B.
- 2. Literature values represent maximum and minimum values for the parameter as reported in Sheppard et al, 2009 (Table 4-1, all sites) and Sheppard et al, 2011 (Table 3-3 cultivated peat and wetland peat only).
- * : AD-32 samples were collected from a separate borehole advanced near monitoring well AD-32

Kd: partition coefficient L/kg: liters per kilogram mg/kg: milligrams per kilogram mg/L: milligrams per liter

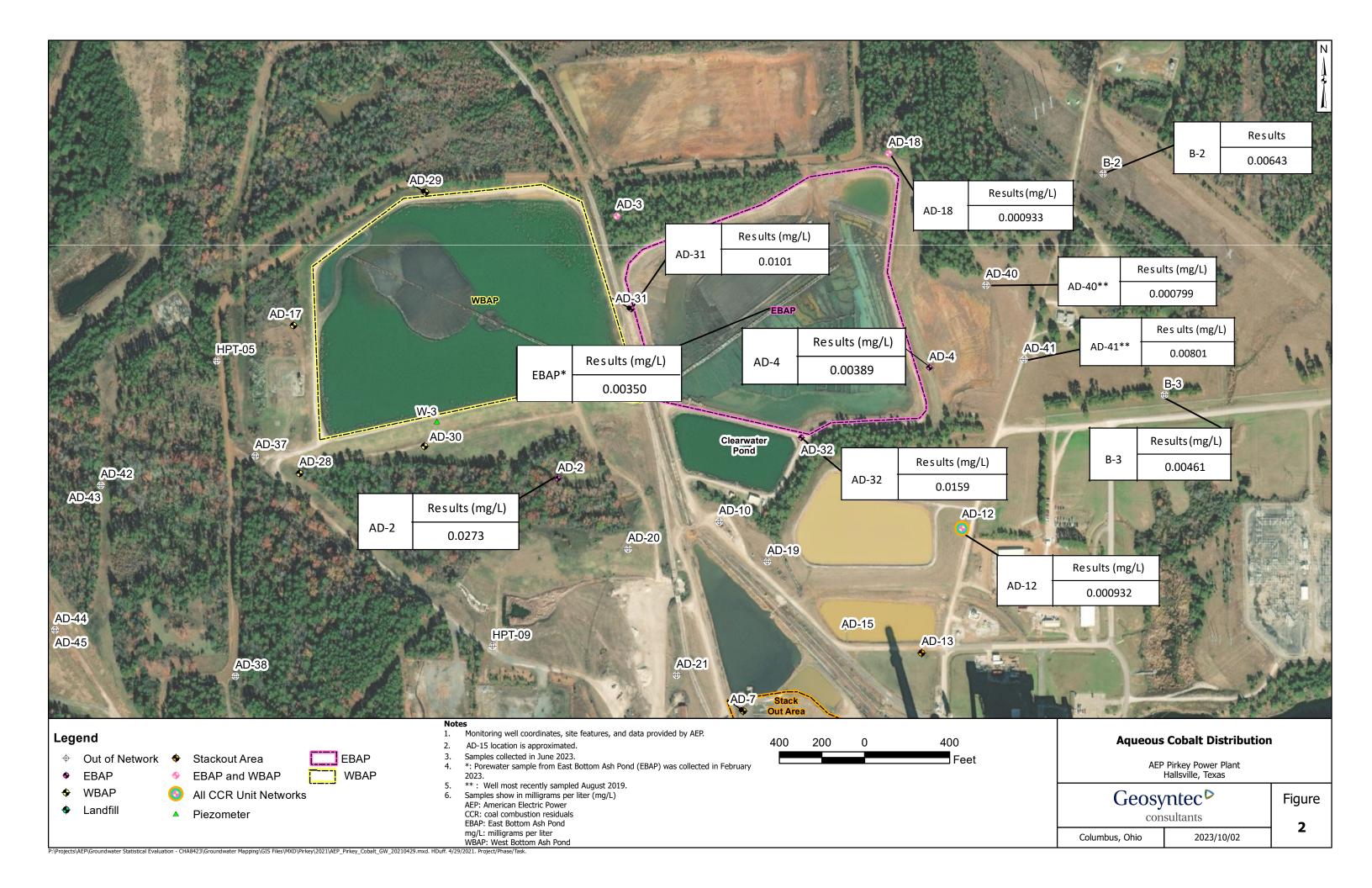
FIGURES

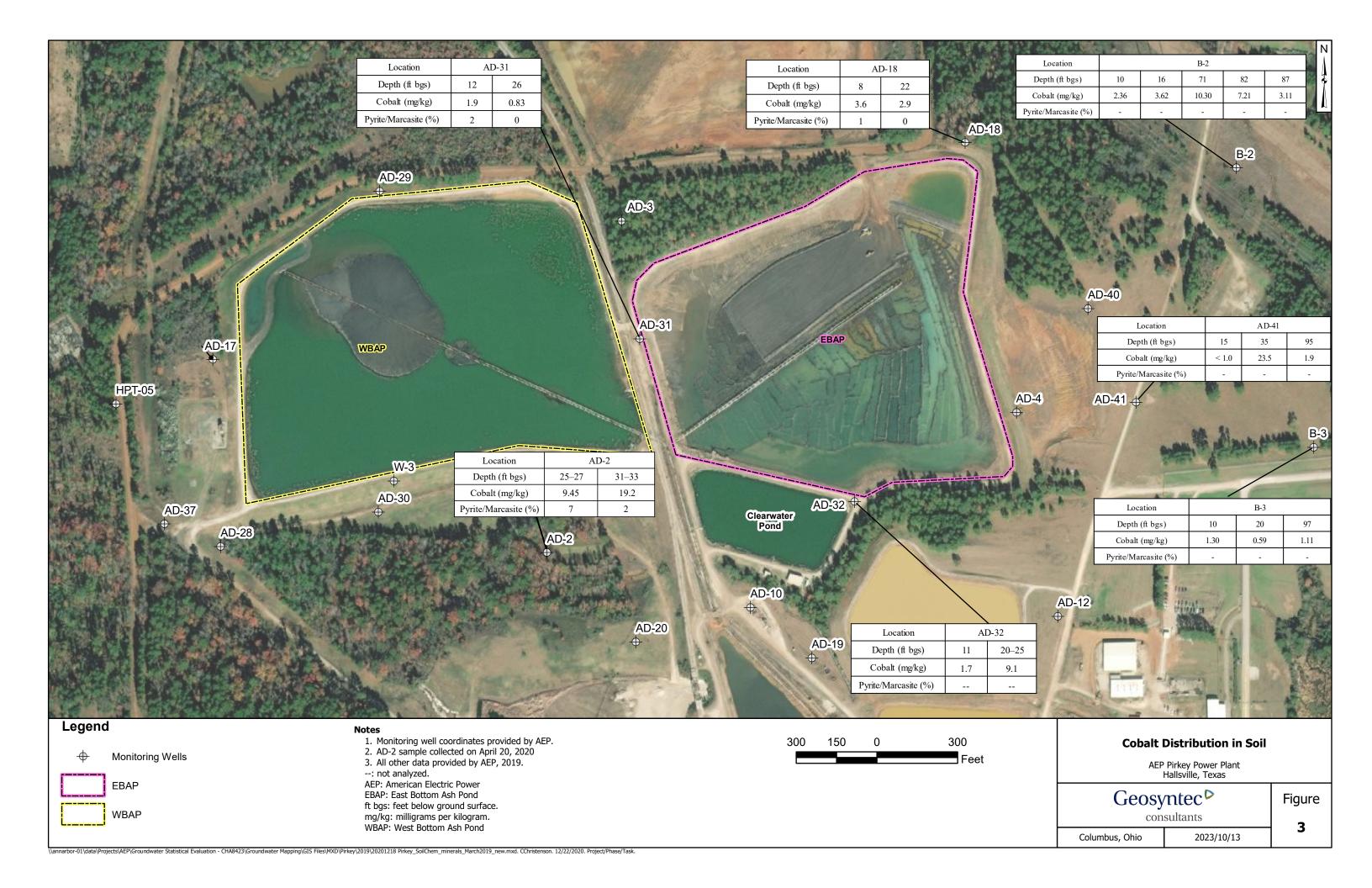
SIONAL EL

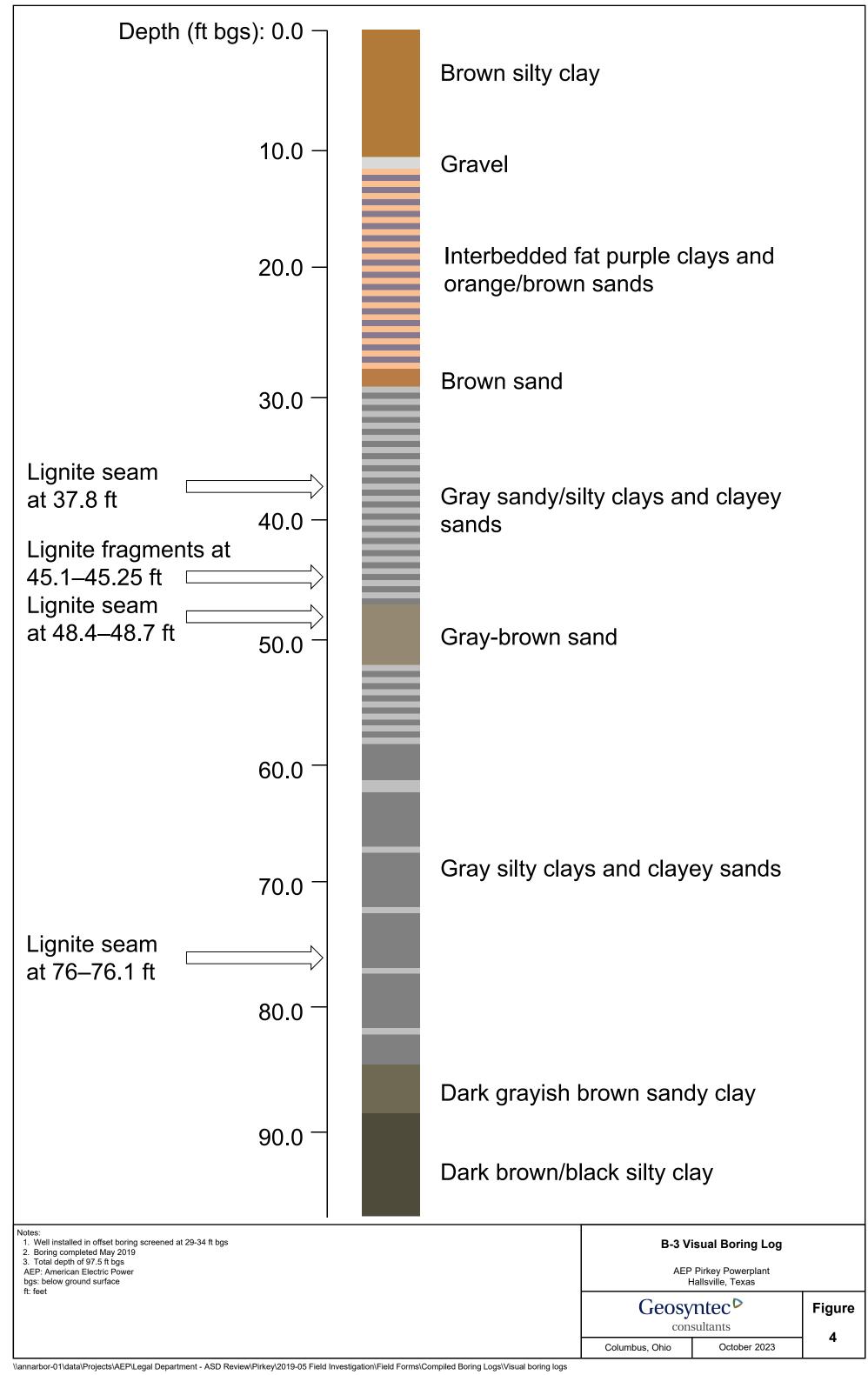
Registration No. 1182

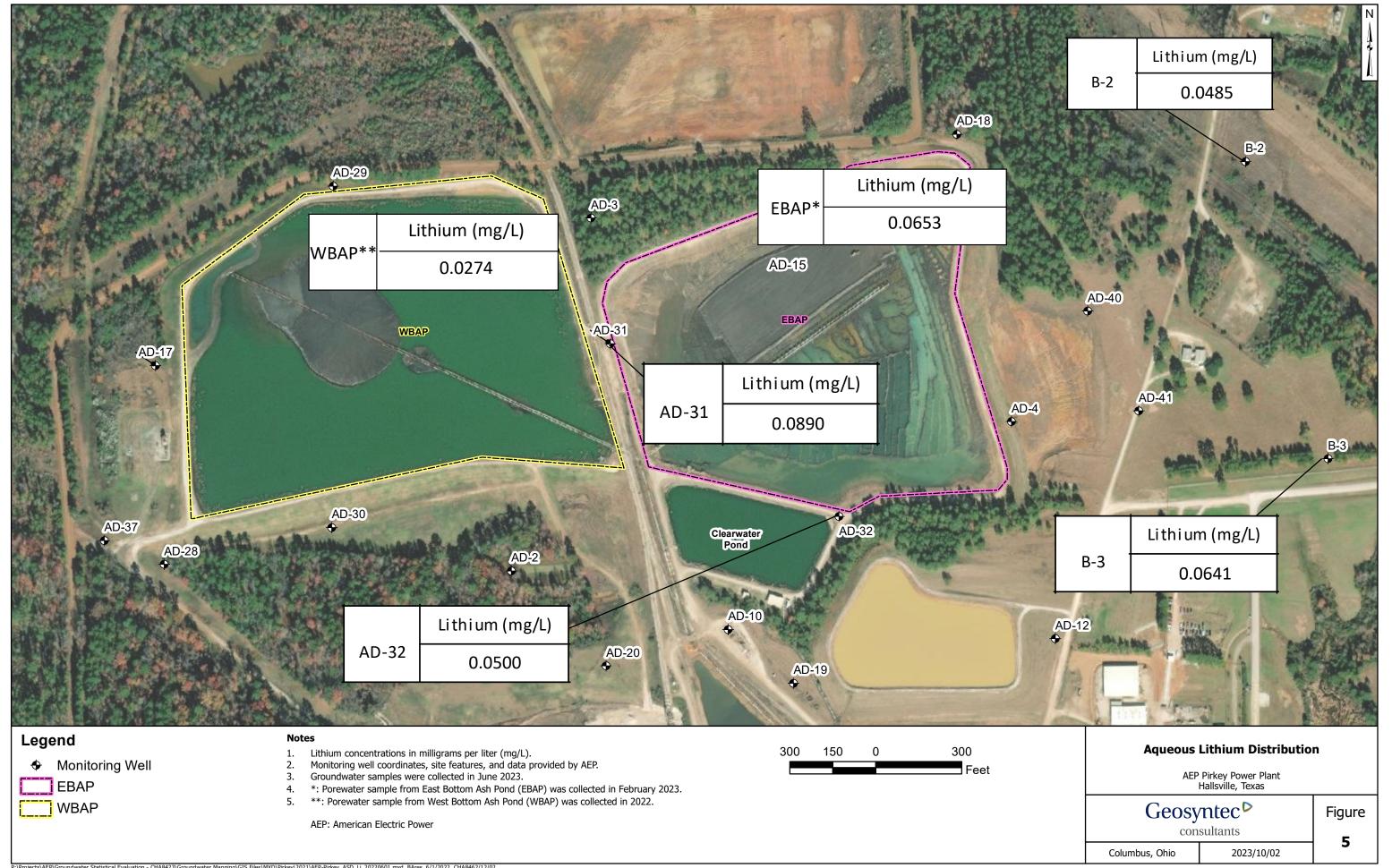
Columbus, Ohio

1

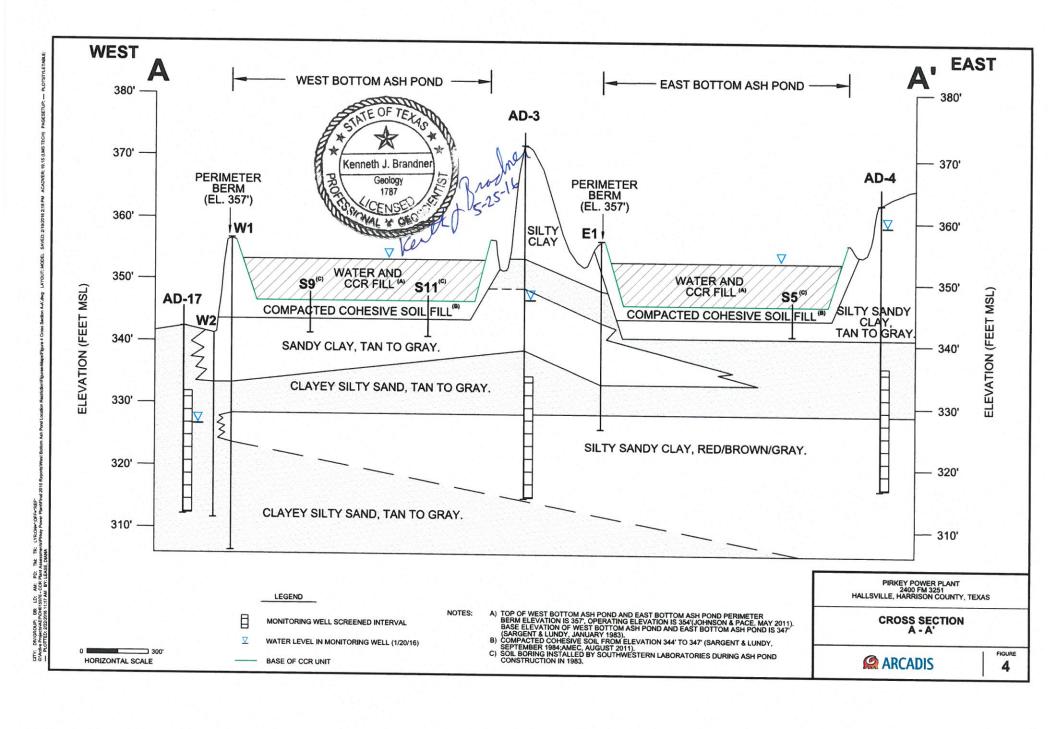

2023/10/06


- WBAP: West Bottom Ash Pond P:\Projects\AEP\Groundwater Statistical Evaluation - CHA8423\Groundwater Mapping\GIS Files\MXD\Pirkey\2023\AEP-Pirkey_GW_2023-06Pirkey.mxd. ASoltero. 10/6/2023. Project/Phase/Task.


EBAP and WBAP


- CCR: coal combustion residuals

- EBAP: East Bottom Ash Pond



ATTACHMENT A Geologic Cross Section A-A'

ocument Path: ZilgiSPROJECTSI ENVAEPUPIRev PlantMXDIEmire 3 - Stell avoid and Mail I occ

ATTACHMENT B SB-2 Boring Log

	ECT NOTION	An	,-2	/MN1-2		ROJ.	Part	ELEV.		DA		1	58-2 1/20/20)
VLo V Lo L	loose led. Dense Dense	0- 4 4-10 10-30 30-50 >50	Vsc So Mst St VSt		PENETROMET 0 - 0.25 0.25 - 0.5 0.5 - 1.0 1.0 - 2.0	CLAYS CER N - VA CER 2 - 4 - 8 - 15 -	LUE Li Dk. 4 G 8 T 15 R	COLORS Light Br Brown Dark Bk Black Grey Bl Blue Tan Gr Grenn Red Y Yellow sh.Reddish.Wh White	MATERIALS CI Clay, Clayer Si Silt, Silty Sa Sand, Sandy Ls Limestone Gr Gravel SiS Siltstone SS Sandstone Sh Shale, Shale,	1	SAN FF	dedium coarse	CHARAC Calc C	alcareous ignite rganic aminate lickensideo lightly eam (s)
F -	9	T .	S			STRAT	UM DES	CRIPTION			ANDA	ARD METER	7	
Se mobe Inte	Recovery	DEPTH F	SAMPLE	CONDITION OR CONSISTENCY	COLOR	MATERIALS OR ADJECTIVES	PREDOMINATE MATERIAL	CHARACTE OR MODIFICA		SEAT - 6"	1st - 6"	2nd - 6"	UNIFIED SOIL CLASSIFICATION	N - VALUE OR HAND
0-5	2' Rec	0		0-81	Br. H. Rd Br	Si	Sa	Silty Sand +	sace clay,					
5-10	2.5' Rec		-	1	H. Rd. Br			track root hairs	1 1 1 1/1				moist	10.5
2-10	2.0 182		+		A.Ka.ISI		-	- thin lenses (less than 1/4"	1			molst	(6-10
10-15	4'RK	- Z		8-148	H.Rd Fr. Fd	SUSI	CI	Clay-soms	Edind and	ilk	2		moist	10-
			-		Br, Gray	julian.		clayer san	The state of the s	ede	1			9/2
				,				Annual State of the later of th	race iron one	ON STO	112	,51		1 March
15-20	2'Rec	145		145	RLBA YILW.	Si,a	50	110/04/94	some sand	Ela	1		VVMSIS	tto
		-		391	Br. Gray			and Ironsti		65	11		moist	(15
20-25	* No Re	6.	-		C Colding		200	- centralet say	id seams in	1.3	1)	VIMEYE	-(20-
25-30	2.5 R	C			Gray - DKG	may ~		-gravel tremen		NR	25	16	1) sat, 9	-25'-
			H		DK. Br	2/)	M	- comented au	particular production of the last of the l	æn	iens	00	1.0.24	0.5
					(2)-5	0 /		- darry solty	sande 25	10	Alla	12:	- MOIST	27
0.05	2/0							e 27/1					SAL	011
30-35	3'Rec		H		Gra H	CEL C		- sat, 51 ty 54			111	1	Sat (30,5
					· 17			* some u.f. a	WDSUM ON	stal	Sin	de	exsand	32.
25115	11/000	00		0.41	416		(1)	* some u.f. a	et, sand sea	MS	(25	-40	Y V, n	16154
20-40	4' REC	21	H	31-96	4. Gray, 6	valy US	Si	Chayey Sandy	Solt sol	,(2)	2911	LIK	111815	- (29
					101 10	198			1		01.1	0 10	Molto	(31-
			H		-			Bote HO'						
											*			
			H					#25.27	callectera	1614	-	1		
								*31-33')		1	
														*
			H											

* GPS: 32,46522, -94,49032 (12'E',)
3.5'N)
of AD-2/MW-2,

ATTACHMENT C SB-2 Boring Photographic Log

Geosyntec consultants

Client: AEP Project Number: CHA8495

Site Name: Pirkey East Bottom Ash Pond Site Location: Hallsville, Texas

Photograph 1

Date: 4/21/2020

Direction: N/A

Comments:

0-5 foot interval of SB-2.

Photograph 2

Date: 4/21/2020

Direction: N/A

Comments:

5-10 foot interval of

SB-2.

1

Geosyntec consultants

Client: AEP Project Number: CHA8495

Site Name: Pirkey East Bottom Ash Pond Site Location: Hallsville, Texas

Photograph 3

Date: 4/21/2020

Direction: N/A

Comments:

10-15 foot interval of

SB-2.

Photograph 4

Date: 4/21/2020

Direction: N/A

Comments:

15-20 foot interval of SB-2. Recovery of this interval was limited.

Geosyntec consultants

20.12.22

Client: AEP Project Number: CHA8495

Site Name: Pirkey East Bottom Ash Pond Site Location: Hallsville, Texas

Photograph 5

Date: 4/21/2020

Direction: N/A

Comments:

20-25 foot interval of SB-2. Recovery of this interval was limited.

Photograph 6

Date: 4/21/2020

Direction: N/A

Comments:

25-30 foot interval of SB-2. Very little of this interval was recovered. A color change was observed from red to dark brown/black. A sample was collected from this interval.

Geosyntec consultants

Client: AEP Project Number: CHA8495

Site Name: Pirkey East Bottom Ash Pond Site Location: Hallsville, Texas

Photograph 9

Date: 4/21/2020

Direction: N/A

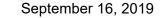
Comments:

30-35 foot interval of SB-2. Very little of this interval was recovered.. A sample was collected from this interval.

Photograph 10

Date: 4/21/2020

Direction: N/A

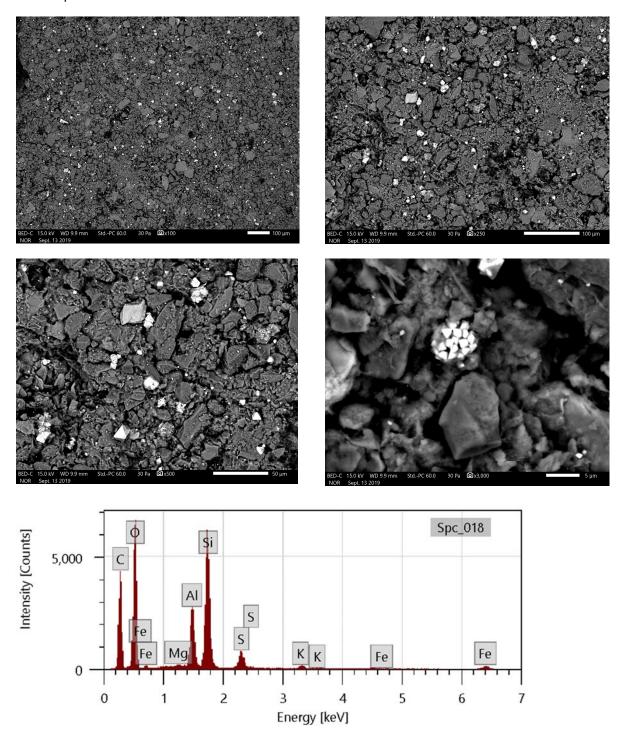

Comments:

35-40 foot interval of

SB-2

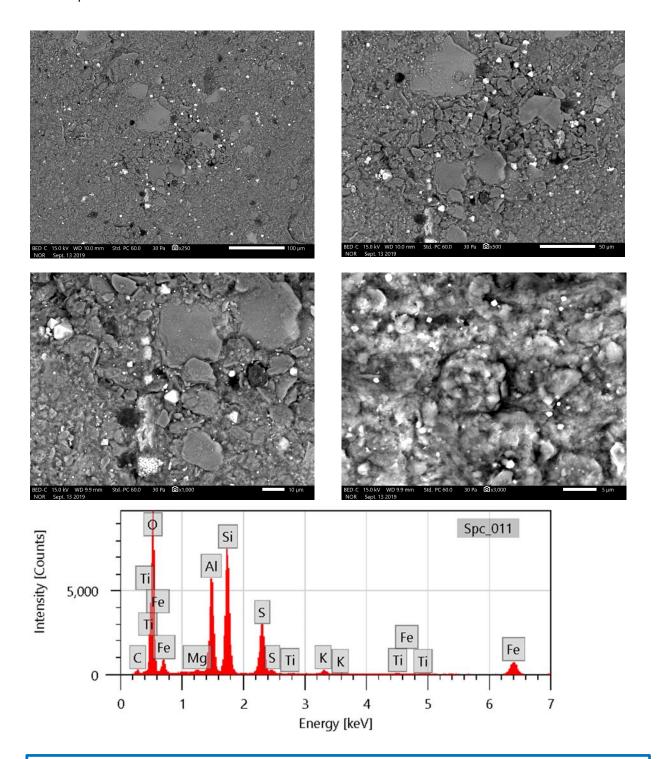
ATTACHMENT DSEM/EDS Analysis

via Email: BSass@geosyntec.com

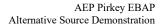


Dr. Bruce Sass 941 Chatham Lane, Suite 103, Columbus, OH 43221

Spc_004 Intensity [Counts] 1,500 Αl 1,000 500 Fe


Lignite. Backscattered electron micrographs show the sample at 100X, 1,100X, and 1,500X. EDS spectrum at bottom is an area scan of the region shown in top right micrograph. Bright particles are mostly quartz and feldspar. Major peaks for carbon, oxygen, silicon, and aluminum suggest coal and clay.

Energy [keV]


Sample VAP B3 40-45. Backscattered electron micrographs show the sample at 100X, 250X, 500X, and 3000X. EDS spectrum at bottom is an area scan of the region shown at 500X. Bright particles are pyrite (framboid in bottom right micrograph). Major peaks for carbon, oxygen, silicon, and aluminum suggest coal and clay.

Sample VAP B3 50-55. Backscattered electron micrographs show the sample at 250X, 500X, 1000X, and 3000X. EDS spectrum at bottom is an area scan of the region shown at 3000X. Bright particles are mostly pyrite (framboid in bottom left micrograph); occasional particles of Fe-Ti oxide are detected. Major peaks for oxygen, silicon, and aluminum suggest clay. Large blocky particles are mostly quartz, feldspar, and clay.

ATTACHMENT E Certification by a Qualified Professional Engineer

CERTIFICATION BY A QUALIFIED PROFESSIONAL ENGINEER

I certify that the above described alternative source demonstration is appropriate for evaluating the groundwater monitoring data for the Pirkey East Bottom Ash Pond CCR management area and that the requirements of 30 TAC §352.951(e) have been met.

	Licensed Professional Engineer	BETH ANN GROSS 79864 CENSE
Signature Signature	am Geoss	STONAL EN
		Geosyntec Consultants 2039 Centre Pointe Blvd, Suite 103 Tallahassee, Florida 32308
		Texas Registered Engineering Firm No. F-1182
79864	Texas	October 16, 2023

Date

Licensing State

License Number

engineers | scientists | innovators

ALTERNATIVE SOURCE DEMONSTRATION REPORT TEXAS STATE CCR RULE

H.W. Pirkey Power Plant East Bottom Ash Pond Registration No. CCR104 Hallsville, Texas

Prepared for

American Electric Power

1 Riverside Plaza Columbus, Ohio 43215-2372

Prepared by

Geosyntec Consultants, Inc. 500 West Wilson Bridge Road, Suite 250 Worthington, Ohio 43085

Project CHA8495B

October 2023

TABLE OF CONTENTS

1.		RODUCTION AND SUMMARY
	1.1	CCR Rule Requirements 1
	1.2	Demonstration of Alternative Sources
2.		MMARY OF SITE CONDITIONS
	2.1	EBAP Design and Construction3
	2.2	Regional Geology / Site Hydrogeology
	2.3	Groundwater Monitoring History and Flow Conditions
3.	ALT	ERNATIVE SOURCE DEMONSTRATION5
	3.1	Proposed Alternative Source
		3.1.1 Cobalt
	2.2	3.1.2 Lithium
	3.2	Sampling Requirements8
4.	CON	ICLUSIONS AND RECOMMENDATIONS9
5.	REF	ERENCES
		LIST OF TABLES
Tal	ole 1	Summary of Key Cobalt Analytical Data
Tal	ole 2	Soil Cobalt Data
Tał	ole 3	X-Ray Diffraction Results
Tal	ole 4	Summary of Key Lithium Analytical Data
Tal	ole 5	Soil Lithium Data
Tał	ole 6	Calculated Site-Specific Partition Coefficients
		LIST OF FIGURES
Fig	ure 1	Potentiometric Contours: Uppermost Aquifer August 2023
Fig	ure 2	Aqueous Cobalt Distribution
Fig	ure 3	Cobalt Distribution in Soil
Fig	ure 4	B-3 Visual Boring Log
Fig	ure 5	Aqueous Lithium Distribution
Fig	ure 6	Lithium Comparison to Upgradient Monitoring Wells

i

LIST OF ATTACHMENTS

Attachment A Geologic Cross Section A-A'

Attachment B SB-2 Boring Log

Attachment C SB-2 Boring Photographic Log

Attachment D SEM/EDS Analysis

Attachment E Tolerance Limit Calculation Using B-Series Data

Attachment F Certification by a Qualified Professional Engineer

LIST OF ACRONYMS

Å angstrom

ASD alternative source demonstration

bgs below ground surface

CCR coal combustion residuals

EBAP East Bottom Ash Pond

EDS energy-dispersive spectroscopy
EPRI Electric Power Research Institute

GWPS groundwater protection standard

LCL lower confidence limit mg/kg milligram per kilogram

mg/L milligram per liter

SEM scanning electron microscopy

SPLP Synthetic Precipitation Leaching Procedure

SSL statistically significant level
TAC Texas Administrative Code

TCEQ Texas Commission on Environmental Quality
USEPA United States Environmental Protection Agency

VAP vertical aquifer profiling
WBAP West Bottom Ash Pond

XRD X-ray diffraction

1. INTRODUCTION AND SUMMARY

This alternative source demonstration (ASD) report has been prepared to address statistically significant levels (SSLs) for cobalt and lithium in the groundwater monitoring network at the H.W. Pirkey Plant East Bottom Ash Pond (EBAP) in Hallsville, Texas, following the second semiannual assessment monitoring event of 2023. The H.W. Pirkey Plant has four coal combustion residuals (CCR) storage units, including the EBAP, regulated by the Texas Commission on Environmental Quality (TCEQ) under Registration No. CCR104 (**Figure 1**).

In August 2023, a semiannual assessment monitoring event was conducted at the EBAP in accordance with the Title 30 §352.951(a) of the Texas Administrative Code (TAC). The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. Groundwater protection standards (GWPSs) were established for each Appendix IV parameter in accordance with the statistical analysis plan developed for the unit (Geosyntec 2020a) and the United States Environmental Protection Agency (USEPA) document *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance* (USEPA 2009). The GWPS for each parameter was established as the greater of either the background concentration or the maximum contaminant level. To determine background concentrations, an upper tolerance limit was calculated using pooled data from the background wells collected during the background monitoring and assessment monitoring events.

Confidence intervals were recalculated for the Appendix IV parameters at the compliance wells to assess whether these parameters were present at an SSL above the GWPSs. An SSL was concluded if the lower confidence limit (LCL) of a parameter exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). The following SSLs were identified at the Pirkey EBAP (Geosyntec 2023a):

- The LCLs for cobalt exceeded the GWPS of 0.00939 milligrams per liter (mg/L) at AD-2 (0.0136 mg/L), AD-31 (0.00950 mg/L), and AD-32 (0.0309 mg/L).
- The LCL for lithium exceeded the GWPS of 0.0497 mg/L at AD-2 (0.0506 mg/L), AD-31 (0.0681 mg/L), and AD-32 (0.0746 mg/L).

No other SSLs were identified.

1.1 CCR Rule Requirements

TCEQ regulations regarding assessment monitoring programs for CCR landfills and surface impoundments provide owners and operators with the option to make an ASD when an SSL is identified:

In making a demonstration under this subsection, the owner or operator must, within 90 days of detecting a statistically significant level above the groundwater protection standard of any constituent listed in Appendix IV adopted by reference in §352.1431 of this title, submit a report prepared and certified in accordance with §352.4 of this title (relating to Engineering and Geoscientific Information) to the executive director, and any local pollution agency with jurisdiction that has requested to be notified, demonstrating that a source other than a CCR unit caused the exceedance or that the exceedance resulted from

error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. (30 TAC §352.951(e))

Pursuant to 30 TAC §352.951(e), Geosyntec Consultants, Inc. (Geosyntec) has prepared this ASD report to document that the SSLs identified for cobalt and lithium in the groundwater monitoring network for the EBAP are from a source other than the EBAP.

1.2 Demonstration of Alternative Sources

An evaluation was completed to assess possible alternative sources to which the identified SSLs could be attributed. Alternative sources were categorized into the following five types, based on methodology provided by the Electric Power Research Institute (EPRI 2017):

- ASD Type I: Sampling Causes
- ASD Type II: Laboratory Causes
- ASD Type III: Statistical Evaluation Causes
- ASD Type IV: Natural Variation
- ASD Type V: Alternative Sources

A demonstration was conducted to show that the SSLs identified for cobalt and lithium were based on a Type IV cause and not by a release from the Pirkey EBAP.

2. SUMMARY OF SITE CONDITIONS

The EBAP design and construction, regional geology and site hydrogeology, and groundwater monitoring system and flow conditions are described below.

2.1 EBAP Design and Construction

The EBAP is a 31.5-acre CCR surface impoundment located at the north end of the Pirkey Plant, immediately east of the West Bottom Ash Pond (WBAP) (**Figure 1**). It was constructed while the Pirkey Plant was being developed in 1983 and 1984 and placed into operation in 1985 to receive bottom ash and economizer ash sluiced from the plant boiler. Bottom ash and economizer ash were periodically excavated from the EBAP and either removed via truck to the on-site landfill or sold for off-site beneficial reuse.

The EBAP was developed by excavating part of its perimeter into native soils to create an embankment height of approximately 4 feet, constructing compacted clay perimeter embankments, and constructing a compacted clay liner over the base of the pond (Arcadis 2016). Multiple lithological borings advanced after the installation of the clay liner confirm that at least 6 feet of clay was present below the base of the EBAP (Arcadis 2016). The bottom elevation of the EBAP was approximately 347 feet above mean sea level, and the elevation of the top of the pond embankment was approximately 357 feet above mean sea level. The unit was designed to have a maximum storage capacity of 188 acre-feet.

A Closure Plan was developed in October 2016 and revised in December 2021 (AEP 2021). This document detailed the closure activities which were to take place throughout the closure of the EBAP. AEP submitted a certified notification that the receival of CCR materials had ceased as of April 25, 2023 and the closure activities had been initiated (AEP 2023). As of October 2023, the EBAP has been dewatered and CCR materials plus one foot of underlying soil have been removed.

2.2 Regional Geology / Site Hydrogeology

The EBAP is positioned on an outcrop of the Eocene-age Recklaw Formation, which consists predominantly of clay and fine-grained sand (Arcadis 2016). The Recklaw Formation is underlain by the Carrizo Sand, which crops out in the topographically lower southern portion of the plant. Regionally, the Carrizo Sand consists of fine- to medium-grained sand interbedded with silt and clay.

The very-fine- to fine-grained clayey and silty sand found beneath an upper silty to silty sandy clay layer in the vicinity of the EBAP is considered to be the Uppermost Aquifer below this CCR unit (Arcadis, 2016). Here it is approximately 15-feet thick and located between an elevation of 325 and 340 feet mean sea level.

2.3 Groundwater Monitoring History and Flow Conditions

The EBAP monitoring well network monitors groundwater within the Uppermost Aquifer. Geologic cross section A-A' from the EBAP Groundwater Monitoring Well Network Report (Arcadis 2016), provided herein as **Attachment A**, shows the subsurface geometry of the Uppermost Aquifer (indicated on the figure as clayey silty sand, tan to gray) underlying the EBAP

and the WBAP and demonstrates lateral continuity of the Uppermost Aquifer spanning the entire length of the EBAP.

Groundwater flow direction in the area of the EBAP is west-southwesterly (**Figure 1**). Seasonal variability in groundwater flow has not been observed since the monitoring well network was installed. Groundwater flow velocities in the uppermost aquifer in the vicinity of the EBAP have been reported as approximately 6 to 44 feet per year. The EBAP monitoring well network consists of upgradient monitoring wells AD-4, AD-12, and AD-18 and compliance wells AD-2, AD-3, AD-31, and AD-32, all of which are screened within the Uppermost Aquifer.

3. ALTERNATIVE SOURCE DEMONSTRATION

The ASD evaluation method and proposed alternative source of cobalt or lithium in AD-2, AD-31, and AD-32 and the future groundwater sampling requirements are described below.

3.1 Proposed Alternative Source

An initial review of site geochemistry, site historical data, and laboratory quality assurance and quality control data did not identify alternative sources for cobalt and lithium due to Type I (sampling), Type II (laboratory), Type III (statistical evaluation), or Type V (anthropologic) issues. Groundwater sampling, laboratory analysis, and statistical evaluations were generally completed in accordance with 30 TAC §352.931 and the draft TCEQ guidance for groundwater monitoring (TCEQ 2020). As described below, the SSLs have been attributed to natural variation associated with the underlying geology, which is a Type IV (natural variation) issue.

3.1.1 Cobalt

Previous ASDs for cobalt at the EBAP provided evidence that cobalt is present in the aquifer geologic media at the site and that the observed cobalt concentrations in groundwater were due to natural variation of native geogenic sources (Geosyntec 2019a, Geosyntec 2019b, Geosyntec 2020b, Geosyntec 2020c, Geosyntec 2021a, Geosyntec 2021b, Geosyntec 2022a, Geosyntec 2022b, Geosyntec 2023b, Geosyntec 2023c, 2023d). The previous ASDs demonstrated how the EBAP was not a source for cobalt in downgradient groundwater, based on observed concentrations of cobalt both in the ash material and in leachate from Synthetic Precipitation Leaching Procedure (SPLP) analysis (SW-846 Test Method 1312 [USEPA 1994]) of the ash material. Cobalt was not detected in the most recent SPLP ash leachate sample, collected in 2019, above the reporting limit of 0.01 mg/L, which is lower than the average concentrations observed at the wells of interest (Table 1). No changes to material handling or plant operations have occurred that would change the anticipated cobalt concentrations in the pond since this sample was collected.

In a February 2023 surface water sample collected from the EBAP to characterize the total cobalt concentrations, cobalt was detected at a concentration of 0.00350 mg/L (**Table 1**). This concentration is lower than the reported cobalt concentrations for multiple in-network wells from the August 2023 sampling event, including the upgradient monitoring well AD-4 (0.00363 mg/L; **Figure 2**). The EBAP sample was also found to be approximately an order of magnitude lower than the average concentration in groundwater at the wells of interest (**Table 1**). Therefore, the EBAP is not the likely source of cobalt at AD-2, AD-31, or AD-32.

As noted in the previous ASDs, soil samples collected across the site, including from locations near the EBAP, identified cobalt in the aquifer solids at concentrations ranging from 0.59–23.5 milligrams per kilogram (mg/kg), with the highest value reported at AD-41, which is upgradient of the EBAP (**Figure 3**). SB-2 was advanced in the vicinity of AD-2 in April 2020 to re-log the geology at AD-2 and collect samples for laboratory analysis of total metals and mineralogy. The SB-2 field boring log, which was generated by Auckland Consulting LLC, is provided as **Attachment B**. Cobalt was detected at SB-2 at concentrations of 9.45 mg/kg at 25–27 feet below ground surface (bgs) and 19.2 mg/kg at 31–33 feet bgs (**Table 2**). These cobalt concentrations are greater than the concentration of cobalt present in the bottom ash (6.1 mg/kg; **Table 1**). Both samples correlate to the depth of the monitoring well screen of AD-2 (20–40 feet bgs), indicating that naturally occurring cobalt is present in aquifer solids within the AD-2 screened interval.

In addition to the analysis of total cobalt, soil samples were submitted for mineralogical analysis to determine the mineral composition of soils near the EBAP. X-ray diffraction (XRD) analysis of soils from SB-2 identified pyrite (an iron sulfide) in samples collected at 25–27 feet bgs and 31–33 feet bgs at concentrations up to 7% by weight (**Figure 3**). Cobalt is known to undergo isomorphic substitution for iron in crystalline iron minerals such as pyrite due to their similar ionic radii of approximately 1.56 angstroms (Å) for iron and 1.52 Å for cobalt (Clementi and Raimondi 1963, Krupka and Serne 2002, Hitzman et al. 2017). The presence of iron-bearing minerals in soil near the EBAP constitutes a potential source of naturally occurring cobalt.

The aquifer solids at SB-2 are distinctly red in color at shallow depths, as illustrated in the photolog of soil cores provided in **Attachment C**. While shallow samples were not collected for mineralogical analysis, red color in soils is often associated with the presence of oxidized iron-bearing minerals such as hematite and goethite. The red color of the soil suggests the presence of iron oxide and hydroxide minerals within the shallow depth interval. The alteration of pyrite to these iron oxide and hydroxide minerals under oxidizing conditions is also a well-understood phenomenon, including in formations in East Texas (Senkayi et al. 1986, Dixon et al. 1982). It is likely that the pyrite weathering process is resulting in the release of isomorphically substituted cobalt from the pyrite crystal structure as it undergoes oxidative transformation to iron oxide/hydroxide minerals.

As described in the previous ASDs, vertical aquifer profiling (VAP) was used to collect groundwater samples from upgradient locations B-2 and B-3 during the soil boring and sample collection process (Geosyntec 2019b). A groundwater sample was also collected from AD-32, one of the existing compliance wells within the EBAP groundwater monitoring network where a cobalt SSL was identified. Solid-phase materials within these groundwater samples were separated and submitted for analysis of chemical composition. For the VAP samples, because of the high abundance of suspended solids, separation was completed using a centrifuge. For the groundwater sample at AD-32, the sample was filtered using a 1.5-micron filter. Based on total metals analysis, cobalt was identified both in the centrifuged solid material collected from upgradient VAP location B-3 (VAP-B3-[40-45]) and in the material retained on the filter after processing groundwater from permanent monitoring wells B-2 and B-3 (Table 2). The concentrations of cobalt in the solid material retained after filtration were comparable to concentrations in the bulk soil samples collected from the same locations.

The solid sample VAP-B3-(40-45) was submitted for mineralogical analysis via XRD and scanning electron microscopy (SEM) using an energy-dispersive spectroscopy (EDS) analyzer. The XRD results identified pyrite as approximately 3% of the solid phase (**Table 3**). Pyrite was identified during SEM/EDS analysis of lignite, which is mined immediately adjacent to the site. Logging completed while the VAP boring was advanced identified coal at several intervals, including 45 and 48 feet bgs (**Figure 4**). Furthermore, SEM/EDS of both centrifuged solid samples VAP-B3-(40-45) and VAP-B3-(50-55) identified pyrite in backscattered electron micrographs by the distinctive framboidal morphology (Harris et al. 1981, Sawlowicz 2000). Major peaks representing iron and sulfur were identified in the EDS spectrum, which further support the identification of pyrite (**Attachment D**). While cobalt was not identified in the EDS spectrum, it is likely present at concentrations below the detection limit.

The EBAP was not identified as the source of cobalt at wells in the EBAP network based on the low concentrations of cobalt in the pond itself and the ubiquity of naturally occurring cobalt,

especially in soil and groundwater samples upgradient from the EBAP. Cobalt in the EBAP network groundwater is believed to be a result of natural variability within the aquifer. Naturally occurring cobalt is known to substitute for iron in iron-bearing minerals. The presence of iron sulfide (as pyrite) and iron oxides/hydroxides hematite and goethite has been confirmed at AD-2 and across the site. The weathering of pyritic minerals to iron oxide/hydroxide minerals may be resulting in the release of cobalt into groundwater from the crystal structure of these aquifer minerals.

3.1.2 Lithium

Previous ASDs for lithium at the EBAP attributed the observed lithium exceedances at AD-31 and AD-32 to variations in lithium associated with the suspended native aquifer solids that likely originate from naturally occurring lignite present in these soils. These native lithium-containing aquifer solids are ubiquitous in the aquifer based on the presence of both solid-phase and dissolved lithium at upgradient locations (Geosyntec 2019b, Geosyntec 2020b, Geosyntec 2020c, Geosyntec 2021a, Geosyntec 2021b, Geosyntec 2022, Geosyntec 2023b, Geosyntec 2023c). Data gathered in support of the prior ASDs and recent results provide additional evidence that the observed lithium groundwater concentrations at AD-2, AD-31, and AD-32 are naturally occurring and are due to natural variation in the aquifer (Type IV ASD).

As discussed in Section 3.1.1, a surface water sample was collected directly from the EBAP in February 2023. Lithium was detected in the February 2023 EBAP sample at a concentration of 0.0653 mg/L) (**Figure 5, Table 4**). This concentration is below the reported lithium values at AD-31 and AD-32 and comparable to the reported value at AD-2 (**Figure 5**). The labile fraction identified in the bottom ash by SPLP from a February 2019 sample was even lower, with an estimated (J-flagged) lithium concentration of 0.011 mg/L. This labile concentration is below the average lithium concentrations at AD-2 (0.0601 mg/L), AD-31 (0.0811 mg/L) and AD-32 (0.0829 mg/L) (**Table 4**). Therefore, the EBAP is not the likely source of lithium at AD-2, AD-31 and AD-32.

Groundwater samples collected from upgradient wells B-2 and B-3 in June 2023 had total lithium concentrations of 0.0485 mg/L and 0.0641 mg/L, respectively. The reported concentration at B-3 is greater than the GWPS of 0.0497 mg/L and the concentration of lithium observed at AD-2 (0.0601 mg/L) (**Figure 5**). Upgradient location B-3 has consistently had reported lithium concentrations comparable to or higher than those observed at the wells of interest, including AD-2 (**Figure 6**). Because B-2 and B-3 were installed at locations upgradient to and unimpacted by site activities, these lithium concentrations suggest that aqueous lithium is naturally present at concentrations above the GWPS across the site at variable concentrations and not limited to AD-2, AD-31, and AD-32.

B-2 and B-3 are not part of the monitoring network for the EBAP, and as such the lithium concentrations in groundwater from these wells were not considered in calculating the GWPS for the CCR unit. An upper tolerance limit calculated using the existing background wells (AD-4, AD-12, and AD-18). Addition of B-2 and B-3 as background locations to the monitoring network would result in a site-specific GWPS of 0.0871 mg/L (**Attachment E**). This is higher than the lower confidence limits at the wells of concern (Section 1), suggesting that concentrations of lithium within the observed ranges at AD-2, AD-31, and AD-32 are naturally occurring across the site.

As described in Section 3.1.1, groundwater samples were collected from B-2, B-3, and AD-32 and filtered to separate solids. Groundwater was also collected from a VAP boring (VAP-B3-[40-45]) and centrifuged to separate solids. Lithium was detected in the solid material separated from these groundwater samples at concentrations comparable to bulk soil at all locations, providing evidence that the particulates captured during groundwater sampling contain lithium (**Table 5**).

3.1.2.1 Calculated Partition Coefficients

A previous ASD for lithium at the EBAP discussed lithium mobility in groundwater due to desorption from cation exchange complexes associated with clay minerals within naturally occurring lignite material. This mechanism was posited as the source of lithium in both upgradient and downgradient wells at the EBAP (Geosyntec 2019b). Previously completed XRD analysis of centrifuged solid material samples (VAP-B3-[40-45]) found that clay minerals, including kaolinite, smectite, and illite/mica, made up at least 60% of the aquifer solid (**Table 3**). SEM/EDS analysis also identified the presence of silicon, aluminum, and oxygen, all of which are components of clay minerals (**Attachment D**). The backscattered electron micrographs of these samples also identified clay particles by morphology. The largest clay particles (≥ 5 micrometers) are likely kaolinite, while smectite and illite dominate the smaller fraction. These clay minerals, particularly smectite and illite, are known to retain cations such as lithium via incorporation into the octahedral layer of the mineral structure and through cation exchange processes.

