Annual Groundwater Monitoring Report

Southwestern Electric Power Company
H. W. Pirkey Power Plant
Landfill CCR Management Unit
CN600126767; RN100214287

Registration No: CCR104

Hallsville, Texas

January 31, 2024

Prepared by:
American Electric Power Service Corporation
1 Riverside Plaza
Columbus, Ohio 43215

Table of Contents I. II. Groundwater Monitoring Well Locations and Identification Numbers......4 III. IV. Groundwater Quality Data and Static Water Elevation Data, With Flow Rate and Direction and V. VI. Alternate Source Demonstration 6 VII. Discussion About Transition Between Monitoring Requirements or Alternate Monitoring VIII. IX. X.

Page

Appendix 1- Groundwater Data Tables and Figures

Appendix 2- Statistical Analysis

Appendix 3- Alternate Source Demonstrations

Appendix 4- Field Sheets

Appendix 5- Analytical Reports

Appendix 6- Well Installation/Decommissioning Logs

Abbreviations:

ASD - Alternate Source Demonstration

CCR - Coal Combustion Residual

GWPS - Groundwater protection standards

SSI - Statistically Significant Increase

SSL - Statistically Significant Level

TCEQ – Texas Commission on Environmental Quality

I. Summary

This Annual Groundwater Monitoring Report (Report) has been prepared to report the status of activities for the preceding year for the Landfill (LF) Coal Combustion Residual (CCR) unit at Pirkey Power Plant. Southwestern Electric Power Company is wholly-owned subsidiary of American Electric Power Company (AEP). The Texas Commission on Environmental Quality's (TCEQ's) CCR rule requires that the Annual Groundwater Monitoring Report be posted to the operating record for the preceding year no later than January 31, 2024.

In general, the following activities were completed:

- At the start of the current annual reporting period, the LF was operating under the Detection monitoring program.
- At the end of the current annual reporting period, the LF was operating under the Detection monitoring program.
- Groundwater samples were collected for AD-8, AD-12, AD-16, AD-23, AD-27, AD-34 and AD-36 in June and October 2023 and analyzed for Appendix III, as specified in 30 TAC §352.941 *et seq.* and AEP's *Groundwater Sampling and Analysis Plan (2021)*.
- Groundwater data underwent various validation tests, including tests for completeness, valid values, transcription errors, and consistent units.
- Data and statistical analysis not available for the previous reporting period indicated that during the 2nd semi-annual 2022 sampling event (November 2022) with confirmation sampling conducted in February 2023:

The following Appendix III parameters exceeded background:

- o Boron at AD-23
- o Chloride at AD-36
- A successful ASDs for the Appendix III parameter that exceeded the GWPS for the 2nd semi-annual 2022 was certified on September 5, 2023 and submitted to TCEQ September 5, 2023 for approval.
- During the 1st semi-annual 2023 sampling event (June 2023) with confirmation sampling conducted in August 2023:

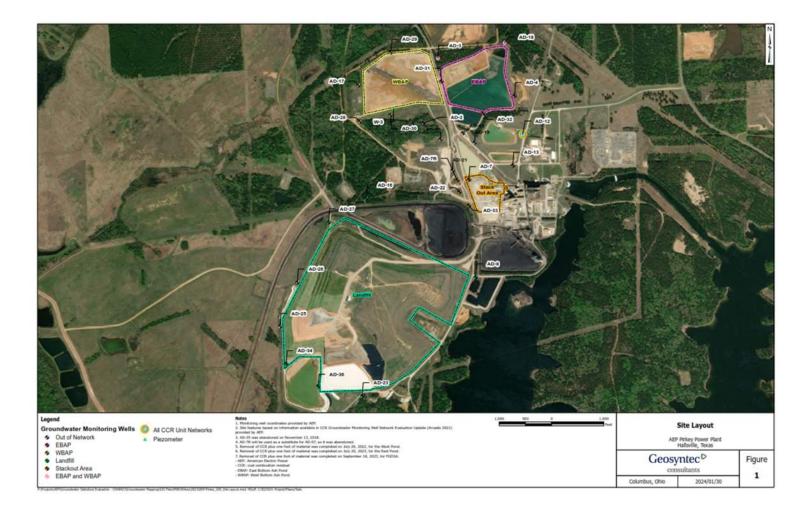
The following Appendix III parameters exceeded background:

- o Calcium at AD-36
- Chloride at AD-36
- Pirkey Power Plant submitted a Notice of SSI over background to TCEQ (December 21, 2023) which indicated an alternative source demonstration would be conducted. An

alternative source demonstration report will be prepared and certified and submitted to TCEQ's Executive Director for review within 90 days of the SSI determination.

- The 2nd semi-annual event (October 2023) data are still undergoing statistical analysis.
- The background data was re-established on January 25, 2024.
- A statistical process in accordance with 30 TAC §352.931 to evaluate groundwater data was updated, certified, and posted to AEP's CCR website in 2021 titled: AEP's Statistical Analysis Plan (Geosyntec 2021). The statistical process was guided by USEPA's Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance ("Unified Guidance," USEPA, 2009).

The major components of this annual report, to the extent applicable at this time, are presented in sections that follow:


- A map, aerial photograph or a drawing showing the CCR management unit(s), all groundwater monitoring wells and monitoring well identification numbers;
- All of the monitoring data collected, including the rate and direction of groundwater flow, plus a summary showing the number of samples collected per monitoring well, the dates the samples were collected and whether the sample was collected as part of detection monitoring or assessment monitoring programs (Attached as **Appendix 1**);
- Statistical comparison of monitoring data to determine if there have been SSI(s) or SSL(s) (Attached as **Appendix 2**);
- A discussion of whether any alternate source demonstrations were performed, and the conclusions (Attached as **Appendix 3**);
- A summary of any transition between monitoring programs, or an alternate monitoring frequency, for example the date and circumstances for transitioning from detection monitoring to assessment monitoring, in addition to identifying the constituents detected at a SSI over background concentrations (where applicable);
- Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a statement as to why that happened (Attached as **Appendix 6**);
- Other information required to be included in the annual report such as field sheets, analytical reports, etc. (Attached as **Appendix 4 and 5**)

In addition, this report summarizes key actions completed, and where applicable, describes any problems encountered and actions taken to resolve those problems. The report includes a projection of key activities for the upcoming year.

II. Groundwater Monitoring Well Locations and Identification Numbers

The figure that follows depicts the PE-certified groundwater monitoring network, the monitoring well locations and their corresponding identification numbers.

Lan	dfill Monitoring Wells
Upgradient	Downgradient
AD-8	AD-23
AD-12	AD-34
AD-16	AD-35 (decommissioned 2018)
AD-27	AD-36 (installed 2019)

III. <u>Monitoring Wells Installed or Decommissioned</u>

Pirkey Power Plant ceased operation of its coal-fired boilers on March 31, 2023. The Plant is currently being demolished, and one the designated downgradient monitoring wells (AD-7) for the

FGD Stack Out Area was decommissioned during September 2023 because it was located within the boundary (footprint) of the Stack Out Area where demolition activities are occurring.

There were no new groundwater monitoring wells installed during 2023. The network design is summarized in the *Groundwater Monitoring Network Design Report* (January 2021) and is posted at the CCR website for Pirkey Power Plant's LF. That network design report, viewable on the AEP CCR web site, discusses the facility location, the hydrogeological setting, the hydrostratigraphic units, the uppermost aquifer, downgradient monitoring well locations and the upgradient monitoring well locations.

IV. <u>Groundwater Quality Data and Static Water Elevation Data, With Flow Rate and Direction and Discussion</u>

Appendix 1 contains tables showing the groundwater quality data collected during the establishment of background quality, and during detection and assessment monitoring. The groundwater velocity calculations, groundwater flow direction, and potentiometric maps developed after each sampling event are shown in **Appendix 1**.

As required by the detection monitoring rules, 30 TAC §352.941 *et seq*, two rounds of sampling were conducted in June and October including all 30 TAC §352 Appendix III parameters.

The groundwater flow rate and direction for the confirmatory sampling events reflect that seen during the semi-annual sampling events.

Detection monitoring will continue in 2024.

V. Groundwater Quality Data Statistical Analysis

Data and statistical analysis not available for the previous reporting period indicated that during the 2nd semi-annual 2022 sampling event (November 2022) with confirmation sampling conducted in February 2023:

The following Appendix III parameters exceeded background:

- o Boron at AD-23
- o Chloride at AD-36

During the 1st semi-annual 2023 sampling event (June 2023) with confirmation sampling conducted in August 2023:

The following Appendix III parameters exceeded background:

- o Calcium at AD-36
- o Chloride at AD-36

The 2nd semi-annual event (October 2023) data are still undergoing statistical analysis.

Appendix 2 contains the statistical analysis report(s).

VI. Alternate Source Demonstration

A successful ASDs for the Appendix III parameter that exceeded the GWPS for the 2nd semi-annual 2022 was certified on September 5, 2023 and submitted to TCEQ September 5, 2023 for approval.

Pirkey Power Plant submitted a Notice of SSI over background to TCEQ (December 21. 2023) which indicated an alternative source demonstration would be conducted. An alternative source demonstration report will be prepared and certified and submitted to TCEQ's Executive Director for review within 90 days of the SSI determination.

VII. <u>Discussion About Transition Between Monitoring Requirements or Alternate</u> <u>Monitoring Frequency</u>

No transition was made during the reporting period and the CCR Unit remained in detection monitoring.

Regarding defining an alternate monitoring frequency, the groundwater velocity and monitoring well production are high enough at this facility that no modification to the semiannual assessment monitoring frequency is needed.

VIII. Other Information Required

The background data was re-established on January 25, 2024.

As required by the CCR detection monitoring rules in 30 TAC §352.941, sampling all LF CCR wells for the 30 TAC §352 Appendix III parameters was completed in 2023.

IX. Description of Any Problems Encountered in 2023 and Actions Taken

No significant problems were encountered. The low flow sampling effort went smoothly and the schedule was met to support the annual groundwater report preparation covering the year 2023 groundwater monitoring activities.

X. A Projection of Key Activities for the Upcoming Year

Key activities for the next year include:

- Detection monitoring sampling will be conducted;
- Complete the statistical evaluation of the second semi-annual groundwater monitoring event that took place in October 2023;
- Conduct groundwater sampling events for all constituents listed in 30 TAC §352 Appendix III as required by 30 TAC 352.941;
- Perform statistical analysis on the sampling results for the 30 TAC §352 Appendix III parameters as required by 30 TAC 352.941;

- Evaluation of the detection monitoring results from a statistical analysis viewpoint, looking for any SSIs over background;
- Completed ASDs, as needed;
- Responding to any new data received in light of TCEQ CCR rule requirements;
- Preparation of the next annual groundwater report.

APPENDIX 1- Groundwater Data Tables and Figures

Figures and Tables follow, showing the groundwater monitoring data collected, the rate and direction of groundwater flow, and a summary showing the number of samples collected per monitoring well. The dates that the samples were collected also is shown.

Table 1. Groundwater Data Summary: AD-8 Pirkey - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/10/2016	Background	1.58	109	9	< 0.083 U1	6.1	181	432
7/13/2016	Background	0.775	20.7	13	2	6.2	131	280
9/8/2016	Background	1.04	50.7	12	2	5.1	121	285
10/12/2016	Background	0.793	20.8	13	2	3.7	184	276
11/15/2016	Background	0.769	17.2	13	3	3.7	208	296
1/11/2017	Background	0.734	18.6	13	3	3.6	228	280
2/28/2017	Background	0.777	18.1	10	2	3.7	157	250
4/11/2017	Background	0.779	17.1	12	3	3.9	168	284
8/23/2017	Detection	0.411	19.4	9	0.587 J1	3.9	56	110
3/21/2018	Assessment	1.03	56.1	8	1.1987	5.7	140	278
8/20/2018	Assessment	0.714	14.5	18	5.1991	3.7	168	300
2/28/2019	Assessment	1.05	103	6.83	0.40	5.7	175	462
5/21/2019	Assessment	1.11	85.5	4.48	0.33	5.9	127	296
8/13/2019	Detection	0.818	27.6	12.7	3.39	4.6	128	260
6/3/2020	Detection	0.783	74.4	11.5	2.45	5.8	196	396
11/3/2020	Detection	0.822	18.5	15.8	2.50	4.1	119	237
5/26/2021	Detection	0.986	93.4	3.28	0.35	5.9	168	390
11/17/2021	Detection	0.693	21.9 M1, P3	15.4	2.31	4.2	97.2	220
6/22/2022	Detection	1.04	37.2 M1	17.0	2.85	5.0	117	270
11/14/2022	Detection	1.03	17.9	23.1	2.04	4.5	119	240
6/27/2023	Detection	0.994	92.7	6.97	0.31	5.8	182	410
10/18/2023	Detection	1.11	19.6	21.9	2.26	4.2	99.4	230

Table 1. Groundwater Data Summary: AD-8 Pirkey - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/10/2016	Background	< 0.93 U1	< 1.05 U1	38	1	< 0.07 U1	1	1.80288 J1	0.9155	< 0.083 U1	1.02541 J1	< 0.00013 U1	0.027	< 0.29 U1	15	1.19926 J1
7/13/2016	Background	< 0.93 U1	1.16508 J1	61	7	0.175996 J1	1	20	6.75	2	1.46729 J1	0.032	0.211	< 0.29 U1	< 0.99 U1	< 0.86 U1
9/8/2016	Background	< 0.93 U1	< 1.05 U1	48	2	< 0.07 U1	0.835837 J1	9	1.658	2	< 0.68 U1	0.018	0.048	< 0.29 U1	3.84567 J1	< 0.86 U1
10/12/2016	Background	< 0.93 U1	1.46586 J1	61	6	< 0.07 U1	0.74214 J1	18	6.72	2	2.30733 J1	0.032	0.112	< 0.29 U1	2.51464 J1	< 0.86 U1
11/15/2016	Background	< 0.93 U1	< 1.05 U1	52	6	0.118693 J1	0.805286 J1	18	6.14	3	2.85553 J1	0.03	0.16	< 0.29 U1	< 0.99 U1	< 0.86 U1
1/11/2017	Background	< 0.93 U1	1.53134 J1	60	6	0.108717 J1	2	18	6.29	3	2.99592 J1	0.032	0.157	< 0.29 U1	1.4083 J1	< 0.86 U1
2/28/2017	Background	< 0.93 U1	1.68597 J1	52	6	0.13889 J1	0.633257 J1	18	7.64	2	3.26919 J1	0.031	0.153	< 0.29 U1	1.78549 J1	< 0.86 U1
4/11/2017	Background	< 0.93 U1	< 1.05 U1	51	6	0.128137 J1	0.887504 J1	19	5.56	3	2.44168 J1	0.031	0.01068 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/21/2018	Assessment	< 0.93 U1	< 1.05 U1	37.9	2.57	< 0.07 U1	< 0.23 U1	9.38	2.499	1.1987	0.95 J1	0.01503	0.049	< 0.29 U1	27.68	< 0.86 U1
8/20/2018	Assessment	0.02 J1	4.05	33.4	4.55	0.18	0.759	15.9	0.145	5.1991	4.46	0.0221	0.105	0.02 J1	9.8	0.083
2/28/2019	Assessment	< 0.4 U1	< 0.6 U1	46.8	< 0.4 U1	< 0.2 U1	< 0.8 U1	0.8 J1	1.066	0.40	< 0.4 U1	0.002 J1	< 0.005 U1	< 8 U1	30.8	< 2 U1
5/21/2019	Assessment	< 0.4 U1	1 J1	42.8	1 J1	< 0.2 U1	< 0.8 U1	< 0.4 U1	1.786	0.33	< 0.4 U1	0.0003 J1	0.009 J1	< 8 U1	23.9	< 0.1 U1

Table 1. Groundwater Data Summary: AD-12
Pirkey - LF
Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/11/2016	Background	0.03	0.362	5	< 0.083 U1	4.4	4	94
7/13/2016	Background	0.03	0.26	6	< 0.083 U1	3.1	4	75
9/7/2016	Background	0.04	0.343	6	< 0.083 U1	3.9	7	63
10/12/2016	Background	0.03	0.271	7	1	3.4	8	92
11/14/2016	Background	0.04	0.331	8	< 0.083 U1	2.6	6	80
1/11/2017	Background	0.03	0.315	7	< 0.083 U1	4.8	6	76
2/28/2017	Background	0.04	0.434	5	< 0.083 U1	3.6	4	50
4/11/2017	Background	0.05	0.299	6	0.2565 J1	4.7	7	72
8/23/2017	Detection	0.0495	0.245	6	0.213 J1	4.8	6	52
3/21/2018	Assessment	0.01397	0.269	5	< 0.083 U1	4.2	3	< 2 U1
8/20/2018	Assessment	0.017	0.338	10	< 0.083 U1	4.4	4	94
2/27/2019	Assessment	0.03 J1	0.4 J1	6.08	0.09	5.2	3.6	36
5/21/2019	Assessment	0.020	0.3 J1	6.30	0.09	4.1	4.0	80
8/12/2019	Detection	< 0.02 U1	0.278	7.24	0.06 J1	4.9	2.6	90
3/10/2020	Detection	0.02 J1	0.3 J1	6.08	0.10	4.9	3.7	62
6/2/2020	Detection	< 0.02 U1	0.2 J1	5.63	0.10	4.0	3.9	91
11/2/2020	Detection	0.03 J1	0.3 J1	4.65	0.08	4.3	3.3	74
3/8/2021	Detection	0.01 J1	0.2 J1	6.46	0.11	4.1	3.8	68
5/24/2021	Detection	0.032 J1	0.2 J1	5.54	0.12	4.2	5.46	70
11/15/2021	Detection	0.012 J1	0.28	8.03	0.07	3.5	2.90	90
3/28/2022	Detection	0.021 J1	0.20	6.10	0.07	3.9	3.80	60 L1
6/20/2022	Detection	0.042 J1	0.32	7.59	0.09	4.3	4.81	80
11/15/2022	Detection	0.013 J1	0.36	8.03	0.08	4.7	3.39	70
2/27/2023	Detection	0.021 J1	0.34	6.51	0.07	3.8	3.90	70
6/26/2023	Detection	0.019 J1	0.21	4.68	0.06	4.6	2.9	80
8/23/2023	Detection	0.017 J1	0.22	4.74	0.07	3.8	3.5	75
10/17/2023	Detection	0.015 J1	0.27	6.74	0.07	3.8	2.7	58