Partition coefficients values (K_d) for lithium, potassium, and sodium were calculated using mass measurements and total metal concentrations in the solid materials separated from the groundwater samples during filtration and the filtered groundwater concentrations. Details about the K_d calculation are provided in the previous ASD (Geosyntec 2019b). K_d values for groundwater and particulates collected from wells B-2, B-3, and AD-32 were comparable to literature K_d values reported for organic-rich media such as bogs and peat beds (Sheppard et al. 2009, Sheppard et al. 2011), providing further evidence that lithium mobility in site groundwater is similar to other sites with organic-rich soils (**Table 6**). Additionally, the calculated K_d values for Pirkey soils were consistent with the literature, with potassium having the highest K_d (greatest affinity for sorption) and sodium the lowest K_d (least affinity for sorption). Furthermore, the values are similar for groundwater from all three wells, suggesting a universal mechanism controlling lithium, sodium, and potassium mobility in groundwater.

These multiple lines of evidence show that elevated lithium concentrations at AD-2, AD-31, and AD-32 are likely not due to a release from the EBAP and can instead be attributed to natural variation (Type IV ASD). This variation appears related to the distribution of clay fractions associated with lignite materials in the soil aquifer material.

3.2 Sampling Requirements

As the ASD presented above supports the position that the identified SSLs are not due to a release from the Pirkey EBAP, the unit will remain in the assessment monitoring program. Groundwater at the unit will continue to be sampled for Appendix IV parameters semiannually.

4. CONCLUSIONS AND RECOMMENDATIONS

The preceding information serves as the ASD prepared in accordance with 30 TAC §352.951(e) and supports the position that the SSLs for cobalt and lithium identified during assessment monitoring in August 2023 were not due to a release from the EBAP. The identified SSLs should instead be attributed to natural variation in the underlying geology. Therefore, no further action is warranted, and the Pirkey EBAP will remain in the assessment monitoring program. Certification of this ASD by a qualified professional engineer is provided in **Attachment F.**

5. REFERENCES

- AEP. 2021. Closure Plan. East and West Bottom Ash Ponds Pirkey Power Plant, Hallsville, Texas. December
- AEP. 2023. Annual Groundwater Monitoring Report. Southwestern Electric Power Company H.W. Pirkey Power Plant East Bottom Ash Pond CCR Management Unit. January.
- Arcadis. 2016. East Bottom Ash Pond CCR Groundwater Monitoring Well Network Evaluation. H.W. Pirkey Power Plant. May.
- Clementi, E., and D. L. Raimdoni. 1963. "Atomic Screening Constants from SCF Functions." *J. Chem. Phys.* 38(11): 2686–2689.
- Dixon, J.B., L.R. Hossner, A.L. Senkayi, and K. Egashira. 1982. "Mineralogical Properties of Lignite Overburden as They Relate to Mine Spoil Reclamation." In *Acid Sulfate Weathering*, edited by J.A. Kittrick, D.S. Fanning, and L.R. Hossner, 169–191. Soil Science Society of America Special Publications.
- EPRI. 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites. 3002010920. Electric Power Research Institute. October.
- Geosyntec. 2019a. Alternative Source Demonstration Federal CCR Rule. H.W. Pirkey Power Plant. East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. April.
- Geosyntec. 2019b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. September.
- Geosyntec. 2020a. Statistical Analysis Plan Revision 1. Geosyntec Consultants. October.
- Geosyntec. 2020b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. April.
- Geosyntec. 2020c. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. December.
- Geosyntec. 2021a. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. May.
- Geosyntec. 2021b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. December.
- Geosyntec. 2022a. Alternative Source Demonstration Report Texas State CCR Rule. H.W. Pirkey Power Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. June.
- Geosyntec. 2022b. Alternative Source Demonstration Report Texas State CCR Rule. H.W. Pirkey Power Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. October.
- Geosyntec. 2023a. Alternative Source Demonstration Report Texas State CCR Rule. H.W. Pirkey Power Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. January.

- Geosyntec. 2023b. Statistical Analysis Summary East Bottom Ash Pond. H.W. Pirkey Plant. Hallsville, Texas. Geosyntec Consultants. March.
- Geosyntec. 2023c. Alternative Source Demonstration Report Texas State CCR Rule. H.W. Pirkey Power Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. June.
- Geosyntec. 2023d. Alternative Source Demonstration Report Texas State CCR Rule. H.W. Pirkey Power Plant, East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. October.
- Harris, L.A, E.A. Kenik, and C.S. Yust. 1981. "Reactions in Pyrite Framboids Induced by Electron Beam Heating in a HVEM." *Scanning Electron Microscopy* 1: 657–662.
- Hitzman, M.W., A.A. Bookstrom, J.F. Slack, and M.L. Zientek. 2017. Cobalt Styles of Deposits and the Search for Primary Deposits. United States Geological Survey Open File Report 2017-1155.
- Krupka, K.M., and R.J. Serne. 2002. Geochemical Factors Affecting the Behavior of Antimony, Cobalt, Europium, Technetium, and Uranium in Vadose Sediments. Pacific Northwest National Lab, PNNL-14126. December.
- Sawlowicz, Z. 2000. "Framboids: From Their Origin to Application." *Mineralogical Transactions* 88. ISSN 0079-3396.
- Senkayi, A.L., J.B. Dixon, and L.R. Hossner. 1986. "Todorokite, Goethite, and Hematite: Alteration Products of Siderite in East Texas Lignite Overburden." *Soil Science* 142(1): 36–43.
- Sheppard, S., J. Long, B. Sanipelli, and G. Sohlenius. 2009. Solid/Liquid Partition Coefficients (K_d) for Selected Soil and Sediments at Forsmark and Laxemar-Simpevarp. R-09-27. Swedish Nuclear Fuel and Waste Management Co. March.
- Sheppard, S., G. Sohlenius, L.G. Omberg, M. Borgiel, S. Grolander, and S. Nordén. 2011. Solid/Liquid Partition Coefficients (K_d) and Plant/Soil Concentration Ratios (CR) for Selected Soil, Tills, and Sediments at Forsmark. R-11-24. Swedish Nuclear Fuel and Waste Management Co. November.
- TCEQ. 2020. Coal Combustion Residuals Groundwater Monitoring and Corrective Action Draft Technical Guideline No. 32. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action. Texas Commission on Environmental Quality, Waste Permits Division. May.
- USEPA 1994. Method 1312 Synthetic Precipitation Leaching Procedure, Revision 0. Update to the Third Edition of the Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. United States Environmental Protection Agency. Publication SW-846. September.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance. United States Environmental Protection Agency. USEPA 530/R-09/007. March.

TABLES

Table 1: Summary of Key Cobalt Analytical Data East Bottom Ash Pond - H.W. Pirkey Plant

Sample	Sample Date	Unit	Cobalt Concentration
Bottom Ash (Solid Material)	2/11/2019	mg/kg	6.1
SPLP Leachate of Bottom Ash	2/11/2019	mg/L	< 0.01
EBAP Pond Water	2/28/2023	mg/L	0.0035
AD-2 - Average	May 2016 - August 2023	mg/L	0.0160
AD-31 - Average	May 2016 - August 2023	mg/L	0.0119
AD-32 - Average	May 2016 - August 2023	mg/L	0.0400

Notes:

1. Average values were calculated using all cobalt data collected under 40 CFR 257 Subpart D, excluding any identified outliers.

mg/kg : milligram per kilogram mg/L : milligram per liter

SPLP: synthetic precipitation leaching procedure

Table 2: Soil Cobalt Data East Bottom Ash Pond - H.W. Pirkey Plant

Location ID	Location	Sample Depth (ft bgs)	Cobalt (mg/kg)							
Bulk Soil Samples										
AD-2	EBAP Network	25-27	9.45							
AD-2	EBAP Network	31-33	19.2							
AD-18	EBAP Network	8	3.60							
AD-18	EDAP Network	22	2.90							
AD-31	EBAP Network	12	1.90							
AD-31	EDAF Network	26	0.83							
AD-32	EBAP Network	11	1.70							
AD-32	EDAP Network	20-25	9.10							
		15	< 1.0							
AD-41	Upgradient	35	23.5							
		95	1.90							
		10	2.36							
		16	3.62							
B-2	Upgradient	71	10.30							
		82	7.21							
		87	3.11							
		10	1.30							
B-3	Upgradient	20	0.59							
		97	1.11							
	Solid Material l	Retained After Filtration								
AD-32	EBAP Network	13-33	5.4							
B-2	Upgradient	38-48	4.3							
B-3	Upgradient	29-34	12.0							
D-3	Opgradient	VAP 40-45	18.0							

Notes:

- 1. For AD-XX locations, samples were collected from additional boreholes advanced in the immediate area of the location identified by the well ID. Samples were not collected from the cuttings of the borings advanced for well installation. Samples for B-2 and B-3 locations were collected from cores removed from the borehole during well lithology logging.
- 2. Depths for samples collected after filtration represent the screened interval for the permanent well where the sample was collected.

ft bgs : feet below ground surface mg/kg : milligram per kilogram

Table 3: X-Ray Diffraction Results East Bottom Ash Pond - H. W. Pirkey Plant

Constituent	VAP-B3-(40-45)
Quartz	15
Plagioclase Feldspar	0.5
Orthoclase	ND
Calcite	ND
Dolomite	ND
Siderite	0.5
Goethite	ND
Hematite	2
Pyrite	3
Kaolinite	42
Chlorite	4
Illite/Mica	6
Smectite	12
Amorphous	15

Notes:

- 1. Results given in units of relative % abundance
- 2. VAP-B3-(40-45) is the centrifuged solid material from the groundwater sample collected at that interval.

ND: Not detected

Table 4: Summary of Key Lithium Analytical Data East Bottom Ash Pond - H.W. Pirkey Plant

Sample	Sample Date	Unit	Lithium Concentration
Bottom Ash (Solid Material)	2/11/2019	mg/kg	0.82 J
SPLP Leachate of Bottom Ash	2/11/2019	mg/L	0.011 J
EBAP Pond Water	2/28/2023	mg/L	0.0653
AD-2	8/23/2023	mg/L	0.0601
AD-31 - Average	May 2016 - August 2023	mg/L	0.0811
AD-32 - Average	May 2016 - August 2023	mg/L	0.0829

Notes:

- 1. Average lithium values for monitoring wells AD-31 and AD-32 were calculated using all lithium data collected under 40 CFR 257 Subpart D, excluding statistically identified outliers.
- J: Estimated value. Result is less than the reporting limit but greater than or equal to the method detection limit.

mg/kg : milligram per kilogram

mg/L : milligram per liter

Table 5: Soil Lithium Data East Bottom Ash Pond - H.W. Pirkey Plant

Location ID	Sample Depth (ft bgs)	Lithium (mg/kg)								
	Bulk Soil Sample									
AD-32*	11	0.53								
AD-32*	20-25	1.60								
	10	5.30								
B-2	16	3.97								
B-2	71	7.42								
	87	13.10								
	10	3.64								
B-3	20	2.59								
	97	11.10								
Lignite	N/A	2.9 J								
Solid	d Material Retained After Filt	ration								
AD-32*	13-33	9.8 J								
B-2	38-48	6.5 J								
D 2	29-34	7.8 J								
B-3	VAP 40-45	13.0								

Notes:

- 1. Depths for samples collected after filtration represent the screened interval for the permanent well where the sample was collected.
- * : AD-32 samples were collected from a seperate borehole advanced near monitoring well AD-32

ft bgs : feet below ground surface

J : estimated value

mg/kg: milligram per kilogram VAP: vertical aquifer profiling

Table 6: Calculated Site-Specific Partition Coefficients
Pirkey Plant - East Bottom Ash Pond

Source		B-2	Literature Value	
Unit	mg/L	mg/kg	L/kg	
Element	Aqueous Phase	Adsorbed	Kd	Kd
Li	0.081	6.5	80	43-370
K	2.6	1100	423	42-1200
Na	14	130	9	5.2-82

Source		B-3		Literature Value
Unit	mg/L	mg/kg	L/kg	
Element	Aqueous Phase	Adsorbed	Kd	Kd
Li	0.097	7.8	80	43-370
K	2.9	1100	379	42-1200
Na	32	240	8	5.2-82


Source		AD-32*		Literature Value
Unit	mg/L	mg/kg	L/kg	
Element	Aqueous Phase	Adsorbed	Kd	Kd
Li	0.11	9.8	89	43-370
K	3.9	1800	462	42-1200
Na	57	220	4	5.2-82

Notes:

- 1. Adsorbed values are total metals concentrations reported by USEPA Method 6010B.
- 2. Literature values represent maximum and minimum values for the parameter as reported in Sheppard et al, 2009 (Table 4-1, all sites) and Sheppard et al, 2011 (Table 3-3 cultivated peat and wetland peat only).
- * : AD-32 samples were collected from a separate borehole advanced near monitoring well AD-32

Kd: partition coefficient L/kg: liters per kilogram mg/kg: milligrams per kilogram mg/L: milligrams per liter

FIGURES

Legend

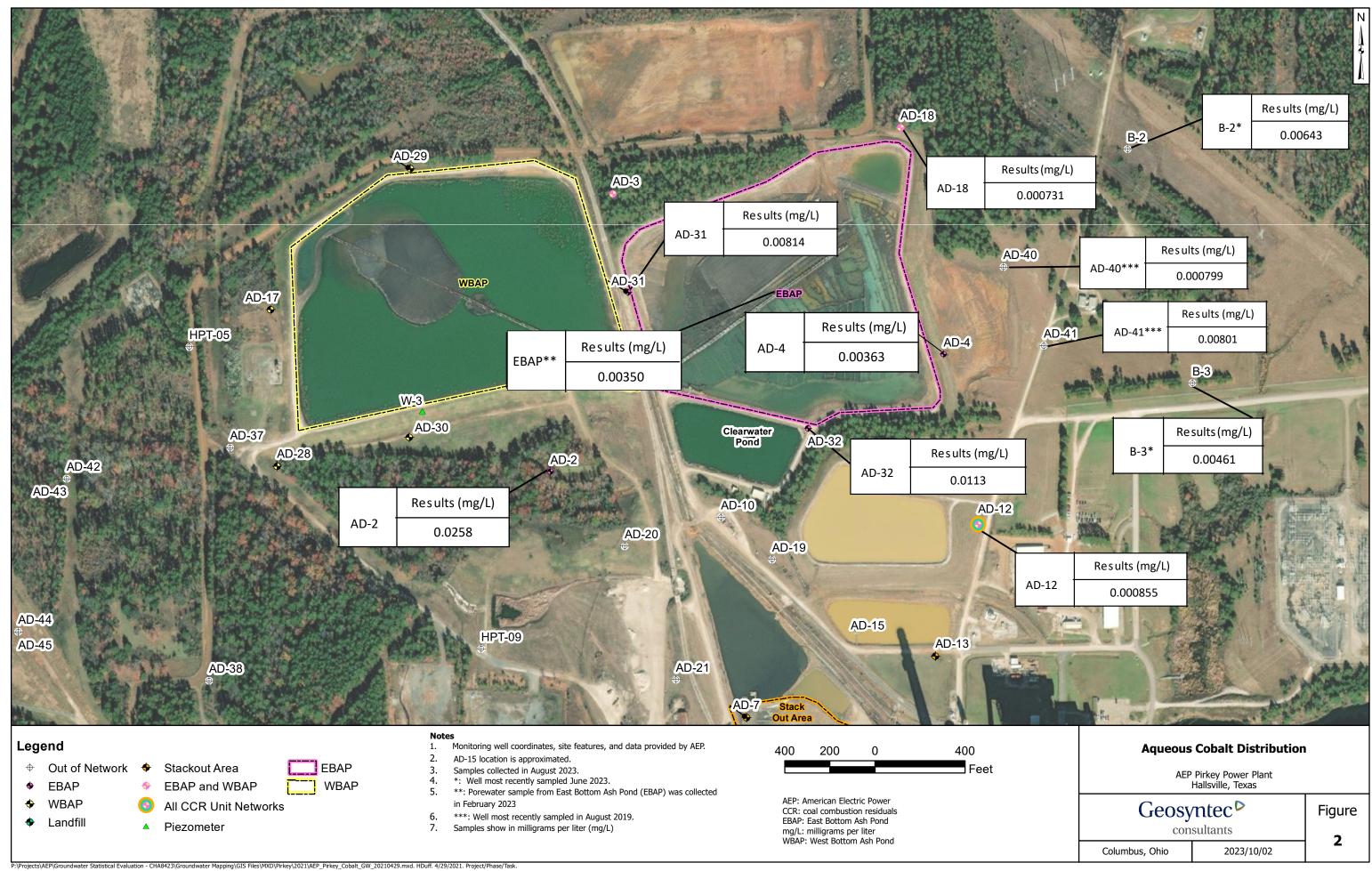
- Out of Network
- **♦** EBAP
- ◆ WBAP
- Landfill
- Stackout Area
- EBAP and WBAP

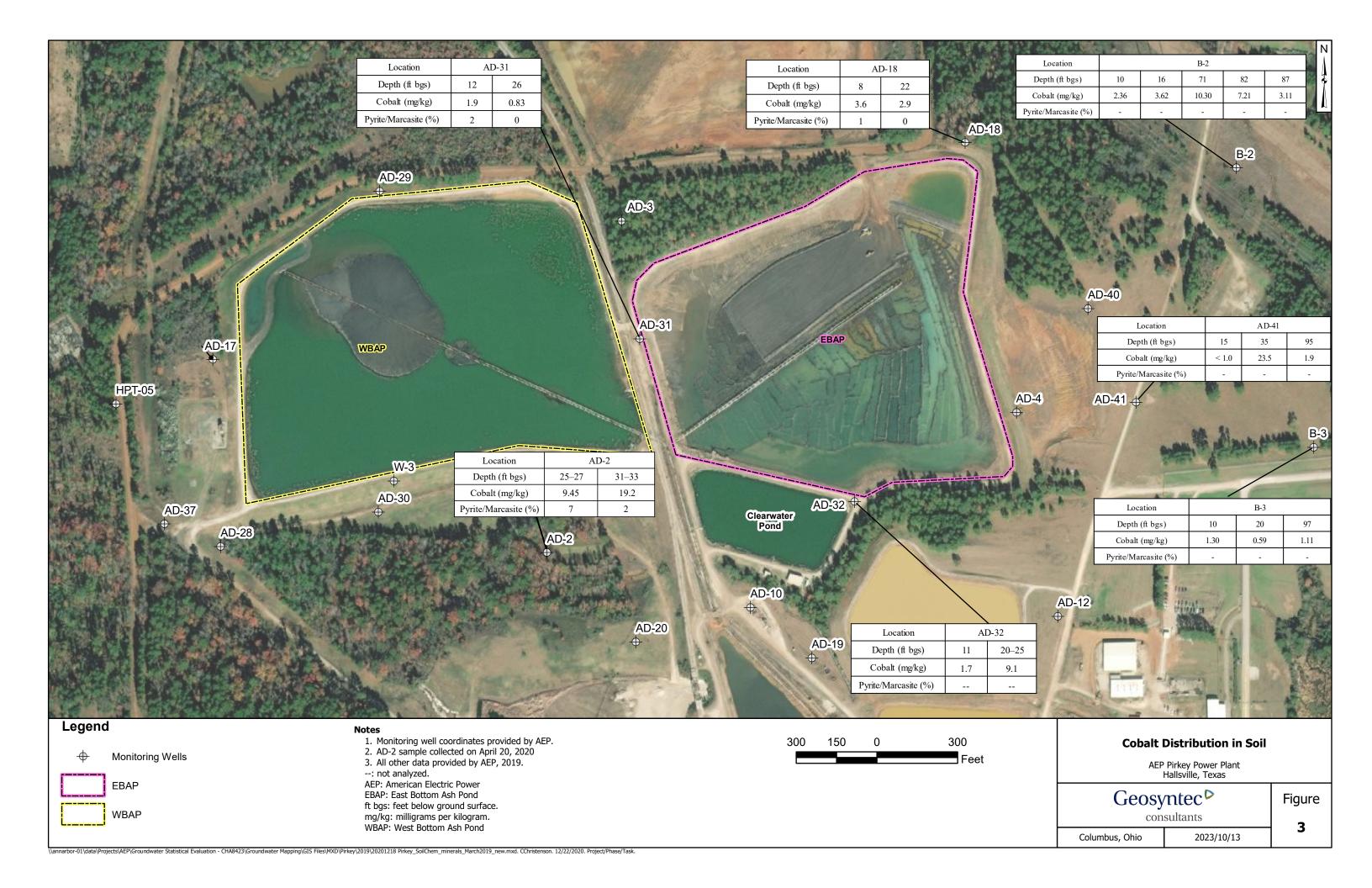
- 1. Monitoring well coordinates and water level data (collected on August 23, 2023) provided by AEP.

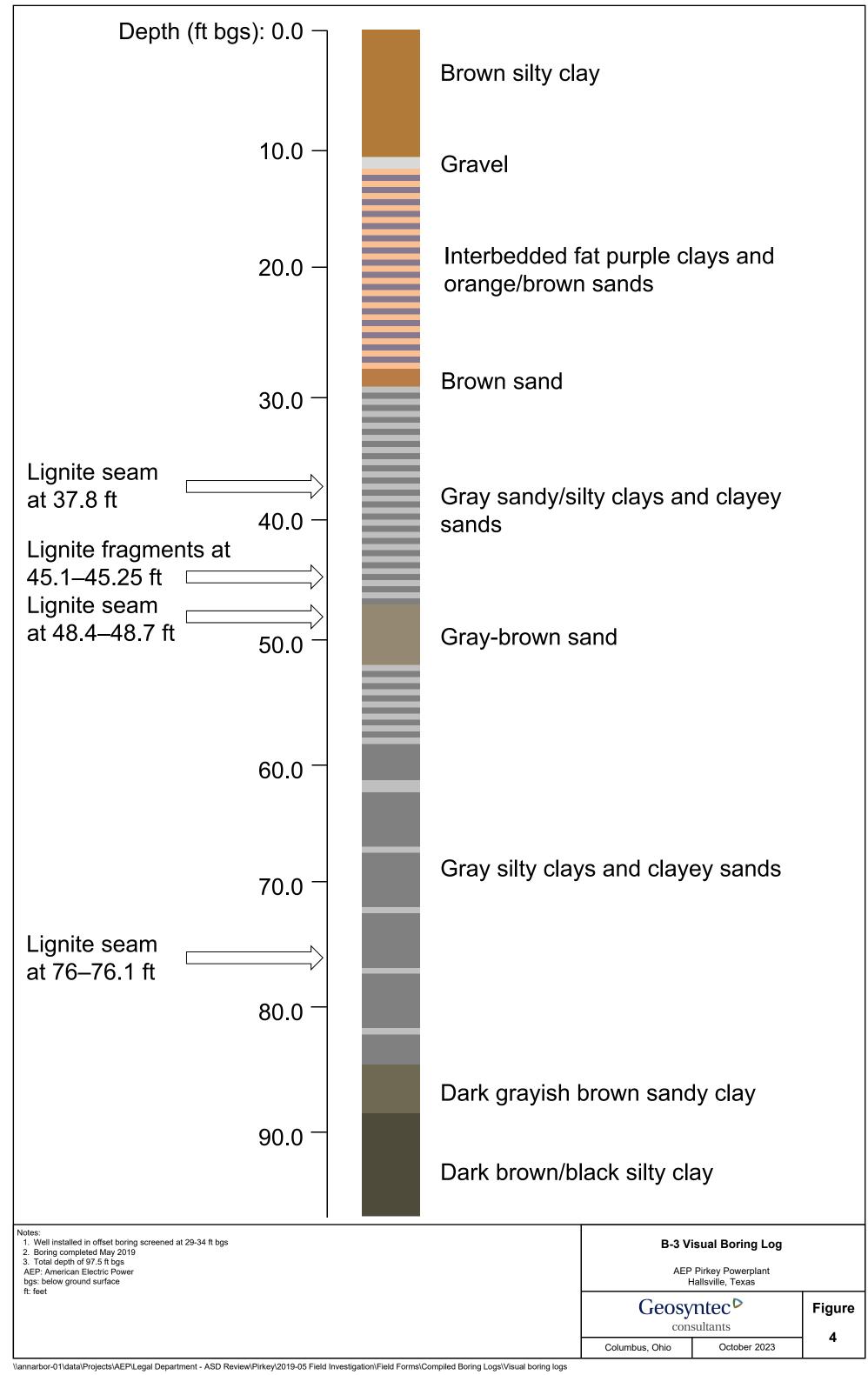
- Monitoring well coordinates and water level data (collected on August 23, 2023) provided by
 Site features based on information available in CCR Groundwater Monitoring Well
 Network Evaluation Update (Arcadis 2022) provided by AEP.
 Groundwater elevation units are feet above mean sea level.
 AD-03, AD-07, AD-08, AD-13, AD-16, AD-17, AD-22, AD-25, AD-26, AD-27, AD-28, AD-29, AD-30, AD-33 and W-3 were not gauged during the August 2023 event.
 AD-35 was abandoned on November 13, 2018.
 Removal of CCR plus one foot of material was completed on July 26, 2022, for the WBAP.
 Removal of CCR plus one foot of material was completed on July 20, 2023, for the EBAP.
- - Groundwater Elevation Contours (Inferred)

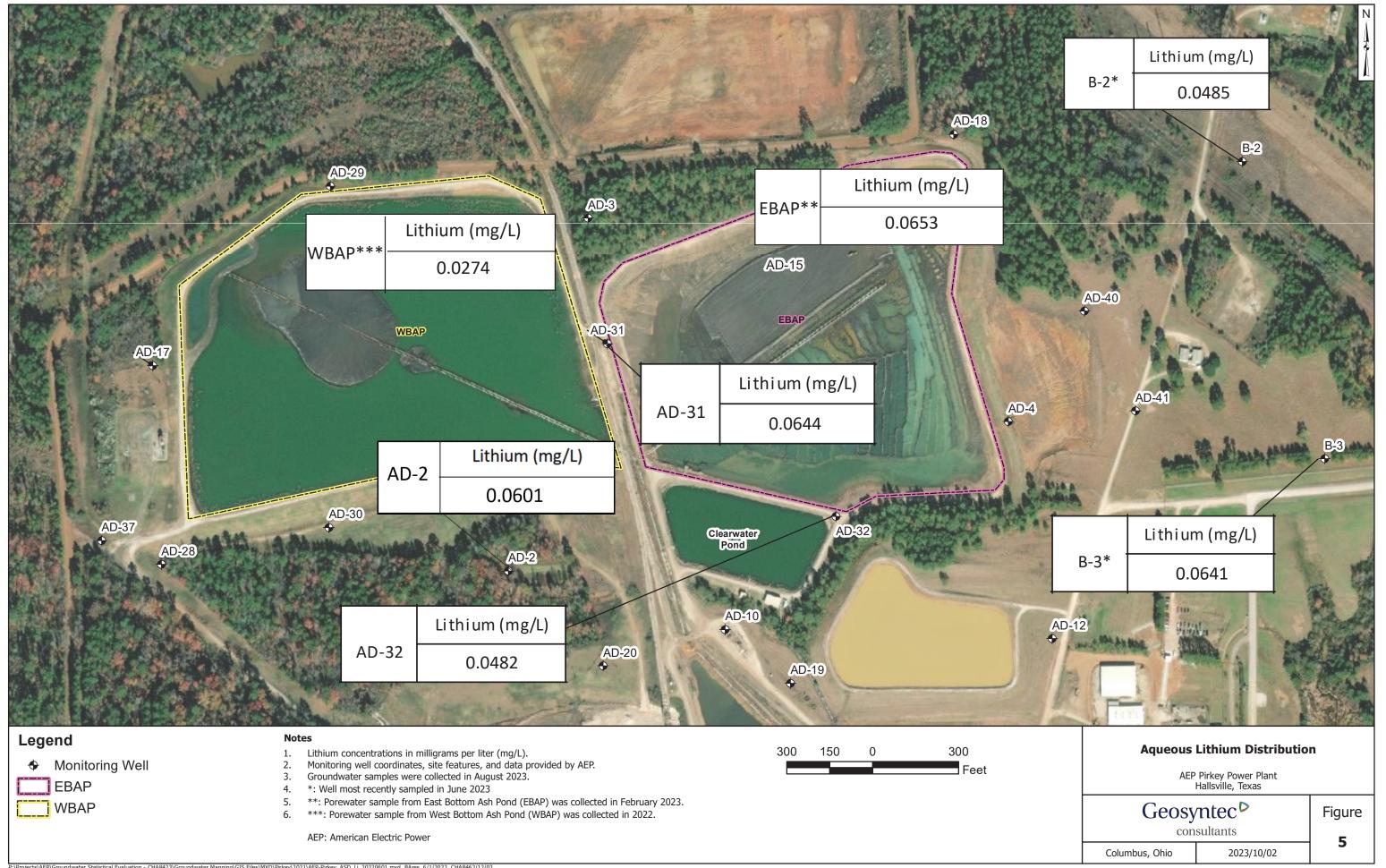
 - 7. Removal of CCR plus one foot of material was completed on July 20, 2023, for the EBAP.
 - 8. AEP: American Electric Power
 - 10. WBAP: West Bottom Ash Pond
 - 9. EBAP: East Bottom Ash Pond

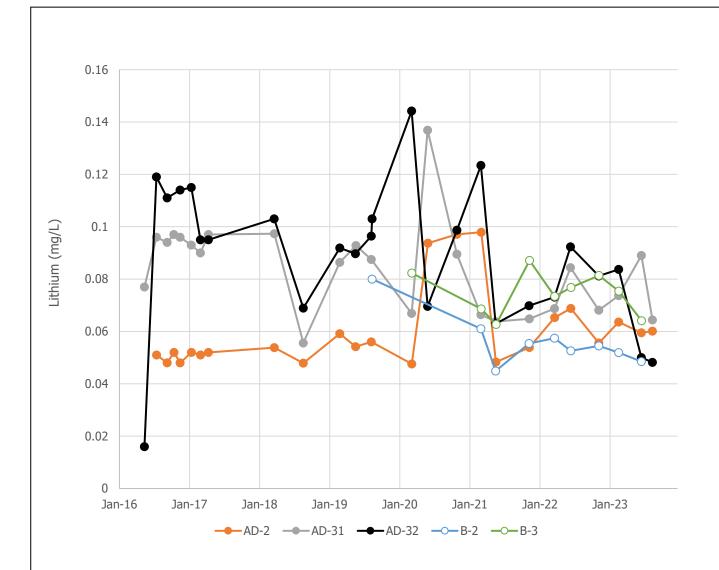
Potentiometric Contours: Uppermost Aquifer August 2023


AEP Pirkey Power Plant Hallsville, Texas




---- Groundwater Elevation Contour


Approximate Groundwater Flow Direction

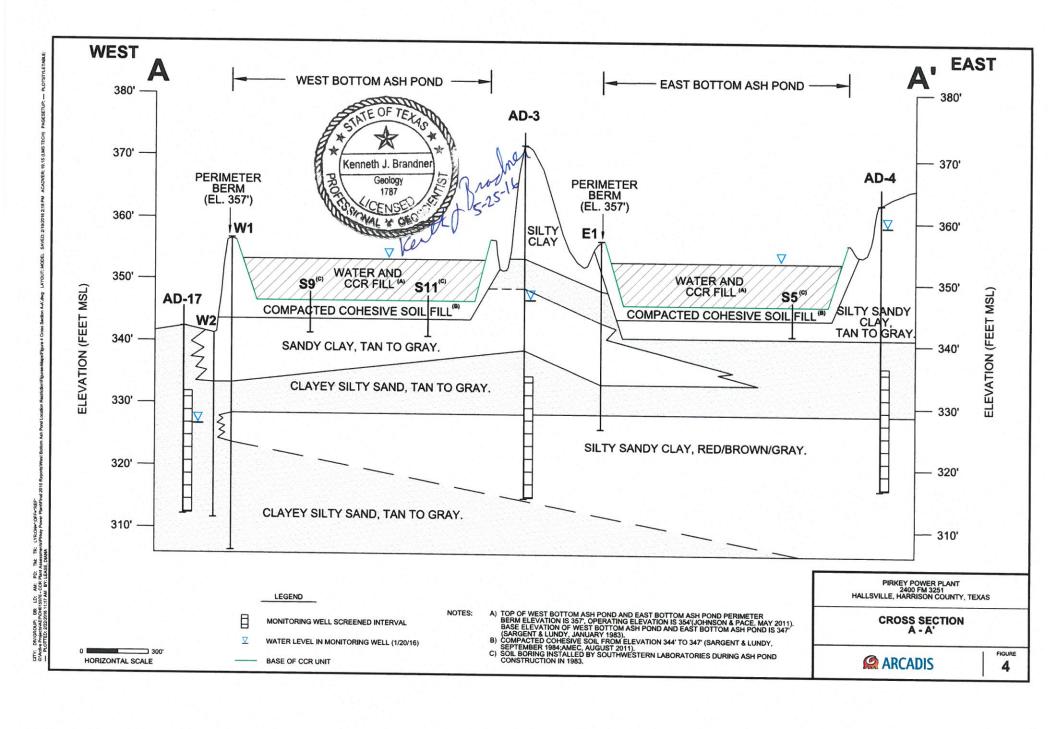

Piezometer

Notes:

Total lithium concentrations are shown for compliance wells AD-2, AD-31, and AD-32 and upgradient wells B-2 and B-3. An outlier value of 0.972 mg/L lithium from well AD-32 collected on October 12, 2016, was removed from the time series plot to allow adjustment of the Y-axis.

mg/L: milligrams per liter

Lithium Comparison to Upgradient Monitoring Wells


Pirkey Plant East Bottom Ash Pond

o: path, date revised, author

ATTACHMENT A Geologic Cross Section A-A'

ocument Path: ZilgiSPROJECTSI ENVAEPUPIRev PlantMXDIEmire 3 - Stell avoid and Mail I occ

ATTACHMENT B SB-2 Boring Log

	ECT NOTION	An	,-2	/MN1-2		ROJ.	Part	ELEV.		DA		1	58-2 1/20/20)
VLo V Lo L	loose led. Dense Dense	0- 4 4-10 10-30 30-50 >50	Vsc So Mst St VSt		PENETROMET 0 - 0.25 0.25 - 0.5 0.5 - 1.0 1.0 - 2.0	CLAYS CER N - VA CER 2 - 4 - 8 - 15 -	LUE Li Dk. 4 G 8 T 15 R	COLORS Light Br Brown Dark Bk Black Grey Bl Blue Tan Gr Grenn Red Y Yellow sh.Reddish.Wh White	MATERIALS CI Clay, Clayer Si Silt, Silty Sa Sand, Sandy Ls Limestone Gr Gravel SiS Siltstone SS Sandstone Sh Shale, Shale,	1	SAN FF	dedium coarse	CHARAC Calc C	alcareous ignite rganic aminate lickensideo lightly eam (s)
F -	9	T .	S			STRAT	UM DES	CRIPTION			ANDA	ARD METER	7	
Se mobe Inte	Recovery	DEPTH F	SAMPLE	CONDITION OR CONSISTENCY	COLOR	MATERIALS OR ADJECTIVES	PREDOMINATE MATERIAL	CHARACTE OR MODIFICA		SEAT - 6"	1st - 6"	2nd - 6"	UNIFIED SOIL CLASSIFICATION	N - VALUE OR HAND
0-5	2' Rec	0		0-81	Br. H. Rd Br	Si	Sa	Silty Sand +	sace clay,					
5-10	2.5' Rec		-	1	H. Rd. Br			track root hairs	1 1 1 1/1				moist	10.5
2-10	2.0 182		+		A.Ka.ISI		-	- thin lenses (less than 1/4"	1			molst	(6-10
10-15	4'RK	- Z		8-148	H.Rd Fr. Fd	SUSI	CI	Clay-soms	Edind and	ilk	2		moist	10-
			-		Br, Gray	julian.		clayer san	The state of the s	ede	1			9/2
				,				Annual State of the last of th	race iron one	ON STO	112	,51		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15-20	2'Rec	145		145	RLBA YILW.	Si,a	50	110/04/94	some sand	Ela	1		VVMSIS	tto
		-		391	Br. Gray			and Ironsti		65	11		moist	(15
20-25	* No Re	6.	-		C Colding		200	- centralet say	id seams in	1.3	1)	VIMEYE	-(20-
25-30	2.5 R	C			Gray - DKG	may ~		-gravel tremen		NR	25	16	1) sat, 9	-25'-
			H		DK. Br	2/)	M	- comented au	particular production of the last of the l	æn	iens	00	1.0.24	0.5
					(2)-5	0 /		- darry solty	sande 25	10	Alla	12:	- MOIST	27
0.05	2/0							e 27/1					SAL	011
30-35	3'Rec		H		Gra H	CEL C		- sat, 51 ty 54			111	1	Sat (30,5
					· 17			* some u.f. a	WDSUM ON	stal	Sin	de	exsand	32.
25115	11/000	00		0.41	416		(1)	* some u.f. a	et, sand sea	MS	(25	-40	Y V, n	16154
20-40	4' REC	21	H	31-96	4. Gray, 6	valy US	Si	Chayey Sandy	Solt sol	,(2)	2911	LIK	111815	- (29
					101 10	198			1		01.1	0 10	Molto	(31-
			H		-			Bote HO'						
											*			
			H					#25.27	callectera	1614	-	1		
								*31-33')		1	
					-/-									*
			H											

* GPS: 32,46522, -94,49032 (12'E',)
3.5'N)
of AD-2/MW-2,

ATTACHMENT C SB-2 Boring Photographic Log

Geosyntec consultants

Client: AEP Project Number: CHA8495

Site Name: Pirkey East Bottom Ash Pond Site Location: Hallsville, Texas

Photograph 1

Date: 4/21/2020

Direction: N/A

Comments:

0-5 foot interval of SB-2.

Photograph 2

Date: 4/21/2020

Direction: N/A

Comments:

5-10 foot interval of

SB-2.

1

Geosyntec consultants

Client: AEP Project Number: CHA8495

Site Name: Pirkey East Bottom Ash Pond Site Location: Hallsville, Texas

Photograph 3

Date: 4/21/2020

Direction: N/A

Comments:

10-15 foot interval of

SB-2.

Photograph 4

Date: 4/21/2020

Direction: N/A

Comments:

15-20 foot interval of SB-2. Recovery of this interval was limited.

Geosyntec consultants

20.12.22

Client: AEP Project Number: CHA8495

Site Name: Pirkey East Bottom Ash Pond Site Location: Hallsville, Texas

Photograph 5

Date: 4/21/2020

Direction: N/A

Comments:

20-25 foot interval of SB-2. Recovery of this interval was limited.

Photograph 6

Date: 4/21/2020

Direction: N/A

Comments:

25-30 foot interval of SB-2. Very little of this interval was recovered. A color change was observed from red to dark brown/black. A sample was collected from this interval.

Geosyntec consultants

Client: AEP Project Number: CHA8495

Site Name: Pirkey East Bottom Ash Pond Site Location: Hallsville, Texas

Photograph 9

Date: 4/21/2020

Direction: N/A

Comments:

30-35 foot interval of SB-2. Very little of this interval was recovered.. A sample was collected from this interval.

Photograph 10

Date: 4/21/2020

Direction: N/A

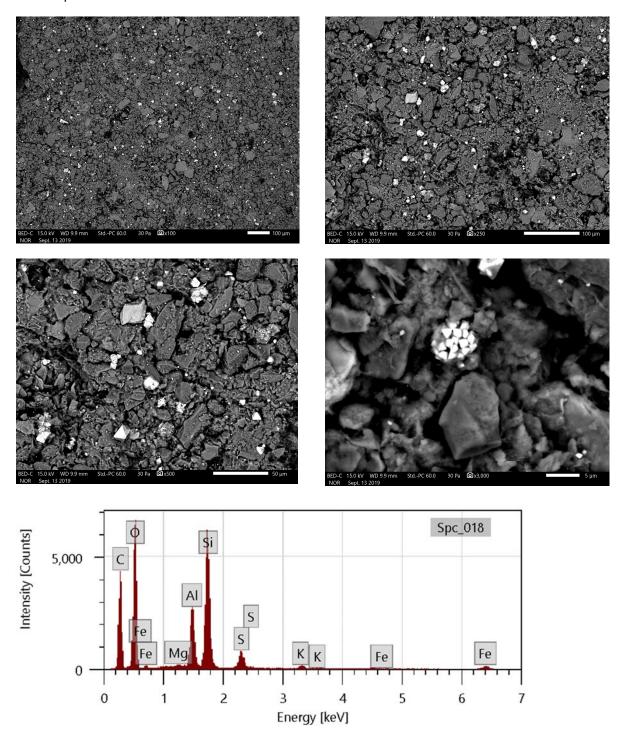
Comments:

35-40 foot interval of

SB-2

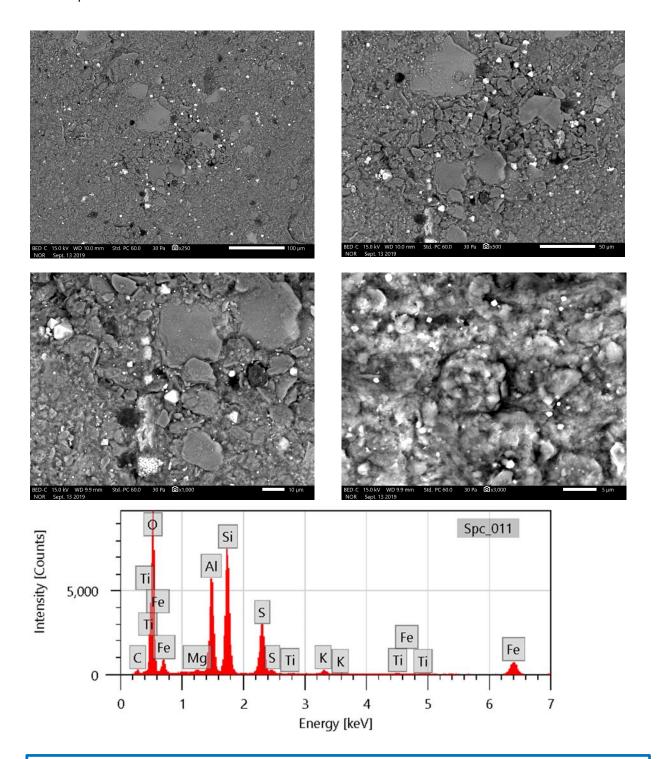
ATTACHMENT DSEM/EDS Analysis

via Email: BSass@geosyntec.com

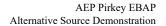


Dr. Bruce Sass 941 Chatham Lane, Suite 103, Columbus, OH 43221

Spc_004 Intensity [Counts] 1,500 Αl 1,000 500 Fe

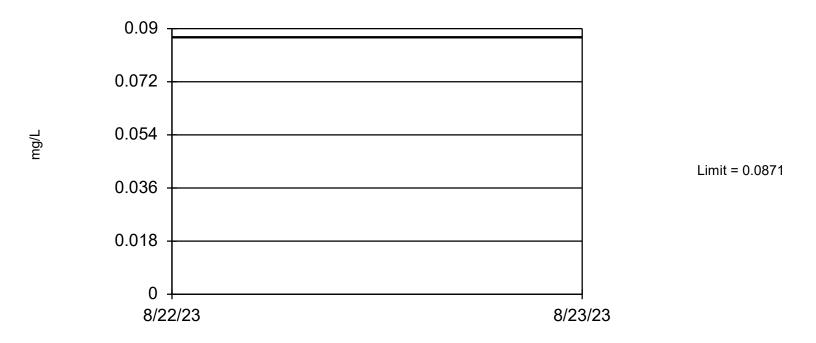

Lignite. Backscattered electron micrographs show the sample at 100X, 1,100X, and 1,500X. EDS spectrum at bottom is an area scan of the region shown in top right micrograph. Bright particles are mostly quartz and feldspar. Major peaks for carbon, oxygen, silicon, and aluminum suggest coal and clay.

Energy [keV]


Sample VAP B3 40-45. Backscattered electron micrographs show the sample at 100X, 250X, 500X, and 3000X. EDS spectrum at bottom is an area scan of the region shown at 500X. Bright particles are pyrite (framboid in bottom right micrograph). Major peaks for carbon, oxygen, silicon, and aluminum suggest coal and clay.

Sample VAP B3 50-55. Backscattered electron micrographs show the sample at 250X, 500X, 1000X, and 3000X. EDS spectrum at bottom is an area scan of the region shown at 3000X. Bright particles are mostly pyrite (framboid in bottom left micrograph); occasional particles of Fe-Ti oxide are detected. Major peaks for oxygen, silicon, and aluminum suggest clay. Large blocky particles are mostly quartz, feldspar, and clay.

ATTACHMENT E Tolerance Limit Calculation Using B-Series Data


Upper Tolerance Limits

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Data Printed 10/11/2023, 11:17 AM

Constituent	Upper Lim.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	<u>Transform</u>	<u>Alpha</u>	Method
Lithium, total (mg/L)	0.0871	93	n/a	n/a	1.075	n/a	n/a	0.008478	NP Inter(normality)

Tolerance Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 93 background values. 1.075% NDs. 95.12% coverage at alpha=0.01; 96.68% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.008478.

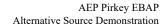
Constituent: Lithium, total Analysis Run 10/11/2023 11:16 AM View: UTL

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Data

Tolerance Limit

Constituent: Lithium, total (mg/L) Analysis Run 10/11/2023 11:17 AM View: UTL

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Data


	AD-18 (bg)	AD-12 (bg)	AD-4 (bg)	B-2 (bg)	B-3 (bg)
5/10/2016	0.004	. 3,	. 0,	. 3,	. 3,
5/11/2016		<0.001	0.013		
7/13/2016		0.008	-		
7/14/2016	0.02		0.041		
9/7/2016	-	0.01			
9/8/2016	0.019		0.04		
10/12/2016	0.0.0	0.012	0.0 .		
10/12/2010	0.026	0.012	0.034		
11/14/2016	0.020	0.013	0.004		
11/14/2016	0.017	0.013	0.035		
	0.017	0.01	0.035		
1/11/2017	0.000	0.01	0.00		
1/12/2017	0.026		0.03		
2/28/2017		0.009			
3/1/2017	0.017		0.033		
4/10/2017	0.019		0.047		
4/11/2017		0.008			
3/21/2018		0.00722			
3/22/2018	0.0165		0.0537		
8/20/2018		0.0143			
8/21/2018	0.0175		0.0294		
2/27/2019		0.00688			
2/28/2019	0.0177		0.0513		
5/21/2019		0.00576			
5/23/2019	0.0209		0.0516		
8/12/2019		0.00829			
8/13/2019	0.0183				
8/14/2019			0.0484		
8/16/2019				0.08 (J)	
3/10/2020		0.00547		(0)	
3/11/2020	0.0134	0.00047	0.0415		0.0823
6/2/2020	0.0134	0.00505	0.0410		0.0023
	0.0100	ບ.ບບວບວ	0.020		
6/3/2020	0.0132	0.0054	0.038		
11/2/2020		0.0051			
11/4/2020	0.0128		0.0274		
3/8/2021		0.0057		0.061	
3/9/2021	0.0131		0.0331		0.0686
5/24/2021		0.005		0.0449	
5/25/2021	0.0127		0.0335		
5/26/2021					0.0627
11/15/2021		0.011		0.0554	
11/16/2021			0.0211		
11/17/2021	0.0124				0.0871
3/28/2022		0.00604		0.0574	
3/29/2022	0.0137		0.0383		0.0734
6/20/2022		0.00949			
6/21/2022	0.0108		0.022	0.0526	
6/22/2022					0.0768
11/15/2022		0.0119		0.0545	
11/16/2022	0.0125	- y -	0.0212		0.0814
2/27/2023		0.00885		0.0519	
2/28/2023	0.0123	5.50005	0.0311	5.0010	0.0754
6/26/2023	0.0123	0.0049	0.0311	0.0485	0.0734
0/20/2023		0.0049		0.0400	

Tolerance Limit

Constituent: Lithium, total (mg/L) Analysis Run 10/11/2023 11:17 AM View: UTL

Pirkey EBAP Client: Geosyntec Data: Pirkey EBAP Data

	AD-18 (bg)	AD-12 (bg)	AD-4 (bg)	B-2 (bg)	B-3 (bg)
6/27/2023	0.0138		0.024		0.0641
8/23/2023	0.0119	0.00494	0.0243		

ATTACHMENT F Certification by a Qualified Professional Engineer

CERTIFICATION BY A QUALIFIED PROFESSIONAL ENGINEER

I certify that the above described alternative source demonstration is appropriate for evaluating the groundwater monitoring data for the Pirkey East Bottom Ash Pond CCR management area and that the requirements of 30 TAC §352.951(e) have been met.