Table 1. Groundwater Data Summary: AD-12 Pirkey - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/11/2016	Background	< 0.93 U1	< 1.05 U1	26	0.219521 J1	< 0.07 U1	0.710981 J1	1.58207 J1	0.2073	< 0.083 U1	< 0.68 U1	< 0.00013 U1	< 0.005 U1	< 0.29 U1	1.73953 J1	< 0.86 U1
7/13/2016	Background	< 0.93 U1	< 1.05 U1	23	0.190337 J1	< 0.07 U1	0.68835 J1	1.29444 J1	2.909	< 0.083 U1	< 0.68 U1	0.008	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
9/7/2016	Background	< 0.93 U1	< 1.05 U1	30	0.232192 J1	< 0.07 U1	0.353544 J1	1.66591 J1	0.881	< 0.083 U1	< 0.68 U1	0.01	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
10/12/2016	Background	< 0.93 U1	< 1.05 U1	27	0.149553 J1	< 0.07 U1	0.529033 J1	1.56632 J1	0.257	1	< 0.68 U1	0.012	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
11/14/2016	Background	< 0.93 U1	< 1.05 U1	28	0.152375 J1	< 0.07 U1	0.32826 J1	1.47282 J1	0.767	< 0.083 U1	< 0.68 U1	0.013	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
1/11/2017	Background	< 0.93 U1	< 1.05 U1	23	0.126621 J1	< 0.07 U1	0.650158 J1	1.09495 J1	1.536	< 0.083 U1	< 0.68 U1	0.01	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
2/28/2017	Background	< 0.93 U1	< 1.05 U1	26	0.149219 J1	< 0.07 U1	0.325811 J1	1.29984 J1	0.416	< 0.083 U1	< 0.68 U1	0.009	< 0.005 U1	< 0.29 U1	< 0.99 U1	0.994913 J1
4/11/2017	Background	< 0.93 U1	< 1.05 U1	24	0.159412 J1	< 0.07 U1	0.416007 J1	1.33344 J1	0.3895	0.2565 J1	< 0.68 U1	0.008	0.01364 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/21/2018	Assessment	< 0.93 U1	< 1.05 U1	25.82	0.16 J1	< 0.07 U1	1.05	1.49 J1	0.784	< 0.083 U1	< 0.68 U1	0.00722	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
8/20/2018	Assessment	< 0.01 U1	0.11	27.8	0.159	0.01 J1	0.330	1.72	1.128	< 0.083 U1	0.089	0.0143	< 0.005 U1	0.04 J1	0.1	0.04 J1
2/27/2019	Assessment	< 0.4 U1	< 0.6 U1	22.5	< 0.4 U1	< 0.2 U1	< 0.8 U1	1.37	0.225	0.09	< 0.4 U1	0.00688	< 0.005 U1	< 8 U1	< 0.6 U1	< 2 U1
5/21/2019	Assessment	< 0.4 U1	< 0.6 U1	21.7	< 0.4 U1	< 0.2 U1	< 0.8 U1	1.15	0.201	0.09	< 0.4 U1	0.00576	< 0.005 U1	< 8 U1	< 0.6 U1	< 0.1 U1

Table 1. Groundwater Data Summary: AD-16
Pirkey - LF
Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/10/2016	Background	0.02	1.21	8	< 0.083 U1	3.9	16	116
7/14/2016	Background	0.03	2	9	< 0.083 U1	3.8	45	148
9/8/2016	Background	0.03	1.83	9	< 0.083 U1	3.9	33	133
10/13/2016	Background	0.03	1.15	9	< 0.083 U1	3.9	16	124
11/14/2016	Background	0.03	1.58	9	< 0.083 U1	4.4	23	124
1/12/2017	Background	0.02	1.76	10	< 0.083 U1	3.7	43	112
3/1/2017	Background	0.03	1.29	9	< 0.083 U1	3.2	22	108
4/10/2017	Background	0.02	1.21	11	< 0.083 U1	3.4	24	106
8/24/2017	Detection	0.03648	0.945	12	< 0.083 U1	4.3	14	96
3/22/2018	Assessment	0.0171	1.03	14	< 0.083 U1	4.0	13	96
8/21/2018	Assessment	0.020	1.17	17	< 0.083 U1	4.0	15	128
2/27/2019	Assessment	0.03 J1	0.704	20.3	0.07 J1	4.1	17.7	76
5/23/2019	Assessment	0.022	1.06	20.8	0.06 J1	4.6	26.9	128
8/15/2019	Detection	< 0.02 U1	0.874	20.0	0.06 J1	5.1	15.4	110
6/3/2020	Detection	< 0.02 U1	0.872	21.7	0.11	4.7	13.3	122
11/3/2020	Detection	< 0.02 U1	0.817	19.9	0.07	4.4	11.0	105
5/26/2021	Detection	0.016 J1	0.8	23.2	0.13	4.4	7.36	120
11/17/2021	Detection	0.206	0.94	22.3	0.07	4.3	9.64	110
6/22/2022	Detection	0.021 J1	1.80	24.7	0.10	4.5	9.58	110
11/14/2022	Detection	0.024 J1	0.91	25.2	0.07	4.3	6.68	90
6/27/2023	Detection	0.016 J1	0.79	28.9	0.08	4.4	7.3	120
10/18/2023	Detection	0.026 J1	1.13	22.0	0.07	4.2	9.3	97

Table 1. Groundwater Data Summary: AD-16 Pirkey - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/10/2016	Background	< 0.93 U1	1.83497 J1	61	0.453643 J1	0.0817904 J1	1	4.23727 J1	1.294	< 0.083 U1	< 0.68 U1	0.006	0.01506 J1	< 0.29 U1	2.26113 J1	1.3697 J1
7/14/2016	Background	< 0.93 U1	< 1.05 U1	64	0.565692 J1	< 0.07 U1	1	6	1.438	< 0.083 U1	< 0.68 U1	0.036	0.02395 J1	1.1177 J1	< 0.99 U1	< 0.86 U1
9/8/2016	Background	8	< 1.05 U1	70	0.810547 J1	0.0926258 J1	2	8	1.931	< 0.083 U1	< 0.68 U1	0.032	0.00753 J1	< 0.29 U1	< 0.99 U1	1.75243 J1
10/13/2016	Background	< 0.93 U1	1.52475 J1	56	0.250902 J1	< 0.07 U1	1	3.33761 J1	1.843	< 0.083 U1	< 0.68 U1	0.033	< 0.005 U1	< 0.29 U1	1.70284 J1	< 0.86 U1
11/14/2016	Background	< 0.93 U1	< 1.05 U1	55	0.38481 J1	< 0.07 U1	0.561291 J1	4.34297 J1	2.123	< 0.083 U1	< 0.68 U1	0.028	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
1/12/2017	Background	< 0.93 U1	< 1.05 U1	58	0.70928 J1	< 0.07 U1	0.406161 J1	8	2.629	< 0.083 U1	< 0.68 U1	0.031	0.01045 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/1/2017	Background	< 0.93 U1	1.50766 J1	76	0.487946 J1	< 0.07 U1	0.558767 J1	5	1.417	< 0.083 U1	< 0.68 U1	0.021	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
4/10/2017	Background	< 0.93 U1	< 1.05 U1	77	0.435552 J1	< 0.07 U1	0.822329 J1	5	0.932	< 0.083 U1	< 0.68 U1	0.019	0.00733 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/22/2018	Assessment	< 0.93 U1	< 1.05 U1	83.66	0.27 J1	< 0.07 U1	1.59	3.6 J1	2.11	< 0.083 U1	< 0.68 U1	0.02224	0.018 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
8/21/2018	Assessment	0.03 J1	0.42	69.0	0.213	0.03	0.211	3.78	1.92	< 0.083 U1	0.082	0.0347	0.014 J1	< 0.02 U1	0.1	0.051
2/27/2019	Assessment	< 0.4 U1	7.74	56.2	< 0.4 U1	< 0.2 U1	< 0.8 U1	3.21	0.848	0.07 J1	< 0.4 U1	0.0154	0.011 J1	< 8 U1	< 0.6 U1	< 2 U1
5/23/2019	Assessment	< 0.4 U1	5.80	83.4	< 0.4 U1	< 0.2 U1	< 0.8 U1	3.16	1.957	0.06 J1	< 0.4 U1	0.0227	< 0.005 U1	< 8 U1	< 0.6 U1	< 0.1 U1

Table 1. Groundwater Data Summary: AD-23
Pirkey - LF
Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/10/2016	Background	0.01	0.535	4	< 0.083 U1	4.0	10	72
7/13/2016	Background	0.03	0.317	4	< 0.083 U1	2.7	11	59
9/8/2016	Background	0.02	0.26	5	< 0.083 U1	3.5	12	64
10/12/2016	Background	0.03	0.321	6	< 0.083 U1	3.7	13	68
11/15/2016	Background	0.03	0.249	5	< 0.083 U1	3.5	14	100
1/11/2017	Background	0.02	0.319	6	< 0.083 U1	3.7	13	60
2/28/2017	Background	0.03	0.217	4	< 0.083 U1	4.0	9	48
4/11/2017	Background	0.03	0.543	7	0.2688 J1	4.2	11	76
8/23/2017	Detection	0.04021	0.276	6	0.198 J1	4.1	11	64
12/21/2017	Detection	0.04498	0.469					
3/21/2018	Assessment	0.01762	0.227	4	< 0.083 U1	3.9	10	72
8/20/2018	Assessment	0.017	0.247	9	< 0.083 U1	3.8	11	92
2/28/2019	Assessment	0.02 J1	0.3 J1	6.94	0.04 J1	5.1	7.2	70
5/23/2019	Assessment	0.017	0.3 J1	6.82	0.04 J1	4.8	9.1	54
8/13/2019	Detection	< 0.02 U1	0.325	7.12	0.03 J1	5.0	7.4	126
1/27/2020	Detection		-			4.3		70 J1
6/3/2020	Detection	< 0.02 U1	0.2 J1	7.08	0.07	4.3	8.5	65
11/4/2020	Detection	< 0.02 U1	0.2 J1	6.97	0.05 J1	3.9	7.9	71
5/26/2021	Detection	0.023 J1	0.3	6.94	0.06	3.6	7.90	70
11/17/2021	Detection	0.045 J1	0.22	7.11	0.05 J1	3.9	7.84	70
1/26/2022	Detection	0.040 J1				4.1		
6/22/2022	Detection	0.057	0.25	7.32	0.07	3.6	9.52	80
8/30/2022	Detection	0.032 J1				3.9		
11/14/2022	Detection	0.078	0.24	7.49	0.06	4.5	8.03	80
2/28/2023	Detection	0.049 J1				4.4		
6/27/2023	Detection	0.061	0.44	7.55	0.04 J1	4.5	7.7	70
8/23/2023	Detection	0.026 J1				4.4		
10/18/2023	Detection	0.051	0.26	7.99	0.05 J1	4.0	7.7	44 J1

Table 1. Groundwater Data Summary: AD-23 Pirkey - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/10/2016	Background	2.89148 J1	1.65098 J1	48	0.186855 J1	0.0739811 J1	2	2.29646 J1	6.86	< 0.083 U1	< 0.68 U1	0.000135818 J1	0.01188 J1	< 0.29 U1	1.91991 J1	< 0.86 U1
7/13/2016	Background	3.79558 J1	< 1.05 U1	48	0.192156 J1	0.0925427 J1	2	2.72879 J1	5.69	< 0.083 U1	< 0.68 U1	0.006	0.01721 J1	1.34973 J1	2.00038 J1	< 0.86 U1
9/8/2016	Background	< 0.93 U1	< 1.05 U1	53	0.20435 J1	< 0.07 U1	5	2.01019 J1	6.68	< 0.083 U1	2.23756 J1	0.006	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
10/12/2016	Background	1.29835 J1	7	120	0.463688 J1	0.13648 J1	41	3.91303 J1	12.89	< 0.083 U1	31	1.01	0.095	0.563586 J1	2.10924 J1	< 0.86 U1
11/15/2016	Background	< 0.93 U1	< 1.05 U1	50	0.129296 J1	< 0.07 U1	6	1.66943 J1	7.54	< 0.083 U1	3.21271 J1	0.006	0.02438 J1	0.403857 J1	1.34763 J1	< 0.86 U1
1/11/2017	Background	< 0.93 U1	2.03681 J1	73	0.159 J1	< 0.07 U1	15	2.25934 J1	8.06	< 0.083 U1	11	0.009	0.092	< 0.29 U1	< 0.99 U1	< 0.86 U1
2/28/2017	Background	1.65681 J1	< 1.05 U1	41	0.116844 J1	< 0.07 U1	0.295768 J1	1.05228 J1	5.74	< 0.083 U1	< 0.68 U1	0.005	< 0.005 U1	< 0.29 U1	1.3076 J1	< 0.86 U1
4/11/2017	Background	< 0.93 U1	3.9673 J1	86	0.318917 J1	0.107977 J1	22	2.60853 J1	10.31	0.2688 J1	15	0.01	0.118	0.31517 J1	< 0.99 U1	< 0.86 U1
3/21/2018	Assessment	< 0.93 U1	< 1.05 U1	56.1	0.17 J1	< 0.07 U1	5.7	1.09 J1	7.55	< 0.083 U1	3.52 J1	0.00709	0.02 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
8/20/2018	Assessment	0.03 J1	0.87	53.5	0.147	0.01 J1	1.77	0.803	11	< 0.083 U1	4.79	0.00634	0.025	0.07 J1	1.0	0.176
2/28/2019	Assessment	< 0.4 U1	1 J1	46.9	< 0.4 U1	< 0.2 U1	4.16	1 J1	6.14	0.04 J1	3.46	0.00646	0.035	< 8 U1	1 J1	< 2 U1
5/23/2019	Assessment	< 0.4 U1	0.7 J1	56.4	< 0.4 U1	< 0.2 U1	3 J1	0.7 J1	9.66	0.04 J1	8.99	0.00537	0.058 J1	< 8 U1	< 0.6 U1	0.2 J1

Table 1. Groundwater Data Summary: AD-27
Pirkey - LF
Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/11/2016	Background	0.02	4.41	8	0.6176 J1	3.9	51	198
7/13/2016	Background	0.03	4.43	8	< 0.083 U1	2.7	54	192
9/8/2016	Background	0.03	4.17	8	< 0.083 U1	2.9	52	196
10/12/2016	Background	0.03	4.09	8	< 0.083 U1	3.0	58	216
11/15/2016	Background	0.03	4.52	8	< 0.083 U1	3.5	92	216
1/11/2017	Background	0.02	3.74	9	< 0.083 U1	4.1	58	180
3/1/2017	Background	0.03	4.31	8	< 0.083 U1	2.8	56	216
4/10/2017	Background	0.03	4.01	9	< 0.083 U1	3.3	54	180
8/24/2017	Detection	0.0358	3.58	9	0.197 J1	3.7	52	168
3/22/2018	Assessment	0.03901	5.58	11	< 0.083 U1	3.9	78	192
8/21/2018	Assessment	0.024	4.58	10	< 0.083 U1	3.5	65	196
2/28/2019	Assessment	0.07 J1	4.02	11.7	0.20	4.7	52.8	42
5/23/2019	Assessment	0.023	3.89	11.4	0.20	4.4	55.2	204
8/16/2019	Detection	0.02 J1	3.94	10.5	0.18	3.9	53.2	198
6/3/2020	Detection	0.03 J1	3.55	12.8	0.25	4.2	54.6	219
11/3/2020	Detection	0.03 J1	3.45	10.8	0.19	3.6	53.1	196
5/26/2021	Detection	0.029 J1	3.6	13.5	0.25	3.5	50.8	230
11/17/2021	Detection	0.040 J1	3.76	11.6	0.20	3.7	56.4	190 P1
6/22/2022	Detection	0.028 J1	3.88	12.5	0.22	3.3	57.2	210
11/14/2022	Detection	0.034 J1	3.79	12.7	0.20	4.0	59.4	180
6/27/2023	Detection	0.032 J1	3.86	13.6	0.14	4.2	59.9	210
10/18/2023	Detection	0.040 J1	3.76	12.1	0.19	3.4	61.5	180