<u>Beth</u>	Ann	<u>Gross</u>	

Signature

Printed Name of Licensed Professional Engineer

Beth am Gross

Geosyntec Consultants 2039 Centre Pointe Blvd, Suite 103 Tallahassee, Florida 32308

Texas Registered Engineering Firm No. F-1182

79864 Texas License Number

Licensing State

October 17, 2023

Date

APPENDIX 4- Field Reports

Facility: AFP PIRKET PP	Sampling Period: FRAUMN 127-18, 2023
Sampling Contractor:	Signature:

Well No.	Well Locked	Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Housing, and Pad in Good Shape	Well Properly Labeled	Well cap present	Comments	
A0-13	V	/	V			/	/		
AD-22	V	V		V		✓	V		
AD-33		/	V	1		✓	/		
AD-2	V		✓	√	~	1	V		
13-3				V	✓		V	NO LOCH NO LADEL	
PD-18	V	V	V	V		✓	/		Alast
AD-4					/	V	\checkmark	BETT IN ACCESS HOUSING SEVENLY	ACCESS IS ALONG STEEP SLOPE ON ALK DITCH SOMETIMES V
AD-7	V	V	√	$\sqrt{}$		V	✓	RUST to HARATO OP	W
AD-34	V	V	V	V		V	✓ _	HINCE RUSTED + BROM FN	BEOFFER WITH
· · · · · ·									J 77 2007
	<u> </u>								

<u>Instructions:</u> Complete form and submit to AEP Environmental Services with Field Data. Place check mark for items that are satisfactory. Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

Facility Name	HEP PIRKEY PP
Sample by	Kfory miDenaid

Depth to water, feet (TOC)	15.92 _/
Measured Total Depth, feet (TOC)	40.36

Sample Location ID	AD-Z	
Depth to water date	02/27/23	

urge Sta	bilization Data								
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1038	15.98	700	3.86	772	1,2	2,13	399	20.76	
1043	16,21	200	3,81	751	0.0	1.97	398	20.69	
1048	16,28	200	3,78	752	0.0	1,97	398	20,68	
1053	16.30	200	3,78	752	(),0	1,84	397	20.72	
···									
-							1		
						<u> </u>			
	·					 	_		
_		<u></u>					_		
			<u>.</u>			 	-		
						 			
								 	
						 			
									- + -
					ļ				
						ļ	_		
	<u> </u>								

Total volume purged	
Sample appearance	cifan
Sample time	1055.
Sample date	02/27/23

Facility Name	A ED PIAMON PP
Sample by	Kinny mi Donald

Depth to water, feet (TOC)		10,75	
Measured Total Depth, feet (1	LOC)	47,29	

Sample Location ID	A 0-4	
Depth to water date	D 2/28/23	

Purge Sta	bilization Data		· -							
Tima	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	_	
0856	10.79	1,80	4,84	84	18,3	4.21	414	18.80	<u>.</u> .	
0801	10:82	180	4.87	84	16.8	2.89	408	19.63		
0906	10,86	180	4.87	84	16.5	2,85	402	19.87		
09/1	10,90	180	4,89_	84	17,2	2.81	396	19.91		
				<u> </u>						
		. "								
ĺ									-	
										<u></u>
				<u></u>						
_				·						
ĺ				···			<u> </u>			
			-				<u> </u>			

Total volume purged		
Sample appearance	CIMA	
Sample time	0913	
Sample date	02/28/23	

DUP-2 Wadmernes

	<u> </u>
Facility Name	Pinnon PP
Sample by	KIMMY REDONALU

Depth to water, feet (TOC)	14,1(
Measured Total Depth, feet (TOC)	41.98

Sample Location ID	AU-7	
Depth to water date	1 02/23/23	

Purge Sta	bilization Data									
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
1001	14.51	170	3,48	337	1, 3	2,87	446	23,21		
1006	14,53	176	3,58	360	2.4	1.34	439	23,39		
10/)	14.58	178	3,62	368	2,8	1,29	431	23.42		
1016	14,63)70	3,63	374	2,2	_ کے ا	427	23,47		
	-									
							-			
	<u>-</u> -									
_										
							<u> </u>			
	<u> </u>		-		-					
			<u> </u>			<u> </u>	<u> </u>		-	
_			-						·	
			-							
					-					
				-	_		<u> </u>			

Total volume purged	
Sample appearance	CILAR
Sample time	1018
Sample date	07/18/13

Facility Name	
Sample by	Pivley
D	MH Honiltin
Depth to water, feet (TOC)	16
Measured Total Depth, feet (TOC)	13.25
7.	52.00

Sample Location ID	AD -D	
Donalita		
Depth to water date	2-77-32	

Time	oilization Data Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond	Turbidity	D.O.	ORP	Tompout		
934	13.64	300	3.68	(μS/cm)	(N.T.U)	(mg/L)'	(mV)	Temperature (°C)		
454	14.04	300	3.80	50 50	3.8	5.38	264	264	-	
					2.1	5.27	273	283		-
	·								_	
									, ,	
		-						2 ,		
		i i								p
						-		24 0		

Total volume purged	,
Sample appearance	Cleef
Sample time	621
Sample date),)7,)3

Dup-1

Facility Name	AEP PINNOY PP
Sample by	KAMA MiDenaid

Depth to water, feet (To	DC)	11.40	
Measured Total Depth, f	eet (TOC)	40.70	

Sample Location ID	A 0-13	
Depth to water date	117 19 71723	- 1

Purge Sta	bilization Data									
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
0755	12.02	200	5,30	426	202	6.2 Y	3/1_	20.31		
0800	12,15	200	4.91	423	178	2,49	284	20:25		
8805	12.23	200	4,83	421	101	2,42	242	20.19		
08/0	12,33	700	4.80	419	97.4	2,39	238	20:12		
0815	12,41	200	4,78	419	89.1	7.34	231	20.26		
				,						
		_								
									• •	
 										
					-					
	-					-				

.

Total volume purged	
Sample appearance	
Sample time	08/7
Sample date	02/27/23

Facility Name	PIPKEY PP
Sample by	KENNY McDONALD

Depth to water, feet (TOC)	3,85
Measured Total Depth, feet (TOC)	28,42

Sample Location ID	HD-18	
_		
Depth to water date	02/27/23	·

Purge Sta	bilization Data									
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
1207	5,01	1/0	4.08	58	7,3	3,41	43/	16.02		
12/2	5.97	110	4,3,5	52	4.2	2.73	418	17,53		
	•			<u> </u>						
				,						
			-	WON'T HOL	o water L	Mr. FL			-	
	· <u> </u>						_	<u> </u>		
										·
						<u> </u>				
	<u> </u>								<u>. </u>	
						,			<u> </u>	

Total volume purged		
Sample appearance	(l tan	
Sample time	() 825	
Sample date	02/28/23	

Facility Name	AFP PIRMOUPP
Sample by	Kinny Mi Donald

Depth to water, feet (TOC)	9.04
Measured Total Depth, feet (TOC)	37,70

Sample Location ID	A0-22	
Depth to water date	02/27/23	

.

Purge Sta	bilization Data		*			<u> </u>		7	<u> </u>	
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
0850	9.10	180	4.05	949	8.7	7,16	335	20.70		
0855	9,11	180	4.05	969	4,1	1.47	334	20.34		
0900	9.15	180	4,05	974	1,3	1.42	328	20.39		
2090	9,17	180	4.06	977	h 6	1.38	325	20,41		
1.										
										<u> </u>
								<u> </u>	<u> </u>	
						<u> </u>				
									·	
						<u> </u>	-			
										"
								-		
						ļ			1	
						<u> </u>				
							_			
			<u> </u>						<u> </u>	

Total volume purged	
Sample appearance	CIMA
Sample time	0907
Sample date	02/17/13

Facility Name Sample by	Pillen
	17-17 Hentin
Depth-to water, feet (TOC)	3 34
Measured Total Depth, feet (TOC)	30,50

Sample Location ID	1 AD. 23
Depth to water date	7-58-54

Time Water I (from 1038 3-1043 3-1103 30.1103	Depth Flow Rate (mL/min) は	Spec Cond (μS/cm) 72 71 71 70 64 7σ	Turbidity (N.T.U) O Q 2.1 3.5 4.5	D.O. (mg/L) 2.86 3.15 3.25 3.35 3.33 3.34	ORP (mV) 239 22-7 228 221 226	Temperature (°C) 21.88 21.76 21.64 51.65 21.63 21.64	

Total volume purged	
Sample appearance	Clev
Sample time	
Sample date	2-7625

Facility Name Sample by	
Depth to water, feet (TOC)	Sample Location ID AD・とう
Morrison	Depth to water date

Fime (16) (16) (17) (17) (17) (17) (17) (17) (17) (17	Water Depth (from TOC) G. 03 G. 15 G. 23 G. 37	Flow Rate (mL/min) \(\) \(pH (S.U.) 4.71 3.67 3.56 3.50	Spec Cond (µS/cm) 1 1/c 1 1/c 1 1/c 1 1/c	Turbidity (N.T.U) 2-7 35.3 23.7 21.4 21.5	D.O. (mg/L) 1,716 0,71 0,58 0,43	ORP (mV) \cdot \	Temperature (°C) 20.3C 20.64 20.64 20.67		
								<i>z</i> .		
		:								.,
									-	

Total volume purged		
Sample appearance	Cley	-
Sample time	128	
Sample date	2.58.53	

Facility Name	
Sample by	Tidley Nal 12:11
Depth-to water, feet (TOC)	Mart Hamilton
Measured Total Depth, feet (15.45
	47.76

Sample Location ID	AD-27
Donati	
Depth to water date	7-78-23

	ization Data							`` ~~-		
Time \$23 \$28 \$33 \$33 \$33 \$33 \$33 \$33 \$33 \$33 \$33 \$3	Water Depth (from TOC) 16:24 16.54 16.78 16.78 16.40 16.55	Flow Rate (mL/min) 300. 300. 300. 300. 300. 300. 300. 300	pH (S.U.) 5.76 4.27 3.50 3.10 2.41 2.41 2.41 3.00	Spec Cond (μS/cm) 2 3e 2 8e 2 8e 2 2e 2	Turbidity (N.T.U) 24.1 64.8 84.6 68.5 46.4 31.5 27.7	D.O. (mg/L) 2 47 0.56 0.51 1.14 1.2e 1.11	ORP (mV) 145 .221 .276 .316 .316 .317 .3-3 .302	Temperature (°C) 17.5(14.24 14.14 14.75 14.76 2-08 20.06		
			· ,							
					í				,	,
		:					<u></u>			
	•									-
						_4			-	

Total volume purged

Sample appearance

Sample time

Sample date

Z-28-73

Landfill daplicate

Facility Name Sample by	
Donth to me for the family	Sample Location ID
Depth-to water, feet (TOC) Measured Total Depth, feet (TOC) 37.32	Depth to water date

Sample Location ID	AD:31
Depth to water date).27.72

ime	Water Depth (from TOC)	Flow Rate (mL/min) とてる	pH (S.U.)	Spec Cond (µS/cm) 2 4 7	Turbidity (N.T.U) よく: フ	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
1145	16.83	220 220 220 221	3.58 3.50 3.48 3.48	210 256 269 301	41.0 24.4 18.7 18.5	0.55	291 316 325 321 330	23.25 23.34 23.46 23.52	
	1						·	3,5	
								; .	

•

Total volume purged		
Sample appearance	C e = /	•
Sample time	1147	
Sample date	2-77.73	
	610	

Facility Name	17
Sample by	Tilley
	Maint Hamilton
Depth to water, feet (TOC)	
Measured Total Depth, feet (TOC)	9,70
(1.50)	34/1

Sample Location ID	An-37	
Depth to water date		

* *

	Vater Depth	Flow Rate	- pH	<u></u>				- All Andrews	7	
1091 1041 1051	(from TOC)	(mL/min)) 26 226 226 220	(S.U.) 3.24 3.23 3.21	Spec Cond (μS/cm) +21 425 435 434	Turbidity (N.T.U) 65.6 43.5	D.O. (mg/L)	ORP (mV) 318 334 345	Temperature (°C)		
1101	10.30	220	3.32	433	9,4	0.46	347	22.42		
								2 3		
										,

Total volume purged	
Sample appearance	ried
Sample time	1163
Sample date	2.7.7.7.3

1

. .

Facility Name	PIRKM PP
Sample by	KINNY MODERALU

. . . .

Depth to water, feet (TOC)		17,19	
Measured Total Depth, feet (TOC)	•·.	32,50	

Sample Location ID	A D-33
	,
Depth to water date	02/27/23

1	bilization Data					T		1		1
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
1941	12,24	200	3,95	264	1.3	7,13	365	20.97		
946	12,21	700	4.07	252	4.6	1.50	356	21,33		-
951	12.71	700	4107	250	2, 8	1,49	354	21,40		
956	12,22	200	4.07	248	2,2	1146	353	21,48		
, - 1/	,,,,,,,		,,,,			, , , , , , , , , , , , ,		_ , , , ,		
	200	•								
,									• •	
	·									
										<u> </u>
		•			*					
				· ,						

Total volume purged	
Sample appearance	Clan
Sample time	0958
Sample date	07/27/23

Facility Name	AEP PIRKMPP.	
Sample by	Kerry McDored	

Depth to water, feet (TOC)

Measured Total Depth, feet (TOC)

70 C

26.05

Sample Location ID	A0-34
	•
Depth to water date	02/28/23

Purge Sta	bilization Data		_							
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
1056	0,74	120	3.87	1610	2,6	2,87	373	24.40		
1101	0,81	1.20	3.82	1610	3,4	1.36	364	24,42		
1106	0.90	120	3.81	1,610	5,7	1,28	358	24,46		
	0.95	120	3.78	1630	7,2	1,24	353	24,4/0		
ĺ										
									٠	
							:			
					-					
			-							

Total volume purged	
Sample appearance	CLEAN
Sample time	1/13
Sample date	02/28/23

Facility Name	8	
Sample by	Pilley Hunita	
Depth-to water, fe	et (TOC)	—! ——————————————————————————————————
Measured Total De	et (TOC) 7.65	

Sample Location ID	AD-31
Depth to water date	<u> </u>

Time	oilization Data Water Depth	Flow Rate	· pH·			-	-		·	•
	(from TOC) S.Ol S.Ob S.OS	(mL/min) 22e 22e 22e	(S.U.) 4.6e 4.56 4.55	Spec Cond (µS/cm) 47 70 64	Turbidity (N.T.U) 17. 3 4.4	D.O. (mg/L) 2-01 C 5:	ORP (mV) 13 . 15 &	Temperature (°C) という人		
						93-113		21.34		
					.,.					
								· · · · · · · · · · · · · · · · ·		
								-	<u> </u>	, -
		<u> </u>			•					
			·							
	·			·				• • •		
rtal volum	ne purged									
mple app	pearance		lev	-		÷				
mple tin mple dai			8-36		•				,	

•

Total volume purged		
Sample appearance	clev	
Sample time	023	
Sample date	2-28-36	

-

Facility Name	D AL
Sample by	[//cey
	Matt Hanilton

Depth to water, feet (TOC)

Measured Total Depth, feet (TOC)

51.44

Sample Location ID	B-7	
Depth to water date	2-77-00) > 2	-

4	bilization Data Water Depth			Control of the Contro	· All and a second seco	The Court of the C			
831 844 845	(from TOC) 16.9 17.03	Flow Rate (mL/min) 300 300	pH (S.U.) 4.46 5.08 5.61	Spec Cond (μS/cm) 23 0 145	Turbidity (N.T.U) C C	D.O. (mg/L) 1.70 0.65	ORP (mV)	Temperature (°C)	
		. 8							
						,			
								2 k	e .
			DO NOW WOME CHEN WAS ASSESSED.	COLUMN CONTRACTOR CONT					,

Total volume purged		
Sample appearance	clear	
Sample time	877	
Sample date	2-27-73	

Dap-B

Facility Name	HER PIRKEY PP
Sample by	KINNY MIDENAL d

Depth to water, feet (TOC)	12.50
Measured Total Depth, feet (TOC)	37,49

Sample Location ID	B-3
Depth to water date	62/77/23

Purge Sta	bilization Data								1	
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (µS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
1141	13.63	102	4,55	278	6.7	2,83	366	20,47		
1146	15.02	102	4,80	197	2.8	1.91	370_	20.5%		-
	<u> </u>								<u> </u>	
										•
	·		WO	NIT HOLD	ATK LEVI	fl				
	··									
									:	
				·	<u> </u>	ļ.——				
,						<u> </u>				

Total volume purged	
Sample appearance	Clean
Sample time	0,755
Sample date	02/18/23

acility Na ample by	ime): (ICEY	Hamilly]					
Depth to	water, feet (TOC)		1/2/9	TIMEN LEG	<u> </u>	Sample Locat	ion ID	EBAP		
	Total Depth, feet (TOC)			-	Depth to wat	er date	2.28-	23	
	oilization Data					• .				
Time (123)	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.) ム, 47	Spec Cond (µS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
							•			
				,						-
			·		F-	 				

Total volume purged	
Sample appearance	(6)
Sample time	1133
Sample date	2-28-23

Facility Name Sample by	
Depth to water, feet (TOC)	Sample Location ID
Measured Total Depth, feet (TOC)	Depth to water date とことをこう

īme	Water Depth (from TOC)	Flow Rate (mL/min)	• рН	Spec Cond	Turbidity	D.O.	- OBB			
977			(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	ORP (mV)	Temperature (°C)		
						0.30	176	22.70		
										
										-
					`					
								2 .		
									·	
	·									
						<u> </u>	<u>.</u>			

()
<u> </u>
28.53

Well No.	Well Locked	Fastener and Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Protective Cover, Barriers and Pad in Good Shape	Weli Properly Labeled	Well Cap Present and Vented*	
B->	,							no label top won't do
An-31			_					no 02 (-bo)
WP~ 20					/			
14p -0	<i>U</i>		-					Overgrown
<u> 40.17</u>								OVERSY-VA
AD.27					-			
<u>AD-25</u>	1/	. ,		-	~			
141,522			/					OURIGIONA
AD-3								
	<u> </u>					ļ		

^{*}Not all wells will be vented, especially flush mounted wells. If that is the case, please note "flush mount well" in the comments.

Facility: Atp PINH PP	Sampling Period:
Sampling Contractor: PAGIF	Signature: KAN

Well No.	Well Locked	Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Housing, and Pad in Good Shape	Well Properly Labeled	Well cap present	Comments	
AD-13	V	V	V	V	V	V	V		
AD-22	V	V	✓	V	✓ <u> </u>	<u> </u>	V		
A0-33		V	V	$\sqrt{}$	\checkmark	\checkmark	\checkmark		
AD-7R	\vee	✓	V	$\sqrt{}$	\checkmark		V	NO LABFL	
B-3	<u> </u>	\checkmark	$\sqrt{}$	\checkmark	V			NO LABEL	
AD-18	$\sqrt{}$	√	$\sqrt{}$		\checkmark	\checkmark	/	TRAIL TO WHILL ARMY AROUND	WELL NEEDSCIFANING
AD-16	√		V	•	\checkmark	✓	/	TRAIL TO WALL NEGOS CHARAPO	NEFOS NEW LOCK
A0-07	\checkmark	✓	V	✓	✓	✓	✓		
A0-04					V	✓	/	NEFOS LOCK NEFOS WEFO FATING	LIMITA ALCISS TE WELL
								t are entirepretary	

<u>Instructions:</u> Complete form and submit to AEP Environmental Services with Field Data. Place check mark for items that are satisfactory. Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

Facility: Pirkey	Sampling Period:	Jue 2023
Sampling Contractor: Fuyle	Signature:	111 11

Well No.	Well Locked	Fastener and Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Protective Cover, Barriers and Pad in Good	Well Properly Labeled	Well Cap Present and Vented*	Comments
AD-12	5	5	5	5	Shape	5	5	
AD-32	5	5	5	5	5	5	5	
AD-a	5	5	5	5	5	5	5	
AD-28	5	5	5	5	5	5	5	
AD-26	3	5	5	5	5	5	5	
AD-34	.5	5	5	5	4	5	5	tinge Broken
AD.3	5	5	5	5	5	5	5	
A0-36	5	5	5	5	5	5	5	

^{*}Not all wells will be vented, especially flush mounted wells. If that is the case, please note "flush mount well" in the comments.

Facility Name	ADD D
Sample by	110 finley
	BE13

Depth to water, feet (TOC)

Measured Total Depth, feet (TOC)

40-36

Sample Location ID	AAA
	110-8
Depth to water date	F /2 / 10

Time	Water Depth	Flow Rate	рН	Spec Cond		- CALLES OF STREET, ENGINEERING SOCIETY	THE RESIDENCE OF THE PARTY OF T	The state of the s	
024	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	Turbidity (N.T.U)	D.O.	ORP	Temperature	T
		210	3.69	206		(mg/L)	(mV)	(°C)	
74	17.06	200	3.69	214	2-8	9-10	382	26.36	-
34	()-10	20	3.35	216	1.6	1.29	. 384	24-93	-
57	17-13	20	3-85	713	1-3	1-25	380	24-72	+
					173	1-24	379	24-86	
									-
			10						
									-
									1
	1								-
									-
						,			-
	ŧ.		-						
				1	, m				
				P				*4 .	+
			· .						-

Total volume purged	
Sample appearance	den
Sample time	1042
Sample date	6/26/22

Facility Name	
Sample by	M.A. How du
Depth-to water feet /TOC	11.14 11.40

Depth-to water, feet (TOC)	
Measured Total Depth, feet (TOC)	33.48
34700	51.49

Sample Location ID	7 - AA
Depth to water date	/>->
-1 at to water date	6-7.7-25

ime	Water Depth	Flow Rate	рH	Spec Cond	7	-				
44	(from TOC) 33, 72	(mL/min) 	(S.U.)	(μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		T
44 54 59	33.8/,	22c	5.99 5.92	185	348	1.53	187	28.55 25.98		
27	34, 67	220	5,84	171	6.9	1.08.	173	25.55		-
	,									_
							•			-
								2 .		
			· ,			 - '	<u> </u>		<u> </u>	<u> </u>

Total volume purged	
Sample appearance	Nev
Sample time	1101
Sample date	6-27-23

Facility Name	AFP PIRMON PP
Sample by	Korny MiDarkd

Depth to water, feet (TOC)	14.13
Measured Total Depth, feet (TOC)	47.29

Sample Location ID	AD-04	
Depth to water date	1 0/2/27/25	

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1053	14,19	164	4.47	98	42,3	4.28	377	24.68	
1658	14,23	164	4,51	98	37.6	3,74	362	24,59	
1103	14,25	164	4,53	95	36,5	3,69	360	24.55	
1108	14.41	11, 4	4153	92	34.9	3,63	366	24,51	
					_				

Total volume purged	
Sample appearance	TURSID
Sample time	11.10
Sample date	06/27/23

Facility Name	AFP PIRKTYPP	
Sample by	Kerry Mc Denaud	

Depth to water, feet (TOC)	14,96
Measured Total Depth, feet (TOC)	41,98

Sample Location ID	AD-07	
--------------------	-------	--

Depth to water date	06/27/23	
---------------------	----------	--

Purge Sta	bilization Data	п							
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
0934	15,13	174	3,84	316	1,1	2/13	321	24,91	w will a second
0939	15,20	174	3,80	32/	0	1.84	321	24,83	
0944	15,24	174	3,77	33 4	0.8	1,80	321	24.77	
0949	15,26	174	3.76	338	0,4	1,77	322	24.75	
							3,		
					-				
						9			

Total volume purged	
Sample appearance	CLAAL
Sample time	0951
Sample date	06/27/23

Facility Name	AEP	Dickey	
Sample by	RE	3	

Depth to water, feet (TOC)	12.56	
Measured Total Depth, feet (TOC)	31.33	

Sample Location ID	AD-8
Depth to water date	6/2/22

urge Sta	bilization Data			AND COMMON COMMON COMMON CONTRACTOR AND	AND THE PROPERTY OF THE PARTY O			AN ADDRESS OF THE PARTY OF THE	THE PERSON WAS THE SOUTH OF THE PERSON
Time WUS (ICO WIS CONO	Water Depth (from TOC) (3.28 3.33 (3.35 (3.35	Flow Rate (mL/min) (67 63 63	pH (S.U.) 5.68 5.73 5.78 5.79	Spec Cond (μS/cm) 565 573 583 583	Turbidity (N.T.U) (Y-0) 7.6 7.6 7.7	D.O. (mg/L) 7.43 2.1(9.8 2.04	ORP (mV) (20 (66 /63 /58	Temperature (°C) 26.20 16.11 26.00 16.04	
SACH CONTRACTOR OF THE PROPERTY OF THE PROPERT		AND THE PROPERTY OF THE PROPER							

Total volume purged		
Sample appearance	dew	
Sample time	1024	
Sample date	6/27/27	

Deplicate

Facility Name	AEP PINH CY PP
Sample by	Kenny MiDonald

Depth to water, feet (TOC)	8,48	
Measured Total Depth, feet (TOC)	33,03	

Sample Location ID	AD-7K	
Depth to water date	06/26/23	

Purge Sta	abilization Data									
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
1025	8.48	120	4,67	241	6.4	2,04	273	28,92		
1030	8,50	120	4.76	240	2, 1	1,98	765	28,08		
1039	8,50	120	4.81	246	1.7	1,94	257	27.13		
1040	8.51	170	4.83	247	1,5	1.91	253	27.04		
1045	8.50	170	4,88	250	1.3	1.87	249	26,92		
						,				
N .					2					
					¥					
				8						
									¥	
									1	
							3.00			t
										7.

Total volume purged	
Sample appearance	CLGAR
Sample time	1047
Sample date	06/26/27

Facility Name	AFP Do
Sample by	HE Pricey
	RES 1

Depth to water, feet (TOC)	10.0
Measured Total Depth, feet (TOC)	19-89
	5 250

Sample Location ID	AD- Q
Depth to water date	Color

Time	Water Depth (from TOC) (3.2/	Flow Rate (mL/min)	pH (S.U.) 4.36	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L) 2.36	ORP (mV)	Temperature (°C)	
9743 9753	(3.5%	300	4.44 4.56 4.60	40 40 42	3.6 8.4 3.0	(.90	32x 32x	54.86 54.23 54.23 56.63	
		1							

Total volume purged	
Sample appearance	dat
Sample time	O)CF
Sample date	(/26/12

Facility Name	AFP PIRACT PD
Sample by	King Mi Donald

Depth to water, feet (TOC) 12,29

Measured Total Depth, feet (TOC) 40,70

Sample Location ID	AD-13	
		VIII.00-32-19-19-19-19-19-19-19-19-19-19-19-19-19-

Depth to water date 06/26/23

Purge Sta	abilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
0711	12136	174	5.52	702	128	5.27	194	25,49	
07/6	12,40	179	5,50	580	40.3	4,14	182	25,57	
0721	12,45	179	5,48	5.71.	36.8	4,10	173	25,61	
0726	12,48	174	5,47	569	31,2	4.07	170	25,63	
		1.							

Total volume purged	
Sample appearance	SLIGHTLY TURBID
Sample time	0728
Sample date	06/24/23

Duplicate - 1 1200

Facility Name	A CPPINNTY PP
Sample by	Ktory McDenald
Depth to water, feet (TOC)	17.61
Measured Total Depth, feet (TOC)	787U

Sample Location ID	AO-16
Depth to water date	06/27/23

Purge Sta	bilization Data							_	
T:	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
Time	(from TQC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
0837	17.45	192	4.30	159	41.2	1.47	3 <i>08</i>	75.2	
0842	17.67	192	4.33	159	33,6	1.15	3 16	25.07	
0847	17,72	192	437	160	35.7	1,12	319	24,93	
0852	17.76	192	4.38	159	37,9	1.09	322	24.91	
0857	17,77	192	4.38	159	38,2	1,06	325	24,88	
				• ,					
		· <u>-</u>							
							•		
			: :						
									
			:-	-			W-1	·	
				-					
	- i .								
									
					-				

Total volume purged	· · · · · · · · · · · · · · · · · · ·
Sample appearance	Clean
Sample time	0859
Sample date	06/27/23

Facility Name	
Sample by	Listey.
D	Mith Hymi Ua
Depth-to water, feet (TOC))0.6/
Measured Total Depth, feet ((OC) 3,10

Sample Location ID	
T TO GOLD IT ID	AD-11
Depth to water date	
	6-26-23

ime 3 <i>c</i> 3 <i>5</i>	Water Depth (from TOC) 21.11 21.12	Flow Rate (mL/min) 200 200	pH (s.u.) 4.06 4.35	Spec Cond (µS/cm) le (Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
47	21,12) er 2er	4.48 4.48	ς2 - δ- 76	31.3 4.1 4.3	3.56	375 365 414 422	25.18 25.10 25.22 24.16	
							·		
									,
		:			``				
	·				(t-)				
									

Sample appearance Cless Sample time 1147	otal volume purged	
Sample time		1) all
Sample date 6-26-23	ample date	6-26-23

Facility Name	AFP PIRMEY PP
Sample by	Ktrny M (Dinaed

Depth to water, feet (TOC)	5, 46
Measured Total Depth, feet (TOC) 28,42

Sample Location ID	AO-18
Depth to water date	04/24/23

Purge Sta	bilization Data									
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
1138	6.24	108	4,52	50	21.9	2,27	264	25,13		
1143	7.09	108	4,40	51	18.6	1.93	284	25.16		
						ļ				
								•		
				WON'T HOLD	WATER LA	FL.			<u> </u>	
				·						
					<u> </u>					
 			<u> </u>						<u> </u>	

Total volume purged	
Sample appearance	Cloan
Sample time	0742
Sample date	06/27/27

Facility Name	AFP PINHON PP
Sample by	Ktury miDonald

Depth to water, feet (TOC)		10.2	2
Measured Total Depth, feet (ГОС)	321	70

Sample Location ID	AD-22
•	

Depth to water date	06/26/23

_	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	·
0826	10.42	164	4,28	810	8,4	4.12	226	25,23	
0831	10,44	169	4,13	852	0	2,37	724	25,18	
0836	10.47	164	4,09	857	1,1	2,31	218	25,07	
0841	10,50	164	4,07	861	0	2,26	2/6	24.91	
	 								
	·								

Total volume purged	
Sample appearance	Chan
Sample time	0843
Sample date	06/26/23

Facility Name	
Sample by	Picket
	Lint Howilton
Depth-to water, feet (TOC)	2.67
Measured Total Depth, feet (TO	C). 25.71

Sample Location ID	A)-23
Depth to water date	6-27-23

Time	Water Depth	Flow Rate	· pH	Spor Cond					
(44 (44 (54 (54 (55)	(from TOC) 30.25 20) 30.27 30,28 30.28 30.25	(mL/min) 27¢ 22¢ 數26 22¢ 22¢	(S.U.) 4.63 4.54 4.53 4.48 4.47	Spec Cond (µS/cm) 3 i 4 13 l 106 9 7	Turbidity (N.T.U) \$,3 14.5 7.7 6.5 6.3	D.O. (mg/L) 7.15 3.05 2.51 2.24 2.18	ORP (mV) 2/2 2/1 2/7 2.74 2.75 2.71	Temperature (°C) 25.65 26.65 25.86 25.72	
	·	·						19	

Total volume purged	
Sample appearance	Cless
Sample time	
Sample date	6-27-23

Facility Name	
Sample by	Privey
Donth	Mit Hamilla
Depth to water, feet (TOC) Measured Total Depth, feet (T	74.3
Total Depth, feet (1	oc). 27,38

Sample Location ID	An- 25
Depth to water date	6-27-23

. 1

lime	oilization Data Water Depth (from TOC)	Flow Rate	- pH	Spec Cond	Turbidity	_		****	,
-55	8.71 8.85	(mL/min) [20 [20	(S.U.) 4,42 4,51	(µS/cm) & 75	(N.T.U)	D.O. (mg/L) 2-24	ORP (mV) 275	Temperature (°C)	
10	5.43	120	4.73	474 1,024	37.1 37.5 37.3	1-63	226	29.35	
						1.28	184	26.82	·
								2 3	
		1							,
								*49	

Total volume purged	
Sample appearance	Cler
Sample time	517
Sample date	6-27-23

Facility Name	AEP Pirtue
Sample by	303

Depth to water, feet (TOC)

Measured Total Depth, feet (TOC)

15.42

42.73

Sample Location ID	20,21	
	175-06	

Depth to water date 6/27/23

Purge Sta	bilization Data		The Control of State of Control of the Control of the Control of the Control of Control	WHEN THE PROPERTY OF THE PROPE	THE RESERVE OF THE PROPERTY OF	CHANGE AND ADMILITATION THROUGH TO THE	Motoryte 2 - Market 24 to Think 2002 and	THE PROPERTY OF THE PROPERTY O	THE PERSONNELSE WAS ASSESSED.	Contraction to the contraction of
Time 0730	Water Depth (from TOC) (5.83	Flow Rate (mL/min)	pH (S.U.) 4.76 3.56	Spec Cond (ルS/cm)	Turbidity (N.T.U) 75.4 Y3.0	D.O. (mg/L) (5.6	ORP (mV) 156	Temperature (°C) 24.67 34.14		
0740	16,25	300	3.36	2066 2066	27.7	1.8	249	24.62		

Total volume purged	
Sample appearance	dev
Sample time	0743
Sample date	6/27/27

Facility Name	
Sample by	Piller.
	MAN Andrew
Depth-to water, feet (TOC)	
Measured Total Depth, feet (100
	11

Donth	 Sample Location ID AD-27
Deput to Water date	 Depth to water date / 2.7.2.3

	*			.81	_]		-c. dute	6.27.2	\$
Purge Sta	bilization Data							i e	
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.D.)	Spec Cond	Turbidity	D.O.			-
8-8 813	20,28 20,32	300	(S.U.) 4.25 4.21	(μS/cm) 	(N.T.U) (N.T.U)	(mg/L)	ORP (mV) 2/2	Temperature (°C)	
\$18 \$23 \$28	20.34	3~1 3~1	426	236 235 234	27.5	2.48	275	27.6° 29.82 25.31	
<u> 5-8</u>	20.36	361	4.24	233	7.6	2.14.	283	25.31 25.64 24.91	
	· · · · · · · · · · · · · · · · · · ·				·		,		
							•		

Total volume purged	
Sample appearance	Les
Sample time	830
Sample date	6-27.23

Facility Name	120 Drote
Sample by	Act Tivey
	BUS
Depth to water, feet (TO	CIT

Sample Leasting	10		 		
Sample Location	עוו	1	240	7-	
			11/	1	
			 	00	

Depth to water, feet (TOC)

Measured Total Depth, feet (TOC)

33-39

Depth to water date 6/26/23

Purge Stabilization Data	(M. A. Construction of Construction of Labor State Clark Construction of St.	Comment of the second s	CHEMBER SON, Service Chember Commence of the C		7	<i>\$0</i>	i .	
Time Water Depth (from TOC) ((13) (7.38) (13) (7.56) (143) (7.56) (143) (7.58)	Flow Rate (mL/min)	pH (S.U.) 4.43 4-32 4-25 4-25	Spec Cond (µS/cm) ((「	Turbidity (N.T.U) 2-3 5-1 3-2 3.6	D.O. (mg/L) 10/69 2.53 3.65 3.00	ORP (mV) 337 375 350	Temperature (°C) 26.5/ 24.55 24.55	
		-						
				,r				
The state of the s	Control of the Contro		and the first of the state of the second state of the second seco	THE RESIDENCE AND THE PERSONNEL SERVICE AND				

Total volume purged	
Sample appearance	1/045
Sample time	1/26
Sample date	(126/22

Facility Name	
Sample by	
1 - M for	14
Depth-to water, feet (TOC) 4 4	<u> </u>
Measured Total Depth, feet (TOC)	<u> </u>

Sample Location ID	AD-30
Depth to water date	1.2623

Time 104 1046 105 1056	zation Data Water Depth (from TOC) 20.10 20.15 10.16	Flow Rate (mL/min) 22a 22a 22a 22a	pH (s.u.) 4.43 4.34 4.55 4.67	Spec Cond (µS/cm) (413) 425	Turbidity (N.T.U) 46.3 34.5	D.O. (mg/L) 0.55 0.86 6.82	ORP (mV) 334 3e(Temperature (°C) 24.16 27.85		
	20.16	72c	4.98	424 423	&,5 &,3	0.81	218	27.02 26.85 21.75		
		3							·	

Cles
11=2
6-7/-73

Facility Name	Pirkey
Sample by	11-14 Hailts
Depth to water, feet (TOC) Measured Total Depth, feet (T	

Sample Location ID	
	777 31
Depth to water date	6-26-23

Water Depth (from TOC) 3 \	Flow Rate (mL/min) 22= 22= 22=	pH (S.U.) 3.64 4.01 4.12	Spec Cond (µS/cm) 2.5.5 2.6.5	Turbidity (N.T.U) So-7 34.3	D.O. (mg/L) 5.43 3.4)	ORP (mV) 274	Temperature (°C) .) (5 7 . 2 5 . 6 2	
1354 20.73 139 20.74	22 <i>c</i> 22 <i>c</i>	4.19	296	15.5 16.2 16.2	4,40	3=7 313 316	25.3c 25.14 25.13	
		:						

Total volume purged	
Sample appearance	Cless
Sample time	1001
Sample date	6-2.6-2.3

Facility Name	AEP Profess
Sample by	Bral Poter

Depth to water, feet (TOC)	15-83
Measured Total Depth, feet (TOC)	34.65

Sample Location ID	AD-32

Depth to water date	(12/22
, and the date	6/26/27

Total volume purged		
Sample appearance	Clear	
Sample time	0930	
Sample date	6/26/22	

Facility Name	HEP PINHON PP
Sample by	Kenny McDoward

		_	
Depth to water, feet (TOC)		12,56	
Measured Total Depth, feet (ГОС)	32.50	

Sample Location ID	HO-33

Depth to water date	06/26/23	

Purge Sta	bilization Data									
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S _. U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
0917	12,60.	180	4,15	245	2.6	3,26	276	24.21		
0922	12.61	180	4.11	206	2,4	2, 95	264	24,16		
0927	12,61	180	4.50	204	2,4	2,91	260'	24.08		
0932	12,63	180	4,08	201	214	2,87	258	24.02	•	
					<u>'</u>	· .				
Serv										

	·									
			-							
					ļ					
					·	<u> </u>				

Total volume purged	·
Sample appearance	Cloud
Sample time	0934
Sample date	06/26/23

Facility Name	AEP Pirker
Sample by	BOR

Depth to water, feet (TOC)	TOC
Measured Total Depth, feet (TOC)	26.35

Sample Location ID	40-34	
Depth to water date	1 1/22/22	

Purge Sta	bilization Data	THE PERSON AND THE WAY SERVICE THE PROPERTY OF THE PERSON AND THE	Section to the Section of the Sectio	THE RESIDENCE OF THE PROPERTY	ACCES DELL'ARTER DE SELECTION DE L'ARTER DE			ATTACHER STREET, STREE	Account Charles and the County of the County
Time 2820 2830 2835	Water Depth (from TOC) 5.54 0.62 0.76 6.84	Flow Rate (mL/min) (24 (24 (24	pH (S.U.) 3.78 3.72 3.69 3.69	Spec Cond (μS/cm) (3 ω (7 9 ο (7 3 γ	Turbidity (N.T.U) 6.8 6.4 6.0 5.8	D.O. (mg/L) 2.96 2.33 2.12 2.60	ORP (mV) を6 (の人 (ひく	Temperature (°C) 24.33 24.16 24.08 34.24	
I CONTRACTOR OF THE PROPERTY O	NATIONAL TRANSPORTER TO ANALYSIS AND ANALYSI		SET THE IN YOUR EST SELECT THE REAL PROPERTY AND ADDRESS OF THE SELECT O	MARKET WHE CONTROL AND ESTIMATE CONTROL CONTRO					

Total volume purged	
Sample appearance	(leas
Sample time	0839
Sample date	6/22/22

Facility Name	ADR Dillo
Sample by	Ben

Depth to water, feet (TOC)	9.21	
Measured Total Depth, feet (TOC)	().(0)	

Sample Location ID	AD-36
	1
Depth to water date	6/22/22

Total volume purged		
Sample appearance	dew	/
Sample time	0536	
Sample date	(2/22/22	

Facility Name	·
Sample by	
Mart I tomiltu	Sample Location ID
Depth-to water, feet (TOC)	13-2
Measured Total Depth, feet (TOC)	Depth to water date 6-2 6-2 7
5.44	676-23

1	bilization Data Water Depth	-1-				* *	-			•
Fime 821 826 831	(from TOC) [8:5] 18:62	Flow Rate (mL/min) 3ce 3ce 3ce	2.63 5.63 5.63	Spec Cond (µS/cm) 64 13	Turbidity (N.T.U) 1.8	D.O. (mg/L) 6.16 5.3e 5.24	ORP (mV) 336 327 315	Temperature (°C) . 24.(8) 2.53		
	-					 				
			,			·	·			
							<u> </u>			<u> </u>
							<u> </u>			
										 -
	· .								· —	
									·	
			1	•				•••	·	
				· · ·						
									· ·	+

Total volume purged	
Sample appearance	Clark
Sample time	828
Sample date	12/22

Duplicate 1245

Facility Name	HEP PIRALT PR
Sample by	Kenny Ma (Venued

	· • · · · · · · · · · · · · · · · · · ·
Depth to water, feet (TOC)	14,60
Measured Total Depth, feet (TOC)	37.49

Sample Location ID	$\hat{\mathcal{B}}$ -3
Depth to water date	06/24/23

						<u> </u>	· · · · · · · · · · · · · · · · · · ·		
Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature		İ
(from TOC)	(mL/min)	(S.U.)					(°C)		<u> </u>
			256		261	229			
16.30	104	5,45_	252	1611	2,28	204	25.21		
	,		<u></u>						<u></u>
									<u>.</u>
			WOFT HO	LO WATER	LOVE				
					_				j
		· · · ·							
					·, ·				
		_	<u>.</u>						
		-				_			
					<u> </u>				
	<u>·</u>					-			
	1	(from TOC) (mL/min)	(from TOC) (mL/min) (S.U.)	(from TOC) (mL/min) (S.U.) (μS/cm) 1 S.S 1 10 4 5.78 256 16.30 10 4 5.45 252	(from TOC) (mL/min) (S.U.) (μS/cm) (N.T.U) 1 S, S I 10 Y S, 38 2 S G 18, 2 1 G, 3 D 10 Y S, Y S 2 S Z 1 G, I	(from TOC) (mL/min) (S.U.) (μS/cm) (N.T.U) (mg/L) S,S 10	(from TOC) (mL/min) (S.U.) (µS/cm) (N.T.U) (mg/L) (mV) S.S. 10 4 5.78 256 18.2 2.61 2.29 16.30 10 4 5.45 252 16.1 2.28 2.04	(from TOC) (mL/min) (S.U.) (µS/cm) (N.T.U) (mg/L) (mV) (°C) S, S	(from TOC) (mL/min) (S.U.) (µS/cm) (N.T.U) (mg/L) (mV) (°C) S,S 104 S,78 256 18.2 2.61 22.9 25.2 6.30 104 S,45 25.2 16.1 2.28 204 25.2 VOP'T Hold WATH LOVIL

Total volume purged	
Sample appearance	Clar
Sample time	0700
Sample date	06/27/23

Facility Name	AEP Pirkey PP
Sample by	Brad Bates

Depth to water, feet (TOC)		17.45	
Measured Total Depth, feet (TOC)		40.36	,

Sample Location ID	AD-02

Depth to water date	8/23/2023

Purge Sta	Purge Stabilization Data								
	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
946	17.72	200	3.78	734	0.8	1.78	368	24.02	
951	17.73	200	3.80	741	0	1.69	368	24.06	
956	17.75	200	3.79	744	0	1.66	364	24.13	
1001	17.75	200	3.77	745	0.3	1.64	368	24.18	

Total volume purged	
Sample appearance	Clear
Sample time	1003
Sample date	8/23/2023

Facility Name	AEP Pirkey PP
Sample by	Kenny McDonald

Depth to water, feet (TOC)		19.54	
Measured Total Depth, feet (TOC)		47.29	

Sample Location ID	AD-04

Purge Stabilization Data									
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
711	19.57	160	4.63	88	51.3	3.24	382	22.97	
716	19.58	160	4.62	89	50.6	2.89	380	23.01	
721	19.58	160	4.62	90	48.2	2.85	377	23.04	
726	19.58	160	4.61	91	52.3	2.81	384	23.10	
	_								
	·								
	_								

Total volume purged	
Sample appearance	Turbid
Sample time	728
Sample date	8/23/2023

Facility Name	AEP Pirkey PP
Sample by	Kenny McDonald

Depth to water, feet (TOC)		19.52	
Measured Total Depth, feet (TOC)		52.00	

Sample Location ID	AD-12

Depth to water date	8/23/2023

Purge Sta	Purge Stabilization Data									
r dige 5tt		Fla Data	11	C C	To code to dita.	I 5.0	ODD	T	T	I
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
829	19.63	290	3.89	71	2.4	4.23	304	22.98		
834	19.66	290	3.88	68	0.0	4.19	311	22.87		
839	19.68	290	3.88	63	0.0	4.16	313	22.84		
844	19.71	290	3.84	63	0.0	4.11	317	22.82		

Total volume purged	
Sample appearance	Clear
Sample time	846
Sample date	8/23/2023

Facility Name	AEP Pirkey PP
Sample by	Kenny McDonald

Depth to water, feet (TOC)		9.25	
Measured Total Depth, feet (TOC)		28.42	

Sample Location ID	AD-18

Depth to water date	8/23/2023

Purge Stabilization Data									
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
808	10.13	104	4.41	48	11.4	2.68	311	24.21	
813	11.24	104	4.37	48	6.3	2.31	304	24.36	
			W	on't hold water lev	⁄el				

Total volume purged	
Sample appearance	Clear
Sample time	950
Sample date	8/23/2023

Facility Name	AEP Pirkey PP
Sample by	Brad Bates

Depth to water, feet (TOC)		29.71	
Measured Total Depth, feet (TOC)		38.50	

Sample Location ID	AD-23

Depth to water date	8/23/2023

Purge Sta	abilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
811	30.02	200	4.51	97	11.2	6.85	254	24.08	
816	30.02	200	4.47	94	6.4	4.01	241	23.84	
821	30.04	200	4.46	90	3.4	3.22	237	23.67	
826	30.05	200	4.41	88	3.9	2.97	233	23.65	
831	30.05	200	4.40	88	3.6	2.95	231	23.61	
836	30.08	200	4.40	86	3.3	2.96	229	23.58	
	_								

Total volume purged	
Sample appearance	Clear
Sample time	838
Sample date	8/23/2023

Facility Name	AEP Pirkey PP
Sample by	Kenny McDonald

Depth to water, feet (TOC)		23.01	
Measured Total Depth, feet (TOC)		37.32	

Sample Location ID	AD-31

Depth to water date	8/23/2023

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
906	23.58	240	4.03	294	16.4	2.81	301	24.13	
911	23.61	240	4.03	302	15.8	2.54	306	24.17	
916	23.64	240	4.00	308	15.6	2.53	314	24.12	
921	23.65	240	4.01	311	15.6	2.51	320	24.08	

Total volume purged	
Sample appearance	Clear
Sample time	923
Sample date	8/23/2023

Facility Name	AEP Pirkey PP
Sample by	Brad Bates

Depth to water, feet (TOC)		17.72	
Measured Total Depth, feet (TOC)		34.61	

Sample Location ID	AD-32

Depth to water date	8/23/2023

Purge Sta	bilization Data									
i dige ste				T		1		1	1	1
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
904	18.24	200	3.65	341	21.6	2.41	274	23.84		
909	18.26	200	3.62	338	10.2	1.05	269	23.81		
914	18.27	200	3.61	335	9.8	1.03	262	23.74		
919	18.29	200	3.61	330	9.6	1.03	258	23.76		

Total volume purged	
Sample appearance	Clear
Sample time	921
Sample date	8/23/2023

Facility Name	AEP Pirkey PP
Sample by	Brad Bates

Depth to water, feet (TOC)		Top of Casing
Measured Total Depth, feet (TOC)		26.05

Sample Location ID	AD-34

Depth to water date	8/23/2023

Purge Sta	bilization Data								
Turge Sta		_, _			I	T		I _	
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	1
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
728	0.36	120	3.80	1,760	3.6	2.34	147	24.28	
733	0.41	120	3.77	1,740	2.1	2.06	154	24.19	
738	0.48	120	3.77	1740	2.4	2.01	159	24.17	
743	0.52	120	3.77	1720	2.2	1.99	163	24.13	

Total volume purged	
Sample appearance	Clear
Sample time	745
Sample date	8/23/2023

Facility Name	AEP Pirkey PP
Sample by	Brad Bates

Depth to water, feet (TOC)	Depth to water, feet (TOC)				
Measured Total Depth, feet (TOC)	17.10			

Sample Location ID	AD-36

Depth to water date	8/23/2023

Purge Sta	bilization Data								
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
649	6.35	150	4.28	92	22.7	2.13	197	24.13	
654	6.41	150	4.26	89	6.4	0.97	206	24.16	
659	6.46	150	4.26	86	5.8	0.86	211	24.19	
704	6.49	150	4.23	84	5.2	0.77	213	24.22	
									L

Total volume purged	
Sample appearance	Clear
Sample time	706
Sample date	8/23/2023

APPENDIX 5- Analytical Laboratory Reports

Water Analysis Report

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230658 Customer: Pirkey Power Station Date Reported: 03/31/2023

Customer Sample ID: AD-2 Customer Description: TG-32

Lab Number: 230658-001 Preparation:

Date Collected: 02/27/2023 11:55 EST Date Received: 03/02/2023 10:30 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.35 mg/L	2	0.10	0.02	CRJ	03/15/2023 17:25	EPA 300.1 -1997, Rev. 1.0
Chloride	31.4 mg/L	2	0.04	0.02	CRJ	03/15/2023 17:25	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.22 mg/L	2	0.06	0.02	CRJ	03/15/2023 17:25	EPA 300.1 -1997, Rev. 1.0
Sulfate	268 mg/L	10	2.0	0.3	CRJ	03/15/2023 16:52	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/03/2023 11:26	SM 2320B-2011	
TDS, Filterable Residue	510 mg/L	1	50	20	SDW	03/03/2023 11:13	SM 2540C-2015	

Customer Sample ID: AD-4 Customer Description: TG-32

Lab Number: 230658-002 Preparation:

Date Collected: 02/28/2023 10:13 EST Date Received: 03/02/2023 10:30 EST

Ion Chromatography

Parameter	Result Units Dil	lution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.14 mg/L	2	0.10	0.02	CRJ	03/15/2023 16:19	EPA 300.1 -1997, Rev. 1.0
Chloride	4.08 mg/L	2	0.04	0.02	CRJ	03/15/2023 16:19	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.05 mg/L	2	0.06	0.02 J1	CRJ	03/15/2023 16:19	EPA 300.1 -1997, Rev. 1.0
Sulfate	19.9 mg/L	2	0.40	0.06	CRJ	03/15/2023 16:19	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/03/2023 11:26	SM 2320B-2011
TDS, Filterable Residue	140 mg/L	1	50	20	SDW	03/03/2023 11:13	SM 2540C-2015

Water Analysis Report

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230658 Customer: Pirkey Power Station Date Reported: 03/31/2023

Customer Sample ID: AD-7 Customer Description: TG-32

Lab Number: 230658-003 Preparation:

Date Collected: 02/28/2023 11:18 EST Date Received: 03/02/2023 10:30 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	2.49 mg/L	2	0.10	0.02	CRJ	03/15/2023 19:04	EPA 300.1 -1997, Rev. 1.0
Chloride	30.9 mg/L	2	0.04	0.02	CRJ	03/15/2023 19:04	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.53 mg/L	2	0.06	0.02	CRJ	03/15/2023 19:04	EPA 300.1 -1997, Rev. 1.0
Sulfate	77.5 mg/L	2	0.40	0.06	CRJ	03/15/2023 19:04	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/03/2023 11:26	SM 2320B-2011
TDS, Filterable Residue	270 mg/L	1	50	20	SDW	03/03/2023 11:20	SM 2540C-2015

Customer Sample ID: AD-12 Customer Description: TG-32

Lab Number: 230658-004 Preparation:

Date Collected: 02/27/2023 10:56 EST Date Received: 03/02/2023 10:30 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.08 mg/L	2	0.10	0.02 J1	CRJ	03/15/2023 20:09	EPA 300.1 -1997, Rev. 1.0
Chloride	6.51 mg/L	2	0.04	0.02	CRJ	03/15/2023 20:09	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.07 mg/L	2	0.06	0.02	CRJ	03/15/2023 20:09	EPA 300.1 -1997, Rev. 1.0
Sulfate	3.90 mg/L	2	0.40	0.06	CRJ	03/15/2023 20:09	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units D	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/03/2023 11:26	SM 2320B-2011
TDS, Filterable Residue	70 mg/L	1	50	20	SDW	03/03/2023 11:20	SM 2540C-2015

Water Analysis Report

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230658 Customer: Pirkey Power Station Date Reported: 03/31/2023

Customer Sample ID: AD-13 Customer Description: TG-32

Lab Number: 230658-005 Preparation:

Date Collected: 02/27/2023 09:17 EST Date Received: 03/02/2023 10:30 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.24 mg/L	2	0.10	0.02	CRJ	03/16/2023 00:33	EPA 300.1 -1997, Rev. 1.0
Chloride	51.8 mg/L	10	0.2	0.1	CRJ	03/16/2023 00:00	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.26 mg/L	2	0.06	0.02	CRJ	03/16/2023 00:33	EPA 300.1 -1997, Rev. 1.0
Sulfate	98.5 mg/L	10	2.0	0.3	CRJ	03/16/2023 00:00	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/03/2023 11:26	SM 2320B-2011
TDS, Filterable Residue	250 mg/L	1	50	20	SDW	03/03/2023 11:20	SM 2540C-2015

Customer Sample ID: AD-18 Customer Description: TG-32

Lab Number: 230658-006 Preparation:

Date Collected: 02/28/2023 09:25 EST Date Received: 03/02/2023 10:30 EST

Ion Chromatography

Parameter	Result Units Di	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.04 mg/L	2	0.10	0.02 J1	CRJ	03/15/2023 23:27	EPA 300.1 -1997, Rev. 1.0
Chloride	5.49 mg/L	2	0.04	0.02	CRJ	03/15/2023 23:27	EPA 300.1 -1997, Rev. 1.0
Fluoride	<0.02 mg/L	2	0.06	0.02 U1	CRJ	03/15/2023 23:27	EPA 300.1 -1997, Rev. 1.0
Sulfate	7.52 mg/L	2	0.40	0.06	CRJ	03/15/2023 23:27	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units I	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/03/2023 11:26	SM 2320B-2011
TDS, Filterable Residue	100 mg/L	1	50	20	SDW	03/03/2023 11:26	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230658 Customer: Pirkey Power Station Date Reported: 03/31/2023

Customer Sample ID: AD-31 Customer Description: TG-32

Lab Number: 230658-008 Preparation:

Date Collected: 02/27/2023 12:47 EST Date Received: 03/02/2023 10:30 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.29 mg/L	2	0.10	0.02	CRJ	03/16/2023 02:12	EPA 300.1 -1997, Rev. 1.0
Chloride	23.4 mg/L	2	0.04	0.02	CRJ	03/16/2023 02:12	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.13 mg/L	2	0.06	0.02	CRJ	03/16/2023 02:12	EPA 300.1 -1997, Rev. 1.0
Sulfate	82.2 mg/L	2	0.40	0.06	CRJ	03/16/2023 02:12	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/03/2023 11:26	SM 2320B-2011	
TDS, Filterable Residue	260 mg/L	1	50	20	SDW	03/03/2023 11:26	SM 2540C-2015	

Customer Sample ID: AD-32 Customer Description: TG-32

Lab Number: 230658-009 Preparation:

Date Collected: 02/27/2023 12:03 EST Date Received: 03/02/2023 10:30 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	4.44 mg/L	2	0.10	0.02	CRJ	03/16/2023 02:44	EPA 300.1 -1997, Rev. 1.0
Chloride	25.1 mg/L	2	0.04	0.02	CRJ	03/16/2023 02:44	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.44 mg/L	2	0.06	0.02	CRJ	03/16/2023 02:44	EPA 300.1 -1997, Rev. 1.0
Sulfate	151 mg/L	10	2.0	0.3	CRJ	03/16/2023 03:50	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/03/2023 11:26	SM 2320B-2011
TDS, Filterable Residue	340 mg/L	1	50	20	SDW	03/03/2023 11:26	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230658 Customer: Pirkey Power Station Date Reported: 03/31/2023

Customer Sample ID: AD-33 Customer Description: TG-32

Lab Number: 230658-010 Preparation:

Date Collected: 02/27/2023 10:58 EST Date Received: 03/02/2023 10:30 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.34 mg/L	2	0.10	0.02	CRJ	03/16/2023 04:23	EPA 300.1 -1997, Rev. 1.0
Chloride	10.9 mg/L	2	0.04	0.02	CRJ	03/16/2023 04:23	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.34 mg/L	2	0.06	0.02	CRJ	03/16/2023 04:23	EPA 300.1 -1997, Rev. 1.0
Sulfate	74.5 mg/L	2	0.40	0.06	CRJ	03/16/2023 04:23	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/03/2023 11:26	SM 2320B-2011
TDS, Filterable Residue	190 mg/L	1	50	20	SDW	03/03/2023 11:33	SM 2540C-2015

Customer Sample ID: DUPLICATE 1

Lab Number: 230658-011

Date Collected: 02/27/2023 10:22 EST

Customer Description: TG-32

Preparation:

Date Received: 03/02/2023 10:30 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.08 mg/L	2	0.10	0.02 J1	CRJ	03/15/2023 14:40	EPA 300.1 -1997, Rev. 1.0
Chloride	6.47 mg/L	2	0.04	0.02	CRJ	03/15/2023 14:40	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.07 mg/L	2	0.06	0.02	CRJ	03/15/2023 14:40	EPA 300.1 -1997, Rev. 1.0
Sulfate	4.08 mg/L	2	0.40	0.06	CRJ	03/15/2023 14:40	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units D	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/03/2023 11:26	SM 2320B-2011
TDS, Filterable Residue	70 mg/L	1	50	20	SDW	03/03/2023 11:33	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230658 Customer: Pirkey Power Station Date Reported: 03/31/2023

Customer Sample ID: DUPLICATE 2 Customer Description: TG-32

Lab Number: 230658-012 Preparation:

Date Collected: 02/28/2023 14:00 EST Date Received: 03/02/2023 10:30 EST

Ion Chromatography

Parameter	Result Units Dil	lution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.15 mg/L	2	0.10	0.02	CRJ	03/15/2023 15:13	EPA 300.1 -1997, Rev. 1.0
Chloride	3.92 mg/L	2	0.04	0.02	CRJ	03/15/2023 15:13	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.05 mg/L	2	0.06	0.02 J1	CRJ	03/15/2023 15:13	EPA 300.1 -1997, Rev. 1.0
Sulfate	20.1 mg/L	2	0.40	0.06	CRJ	03/15/2023 15:13	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units I	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/03/2023 11:26	SM 2320B-2011
TDS, Filterable Residue	130 mg/L	1	50	20	SDW	03/03/2023 11:33	SM 2540C-2015

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230658 Customer: Pirkey Power Station Date Reported: 03/31/2023

Data Qualifer Legend

U1 - Not detected at or above method detection limit (MDL).

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

Dolan Chemical Laboratory (DCL) 4001 Bixby Road	i e	Chain of Custody Record											
Groveport, Ohio 43125 Jonathan Barnhill (318-673-3803)	_			Pı	rograr	n: Coa		tion Resid	luals (C	CR)	For Lab Use Only:		
Contacts: Michael Ohlinger (614-836-4184)		Site								Date.	•		COC/Order #:
Project Name: Pirkey - CCR Contact Name: Leslie Fuerschbach Contact Phone: 318-423-3805	Analysis Turnaround Time (in Calendar Days)						pH<2, pH<2, c		1 L bottle, Cool, 0-6°C	Three (six every 10th") 1: L bottles, pH<2, HNO ₃	40 mL Glass vial or 250 mL PTFE lined bottle, HCL**, pH<2	200 mL PITE lined bottle, HCL**, pH<2 260 mL PTFE lined bottle, HCL**, pH<2	230658
Sampler(s): Matt Hamilton Kenny McDonald						itials	Sb, As, Ba, rr, Co, Pb, L K, Mg, Sr	b, As, Ba, Co, Fe, Se, TL Mg, Sr	, SO ₄ ,	a-228			
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) Initials	B, Ca, LI, St Be, Cd, Cr, (Mo, Se, TL and Na, K, N	B, Ca, Li, Sb, As, E Be, Cd, Cr, Co, Fe, Mn, Mo, Pb, Se, Ti and Na, K, Mg, Sr	TDS, F, CI, SO,, Br, andAlkalinity	Ra-226, Ra-228	Ĝ.	Hg	Sample Specific Notes:
AD-2	2/27/2023	1055	G	GW	1				х				
AD-4	2/28/2023	913	G	GW	1				x				
AD-7	2/28/2023	1018	G	GW	1				х				
AD-12	2/27/2023	956	G	gw	1				х				
AD-13	2/27/2023	817	G	GW	1				х				
AD-18	2/28/2023	825	G	GW	1				х				
AD-22	2/27/2023	907	G	GW	1		5		х				
AD-31	2/27/2023	1147	G	GW	1				х				
AD-32	2/27/2022	1103	G	GW	1				х				
AD-33	2/27/2023	958	G	GW	1				х				
DUPLICATE 1	2/27/2023	922	G	GW	1				х				
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=	HNQ3; 5=N	aOH; 6= 0	ther	; F:	= filter i	n field	4	F4	1	4	2	2	A CONTRACTOR OF THE PARTY OF TH
* Six 1L Bottles must be collected for Radium fo	r every 10ti	sample.	y = 1077										
Special Instructions/QC Requirements & Comments: TG-32													
YOU PARILOW	Company:	Engle		Date/T	ime:	15ce	Received b		122.000				Date/Time:
Relinquished by:						Received b	Received by:					Date/Time:	
Relinquished by:	Сотрапу:			Date/Ti	ime:		Received in	aboratory	V. J	Alla	,		Date/Time: /0.30.4

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

Chain of Custody Record Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125 Program: Coal Combustion Residuals (CCR) Jonathan Barnhill (318-673-3803) Site Contact: Date: For Lab Use Only: Contacts: Michael Ohlinger (614-836-4184) COC/Order #: 40 mL Glass vial or 250 mL PTFE lined bottle, HCL**, pH<2 40 mL Glass vial or 250 mL PTFE lined bottle, HCL**, pH<2 Project Name: Pirkey - CCR Field-filter Three 250 mL 250 mL 1 L (six every Contact Name: Leslie Fuerschbach Analysis Turnaround Time (in Calendar Days) bottle, bottle, then bottle. Oth*) pH<2, pH<2, Cool, L bottles. Contact Phone: 318-423-3805 HNO₃ HNO₃ 0-6°C pH<2, HNO₃ **Alkalinity** , Ca, Ll, Sb, As, Ba e, Cd, Cr, Co, Pb, o, Se, TL nd Na, K, Mg, Sr å CI, SO. Matt Hamilton Kenny McDonald Ra-228 Sampler(s) Initials Br, and Sample TDS, F, Ra-226, Type Sample Sample (C=Comp, 윤 Sample Identification Date Time G=Grab) Matrix Cont. Sample Specific Notes **DUPLICATE 2** GW 2/28/2023 1300 G 2 F4 1 ; F= filter in field Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Six 1L Bottles must be collected for Radium for every 10th sample. Special Instructions/QC Requirements & Comments: **TG-32** Date/Time: Relinquished by: Company: Received by: Date/Time:

Received by:

Received in Laboratory by

Date/Time:

Date/Time:

Date/Time:

Date/Time:

10:35/An

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

Company:

Company:

Relinquished by:

Relinquished by:

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
·	Other
Plant/Customer Pirle Power	Number of Plastic Containers: 12
Opened By Michael	Number of Glass Containers:
	Number of Mercury Containers:
Were all temperatures within 0-6°C? W N	or N/A Initial: MGC on ice / no ice
	4) - If No, specify each deviation:
Was container in good condition? (Y)// N	Comments
Was Chain of Custody received? () / N	Comments
Requested turnaround: <u>28 dov/5</u>	If RUSH, who was notified?
pH (15 min) Cr*6 (pres) NO₂ or N (24 hr)	IO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	Comments
Were samples labeled properly? (*)/ N	Comments
	Comments
Was pH checked & Color Coding done?	N or N/A Initial & Date: MG(c 03/09/23
	OT#(OR) Lab Rat,PN4801,LOT# X000RWDG21
•	Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / N	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
	Date & Time :
Logged by MSO Commercial	nts: Bottle AD-12 was spilled in Side Coulet. MICK)-12 (230658-007) is canceled from Lim. need resampled. more
Reviewed by MMC F	or Lim. need resampled, more

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Municipal Solid Waste Laboratory Review Checklist

This da	ıta pack	age consists o	f:			
×	(which		reportable data identii		list consisting of Table page), Table 2, Suppo	
X	R1	Field chain-o	f-custody documentat	ion		
X	R2	Sample ident	ification cross-referer	ice		
X	R3	(a) Items sp NELAC (b) Dilution(c) Preparat(d) Cleanup	ecified in NELAC Cha Standard factors ion methods methods	pter 5 for 1	environmental sample reporting results, e.g., s ntified compounds (Ti	Section 5.5.10 in 2003
X	R4	(a) Calculat	covery data including: ed recovery (%R) ratory's surrogate QC	limits		
x	R ₅	Test reports/	summary forms for bl	ank sampl	es	
x	R6	(a) LCS spil (b) Calculate	summary forms for la king amounts ed %R for each analyte ratory's LCS QC limit	e	ontrol samples (LCSs)	including:
X	R7	(a) Samples(b) MS/MS(c) Concent(d) Calculat	associated with the M D spiking amounts	IS/MSD cl ID analyte ercent diffe	measured in the paren	38
X	R8	(a) The amo	ount of analyte measu	red in the d	-	n:
х	R9	List of metho	d quantitation limits	(MQLs) for	r each analyte for each	method and matrix
x	R10	Other proble	ms or anomalies			
x	The Ex	ception Repo	rt for every item for w	hich the re	sult is "No" or "NR" (N	lot Reviewed)
packag require reports by the laborat	e as be ements s. By m laborat tory in t	en reviewed be of the method y signature be tory as having	y the laboratory and i is used, except where i elow, I affirm to the be the potential to affect y Review Checklist, an	s complete noted by the est of my k the quality	y of the data, have been	liant with the ached exception s/anomalies, observed
respon used is statem	ding to	rule. The officisible for release.	cial signing the cover p	page of the and is by	aboratory controlled by rule-required report in signature affirming the Chemist Principal	n which these data are e above release
Name	(printe	d)	Signature	,	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Timothy Arnold

LRC Date: 3/16/2023

Laboratory Job Number: 230658

Prep Batch Number(s): QC2303119

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
-	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	Yes	
	ı	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Timothy Arnold

LRC Date: 3/16/2023

Laboratory Job Number: 230658

Prep Batch Number(s): QC2303119

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	Ī	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	1	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
58	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	N-6212 D
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Na	me: American Electric Power Dolan Chemical Laboratory
Project Name:	
=	e: Timothy Arnold
LRC Date: 3/1	
	Number: 230658
•	mber(s): QC2303119

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>
	TO THE PROPERTY OF THE PROPERT
M.	30-12-03-03-03-03-03-03-03-03-03-03-03-03-03-
,	
	332

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: X This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. Field chain-of-custody documentation X R1 X R2 Sample identification cross-reference X Test reports (analytical data sheets) for each environmental sample that includes: R₃ (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA. Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits Test reports/summary forms for blank samples \square **R**5 |x|Test reports/summary forms for laboratory control samples (LCSs) including: **R6** (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: X **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits Laboratory analytical duplicate (if applicable) recovery and precision: X **R8** (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates $\left[\mathbf{x} \right]$ List of method quantitation limits (MQLs) for each analyte for each method and matrix R9 × R10 Other problems or anomalies × The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) **Release Statement:** I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. **Check, if applicable:** () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Michael Ohilnger 3/31/2023

Name (printed)

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey - CCR

Reviewer Name: Michael Ohlinger

LRC Date: 3/31/2023

Laboratory Job Number: 230658

Prep Batch Number(s): QC2303029

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
·	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	_
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey - CCR

Reviewer Name: Michael Ohlinger

LRC Date: 3/31/2023

Laboratory Job Number: 230658

Prep Batch Number(s): QC2303029

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	NA	
_	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	1.7
S 2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S 3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S 9	I	Serial dilutions, post digestion spikes, and method of standard additions	•	
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	0, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S 15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey - CCR

Reviewer Name: Michael Ohlinger

LRC Date: 3/31/2023

Laboratory Job Number: 230658

Prep Batch Number(s): QC2303029

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB<0.5*MQL.

⁴ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: X This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. X Field chain-of-custody documentation Rı X R₂ Sample identification cross-reference \mathbf{x} R₃ Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA **R**4 Surrogate recovery data including: (a) Calculated recovery (%R) (b) The laboratory's surrogate OC limits Test reports/summary forms for blank samples х **R**5 х **R6** Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS OC limits Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: х **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD OC limits [x]**R8** Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates $\overline{\mathbf{x}}$ R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix X R10 Other problems or anomalies \square The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) **Release Statement:** I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. **Check, if applicable:** () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release

Municipal Solid Waste Laboratory Review Checklist (rev. 08/19/11)

statement is true.

Michael Ohlinger

Name (printed)

3/31/2023

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey - CCR

Reviewer Name: Michael Ohlinger

LRC Date: 3/31/2023

Laboratory Job Number: 230658

Prep Batch Number(s): QC2303072

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	- NA	
R2	O, I	Sample and quality control (QC) identification		
_	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	ı	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies	E	
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey - CCR

Reviewer Name: Michael Ohlinger

LRC Date: 3/31/2023

Laboratory Job Number: 230658

Prep Batch Number(s): QC2303072

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	, I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	, <u> </u>
	I	Were ion abundance data within the method-required QC limits?	NA	
54	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		67% (346)
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	, so as

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
59	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S 13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S 15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey - CCR

Reviewer Name: Michael Ohlinger

LRC Date: 3/31/2023

Laboratory Job Number: 230658

Prep Batch Number(s): QC2303072

Exception Report No.	Description
ALC	
·	

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-2 Customer Description:

Lab Number: 230698-001 Preparation:

Date Collected: 02/27/2023 11:55 EST Date Received: 03/06/2023 14:20 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	03/08/2023 15:26	EPA 200.8-1994, Rev. 5.4
Arsenic	0.90 μg/L	1	0.10	0.03	GES	03/08/2023 15:26	EPA 200.8-1994, Rev. 5.4
Barium	1 5.9 μg/L	1	0.20	0.05	GES	03/08/2023 15:26	EPA 200.8-1994, Rev. 5.4
Beryllium	0.787 μg/L	1	0.050	0.007	GES	03/08/2023 15:26	EPA 200.8-1994, Rev. 5.4
Boron	3.22 mg/L	1	0.050	0.009	GES	03/08/2023 15:26	EPA 200.8-1994, Rev. 5.4
Cadmium	0. 12 8 μg/L	1	0.020	0.004	GES	03/08/2023 15:26	EPA 200.8-1994, Rev. 5.4
Calcium	3.53 mg/L	1	0.05	0.02	GES	03/08/2023 15:26	EPA 200.8-1994, Rev. 5.4
Chromium	0.52 μg/L	1	0.20	0.04	GES	03/08/2023 15:26	EPA 200.8-1994, Rev. 5.4
Cobalt	28.9 μg/L	1	0.020	0.003	GES	03/08/2023 15:26	EPA 200.8-1994, Rev. 5.4
Lead	0.68 µg/L	1	0.20	0.05	GES	03/08/2023 15:26	EPA 200.8-1994, Rev. 5.4
Lithium	0.0636 mg/L	1	0.00020	0.00005	GES	03/08/2023 15:26	EPA 200.8-1994, Rev. 5.4
Magnesium	7.63 mg/L	1	0.10	0.02	GES	03/08/2023 15:26	EPA 200.8-1994, Rev. 5.4
Mercury	51 ng/L	2	10	4	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	03/08/2023 15:26	EPA 200.8-1994, Rev. 5.4
Potassium	1.45 mg/L	1	0.10	0.02	GES	03/08/2023 15:26	EPA 200.8-1994, Rev. 5.4
Selenium	2.65 μg/L	1	0.50	0.09	GES	03/08/2023 15:26	EPA 200.8-1994, Rev. 5.4
Sodium	113 mg/L	1	0.20	0.05 M1	GES	03/08/2023 15:26	EPA 200.8-1994, Rev. 5.4
Strontium	0.0551 mg/L	1	0.0020	0.0004	GES	03/08/2023 15:26	EPA 200.8-1994, Rev. 5.4
Thallium	0. 12 μg/L	1	0.20	0.04 J1	GES	03/08/2023 15:26	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.03 pCi/L	0.24	0.36	ST	03/09/2023 15:06	SW-846 9315-1986, Rev. 0
Carrier Recovery	84.6 %					
Radium-228	-1.43 pCi/L	0.19	0.72	TTP	03/10/2023 15:27	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	70.7 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-2 Customer Description:
Lab Number: 230698-001-01 Preparation: Dissolved

Date Collected: 02/27/2023 12:55 EST Date Received: 03/06/2023 14:20 EST

Metals

Metais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	s Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	03/08/2023 15:42	EPA 200.8-1994, Rev. 5.4
Arsenic	0.91 μg/L	1	0.10	0.03	GES	03/08/2023 15:42	EPA 200.8-1994, Rev. 5.4
Barium	1 5.4 μg/L	1	0.20	0.05	GES	03/08/2023 15:42	EPA 200.8-1994, Rev. 5.4
Beryllium	0.778 μg/L	1	0.050	0.007	GES	03/08/2023 15:42	EPA 200.8-1994, Rev. 5.4
Boron	3.16 mg/L	1	0.050	0.009	GES	03/08/2023 15:42	EPA 200.8-1994, Rev. 5.4
Cadmium	0. 111 μg/L	1	0.020	0.004	GES	03/08/2023 15:42	EPA 200.8-1994, Rev. 5.4
Calcium	3.45 mg/L	1	0.05	0.02	GES	03/08/2023 15:42	EPA 200.8-1994, Rev. 5.4
Chromium	0.40 μg/L	1	0.20	0.04	GES	03/08/2023 15:42	EPA 200.8-1994, Rev. 5.4
Cobalt	28.2 μg/L	1	0.020	0.003	GES	03/08/2023 15:42	EPA 200.8-1994, Rev. 5.4
Iron	0.171 mg/L	1	0.020	0.006	GES	03/08/2023 15:42	EPA 200.8-1994, Rev. 5.4
Lead	0.67 μg/L	1	0.20	0.05	GES	03/08/2023 15:42	EPA 200.8-1994, Rev. 5.4
Lithium	0.0628 mg/L	1	0.00020	0.00005	GES	03/08/2023 15:42	EPA 200.8-1994, Rev. 5.4
Magnesium	7.52 mg/L	1	0.10	0.02	GES	03/08/2023 15:42	EPA 200.8-1994, Rev. 5.4
Manganese	0.103 mg/L	1	0.0010	0.0002	GES	03/08/2023 15:42	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	03/08/2023 15:42	EPA 200.8-1994, Rev. 5.4
Potassium	1.42 mg/L	1	0.10	0.02	GES	03/08/2023 15:42	EPA 200.8-1994, Rev. 5.4
Selenium	2.67 μg/L	1	0.50	0.09	GES	03/08/2023 15:42	EPA 200.8-1994, Rev. 5.4
Sodium	111 mg/L	1	0.20	0.05	GES	03/08/2023 15:42	EPA 200.8-1994, Rev. 5.4
Strontium	0.0533 mg/L	1	0.0020	0.0004	GES	03/08/2023 15:42	EPA 200.8-1994, Rev. 5.4
Thallium	0. 14 μg/L	1	0.20	0.04 J1	GES	03/08/2023 15:42	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-4 Customer Description:

Lab Number: 230698-002 Preparation:

Date Collected: 02/28/2023 10:13 EST Date Received: 03/06/2023 14:20 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	03/08/2023 15:47	EPA 200.8-1994, Rev. 5.4
Arsenic	0.26 µg/L	1	0.10	0.03	GES	03/08/2023 15:47	EPA 200.8-1994, Rev. 5.4
Barium	115 µg/L	1	0.20	0.05	GES	03/08/2023 15:47	EPA 200.8-1994, Rev. 5.4
Beryllium	0.594 μg/L	1	0.050	0.007	GES	03/08/2023 15:47	EPA 200.8-1994, Rev. 5.4
Boron	0.028 mg/L	1	0.050	0.009 J1	GES	03/08/2023 15:47	EPA 200.8-1994, Rev. 5.4
Cadmium	0.015 µg/L	1	0.020	0.004 J1	GES	03/08/2023 15:47	EPA 200.8-1994, Rev. 5.4
Calcium	2.22 mg/L	1	0.05	0.02	GES	03/08/2023 15:47	EPA 200.8-1994, Rev. 5.4
Chromium	0.41 μg/L	1	0.20	0.04	GES	03/08/2023 15:47	EPA 200.8-1994, Rev. 5.4
Cobalt	5.60 μg/L	1	0.020	0.003	GES	03/08/2023 15:47	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	03/08/2023 15:47	EPA 200.8-1994, Rev. 5.4
Lithium	0.0311 mg/L	1	0.00020	0.00005	GES	03/08/2023 15:47	EPA 200.8-1994, Rev. 5.4
Magnesium	1.02 mg/L	1	0.10	0.02	GES	03/08/2023 15:47	EPA 200.8-1994, Rev. 5.4
Mercury	4 ng/L	1	5	2 J1	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	03/08/2023 15:47	EPA 200.8-1994, Rev. 5.4
Potassium	2.43 mg/L	1	0.10	0.02	GES	03/08/2023 15:47	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	03/08/2023 15:47	EPA 200.8-1994, Rev. 5.4
Sodium	8.15 mg/L	1	0.20	0.05	GES	03/08/2023 15:47	EPA 200.8-1994, Rev. 5.4
Strontium	0.0187 mg/L	1	0.0020	0.0004	GES	03/08/2023 15:47	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 µg/L	1	0.20	0.04 J1	GES	03/08/2023 15:47	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.66 pCi/L	0.22	0.46	ST	03/09/2023 15:06	SW-846 9315-1986, Rev. 0
Carrier Recovery	71.9 %					
Radium-228	1.24 pCi/L	0.25	0.79	ΠTP	03/10/2023 15:27	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	63.4 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-4 Customer Description:
Lab Number: 230698-002-01 Preparation: Dissolved

Date Collected: 02/28/2023 11:13 EST Date Received: 03/06/2023 14:20 EST

Metals

Motais							
Parameter	Result Un	ts Dilutior	ı RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/	L 1	0.10	0.02 U1	GES	03/08/2023 15:52	EPA 200.8-1994, Rev. 5.4
Arsenic	0.03 µg/	L 1	0.10	0.03 J1	GES	03/08/2023 15:52	EPA 200.8-1994, Rev. 5.4
Barium	121 µg/	L 1	0.20	0.05	GES	03/08/2023 15:52	EPA 200.8-1994, Rev. 5.4
Beryllium	0.571 μg/	L 1	0.050	0.007	GES	03/08/2023 15:52	EPA 200.8-1994, Rev. 5.4
Boron	0.023 mg	′L 1	0.050	0.009 J1	GES	03/08/2023 15:52	EPA 200.8-1994, Rev. 5.4
Cadmium	0.019 µg/	L 1	0.020	0.004 J1	GES	03/08/2023 15:52	EPA 200.8-1994, Rev. 5.4
Calcium	2.36 mg	′L 1	0.05	0.02	GES	03/08/2023 15:52	EPA 200.8-1994, Rev. 5.4
Chromium	0.22 μg/	L 1	0.20	0.04	GES	03/08/2023 15:52	EPA 200.8-1994, Rev. 5.4
Cobalt	5.75 μg/	L 1	0.020	0.003	GES	03/08/2023 15:52	EPA 200.8-1994, Rev. 5.4
Iron	0.043 mg	′L 1	0.020	0.006	GES	03/08/2023 15:52	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/	L 1	0.20	0.05 U1	GES	03/08/2023 15:52	EPA 200.8-1994, Rev. 5.4
Lithium	0.0310 mg	′L 1	0.00020	0.00005	GES	03/08/2023 15:52	EPA 200.8-1994, Rev. 5.4
Magnesium	1 .07 mg	′L 1	0.10	0.02	GES	03/08/2023 15:52	EPA 200.8-1994, Rev. 5.4
Manganese	0.0507 mg	′L 1	0.0010	0.0002	GES	03/08/2023 15:52	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/	L 1	5	2 U1	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/	L 1	0.5	0.1 U1	GES	03/08/2023 15:52	EPA 200.8-1994, Rev. 5.4
Potassium	2.50 mg	′L 1	0.10	0.02	GES	03/08/2023 15:52	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/	L 1	0.50	0.09 U1	GES	03/08/2023 15:52	EPA 200.8-1994, Rev. 5.4
Sodium	8.23 mg	′L 1	0.20	0.05	GES	03/08/2023 15:52	EPA 200.8-1994, Rev. 5.4
Strontium	0.0197 mg	′L 1	0.0020	0.0004	GES	03/08/2023 15:52	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 μg/	L 1	0.20	0.04 J1	GES	03/08/2023 15:52	EPA 200.8-1994, Rev. 5.4

4001 Bixby Road Groveport, OH 43125

Phone: 614-836-4221 Audinet: 210-4221

Dolan Chemical Laboratory

Reissued

Customer: Pirkey Power Station Job ID: 230698 Date Reported: 10/28/2023

Customer Sample ID: AD-7 Customer Description:

Lab Number: 230698-003 Preparation:

Date Collected: 02/28/2023 11:18 EST Date Received: 03/06/2023 14:20 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	03/08/2023 15:57	EPA 200.8-1994, Rev. 5.4
Arsenic	1.09 µg/L	1	0.10	0.03	GES	03/08/2023 15:57	EPA 200.8-1994, Rev. 5.4
Barium	44.6 µg/L	1	0.20	0.05	GES	03/08/2023 15:57	EPA 200.8-1994, Rev. 5.4
Beryllium	5.41 µg/L	1	0.050	0.007	GES	03/08/2023 15:57	EPA 200.8-1994, Rev. 5.4
Boron	1.90 mg/L	1	0.050	0.009	GES	03/08/2023 15:57	EPA 200.8-1994, Rev. 5.4
Cadmium	0.704 μg/L	1	0.020	0.004	GES	03/08/2023 15:57	EPA 200.8-1994, Rev. 5.4
Calcium	5.06 mg/L	1	0.05	0.02	GES	03/08/2023 15:57	EPA 200.8-1994, Rev. 5.4
Chromium	0.37 μg/L	1	0.20	0.04	GES	03/08/2023 15:57	EPA 200.8-1994, Rev. 5.4
Cobalt	41.1 µg/L	1	0.020	0.003	GES	03/08/2023 15:57	EPA 200.8-1994, Rev. 5.4
Lead	0.85 µg/L	1	0.20	0.05	GES	03/08/2023 15:57	EPA 200.8-1994, Rev. 5.4
Lithium	0.0804 mg/L	1	0.00020	0.00005	GES	03/08/2023 15:57	EPA 200.8-1994, Rev. 5.4
Magnesium	9.64 mg/L	1	0.10	0.02	GES	03/08/2023 15:57	EPA 200.8-1994, Rev. 5.4
Mercury	1520 ng/L	50	250	90	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	03/08/2023 15:57	EPA 200.8-1994, Rev. 5.4
Potassium	1.96 mg/L	1	0.10	0.02	GES	03/08/2023 15:57	EPA 200.8-1994, Rev. 5.4
Selenium	3.46 µg/L	1	0.50	0.09	GES	03/08/2023 15:57	EPA 200.8-1994, Rev. 5.4
Sodium	17.1 mg/L	1	0.20	0.05	GES	03/08/2023 15:57	EPA 200.8-1994, Rev. 5.4
Strontium	0.0723 mg/L	1	0.0020	0.0004	GES	03/08/2023 15:57	EPA 200.8-1994, Rev. 5.4
Thallium	0.20 μg/L	1	0.20	0.04	GES	03/08/2023 15:57	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.32 pCi/L	0.19	0.19	ST	03/16/2023 08:55	SW-846 9315-1986, Rev. 0
Carrier Recovery	88.0 %					
Radium-228	3.61 pCi/L	0.23	0.59	TTP	03/10/2023 15:27	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	70.4 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-7 Customer Description:
Lab Number: 230698-003-01 Preparation: Dissolved

Date Collected: 02/28/2023 12:18 EST Date Received: 03/06/2023 14:20 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	03/08/2023 16:02	EPA 200.8-1994, Rev. 5.4
Arsenic	1.03 µg/L	1	0.10	0.03	GES	03/08/2023 16:02	EPA 200.8-1994, Rev. 5.4
Barium	43.3 µg/L	1	0.20	0.05	GES	03/08/2023 16:02	EPA 200.8-1994, Rev. 5.4
Beryllium	5.25 µg/L	1	0.050	0.007	GES	03/08/2023 16:02	EPA 200.8-1994, Rev. 5.4
Boron	1.82 mg/L	. 1	0.050	0.009	GES	03/08/2023 16:02	EPA 200.8-1994, Rev. 5.4
Cadmium	0.679 μg/L	1	0.020	0.004	GES	03/08/2023 16:02	EPA 200.8-1994, Rev. 5.4
Calcium	5.00 mg/L	. 1	0.05	0.02	GES	03/08/2023 16:02	EPA 200.8-1994, Rev. 5.4
Chromium	0.39 µg/L	1	0.20	0.04	GES	03/08/2023 16:02	EPA 200.8-1994, Rev. 5.4
Cobalt	39.8 μg/L	1	0.020	0.003	GES	03/08/2023 16:02	EPA 200.8-1994, Rev. 5.4
Iron	0.113 mg/L	. 1	0.020	0.006	GES	03/08/2023 16:02	EPA 200.8-1994, Rev. 5.4
Lead	0.85 µg/L	1	0.20	0.05	GES	03/08/2023 16:02	EPA 200.8-1994, Rev. 5.4
Lithium	0.0791 mg/L	. 1	0.00020	0.00005	GES	03/08/2023 16:02	EPA 200.8-1994, Rev. 5.4
Magnesium	9.22 mg/L	. 1	0.10	0.02	GES	03/08/2023 16:02	EPA 200.8-1994, Rev. 5.4
Manganese	0.0701 mg/L	. 1	0.0010	0.0002	GES	03/08/2023 16:02	EPA 200.8-1994, Rev. 5.4
Mercury	<7 ng/L	4	20	7 U1	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	03/08/2023 16:02	EPA 200.8-1994, Rev. 5.4
Potassium	1.91 mg/L	. 1	0.10	0.02	GES	03/08/2023 16:02	EPA 200.8-1994, Rev. 5.4
Selenium	3.33 µg/L	1	0.50	0.09	GES	03/08/2023 16:02	EPA 200.8-1994, Rev. 5.4
Sodium	16.6 mg/L	. 1	0.20	0.05	GES	03/08/2023 16:02	EPA 200.8-1994, Rev. 5.4
Strontium	0.0700 mg/L	. 1	0.0020	0.0004	GES	03/08/2023 16:02	EPA 200.8-1994, Rev. 5.4
Thallium	0. 1 8 μg/L	1	0.20	0.04 J1	GES	03/08/2023 16:02	EPA 200.8-1994, Rev. 5.4

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-12 Customer Description:

Lab Number: 230698-004 Preparation:

Date Collected: 02/27/2023 10:56 EST Date Received: 03/06/2023 14:20 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	03/08/2023 16:07	EPA 200.8-1994, Rev. 5.4
Arsenic	0.07 μg/L	1	0.10	0.03 J1	GES	03/08/2023 16:07	EPA 200.8-1994, Rev. 5.4
Barium	27.5 μg/L	1	0.20	0.05	GES	03/08/2023 16:07	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 15 5 μg/L	1	0.050	0.007	GES	03/08/2023 16:07	EPA 200.8-1994, Rev. 5.4
Boron	0.021 mg/L	1	0.050	0.009 J1	GES	03/08/2023 16:07	EPA 200.8-1994, Rev. 5.4
Cadmium	0.013 μg/L	1	0.020	0.004 J1	GES	03/08/2023 16:07	EPA 200.8-1994, Rev. 5.4
Calcium	0.34 mg/L	1	0.05	0.02	GES	03/08/2023 16:07	EPA 200.8-1994, Rev. 5.4
Chromium	0.36 μg/L	1	0.20	0.04	GES	03/08/2023 16:07	EPA 200.8-1994, Rev. 5.4
Cobalt	1.50 μg/L	1	0.020	0.003	GES	03/08/2023 16:07	EPA 200.8-1994, Rev. 5.4
Lead	0.1 μg/L	1	0.20	0.05 J1	GES	03/08/2023 16:07	EPA 200.8-1994, Rev. 5.4
Lithium	0.00885 mg/L	1	0.00020	0.00005	GES	03/08/2023 16:07	EPA 200.8-1994, Rev. 5.4
Magnesium	0.49 mg/L	1	0.10	0.02	GES	03/08/2023 16:07	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	03/08/2023 16:07	EPA 200.8-1994, Rev. 5.4
Potassium	0.59 mg/L	1	0.10	0.02	GES	03/08/2023 16:07	EPA 200.8-1994, Rev. 5.4
Selenium	0.35 μg/L	1	0.50	0.09 J1	GES	03/08/2023 16:07	EPA 200.8-1994, Rev. 5.4
Sodium	4.89 mg/L	1	0.20	0.05	GES	03/08/2023 16:07	EPA 200.8-1994, Rev. 5.4
Strontium	0.0032 mg/L	1	0.0020	0.0004	GES	03/08/2023 16:07	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	03/08/2023 16:07	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.63 pCi/L	0.13	0.16 P1	ST	03/16/2023 08:55	SW-846 9315-1986, Rev. 0
Carrier Recovery	95.5 %					
Radium-228	0.54 pCi/L	0.17	0.56 P3	TTP	03/16/2023 15:39	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	83.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-12 Customer Description:
Lab Number: 230698-004-01 Preparation: Dissolved

Date Collected: 02/27/2023 11:56 EST Date Received: 03/06/2023 14:20 EST

Metals

Metais									
Parameter	Result	Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02	μg/L	1	0.10	0.02	U1	GES	03/08/2023 16:12	EPA 200.8-1994, Rev. 5.4
Arsenic	0.06	µg/L	1	0.10	0.03	J1	GES	03/08/2023 16:12	EPA 200.8-1994, Rev. 5.4
Barium	28.2	µg/L	1	0.20	0.05		GES	03/08/2023 16:12	EPA 200.8-1994, Rev. 5.4
Beryllium	0.162	µg/L	1	0.050	0.007		GES	03/08/2023 16:12	EPA 200.8-1994, Rev. 5.4
Boron	0.018	mg/L	1	0.050	0.009	J1	GES	03/08/2023 16:12	EPA 200.8-1994, Rev. 5.4
Cadmium	0.01	µg/L	1	0.020	0.004	J1	GES	03/08/2023 16:12	EPA 200.8-1994, Rev. 5.4
Calcium	0.37	mg/L	1	0.05	0.02		GES	03/08/2023 16:12	EPA 200.8-1994, Rev. 5.4
Chromium	0.25	µg/L	1	0.20	0.04		GES	03/08/2023 16:12	EPA 200.8-1994, Rev. 5.4
Cobalt	1.55	µg/L	1	0.020	0.003		GES	03/08/2023 16:12	EPA 200.8-1994, Rev. 5.4
Iron	0.011	mg/L	1	0.020	0.006	J1	GES	03/08/2023 16:12	EPA 200.8-1994, Rev. 5.4
Lead	0.08	µg/L	1	0.20	0.05	J1	GES	03/08/2023 16:12	EPA 200.8-1994, Rev. 5.4
Lithium	0.00878	mg/L	1	0.00020	0.00005		GES	03/08/2023 16:12	EPA 200.8-1994, Rev. 5.4
Magnesium	0.49	mg/L	1	0.10	0.02		GES	03/08/2023 16:12	EPA 200.8-1994, Rev. 5.4
Manganese	0.0053	mg/L	1	0.0010	0.0002		GES	03/08/2023 16:12	EPA 200.8-1994, Rev. 5.4
Mercury	<2	ng/L	1	5	2	U1	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1	µg/L	1	0.5	0.1	U1	GES	03/08/2023 16:12	EPA 200.8-1994, Rev. 5.4
Potassium	0.60	mg/L	1	0.10	0.02		GES	03/08/2023 16:12	EPA 200.8-1994, Rev. 5.4
Selenium	0.30	µg/L	1	0.50	0.09	J1	GES	03/08/2023 16:12	EPA 200.8-1994, Rev. 5.4
Sodium	5.18	mg/L	1	0.20	0.05		GES	03/08/2023 16:12	EPA 200.8-1994, Rev. 5.4
Strontium	0.0033	mg/L	1	0.0020	0.0004		GES	03/08/2023 16:12	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04	µg/L	1	0.20	0.04	U1	GES	03/08/2023 16:12	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-13 Customer Description:

Lab Number: 230698-005 Preparation:

Date Collected: 02/27/2023 09:17 EST Date Received: 03/06/2023 14:20 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	03/08/2023 16:18	EPA 200.8-1994, Rev. 5.4
Arsenic	0.39 µg/L	1	0.10	0.03	GES	03/08/2023 16:18	EPA 200.8-1994, Rev. 5.4
Barium	66.8 µg/L	1	0.20	0.05	GES	03/08/2023 16:18	EPA 200.8-1994, Rev. 5.4
Beryllium	1.23 µg/L	1	0.050	0.007	GES	03/08/2023 16:18	EPA 200.8-1994, Rev. 5.4
Boron	0.080 mg/L	1	0.050	0.009	GES	03/08/2023 16:18	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	03/08/2023 16:18	EPA 200.8-1994, Rev. 5.4
Calcium	15.1 mg/L	1	0.05	0.02	GES	03/08/2023 16:18	EPA 200.8-1994, Rev. 5.4
Chromium	0.26 μg/L	1	0.20	0.04	GES	03/08/2023 16:18	EPA 200.8-1994, Rev. 5.4
Cobalt	60.0 μg/L	1	0.020	0.003	GES	03/08/2023 16:18	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	03/08/2023 16:18	EPA 200.8-1994, Rev. 5.4
Lithium	0.161 mg/L	1	0.00020	0.00005	GES	03/08/2023 16:18	EPA 200.8-1994, Rev. 5.4
Magnesium	15.9 mg/L	1	0.10	0.02	GES	03/08/2023 16:18	EPA 200.8-1994, Rev. 5.4
Mercury	<20 ng/L	10	50	20 U1	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	03/08/2023 16:18	EPA 200.8-1994, Rev. 5.4
Potassium	5.54 mg/L	1	0.10	0.02	GES	03/08/2023 16:18	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	03/08/2023 16:18	EPA 200.8-1994, Rev. 5.4
Sodium	21.9 mg/L	1	0.20	0.05	GES	03/08/2023 16:18	EPA 200.8-1994, Rev. 5.4
Strontium	0.133 mg/L	1	0.0020	0.0004	GES	03/08/2023 16:18	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	03/08/2023 16:18	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.73 pCi/L	0.24	0.24	ST	03/16/2023 08:55	SW-846 9315-1986, Rev. 0
Carrier Recovery	72.1 %					
Radium-228	2.03 pCi/L	0.19	0.55	TTP	03/16/2023 15:39	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	70.2 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-13 Customer Description:
Lab Number: 230698-005-01 Preparation: Dissolved

Date Collected: 02/27/2023 10:17 EST Date Received: 03/06/2023 14:20 EST

Metals

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	03/08/2023 16:23	EPA 200.8-1994, Rev. 5.4
Arsenic	0. 11 µg/L	1	0.10	0.03	GES	03/08/2023 16:23	EPA 200.8-1994, Rev. 5.4
Barium	64.0 µg/L	1	0.20	0.05	GES	03/08/2023 16:23	EPA 200.8-1994, Rev. 5.4
Beryllium	1.18 µg/L	1	0.050	0.007	GES	03/08/2023 16:23	EPA 200.8-1994, Rev. 5.4
Boron	0.076 mg/L	1	0.050	0.009	GES	03/08/2023 16:23	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	03/08/2023 16:23	EPA 200.8-1994, Rev. 5.4
Calcium	14.6 mg/L	1	0.05	0.02	GES	03/08/2023 16:23	EPA 200.8-1994, Rev. 5.4
Chromium	0.29 µg/L	1	0.20	0.04	GES	03/08/2023 16:23	EPA 200.8-1994, Rev. 5.4
Cobalt	57.9 μg/L	1	0.020	0.003	GES	03/08/2023 16:23	EPA 200.8-1994, Rev. 5.4
Iron	7.92 mg/L	1	0.020	0.006	GES	03/08/2023 16:23	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	03/08/2023 16:23	EPA 200.8-1994, Rev. 5.4
Lithium	0.156 mg/L	1	0.00020	0.00005	GES	03/08/2023 16:23	EPA 200.8-1994, Rev. 5.4
Magnesium	15.4 mg/L	1	0.10	0.02	GES	03/08/2023 16:23	EPA 200.8-1994, Rev. 5.4
Manganese	0.559 mg/L	1	0.0010	0.0002	GES	03/08/2023 16:23	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	03/08/2023 16:23	EPA 200.8-1994, Rev. 5.4
Potassium	5.34 mg/L	1	0.10	0.02	GES	03/08/2023 16:23	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	03/08/2023 16:23	EPA 200.8-1994, Rev. 5.4
Sodium	21.1 mg/L	1	0.20	0.05	GES	03/08/2023 16:23	EPA 200.8-1994, Rev. 5.4
Strontium	0.127 mg/L	1	0.0020	0.0004	GES	03/08/2023 16:23	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	03/08/2023 16:23	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-18 Customer Description:

Lab Number: 230698-006 Preparation:

Date Collected: 02/28/2023 09:25 EST Date Received: 03/06/2023 14:20 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifie	ers Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	03/08/2023 17:19	EPA 200.8-1994, Rev. 5.4
Arsenic	0.26 μg/L	1	0.10	0.03	GES	03/08/2023 17:19	EPA 200.8-1994, Rev. 5.4
Barium	77.9 μg/L	1	0.20	0.05	GES	03/08/2023 17:19	EPA 200.8-1994, Rev. 5.4
Beryllium	0.085 μg/L	1	0.050	0.007	GES	03/08/2023 17:19	EPA 200.8-1994, Rev. 5.4
Boron	<0.009 mg/L	1	0.050	0.009 U1	GES	03/08/2023 17:19	EPA 200.8-1994, Rev. 5.4
Cadmium	0.01 μg/L	1	0.020	0.004 J1	GES	03/08/2023 17:19	EPA 200.8-1994, Rev. 5.4
Calcium	0.18 mg/L	1	0.05	0.02	GES	03/08/2023 17:19	EPA 200.8-1994, Rev. 5.4
Chromium	0.38 µg/L	1	0.20	0.04	GES	03/08/2023 17:19	EPA 200.8-1994, Rev. 5.4
Cobalt	0.750 μg/L	1	0.020	0.003	GES	03/08/2023 17:19	EPA 200.8-1994, Rev. 5.4
Lead	0.18 µg/L	1	0.20	0.05 J1	GES	03/08/2023 17:19	EPA 200.8-1994, Rev. 5.4
Lithium	0.0123 mg/L	1	0.00020	0.00005	GES	03/08/2023 17:19	EPA 200.8-1994, Rev. 5.4
Magnesium	0.27 mg/L	1	0.10	0.02	GES	03/08/2023 17:19	EPA 200.8-1994, Rev. 5.4
Mercury	6 ng/L	1	5	2	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	03/08/2023 17:19	EPA 200.8-1994, Rev. 5.4
Potassium	0.69 mg/L	1	0.10	0.02	GES	03/08/2023 17:19	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	03/08/2023 17:19	EPA 200.8-1994, Rev. 5.4
Sodium	5.15 mg/L	1	0.20	0.05	GES	03/08/2023 17:19	EPA 200.8-1994, Rev. 5.4
Strontium	0.0039 mg/L	1	0.0020	0.0004	GES	03/08/2023 17:19	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	03/08/2023 17:19	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.68 pCi/L	0.13	0.19	ST	03/16/2023 08:55	SW-846 9315-1986, Rev. 0
Carrier Recovery	95.1 %					
Radium-228	0.42 pCi/L	0.18	0.59	ΠTP	03/16/2023 15:39	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	75.2 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-18 Customer Description:
Lab Number: 230698-006-01 Preparation: Dissolved