Table 1. Groundwater Data Summary: AD-27 Pirkey - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/11/2016	Background	1.20808 J1	2.15232 J1	43	5	0.431235 J1	0.87101 J1	20	2.031	0.6176 J1	< 0.68 U1	0.066	< 0.005 U1	< 0.29 U1	1.10872 J1	< 0.86 U1
7/13/2016	Background	0.956365 J1	1.27952 J1	45	5	0.434627 J1	2	21	2.406	< 0.083 U1	< 0.68 U1	0.097	0.02241 J1	0.434679 J1	< 0.99 U1	< 0.86 U1
9/8/2016	Background	< 0.93 U1	< 1.05 U1	47	6	0.398469 J1	2	20	2.71	< 0.083 U1	< 0.68 U1	0.095	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
10/12/2016	Background	< 0.93 U1	2.14429 J1	46	5	0.424977 J1	2	20	4.43	< 0.083 U1	< 0.68 U1	0.096	< 0.005 U1	< 0.29 U1	1.35863 J1	< 0.86 U1
11/15/2016	Background	< 0.93 U1	< 1.05 U1	41	5	0.419182 J1	2	22	3.69	< 0.083 U1	< 0.68 U1	0.095	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
1/11/2017	Background	< 0.93 U1	1.56781 J1	46	5	0.30207 J1	1	18	2.62	< 0.083 U1	< 0.68 U1	0.1	0.00659 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/1/2017	Background	< 0.93 U1	< 1.05 U1	43	5	0.286804 J1	2	21	3.48	< 0.083 U1	< 0.68 U1	0.1	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
4/10/2017	Background	< 0.93 U1	< 1.05 U1	45	5	0.414787 J1	0.954802 J1	21	2.58	< 0.083 U1	< 0.68 U1	0.104	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/22/2018	Assessment	< 0.93 U1	< 1.05 U1	40.53	5.29	0.48 J1	3.09	25.63	2.808	< 0.083 U1	< 0.68 U1	0.108	0.012 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
8/21/2018	Assessment	0.02 J1	1.71	39.5	4.90	0.46	1.14	24.6	2.619	< 0.083 U1	0.296	0.0921	0.006 J1	0.07 J1	3.7	0.137
2/28/2019	Assessment	< 0.4 U1	1 J1	39.5	5.32	0.5 J1	< 0.8 U1	18.9	2.95	0.20	< 0.4 U1	0.0892	< 0.005 U1	< 8 U1	2 J1	< 2 U1
5/23/2019	Assessment	< 0.4 U1	< 0.6 U1	41.0	5.22	0.3 J1	< 0.8 U1	19.9	3.93	0.20	< 0.4 U1	0.0885	< 0.005 U1	< 8 U1	0.6 J1	0.2 J1

Table 1. Groundwater Data Summary: AD-34 Pirkey - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
5/10/2016	Background	0.08	37.8	7	< 0.083 U1	4.0	974	1,516
7/13/2016	Background	0.111	33.2	8	< 0.083 U1	3.6	837	1,396
9/8/2016	Background	0.09	39.5	8	< 0.083 U1	3.3	870	1,520
10/12/2016	Background	0.09	35.8	7	0.6272 J1	3.6	1,084	1,464
11/15/2016	Background	0.1	36.3	7	0.9978 J1	3.7	1,006	1,428
1/11/2017	Background	0.07	39.9	8	< 0.083 U1	3.2	1,334	1,378
2/28/2017	Background	0.08	37	6	< 0.083 U1	3.7	993	1,402
4/10/2017	Background	0.09	38.2	8	0.5241 J1	3.0	1,016	1,490
8/23/2017	Detection	0.107	36.2	7	0.619 J1	3.7	1,231	1,128
12/21/2017	Detection			8	0.6669 J1		1,020	1,260
3/21/2018	Assessment	0.171	40.1	6	< 0.083 U1	3.7	956	1,424
8/20/2018	Assessment	0.067	37.0	10	< 0.083 U1	3.7	1,064	1,462
2/27/2019	Assessment	0.08 J1	39.9	7.64	0.86	2.9	970	1,470
5/21/2019	Assessment	0.060	42.0	7.34	0.69	3.3	1,080	1,154
8/13/2019	Detection	0.070	39.8	7.46	1.13	3.7	1,060	1,648
1/27/2020	Detection				0.9	3.6		1,550
3/11/2020	Detection					3.6		
6/3/2020	Detection	0.058	40.1	7.68	1.22	3.4	1,150	1,620
7/15/2020	Detection				1.39	4.1		1,510
11/4/2020	Detection	0.060	39.5	7.10	0.82	3.4	1,090	1,670
5/26/2021	Detection	0.063	39.7	7.44	2.1	2.9	1,110	1,670
7/27/2021	Detection				0.82	3.2		
11/17/2021	Detection	0.069	45.8	7.09	1.11	3.1	1,280	1,850
1/26/2022	Detection		42.6			3.4		1,720 S7
6/22/2022	Detection	0.066	45.8	7.38	1.20	3.7	1,260	1,750
8/30/2022	Detection		46.0			4.0		1,650
11/14/2022	Detection	0.067	44.6	7.47	0.44	3.5	1,250	1,720
2/28/2023	Detection		41.9			3.8		1,640
6/27/2023	Detection	0.057	40.1	7.18	0.63	3.7	1,230	1,710
8/23/2023	Detection					3.8		1,560
10/18/2023	Detection	0.057	34.6	7.33	0.74	3.3	1,160	1,620

Table 1. Groundwater Data Summary: AD-34 Pirkey - LF Appendix IV Constituents

Collection Date	Monitoring Program	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
5/10/2016	Background	< 0.93 U1	12	72	3	6	34	301	9.64	< 0.083 U1	12	0.176	0.105	0.688222 J1	< 0.99 U1	< 0.86 U1
7/13/2016	Background	< 0.93 U1	25	177	4	6	81	296	7.75	< 0.083 U1	39	0.183	0.313	2.11044 J1	7	< 0.86 U1
9/8/2016	Background	< 0.93 U1	9	31	3	8	12	306	7.91	< 0.083 U1	1.01746 J1	0.158	0.064	< 0.29 U1	< 0.99 U1	< 0.86 U1
10/12/2016	Background	< 0.93 U1	10	39	3	5	15	297	10.12	0.6272 J1	3.69632 J1	0.174	0.036	< 0.29 U1	< 0.99 U1	< 0.86 U1
11/15/2016	Background	< 0.93 U1	7	23	2	8	6	292	13.21	0.9978 J1	< 0.68 U1	0.154	0.025	< 0.29 U1	4.50827 J1	< 0.86 U1
1/11/2017	Background	< 0.93 U1	6	29	2	7	8	284	11.9	< 0.083 U1	< 0.68 U1	0.164	0.032	< 0.29 U1	< 0.99 U1	< 0.86 U1
2/28/2017	Background	< 0.93 U1	7	11	2	6	< 0.23 U1	294	9.87	< 0.083 U1	< 0.68 U1	0.158	< 0.005 U1	< 0.29 U1	< 0.99 U1	< 0.86 U1
4/10/2017	Background	< 0.93 U1	4.49903 J1	23	2	11	7	299	2.407	0.5241 J1	< 0.68 U1	0.167	0.0164 J1	< 0.29 U1	< 0.99 U1	< 0.86 U1
3/21/2018	Assessment	< 0.93 U1	6.51	10.6	2.24	11.97	< 0.23 U1	279	8.85	< 0.083 U1	< 0.68 U1	0.156	< 0.005 U1	< 0.29 U1	3.24 J1	< 0.86 U1
8/20/2018	Assessment	0.01 J1	14.4	7.77	1.77	4.34	0.977	249	10.17	< 0.083 U1	1.32	0.114	0.005 J1	0.03 J1	13.0	0.070
2/27/2019	Assessment	< 0.4 U1	15.9	9.93	2.42	4.57	0.9 J1	260	8.56	0.86	1 J1	0.153	0.015 J1	< 8 U1	14.8	< 2 U1
5/21/2019	Assessment	< 0.4 U1	12.7	10.5	2.25	4.48	0.8 J1	272	10.82	0.69	1 J1	0.158	< 0.005 U1	< 8 U1	4.9	< 0.1 U1

Table 1. Groundwater Data Summary: AD-36
Pirkey - LF
Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids	
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L	
8/13/2019	Background	0.065	0.240	9.46	0.05 J1	4.7	2.2	92	
1/27/2020	Background	0.056	0.304	8.65	0.05 J1	4.7	3.5	40 J1	
3/11/2020	Background	0.05 J1	0.2 J1	8.44	0.06	5.0	3.7	60 J1	
4/15/2020	Background	0.054	0.2 J1	8.40	0.05 J1	3.6	3.7	40 J1	
5/13/2020	Background	0.055	0.2 J1	8.56	0.05 J1	4.1	3.4	40 J1	
6/3/2020	Background	0.052	0.2 J1	8.52	0.07	4.6	3.3	65	
6/16/2020	Background	0.064	0.2 J1	8.39	0.05 J1	4.6	3.6	50 J1	
7/1/2020	Background	0.059	0.3 J1			4.9		52	
7/15/2020	Background			8.09	0.08	5.0	3.7		
11/4/2020	Detection	0.068	0.2 J1	7.99	0.06 J1	4.6	3.1	57	
5/26/2021	Detection	0.057	0.6	10.6	0.10	4.0	4.08	60	
7/27/2021	Detection		0.3	8.67	0.07	3.9			
11/17/2021	Detection	0.070	0.25	8.97	0.05 J1	4.0	2.89	50 P1	
6/22/2022	Detection	0.059	0.38	10.1	0.09	4.6	5.00	60	
8/30/2022	Detection		0.28	10.3	0.07	4.9	3.00		
11/14/2022	Detection	0.068	0.28	11.1	0.07	4.5	2.93	50	
2/28/2023	Detection			11.7		4.5			
6/27/2023	Detection	0.067	0.88	11.1	0.06	4.0	3.6	60 P1	
8/23/2023	Detection		1.22	11.8		4.2			
10/18/2023	Detection	0.081	0.76	12.4	0.07	4.2	3.1	52	

Table 1. Groundwater Data Summary: AD-36 Pirkey - LF Appendix IV Constituents

Collection Date	Monitoring Program	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
8/13/2019	Background	< 0.02 U1	0.15	10.8	0.234	< 0.01 U1	0.203	0.901	1.298	0.05 J1	< 0.05 U1	0.0161	< 0.005 U1	< 0.4 U1	0.09 J1	< 0.1 U1
1/27/2020	Background	< 0.02 U1	0.14	9.94	0.191	0.01 J1	0.09 J1	0.762	1.096	0.05 J1	< 0.05 U1	0.00277	< 0.2 U1	< 0.4 U1	0.07 J1	< 0.1 U1
3/11/2020	Background	< 0.02 U1	0.09 J1	10.2	0.184	< 0.01 U1	< 0.04 U1	0.760	4.056	0.06	< 0.05 U1	0.00246	< 0.002 U1	< 0.4 U1	0.1 J1	< 0.1 U1
4/15/2020	Background	< 0.02 U1	0.10	10.1	0.179	< 0.01 U1	0.1 J1	0.770	2.84	0.05 J1	< 0.05 U1	0.00210	0.003 J1	0.8 J1	0.09 J1	< 0.1 U1
5/13/2020	Background	< 0.02 U1	0.15	10.2	0.194	< 0.01 U1	0.247	0.750	2.346	0.05 J1	< 0.05 U1	0.00266	0.004 J1	< 0.4 U1	0.08 J1	< 0.1 U1
6/3/2020	Background	< 0.02 U1	0.11	9.81	0.204	< 0.01 U1	0.08 J1	0.683	0.692	0.07	< 0.05 U1	0.00262	0.005 J1	< 0.4 U1	0.09 J1	< 0.1 U1
6/16/2020	Background	< 0.02 U1	0.11	9.75	0.173	< 0.01 U1	0.214	0.723	0.885	0.05 J1	0.08 J1	0.00254	0.003 J1	1 J1	0.1 J1	< 0.1 U1
7/1/2020	Background	< 0.02 U1	0.09 J1	9.72	0.179	< 0.01 U1	0.09 J1	0.681	1.171		< 0.05 U1	0.00268	0.004 J1	< 0.4 U1	0.06 J1	< 0.1 U1
7/15/2020	Background									0.08						

Table 1. Groundwater Data Summary Pirkey - Landfill

Notes:

- -: Not analyzed

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

L1: The associated laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) recovery was outside acceptance limits.

M1: The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.

mg/L: milligrams per liter

P1: The precision between duplicate results was above acceptance limits.

P3: The precision on the matrix spike duplicate (MSD) was above acceptance limits.

pCi/L: picocuries per liter

S7: Sample did not achieve constant weight.

SU: standard unit

μg/L: micrograms per liter

Table 1. Groundwater Elevation Data Summary Pirkey Power Plant

Unit	All Units		Eas	t Bottom Ash F	ond			Wes	st Bottom Ash l	Pond	
Gradient	Upgradient	Upgra	adient		Downgradient		Upgra	adient		Downgradient	
Well	AD-12	AD-4	AD-18	AD-2	AD-31	AD-32	AD-3	AD-18	AD-17	AD-28	AD-30
Jan-2016	371.05	359.16	360.52	328.55	346.60	352.32	347.03	360.52		321.39	323.70
May-2016	372.17	360.07	359.26	328.35	348.21	352.74	348.04	359.26	329.38	321.82	324.26
Jul-2016	365.68	352.34	356.99	327.46	345.46	348.53	346.00	356.99	325.93	320.44	322.49
Jan-2017	365.11	353.27	357.06	327.65	343.78	347.44	344.19	357.06	324.70	320.27	322.23
Feb-2017	368.79	355.32	359.21	327.96	344.53	348.44	345.53	359.21	326.27	320.59	322.88
Apr-2017	372.97	356.62	358.63	329.09	344.58	349.09	345.53	358.63	326.27	320.69	322.88
Aug-2017	367.68	353.58	358.23	327.63	343.57	349.73	343.49	358.23	324.18	320.07	322.04
Mar-2018	370.57	359.04	360.00	328.36	344.10	351.42	344.56	360.00	327.13	321.79	323.29
Aug-2018	357.99	350.39	355.99	326.99	342.73	347.58	343.28	355.99	324.12	319.93	321.70
Feb-2019	372.43	360.40	354.61	329.21	348.31	352.86	348.36	354.61	331.11	321.86	324.54
May-2019	373.12	361.18	360.74	328.91	349.68	354.14	349.37	360.74	331.66	322.61	325.21
Aug-2019	361.90	354.10	357.09	327.60	346.63	353.12	346.08	357.09	326.45	320.40	322.63
Mar-2020	373.10	360.56	360.58	329.23	346.95	352.55	347.22	360.58	336.07	321.98	323.94
Jun-2020	381.55	360.25	359.98	328.06	347.95	352.87	347.76	359.98	328.04	321.28	323.40
Nov-2020	361.86	349.70	354.98	327.57	342.84	346.13	342.89	354.98	324.36	319.99	321.90
Mar-2021	373.52	359.14	359.99	329.00	346.24	350.30	346.58	359.99	329.37	322.06	324.19
May-2021	375.56	360.45	360.46	329.57	347.27	351.28	347.46	360.46	329.03	323.10	324.94
Jul-2021											
Nov-2021	358.32	351.40	355.55	327.36	342.79	348.72	342.60	355.55	323.77	319.98	321.80
Jan-2022				-							
Mar-2022	373.28	359.58	359.17	328.17	344.58	351.73	344.19	359.17	325.80	321.05	323.14
Jun-2022	360.55	351.31	356.01	327.07	342.36	349.94	342.22	356.01	323.48	320.11	321.54
Aug-2022							341.84				
Nov-2022	363.46	351.15	355.11	327.52	341.97	348.00	340.85	355.11	322.61	319.73	321.81
Feb-2023	368.74	356.04	359.57	328.12	344.34	349.48		359.57			
Mar-2023											
Jun-2023	369.17	352.66	357.96	327.55	340.46	343.36	341.82	357.96	325.13	320.45	322.07
Aug-2023	362.47	347.25	354.17	326.59	337.74	341.46		354.17			
Oct-2023	360.29		352.80				338.07	352.80	322.93	319.77	321.28

Notes:

1. Groundwater elevation measured in feet above mean sea level.

Table 1. Groundwater Elevation Data Summary Pirkey Power Plant

Unit		Stacko	out Pad				Lan	dfill		
Gradient	Upgradient		Downgradient			Upgradient			Downgradient	
Well	AD-13	AD-7	AD-22	AD-33	AD-8	AD-16	AD-27	AD-23	AD-34	AD-36
Jan-2016	354.15	349.31	350.29	351.13	347.21	347.68		321.23	307.61	
May-2016	355.11	349.98	350.83	351.62	348.03	350.97	335.29	321.98	307.61	
Jul-2016	352.31	347.54	347.55	349.88	347.10	343.32	331.47	321.97	307.61	
Jan-2017	352.01	347.04	347.20	348.56	345.74	343.09	330.04	320.99	307.61	
Feb-2017	352.81	347.96	348.52	349.32	346.00	344.54	331.59	321.00	307.61	
Apr-2017	352.68	347.87	348.45	349.25	345.81	344.69	331.24	320.85	307.61	
Aug-2017	352.62	347.40	347.37	349.31	346.31	342.71	330.05	320.77	307.61	
Mar-2018	353.25	348.46	349.62	350.10	346.11	344.63	332.49	320.17	307.61	
Aug-2018	349.14	344.57	344.05	347.23	345.24	340.03	328.61	320.31	306.66	
Feb-2019	355.63	350.21	350.90	351.99	348.05	351.21	335.03	320.88	307.61	
May-2019	355.87	350.82	351.99	352.95	348.60	351.92	336.53	320.99		
Aug-2019	350.87	346.85	346.70	349.96	347.33	343.92	330.71	321.29	305.87	303.16
Mar-2020	355.71	350.64	351.80	352.68					DRY	303.21
Jun-2020	355.17	350.25	350.95	352.54	348.61	349.39		320.79	307.61	303.78
Nov-2020	350.93	346.45	346.12	348.71	346.63	343.07	329.77	320.83	307.00	302.88
Mar-2021	355.22	350.13	351.33	351.84						
May-2021	356.42	350.97	352.31	352.95	348.58	350.52	337.25	320.32	307.61	302.22
Jul-2021									307.61	302.42
Nov-2021	349.43	345.08	345.25	348.40	346.48	341.99	329.69	320.49	307.20	301.66
Jan-2022		-						320.00	307.61	
Mar-2022	353.99	348.66	349.66	350.15					307.61	
Jun-2022	349.75	345.35	345.49	348.35	346.27	342.41	330.10	319.87	307.00	301.49
Aug-2022								319.81	306.84	301.35
Nov-2022	349.93	345.56	345.20	347.43	344.23	341.65	328.48	319.72	307.61	301.35
Feb-2023	353.36	348.68	349.47	350.18				319.56	307.61	301.51
Mar-2023	354.24		350.03	350.48						
Jun-2023	352.47	347.83	348.29	349.81	346.88	342.44	332.67	320.13		299.99
Aug-2023								320.39	307.61	302.91
Oct-2023	348.85		344.70	346.93	345.07	339.45	328.43	320.35	307.61	300.48

Notes:

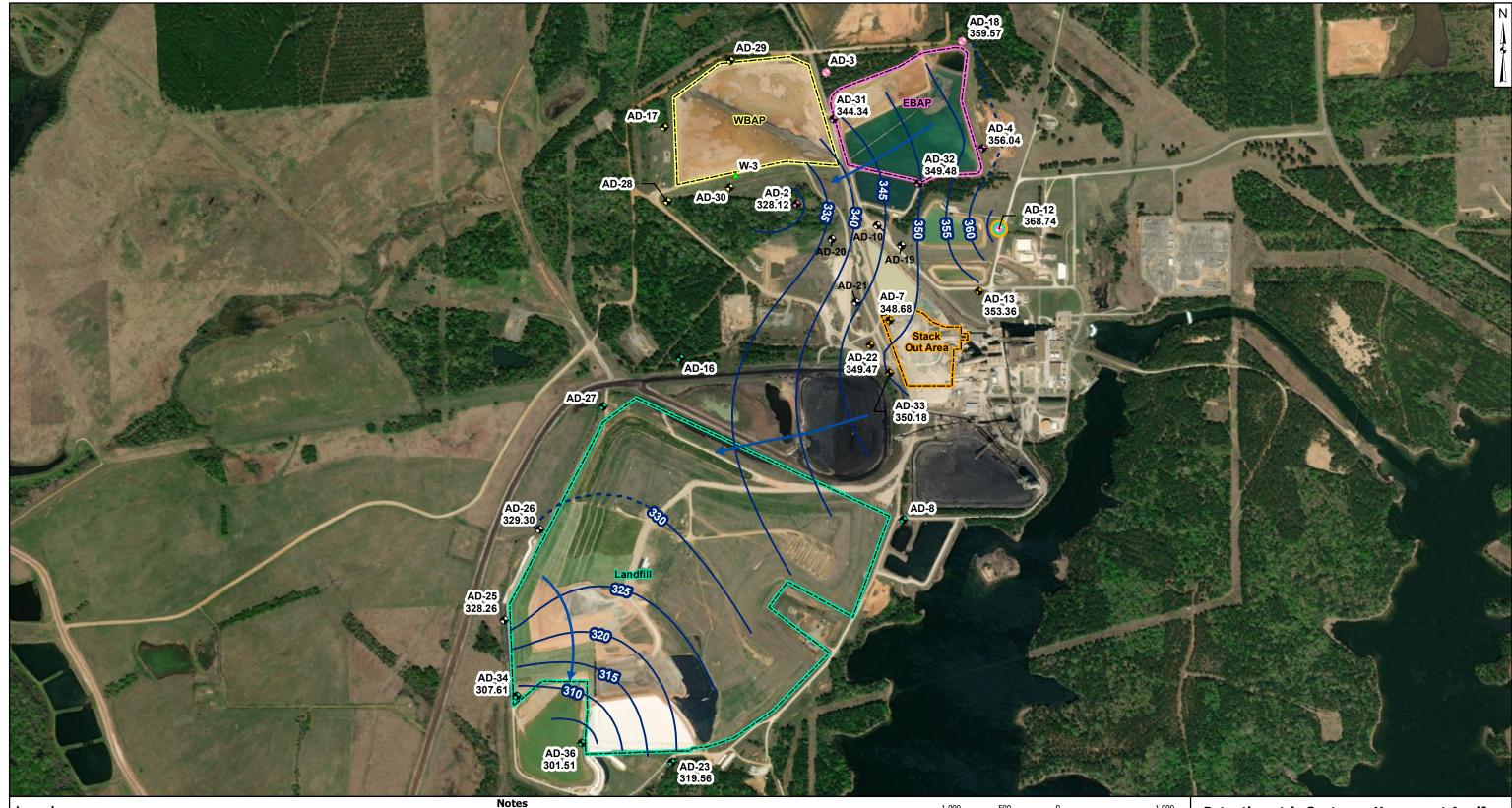
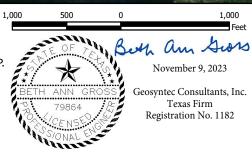

1. Groundwater elevation measured in feet above mean sea level.

Table 1: Residence Time Calculation Summary Pirkey Landfill

			2023-02 ^[3]		2023-06		2023	-08 ^[3]	2023-10	
CCR Management Unit	Monitoring Well	Well Diameter (inches)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)
	AD-8 [1]	4.0	NC	NC	7.0	17.4	NC	NC	7.3	16.6
	AD-12 [1]	4.0	35.7	3.4	44.0	2.8	30.4	4.0	20.3	6.0
	AD-16 [1]	2.0	NC	NC	19.3	3.2	NC	NC	18.4	3.3
Landfill	AD-23 ^[2]	2.0	21.9	2.8	23.8	2.6	20.8	2.9	9.9	6.1
	AD-27 [1]	2.0	NC	NC	11.8	5.1	NC	NC	13.8	4.4
	AD-34 ^[2]	2.0	27.4	2.2	28.0	2.2	3.5	17.3	24.6	2.5
	AD-36 ^[2]	2.0	26.3	2.3	29.2	2.1	21.9	2.8	28.0	2.2