Date Collected: 02/28/2023 10:25 EST Date Received: 03/06/2023 14:20 EST

Metais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	03/08/2023 17:34	EPA 200.8-1994, Rev. 5.4
Arsenic	0.05 μg/L	1	0.10	0.03 J1	GES	03/08/2023 17:34	EPA 200.8-1994, Rev. 5.4
Barium	80.7 μg/L	1	0.20	0.05	GES	03/08/2023 17:34	EPA 200.8-1994, Rev. 5.4
Beryllium	0.079 μg/L	1	0.050	0.007	GES	03/08/2023 17:34	EPA 200.8-1994, Rev. 5.4
Boron	0.010 mg/L	1	0.050	0.009 J1	GES	03/08/2023 17:34	EPA 200.8-1994, Rev. 5.4
Cadmium	0.01 μg/L	1	0.020	0.004 J1	GES	03/08/2023 17:34	EPA 200.8-1994, Rev. 5.4
Calcium	0.23 mg/L	1	0.05	0.02	GES	03/08/2023 17:34	EPA 200.8-1994, Rev. 5.4
Chromium	0.22 μg/L	1	0.20	0.04	GES	03/08/2023 17:34	EPA 200.8-1994, Rev. 5.4
Cobalt	0.774 μg/L	1	0.020	0.003	GES	03/08/2023 17:34	EPA 200.8-1994, Rev. 5.4
Iron	0.028 mg/L	1	0.020	0.006	GES	03/08/2023 17:34	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	03/08/2023 17:34	EPA 200.8-1994, Rev. 5.4
Lithium	0.0128 mg/L	1	0.00020	0.00005	GES	03/08/2023 17:34	EPA 200.8-1994, Rev. 5.4
Magnesium	0.28 mg/L	1	0.10	0.02	GES	03/08/2023 17:34	EPA 200.8-1994, Rev. 5.4
Manganese	0.0029 mg/L	1	0.0010	0.0002	GES	03/08/2023 17:34	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	03/08/2023 17:34	EPA 200.8-1994, Rev. 5.4
Potassium	0.74 mg/L	1	0.10	0.02	GES	03/08/2023 17:34	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	03/08/2023 17:34	EPA 200.8-1994, Rev. 5.4
Sodium	5.35 mg/L	1	0.20	0.05	GES	03/08/2023 17:34	EPA 200.8-1994, Rev. 5.4
Strontium	0.0040 mg/L	1	0.0020	0.0004	GES	03/08/2023 17:34	EPA 200.8-1994, Rev. 5.4
Thallium	0.06 μg/L	1	0.20	0.04 J1	GES	03/08/2023 17:34	EPA 200.8-1994, Rev. 5.4

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-22 Customer Description:

Lab Number: 230698-007 Preparation:

Date Collected: 02/27/2023 10:07 EST Date Received: 03/06/2023 14:20 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	03/08/2023 17:40	EPA 200.8-1994, Rev. 5.4
Arsenic	3.66 µg/L	1	0.10	0.03	GES	03/08/2023 17:40	EPA 200.8-1994, Rev. 5.4
Barium	18.0 μg/L	1	0.20	0.05	GES	03/08/2023 17:40	EPA 200.8-1994, Rev. 5.4
Beryllium	10.2 μg/L	1	0.050	0.007	GES	03/08/2023 17:40	EPA 200.8-1994, Rev. 5.4
Boron	0.068 mg/L	1	0.050	0.009	GES	03/08/2023 17:40	EPA 200.8-1994, Rev. 5.4
Cadmium	1.37 µg/L	1	0.020	0.004	GES	03/08/2023 17:40	EPA 200.8-1994, Rev. 5.4
Calcium	14 .9 mg/L	1	0.05	0.02	GES	03/08/2023 17:40	EPA 200.8-1994, Rev. 5.4
Chromium	0.46 μg/L	1	0.20	0.04	GES	03/08/2023 17:40	EPA 200.8-1994, Rev. 5.4
Cobalt	113 µg/L	1	0.020	0.003	GES	03/08/2023 17:40	EPA 200.8-1994, Rev. 5.4
Lead	0.21 μg/L	1	0.20	0.05	GES	03/08/2023 17:40	EPA 200.8-1994, Rev. 5.4
Lithium	0.194 mg/L	1	0.00020	0.00005	GES	03/08/2023 17:40	EPA 200.8-1994, Rev. 5.4
Magnesium	21.1 mg/L	1	0.10	0.02	GES	03/08/2023 17:40	EPA 200.8-1994, Rev. 5.4
Mercury	40 ng/L	10	50	20 J1	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	03/08/2023 17:40	EPA 200.8-1994, Rev. 5.4
Potassium	4.48 mg/L	1	0.10	0.02	GES	03/08/2023 17:40	EPA 200.8-1994, Rev. 5.4
Selenium	7.39 µg/L	1	0.50	0.09	GES	03/08/2023 17:40	EPA 200.8-1994, Rev. 5.4
Sodium	86.9 mg/L	1	0.20	0.05	GES	03/08/2023 17:40	EPA 200.8-1994, Rev. 5.4
Strontium	0.140 mg/L	1	0.0020	0.0004	GES	03/08/2023 17:40	EPA 200.8-1994, Rev. 5.4
Thallium	0.24 μg/L	1	0.20	0.04	GES	03/08/2023 17:40	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.41 pCi/L	0.20	0.21	ST	03/16/2023 08:55	SW-846 9315-1986, Rev. 0
Carrier Recovery	77.0 %					
Radium-228	3.45 pCi/L	0.25	0.70	TTP	03/16/2023 15:39	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	69.3 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-22 Customer Description:
Lab Number: 230698-007-01 Preparation: Dissolved

Date Collected: 02/27/2023 11:07 EST Date Received: 03/06/2023 14:20 EST

METAIS							
Parameter	Result Units	Dilution	RL	MDL Data Qualifier	s Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	03/08/2023 17:45	EPA 200.8-1994, Rev. 5.4
Arsenic	3.64 µg/L	1	0.10	0.03	GES	03/08/2023 17:45	EPA 200.8-1994, Rev. 5.4
Barium	18.3 µg/L	1	0.20	0.05	GES	03/08/2023 17:45	EPA 200.8-1994, Rev. 5.4
Beryllium	9.74 μg/L	1	0.050	0.007	GES	03/08/2023 17:45	EPA 200.8-1994, Rev. 5.4
Boron	0.069 mg/L	1	0.050	0.009	GES	03/08/2023 17:45	EPA 200.8-1994, Rev. 5.4
Cadmium	1.36 µg/L	1	0.020	0.004	GES	03/08/2023 17:45	EPA 200.8-1994, Rev. 5.4
Calcium	15.5 mg/L	1	0.05	0.02	GES	03/08/2023 17:45	EPA 200.8-1994, Rev. 5.4
Chromium	0.57 μg/L	1	0.20	0.04	GES	03/08/2023 17:45	EPA 200.8-1994, Rev. 5.4
Cobalt	115 µg/L	1	0.020	0.003	GES	03/08/2023 17:45	EPA 200.8-1994, Rev. 5.4
Iron	25.8 mg/L	1	0.020	0.006	GES	03/08/2023 17:45	EPA 200.8-1994, Rev. 5.4
Lead	0.69 μg/L	1	0.20	0.05	GES	03/08/2023 17:45	EPA 200.8-1994, Rev. 5.4
Lithium	0.186 mg/L	1	0.00020	0.00005	GES	03/08/2023 17:45	EPA 200.8-1994, Rev. 5.4
Magnesium	21.8 mg/L	1	0.10	0.02	GES	03/08/2023 17:45	EPA 200.8-1994, Rev. 5.4
Manganese	0.400 mg/L	1	0.0010	0.0002	GES	03/08/2023 17:45	EPA 200.8-1994, Rev. 5.4
Mercury	9 ng/L	1	5	2	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	03/08/2023 17:45	EPA 200.8-1994, Rev. 5.4
Potassium	4.60 mg/L	1	0.10	0.02	GES	03/08/2023 17:45	EPA 200.8-1994, Rev. 5.4
Selenium	7.50 µg/L	1	0.50	0.09	GES	03/08/2023 17:45	EPA 200.8-1994, Rev. 5.4
Sodium	90.4 mg/L	1	0.20	0.05	GES	03/08/2023 17:45	EPA 200.8-1994, Rev. 5.4
Strontium	0.143 mg/L	1	0.0020	0.0004	GES	03/08/2023 17:45	EPA 200.8-1994, Rev. 5.4
Thallium	0.24 µg/L	1	0.20	0.04	GES	03/08/2023 17:45	EPA 200.8-1994, Rev. 5.4

4001 Bixby Road Groveport, OH 43125

Phone: 614-836-4221 Audinet: 210-4221

Dolan Chemical Laboratory

Reissued

Customer: Pirkey Power Station Job ID: 230698 Date Reported: 10/28/2023

Customer Sample ID: AD-31 Customer Description:

Lab Number: 230698-008 Preparation:

Date Collected: 02/27/2023 12:47 EST Date Received: 03/06/2023 14:20 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	03/08/2023 17:50	EPA 200.8-1994, Rev. 5.4
Arsenic	0.30 μg/L	1	0.10	0.03	GES	03/08/2023 17:50	EPA 200.8-1994, Rev. 5.4
Barium	35.6 µg/L	1	0.20	0.05	GES	03/08/2023 17:50	EPA 200.8-1994, Rev. 5.4
Beryllium	0.935 μg/L	1	0.050	0.007	GES	03/08/2023 17:50	EPA 200.8-1994, Rev. 5.4
Boron	0.017 mg/L	1	0.050	0.009 J1	GES	03/08/2023 17:50	EPA 200.8-1994, Rev. 5.4
Cadmium	0.079 μg/L	1	0.020	0.004	GES	03/08/2023 17:50	EPA 200.8-1994, Rev. 5.4
Calcium	2.70 mg/L	1	0.05	0.02	GES	03/08/2023 17:50	EPA 200.8-1994, Rev. 5.4
Chromium	0.62 μg/L	1	0.20	0.04	GES	03/08/2023 17:50	EPA 200.8-1994, Rev. 5.4
Cobalt	1 0.5 μg/L	1	0.020	0.003	GES	03/08/2023 17:50	EPA 200.8-1994, Rev. 5.4
Lead	0.31 μg/L	1	0.20	0.05	GES	03/08/2023 17:50	EPA 200.8-1994, Rev. 5.4
Lithium	0.0737 mg/L	1	0.00020	0.00005	GES	03/08/2023 17:50	EPA 200.8-1994, Rev. 5.4
Magnesium	4.10 mg/L	1	0.10	0.02	GES	03/08/2023 17:50	EPA 200.8-1994, Rev. 5.4
Mercury	1 30 ng/L	50	250	90 J1	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	03/08/2023 17:50	EPA 200.8-1994, Rev. 5.4
Potassium	1.60 mg/L	1	0.10	0.02	GES	03/08/2023 17:50	EPA 200.8-1994, Rev. 5.4
Selenium	0.27 μg/L	1	0.50	0.09 J1	GES	03/08/2023 17:50	EPA 200.8-1994, Rev. 5.4
Sodium	31.4 mg/L	1	0.20	0.05	GES	03/08/2023 17:50	EPA 200.8-1994, Rev. 5.4
Strontium	0.0413 mg/L	1	0.0020	0.0004	GES	03/08/2023 17:50	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 µg/L	1	0.20	0.04 J1	GES	03/08/2023 17:50	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.58 pCi/L	0.20	0.19	ST	03/16/2023 08:55	SW-846 9315-1986, Rev. 0
Carrier Recovery	88.2 %					
Radium-228	2.47 pCi/L	0.19	0.52	TTP	03/16/2023 15:39	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	73.1 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-31 Customer Description:
Lab Number: 230698-008-01 Preparation: Dissolved

Date Collected: 02/27/2023 13:47 EST Date Received: 03/06/2023 14:20 EST

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	03/08/2023 17:55	EPA 200.8-1994, Rev. 5.4
Arsenic	0. 1 9 μg/L	1	0.10	0.03	GES	03/08/2023 17:55	EPA 200.8-1994, Rev. 5.4
Barium	34.3 μg/L	1	0.20	0.05	GES	03/08/2023 17:55	EPA 200.8-1994, Rev. 5.4
Beryllium	0.956 μg/L	1	0.050	0.007	GES	03/08/2023 17:55	EPA 200.8-1994, Rev. 5.4
Boron	0.018 mg/L	1	0.050	0.009 J1	GES	03/08/2023 17:55	EPA 200.8-1994, Rev. 5.4
Cadmium	0.078 μg/L	1	0.020	0.004	GES	03/08/2023 17:55	EPA 200.8-1994, Rev. 5.4
Calcium	2.84 mg/L	1	0.05	0.02	GES	03/08/2023 17:55	EPA 200.8-1994, Rev. 5.4
Chromium	0.29 μg/L	1	0.20	0.04	GES	03/08/2023 17:55	EPA 200.8-1994, Rev. 5.4
Cobalt	10.5 μg/L	1	0.020	0.003	GES	03/08/2023 17:55	EPA 200.8-1994, Rev. 5.4
Iron	0.121 mg/L	1	0.020	0.006	GES	03/08/2023 17:55	EPA 200.8-1994, Rev. 5.4
Lead	0.24 μg/L	1	0.20	0.05	GES	03/08/2023 17:55	EPA 200.8-1994, Rev. 5.4
Lithium	0.0746 mg/L	1	0.00020	0.00005	GES	03/08/2023 17:55	EPA 200.8-1994, Rev. 5.4
Magnesium	4.15 mg/L	1	0.10	0.02	GES	03/08/2023 17:55	EPA 200.8-1994, Rev. 5.4
Manganese	0.0276 mg/L	1	0.0010	0.0002	GES	03/08/2023 17:55	EPA 200.8-1994, Rev. 5.4
Mercury	<7 ng/L	4	20	7 U1	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	03/08/2023 17:55	EPA 200.8-1994, Rev. 5.4
Potassium	1.60 mg/L	1	0.10	0.02	GES	03/08/2023 17:55	EPA 200.8-1994, Rev. 5.4
Selenium	0.28 μg/L	1	0.50	0.09 J1	GES	03/08/2023 17:55	EPA 200.8-1994, Rev. 5.4
Sodium	31.8 mg/L	1	0.20	0.05	GES	03/08/2023 17:55	EPA 200.8-1994, Rev. 5.4
Strontium	0.0418 mg/L	1	0.0020	0.0004	GES	03/08/2023 17:55	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 µg/L	1	0.20	0.04 J1	GES	03/08/2023 17:55	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-32 Customer Description:

Lab Number: 230698-009 Preparation:

Date Collected: 02/27/2023 12:03 EST Date Received: 03/06/2023 14:20 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	03/08/2023 18:00	EPA 200.8-1994, Rev. 5.4
Arsenic	0.89 µg/L	1	0.10	0.03	GES	03/08/2023 18:00	EPA 200.8-1994, Rev. 5.4
Barium	26.3 μg/L	1	0.20	0.05	GES	03/08/2023 18:00	EPA 200.8-1994, Rev. 5.4
Beryllium	3.19 µg/L	1	0.050	0.007	GES	03/08/2023 18:00	EPA 200.8-1994, Rev. 5.4
Boron	0.767 mg/L	1	0.050	0.009	GES	03/08/2023 18:00	EPA 200.8-1994, Rev. 5.4
Cadmium	0.360 µg/L	1	0.020	0.004	GES	03/08/2023 18:00	EPA 200.8-1994, Rev. 5.4
Calcium	7.69 mg/L	1	0.05	0.02	GES	03/08/2023 18:00	EPA 200.8-1994, Rev. 5.4
Chromium	0.44 µg/L	1	0.20	0.04	GES	03/08/2023 18:00	EPA 200.8-1994, Rev. 5.4
Cobalt	29.4 μg/L	1	0.020	0.003	GES	03/08/2023 18:00	EPA 200.8-1994, Rev. 5.4
Lead	0.40 µg/L	1	0.20	0.05	GES	03/08/2023 18:00	EPA 200.8-1994, Rev. 5.4
Lithium	0.0837 mg/L	1	0.00020	0.00005	GES	03/08/2023 18:00	EPA 200.8-1994, Rev. 5.4
Magnesium	9.85 mg/L	1	0.10	0.02	GES	03/08/2023 18:00	EPA 200.8-1994, Rev. 5.4
Mercury	2210 ng/L	100	500	200	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	03/08/2023 18:00	EPA 200.8-1994, Rev. 5.4
Potassium	3.00 mg/L	1	0.10	0.02	GES	03/08/2023 18:00	EPA 200.8-1994, Rev. 5.4
Selenium	2.68 µg/L	1	0.50	0.09	GES	03/08/2023 18:00	EPA 200.8-1994, Rev. 5.4
Sodium	32.8 mg/L	1	0.20	0.05	GES	03/08/2023 18:00	EPA 200.8-1994, Rev. 5.4
Strontium	0.143 mg/L	1	0.0020	0.0004	GES	03/08/2023 18:00	EPA 200.8-1994, Rev. 5.4
Thallium	0.18 µg/L	1	0.20	0.04 J1	GES	03/08/2023 18:00	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.29 pCi/L	0.24	0.17	ST	03/16/2023 08:55	SW-846 9315-1986, Rev. 0
Carrier Recovery	89.7 %					
Radium-228	3.54 pCi/L	0.21	0.58	TTP	03/16/2023 15:50	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	71.2 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-32 Customer Description:
Lab Number: 230698-009-01 Preparation: Dissolved

Date Collected: 02/27/2023 13:03 EST Date Received: 03/06/2023 14:20 EST

Motals								
Parameter	Result L	Jnits	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µ	ıg/L	1	0.10	0.02 U1	GES	03/08/2023 18:05	EPA 200.8-1994, Rev. 5.4
Arsenic	0.93 μ	ıg/L	1	0.10	0.03	GES	03/08/2023 18:05	EPA 200.8-1994, Rev. 5.4
Barium	26.0 μ	ıg/L	1	0.20	0.05	GES	03/08/2023 18:05	EPA 200.8-1994, Rev. 5.4
Beryllium	3. 11 µ	ıg/L	1	0.050	0.007	GES	03/08/2023 18:05	EPA 200.8-1994, Rev. 5.4
Boron	0.754 n	ng/L	1	0.050	0.009	GES	03/08/2023 18:05	EPA 200.8-1994, Rev. 5.4
Cadmium	0.373 μ	ıg/L	1	0.020	0.004	GES	03/08/2023 18:05	EPA 200.8-1994, Rev. 5.4
Calcium	7.37 n	ng/L	1	0.05	0.02	GES	03/08/2023 18:05	EPA 200.8-1994, Rev. 5.4
Chromium	0.55 μ	ıg/L	1	0.20	0.04	GES	03/08/2023 18:05	EPA 200.8-1994, Rev. 5.4
Cobalt	28.6 μ	ıg/L	1	0.020	0.003	GES	03/08/2023 18:05	EPA 200.8-1994, Rev. 5.4
Iron	1.44 n	ng/L	1	0.020	0.006	GES	03/08/2023 18:05	EPA 200.8-1994, Rev. 5.4
Lead	0.52 μ	ıg/L	1	0.20	0.05	GES	03/08/2023 18:05	EPA 200.8-1994, Rev. 5.4
Lithium	0.0829 n	ng/L	1	0.00020	0.00005	GES	03/08/2023 18:05	EPA 200.8-1994, Rev. 5.4
Magnesium	9.52 n	ng/L	1	0.10	0.02	GES	03/08/2023 18:05	EPA 200.8-1994, Rev. 5.4
Manganese	0.0503 n	ng/L	1	0.0010	0.0002	GES	03/08/2023 18:05	EPA 200.8-1994, Rev. 5.4
Mercury	<4 n	ng/L	2	10	4 U1	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µ	ıg/L	1	0.5	0.1 U1	GES	03/08/2023 18:05	EPA 200.8-1994, Rev. 5.4
Potassium	2.96 n	ng/L	1	0.10	0.02	GES	03/08/2023 18:05	EPA 200.8-1994, Rev. 5.4
Selenium	2.69 μ	ıg/L	1	0.50	0.09	GES	03/08/2023 18:05	EPA 200.8-1994, Rev. 5.4
Sodium	32.1 n	ng/L	1	0.20	0.05	GES	03/08/2023 18:05	EPA 200.8-1994, Rev. 5.4
Strontium	0.139 n	ng/L	1	0.0020	0.0004	GES	03/08/2023 18:05	EPA 200.8-1994, Rev. 5.4
Thallium	0.18 μ	ıg/L	1	0.20	0.04 J1	GES	03/08/2023 18:05	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-33 Customer Description:

Lab Number: 230698-010 Preparation:

Date Collected: 02/27/2023 10:58 EST Date Received: 03/06/2023 14:20 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	03/08/2023 18:10	EPA 200.8-1994, Rev. 5.4
Arsenic	0.76 μg/L	1	0.10	0.03	GES	03/08/2023 18:10	EPA 200.8-1994, Rev. 5.4
Barium	44.4 µg/L	1	0.20	0.05	GES	03/08/2023 18:10	EPA 200.8-1994, Rev. 5.4
Beryllium	1.50 µg/L	1	0.050	0.007	GES	03/08/2023 18:10	EPA 200.8-1994, Rev. 5.4
Boron	0.179 mg/L	1	0.050	0.009	GES	03/08/2023 18:10	EPA 200.8-1994, Rev. 5.4
Cadmium	0.064 μg/L	1	0.020	0.004	GES	03/08/2023 18:10	EPA 200.8-1994, Rev. 5.4
Calcium	2.48 mg/L	1	0.05	0.02	GES	03/08/2023 18:10	EPA 200.8-1994, Rev. 5.4
Chromium	0.31 μg/L	1	0.20	0.04	GES	03/08/2023 18:10	EPA 200.8-1994, Rev. 5.4
Cobalt	12.4 µg/L	1	0.020	0.003	GES	03/08/2023 18:10	EPA 200.8-1994, Rev. 5.4
Lead	0.32 μg/L	1	0.20	0.05	GES	03/08/2023 18:10	EPA 200.8-1994, Rev. 5.4
Lithium	0.0233 mg/L	1	0.00020	0.00005	GES	03/08/2023 18:10	EPA 200.8-1994, Rev. 5.4
Magnesium	4.71 mg/L	1	0.10	0.02	GES	03/08/2023 18:10	EPA 200.8-1994, Rev. 5.4
Mercury	5980 ng/L	100	500	200	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	03/08/2023 18:10	EPA 200.8-1994, Rev. 5.4
Potassium	0.32 mg/L	1	0.10	0.02	GES	03/08/2023 18:10	EPA 200.8-1994, Rev. 5.4
Selenium	2.54 μg/L	1	0.50	0.09	GES	03/08/2023 18:10	EPA 200.8-1994, Rev. 5.4
Sodium	19.4 mg/L	1	0.20	0.05	GES	03/08/2023 18:10	EPA 200.8-1994, Rev. 5.4
Strontium	0.0397 mg/L	1	0.0020	0.0004	GES	03/08/2023 18:10	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 µg/L	1	0.20	0.04 J1	GES	03/08/2023 18:10	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.18 pCi/L	0.18	0.20	ST	03/16/2023 08:55	SW-846 9315-1986, Rev. 0
Carrier Recovery	87.3 %					
Radium-228	1.67 pCi/L	0.17	0.50	TTP	03/16/2023 15:50	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	79.5 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Customer Sample ID: AD-33 Customer Description:
Lab Number: 230698-010-01 Preparation: Dissolved

Date Collected: 02/27/2023 11:58 EST Date Received: 03/06/2023 14:20 EST

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	03/08/2023 18:15	EPA 200.8-1994, Rev. 5.4
Arsenic	0.79 μg/L	1	0.10	0.03	GES	03/08/2023 18:15	EPA 200.8-1994, Rev. 5.4
Barium	45.1 μg/L	1	0.20	0.05	GES	03/08/2023 18:15	EPA 200.8-1994, Rev. 5.4
Beryllium	1.55 µg/L	1	0.050	0.007	GES	03/08/2023 18:15	EPA 200.8-1994, Rev. 5.4
Boron	0.181 mg/L	1	0.050	0.009	GES	03/08/2023 18:15	EPA 200.8-1994, Rev. 5.4
Cadmium	0.069 μg/L	1	0.020	0.004	GES	03/08/2023 18:15	EPA 200.8-1994, Rev. 5.4
Calcium	2.42 mg/L	1	0.05	0.02	GES	03/08/2023 18:15	EPA 200.8-1994, Rev. 5.4
Chromium	0.29 μg/L	1	0.20	0.04	GES	03/08/2023 18:15	EPA 200.8-1994, Rev. 5.4
Cobalt	12.6 µg/L	1	0.020	0.003	GES	03/08/2023 18:15	EPA 200.8-1994, Rev. 5.4
Iron	0.040 mg/L	1	0.020	0.006	GES	03/08/2023 18:15	EPA 200.8-1994, Rev. 5.4
Lead	0.31 μg/L	1	0.20	0.05	GES	03/08/2023 18:15	EPA 200.8-1994, Rev. 5.4
Lithium	0.0234 mg/L	1	0.00020	0.00005	GES	03/08/2023 18:15	EPA 200.8-1994, Rev. 5.4
Magnesium	4.81 mg/L	1	0.10	0.02	GES	03/08/2023 18:15	EPA 200.8-1994, Rev. 5.4
Manganese	0.0085 mg/L	1	0.0010	0.0002	GES	03/08/2023 18:15	EPA 200.8-1994, Rev. 5.4
Mercury	1180 ng/L	20	100	40	JAB	03/27/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	03/08/2023 18:15	EPA 200.8-1994, Rev. 5.4
Potassium	0.31 mg/L	1	0.10	0.02	GES	03/08/2023 18:15	EPA 200.8-1994, Rev. 5.4
Selenium	2.41 µg/L	1	0.50	0.09	GES	03/08/2023 18:15	EPA 200.8-1994, Rev. 5.4
Sodium	19.7 mg/L	1	0.20	0.05	GES	03/08/2023 18:15	EPA 200.8-1994, Rev. 5.4
Strontium	0.0401 mg/L	1	0.0020	0.0004	GES	03/08/2023 18:15	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 μg/L	1	0.20	0.04 J1	GES	03/08/2023 18:15	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Customer Sample ID: DUPLICATE 1 Customer Description:

Lab Number: 230698-011 Preparation:

Date Collected: 02/27/2023 10:22 EST Date Received: 03/06/2023 14:20 EST

Wictais								
Parameter	Result	Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02	μg/L	1	0.10	0.02 U1	GES	03/08/2023 10:57	EPA 200.8-1994, Rev. 5.4
Arsenic	0.08	µg/L	1	0.10	0.03 J1	GES	03/08/2023 10:57	EPA 200.8-1994, Rev. 5.4
Barium	27.9	µg/L	1	0.20	0.05	GES	03/08/2023 10:57	EPA 200.8-1994, Rev. 5.4
Beryllium	0.155	μg/L	1	0.050	0.007	GES	03/08/2023 10:57	EPA 200.8-1994, Rev. 5.4
Boron	0.012	mg/L	1	0.050	0.009 J1	GES	03/08/2023 10:57	EPA 200.8-1994, Rev. 5.4
Cadmium	0.011	μg/L	1	0.020	0.004 J1	GES	03/08/2023 10:57	EPA 200.8-1994, Rev. 5.4
Calcium	0.34	mg/L	1	0.05	0.02	GES	03/08/2023 10:57	EPA 200.8-1994, Rev. 5.4
Chromium	0.36	μg/L	1	0.20	0.04	GES	03/08/2023 10:57	EPA 200.8-1994, Rev. 5.4
Cobalt	1.52	µg/L	1	0.020	0.003	GES	03/08/2023 10:57	EPA 200.8-1994, Rev. 5.4
Lead	0.10	µg/L	1	0.20	0.05 J1	GES	03/08/2023 10:57	EPA 200.8-1994, Rev. 5.4
Lithium	0.00892	mg/L	1	0.00020	0.00005	GES	03/08/2023 10:57	EPA 200.8-1994, Rev. 5.4
Magnesium	0.49	mg/L	1	0.10	0.02	GES	03/08/2023 10:57	EPA 200.8-1994, Rev. 5.4
Mercury	<2	ng/L	1	5	2 U1	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1	µg/L	1	0.5	0.1 U1	GES	03/08/2023 10:57	EPA 200.8-1994, Rev. 5.4
Potassium	0.59	mg/L	1	0.10	0.02	GES	03/08/2023 10:57	EPA 200.8-1994, Rev. 5.4
Selenium	0.28	µg/L	1	0.50	0.09 J1	GES	03/15/2023 16:43	EPA 200.8-1994, Rev. 5.4
Sodium	5.26	mg/L	1	0.20	0.05	GES	03/08/2023 10:57	EPA 200.8-1994, Rev. 5.4
Strontium	0.0033	mg/L	1	0.0020	0.0004	GES	03/08/2023 10:57	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04	μg/L	1	0.20	0.04 U1	GES	03/08/2023 10:57	EPA 200.8-1994, Rev. 5.4

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Customer Sample ID: DUPLICATE 1 Customer Description:
Lab Number: 230698-011-01 Preparation: Dissolved

Date Collected: 02/27/2023 11:22 EST Date Received: 03/06/2023 14:20 EST

Metais							
Parameter	Result Un	its Dilution	n RL	MDL Data Qualit	fiers Analyst	Analysis Date	Method
Antimony	<0.02 µg/	′L 1	0.10	0.02 U1	GES	03/08/2023 11:02	EPA 200.8-1994, Rev. 5.4
Arsenic	0.06 µg/	′L 1	0.10	0.03 J1	GES	03/08/2023 11:02	EPA 200.8-1994, Rev. 5.4
Barium	26.7 μg/	′L 1	0.20	0.05	GES	03/08/2023 11:02	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 14 9 μg/	′L 1	0.050	0.007	GES	03/08/2023 11:02	EPA 200.8-1994, Rev. 5.4
Boron	0.012 mg	/L 1	0.050	0.009 J1	GES	03/08/2023 11:02	EPA 200.8-1994, Rev. 5.4
Cadmium	0.010 µg/	′L 1	0.020	0.004 J1	GES	03/08/2023 11:02	EPA 200.8-1994, Rev. 5.4
Calcium	0.37 mg	/L 1	0.05	0.02	GES	03/08/2023 11:02	EPA 200.8-1994, Rev. 5.4
Chromium	0.27 μg/	′L 1	0.20	0.04	GES	03/08/2023 11:02	EPA 200.8-1994, Rev. 5.4
Cobalt	1.48 µg/	′L 1	0.020	0.003	GES	03/08/2023 11:02	EPA 200.8-1994, Rev. 5.4
Iron	0.012 mg	/L 1	0.020	0.006 J1	GES	03/08/2023 11:02	EPA 200.8-1994, Rev. 5.4
Lead	0. 1 5 μg/	′L 1	0.20	0.05 J1	GES	03/08/2023 11:02	EPA 200.8-1994, Rev. 5.4
Lithium	0.00881 mg	/L 1	0.00020	0.00005	GES	03/08/2023 11:02	EPA 200.8-1994, Rev. 5.4
Magnesium	0.48 mg	/L 1	0.10	0.02	GES	03/08/2023 11:02	EPA 200.8-1994, Rev. 5.4
Manganese	0.0051 mg	/L 1	0.0010	0.0002	GES	03/08/2023 11:02	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/	L 1	5	2 U1	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/	′L 1	0.5	0.1 U1	GES	03/08/2023 11:02	EPA 200.8-1994, Rev. 5.4
Potassium	0.58 mg	/L 1	0.10	0.02	GES	03/08/2023 11:02	EPA 200.8-1994, Rev. 5.4
Selenium	0.33 µg/	′L 1	0.50	0.09 J1	GES	03/15/2023 16:58	EPA 200.8-1994, Rev. 5.4
Sodium	5.13 mg	/L 1	0.20	0.05	GES	03/08/2023 11:02	EPA 200.8-1994, Rev. 5.4
Strontium	0.0032 mg	/L 1	0.0020	0.0004	GES	03/08/2023 11:02	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/	′L 1	0.20	0.04 U1	GES	03/08/2023 11:02	EPA 200.8-1994, Rev. 5.4

4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Dolan Chemical Laboratory

Reissued

Customer: Pirkey Power Station Date Reported: 10/28/2023 Job ID: 230698

Customer Sample ID: DUPLICATE 2 Customer Description:

Lab Number: 230698-012 Preparation:

Date Collected: 02/28/2023 14:00 EST Date Received: 03/06/2023 14:20 EST

Metais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	s Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	03/08/2023 11:18	EPA 200.8-1994, Rev. 5.4
Arsenic	0.27 µg/L	1	0.10	0.03	GES	03/08/2023 11:18	EPA 200.8-1994, Rev. 5.4
Barium	119 µg/L	1	0.20	0.05	GES	03/08/2023 11:18	EPA 200.8-1994, Rev. 5.4
Beryllium	0.567 µg/L	1	0.050	0.007	GES	03/08/2023 11:18	EPA 200.8-1994, Rev. 5.4
Boron	0.017 mg/L	. 1	0.050	0.009 J1	GES	03/08/2023 11:18	EPA 200.8-1994, Rev. 5.4
Cadmium	0.018 µg/L	1	0.020	0.004 J1	GES	03/08/2023 11:18	EPA 200.8-1994, Rev. 5.4
Calcium	2.26 mg/L	. 1	0.05	0.02	GES	03/08/2023 11:18	EPA 200.8-1994, Rev. 5.4
Chromium	0.24 µg/L	1	0.20	0.04	GES	03/08/2023 11:18	EPA 200.8-1994, Rev. 5.4
Cobalt	5.79 µg/L	1	0.020	0.003	GES	03/08/2023 11:18	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	03/08/2023 11:18	EPA 200.8-1994, Rev. 5.4
Lithium	0.0305 mg/L	. 1	0.00020	0.00005	GES	03/08/2023 11:18	EPA 200.8-1994, Rev. 5.4
Magnesium	1.08 mg/L	. 1	0.10	0.02	GES	03/08/2023 11:18	EPA 200.8-1994, Rev. 5.4
Mercury	3 ng/L	1	5	2 J1	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	03/08/2023 11:18	EPA 200.8-1994, Rev. 5.4
Potassium	2.49 mg/L	. 1	0.10	0.02	GES	03/08/2023 11:18	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	03/15/2023 17:03	EPA 200.8-1994, Rev. 5.4
Sodium	8.34 mg/L	. 1	0.20	0.05	GES	03/08/2023 11:18	EPA 200.8-1994, Rev. 5.4
Strontium	0.0195 mg/L	. 1	0.0020	0.0004	GES	03/08/2023 11:18	EPA 200.8-1994, Rev. 5.4
Thallium	0.11 µg/L	1	0.20	0.04 J1	GES	03/08/2023 11:18	EPA 200.8-1994, Rev. 5.4

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Customer Sample ID: DUPLICATE 2 Customer Description:
Lab Number: 230698-012-01 Preparation: Dissolved

Date Collected: 02/28/2023 15:00 EST Date Received: 03/06/2023 14:20 EST

Metais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	03/08/2023 11:23	EPA 200.8-1994, Rev. 5.4
Arsenic	0.04 μg/L	1	0.10	0.03 J1	GES	03/08/2023 11:23	EPA 200.8-1994, Rev. 5.4
Barium	118 µg/L	1	0.20	0.05	GES	03/08/2023 11:23	EPA 200.8-1994, Rev. 5.4
Beryllium	0.579 μg/L	1	0.050	0.007	GES	03/08/2023 11:23	EPA 200.8-1994, Rev. 5.4
Boron	0.016 mg/L	1	0.050	0.009 J1	GES	03/08/2023 11:23	EPA 200.8-1994, Rev. 5.4
Cadmium	0.018 µg/L	1	0.020	0.004 J1	GES	03/08/2023 11:23	EPA 200.8-1994, Rev. 5.4
Calcium	2.28 mg/L	1	0.05	0.02	GES	03/08/2023 11:23	EPA 200.8-1994, Rev. 5.4
Chromium	0.24 μg/L	1	0.20	0.04	GES	03/08/2023 11:23	EPA 200.8-1994, Rev. 5.4
Cobalt	5.76 μg/L	1	0.020	0.003	GES	03/08/2023 11:23	EPA 200.8-1994, Rev. 5.4
Iron	0.046 mg/L	1	0.020	0.006	GES	03/08/2023 11:23	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	03/08/2023 11:23	EPA 200.8-1994, Rev. 5.4
Lithium	0.0309 mg/L	1	0.00020	0.00005	GES	03/08/2023 11:23	EPA 200.8-1994, Rev. 5.4
Magnesium	1.05 mg/L	1	0.10	0.02	GES	03/08/2023 11:23	EPA 200.8-1994, Rev. 5.4
Manganese	0.0509 mg/L	1	0.0010	0.0002	GES	03/08/2023 11:23	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	03/08/2023 11:23	EPA 200.8-1994, Rev. 5.4
Potassium	2.49 mg/L	1	0.10	0.02	GES	03/08/2023 11:23	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	03/15/2023 17:08	EPA 200.8-1994, Rev. 5.4
Sodium	8.23 mg/L	1	0.20	0.05	GES	03/08/2023 11:23	EPA 200.8-1994, Rev. 5.4
Strontium	0.0192 mg/L	1	0.0020	0.0004	GES	03/08/2023 11:23	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 µg/L	1	0.20	0.04 J1	GES	03/08/2023 11:23	EPA 200.8-1994, Rev. 5.4

Lab Number: 230698-013

Water Analysis Report

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Customer Sample ID: EQUIPMENT BLANK Customer Description:

Preparation:

Date Collected: 02/27/2023 12:18 EST

Date Received: 03/06/2023 14:20 EST

Motalo							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.02 µg/L	1	0.10	0.02 U1	GES	03/08/2023 11:28	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/L	1	0.10	0.03 U1	GES	03/08/2023 11:28	EPA 200.8-1994, Rev. 5.4
Barium	<0.05 µg/L	1	0.20	0.05 U1	GES	03/08/2023 11:28	EPA 200.8-1994, Rev. 5.4
Beryllium	0.034 μg/L	1	0.050	0.007 J1	GES	03/08/2023 11:28	EPA 200.8-1994, Rev. 5.4
Boron	<0.009 mg/L	1	0.050	0.009 U1	GES	03/08/2023 11:28	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	03/08/2023 11:28	EPA 200.8-1994, Rev. 5.4
Calcium	<0.02 mg/L	1	0.05	0.02 U1	GES	03/08/2023 11:28	EPA 200.8-1994, Rev. 5.4
Chromium	0.44 μg/L	1	0.20	0.04	GES	03/08/2023 11:28	EPA 200.8-1994, Rev. 5.4
Cobalt	0.014 µg/L	1	0.020	0.003 J1	GES	03/08/2023 11:28	EPA 200.8-1994, Rev. 5.4
Lead	0.38 µg/L	1	0.20	0.05	GES	03/08/2023 11:28	EPA 200.8-1994, Rev. 5.4
Lithium	<0.00005 mg/L	1	0.00020	0.00005 U1	GES	03/08/2023 11:28	EPA 200.8-1994, Rev. 5.4
Magnesium	<0.02 mg/L	1	0.10	0.02 U1	GES	03/08/2023 11:28	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	03/08/2023 11:28	EPA 200.8-1994, Rev. 5.4
Potassium	<0.02 mg/L	1	0.10	0.02 U1	GES	03/08/2023 11:28	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09 µg/L	1	0.50	0.09 U1	GES	03/15/2023 17:14	EPA 200.8-1994, Rev. 5.4
Sodium	<0.05 mg/L	1	0.20	0.05 U1	GES	03/08/2023 11:28	EPA 200.8-1994, Rev. 5.4
Strontium	<0.0004 mg/L	1	0.0020	0.0004 U1	GES	03/08/2023 11:28	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04 µg/L	1	0.20	0.04 U1	GES	03/08/2023 11:28	EPA 200.8-1994, Rev. 5.4

4001 Bixby Road Groveport, OH 43125

Phone: 614-836-4221 Audinet: 210-4221

Dolan Chemical Laboratory

Reissued

Customer: Pirkey Power Station Job ID: 230698 **Date Reported: 10/28/2023**

Customer Sample ID: FIELD BLANK Customer Description:

Lab Number: 230698-014 Preparation:

Date Collected: 02/27/2023 12:21 EST Date Received: 03/06/2023 14:20 EST

Metals

Parameter	Result	Units	Dilution	RL	MDL D	ata Qualifiers	Analyst	Analysis Date	Method
Antimony	0.03	µg/L	1	0.10	0.02 J1	L	GES	03/08/2023 11:33	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03	µg/L	1	0.10	0.03 U	1	GES	03/08/2023 11:33	EPA 200.8-1994, Rev. 5.4
Barium	<0.05	µg/L	1	0.20	0.05 U	1	GES	03/08/2023 11:33	EPA 200.8-1994, Rev. 5.4
Beryllium	0.033	µg/L	1	0.050	0.007 J1	L	GES	03/08/2023 11:33	EPA 200.8-1994, Rev. 5.4
Boron	<0.009	mg/L	1	0.050	0.009 U	1	GES	03/08/2023 11:33	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004	µg/L	1	0.020	0.004 U	1	GES	03/08/2023 11:33	EPA 200.8-1994, Rev. 5.4
Calcium	<0.02	mg/L	1	0.05	0.02 U	1	GES	03/08/2023 11:33	EPA 200.8-1994, Rev. 5.4
Chromium	0.23	µg/L	1	0.20	0.04		GES	03/08/2023 11:33	EPA 200.8-1994, Rev. 5.4
Cobalt	0.015	µg/L	1	0.020	0.003 J1	L	GES	03/08/2023 11:33	EPA 200.8-1994, Rev. 5.4
Lead	2.57	µg/L	1	0.20	0.05		GES	03/08/2023 11:33	EPA 200.8-1994, Rev. 5.4
Lithium	<0.00005	mg/L	1	0.00020	0.00005 U	1	GES	03/08/2023 11:33	EPA 200.8-1994, Rev. 5.4
Magnesium	<0.02	mg/L	1	0.10	0.02 U	1	GES	03/08/2023 11:33	EPA 200.8-1994, Rev. 5.4
Mercury	<2	ng/L	1	5	2 U	1	JAB	03/21/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1	µg/L	1	0.5	0.1 U	1	GES	03/08/2023 11:33	EPA 200.8-1994, Rev. 5.4
Potassium	<0.02	mg/L	1	0.10	0.02 U	1	GES	03/08/2023 11:33	EPA 200.8-1994, Rev. 5.4
Selenium	<0.09	µg/L	1	0.50	0.09 U	1	GES	03/15/2023 17:19	EPA 200.8-1994, Rev. 5.4
Sodium	<0.05	mg/L	1	0.20	0.05 U	1	GES	03/08/2023 11:33	EPA 200.8-1994, Rev. 5.4
Strontium	<0.0004	mg/L	1	0.0020	0.0004 U	1	GES	03/08/2023 11:33	EPA 200.8-1994, Rev. 5.4
Thallium	<0.04	μg/L	1	0.20	0.04 U	1	GES	03/08/2023 11:33	EPA 200.8-1994, Rev. 5.4

230698 **Job Comments:**

Report originally issued 4/10/23. Report reissued 10/28/23 to correct rounding errors on report and EDD.

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230698 Customer: Pirkey Power Station Date Reported: 10/28/2023

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

 Email:
 msohlinger@aep.com

 Phone:
 614-836-4184

 Audinet:
 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

- U1 Not detected at or above method detection limit (MDL).
- M1 The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.
- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.
- P1 The precision between duplicate results was above acceptance limits.
- P3 The precision on the matrix spike duplicate (MSD) was above acceptance limits.

Chain of Custody Record Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125 Program: Coal Combustion Residuals (CCR) Jonathan Barnhill (318-673-3803) Site Contact: Date: For Lab Use Only: Contacts: Michael Ohlinger (614-836-4184) COC/Order #: 250 mL PTFE lined bottle, HCL**, pH<2 Field-Filter 250 mL PTFE lined bottle, HCL**, pH<2 Project Name: Pirkey - CCR Field-filter Three 250 mL 250 mL 1 L (six every Contact Name: Leslie Fuerschbach Analysis Turnaround Time (in Calendar Days) bottle. bottle, then bottle, Oth*) pH<2. pH<2, 730698 Cool, L bottles, 318-423-3805 Contact Phone: HNO₃ HNO₃ 0-6°C pH<2, HNO₃ B, Ca, Ll, Sb, As, Ba, Be, Cd, Cr, Co, Fe, Mn, Mo, Pb, Se, TL and Na, K, Mg, Sr TDS, F, CI, SO₄, and Br, Alkalinity B, Ca, Li, Sb, As, Ba Be, Cd, Cr, Co, Pb, Mo, Se, TL and Na, K, Mg, Sr Sampler(s): Matt Hamilton Kenny McDonald Ra-228 Sampler(s) Initials Sample Ra-226, Туре Sample Sample (C=Comp. # of 훈 윤 G=Grab) Sample Identification Date Time Matrix Cont Sample Specific Notes: 1055 GW 7 Х Х х X AD-2 2/27/2023 G AD-4 913 G **GW** 7 Х Х Х 2/28/2023 7 X Х X X AD-7 2/28/2023 1018 G GW 10 X AD-12 956 G GW Х X Х Х 2/27/2023 GW 7 Х X X Х Х AD-13 2/27/2023 817 G Х 825 G GW 7 Х Х AD-18 2/28/2023 AD-22 907 G GW 7 Х Х Х Х 2/27/2023 7 AD-31 2/27/2023 1147 G GW Х Х Х X AD-32 GW 7 X 2/27/2022 1103 G X Х X Х AD-33 GW 7 Х X X 2/27/2023 958 G **DUPLICATE 1** 922 GW Х Х Х X 2/27/2023 F4 1 2 2 ; F= filter in field Preservation Used: 1= ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Six 1L Bottles must be collected for Radium for every 10th sample. Special Instructions/QC Requirements & Comments: **TG-32** Relinguished b Company: Date/Time: Received by: Date/Time: 1500 Relinguished by: Company: Date/Time: Received by: Date/Time:

Received in Laboratory by:

2! ZOAM

Date/Time:

Relinquished by:

Company:

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

Chain of Custody Record Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125 Program: Coal Combustion Residuals (CCR) Jonathan Barnhill (318-673-3803) Site Contact: Date: For Lab Use Only: Contacts: Michael Ohlinger (614-836-4184) COC/Order #: L PTFE lined , HCL**, pH<2 Project Name: Pirkey - CCR Field-filter Three 250 mL 250 mL 1 L (six every Contact Name: Leslie Fuerschbach Analysis Turnaround Time (in Calendar Days) bottle, bottle, then bottle. lOth*) 250 mL bottle, H pH<2, pH<2, Cool, L bottles. Contact Phone: 318-423-3805 HNO HNO₃ 0-6°C pH<2, HNO TDS, F, CI, SO₄, and Br, Alkalinity , Ca, Li, Sb, As, Ba e, Cd, Cr, Co, Pb, lo, Se, TL nd Na, K, Mg, Sr Matt Hamilton Kenny McDonald Ra-226, Ra-228 Sampler(s) Initials Sample Type Sample Sample (C=Comp 윤 Sample Identification Date Time G=Grab) Matrix Cont. Sample Specific Notes: **DUPLICATE 2** 1300 G GW 2/28/2023 X Х X **EQUIPMENT BLANK** Ģ GW 2/27/2023 1118 2 FIELD BLANK 2/27/2023 1121 G GW 2 F4 2 Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other ; F= filter in field Six 1L Bottles must be collected for Radium for every 10th sample. Special Instructions/QC Requirements & Comments: **TG-32** Relinquished by: Company: Received by: Date/Time: Relinquished by Company Date/Time: Date/Time Received by:

Received in Laboratory by

Date/Time:

Relinquished by:

Company:

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/1:

Date/Time:

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type							
Cooler Box Bag Envelope	PONY UPS (RedEX) USPS							
	Other							
Plant/Customer Pirkey	Number of Plastic Containers: 59							
Opened By Webs TTP MSD	Number of Glass Containers: 26							
Date/Time 3/6/23 2.20PM								
	on ice / no ice							
(IR Gun Ser# <u>2213689000</u> , <i>Expir</i> . 03/24/2024	-							
	Comments							
	Comments							
· ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	If RUSH, who was notified?							
pH (15 min) Cr ⁺⁶ (pres) NO₂ or N (24 hr)	O ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)							
Was COC filled out properly? (Y)/ N	Comments							
Were samples labeled properly?	Comments							
Were correct containers used? (Y) N	Comments							
Was pH checked & Color Coding done (Y)	N or N/A Initial & Date: \\\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\							
pH paper (circle one): MQuant,PN1.09535.0001,L0	OT# [OR] Lab Rat,PM4801,LOT# X000RWDG21							
- Was Add'l Preservative needed? Y N If	Yes: By whom & when: (See Prep Book)							
Is sample filtration requested? Y //N	Comments (See Prep Book)							
Was the customer contacted? If Yes:	Person Contacted:							
Lab ID# Initial & E	Date & Time :							
Logged byCommen	its:							
Reviewed by								

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

I IIIS U	iia pack	age consists of	L.						
x	This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.								
х	R1	Field chain-of	-custody docu	mentation					
x	R2	Sample identi	fication cross-	-reference					
x	R3	Test reports ((a) Items special NELAC S (b) Dilution S (c) Preparati (d) Cleanup S	analytical data ecified in NEL tandard factors on methods methods	sheets) for each AC Chapter 5 for	environmental samp reporting results, e.g. entified compounds (., Section 5.5.10 in 2003			
NA	R4	Surrogate rec (a) Calculate (b) The labor	d recovery (%	R)					
х	R ₅	Test reports/s	summary form	s for blank samp	oles				
х	R6	Test reports/s (a) LCS spik (b) Calculate (c) The labor	ing amounts d %R for each	analyte	control samples (LCS:	s) including:			
X	R7	(a) Samples(b) MS/MSE(c) Concentre(d) Calculate	associated wit spiking amou ation of each	h the MS/MSD o ints MS/MSD analyte ative percent dif	measured in the pare	/MSDs) including: ent and spiked samples			
х	R8	(a) The amount (b) The calculation	unt of analyte llated RPD	cate (if applicable measured in the nits for analytical	-	ion:			
х	R9		-	•	-	ch method and matrix			
x	R10	Other probler			·				
×	The Ex	=			esult is "No" or "NR"	(Not Reviewed)			
Release package require reports by the laborate that we check	se State e as be ements of the second in the	ement: I am en reviewed by of the methods y signature be cory as having the Laboratory ect the quality	responsible for the laborator with the laborator sused, except low, I affirm the potential the potential the data. This laborator	or the release of the release of the release of the where noted by the too the best of my had affect the quality and no inforty is an in-house by	his laboratory data pa e and technically com he laboratory in the a knowledge, all probler ty of the data, have be mation or data have l	ckage. This data pliant with the ttached exception ms/anomalies, observed en identified by the been knowingly withheld by the person			
used is statem	respon ent is tr	sible for releas ue.			signature affirming t				
		arnhill		And district control can be suffered from the control of the contr	Lab Supervisor	3/28/2023			
Name ((printed	i)	Signature		Official Title	Date			

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey

Reviewer Name: Jonathan Barnhill

LRC Date: 3/28/2023

Laboratory Job Number: 230698

Prep Batch Number(s): PB23030703 PB23030710 PB23031501 QC2303103 QC2303137

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER1
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	ī	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		"
	I	Were all COCs included in the LCS?	Yes	
	1	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7 O,	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	ı	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	No	ER3
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey

Reviewer Name: Jonathan Barnhill

LRC Date: 3/28/2023

Laboratory Job Number: 230698

Prep Batch Number(s): PB23030703 PB23030710 PB23031501 QC2303103 QC2303137

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	Yes	
_	I	Were ion abundance data within the method-required QC limits?	Yes	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	Yes	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
58	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	Ο, Ι	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	1080

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey

Reviewer Name: Jonathan Barnhill

LRC Date: 3/28/2023

Laboratory Job Number: 230698

Prep Batch Number(s): PB23030703 PB23030710 PB23031501 QC2303103 QC2303137

Exception Report No.	Description
ER1	Linear Dynamic Range (LDR) study used to determine upper limit of analyte calibration
ER2	CCB acceptance criteria is CCB<2.2*MDL.
ER3	Matrix Spike Failed for Na on sample 230698-001

Page 6 of 6

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: $|\mathbf{x}|$ This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. $\left[\mathbf{x} \right]$ R1 Field chain-of-custody documentation X R₂ Sample identification cross-reference × Test reports (analytical data sheets) for each environmental sample that includes: R₃ (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA. R4 Surrogate recovery data including: (a) Calculated recovery (%R) (b) The laboratory's surrogate OC limits Test reports/summary forms for blank samples \Box **R**5 \mathbf{x} R₆ Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: X **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits X Laboratory analytical duplicate (if applicable) recovery and precision: R8 (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates X R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix X R10 Other problems or anomalies \mathbf{x} The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) **Release Statement:** I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Sunita Timsina Chemist Associate 03/21/2023

Official Title

Name (printed)

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 03/21/2023

Laboratory Job Number: 230698

Prep Batch Number(s): PB23030704, PB23030705

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	ļ <u>.</u> .
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	NO	ER1
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	:
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	Ι	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 03/21/2023

Laboratory Job Number: 230698

Prep Batch Number(s): PB23030704, PB23030705

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	17100
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	NA	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	NA	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
514	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Nai	me: American Electric Power Dolan Chemical Laboratory
Project Name:	Pirkey Power Station
	Sunita Timsina
LRC Date: 03/2	
	Number: 230698
Prep Batch Nur	nber(s): PB23030704, PB23030705

Description
For PB23030705, RPD between the sample and duplicate sample has exceeds the laboratory QC Limit.

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR"

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

×	(which	inclu	re page, and the laboratory review chec ides the reportable data identified on the eption Reports.		
×	R1	Field	chain-of-custody documentation		
X	R2	Sam	ple identification cross-reference		
x	R3	(a) (b) (c) (d)	reports (analytical data sheets) for each Items specified in NELAC Chapter 5 for NELAC Standard Dilution factors Preparation methods Cleanup methods If required for the project, tentatively id	reporting results, e.g., Section	
AA	R4	(a)	ogate recovery data including: Calculated recovery (%R) The laboratory's surrogate QC limits		
X	R ₅	Test	reports/summary forms for blank samp	oles	
×	R6	(a) (b)	reports/summary forms for laboratory LCS spiking amounts Calculated %R for each analyte The laboratory's LCS QC limits	control samples (LCSs) inclu	ding:
X	R7	(a) (b) (c) (d)	reports for project matrix spike/matrix Samples associated with the MS/MSD of MS/MSD spiking amounts Concentration of each MS/MSD analyte Calculated %Rs and relative percent dif The laboratory's MS/MSD QC limits	elearly identified e measured in the parent and	. 0
X	R8	(a) (b)	oratory analytical duplicate (if applicable The amount of analyte measured in the The calculated RPD The laboratory's QC limits for analytical	duplicate	
x	R9	List	of method quantitation limits (MQLs) fo	or each analyte for each meth	od and matrix
x	R10	Othe	er problems or anomalies		
x	The Ex	cepti	on Report for every item for which the r	esult is "No" or "NR" (Not R	eviewed)
packag require reports by the laborat	e as be ements s. By m laborat tory in t	en re of the y sign tory a the La	nt: I am responsible for the release of to viewed by the laboratory and is completed methods used, except where noted by the nature below, I affirm to the best of my is having the potential to affect the quality of the data.	e and technically compliant the laboratory in the attached knowledge, all problems/and ty of the data, have been ide	with the d exception omalies, observed ntified by the
respon used is	ding to	rule. sible	ble: This laboratory is an in-house labora	e rule-required report in whi	ich these data are
Sunit	a Time	sina	Sinking	Chemist Associate	04/10/2023
Name	(printed	d)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 04/10/2023

 Laboratory Job Number:
 230698

 Prep Batch Number(s):
 PB23030706, PB23031302

Exception Result Item¹ Analytes² Description (Yes, No, Report No.4 NA, NR)³ R1 O, I Chain-of-custody (COC) Did samples meet the laboratory's standard conditions Ι Yes of sample acceptability upon receipt? Were all departures from standard conditions described Ι Yes in an exception report? O, I Sample and quality control (QC) identification R2 Are all field sample ID numbers cross-referenced to the I Yes laboratory ID numbers? Are all laboratory ID numbers cross-referenced to the Ι Yes corresponding QC data? R3 0, I Test reports Were all samples prepared and analyzed within holding I Yes times? Other than those results < MQL, were all other raw I NA values bracketed by calibration standards? Were calculations checked by a peer or supervisor? I Yes Were all analyte identifications checked by a peer or I Yes supervisor? Were sample quantitation limits reported for all Ι Yes analytes not detected? Were all results for soil and sediment samples reported NA Ι on a dry weight basis? Was % moisture (or solids) reported for all soil and I NA sediment samples? I If required for the project, TICs reported? NA Surrogate recovery data R4 0 Were surrogates added prior to extraction? Ī NA Were surrogate percent recoveries in all samples within I NA the laboratory QC limits? R5 0, I Test reports/summary forms for blank samples I Were appropriate type(s) of blanks analyzed? Yes Were blanks analyzed at the appropriate frequency? Ι Yes

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	Ī	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?		
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	No	ER1
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	1
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	N/A	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
_	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 04/10/2023

Laboratory Job Number: 230698

Prep Batch Number(s): PB23030706, PB23031302

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
-	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
52	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
\$3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		"
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0 .	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	10.0
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
59	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	NA	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	NA	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	35.0
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		+35
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Radium Laboratory Review Checklist

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 04/10/2023

Laboratory Job Number: 230698

Prep Batch Number(s): PB23030706, PB23031302

Exception Report No.	Description
ER1	PB23031302, RPD for MS and MSD has exceeded the laboratory QC Limits

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231960 Customer: Pirkey Power Station Date Reported: 08/01/2023

Customer Sample ID: AD-2 Customer Description: TG-32

Lab Number: 231960-001 Preparation:

Date Collected: 06/26/2023 11:42 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.35 mg/L	2	0.10	0.02	CRJ	07/12/2023 11:48	EPA 300.1 -1997, Rev. 1.0
Chloride	30.8 mg/L	2	0.04	0.01	CRJ	07/12/2023 11:48	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.19 mg/L	2	0.06	0.02	CRJ	07/12/2023 11:48	EPA 300.1 -1997, Rev. 1.0
Sulfate	271 mg/L	10	3.0	0.6	CRJ	07/12/2023 11:16	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011	
TDS, Filterable Residue	530 mg/L	1	50	20	JAB	06/30/2023 10:53	SM 2540C-2015	

Customer Sample ID: AD-3 Customer Description: TG-32

Lab Number: 231960-002 Preparation:

Date Collected: 06/27/2023 12:01 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.06 mg/L	2	0.10	0.02 J1	CRJ	07/12/2023 14:33	EPA 300.1 -1997, Rev. 1.0
Chloride	5.67 mg/L	2	0.04	0.01	CRJ	07/12/2023 14:33	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.03 mg/L	2	0.06	0.02 J1	CRJ	07/12/2023 14:33	EPA 300.1 -1997, Rev. 1.0
Sulfate	22.4 mg/L	2	0.6	0.1	CRJ	07/12/2023 14:33	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	150 mg/L	1	50	20	JAB	06/30/2023 10:56	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231960 Customer: Pirkey Power Station Date Reported: 08/01/2023

Customer Sample ID: AD-4 Customer Description: TG-32

Lab Number: 231960-003 Preparation:

Date Collected: 06/27/2023 12:10 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.30 mg/L	2	0.10	0.02	CRJ	07/12/2023 15:06	EPA 300.1 -1997, Rev. 1.0
Chloride	3.97 mg/L	2	0.04	0.01	CRJ	07/12/2023 15:06	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.02 mg/L	2	0.06	0.02 J1	CRJ	07/12/2023 15:06	EPA 300.1 -1997, Rev. 1.0
Sulfate	18.9 mg/L	2	0.6	0.1	CRJ	07/12/2023 15:06	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011	
TDS, Filterable Residue	150 mg/L	1	50	20	JAB	06/30/2023 11:02	SM 2540C-2015	

Customer Sample ID: AD-7 Customer Description: TG-32

Lab Number: 231960-004 Preparation:

Date Collected: 06/27/2023 10:51 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	2.85 mg/L	2	0.10	0.02	CRJ	07/12/2023 19:29	EPA 300.1 -1997, Rev. 1.0
Chloride	31.2 mg/L	2	0.04	0.01	CRJ	07/12/2023 19:29	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.40 mg/L	2	0.06	0.02	CRJ	07/12/2023 19:29	EPA 300.1 -1997, Rev. 1.0
Sulfate	74.6 mg/L	2	0.6	0.1	CRJ	07/12/2023 19:29	EPA 300.1 -1997, Rev. 1.0

Param	eter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Alkalini	ty, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011	
TDS, Filt	terable Residue	290 mg/L	1	50	20	JAB	06/30/2023 11:01	SM 2540C-2015	

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231960 Customer: Pirkey Power Station Date Reported: 08/01/2023

Customer Sample ID: AD-12 Customer Description: TG-32

Lab Number: 231960-005 Preparation:

Date Collected: 06/26/2023 08:55 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.05 mg/L	2	0.10	0.02 J1	CRJ	07/12/2023 18:23	EPA 300.1 -1997, Rev. 1.0
Chloride	4.68 mg/L	2	0.04	0.01	CRJ	07/12/2023 18:23	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.06 mg/L	2	0.06	0.02	CRJ	07/12/2023 18:23	EPA 300.1 -1997, Rev. 1.0
Sulfate	2.9 mg/L	2	0.6	0.1	CRJ	07/12/2023 18:23	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011	
TDS, Filterable Residue	80 mg/L	1	50	20	JAB	06/30/2023 11:07	SM 2540C-2015	

Customer Sample ID: AD-13 Customer Description: TG-32

Lab Number: 231960-006 Preparation:

Date Collected: 06/26/2023 08:28 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.25 mg/L	2	0.10	0.02	CRJ	07/12/2023 21:41	EPA 300.1 -1997, Rev. 1.0
Chloride	48.7 mg/L	10	0.20	0.05	CRJ	07/12/2023 21:08	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.23 mg/L	2	0.06	0.02	CRJ	07/12/2023 21:41	EPA 300.1 -1997, Rev. 1.0
Sulfate	112 mg/L	10	3.0	0.6	CRJ	07/12/2023 21:08	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS Filterable Residue	280 mg/l	1	50	20	IAR	06/30/2023 11:00	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231960 Customer: Pirkey Power Station Date Reported: 08/01/2023

Customer Sample ID: AD-17 Customer Description: TG-32

Lab Number: 231960-007 Preparation:

Date Collected: 06/26/2023 12:47 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.16 mg/L	2	0.10	0.02	CRJ	07/12/2023 20:35	EPA 300.1 -1997, Rev. 1.0
Chloride	15.4 mg/L	2	0.04	0.01	CRJ	07/12/2023 20:35	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.19 mg/L	2	0.06	0.02	CRJ	07/12/2023 20:35	EPA 300.1 -1997, Rev. 1.0
Sulfate	2.4 mg/L	2	0.6	0.1	CRJ	07/12/2023 20:35	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	60 mg/L	1	50	20	JAB	06/30/2023 11:14	SM 2540C-2015

Customer Sample ID: AD-18 Customer Description: TG-32

Lab Number: 231960-008 Preparation:

Date Collected: 06/27/2023 08:42 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.04 mg/L	2	0.10	0.02 J1	CRJ	07/12/2023 22:47	EPA 300.1 -1997, Rev. 1.0
Chloride	5.28 mg/L	2	0.04	0.01	CRJ	07/12/2023 22:47	EPA 300.1 -1997, Rev. 1.0
Fluoride	<0.02 mg/L	2	0.06	0.02 U1	CRJ	07/12/2023 22:47	EPA 300.1 -1997, Rev. 1.0
Sulfate	8.2 mg/L	2	0.6	0.1	CRJ	07/12/2023 22:47	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	110 mg/L	1	50	20	JAB	06/30/2023 11:16	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231960 Customer: Pirkey Power Station Date Reported: 08/01/2023

Customer Sample ID: AD-22 Customer Description: TG-32

Lab Number: 231960-009 Preparation:

Date Collected: 06/26/2023 09:43 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.48 mg/L	2	0.10	0.02	CRJ	07/13/2023 03:10	EPA 300.1 -1997, Rev. 1.0
Chloride	93.9 mg/L	25	0.5	0.1	CRJ	07/13/2023 02:37	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.63 mg/L	2	0.06	0.02	CRJ	07/13/2023 03:10	EPA 300.1 -1997, Rev. 1.0
Sulfate	350 mg/L	25	8	2	CRJ	07/13/2023 02:37	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011	
TDS, Filterable Residue	680 mg/L	1	50	20	JAB	06/30/2023 11:23	SM 2540C-2015	

Customer Sample ID: AD-28 Customer Description: TG-32

Lab Number: 231960-010 Preparation:

Date Collected: 06/26/2023 12:26 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.06 mg/L	2	0.10	0.02 J1	CRJ	07/12/2023 23:20	EPA 300.1 -1997, Rev. 1.0
Chloride	4.14 mg/L	2	0.04	0.01	CRJ	07/12/2023 23:20	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.54 mg/L	2	0.06	0.02	CRJ	07/12/2023 23:20	EPA 300.1 -1997, Rev. 1.0
Sulfate	25.9 mg/L	2	0.6	0.1	CRJ	07/12/2023 23:20	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	120 mg/L	1	50	20	JAB	06/30/2023 11:24	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231960 Customer: Pirkey Power Station Date Reported: 08/01/2023

Customer Sample ID: AD-30 Customer Description: TG-32

Lab Number: 231960-011 Preparation:

Date Collected: 06/26/2023 12:03 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.20 mg/L	2	0.10	0.02	CRJ	07/13/2023 05:22	EPA 300.1 -1997, Rev. 1.0
Chloride	18.2 mg/L	2	0.04	0.01	CRJ	07/13/2023 05:22	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.04 mg/L	2	0.06	0.02 J1	CRJ	07/13/2023 05:22	EPA 300.1 -1997, Rev. 1.0
Sulfate	147 mg/L	10	3.0	0.6	CRJ	07/13/2023 04:49	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	300 mg/L	1	50	20	JAB	06/30/2023 11:31	SM 2540C-2015

Customer Sample ID: AD-31 Customer Description: TG-32

Lab Number: 231960-012 Preparation:

Date Collected: 06/26/2023 11:01 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.26 mg/L	2	0.10	0.02	CRJ	07/13/2023 04:16	EPA 300.1 -1997, Rev. 1.0
Chloride	21.2 mg/L	2	0.04	0.01	CRJ	07/13/2023 04:16	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.1 mg/L	2	0.06	0.02	CRJ	07/13/2023 04:16	EPA 300.1 -1997, Rev. 1.0
Sulfate	82.1 mg/L	2	0.6	0.1	CRJ	07/13/2023 04:16	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units Dil	ution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	280 mg/L	1	50	20	JAB	06/30/2023 11:32	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231960 Customer: Pirkey Power Station Date Reported: 08/01/2023

Customer Sample ID: AD-32 Customer Description: TG-32

Lab Number: 231960-013 Preparation:

Date Collected: 06/26/2023 09:30 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	1.17 mg/L	2	0.10	0.02	CRJ	07/13/2023 07:01	EPA 300.1 -1997, Rev. 1.0
Chloride	14.5 mg/L	2	0.04	0.01	CRJ	07/13/2023 07:01	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.13 mg/L	2	0.06	0.02	CRJ	07/13/2023 07:01	EPA 300.1 -1997, Rev. 1.0
Sulfate	119 mg/L	25	8	2	CRJ	07/13/2023 06:28	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	260 mg/L	1	50	20	JAB	06/30/2023 11:37	SM 2540C-2015

Customer Sample ID: AD-33 Customer Description: TG-32

Lab Number: 231960-014 Preparation:

Date Collected: 06/26/2023 11:34 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.28 mg/L	2	0.10	0.02	CRJ	07/13/2023 08:07	EPA 300.1 -1997, Rev. 1.0
Chloride	9.50 mg/L	2	0.04	0.01	CRJ	07/13/2023 08:07	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.21 mg/L	2	0.06	0.02	CRJ	07/13/2023 08:07	EPA 300.1 -1997, Rev. 1.0
Sulfate	58.4 mg/L	2	0.6	0.1	CRJ	07/13/2023 08:07	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	200 mg/L	1	50	20	JAB	06/30/2023 11:38	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231960 Customer: Pirkey Power Station Date Reported: 08/01/2023

Customer Sample ID: Duplicate - 1 Customer Description: TG-32

Lab Number: 231960-015 Preparation:

Date Collected: 06/26/2023 13:00 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.25 mg/L	2	0.10	0.02	CRJ	07/12/2023 12:54	EPA 300.1 -1997, Rev. 1.0
Chloride	48.3 mg/L	10	0.20	0.05	CRJ	07/12/2023 10:43	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.22 mg/L	2	0.06	0.02	CRJ	07/12/2023 12:54	EPA 300.1 -1997, Rev. 1.0
Sulfate	112 mg/L	10	3.0	0.6	CRJ	07/12/2023 10:43	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	300 mg/L	1	50	20	JAB	06/30/2023 11:51	SM 2540C-2015

Customer Sample ID: Field Blank Customer Description: TG-32

Lab Number: 231960-016 Preparation:

Date Collected: 06/26/2023 12:25 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	<0.02 mg/L	2	0.10	0.02 U1	CRJ	07/12/2023 10:10	EPA 300.1 -1997, Rev. 1.0
Chloride	0.27 mg/L	2	0.04	0.01	CRJ	07/12/2023 10:10	EPA 300.1 -1997, Rev. 1.0
Fluoride	<0.02 mg/L	2	0.06	0.02 U1	CRJ	07/12/2023 10:10	EPA 300.1 -1997, Rev. 1.0
Sulfate	<0.1 mg/L	2	0.6	0.1 U1	CRJ	07/12/2023 10:10	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units Di	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	<20 mg/L	1	50	20 U1	JAB	06/30/2023 11:52	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231960 Customer: Pirkey Power Station Date Reported: 08/01/2023

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

U1 - Not detected at or above method detection limit (MDL).

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

Dolan Chemical Laboratory (DCL) 4001 Bixby Road								y Reco			
Groveport, Ohio 43125 Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)			1,000	Progr	am: C	Site Con		Residuals	(CCR)	Date:	For Lab Use Only: COC/Order #:
Project Name: Pirkey PP Semi-Annual CCR Contact Name: Leslie Fuerschbach Contact Phone: 318-673-2744	-		d Time (in Ca 28 days fo			wells)	250 mL bottle, pH<2, HNO3	Field-filter 250 mL bottle, then pH<2, HNO3	1 L bottle, Cool, 0-6C	Three (six every 10th*) 1 L bottles, pH<2, HNO3	231960
Sampler(s): Matt Hamilton Kenny McDonald		•					111100		3r, nity		
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) initials	Mercury	Dissolved Mercury	F, CI, SO4, Br, TDS, Alkalinity	Ra-226, Ra-228	Sample Specific Notes:
AD-2	6/26/2023	1042	G	GW	1		10.30		х		
AD-3	6/27/2023	1101	G	GW	1				х		
AD-4	6/27/2023	1110	G	GW	1				х		
AD-7	6/27/2023	951	G	GW	1				×		
AD-12	6/26/2023	755	G	GW	1				×		
AD-13	6/26/2023	728	G	GW	1				×		
AD-17	6/26/2023	1147	G	GW	1				×		
AD-18	6/27/2023	742	G	GW	1				×		
AD-22	6/26/2023	843	G	GW	1				×		
AD-28	6/26/2023	1126	G	GW	1				×		
AD-30	6/26/2023	1103	G	GW	1				×		
AD-31	6/26/2023	1001	G	GW	1				×		100000
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=	- -HNO3; 5=Na	aOH; 6= O	ther	; F=	filter i	n field	4	F4	1	4	
* Six 1L Bottles must be collected for Radium f						1952					
Special Instructions/QC Requirements & Comm		G-32 n	eeded							542×10	
Relinquished by	Company	,		Date/T			Received	by:			Date/Time:
Relinquished by:	Company	٤		Date/T	&-23 ime		Received	by:			Date/Time:
							,				
Relinquished by:	Company:			Date/T	ime:		Received	in Laboratory	of	MC	Date/Time: 6/29/23 10:45AM
Form COC-04, AEP Chain of Custody (COC) Rec	ord for Coa	I Combus	tion Residu	ual (CCI	R) Sam	pling - Sh	reveport, F	Rev. 1, 1/10/17	7	1	

Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125						Coal Co	mbustion	y Reco Residuals				
Contacts: Michael Ohlinger (614-836-4184) Dave Conover (614-836-4219)			515	0.97		Site Cor	ntact:			Date:	For Lab Use Only: COC/Order #:	
Project Name: Pirkey PP CCR							250 mL	Field-filter 250 mL	1 L bottle.	Three (six every		
Contact Name: Leslie Fuerschbach	Analysis	Turnaroun	d Time (in C	alendar :	Days)		bottle, pH<2,	bottle, then pH<2,	Cool. 0-6C	10th*) 1		
Contact Phone: 318-673-2744	© Ro	utin e (28 di	ays for Monit	toring W	ells)		HNO3	HNO3		L bottles, pH<2, HNO3		116
Sampler(s): Matt Hamilton Kenny McDonald						#		reury	Br, nity	.528		
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) initials	Mercury	Dissolved Mercury	F, CI, SO4, Br, TDS, Alkalinity	Ra-226, Ra-228	Sample Specific Notes:	
AD-32	6/26/2023	830	G	GW	1				×			
AD-33	6/23/2023	934	G	GW	1		3 20 20 20 20 20 20 20 20 20 20 20 20 20	i A	×			
Duplicate - 1	6/26/2023	1200	G	GW	1				х			
Field Blank	6/26/2023	1125	G	GW	1				х			
- 15 T 25 1 T 25 1												
	A CONTRACTOR											
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=	HNO3; 5=N	aOH; 6= O	ther	; F=	filter i	n field	4	F4	1	4		
Six 1L Bottles must be collected for Radium for								(+)				10
Special Instructions/QC Requirements & Comm		G-32 n	eeded			304						
Relinquished The	Company:	Ege				3/60	Received	by:			Date/Time:	
Relinquished by:	Company:	,		Date/T	ime		Received	by:			Date/Time:	
Relinquished by:	Company			Date/T	ime:		Received	in Alabratery	by: ALL	/	Date/Time: 6/29/23 10:45AM	

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Gooler Box Bag Envelope	PONY UPS (FedEX USPS
	Other
Plant/Customer PIPKEY Pl	Number of Plastic Containers: 16
Opened By Mistha Michael	
Date/Time 06/29/23 10:4574m	Number of Mercury Containers:
Were all temperatures within 0-6°C?(y)/N	or N/A Initial: /// (on ice / no ice
	4 - If No, specify each deviation:
	Comments
Was Chain of Custody received? (V/N	Comments
Requested turnaround: <u>KoUThe</u>	If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) NO₂ or N (24 hr)	NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	Comments
Were samples labeled properly? $\sqrt[N]{N}$	Comments
Were correct containers used? \(\textstyle / N \)	Comments
Was pH checked & Color Coding done?	N or N/A Initial & Date: M(F(C 06/29/2)
pH paper (circle one): MQuant,PN1.09535.0001,L0	OT#[OR] Lab Rat,PN4801,LOT#
	Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / (§)	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID#	Date & Time :
Logged by 150 Commer	nts: AU-53 listed as taken on 23 @ 934 on coc while on
noch be	offer as 6/26 @ 91,34. West with bottle due to all offer
	with bottle due to all other imples being taken 6/22 & 6/27. MST
V	6/2

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: X This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. Field chain-of-custody documentation X R1 X R_2 Sample identification cross-reference X R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits X Test reports/summary forms for blank samples R5 Test reports/summary forms for laboratory control samples (LCSs) including: X R6 (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits X **R**7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits $|\mathbf{x}|$ R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates X: R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix X R10 Other problems or anomalies X. The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) **Release Statement:** I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. **Check, if applicable:** () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this daya package and is by signature affirming the above release statement is true. Michael Ohilnger Chemist 8/1/2023

Official Title

Name (printed)

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey PP Semi-Annual CCR
Reviewer Name: Michael Ohlinger
LRC Date: 8/1/2023
Laboratory Job Number: 231960

Prep Batch Number(s): QC2306250

Exception Result Item¹ Analytes² Description (Yes, No, Report No.4 NA, NR)3 R1 0, I Chain-of-custody (COC) Did samples meet the laboratory's standard conditions I Yes of sample acceptability upon receipt? Were all departures from standard conditions described I Yes in an exception report? R2 O, I Sample and quality control (QC) identification Are all field sample ID numbers cross-referenced to the Ι Yes laboratory ID numbers? Are all laboratory ID numbers cross-referenced to the I Yes corresponding QC data? R3 O, I Test reports Were all samples prepared and analyzed within holding I Yes times? Other than those results < MQL, were all other raw Ι NA values bracketed by calibration standards? Were calculations checked by a peer or supervisor? Ι Yes Were all analyte identifications checked by a peer or I Yes supervisor? Were sample quantitation limits reported for all Ι Yes analytes not detected? Were all results for soil and sediment samples reported NA I on a dry weight basis? Was % moisture (or solids) reported for all soil and I NA sediment samples? I If required for the project, TICs reported? NA R4 Surrogate recovery data 0 Were surrogates added prior to extraction? NA Ι Were surrogate percent recoveries in all samples within Į NA the laboratory QC limits? R5 0, I Test reports/summary forms for blank samples Ι Were appropriate type(s) of blanks analyzed? Yes Were blanks analyzed at the appropriate frequency? Yes I

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
•	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	ľ	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	,
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Michael Ohlinger

LRC Date: 8/1/2023

Laboratory Job Number: 231960

Prep Batch Number(s): QC2306250

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		(
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	I AMERICA
	I	Were percent RSDs or correlation coefficient criteria met?	NA	2
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	1	Was the appropriate compound for the method used for tuning?	NA	11
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
59	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	111111111111111111111111111111111111111
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey PP Semi-Annual CCR
Reviewer Name: Michael Ohlinger
LRC Date: 8/1/2023
Laboratory Job Number: 231960
Prep Batch Number(s): QC2306250

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB<0.5*MQL.
*6°c	

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This da	ata pack	age o	consists of:		
x	(which	incl	are page, and the laboratory review ch ades the reportable data identified on ception Reports.		
х	R1	Field	d chain-of-custody documentation		
x	R2	Sam	ple identification cross-reference		
x	R3	(a) (b) (c) (d)	reports (analytical data sheets) for exitems specified in NELAC Chapter 5 NELAC Standard Dilution factors Preparation methods Cleanup methods If required for the project, tentatively	for reporting results, e.g., Sect	ion 5.5.10 in 2003
X	R4	(a)	ogate recovery data including: Calculated recovery (%R) The laboratory's surrogate QC limits	¥1	
x	R ₅	Test	reports/summary forms for blank sa	mples	
X	R6	(a) (b)	reports/summary forms for laborate LCS spiking amounts Calculated %R for each analyte The laboratory's LCS QC limits	ory control samples (LCSs) inc	luding:
×	R7	(a) (b) (c) (d)	reports for project matrix spike/mat Samples associated with the MS/MS MS/MSD spiking amounts Concentration of each MS/MSD and Calculated %Rs and relative percent The laboratory's MS/MSD QC limits	D clearly identified lyte measured in the parent ar differences (RPDs)	8
X	R8	(a) (b)	oratory analytical duplicate (if applicate) The amount of analyte measured in the calculated RPD The laboratory's QC limits for analyt	the duplicate	
х	R9	List	of method quantitation limits (MQLs	s) for each analyte for each me	thod and matrix
x	R10	Oth	er problems or anomalies		
x	The Ex	cept	ion Report for every item for which th	ne result is "No" or "NR" (Not	Reviewed)
packag require reports by the labora	ge as be ements s. By m laborat tory in t	en re of th y sig tory a the L	ent: I am responsible for the release of eviewed by the laboratory and is completed to the complete methods used, except where noted light and the best of reasoning the potential to affect the quaboratory Review Checklist, and no integral to a first the design of the data.	plete and technically complian by the laboratory in the attach ny knowledge, all problems/a nality of the data, have been id	t with the ed exception nomalies, observed entified by the
respor used is	iding to	rule. sible	This laboratory is an in-hour the official signing the cover page of for releasing this data package and is	f the rule-required report in w	hich these data are
Tim /	Arnold		UM Clark	Principle Chemist	07/13/23
Name	(printed	4)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Tim Arnold

LRC Date: 7/13/23

Laboratory Job Number: 231960

Prep Batch Number(s): QC2307086

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	Yes	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	Ī	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I ,	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
E	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	, I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
·	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	1	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
-	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
>	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Tim Arnold

LRC Date: 7/13/23

Laboratory Job Number: 231960

Prep Batch Number(s): QC2307086

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S 1	O, I	Initial calibration (ICAL)		-
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
_	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
<u>S3</u>	0	Mass spectral tuning:		
R	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	- "
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)	2	
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		1 4
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):	Y	
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	:
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey PP Semi-Annual CCR
Reviewer Name: Tim Arnold
LRC Date: 7/13/23
Laboratory Job Number: 231960
Prep Batch Number(s): QC2307086

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>

³ NA - Not applicable; NR - Not reviewed.

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: × This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. X R1 Field chain-of-custody documentation X R2 Sample identification cross-reference X R₃ Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) M R4 Surrogate recovery data including: (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits $|\mathbf{x}|$ **R5** Test reports/summary forms for blank samples х Test reports/summary forms for laboratory control samples (LCSs) including: R6 (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits **R**7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: X (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits \mathbf{x} Laboratory analytical duplicate (if applicable) recovery and precision: R8 (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates $|\mathbf{x}|$ List of method quantitation limits (MQLs) for each analyte for each method and matrix R9 X Other problems or anomalies $\left[\mathbf{x} \right]$ The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) **Release Statement:** I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Michael Ohlinger Chemist 8/1/2023

Official Title

Name (printed)

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual

Reviewer Name: Michael Ohlinger

LRC Date: 8/1/2023

Laboratory Job Number: 231960

Prep Batch Number(s): QC2306244

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	NA	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	0.00
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	<u>Ye</u> s	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual

Reviewer Name: Michael Ohlinger

LRC Date: 8/1/2023

Laboratory Job Number: 231960

Prep Batch Number(s): QC2306244

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
-	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0 _	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	Ī	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		٠
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	e in the
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		Ų.
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S 16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name: Pirk	key PP Semi-Annual
Reviewer Name: 💄	fichael Ohlinger
LRC Date: 8/1/202	3
Laboratory Job Nu	mber: 231960
Prep Batch Numbe	r(s): QC2306244

Exception Report No.	Description
<u></u>	

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-2 Customer Description: TG-32

Lab Number: 231985-001 Preparation:

Date Collected: 06/26/2023 11:42 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result	Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.009	μg/L	1	0.100	0.008	J1	GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Arsenic	1.14	μg/L	1	0.10	0.03		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Barium	13.5	µg/L	1	0.20	0.05		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Beryllium	0.744	µg/L	1	0.050	0.007		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Boron	3.06	mg/L	1	0.050	0.007		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Cadmium	0.119	μg/L	1	0.020	0.004		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Calcium	3.53	mg/L	1	0.05	0.01		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Chromium	0.49	μg/L	1	0.30	0.07		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Cobalt	27.3	µg/L	1	0.020	0.005		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Lead	0.60	µg/L	1	0.20	0.05		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Lithium	0.0595	mg/L	1	0.00030	0.00007		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Magnesium	7.46	mg/L	1	0.100	0.006		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Mercury	157	ng/L	2	10	4		RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1	µg/L	1	0.5	0.1	U1	GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Potassium	1.38	mg/L	1	0.100	0.008		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Selenium	4.32	µg/L	1	0.50	0.04		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Sodium	108	mg/L	1	0.20	0.01		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Strontium	0.0540	mg/L	1	0.00200	0.00005		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Thallium	0.11	µg/L	1	0.20	0.02	J1	GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.49 pCi/L	0.11	0.14	TTP	07/11/2023 11:33	SW-846 9315-1986, Rev. 0
Carrier Recovery	89.5 %					
Radium-228	0.87 pCi/L	0.16	0.50	ST	07/10/2023 16:11	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	80.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-2 Customer Description: TG-32

Lab Number: 231985-001-01 Preparation: Dissolved

Date Collected: 06/26/2023 11:42 EDT Date Received: 06/30/2023 11:30 EDT

Metals

motalo							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.008 μg/L	1	0.100	0.008 J1	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Arsenic	1.10 µg/L	1	0.10	0.03	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Barium	13.3 µg/L	1	0.20	0.05	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Beryllium	0.746 μg/L	1	0.050	0.007	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Cadmium	0. 11 0 μg/L	1	0.020	0.004	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Chromium	0.59 μg/L	1	0.30	0.07	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Cobalt	27.4 μg/L	1	0.020	0.005	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Iron	0.229 mg/L	1	0.020	0.003	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Lead	0.61 µg/L	1	0.20	0.05	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Lithium	0.0599 mg/L	1	0.00030	0.00007	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Manganese	0.102 mg/L	1	0.00100	0.00008	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Selenium	4.14 µg/L	1	0.50	0.04	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Thallium	0.11 µg/L	1	0.20	0.02 J1	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-3 Customer Description: TG-32

Lab Number: 231985-002 Preparation:

Date Collected: 06/27/2023 12:01 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result l	Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.011 µ	µg/L	1	0.100	0.008 J1	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Arsenic	0.80 կ	µg/L	1	0.10	0.03	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Barium	52.2 µ	µg/L	1	0.20	0.05	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Beryllium	0.200 µ	µg/L	1	0.050	0.007	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Boron	0.037 r	mg/L	1	0.050	0.007 J1	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Cadmium	0.020 µ	µg/L	1	0.020	0.004	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Calcium	2.95 r	mg/L	1	0.05	0.01	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Chromium	0.31 µ	µg/L	1	0.30	0.07	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Cobalt	2.79 μ	µg/L	1	0.020	0.005	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Lead	0.25 բ	µg/L	1	0.20	0.05	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Lithium	0.0414 r	mg/L	1	0.00030	0.00007	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Magnesium	1.42 r	mg/L	1	0.100	0.006	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Mercury	<2 r	ng/L	1	5	2 U1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µ	µg/L	1	0.5	0.1 U1	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Potassium	2.06 r	mg/L	1	0.100	0.008	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Selenium	0.04 μ	µg/L	1	0.50	0.04 J1	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Sodium	8.14 r	mg/L	1	0.20	0.01	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Strontium	0.0213 r	mg/L	1	0.00200	0.00005	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 μ	µg/L	1	0.20	0.02 J1	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.54 pCi/L	0.12	0.18	TTP	07/11/2023 11:33	SW-846 9315-1986, Rev. 0
Carrier Recovery	86.5 %					
Radium-228	0.37 pCi/L	0.12	0.38	ST	07/10/2023 16:11	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	89.9 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Customer: Pirkey Power Station Job ID: 231985 **Date Reported: 10/29/2023**

Customer Sample ID: AD-3 Customer Description: TG-32

Lab Number: 231985-002-01 **Preparation: Dissolved**

Date Collected: 06/27/2023 12:01 EDT Date Received: 06/30/2023 11:30 EDT

Metals

motalo							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.018 μg/L	1	0.100	0.008 J1	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Arsenic	0.06 μg/L	1	0.10	0.03 J1	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Barium	52.1 μg/L	1	0.20	0.05	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 1 80 μg/L	1	0.050	0.007	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Cadmium	0.016 μg/L	1	0.020	0.004 J1	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Chromium	0.34 µg/L	1	0.30	0.07	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Cobalt	2.78 μg/L	1	0.020	0.005	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Iron	0.074 mg/L	1	0.020	0.003	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Lithium	0.0424 mg/L	1	0.00030	0.00007	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Manganese	0.0315 mg/L	1	0.00100	0.00008	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Selenium	0.05 μg/L	1	0.50	0.04 J1	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 µg/L	1	0.20	0.02 J1	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-4 Customer Description: TG-32

Lab Number: 231985-003 Preparation:

Date Collected: 06/27/2023 12:10 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.018 µg/L	1	0.100	0.008 J1	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Arsenic	1.23 µg/L	1	0.10	0.03	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Barium	132 µg/L	1	0.20	0.05	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Beryllium	0.376 µg/L	1	0.050	0.007	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Boron	0.018 mg/L	1	0.050	0.007 J1	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Cadmium	0.021 µg/L	1	0.020	0.004	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Calcium	2.90 mg/L	1	0.05	0.01	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Chromium	0.56 μg/L	1	0.30	0.07	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Cobalt	3.89 µg/L	1	0.020	0.005	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Lead	0.15 µg/L	1	0.20	0.05 J1	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Lithium	0.0240 mg/L	1	0.00030	0.00007	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Magnesium	0.737 mg/L	1	0.100	0.006	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Mercury	3 ng/L	1	5	2 J1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Potassium	2.32 mg/L	1	0.100	0.008	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Selenium	0.14 µg/L	1	0.50	0.04 J1	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Sodium	6.68 mg/L	1	0.20	0.01	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Strontium	0.0248 mg/L	1	0.00200	0.00005	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 µg/L	1	0.20	0.02 J1	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.38 pCi/L	0.22	0.20	TTP	07/07/2023 13:34	SW-846 9315-1986, Rev. 0
Carrier Recovery	97.0 %					
Radium-228	0.34 pCi/L	0.15	0.50	ST	07/10/2023 16:11	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	74.0 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Customer: Pirkey Power Station Job ID: 231985 **Date Reported: 10/29/2023**

Customer Sample ID: AD-4 **Customer Description: TG-32**

Lab Number: 231985-003-01 **Preparation: Dissolved**

Date Collected: 06/27/2023 12:10 EDT Date Received: 06/30/2023 11:30 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Arsenic	0.03 µg/L	1	0.10	0.03 J1	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Barium	122 µg/L	1	0.20	0.05	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Beryllium	0.361 µg/L	1	0.050	0.007	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Cadmium	0.019 µg/L	1	0.020	0.004 J1	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Chromium	0.28 µg/L	1	0.30	0.07 J1	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Cobalt	3.82 µg/L	1	0.020	0.005	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Iron	0.142 mg/L	1	0.020	0.003	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Lithium	0.0245 mg/L	1	0.00030	0.00007	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Manganese	0.0358 mg/L	1	0.00100	0.00008	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 µg/L	1	0.20	0.02 J1	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-7 Customer Description: TG-32

Lab Number: 231985-004 Preparation:

Date Collected: 06/27/2023 10:51 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifier	s Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Arsenic	1.14 µg/L	1	0.10	0.03	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Barium	40.3 μg/L	1	0.20	0.05	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Beryllium	5.11 µg/L	1	0.050	0.007	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Boron	2.02 mg/L	1	0.050	0.007	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Cadmium	0.691 μg/L	1	0.020	0.004	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Calcium	5.73 mg/L	1	0.05	0.01	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Chromium	0.47 μg/L	1	0.30	0.07	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Cobalt	39.3 μg/L	1	0.020	0.005	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Lead	0.88 µg/L	1	0.20	0.05	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Lithium	0.0780 mg/L	1	0.00030	0.00007	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Magnesium	9.21 mg/L	1	0.100	0.006	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Mercury	1220 ng/L	48	240	90	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Potassium	2.05 mg/L	1	0.100	0.008	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Selenium	4.53 μg/L	1	0.50	0.04	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Sodium	17.1 mg/L	1	0.20	0.01	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Strontium	0.0776 mg/L	1	0.00200	0.00005	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Thallium	0.20 μg/L	1	0.20	0.02	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.29 pCi/L	0.24	0.31	TTP	07/07/2023 13:34	SW-846 9315-1986, Rev. 0
Carrier Recovery	88.5 %					
Radium-228	3.40 pCi/L	0.19	0.50	ST	07/10/2023 16:11	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	80.7 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-7 Customer Description: TG-32

Lab Number: 231985-004-01 Preparation: Dissolved

Date Collected: 06/27/2023 10:51 EDT Date Received: 06/30/2023 11:30 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Arsenic	1.14 µg/L	1	0.10	0.03	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Barium	40.4 μg/L	1	0.20	0.05	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Beryllium	5. 13 μg/L	1	0.050	0.007	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Cadmium	0.692 μg/L	1	0.020	0.004	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Chromium	0.55 µg/L	1	0.30	0.07	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Cobalt	39.9 μg/L	1	0.020	0.005	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Iron	0.049 mg/L	1	0.020	0.003	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Lead	0.87 µg/L	1	0.20	0.05	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Lithium	0.0785 mg/L	1	0.00030	0.00007	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Manganese	0.0812 mg/L	1	0.00100	0.00008	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Selenium	4.57 μg/L	1	0.50	0.04	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Thallium	0.18 µg/L	1	0.20	0.02 J1	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-12 Customer Description: TG-32

Lab Number: 231985-005 Preparation:

Date Collected: 06/26/2023 08:55 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.015 μg/L	1	0.100	0.008 J1	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Arsenic	0. 11 μg/L	1	0.10	0.03	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Barium	16.3 µg/L	1	0.20	0.05	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 11 0 μg/L	1	0.050	0.007	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Boron	0.019 mg/L	1	0.050	0.007 J1	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Cadmium	0.007 μg/L	1	0.020	0.004 J1	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Calcium	0.21 mg/L	1	0.05	0.01	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Chromium	0.45 μg/L	1	0.30	0.07	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Cobalt	0.932 μg/L	1	0.020	0.005	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Lead	0. 11 μg/L	1	0.20	0.05 J1	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Lithium	0.00487 mg/L	1	0.00030	0.00007	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Magnesium	0.291 mg/L	1	0.100	0.006	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.7 μg/L	1	0.5	0.1	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Potassium	0.175 mg/L	1	0.100	0.008	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Selenium	0.23 μg/L	1	0.50	0.04 J1	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Sodium	3.34 mg/L	1	0.20	0.01	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Strontium	0.00203 mg/L	1	0.00200	0.00005	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.45 pCi/L	0.13	0.21	TTP	07/07/2023 13:34	SW-846 9315-1986, Rev. 0
Carrier Recovery	106 %					
Radium-228	-0.11 pCi/L	0.14	0.50	ST	07/10/2023 16:11	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	79.1 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-12 Customer Description: TG-32

Lab Number: 231985-005-01 Preparation: Dissolved

Date Collected: 06/26/2023 08:55 EDT Date Received: 06/30/2023 11:30 EDT

motare							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.014 μg/L	1	0.100	0.008 J1	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Arsenic	0.1 μg/L	1	0.10	0.03	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Barium	16.5 µg/L	1	0.20	0.05	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 112 μg/L	1	0.050	0.007	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Cadmium	0.006 μg/L	1	0.020	0.004 J1	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Chromium	0.51 µg/L	1	0.30	0.07	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Cobalt	0.926 μg/L	1	0.020	0.005	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Iron	0.113 mg/L	1	0.020	0.003	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Lead	0. 11 μg/L	1	0.20	0.05 J1	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Lithium	0.00485 mg/L	1	0.00030	0.00007	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Manganese	0.00340 mg/L	1	0.00100	0.00008	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.5 µg/L	1	0.5	0.1	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Selenium	0.25 μg/L	1	0.50	0.04 J1	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-13 Customer Description: TG-32

Lab Number: 231985-006 Preparation:

Date Collected: 06/26/2023 08:28 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Arsenic	1.56 µg/L	1	0.10	0.03	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Barium	39.8 μg/L	1	0.20	0.05	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Beryllium	0.234 µg/L	1	0.050	0.007	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Boron	0.067 mg/L	1	0.050	0.007	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Calcium	10.6 mg/L	1	0.05	0.01	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Chromium	0.31 μg/L	1	0.30	0.07	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Cobalt	51.5 µg/L	1	0.020	0.005	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Lithium	0.142 mg/L	1	0.00030	0.00007	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Magnesium	14.5 mg/L	1	0.100	0.006	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Potassium	4.98 mg/L	1	0.100	0.008	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Sodium	20.9 mg/L	1	0.20	0.01	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Strontium	0.0706 mg/L	1	0.00200	0.00005	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Thallium	0.03 μg/L	1	0.20	0.02 J1	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.68 pCi/L	0.17	0.24	TTP	07/07/2023 13:34	SW-846 9315-1986, Rev. 0
Carrier Recovery	88.5 %					
Radium-228	0.93 pCi/L	0.14	0.45	ST	07/10/2023 16:11	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	87.0 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-13 Customer Description: TG-32

Lab Number: 231985-006-01 Preparation: Dissolved

Date Collected: 06/26/2023 08:28 EDT Date Received: 06/30/2023 11:30 EDT

motono							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Arsenic	1.18 µg/L	1	0.10	0.03	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Barium	39.9 μg/L	1	0.20	0.05	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Beryllium	0.193 μg/L	1	0.050	0.007	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Chromium	0.26 μg/L	1	0.30	0.07 J1	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Cobalt	52.0 μg/L	1	0.020	0.005	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Iron	45.0 mg/L	5	0.10	0.02	GES	07/12/2023 11:16	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Lithium	0.142 mg/L	1	0.00030	0.00007	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Manganese	0.520 mg/L	1	0.00100	0.00008	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Thallium	0.03 µg/L	1	0.20	0.02 J1	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-17 Customer Description: TG-32

Lab Number: 231985-007 Preparation:

Date Collected: 06/26/2023 12:47 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Uni	s Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.008 µg/	. 1	0.100	0.008 J1	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Arsenic	0.16 µg/	. 1	0.10	0.03	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Barium	112 µg/	. 1	0.20	0.05	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Beryllium	0.354 µg/	. 1	0.050	0.007	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Boron	0.032 mg/	L 1	0.050	0.007 J1	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Cadmium	0.022 µg/	. 1	0.020	0.004	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Calcium	0.23 mg/	L 1	0.05	0.01	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Chromium	0.49 µg/	. 1	0.30	0.07	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Cobalt	5.15 µg/	. 1	0.020	0.005	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Lead	0.13 µg/	. 1	0.20	0.05 J1	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Lithium	0.0106 mg/	L 1	0.00030	0.00007	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Magnesium	1.60 mg/	L 1	0.100	0.006	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Mercury	297 ng/l	4	20	7	RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/	. 1	0.5	0.1 U1	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Potassium	0.384 mg/	L 1	0.100	0.008	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Selenium	0.17 µg/	. 1	0.50	0.04 J1	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Sodium	5.80 mg/	L 1	0.20	0.01	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Strontium	0.00855 mg/	L 1	0.00200	0.00005	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/	. 1	0.20	0.02 U1	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.10 pCi/L	0.27	0.24	TTP	07/07/2023 13:34	SW-846 9315-1986, Rev. 0
Carrier Recovery	105 %					
Radium-228	0.80 pCi/L	0.16	0.52	ST	07/10/2023 16:11	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	80.2 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-17 Customer Description: TG-32

Lab Number: 231985-007-01 Preparation: Dissolved

Date Collected: 06/26/2023 12:47 EDT Date Received: 06/30/2023 11:30 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.009 μg/L	1	0.100	0.008 J1	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Arsenic	0.08 µg/L	1	0.10	0.03 J1	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Barium	121 µg/L	1	0.20	0.05	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Beryllium	0.369 µg/L	1	0.050	0.007	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Cadmium	0.023 µg/L	1	0.020	0.004	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Chromium	0.37 µg/L	1	0.30	0.07	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Cobalt	5.50 μg/L	1	0.020	0.005	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Iron	0.006 mg/L	1	0.020	0.003 J1	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Lead	0.12 µg/L	1	0.20	0.05 J1	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Lithium	0.0111 mg/L	1	0.00030	0.00007	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Manganese	0.00528 mg/L	1	0.00100	0.00008	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Selenium	0.16 µg/L	1	0.50	0.04 J1	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-18 Customer Description: TG-32

Lab Number: 231985-008 Preparation:

Date Collected: 06/27/2023 08:42 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.009 µg/L	1	0.100	0.008 J1	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Arsenic	0.55 µg/L	1	0.10	0.03	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Barium	89.0 μg/L	1	0.20	0.05	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Beryllium	0.132 µg/L	1	0.050	0.007	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Boron	0.009 mg/L	. 1	0.050	0.007 J1	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Cadmium	0.013 µg/L	1	0.020	0.004 J1	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Calcium	0.23 mg/L	. 1	0.05	0.01	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Chromium	0.57 μg/L	1	0.30	0.07	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Cobalt	0.933 μg/L	1	0.020	0.005	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Lead	0.13 μg/L	1	0.20	0.05 J1	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Lithium	0.0138 mg/L	. 1	0.00030	0.00007	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Magnesium	0.325 mg/L	. 1	0.100	0.006	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Mercury	10 ng/L	1	5	2	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Potassium	0.776 mg/L	. 1	0.100	0.008	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Selenium	0. 1 5 μg/L	1	0.50	0.04 J1	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Sodium	5.51 mg/L	. 1	0.20	0.01	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Strontium	0.00483 mg/L	. 1	0.00200	0.00005	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 µg/L	1	0.20	0.02 J1	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.57 pCi/L	0.14	0.20	TTP	07/07/2023 13:34	SW-846 9315-1986, Rev. 0
Carrier Recovery	102 %					
Radium-228	1.96 pCi/L	0.28	0.89	ST	07/10/2023 16:11	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	69.4 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-18 Customer Description: TG-32

Lab Number: 231985-008-01 Preparation: Dissolved

Date Collected: 06/27/2023 08:42 EDT Date Received: 06/30/2023 11:30 EDT

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.009 μg/L	1	0.100	0.008 J1	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Arsenic	0.05 µg/L	1	0.10	0.03 J1	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Barium	91.9 µg/L	1	0.20	0.05	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 15 0 μg/L	1	0.050	0.007	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Cadmium	0.014 μg/L	1	0.020	0.004 J1	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Chromium	0.24 µg/L	1	0.30	0.07 J1	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Cobalt	0.966 μg/L	1	0.020	0.005	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Iron	0.022 mg/L	1	0.020	0.003	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Lithium	0.0149 mg/L	1	0.00030	0.00007	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Manganese	0.00426 mg/L	1	0.00100	0.00008	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Selenium	0.07 μg/L	1	0.50	0.04 J1	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Thallium	0.03 µg/L	1	0.20	0.02 J1	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-22 Customer Description: TG-32

Lab Number: 231985-009 Preparation:

Date Collected: 06/26/2023 09:43 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qua	lifiers Analyst	Analysis Date	Method
Antimony	<0.04 µg/L	5	0.50	0.04 U1	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Arsenic	3.4 µg/L	5	0.5	0.2	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Barium	13.5 µg/L	5	1.0	0.3	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Beryllium	7.71 µg/L	5	0.25	0.04	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Boron	0.06 mg/L	5	0.25	0.04 J1	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Cadmium	1.09 µg/L	5	0.10	0.02	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Calcium	15.5 mg/L	5	0.25	0.05	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Chromium	0.7 µg/L	5	1.5	0.4 J1	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Cobalt	109 µg/L	5	0.10	0.03	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Lead	<0.3 µg/L	5	1.0	0.3 U1	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Lithium	0.236 mg/L	5	0.0015	0.0004	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Magnesium	21.4 mg/L	5	0.50	0.03	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Mercury	29 ng/L	1	5	2	RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.5 µg/L	5	2.5	0.5 U1	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Potassium	4.55 mg/L	5	0.50	0.04	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Selenium	7.0 µg/L	5	2.5	0.2	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Sodium	90.8 mg/L	5	1.00	0.05	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Strontium	0.121 mg/L	5	0.0100	0.0003	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Thallium	0.2 µg/L	5	1.0	0.1 J1	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.51 pCi/L	0.27	0.28	TTP	07/07/2023 13:34	SW-846 9315-1986, Rev. 0
Carrier Recovery	68.9 %					
Radium-228	2.26 pCi/L	0.17	0.48	ST	07/10/2023 16:11	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	80.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-22 Customer Description: TG-32

Lab Number: 231985-009-01 Preparation: Dissolved

Date Collected: 06/26/2023 09:43 EDT Date Received: 06/30/2023 11:30 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Arsenic	3.44 µg/L	1	0.10	0.03	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Barium	11.6 µg/L	1	0.20	0.05	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Beryllium	5.90 μg/L	1	0.050	0.007	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Cadmium	1.09 µg/L	1	0.020	0.004	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Chromium	0.41 µg/L	1	0.30	0.07	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Cobalt	112 µg/L	1	0.020	0.005	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Iron	37.4 mg/L	5	0.10	0.02	GES	07/12/2023 11:26	EPA 200.8-1994, Rev. 5.4
Lead	0.15 µg/L	1	0.20	0.05 J1	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Lithium	0.188 mg/L	1	0.00030	0.00007	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Manganese	0.453 mg/L	1	0.00100	0.00008	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Mercury	3 ng/L	1	5	2 J1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Selenium	8.05 μg/L	1	0.50	0.04	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Thallium	0.20 µg/L	1	0.20	0.02	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-28 Customer Description: TG-32

Lab Number: 231985-010 Preparation:

Date Collected: 06/26/2023 12:26 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.015 µg/L	1	0.100	0.008 J1	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Arsenic	0.22 µg/L	1	0.10	0.03	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Barium	11 9 μg/L	1	0.20	0.05	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Beryllium	0.562 μg/L	1	0.050	0.007	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Boron	0.299 mg/L	1	0.050	0.007	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Cadmium	0.054 μg/L	1	0.020	0.004	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Calcium	1.48 mg/L	1	0.05	0.01	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Chromium	0.47 µg/L	1	0.30	0.07	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Cobalt	13.1 µg/L	1	0.020	0.005	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Lead	0. 11 μg/L	1	0.20	0.05 J1	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Lithium	0.0235 mg/L	1	0.00030	0.00007	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Magnesium	2.89 mg/L	1	0.100	0.006	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Mercury	13 ng/L	1	5	2	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Potassium	0.764 mg/L	1	0.100	0.008	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Selenium	0.21 μg/L	1	0.50	0.04 J1	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Sodium	5.82 mg/L	1	0.20	0.01	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Strontium	0.0204 mg/L	1	0.00200	0.00005	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Thallium	0.03 µg/L	1	0.20	0.02 J1	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.64 pCi/L	0.31	0.19	TTP	07/07/2023 13:34	SW-846 9315-1986, Rev. 0
Carrier Recovery	90.8 %					
Radium-228	1.36 pCi/L	0.16	0.47	ST	07/12/2023 14:00	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	88.9 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-28 Customer Description: TG-32

Lab Number: 231985-010-01 Preparation: Dissolved

Date Collected: 06/26/2023 12:26 EDT Date Received: 06/30/2023 11:30 EDT

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Arsenic	0.07 µg/L	1	0.10	0.03 J1	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Barium	117 μg/L	1	0.20	0.05	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Beryllium	0.495 μg/L	1	0.050	0.007	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Cadmium	0.044 µg/L	1	0.020	0.004	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Chromium	0.36 µg/L	1	0.30	0.07	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Cobalt	12.2 μg/L	1	0.020	0.005	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Iron	0.010 mg/L	1	0.020	0.003 J1	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Lead	0.08 µg/L	1	0.20	0.05 J1	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Lithium	0.0232 mg/L	1	0.00030	0.00007	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Manganese	0.0496 mg/L	1	0.00100	0.00008	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Mercury	2 ng/L	1	5	2 J1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Selenium	0.21 μg/L	1	0.50	0.04 J1	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Thallium	0.02 µg/L	1	0.20	0.02 J1	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-30 Customer Description: TG-32

Lab Number: 231985-011 Preparation:

Date Collected: 06/26/2023 12:03 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.010 μg/L	1	0.100	0.008 J1	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Arsenic	0.21 μg/L	1	0.10	0.03	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Barium	76.7 μg/L	1	0.20	0.05	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Beryllium	0.086 μg/L	1	0.050	0.007	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Boron	1.80 mg/L	1	0.050	0.007	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Cadmium	0.008 µg/L	1	0.020	0.004 J1	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Calcium	0.54 mg/L	1	0.05	0.01	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Chromium	0.57 μg/L	1	0.30	0.07	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Cobalt	3.81 µg/L	1	0.020	0.005	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Lead	0.08 µg/L	1	0.20	0.05 J1	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Lithium	0.00896 mg/L	1	0.00030	0.00007	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Magnesium	1.92 mg/L	1	0.100	0.006	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Mercury	130 ng/L	2	10	4	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Potassium	0.754 mg/L	1	0.100	0.008	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Selenium	0.45 μg/L	1	0.50	0.04 J1	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Sodium	71.8 mg/L	1	0.20	0.01	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Strontium	0.00865 mg/L	1	0.00200	0.00005	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 µg/L	1	0.20	0.02 J1	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.12 pCi/L	0.21	0.22	TTP	07/07/2023 13:34	SW-846 9315-1986, Rev. 0
Carrier Recovery	90.2 %					
Radium-228	0.56 pCi/L	0.15	0.48	ST	07/12/2023 14:00	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	85.8 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-30 Customer Description: TG-32

Lab Number: 231985-011-01 Preparation: Dissolved

Date Collected: 06/26/2023 12:03 EDT Date Received: 06/30/2023 11:30 EDT

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.008 μg/L	1	0.100	0.008 J1	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Arsenic	0.15 µg/L	1	0.10	0.03	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Barium	61.6 µg/L	1	0.20	0.05	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Beryllium	0.103 μg/L	1	0.050	0.007	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Cadmium	0.009 μg/L	1	0.020	0.004 J1	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Chromium	0.30 μg/L	1	0.30	0.07	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Cobalt	3.83 µg/L	1	0.020	0.005	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Iron	0.024 mg/L	1	0.020	0.003	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Lithium	0.00897 mg/L	1	0.00030	0.00007	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Manganese	0.0143 mg/L	1	0.00100	0.00008	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Selenium	0.35 μg/L	1	0.50	0.04 J1	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Thallium	0.03 µg/L	1	0.20	0.02 J1	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-31 Customer Description: TG-32

Lab Number: 231985-012 Preparation:

Date Collected: 06/26/2023 11:01 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.009 μg/L	1	0.100	0.008 J1	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Arsenic	0.36 µg/L	1	0.10	0.03	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Barium	32.9 µg/L	1	0.20	0.05	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Beryllium	1.08 µg/L	5	0.25	0.04	GES	07/26/2023 11:44	EPA 200.8-1994, Rev. 5.4
Boron	0.025 mg/L	1	0.050	0.007 J1	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Cadmium	0.064 µg/L	1	0.020	0.004	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Calcium	2.69 mg/L	1	0.05	0.01	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Chromium	0.63 μg/L	1	0.30	0.07	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Cobalt	10.1 μg/L	1	0.020	0.005	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Lead	0.33 µg/L	1	0.20	0.05	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Lithium	0.0889 mg/L	5	0.0015	0.0004	GES	07/26/2023 11:44	EPA 200.8-1994, Rev. 5.4
Magnesium	3.92 mg/L	1	0.100	0.006	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Mercury	77 ng/L	1	5	2	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Potassium	1.55 mg/L	1	0.100	0.008	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Selenium	0.78 μg/L	1	0.50	0.04	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Sodium	31.1 mg/L	1	0.20	0.01	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Strontium	0.0389 mg/L	1	0.00200	0.00005	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 μg/L	1	0.20	0.02 J1	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.21 pCi/L	0.29	0.26	TTP	07/07/2023 13:34	SW-846 9315-1986, Rev. 0
Carrier Recovery	90.9 %					
Radium-228	2.08 pCi/L	0.16	0.44	ST	07/12/2023 14:00	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	82.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-31 Customer Description: TG-32

Lab Number: 231985-012-01 Preparation: Dissolved

Date Collected: 06/26/2023 11:01 EDT Date Received: 06/30/2023 11:30 EDT

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.009 µg/L	1	0.100	0.008 J1	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4
Arsenic	0.26 µg/L	1	0.10	0.03	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4
Barium	31.1 µg/L	1	0.20	0.05	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4
Beryllium	1.06 µg/L	5	0.25	0.04	GES	07/26/2023 11:49	EPA 200.8-1994, Rev. 5.4
Cadmium	0.065 µg/L	1	0.020	0.004	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4
Chromium	0.34 µg/L	1	0.30	0.07	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4
Cobalt	9.88 µg/L	1	0.020	0.005	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4
Iron	0.109 mg/L	1	0.020	0.003	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4
Lead	0.28 µg/L	1	0.20	0.05	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4
Lithium	0.0871 mg/L	5	0.0015	0.0004	GES	07/26/2023 11:49	EPA 200.8-1994, Rev. 5.4
Manganese	0.0257 mg/L	1	0.00100	0.00008	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4
Mercury	7 ng/L	1	5	2	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4
Selenium	0.80 µg/L	1	0.50	0.04	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4
Thallium	0.08 µg/L	1	0.20	0.02 J1	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-32 Customer Description: TG-32

Lab Number: 231985-013 Preparation:

Date Collected: 06/26/2023 09:30 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.012 μg/L	1	0.100	0.008 J1	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Arsenic	1.53 µg/L	1	0.10	0.03	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Barium	23.4 μg/L	1	0.20	0.05	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Beryllium	0.905 μg/L	1	0.050	0.007	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Boron	0.595 mg/L	1	0.050	0.007	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Cadmium	0.042 μg/L	1	0.020	0.004	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Calcium	5.26 mg/L	1	0.05	0.01	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Chromium	0.61 μg/L	1	0.30	0.07	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Cobalt	1 5.9 μg/L	1	0.020	0.005	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Lead	0. 1 7 μg/L	1	0.20	0.05 J1	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Lithium	0.0500 mg/L	1	0.00030	0.00007	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Magnesium	5.74 mg/L	1	0.100	0.006	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Mercury	760 ng/L	10	50	20	RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Potassium	2.57 mg/L	1	0.100	0.008	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Selenium	1.59 μg/L	1	0.50	0.04	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Sodium	27.0 mg/L	1	0.20	0.01	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Strontium	0.0736 mg/L	1	0.00200	0.00005	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Thallium	0. 11 μg/L	1	0.20	0.02 J1	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.41 pCi/L	0.20	0.17	TTP	07/11/2023 12:45	SW-846 9315-1986, Rev. 0
Carrier Recovery	87.4 %					
Radium-228	2.52 pCi/L	0.17	0.46	ST	07/12/2023 14:00	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	85.3 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-32 Customer Description: TG-32

Lab Number: 231985-013-01 Preparation: Dissolved

Date Collected: 06/26/2023 09:30 EDT Date Received: 06/30/2023 11:30 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.009 µg/L	1	0.100	0.008 J1	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Arsenic	1.29 µg/L	1	0.10	0.03	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Barium	23.4 µg/L	1	0.20	0.05	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Beryllium	1.08 µg/L	1	0.050	0.007	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Cadmium	0.064 µg/L	1	0.020	0.004	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Chromium	0.38 µg/L	1	0.30	0.07	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Cobalt	17.1 µg/L	1	0.020	0.005	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Iron	10.7 mg/L	1	0.020	0.003	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Lead	0. 11 µg/L	1	0.20	0.05 J1	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Lithium	0.0527 mg/L	1	0.00030	0.00007	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Manganese	0.0782 mg/L	1	0.00100	0.00008	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Mercury	27 ng/L	1	5	2	RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Selenium	1.74 µg/L	1	0.50	0.04	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Thallium	0.10 µg/L	1	0.20	0.02 J1	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-33 Customer Description: TG-32

Lab Number: 231985-014 Preparation:

Date Collected: 06/26/2023 10:34 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL I	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.021 µg/L	1	0.100	0.008 J	J1	GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Arsenic	1.08 µg/L	1	0.10	0.03		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Barium	41.4 µg/L	1	0.20	0.05		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Beryllium	1.48 µg/L	5	0.25	0.04		GES	07/26/2023 11:54	EPA 200.8-1994, Rev. 5.4
Boron	0.114 mg/L	. 1	0.050	0.007		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Cadmium	0.056 μg/L	1	0.020	0.004		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Calcium	1.73 mg/l	. 1	0.05	0.01		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Chromium	0.39 μg/L	1	0.30	0.07		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Cobalt	1 0.7 μg/L	1	0.020	0.005		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Lead	0.48 μg/L	1	0.20	0.05		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Lithium	0.0246 mg/L	. 5	0.0015	0.0004		GES	07/26/2023 11:54	EPA 200.8-1994, Rev. 5.4
Magnesium	4.05 mg/L	. 1	0.100	0.006		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Mercury	5610 ng/L	100	500	200		RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 l	U1	GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Potassium	0.271 mg/l	. 1	0.100	0.008		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Selenium	4.21 µg/L	1	0.50	0.04		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Sodium	16.8 mg/l	. 1	0.20	0.01		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Strontium	0.0303 mg/L	. 1	0.00200	0.00005		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Thallium	0.03 µg/L	1	0.20	0.02 J	J 1	GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.78 pCi/L	0.17	0.24	TTP	07/11/2023 12:45	SW-846 9315-1986, Rev. 0
Carrier Recovery	86.1 %					
Radium-228	1.18 pCi/L	0.16	0.48	ST	07/12/2023 14:00	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	87.7 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-33 Customer Description: TG-32

Lab Number: 231985-014-01 Preparation: Dissolved

Date Collected: 06/26/2023 10:34 EDT Date Received: 06/30/2023 11:30 EDT

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.008 μg/L	1	0.100	0.008 J1	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Arsenic	1.07 µg/L	1	0.10	0.03	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Barium	40.5 μg/L	1	0.20	0.05	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Beryllium	1.17 µg/L	1	0.050	0.007	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Cadmium	0.053 μg/L	1	0.020	0.004	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Chromium	0.29 μg/L	1	0.30	0.07 J1	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Cobalt	10.4 μg/L	1	0.020	0.005	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Iron	0.014 mg/L	1	0.020	0.003 J1	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Lead	0.26 μg/L	1	0.20	0.05	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Lithium	0.0202 mg/L	1	0.00030	0.00007	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Manganese	0.00629 mg/L	1	0.00100	0.00008	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Mercury	670 ng/L	10	50	20	RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Selenium	4.09 μg/L	1	0.50	0.04	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Thallium	0.03 µg/L	1	0.20	0.02 J1	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: Duplicate - 1 Customer Description: TG-32

Lab Number: 231985-015 Preparation:

Date Collected: 06/26/2023 13:00 EDT Date Received: 06/30/2023 11:30 EDT

Motalo							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Arsenic	1.55 µg/L	1	0.10	0.03	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Barium	39.1 μg/L	1	0.20	0.05	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Beryllium	0.223 μg/L	1	0.050	0.007	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Boron	0.069 mg/L	1	0.050	0.007	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Calcium	10.5 mg/L	1	0.05	0.01	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Chromium	0.29 μg/L	1	0.30	0.07 J1	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Cobalt	53.7 μg/L	1	0.020	0.005	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Lithium	0.141 mg/L	1	0.00030	0.00007	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Magnesium	14.9 mg/L	1	0.100	0.006	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Potassium	4.98 mg/L	1	0.100	0.008	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Sodium	21.3 mg/L	1	0.20	0.01	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Strontium	0.0691 mg/L	1	0.00200	0.00005	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Thallium	0.03 µg/L	1	0.20	0.02 J1	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: Duplicate - 1 Customer Description: TG-32

Lab Number: 231985-015-01 Preparation: Dissolved

Date Collected: 06/26/2023 13:00 EDT Date Received: 06/30/2023 11:30 EDT

motaro							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Arsenic	1.17 µg/L	1	0.10	0.03	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Barium	39.6 μg/L	1	0.20	0.05	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Beryllium	0.210 μg/L	1	0.050	0.007	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Chromium	0.28 μg/L	1	0.30	0.07 J1	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Cobalt	53.1 μg/L	1	0.020	0.005	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Iron	43.0 mg/L	5	0.10	0.02	GES	07/26/2023 12:04	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Lithium	0.141 mg/L	1	0.00030	0.00007	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Manganese	0.520 mg/L	1	0.00100	0.00008	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Thallium	0.02 µg/L	1	0.20	0.02 J1	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: Equipment Blank Customer Description: TG-32

Lab Number: 231985-016 Preparation:

Date Collected: 06/26/2023 09:40 EDT Date Received: 06/30/2023 11:30 EDT

motaro							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/L	1	0.10	0.03 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Barium	<0.05 µg/L	1	0.20	0.05 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Beryllium	0.027 μg/L	1	0.050	0.007 J1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Boron	<0.007 mg/L	1	0.050	0.007 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Calcium	<0.01 mg/L	1	0.05	0.01 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Chromium	0.32 μg/L	1	0.30	0.07	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Cobalt	0.037 μg/L	1	0.020	0.005	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Lithium	<0.00007 mg/L	1	0.00030	0.00007 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Magnesium	<0.006 mg/L	1	0.100	0.006 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Potassium	<0.008 mg/L	1	0.100	0.008 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Sodium	<0.01 mg/L	1	0.20	0.01 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Strontium	<0.00005 mg/L	1	0.00200	0.00005 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125

Phone: 614-836-4221 Audinet: 210-4221

Reissued

Customer: Pirkey Power Station Date Reported: 10/29/2023 Job ID: 231985

Customer Sample ID: Field Blank Customer Description: TG-32

Lab Number: 231985-017 Preparation:

Date Collected: 06/26/2023 12:25 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifier	s Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/L	1	0.10	0.03 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Barium	<0.05 µg/L	1	0.20	0.05 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Beryllium	0.015 μg/L	1	0.050	0.007 J1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Boron	<0.007 mg/L	1	0.050	0.007 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Calcium	<0.01 mg/L	1	0.05	0.01 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Chromium	0.53 μg/L	1	0.30	0.07	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Cobalt	0.036 μg/L	1	0.020	0.005	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Lithium	<0.00007 mg/L	1	0.00030	0.00007 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Magnesium	<0.006 mg/L	1	0.100	0.006 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Potassium	<0.008 mg/L	1	0.100	0.008 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Sodium	<0.01 mg/L	1	0.20	0.01 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Strontium	<0.00005 mg/L	1	0.00200	0.00005 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.20 pCi/L	0.08	0.19	TTP	07/11/2023 12:45	SW-846 9315-1986, Rev. 0
Carrier Recovery	87.8 %					
Radium-228	-0.02 pCi/L	0.13	0.46	ST	07/12/2023 14:00	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	89.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

231985

Job Comments:

Report originally issued 8/4/23. Report reissued 10/29/23 to correct rounding errors on report and EDD.

Job ID: 231985

Water Analysis Report

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Customer: Pirkey Power Station Date Reported: 10/29/2023

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael & Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.
- U1 Not detected at or above method detection limit (MDL).

Chain of Custody Record Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125 Program: Coal Combustion Residuals (CCR) Site Contact: Date: For Lab Use Only: Michael Ohlinger (614-836-4184) Contacts: COC/Order #: Dave Conover (614-836-4219) Field-filter 250 mL 250 mL (six every 250 mL Project Name: Pirkey PP CCR 250 mL Glass Glass 10th*) bottle, bottle, then bottle. bottle. L bottles Analysis Turnaround Time (in Calendar Days) Contact Name: Leslie Fuerschbach 231985 pH<2, pH<2, HCL**, HCL** pH<2, Routine (28 days for Monitoring Wells) HNO₃ HNO₃ HNO3 pH<2 Contact Phone: 318-673-2744 pH<2 Ba, ⊏, S BF Be, C Li, Mg Ra-228 Mercury Sampler(s): Matt Hamilton Kenny McDonald mpler(s) Initlals Sb, t Co, I Se, Ba, I K, L Se, Dissolved St Be, Cd, Cr, C Mn, Mo, Pb, \$ B ℃ Dissolved Sample Ra-226, A C S Type Sample Sample (C=Comp. # of Matrix Sample Identification Date Time G=Grab) Cont. Sample Specific Notes: 7 6/26/2023 G GW 1042 х Х Х Х Х AD-2 G GW 7 6/27/2023 1101 Х Х Х Х Х AD-3 7 6/27/2023 1110 G GW Х Х Х AD-4 Х Х G GW 7 6/27/2023 951 AD-7 Х Х Х Х Х 755 6/26/2023 G GW 7 AD-12 Х Х Х Х Х 6/26/2023 728 G **GW** 10 Х Х Х **AD-13** 6/26/2023 1147 G GW 7 Х Х Х AD-17 GW 7 6/27/2023 742 G Х Х Х **AD-18** 6/26/2023 843 G GW 7 X Х Х Х Х AD-22 GW 7 6/26/2023 1126 G Х Х Х Х Х AD-28 GW 7 G 6/26/2023 1103 AD-30 Х Х Х Х Х GW 7 6/26/2023 1001 G X Х Х Х Х AD-31 F4 4 2 F2 Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other : F= fitter in field Six 1L Bottles must be collected for Radium for every 10th sample. Special Instructions/QC Requirements & Comments: TG-32 needed Date/Time: Company: Received by: 6-28-23 Date/Time: Relinquished by Received by:

Received in Paboratory by:

11:30 Am

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

Date/Time:

Company:

Relinquished by:

Chain of Custody Record Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125 **Program: Coal Combustion Residuals (CCR)** Michael Ohlinger (614-836-4184) Site Contact: Date: For Lab Use Only: Contacts: COC/Order #: Dave Conover (614-836-4219) Three Field-filter 250 mL 250 mL (six every 250 mL Project Name: Pirkey PP CCR 250 mL Glass Glass 10th*) bottle, bottle, then bottle. bottle, L bottles Analysis Turnaround Time (in Calendar Days) Contact Name: Leslie Fuerschbach pH<2, pH<2, HCL** HCL** pH<2, @ Routine (28 days for Monitoring Wells) Contact Phone: 318-673-2744 HNO₃ HNO₃ HNO3 pH<2 pH<2 8 1 Be, Ca LI, Mg, e, Sr, Ti Ra-228 Mercury Sampler(s): Matt Hamilton Kenny McDonald Sampler(s) Initials Dissolved Sb, As Be, Cd, Cr, Co, F Mn, Mo, Pb, Se, 1 <u>а</u> Dissolved Sample Ra-226, Туре Sample Sample (C=Comp. # of Sample Identification Date Time G=Grab) Matrix Cont. Sample Specific Notes: G GW 7 6/26/2023 830 Х Х Х Х Х AD-32 934 G GW 7 6/23/2023 Х Х Х Х Х AD-33 GW 6/26/2023 1200 G Х Х Х Duplicate - 1 Х 6/26/2023 840 G GW 2 **Equipment Blank** Х Х GW 6/26/2023 1125 G 5 Field Blank Х Х Х 2 F4 F2 : F= filter in field Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Six 1L Bottles must be collected for Radium for every 10th sample. Special Instructions/QC Requirements & Comments: TG-32 needed Company: Date/Time: Received by: 1600 Date/Time: Received by: Relinquished by: Company: Relinquished by: Company: Date/Time: Received in Leboratory by: 6/30/23 11:30 AM

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shrevefort, Rev. 1, 1/10/17

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer Pickty	Number of Plastic Containers:
Opened By WCb / Mbh 6/30/23	Number of Glass Containers:
′	Number of Mercury Containers:
F	or N/A Initial:on ice / no ice
	4) - If No, specify each deviation: Comments
	If RUSH, who was notified?
	IO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? \(\mathcal{O} / \ \mathbb{N} \)	Comments
Were samples labeled properly? (Y) N	Comments
Were correct containers used? YN	Comments
Was pH checked & Color Coding done? Y	IN or N/A Initial & Date: MGK WCG (190)23
pH paper (circle one): MQuant,PN1.09535.0001,LC	OT# [OR/Lab Rat,PN4801,LOT# X000RW0G21 Exp 11/15/2024
- Was Add'l Preservative needed? Y N If	Yes: By whom & when:(See Prep Book)
Is sample filtration requested? Y	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# 23/985 Initial & I	Date & Time :
Logged by MSO	nts:

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

-

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: х This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. $\left(\mathbf{x} \right)$ Field chain-of-custody documentation R1 X R_2 Sample identification cross-reference X **R**3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) M Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits $\overline{\mathbf{x}}$ Test reports/summary forms for blank samples **R**5 X **R6** Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: $\left[\mathsf{x} \right]$ **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits Х R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates x List of method quantitation limits (MQLs) for each analyte for each method and matrix R9 $|\mathsf{x}|$ R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Tamisha Palmer		Chemical Laboratory Technician, Prin	07/11/2023
Name (printed)	Signatuke	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 07/011/2023

Laboratory Job Number: 231985

Prep Batch Number(s): PB23070304

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
•	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	No	ER1
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	NA	
	I	Were analytical duplicates analyzed at the appropriate frequency?	NA	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	NA	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 07/011/2023

Laboratory Job Number: 231985

Prep Batch Number(s): PB23070304

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	ľ	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S 3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		,
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
_S14	O, I	Demonstration of analyst competency (DOC)		_
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	О, І	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey Power
Reviewer Name: Tamisha Palmer
LRC Date: 07/011/2023
Laboratory Job Number: 231985
Prep Batch Number(s): PB23070304

Exception Report No.	Description
ER1	The precision between the MS and MSD was not within 25%
<u>.</u>	
<u> </u>	

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data х (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. Field chain-of-custody documentation × R1 Х R₂ Sample identification cross-reference Test reports (analytical data sheets) for each environmental sample that includes: х RЗ (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) Surrogate recovery data including: NA **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits Test reports/summary forms for blank samples х **R**5 Test reports/summary forms for laboratory control samples (LCSs) including: х **R6** (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: $|\mathbf{x}|$ **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits Laboratory analytical duplicate (if applicable) recovery and precision: × **R8** (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates List of method quantitation limits (MQLs) for each analyte for each method and matrix $\overline{\mathsf{x}}$ R9 X Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) х Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Chemical Technician Prin Tamisha Palmer 07/13/2023 Name (printed) Official Title Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 07/13/2023

Laboratory Job Number: 231985, 231991

Prep Batch Number(s): PB23070606

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	NA	
	I	Were analytical duplicates analyzed at the appropriate frequency?	NA	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	NA	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		1
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 07/13/2023

Laboratory Job Number: 231985, 231991

Prep Batch Number(s): PB23070606

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		- 30
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		_
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	О, І	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	20,0
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)	_	
	1	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Nai	me: American Electric Power Dolan Chemical Laboratory
Project Name:	
•	a: Tamisha Palmer
LRC Date: 07/	
	Number: 231985, 231991
	nber(s): PB23070606

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: x This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. R_1 Field chain-of-custody documentation × × R2 Sample identification cross-reference × R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits X Test reports/summary forms for blank samples **R**5 х R6 Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits × Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits × R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates $\overline{\mathsf{x}}$ R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix x R10 Other problems or anomalies × The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: • This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Jonathan Barnhill Lab Supervisor 08/03/2023 Official Title Name (printed) Signature Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 08/03/2023

Laboratory Job Number: 231985

Prep Batch Number(s): PB23070502 PB23070503 QC2307072 QC2307106 QC2307184 QC2307222

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	YES	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER1
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	YES	
	I	Were MS/MSD RPDs within laboratory QC limits?	YES	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	·
	ı	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 08/03/2023

Laboratory Job Number: 231985

Prep Batch Number(s): PB23070502 PB23070503 QC2307072 QC2307106 QC2307184 QC2307222

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	Yes	
	I	Were ion abundance data within the method-required QC limits?	Yes	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	Yes	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
\$7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		F H0121 = 11
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 08/03/2023

Laboratory Job Number: 231985

Prep Batch Number(s): PB23070502 PB23070503 QC2307072 QC2307106 QC2307184 QC2307222

Exception Report No.	Description
ER1	Linear Dynamic Range (LDR) study used to determine upper limit of analyte calibration.
ER2	CCB acceptance criteria is CCB<2.2*MDL.

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This da	ıta pack	tage co	onsists of:				
x	(which	inclu	re page, and the laboratory revi des the reportable data identific eption Reports.				
×	R1	Field	chain-of-custody documentation	n			
x	R2	Samp	le identification cross-referenc	е			
x	R3	(a) I (b) I (c) F (d) C	reports (analytical data sheets) tems specified in NELAC Chap VELAC Standard Dilution factors Preparation methods Cleanup methods f required for the project, tenta	er 5 for re	porting results, e.g.,	Section	
NA	R4	(a) (gate recovery data including: Calculated recovery (%R) 'he laboratory's surrogate QC li	mits			
x	R5		reports/summary forms for bla		S		
×	R6	(a) I (b) C	reports/summary forms for labo LCS spiking amounts Calculated %R for each analyte The laboratory's LCS QC limits	oratory co	ntrol samples (LCSs)) inclu	ding:
×	R7	(a) S (b) M (c) G (d) G	reports for project matrix spike, Samples associated with the MS MS/MSD spiking amounts Concentration of each MS/MSD Calculated %Rs and relative per The laboratory's MS/MSD QC li	/MSD clea analyte m cent differ	arly identified neasured in the paren		-
x	R8	(a) 7 (b) 7	ratory analytical duplicate (if ap The amount of analyte measure The calculated RPD The laboratory's QC limits for an	d in the du	plicate	on:	
х	R9	List o	f method quantitation limits (M	(IQLs) for	each analyte for each	ı meth	od and matrix
x	R10	Other	problems or anomalies				
×	The Ex	ceptic	on Report for every item for whi	ch the resi	ult is "No" or "NR" (Not R	eviewed)
packag require reports by the laborat	e as be ments s. By m laborat cory in t	en revof the y sign tory as the Lal	et: I am responsible for the releasewed by the laboratory and is a methods used, except where not ature below, I affirm to the best having the potential to affect the boratory Review Checklist, and a quality of the data.	complete a sted by the t of my kno ne quality	and technically comp laboratory in the attory owledge, all problem of the data, have bee	oliant v tached ns/and en ider	with the d exception omalies, observed ntified by the
respon used is	ding to	rule. I sible f	This laboratory is an in The official signing the cover particle or releasing this data package a	ge of the r	ule-required report i	in whi	ch these data are
Sunit	a Tim	sina	Trusing	C	hemist Associat	е	07/12/2023
Name	(printed	d)	Signature	<u></u>	fficial Title		Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 07/12/2023

Laboratory Job Number: 231985

Prep Batch Number(s): PB23070305, PB23070306, PB23070605

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	Ο, Ι	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	No	ER1
R9	O, I	Method quantitation limits (MQLs):		
****	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	V (2011)

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 07/12/2023

Laboratory Job Number: 231985

Prep Batch Number(s): PB23070305, PB23070306, PB23070605

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	- -

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 07/12/2023

Laboratory Job Number: 231985

Prep Batch Number(s): PB23070305, PB23070306, PB23070605

Exception Report No.	Description
ER1	PB23070605, RPD between a sample and duplicate sample was above acceptance limit.
<u></u>	
<u></u>	

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Table 1. Reportable Data.

Laboratory Name:	
Project Name:	
Reviewer Name:	
LRC Date:	
Laboratory Job Number:	
Prep Batch Number(s):	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
		Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?		
		Were all departures from standard conditions described in an exception report?		
R2	O, I	Sample and quality control (QC) identification		
		Are all field sample ID numbers cross-referenced to the laboratory ID numbers?		
		Are all laboratory ID numbers cross-referenced to the corresponding QC data?		
R3	O, I	Test reports		
		Were all samples prepared and analyzed within holding times?		
		Other than those results < MQL, were all other raw values bracketed by calibration standards?		
		Were calculations checked by a peer or supervisor?		
		Were all analyte identifications checked by a peer or supervisor?		
		Were sample quantitation limits reported for all analytes not detected?		
		Were all results for soil and sediment samples reported on a dry weight basis?		
		Was % moisture (or solids) reported for all soil and sediment samples?		
		If required for the project, TICs reported?		
R4	0	Surrogate recovery data		
		Were surrogates added prior to extraction?		
		Were surrogate percent recoveries in all samples within the laboratory QC limits?		
R5	O, I	Test reports/summary forms for blank samples		
		Were appropriate type(s) of blanks analyzed?		
1		Were blanks analyzed at the appropriate frequency?		

I tem ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
		Were method blanks taken through the entire analytical process, including preparation and, if applicable,		
		cleanup procedures?		
		Were blank concentrations < MQL?		
R6	O, I	Laboratory control samples (LCS):		
		Were all COCs included in the LCS?		
		Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?		
		Were LCSs analyzed at the required frequency?		
		Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?		
		Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?		
		Was the LCSD RPD within QC limits?		
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
		Were the project/method specified analytes included in the MS and MSD?		
		Were MS/MSD analyzed at the appropriate frequency?		
		Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?		
		Were MS/MSD RPDs within laboratory QC limits?		
R8	O, I	Analytical duplicate data		
		Were appropriate analytical duplicates analyzed for each matrix?		
		Were analytical duplicates analyzed at the appropriate frequency?		
		Were RPDs or relative standard deviations within the laboratory QC limits?		
R9	O, I	Method quantitation limits (MQLs):		
		Are the MQLs for each method analyte included in the laboratory data package?		
		Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?		
		Are unadjusted MQLs included in the laboratory data package?		
R10	O, I	Other problems/anomalies		
-	,	Are all known problems/anomalies/special conditions noted in this LRC and ER?		
		Were all necessary corrective actions performed for the reported data?		
		Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?		

Table 2. Supporting Data.

Laboratory Name:	
Project Name:	
Reviewer Name:	
LRC Date:	
Laboratory Job Number:	
Prep Batch Number(s):	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
		Were response factors and/or relative response factors for each analyte within QC limits?		
		Were percent RSDs or correlation coefficient criteria met?		
		Was the number of standards recommended in the method used for all analytes?		
		Were all points generated between the lowest and highest standard used to calculate the curve?		
		Are ICAL data available for all instruments used?		
		Has the initial calibration curve been verified using an appropriate second source standard?		
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
		Was the CCV analyzed at the method-required frequency?		
		Were percent differences for each analyte within the method-required QC limits?		
		Was the ICAL curve verified for each analyte?		
		Was the absolute value of the analyte concentration in the inorganic CCB < MDL?		
S3	0	Mass spectral tuning:		
		Was the appropriate compound for the method used for tuning?		
		Were ion abundance data within the method-required QC limits?		
S4	0	Internal standards (IS):		
		Were IS area counts and retention times within the method-required QC limits?		
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
		Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?		
		Were data associated with manual integrations flagged on the raw data?		

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
		Did dual column confirmation results meet the method-required QC?		
S7	0	Tentatively identified compounds (TICs):		
		If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?		
S8	I	Interference Check Sample (ICS) results:		
		Were percent recoveries within method QC limits?		
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
		Were percent differences, recoveries, and the linearity within the QC limits specified in the method?		
S10	O, I	Method detection limit (MDL) studies		
		Was a MDL study performed for each reported analyte?		
		Is the MDL either adjusted or supported by the analysis of DCSs?		
S11	O, I	Proficiency test reports:		
		Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?		
S12	O, I	Standards documentation		
		Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?		
S13	O, I	Compound/analyte identification procedures		
		Are the procedures for compound/analyte identification documented?		
S14	O, I	Demonstration of analyst competency (DOC)		
		Was DOC conducted consistent with NELAC Chapter 5C?		
		Is documentation of the analyst's competency up-to-date and on file?		
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
		Are all the methods used to generate the data documented, verified, and validated, where applicable?		
S16	O, I	Laboratory standard operating procedures (SOPs):		
		Are laboratory SOPs current and on file for each method performed?		

Table 3. Exception Reports.

Laboratory Name:	
Project Name:	
Reviewer Name:	
LRC Date:	
Laboratory Job Number:	
Prep Batch Number(s):	

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 232660 Customer: Pirkey Power Station Date Reported: 09/18/2023

Customer Sample ID: AD-2 Customer Description: TG-32

Lab Number: 232660-001 Preparation:

Date Collected: 08/23/2023 11:03 EDT Date Received: 08/25/2023 11:55 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.37 mg/L	2	0.10	0.02	CRJ	08/29/2023 14:22	EPA 300.1 -1997, Rev. 1.0
Chloride	30.9 mg/L	2	0.04	0.01	CRJ	08/29/2023 14:22	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.20 mg/L	2	0.06	0.02	CRJ	08/29/2023 14:22	EPA 300.1 -1997, Rev. 1.0
Sulfate	271 mg/L	10	3.0	0.6	CRJ	08/29/2023 13:49	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	08/28/2023 10:20	SM 2320B-2011	
TDS, Filterable Residue	490 mg/L	1	50	20	ELT	08/28/2023 09:19	SM 2540C-2015	

Customer Sample ID: AD-4 Customer Description: TG-32

Lab Number: 232660-002 Preparation:

Date Collected: 08/23/2023 08:28 EDT Date Received: 08/25/2023 11:55 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.20 mg/L	2	0.10	0.02	CRJ	08/29/2023 16:34	EPA 300.1 -1997, Rev. 1.0
Chloride	3.88 mg/L	2	0.04	0.01	CRJ	08/29/2023 16:34	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.04 mg/L	2	0.06	0.02 J1	CRJ	08/29/2023 16:34	EPA 300.1 -1997, Rev. 1.0
Sulfate	18.5 mg/L	2	0.6	0.1	CRJ	08/29/2023 16:34	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	08/28/2023 10:20	SM 2320B-2011
TDS, Filterable Residue	130 mg/L	1	50	20	ELT	08/28/2023 09:26	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 232660 Customer: Pirkey Power Station Date Reported: 09/18/2023

Customer Sample ID: AD-12 Customer Description: TG-32

Lab Number: 232660-003 Preparation:

Date Collected: 08/23/2023 09:46 EDT Date Received: 08/25/2023 11:55 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.11 mg/L	2	0.10	0.02	CRJ	08/29/2023 15:28	EPA 300.1 -1997, Rev. 1.0
Chloride	4.74 mg/L	2	0.04	0.01	CRJ	08/29/2023 15:28	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.07 mg/L	2	0.06	0.02	CRJ	08/29/2023 15:28	EPA 300.1 -1997, Rev. 1.0
Sulfate	3.5 mg/L	2	0.6	0.1	CRJ	08/29/2023 15:28	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	08/28/2023 10:20	SM 2320B-2011
TDS, Filterable Residue	75 mg/L	1	50	20	ELT	08/28/2023 09:26	SM 2540C-2015

Customer Sample ID: AD-18 Customer Description: TG-32

Lab Number: 232660-004 Preparation:

Date Collected: 08/23/2023 10:50 EDT Date Received: 08/25/2023 11:55 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.11 mg/L	2	0.10	0.02	CRJ	08/29/2023 16:01	EPA 300.1 -1997, Rev. 1.0
Chloride	5.02 mg/L	2	0.04	0.01	CRJ	08/29/2023 16:01	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.02 mg/L	2	0.06	0.02 J1	CRJ	08/29/2023 16:01	EPA 300.1 -1997, Rev. 1.0
Sulfate	6.9 mg/L	2	0.6	0.1	CRJ	08/29/2023 16:01	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units D	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	08/28/2023 10:20	SM 2320B-2011
TDS, Filterable Residue	88 mg/L	1	50	20	ELT	08/28/2023 09:35	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 232660 Customer: Pirkey Power Station Date Reported: 09/18/2023

Customer Sample ID: AD-31 Customer Description: TG-32

Lab Number: 232660-005 Preparation:

Date Collected: 08/23/2023 10:23 EDT Date Received: 08/25/2023 11:55 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.27 mg/L	2	0.10	0.02	CRJ	08/29/2023 19:19	EPA 300.1 -1997, Rev. 1.0
Chloride	21.9 mg/L	2	0.04	0.01	CRJ	08/29/2023 19:19	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.1 mg/L	2	0.06	0.02	CRJ	08/29/2023 19:19	EPA 300.1 -1997, Rev. 1.0
Sulfate	69.4 mg/L	2	0.6	0.1	CRJ	08/29/2023 19:19	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	08/28/2023 10:20	SM 2320B-2011
TDS, Filterable Residue	240 mg/L	1	50	20	ELT	08/28/2023 09:35	SM 2540C-2015

Customer Sample ID: AD-32 Customer Description: TG-32

Lab Number: 232660-006 Preparation:

Date Collected: 08/23/2023 10:21 EDT Date Received: 08/25/2023 11:55 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.75 mg/L	2	0.10	0.02	CRJ	08/29/2023 18:13	EPA 300.1 -1997, Rev. 1.0
Chloride	12.7 mg/L	2	0.04	0.01	CRJ	08/29/2023 18:13	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.07 mg/L	2	0.06	0.02	CRJ	08/29/2023 18:13	EPA 300.1 -1997, Rev. 1.0
Sulfate	73.0 mg/L	2	0.6	0.1	CRJ	08/29/2023 18:13	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units I	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	08/28/2023 10:20	SM 2320B-2011
TDS, Filterable Residue	190 mg/L	1	50	20	ELT	08/28/2023 09:41	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 232660 Customer: Pirkey Power Station Date Reported: 09/18/2023

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

U1 - Not detected at or above method detection limit (MDL).

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

232660 Dolan Chemical Laboratory (DCL) **Chain of Custody Record** 4001 Bixby Road Groveport, Ohio 43125 Program: Coal Combustion Residuals (CCR) Michael Ohlinger (614-836-4184) Site Contact: Date: For Lab Use Only: Contacts: Dave Conover (614-836-4219) COC/Order #: Field-filter Three 250 mL Project Name: Pirkey PP EBAP 250 mL 1 L bottle, (six every bottle, bottle, Cool, 0-6C 10th*) Analysis Turnaround Time (in Calendar Days) Leslie Fuerschbach Contact Name: pH<2, then pH<2, L bottles, @ Routine (28 days for Monitoring Wells) Contact Phone: 318-673-2744 HNO₃ HNO3 pH<2, HNO3 Sampler(s): Kenny McDonald **Brad Bates** Dissolved Mercury , SO4, Br, Alkalinity Ra-226, Ra-228 Sampler(s) initials CI, SO4, Sample Mercury Type Sample Sample (C=Comp, Sample Identification Date Time G=Grab) Matrix Cont. Sample Specific Notes: 8/23/2023 1003 G GW AD-2 X 8/23/2023 728 G GW 1 AD-4 X 8/23/2023 846 G GW 1 AD-12 Х 8/23/2023 950 G GW 1 AD-18 Х 8/23/2023 923 G GW 1 AD-31 Х 8/23/2023 921 **GW** 1 AD-32 Х F4 Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other ; F= filter in field Six 1L Bottles must be collected for Radium for every 10th sample. Special Instructions/QC Requirements & Comments: TG-32 needed Relinquished by: Date/Time: 08/24/27 1400 Received by: Date/Time: Relinquished by: Date/Time: Company Received by: Date/Time:

Received in Laboratory by:

Date/Time:

Company

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

Relinquished by:

Package Type	Delivery Type
Cooler Box Bag Envelope	I PONY (UPS) FedEX USPS
	Other
Plant/Customer / 1/Key / P	Number of Plastic Containers:
Opened By Misgha	Number of Glass Containers:
Date/Time 08/25/2} (1553 p	Number of Mercury Containers:
	or N/A Initial: MOC On ice no ice
	Comments
Was Chain of Custody received? VI N	Comments
Requested turnaround: 91 dows	If RUSH, who was notified?
	NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out property?	Comments
Were samples labeled properly? (y/N	Comments
Were correct containers used? (V/N	Comments
25	(N) or N/A Initial & Date: M(MC 08 2872)
pH paper (circle one). MQuant.PN1.09535.0001.	LOT#[OR] Lab Rat, PN4801, LOT#X000RW@G21 Exp 11/15/20
- Was Add'l Preservative needed? Y /(N)	If Yes: By whom & when: (See Prep Book)
sample filtration requested? Y / N	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# <u>732660</u> Initial &	Date & Time
Logged by / / / C	ents:
March (

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt above) in the "Notes" field in the LIMS to be included on the report to the customer.

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: х This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. X R1 Field chain-of-custody documentation X Sample identification cross-reference R₂ X Test reports (analytical data sheets) for each environmental sample that includes: R₃ (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits X **R**5 Test reports/summary forms for blank samples × Test reports/summary forms for laboratory control samples (LCSs) including: R6 (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS OC limits х **R**7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD OC limits Laboratory analytical duplicate (if applicable) recovery and precision: X **R8** (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates List of method quantitation limits (MQLs) for each analyte for each method and matrix x R9 x R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) \square **Release Statement:** I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Chemist 2 Michael Ohilnger 9/14/2023 Name (printed) Official Title Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey

Reviewer Name: Michael Ohlinger

LRC Date: 9/14/2023

Laboratory Job Number: 232660

Prep Batch Number(s): QC2308225

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	:
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description		Exception Report No.4
I		Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	_
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	ı	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	_
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey

Reviewer Name: Michael Ohlinger

LRC Date: 9/14/2023

Laboratory Job Number: 232660

Prep Batch Number(s): QC2308225

Item¹	Analytes ²	Description		Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	- 3
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	_z I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?		
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	2.982
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	33333350
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey

Reviewer Name: Michael Ohlinger

LRC Date: 9/14/2023

Laboratory Job Number: 232660

Prep Batch Number(s): QC2308225

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB<0.5*MQL.

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This da	ata pacl	kage consists o	f:		
x	(which		eportable data identific	ew checklist consisting of Table ed on this page), Table 2, Suppor	
x	R1 Field chain-of-custody documentation				
x	R2	Sample identi	ification cross-referenc	e	
X	R3	(a) Items spen NELAC S (b) Dilution (c) Preparati (d) Cleanup s	ecified in NELAC Chap standard factors ion methods methods	for each environmental sample ter 5 for reporting results, e.g., Start ter 5 for reporting results, e.g., Start tively identified compounds (TI	ection 5.5.10 in 2003
x	R4	(a) Calculate	overy data including: ed recovery (%R) ratory's surrogate QC li	mits	
X	R5		summary forms for bla		
X	R6	Test reports/s (a) LCS spik (b) Calculate	summary forms for lab	oratory control samples (LCSs) i	ncluding:
×	R7	(a) Samples(b) MS/MSI(c) Concentr(d) Calculate	associated with the MS ospiking amounts ration of each MS/MSD	matrix spike duplicates (MS/M /MSD clearly identified analyte measured in the parent cent differences (RPDs) mits	
x	R8	(a) The amo (b) The calcu	unt of analyte measure	-	n:
x	R9		• •	IQLs) for each analyte for each	method and matrix
x	R10		ns or anomalies	-	
x	The Ex	ception Repor	t for every item for whi	ch the result is "No" or "NR" (N	ot Reviewed)
packag require reports by the labora	se Stat ge as be ements s. By m laborat tory in t	tement: I am en reviewed by of the method y signature be tory as having	responsible for the rele y the laboratory and is s used, except where no clow, I affirm to the bes the potential to affect to Review Checklist, and	ease of this laboratory data pack complete and technically compli sted by the laboratory in the atta t of my knowledge, all problems ne quality of the data, have been no information or data have bee	age. This data ant with the ched exception /anomalies, observed identified by the
respon used is statem	iding to	rule. The offic ssible for releas rue.	ial signing the cover pa	-house laboratory controlled by ge of the rule-required report in and is by signature affirming the Chemist Principal	which these data are
Name	(printe	d)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey PP EBAP

Reviewer Name: Tim Arnold

LRC Date: 9/7/2023

Laboratory Job Number: 232660

Prep Batch Number(s): QC2308242

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, 1	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	1	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	-84
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	Ī	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	· I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	_
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I `	Were surrogates added prior to extraction?	Yes	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	,
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data	7	
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I .	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP EBAP

Reviewer Name: Tim Arnold

LRC Date: 9/7/2023

Laboratory Job Number: 232660

Prep Batch Number(s): QC2308242

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	1	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	О, І	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	1	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation	INK)	
	1	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	` _
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	Ī	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	Ī	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey PP EBAP

Reviewer Name: Tim Arnold

LRC Date: 9/7/2023

Laboratory Job Number: 232660

Prep Batch Number(s): QC2308242

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>
	· ·

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This da	ata pack	tage consists o	of:		
х	(which	gnature page, includes the 3, Exception R	and the laboratory review of reportable data identified of the ports.	checklist consisting of T on this page), Table 2, St	able 1, Reportable Data apporting Data, and
х	R1	Field chain-o	f-custody documentation		
x	R2	Sample ident	ification cross-reference		
X	R3	(a) Items sp NELAC (b) Dilution(c) Preparat(d) Cleanup	ion methods	5 for reporting results, ε	e.g., Section 5.5.10 in 2003
NA	R4	(a) Calculat	covery data including: ed recovery (%R) ratory's surrogate QC limit	s	
х	R5		summary forms for blank s		
×	R6	Test reports/ (a) LCS spik (b) Calculate	summary forms for laborated cing amounts ed %R for each analyte ratory's LCS QC limits	-	CSs) including:
×	R7	(a) Samples(b) MS/MSI(c) Concent(d) Calculat	for project matrix spike/ma associated with the MS/M D spiking amounts ration of each MS/MSD an ed %Rs and relative percen oratory's MS/MSD QC limit	SD clearly identified alyte measured in the part t differences (RPDs)	
×	R8	(a) The amo	nalytical duplicate (if applicate) ount of analyte measured in ulated RPD ratory's QC limits for analy	the duplicate	cision:
X	R9	List of metho	d quantitation limits (MQI	s) for each analyte for e	each method and matrix
x	R10	Other proble	ms or anomalies		
х	The Ex	ception Repo	rt for every item for which t	the result is "No" or "NF	R" (Not Reviewed)
packag require reports by the laborat that wo	e as be ements s. By m laborat tory in t	en reviewed bof the method y signature boory as having he Laboratory ect the quality	of the data.	nplete and technically co by the laboratory in the my knowledge, all prob quality of the data, have information or data hav	ompliant with the eattached exception lems/anomalies, observed been identified by the e been knowingly withheld
respon used is statem	ding to respon ent is tr	rule. The offic sible for relea ue.	This laboratory is an in-hocial signing the cover page osing this data package and	of the rule-required repo is by signature affirmin	ort in which these data are g the above release
	ra Wil		Sandra D. Williams	Chemist	9-14-2023
Name ((printed	i)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey

Reviewer Name: Sandra Williams

LRC Date: 9-14-2023

Laboratory Job Number: 232660

Prep Batch Number(s): QC2308258

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	NA	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
-	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		4
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey

Reviewer Name: Sandra Williams

LRC Date: 9-14-2023

Laboratory Job Number: 232660

Prep Batch Number(s): QC2308258

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	ī	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	ı	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
_	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	, 1
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey

Reviewer Name: Sandra Williams

LRC Date: 9-14-2023

Laboratory Job Number: 232660

Prep Batch Number(s): QC2308258

Exception Report No.	Description

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 232672 Customer: Pirkey Power Station Date Reported: 09/22/2023

Customer Sample ID: AD-2 Customer Description:

Lab Number: 232672-001 Preparation:

Date Collected: 08/23/2023 11:03 EDT Date Received: 08/28/2023 13:17 EDT

Metals

Parameter	Result Ur	its Dilutio	n RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.008 µg	/L 1	0.100	0.008 J1	GES	09/05/2023 14:43	EPA 200.8-1994, Rev. 5.4
Arsenic	0.78 µg	/L 1	0.10	0.03	GES	09/05/2023 14:43	EPA 200.8-1994, Rev. 5.4
Barium	13.8 µg	/L 1	0.20	0.05	GES	09/05/2023 14:43	EPA 200.8-1994, Rev. 5.4
Beryllium	0.7 1 5 µg	/L 1	0.050	0.007	GES	09/05/2023 14:43	EPA 200.8-1994, Rev. 5.4
Boron	3.05 mg	g/L 1	0.050	0.007	GES	09/05/2023 14:43	EPA 200.8-1994, Rev. 5.4
Cadmium	0. 11 6 µg	/L 1	0.020	0.004	GES	09/05/2023 14:43	EPA 200.8-1994, Rev. 5.4
Calcium	3.37 mg	g/L 1	0.05	0.01	GES	09/05/2023 14:43	EPA 200.8-1994, Rev. 5.4
Chromium	0.48 µg	/L 1	0.30	0.07	GES	09/05/2023 14:43	EPA 200.8-1994, Rev. 5.4
Cobalt	25.8 µg	/L 1	0.020	0.005	GES	09/05/2023 14:43	EPA 200.8-1994, Rev. 5.4
Lead	0.64 µg	/L 1	0.20	0.05	GES	09/05/2023 14:43	EPA 200.8-1994, Rev. 5.4
Lithium	0.0601 mg	g/L 1	0.00030	0.00007	GES	09/05/2023 14:43	EPA 200.8-1994, Rev. 5.4
Magnesium	7.02 mg	g/L 1	0.100	0.006	GES	09/05/2023 14:43	EPA 200.8-1994, Rev. 5.4
Mercury	270 ng	/L 10	50	20	RLP	09/01/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg	/L 1	. 0.5	0.1 U1	GES	09/05/2023 14:43	EPA 200.8-1994, Rev. 5.4
Potassium	1.41 m	g/L 1	0.100	0.008	GES	09/05/2023 14:43	EPA 200.8-1994, Rev. 5.4
Selenium	2.72 µg	/L 1	0.50	0.04	GES	09/05/2023 14:43	EPA 200.8-1994, Rev. 5.4
Sodium	105 mg	g/L 1	0.20	0.01	GES	09/05/2023 14:43	EPA 200.8-1994, Rev. 5.4
Strontium	0.0504 mg	g/L 1	0.00200	0.00005	GES	09/05/2023 14:43	EPA 200.8-1994, Rev. 5.4
Thallium	0. 11 µg	/L 1	0.20	0.02 J1	GES	09/05/2023 14:43	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.49 pCi/L	0.34	0.56	ST	09/05/2023 15:40	SW-846 9315-1986, Rev. 0
Carrier Recovery	93.5 %					
Radium-228	1 pCi/L	0.21	0.66 B1	ST	09/11/2023 13:28	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	64.8 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 232672 Customer: Pirkey Power Station Date Reported: 09/22/2023

Customer Sample ID: AD-2 Customer Description:
Lab Number: 232672-001-01 Preparation: Dissolved

Date Collected: 08/23/2023 11:03 EDT Date Received: 08/28/2023 13:17 EDT

Metals

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.009 μg/L	1	0.100	0.008 J1	GES	09/05/2023 14:48	EPA 200.8-1994, Rev. 5.4
Arsenic	0.84 µg/L	1	0.10	0.03	GES	09/05/2023 14:48	EPA 200.8-1994, Rev. 5.4
Barium	13.6 µg/L	1	0.20	0.05	GES	09/05/2023 14:48	EPA 200.8-1994, Rev. 5.4
Beryllium	0.802 μg/L	1	0.050	0.007	GES	09/05/2023 14:48	EPA 200.8-1994, Rev. 5.4
Cadmium	0.104 μg/L	1	0.020	0.004	GES	09/05/2023 14:48	EPA 200.8-1994, Rev. 5.4
Chromium	0.41 µg/L	1	0.30	0.07	GES	09/05/2023 14:48	EPA 200.8-1994, Rev. 5.4
Cobalt	25.4 μg/L	1	0.020	0.005	GES	09/05/2023 14:48	EPA 200.8-1994, Rev. 5.4
Iron	0.524 mg/L	1	0.020	0.003	GES	09/05/2023 14:48	EPA 200.8-1994, Rev. 5.4
Lead	0.63 μg/L	1	0.20	0.05	GES	09/05/2023 14:48	EPA 200.8-1994, Rev. 5.4
Lithium	0.0628 mg/L	1	0.00030	0.00007	GES	09/05/2023 14:48	EPA 200.8-1994, Rev. 5.4
Manganese	0.0983 mg/L	1	0.00100	0.00008	GES	09/05/2023 14:48	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	08/30/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	09/05/2023 14:48	EPA 200.8-1994, Rev. 5.4
Selenium	2.83 µg/L	1	0.50	0.04	GES	09/05/2023 14:48	EPA 200.8-1994, Rev. 5.4
Thallium	0. 11 µg/L	1	0.20	0.02 J1	GES	09/05/2023 14:48	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 232672 Customer: Pirkey Power Station Date Reported: 09/22/2023

Customer Sample ID: AD-4 Customer Description:

Lab Number: 232672-002 Preparation:

Date Collected: 08/23/2023 08:28 EDT Date Received: 08/28/2023 13:17 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.011 µg/L	1	0.100	0.008 J1	GES	09/05/2023 14:53	EPA 200.8-1994, Rev. 5.4
Arsenic	0.36 µg/L	1	0.10	0.03	GES	09/05/2023 14:53	EPA 200.8-1994, Rev. 5.4
Barium	117 µg/L	1	0.20	0.05	GES	09/05/2023 14:53	EPA 200.8-1994, Rev. 5.4
Beryllium	0.246 µg/L	1	0.050	0.007	GES	09/05/2023 14:53	EPA 200.8-1994, Rev. 5.4
Boron	0.027 mg/l	. 1	0.050	0.007 J1	GES	09/05/2023 14:53	EPA 200.8-1994, Rev. 5.4
Cadmium	0.021 µg/L	1	0.020	0.004	GES	09/05/2023 14:53	EPA 200.8-1994, Rev. 5.4
Calcium	2.18 mg/l	. 1	0.05	0.01	GES	09/05/2023 14:53	EPA 200.8-1994, Rev. 5.4
Chromium	0.40 μg/L	1	0.30	0.07	GES	09/05/2023 14:53	EPA 200.8-1994, Rev. 5.4
Cobalt	3.63 µg/L	1	0.020	0.005	GES	09/05/2023 14:53	EPA 200.8-1994, Rev. 5.4
Lead	0.07 μg/L	1	0.20	0.05 J1	GES	09/05/2023 14:53	EPA 200.8-1994, Rev. 5.4
Lithium	0.0243 mg/l	. 1	0.00030	0.00007	GES	09/05/2023 14:53	EPA 200.8-1994, Rev. 5.4
Magnesium	0.687 mg/l	. 1	0.100	0.006	GES	09/05/2023 14:53	EPA 200.8-1994, Rev. 5.4
Mercury	3 ng/L	1	5	2 J1	RLP	08/30/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	09/05/2023 14:53	EPA 200.8-1994, Rev. 5.4
Potassium	2.19 mg/l	. 1	0.100	0.008	GES	09/05/2023 14:53	EPA 200.8-1994, Rev. 5.4
Selenium	0.04 µg/L	1	0.50	0.04 J1	GES	09/05/2023 14:53	EPA 200.8-1994, Rev. 5.4
Sodium	6.41 mg/l	. 1	0.20	0.01	GES	09/05/2023 14:53	EPA 200.8-1994, Rev. 5.4
Strontium	0.0183 mg/l	. 1	0.00200	0.00005	GES	09/05/2023 14:53	EPA 200.8-1994, Rev. 5.4
Thallium	0.08 µg/L	1	0.20	0.02 J1	GES	09/05/2023 14:53	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.34 pCi/L	0.31	0.48	ST	09/05/2023 15:40	SW-846 9315-1986, Rev. 0
Carrier Recovery	95.1 %					
Radium-228	0.90 pCi/L	0.24	0.76 B1	ST	09/11/2023 13:28	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	61.5 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 232672 Customer: Pirkey Power Station Date Reported: 09/22/2023

Customer Sample ID: AD-4 Customer Description:
Lab Number: 232672-002-01 Preparation: Dissolved

Date Collected: 08/23/2023 08:28 EDT Date Received: 08/28/2023 13:17 EDT

Metals

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	09/05/2023 14:59	EPA 200.8-1994, Rev. 5.4
Arsenic	0.24 µg/L	1	0.10	0.03	GES	09/05/2023 14:59	EPA 200.8-1994, Rev. 5.4
Barium	11 5 μg/L	1	0.20	0.05	GES	09/05/2023 14:59	EPA 200.8-1994, Rev. 5.4
Beryllium	0.263 μg/L	1	0.050	0.007	GES	09/05/2023 14:59	EPA 200.8-1994, Rev. 5.4
Cadmium	0.020 μg/L	1	0.020	0.004	GES	09/05/2023 14:59	EPA 200.8-1994, Rev. 5.4
Chromium	0.33 µg/L	1	0.30	0.07	GES	09/05/2023 14:59	EPA 200.8-1994, Rev. 5.4
Cobalt	3.70 μg/L	1	0.020	0.005	GES	09/05/2023 14:59	EPA 200.8-1994, Rev. 5.4
Iron	3.45 mg/L	1	0.020	0.003	GES	09/05/2023 14:59	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	09/05/2023 14:59	EPA 200.8-1994, Rev. 5.4
Lithium	0.0249 mg/L	1	0.00030	0.00007	GES	09/05/2023 14:59	EPA 200.8-1994, Rev. 5.4
Manganese	0.0344 mg/L	1	0.00100	0.00008	GES	09/05/2023 14:59	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	08/30/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	09/05/2023 14:59	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	09/05/2023 14:59	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 µg/L	1	0.20	0.02 J1	GES	09/05/2023 14:59	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 232672 Customer: Pirkey Power Station Date Reported: 09/22/2023

Customer Sample ID: AD-12 Customer Description:

Lab Number: 232672-003 Preparation:

Date Collected: 08/23/2023 09:46 EDT Date Received: 08/28/2023 13:17 EDT

Metals

Parameter	Result	Units	Dilution	RL	MDL Data Qualifier	s Analyst	Analysis Date	Method
Antimony	0.013	µg/L	1	0.100	0.008 J1	GES	09/05/2023 15:04	EPA 200.8-1994, Rev. 5.4
Arsenic	0.1	µg/L	1	0.10	0.03	GES	09/05/2023 15:04	EPA 200.8-1994, Rev. 5.4
Barium	15.6	µg/L	1	0.20	0.05	GES	09/05/2023 15:04	EPA 200.8-1994, Rev. 5.4
Beryllium	0.129	µg/L	1	0.050	0.007	GES	09/05/2023 15:04	EPA 200.8-1994, Rev. 5.4
Boron	0.017	mg/L	1	0.050	0.007 J1	GES	09/05/2023 15:04	EPA 200.8-1994, Rev. 5.4
Cadmium	0.007	µg/L	1	0.020	0.004 J1	GES	09/05/2023 15:04	EPA 200.8-1994, Rev. 5.4
Calcium	0.22	mg/L	1	0.05	0.01	GES	09/05/2023 15:04	EPA 200.8-1994, Rev. 5.4
Chromium	0.45	µg/L	1	0.30	0.07	GES	09/05/2023 15:04	EPA 200.8-1994, Rev. 5.4
Cobalt	0.855	µg/L	1	0.020	0.005	GES	09/05/2023 15:04	EPA 200.8-1994, Rev. 5.4
Lead	0.11	µg/L	1	0.20	0.05 J1	GES	09/05/2023 15:04	EPA 200.8-1994, Rev. 5.4
Lithium	0.00494	mg/L	1	0.00030	0.00007	GES	09/05/2023 15:04	EPA 200.8-1994, Rev. 5.4
Magnesium	0.286	mg/L	1	0.100	0.006	GES	09/05/2023 15:04	EPA 200.8-1994, Rev. 5.4
Mercury	<2	ng/L	1	5	2 U1	RLP	08/30/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.5	µg/L	1	0.5	0.1	GES	09/05/2023 15:04	EPA 200.8-1994, Rev. 5.4
Potassium	0.184	mg/L	1	0.100	0.008	GES	09/05/2023 15:04	EPA 200.8-1994, Rev. 5.4
Selenium	0.23	µg/L	1	0.50	0.04 J1	GES	09/05/2023 15:04	EPA 200.8-1994, Rev. 5.4
Sodium	3.23	mg/L	1	0.20	0.01	GES	09/05/2023 15:04	EPA 200.8-1994, Rev. 5.4
Strontium	0.00223	mg/L	1	0.00200	0.00005	GES	09/05/2023 15:04	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02	μg/L	1	0.20	0.02 U1	GES	09/05/2023 15:04	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.42 pCi/L	0.17	0.40	ST	09/05/2023 15:40	SW-846 9315-1986, Rev. 0
Carrier Recovery	103 %					
Radium-228	0.92 pCi/L	0.17	0.54 B1	ST	09/11/2023 13:28	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	69.5 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 232672 Customer: Pirkey Power Station Date Reported: 09/22/2023

Customer Sample ID: AD-12 Customer Description:
Lab Number: 232672-003-01 Preparation: Dissolved

Date Collected: 08/23/2023 09:46 EDT Date Received: 08/28/2023 13:17 EDT

Metals

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.013 μg/L	1	0.100	0.008 J1	GES	09/05/2023 15:09	EPA 200.8-1994, Rev. 5.4
Arsenic	0.06 µg/L	1	0.10	0.03 J1	GES	09/05/2023 15:09	EPA 200.8-1994, Rev. 5.4
Barium	1 5.6 μg/L	1	0.20	0.05	GES	09/05/2023 15:09	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 11 6 μg/L	1	0.050	0.007	GES	09/05/2023 15:09	EPA 200.8-1994, Rev. 5.4
Cadmium	0.009 μg/L	1	0.020	0.004 J1	GES	09/05/2023 15:09	EPA 200.8-1994, Rev. 5.4
Chromium	0.27 μg/L	1	0.30	0.07 J1	GES	09/05/2023 15:09	EPA 200.8-1994, Rev. 5.4
Cobalt	0.890 μg/L	1	0.020	0.005	GES	09/05/2023 15:09	EPA 200.8-1994, Rev. 5.4
Iron	0.007 mg/L	1	0.020	0.003 J1	GES	09/05/2023 15:09	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	09/05/2023 15:09	EPA 200.8-1994, Rev. 5.4
Lithium	0.00497 mg/L	1	0.00030	0.00007	GES	09/05/2023 15:09	EPA 200.8-1994, Rev. 5.4
Manganese	0.00518 mg/L	1	0.00100	0.00008	GES	09/05/2023 15:09	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	08/30/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.3 µg/L	1	0.5	0.1 J1	GES	09/05/2023 15:09	EPA 200.8-1994, Rev. 5.4
Selenium	0.24 µg/L	1	0.50	0.04 J1	GES	09/05/2023 15:09	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	09/05/2023 15:09	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 232672 Customer: Pirkey Power Station Date Reported: 09/22/2023

Customer Sample ID: AD-18 Customer Description:

Lab Number: 232672-004 Preparation:

Date Collected: 08/23/2023 10:50 EDT Date Received: 08/28/2023 13:17 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.056 μg/L	1	0.100	0.008 J1	GES	09/05/2023 15:14	EPA 200.8-1994, Rev. 5.4
Arsenic	0.54 μg/L	1	0.10	0.03	GES	09/05/2023 15:14	EPA 200.8-1994, Rev. 5.4
Barium	70.6 μg/L	1	0.20	0.05	GES	09/05/2023 15:14	EPA 200.8-1994, Rev. 5.4
Beryllium	0.115 µg/L	1	0.050	0.007	GES	09/05/2023 15:14	EPA 200.8-1994, Rev. 5.4
Boron	0.012 mg/L	1	0.050	0.007 J1	GES	09/05/2023 15:14	EPA 200.8-1994, Rev. 5.4
Cadmium	0.015 µg/L	1	0.020	0.004 J1	GES	09/05/2023 15:14	EPA 200.8-1994, Rev. 5.4
Calcium	3.17 mg/L	1	0.05	0.01	GES	09/05/2023 15:14	EPA 200.8-1994, Rev. 5.4
Chromium	1.15 µg/L	1	0.30	0.07	GES	09/05/2023 15:14	EPA 200.8-1994, Rev. 5.4
Cobalt	0.731 μg/L	1	0.020	0.005	GES	09/05/2023 15:14	EPA 200.8-1994, Rev. 5.4
Lead	0.43 µg/L	1	0.20	0.05	GES	09/05/2023 15:14	EPA 200.8-1994, Rev. 5.4
Lithium	0.0119 mg/L	1	0.00030	0.00007	GES	09/05/2023 15:14	EPA 200.8-1994, Rev. 5.4
Magnesium	0.321 mg/L	1	0.100	0.006	GES	09/05/2023 15:14	EPA 200.8-1994, Rev. 5.4
Mercury	5 ng/L	1	5	2	RLP	08/30/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.1 µg/L	1	0.5	0.1 J1	GES	09/05/2023 15:14	EPA 200.8-1994, Rev. 5.4
Potassium	1.03 mg/L	1	0.100	0.008	GES	09/05/2023 15:14	EPA 200.8-1994, Rev. 5.4
Selenium	0.18 µg/L	1	0.50	0.04 J1	GES	09/05/2023 15:14	EPA 200.8-1994, Rev. 5.4
Sodium	4.90 mg/L	1	0.20	0.01	GES	09/05/2023 15:14	EPA 200.8-1994, Rev. 5.4
Strontium	0.0159 mg/L	1	0.00200	0.00005	GES	09/05/2023 15:14	EPA 200.8-1994, Rev. 5.4
Thallium	0.03 µg/L	1	0.20	0.02 J1	GES	09/05/2023 15:14	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.78 pCi/L	0.22	0.35	ST	09/05/2023 15:40	SW-846 9315-1986, Rev. 0
Carrier Recovery	110 %					
Radium-228	0.49 pCi/L	0.21	0.70 B1	ST	09/11/2023 13:28	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	59.9 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 232672 Customer: Pirkey Power Station Date Reported: 09/22/2023

Customer Sample ID: AD-18 Customer Description:
Lab Number: 232672-004-01 Preparation: Dissolved

Date Collected: 08/23/2023 10:50 EDT Date Received: 08/28/2023 13:17 EDT

Metals

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	09/05/2023 15:19	EPA 200.8-1994, Rev. 5.4
Arsenic	0.05 µg/L	1	0.10	0.03 J1	GES	09/05/2023 15:19	EPA 200.8-1994, Rev. 5.4
Barium	66.2 μg/L	1	0.20	0.05	GES	09/05/2023 15:19	EPA 200.8-1994, Rev. 5.4
Beryllium	0.075 μg/L	1	0.050	0.007	GES	09/05/2023 15:19	EPA 200.8-1994, Rev. 5.4
Cadmium	0.011 µg/L	1	0.020	0.004 J1	GES	09/05/2023 15:19	EPA 200.8-1994, Rev. 5.4
Chromium	0.24 µg/L	1	0.30	0.07 J1	GES	09/05/2023 15:19	EPA 200.8-1994, Rev. 5.4
Cobalt	0.670 μg/L	1	0.020	0.005	GES	09/05/2023 15:19	EPA 200.8-1994, Rev. 5.4
Iron	0.013 mg/L	1	0.020	0.003 J1	GES	09/05/2023 15:19	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	09/05/2023 15:19	EPA 200.8-1994, Rev. 5.4
Lithium	0.0118 mg/L	1	0.00030	0.00007	GES	09/05/2023 15:19	EPA 200.8-1994, Rev. 5.4
Manganese	0.00251 mg/L	1	0.00100	0.00008	GES	09/05/2023 15:19	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	08/30/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	09/05/2023 15:19	EPA 200.8-1994, Rev. 5.4
Selenium	0.06 µg/L	1	0.50	0.04 J1	GES	09/05/2023 15:19	EPA 200.8-1994, Rev. 5.4
Thallium	0.03 µg/L	1	0.20	0.02 J1	GES	09/05/2023 15:19	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 232672 Customer: Pirkey Power Station Date Reported: 09/22/2023

Customer Sample ID: AD-31 Customer Description:

Lab Number: 232672-005 Preparation:

Date Collected: 08/23/2023 10:23 EDT Date Received: 08/28/2023 13:17 EDT

Metals

Parameter	Result	Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008	µg/L	1	0.100	0.008	U1	GES	09/05/2023 15:24	EPA 200.8-1994, Rev. 5.4
Arsenic	0.32	µg/L	1	0.10	0.03		GES	09/05/2023 15:24	EPA 200.8-1994, Rev. 5.4
Barium	31.7	µg/L	1	0.20	0.05		GES	09/05/2023 15:24	EPA 200.8-1994, Rev. 5.4
Beryllium	0.818	µg/L	1	0.050	0.007		GES	09/05/2023 15:24	EPA 200.8-1994, Rev. 5.4
Boron	0.021	mg/L	1	0.050	0.007	J1	GES	09/05/2023 15:24	EPA 200.8-1994, Rev. 5.4
Cadmium	0.052	µg/L	1	0.020	0.004		GES	09/05/2023 15:24	EPA 200.8-1994, Rev. 5.4
Calcium	2.10	mg/L	1	0.05	0.01		GES	09/05/2023 15:24	EPA 200.8-1994, Rev. 5.4
Chromium	0.56	µg/L	1	0.30	0.07		GES	09/05/2023 15:24	EPA 200.8-1994, Rev. 5.4
Cobalt	8.14	µg/L	1	0.020	0.005		GES	09/05/2023 15:24	EPA 200.8-1994, Rev. 5.4
Lead	0.32	µg/L	1	0.20	0.05		GES	09/05/2023 15:24	EPA 200.8-1994, Rev. 5.4
Lithium	0.0644	mg/L	1	0.00030	0.00007		GES	09/05/2023 15:24	EPA 200.8-1994, Rev. 5.4
Magnesium	3.10	mg/L	1	0.100	0.006		GES	09/05/2023 15:24	EPA 200.8-1994, Rev. 5.4
Mercury	890	ng/L	10	50	20		RLP	08/30/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1	µg/L	1	0.5	0.1	U1	GES	09/05/2023 15:24	EPA 200.8-1994, Rev. 5.4
Potassium	1.51	mg/L	1	0.100	0.008		GES	09/05/2023 15:24	EPA 200.8-1994, Rev. 5.4
Selenium	0.33	µg/L	1	0.50	0.04	J1	GES	09/05/2023 15:24	EPA 200.8-1994, Rev. 5.4
Sodium	26.0	mg/L	1	0.20	0.01		GES	09/05/2023 15:24	EPA 200.8-1994, Rev. 5.4
Strontium	0.0315	mg/L	1	0.00200	0.00005		GES	09/05/2023 15:24	EPA 200.8-1994, Rev. 5.4
Thallium	0.08	µg/L	1	0.20	0.02	J1	GES	09/05/2023 15:24	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	3.35 pCi/L	0.48	0.46	ST	09/05/2023 15:40	SW-846 9315-1986, Rev. 0
Carrier Recovery	94.0 %					
Radium-228	2.15 pCi/L	0.23	0.68 B1	ST	09/11/2023 13:28	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	64.7 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 232672 Customer: Pirkey Power Station Date Reported: 09/22/2023

Customer Sample ID: AD-31 Customer Description:
Lab Number: 232672-005-01 Preparation: Dissolved

Date Collected: 08/23/2023 10:23 EDT Date Received: 08/28/2023 13:17 EDT

Metals

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	s Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	09/05/2023 15:29	EPA 200.8-1994, Rev. 5.4
Arsenic	0.16 μg/L	1	0.10	0.03	GES	09/05/2023 15:29	EPA 200.8-1994, Rev. 5.4
Barium	31.9 µg/L	1	0.20	0.05	GES	09/05/2023 15:29	EPA 200.8-1994, Rev. 5.4
Beryllium	0.802 μg/L	1	0.050	0.007	GES	09/05/2023 15:29	EPA 200.8-1994, Rev. 5.4
Cadmium	0.061 µg/L	1	0.020	0.004	GES	09/05/2023 15:29	EPA 200.8-1994, Rev. 5.4
Chromium	0.23 μg/L	1	0.30	0.07 J1	GES	09/05/2023 15:29	EPA 200.8-1994, Rev. 5.4
Cobalt	8.49 μg/L	1	0.020	0.005	GES	09/05/2023 15:29	EPA 200.8-1994, Rev. 5.4
Iron	0.117 mg/L	1	0.020	0.003	GES	09/05/2023 15:29	EPA 200.8-1994, Rev. 5.4
Lead	0.23 μg/L	1	0.20	0.05	GES	09/05/2023 15:29	EPA 200.8-1994, Rev. 5.4
Lithium	0.0636 mg/L	1	0.00030	0.00007	GES	09/05/2023 15:29	EPA 200.8-1994, Rev. 5.4
Manganese	0.0238 mg/L	1	0.00100	0.00008	GES	09/05/2023 15:29	EPA 200.8-1994, Rev. 5.4
Mercury	18 ng/L	1	5	2	RLP	08/30/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	09/05/2023 15:29	EPA 200.8-1994, Rev. 5.4
Selenium	0.27 μg/L	1	0.50	0.04 J1	GES	09/05/2023 15:29	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 µg/L	1	0.20	0.02 J1	GES	09/05/2023 15:29	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 232672 Customer: Pirkey Power Station Date Reported: 09/22/2023

Customer Sample ID: AD-32 Customer Description:

Lab Number: 232672-006 Preparation:

Date Collected: 08/23/2023 10:21 EDT Date Received: 08/28/2023 13:17 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	s Analyst	Analysis Date	Method
Antimony	0.013 µg/L	1	0.100	0.008 J1	GES	09/05/2023 15:34	EPA 200.8-1994, Rev. 5.4
Arsenic	2.19 µg/L	1	0.10	0.03	GES	09/05/2023 15:34	EPA 200.8-1994, Rev. 5.4
Barium	22.7 μg/L	1	0.20	0.05	GES	09/05/2023 15:34	EPA 200.8-1994, Rev. 5.4
Beryllium	0.921 µg/L	1	0.050	0.007	GES	09/05/2023 15:34	EPA 200.8-1994, Rev. 5.4
Boron	0.418 mg/L	1	0.050	0.007	GES	09/05/2023 15:34	EPA 200.8-1994, Rev. 5.4
Cadmium	0.071 µg/L	1	0.020	0.004	GES	09/05/2023 15:34	EPA 200.8-1994, Rev. 5.4
Calcium	3.71 mg/L	1	0.05	0.01	GES	09/05/2023 15:34	EPA 200.8-1994, Rev. 5.4
Chromium	0.83 µg/L	1	0.30	0.07	GES	09/05/2023 15:34	EPA 200.8-1994, Rev. 5.4
Cobalt	11.3 µg/L	1	0.020	0.005	GES	09/05/2023 15:34	EPA 200.8-1994, Rev. 5.4
Lead	0.26 μg/L	1	0.20	0.05	GES	09/05/2023 15:34	EPA 200.8-1994, Rev. 5.4
Lithium	0.0482 mg/L	1	0.00030	0.00007	GES	09/05/2023 15:34	EPA 200.8-1994, Rev. 5.4
Magnesium	4.11 mg/L	1	0.100	0.006	GES	09/05/2023 15:34	EPA 200.8-1994, Rev. 5.4
Mercury	950 ng/L	50	250	90	RLP	08/30/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	09/05/2023 15:34	EPA 200.8-1994, Rev. 5.4
Potassium	2.30 mg/L	1	0.100	0.008	GES	09/05/2023 15:34	EPA 200.8-1994, Rev. 5.4
Selenium	1.04 µg/L	1	0.50	0.04	GES	09/05/2023 15:34	EPA 200.8-1994, Rev. 5.4
Sodium	24.4 mg/L	1	0.20	0.01	GES	09/05/2023 15:34	EPA 200.8-1994, Rev. 5.4
Strontium	0.0595 mg/L	1	0.00200	0.00005	GES	09/05/2023 15:34	EPA 200.8-1994, Rev. 5.4
Thallium	0.10 µg/L	1	0.20	0.02 J1	GES	09/05/2023 15:34	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.86 pCi/L	0.42	0.35	ST	09/05/2023 15:40	SW-846 9315-1986, Rev. 0
Carrier Recovery	98.9 %					
Radium-228	2.30 pCi/L	0.29	0.85 B1	ST	09/11/2023 13:28	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	51.5 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 232672 Customer: Pirkey Power Station Date Reported: 09/22/2023

Customer Sample ID: AD-32 Customer Description:
Lab Number: 232672-006-01 Preparation: Dissolved

Date Collected: 08/23/2023 10:21 EDT Date Received: 08/28/2023 13:17 EDT

Metals

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	09/05/2023 15:40	EPA 200.8-1994, Rev. 5.4
Arsenic	1.56 µg/L	1	0.10	0.03	GES	09/05/2023 15:40	EPA 200.8-1994, Rev. 5.4
Barium	20.2 μg/L	1	0.20	0.05	GES	09/05/2023 15:40	EPA 200.8-1994, Rev. 5.4
Beryllium	0.995 μg/L	1	0.050	0.007	GES	09/05/2023 15:40	EPA 200.8-1994, Rev. 5.4
Cadmium	0.080 µg/L	1	0.020	0.004	GES	09/05/2023 15:40	EPA 200.8-1994, Rev. 5.4
Chromium	0.24 µg/L	1	0.30	0.07 J1	GES	09/05/2023 15:40	EPA 200.8-1994, Rev. 5.4
Cobalt	11.2 µg/L	1	0.020	0.005	GES	09/05/2023 15:40	EPA 200.8-1994, Rev. 5.4
Iron	5.08 mg/L	1	0.020	0.003	GES	09/05/2023 15:40	EPA 200.8-1994, Rev. 5.4
Lead	0.1 µg/L	1	0.20	0.05 J1	GES	09/05/2023 15:40	EPA 200.8-1994, Rev. 5.4
Lithium	0.0468 mg/L	1	0.00030	0.00007	GES	09/05/2023 15:40	EPA 200.8-1994, Rev. 5.4
Manganese	0.0475 mg/L	1	0.00100	0.00008	GES	09/05/2023 15:40	EPA 200.8-1994, Rev. 5.4
Mercury	13 ng/L	1	5	2	RLP	08/30/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	09/05/2023 15:40	EPA 200.8-1994, Rev. 5.4
Selenium	0.91 μg/L	1	0.50	0.04	GES	09/05/2023 15:40	EPA 200.8-1994, Rev. 5.4
Thallium	0.1 µg/L	1	0.20	0.02 J1	GES	09/05/2023 15:40	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 232672 Customer: Pirkey Power Station Date Reported: 09/22/2023

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhuel & Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.
- U1 Not detected at or above method detection limit (MDL).
- B1 Analyte detected in method blank (MB) at or above the method criteria.

Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125	Chain of Custody Record Program: Coal Combustion Residuals (CCR)											
Contacts: Dave Conover (614-836-4184)				FIG	श्वाता.	Site Con		on ivesiane	113 (3011)	Da	te:	For Lab Use Only:
Project Name: Pirkey PP EBAP	Analysis Turnaround Time (in Calendar Days) © Routine (28 days for Monitoring Wells)						250 mL bottle,	Field-filter 250 mL bottle, then pH<2, HNO ₃	Three (six every 10th*) 1 L bottles, pH<2, HNO3	250 mL Glass bottle,	250 mL Glass bottle,	73 2672
Contact Name: Leslie Fuerschbach Contact Phone: 318-673-2744							pH<2, HNO ₃			<2, HCL**,	HCL**, pH<2	
Sampler(s): Kenny McDonald Brad Bates						tiats	Be Be Care See See See See See See See See See S	red St. As. Bs.		priva	Mercury	
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Matrix Cont.		Sampler(s) Initials (Sb. As. B. Bs. Bs. Bs. Bs. Bs. Bs. Bs. Bs. Bs	[[울병 [Ra-226, Ra-228	Mercury	Dissolved Me	Sample Specific Notes:
AD-2	8/23/2023	1003	G	GW	7		х	×	х	х	х	
AD-4	8/23/2023	728	G	GW	7		х	х	x	х	х	
AD-12	8/23/2023	846	G	GW	7		×	х	x	х	x	
AD-18	8/23/2023	950	G	GW	7		×	х	х	х	х	
AD-31	8/23/2023	923	G	GW	7		×	х	x	х	х	
AD-32	8/23/2023	921	G	GW	7		х	Х	х	X	X	-
										==		
							100					
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4:			ther	; F=	filter in	field	4	F4	4	2	F2	
* Six 1L Bottles must be collected for Radium f	or every 10th	sample.										
Special Instructions/QC Requirements & Comm	ents:											
F	T(G-32 n	eeded									
Relinquished by:	Company:	96 <i>lt</i>		Date/T	me: //23	1400	Received b	y:				Date/Time:
Relinquished by:	Company:			Date/T	_		Received b	-	25.5		,	Date/Time;
Relinquished by:	Company:			Date/T	me	1	Received in	Laboratory b	my	an 1	41	Date/Time 08/23 1:10 Pm

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Box Bag Envelope	PONY UPS (FedEX) USPS
	Other
Plant/Customer PIHCOY P	Number of Plastic Containers: 30
Opened By Krisqua	Number of Glass Containers:
	Number of Mercury Containers: 19
	Y / N or N/A Initial: MGC on ice / To ice
	/ N Comments
	/ N Comments
	If RUSH, who was notified?
	O ₂ or NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	N Comments
Were samples labeled properly?	/ N Comments
Were correct containers used?	/ N Comments
Was pH checked & Color Coding don	ie?(9) N or N/A Initial & Date: MGC 08/28/23
pH paper (circle one): MQuant,PN1.09535	5.0001,LOT#[OR] Lab Rat,PN4801,LOT
- Was Add'l Preservative needed? Y	/(N) If Yes: By whom & when: (See Prep Book)
Is sample filtration requested?	/ O Comments (See Prep Book)
Was the customer contacted?	Yes: Person Contacted:
Lab ID# 232672 In	itial & Date & Time :
Logged by MGC	omments:
Reviewed by WCG	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Municipal Solid Waste Laboratory Review Checklist

inis da	на раск	cage co	onsists or:			
x	(which	inclu			checklist consisting of Ta on this page), Table 2, Su	
×	R1	Field	l chain-of-custod	ly documentation		
x	R2	Samı	ple identification	cross-reference		
x	R3	Test (a) 1 (b) 1 (c) 1 (d) (d)	reports (analytic Items specified i NELAC Standard Dilution factors Preparation met Cleanup method	cal data sheets) for n NELAC Chapter d hods s	each environmental sam 5 for reporting results, e. ely identified compounds	g., Section 5.5.10 in 2003
NA	R4	(a)	ogate recovery d Calculated recov The laboratory's		ts	
x.	R5	Test	reports/summar	ry forms for blank	samples	
x	R6	(a) (b) (reports/summan LCS spiking amo Calculated %R fo The laboratory's	ounts or each analyte	tory control samples (LC	Ss) including:
x	R7	(a) (b) (c) (d)	Samples associa MS/MSD spikin Concentration o Calculated %Rs	ted with the MS/M g amounts f each MS/MSD ar	atrix spike duplicates (Mi ISD clearly identified allyte measured in the pa at differences (RPDs) ts	, ,
x	R8	(a) (b) 7	The amount of a The calculated R	nalyte measured in	-	ision:
х	R9		-		Ls) for each analyte for ea	ach method and matrix
x	R10		er problems or ar	•	•	
×	The Ex		-		the result is "No" or "NR	" (Not Reviewed)
packag require reports by the laborat	se Stat ge as be ements s. By m laborat tory in t	emen en rev of the y sign tory as the La	nt: I am responsiviewed by the lab e methods used, on nature below, I a s having the pote	sible for the release poratory and is con except where noted affirm to the best of ential to affect the of Checklist, and no	e of this laboratory data purplete and technically could by the laboratory in the firmy knowledge, all probliquality of the data, have b	oackage. This data mpliant with the attached exception ems/anomalies, observed
respon used is	ding to	rule. sible	The official signi	ing the cover page	ouse laboratory controlled of the rule-required repo is by signature affirming	rt in which these data are
Jona	than B	Barnh	nill	Representing the designed section and the Section of the Section o	Lab Supervisor	9-21-2023
Name	(printed	d)	Signat	ture	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP EBAP

Reviewer Name: Jonathan Barnhill

LRC Date: 9-21-2023

Laboratory Job Number: 232672

Prep Batch Number(s): PB23083103 QC2309030

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
_	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER1
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0_	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	r	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	1	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		:
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP EBAP

Reviewer Name: Jonathan Barnhill

LRC Date: 9-21-2023

Laboratory Job Number: 232672

Prep Batch Number(s): PB23083103 QC2309030

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
-	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
\$2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2
S 3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	Yes	
	I	Were ion abundance data within the method-required QC limits?	Yes	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	Yes	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	·
S 9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey PP EBAP

Reviewer Name: Jonathan Barnhill

LRC Date: 9-21-2023

Laboratory Job Number: 232672

Prep Batch Number(s): PB23083103 QC2309030

Exception Report No.	Description
ER1	Linear Dynamic Range (LDR) study used to determine upper limit of analyte calibration
ER2	CCB acceptance criteria is CCB<2.2*MDL.

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Mercury Laboratory Review Checklist

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: x This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. х R1 Field chain-of-custody documentation х R₂ Sample identification cross-reference х Test reports (analytical data sheets) for each environmental sample that includes: R₃ (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits Test reports/summary forms for blank samples x **R**5 x **R6** Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits х **R**7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits Laboratory analytical duplicate (if applicable) recovery and precision: × **R8** (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates List of method quantitation limits (MQLs) for each analyte for each method and matrix × R9 x R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) **Release Statement:** I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: • This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Susann Sulzmann
Name (printed)

Signature

Senior Chemist
Official Title 09-08-2023

Date

Mercury Laboratory Review Checklist

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey

Reviewer Name: Susann Sulzmann

LRC Date: 08-31-2023, 09-01-2023

Laboratory Job Number: 232672

Prep Batch Number(s): 23083001, 23083003, 23090101

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Mercury Laboratory Review Checklist

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	ves	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?		
	Ι	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	ves	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	ves	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Mercury Laboratory Review Checklist

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey

Reviewer Name: Susann Sulzmann

LRC Date: 08-31-2023, 09-01-2023

Laboratory Job Number: 232672

Prep Batch Number(s): 23083001, 23083003, 23090101

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	27

Mercury Laboratory Review Checklist

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		_
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S 9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
-	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Mercury Laboratory Review Checklist

Table 3. Exception Reports.

Laboratory Name:American Electric Power Dolan Chemical LaboratoryProject Name:PirkeyReviewer Name:Susann SulzmannLRC Date:08-31-2023, 09-01-2023Laboratory Job Number:232672Prep Batch Number(s):23083001, 23083003, 23090101

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>
 	

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

X	(which		reportable data identified	checklist consisting of Tabl on this page), Table 2, Supp	
x	R1	Field chain-o	f-custody documentation		
×	R2	Sample ident	rification cross-reference		
X	R3	(a) Items spNELAC(b) Dilution(c) Preparate(d) Cleanup	ecified in NELAC Chapter Standard factors tion methods methods	r each environmental sample 5 for reporting results, e.g., rely identified compounds (1	Section 5.5.10 in 2003
NA	R4	(a) Calculat	covery data including: ed recovery (%R) oratory's surrogate QC lim	its	
х	R5	Test reports/	summary forms for blank	samples	
x	R6	(a) LCS spil (b) Calculat	summary forms for laborating amounts ed %R for each analyte oratory's LCS QC limits	atory control samples (LCSs) including:
×	R7	(a) Samples(b) MS/MS(c) Concent(d) Calculat	associated with the MS/ND spiking amounts	nalyte measured in the pare nt differences (RPDs)	-
x	R8	(a) The amo	ount of analyte measured i	_	on:
x	R9	List of metho	od quantitation limits (MQ	(Ls) for each analyte for each	n method and matrix
x	R10	Other proble	ms or anomalies		
X	The Ex	cception Repo	rt for every item for which	the result is "No" or "NR" (Not Reviewed)
packag require reports by the laborat	ge as be ements s. By m laborat tory in t	een reviewed b of the method y signature b tory as having	by the laboratory and is co ls used, except where note elow, I affirm to the best o the potential to affect the y Review Checklist, and no	se of this laboratory data pace implete and technically comp d by the laboratory in the at of my knowledge, all problen quality of the data, have be o information or data have b	pliant with the tached exception as/anomalies, observed en identified by the
respon used is statem	ding to respon ent is t	rule. The officies rule. The release rue.	cial signing the cover page	ouse laboratory controlled be of the rule-required report l is by signature affirming the	in which these data are
		. Palmer	James 1. Jalone	Chemical Technician,	
Name	(printed	d)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Plant

Reviewer Name: Tamisha Palmer

LRC Date: 09/14/2023

Laboratory Job Number: 232672

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
-	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?		
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	NA	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Plant

Reviewer Name: Tamisha Palmer

LRC Date: 09/14/2023

Laboratory Job Number: 232672

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
_	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S 2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
•	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
_	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation	,	
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Plant

Reviewer Name: Tamisha Palmer

LRC Date: 09/14/2023

Laboratory Job Number: 232672

Prep Batch Number(s): PB23090102

Exception Report No.	Description
<u>-</u>	
*	

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

□ This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports.

□ R1 Field chain-of-custody documentation
□ R2 Sample identification cross-reference
□ R3 Test reports (analytical data sheets) for each environmental sample that includes:

R3 Test reports (analytical data sheets) for each environmental sample that includes:
(a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003
NELAC Standard

(b) Dilution factors

(c) Preparation methods

(d) Cleanup methods

(e) If required for the project, tentatively identified compounds (TICs)

R4 Surrogate recovery data including:

(a) Calculated recovery (%R)

(b) The laboratory's surrogate QC limits

R5 Test reports/summary forms for blank samples

R6 Test reports/summary forms for laboratory control samples (LCSs) including:

(a) LCS spiking amounts

(b) Calculated %R for each analyte

(c) The laboratory's LCS QC limits

R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:

(a) Samples associated with the MS/MSD clearly identified

(b) MS/MSD spiking amounts

(c) Concentration of each MS/MSD analyte measured in the parent and spiked samples

(d) Calculated %Rs and relative percent differences (RPDs)

(e) The laboratory's MS/MSD QC limits

R8 Laboratory analytical duplicate (if applicable) recovery and precision:

(a) The amount of analyte measured in the duplicate

(b) The calculated RPD

(c) The laboratory's QC limits for analytical duplicates

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix

R10 Other problems or anomalies

The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed)

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Tamisha T. Palmer

Chemical Technician Prin.

09/14/2023

Name (printed)

Official Title

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Plant

Reviewer Name: Tamisha Palmer

Reviewer Name: Tamisna Paimer

LRC Date: 09/14/2023

Laboratory Job Number: 232672

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I _	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	<u> </u>	Were blank concentrations < MQL?	No	ER1
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	1	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	NA	
	I	Were analytical duplicates analyzed at the appropriate frequency?	NA	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	NA	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Plant

Reviewer Name: Tamisha Palmer

LRC Date: 09/14/2023

Laboratory Job Number: 232672

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	re e
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	3
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
_	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹ Analytes²		Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
\$11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13_	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

APPENDIX 6- Well Installation/Decommissioning Logs

Reports documenting monitoring well plugging and abandonment or well installation are included in the appendix.

STATE OF TEXAS PLUGGING REPORT for Tracking #232687

Owner: SWEPCO Owner Well #: MW-7 (AD-7)

Address: 2400 FM 3251 Grid #: 35-37-1

Hallsville, TX 75650

Well Location: 2400 FM 3251 32° 27' 40.81" N

Hallsville, TX 75650 Longitude: 094° 29' 12.31" W

Well County: Harrison Elevation: No Data

Well Type: Monitor

Drilling Information

Company: No Data Date Drilled: 10/3/1983

Driller: No Data License Number: No Data

 Diameter (in.)
 Top Depth (ft.)
 Bottom Depth (ft.)

 Borehole:
 10
 0
 40

Plugging Information

Date Plugged: 9/12/2023 Plugger: Rich Herman

Plug Method: Pour in 3/8 bentonite chips when standing water in well is less than 100 feet depth,

cement top 2 feet

Casing Left in Well:

Plug(s) Placed in Well:

Dla (in.)	Top (ft.)	Bottom (ft.)	Top (ft.)	Bottom (ft.)	Description (number of sacks & material)
4	0	40	0	40	Bentonite 9 Bags/Sacks

Certification Data: The driller certified that the driller plugged this well (or the well was plugged under the

driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in

the reports(s) being returned for completion and resubmittal.

Company Information: ETTL Engineers & Consultants, Inc.

1717 East Erwin Street

Tyler, TX 75702

Driller Name: Rich Herman License Number: 59385

Comments: All casing and screen left in the hole. When attempting to pull, 3' of stickup was all

that came out. No cement cap per client request due to grading that is currently

going on