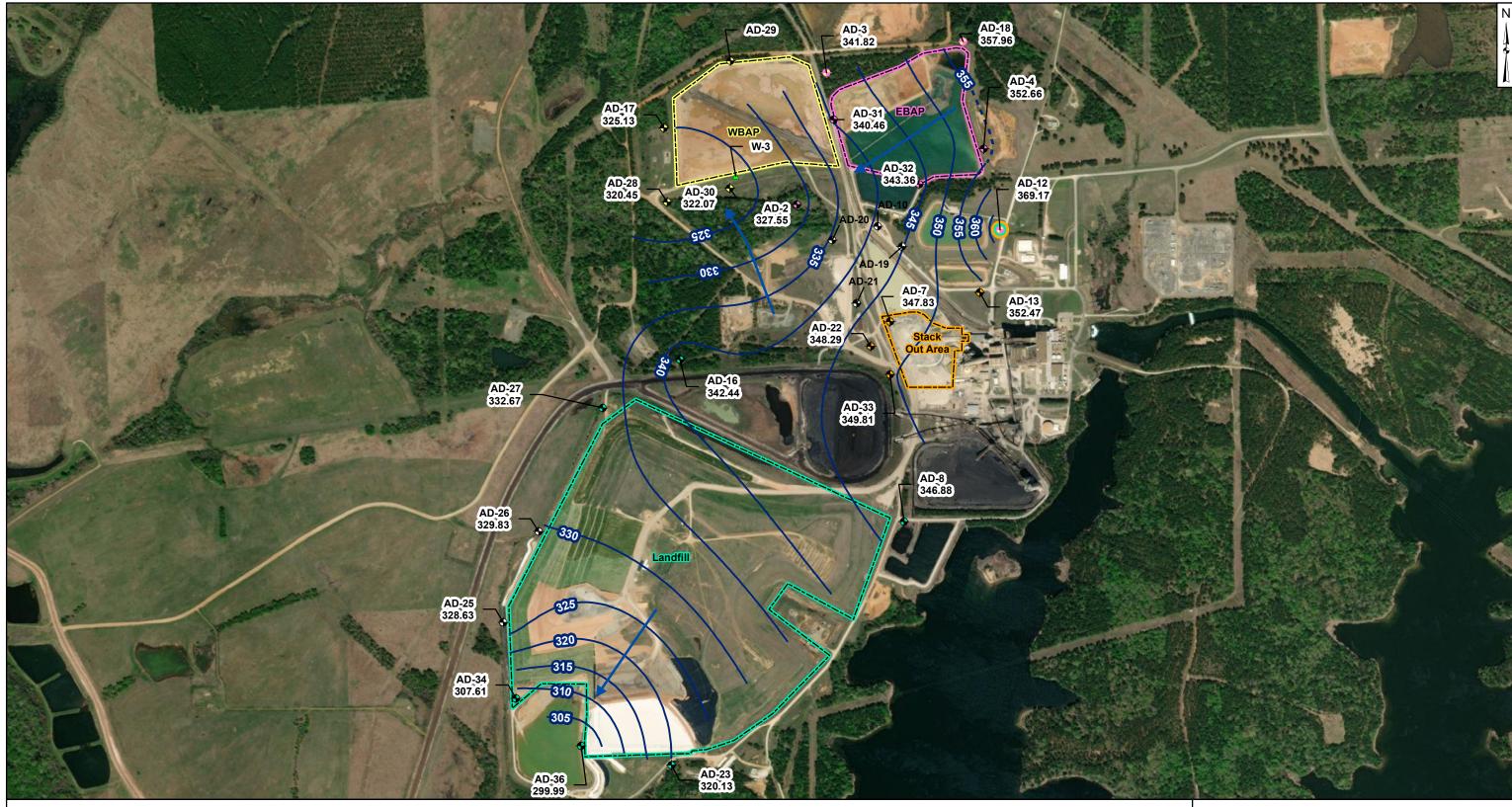
Notes:

- [1] Background Well
- [2] Downgradient Well
- [3] Only select wells were gauged as part of two-of-two verification sampling
- NC Not Calculated



Legend

- Out of Network
- EBAP
- ◆ WBAP
- Landfill
- Stackout Area EBAP and WBAP


- Piezometer
- Groundwater Elevation Contour
- - Groundwater Elevation Contours (Inferred)
- → Approximate Groundwater Flow Direction
- 1. Monitoring well coordinates and water level data (collected on February 27 and 28, 2023) provided by American Electric Power (AEP).
- 2. Site features based on information available in coal combustion residuals
- (CCR)Groundwater Monitoring Well Network Evaluation Update (Arcadis 2022) provided by AEP.
- 3. Groundwater elevation units are feet above mean sea level.
 4. AD-3, AD-8, AD-10, AD-16, AD-17, AD-19, AD-20, AD-21, AD-27, AD-28, AD-29, AD-30, and W-3 were not gauged during the February 2023 event.
- 5. AD-35 was abandoned on November 13, 2018.
- 6. Removal of CCR plus one foot of material was completed on July 26, 2022 for the West Bottom Ash Pond (WBAP). EBAP: East Bottom Ash Pond.

Potentiometric Contours: Uppermost Aquifer February 2023

AEP Pirkey Power Plant Hallsville, Texas

Geosyntec[▶] Figure consultants 1 Columbus, Ohio 2023/10/05

Legend

- Out of Network
- **♦** EBAP
- ◆ WBAP
- Landfill
- Stackout Area
- EBAP and WBAP

- Piezometer
- Groundwater Elevation Contour
- - Groundwater Elevation Contours (Inferred)
- → Approximate Groundwater Flow Direction

Notes

- 1. Monitoring well coordinates and water level data (collected on June 26 and 27, 2023) provided by American Electric Power (AEP).
- Site features based on information available in coal combustion residuals (CCR)
 Groundwater Monitoring Well Network Evaluation Update (Arcadis 2022) provided by AEP.
 Groundwater elevation units are feet above mean sea level.
- 4. AD-10, AD-19, AD-20, AD-21, AD-29, and W-3 were not gauged during the June 2023 event.
- 5. AD-35 was abandoned on November 13, 2018.
- 6. Removal of CCR plus one foot of material was completed on July 26, 2022 for the West Bottom Ash Pond (WBAP). EBAP: East Bottom Ash Pond.

Both am Stors
November 9, 2023 Geosyntec Consultants, Inc. Texas Firm Registration No. 1182 SSIONAL EN

Potentiometric Contours: Uppermost Aquifer June 2023

AEP Pirkey Power Plant Hallsville, Texas

Geosyntec^D Figure consultants 2 Columbus, Ohio 2023/10/06

P:\Projects\AEP\Groundwater Statistical Evaluation - CHA8423\Groundwater Mapping\GIS Files\MXD\Pirkey\2023\AEP-Pirkey_GW_2023-06Pirkey.mxd. ASoltero. 10/6/2023. Project/Phase/Task

Legend

- Out of Network
- **♦** EBAP
- ◆ WBAP

- EBAP and WBAP
- Landfill
- Stackout Area

Notes

- 1. Monitoring well coordinates and water level data (collected on August 23, 2023) provided by American Electric Power (AEP).
- 2. Site features based on information available in coal combustion residuals (CCR) Groundwater Monitoring Well Network Evaluation Update (Arcadis 2022) provided by AEP.
- 3. Groundwater elevation units are feet above mean sea level.
- 4. AD-03, AD-07, AD-08, AD-13, AD-16, AD-17, AD-22, AD-25, AD-26, AD-27, AD-28, AD-29, AD-30, AD-33 and W-3 were not gauged during the August 2023 event.

 5. AD-35 was abandoned on November 13, 2018. - - Groundwater Elevation Contours (Inferred)
- Approximate Groundwater Flow Direction
 - 6. Removal of CCR plus one foot of material was completed on July 26, 2022 for the West Bottom Ash Pond
 - 7. Removal of CCR plus one foot of material was completed on July 20, 2023 for the East Bottom Ash Pond (EBAP).

Both am Sions November 9, 2023 Geosyntec Consultants, Inc. Texas Firm Registration No. 1182 SONAL EN

Potentiometric Contours: Uppermost Aquifer August 2023

AEP Pirkey Power Plant Hallsville, Texas

Figure

3

Geosyntec[▶] consultants Columbus, Ohio 2023/10/06

P:\Projects\AEP\Groundwater Statistical Evaluation - CHA8423\Groundwater Mapping\GIS Files\MXD\Pirkey\2023\AEP-Pirkey_GW_2023-08Pirkey.mxd. ASoltero. 10/6/2023. Project/Phase/Tas

Groundwater Elevation Contour

Piezometer

- Out of Network
- **♦** EBAP
- ◆ WBAP
- Landfill
- Stackout Area
- EBAP and WBAP

Groundwater Monitoring Wells All CCR Unit Networks

- - Piezometer
 - Groundwater Elevation Contour
 - → Approximate Groundwater Flow Direction
- Monitoring well coordinates and water level data (collected on October 17 and 18, 2023) provided by AEP.
 Site features based on information available in CCR Groundwater Monitoring Well Network Evaluation Update (Arcadis 2022) provided by AEP.

- ACP:

 3. Groundwater elevation units are feet above mean sea level.

 4. EBAP wells were not gauged during the October 2023 event.

 5. AD-02, AD-04, AD-10, AD-19, AD-20, AD-21, AD-24, AD-29, AD-31, AD-32, and W-3 were not gauged during the October 2023 event.

 6. AD-7R (350.92 ft msl) was not used for contouring due to an anomalous reading.

 7. AD-35 was abandoned on November 13, 2018.
- - 9. AD-7R will be used as a substitute for AD-07, as it was abandoned.
 9. Removal of CCR plus one foot of material was completed on July 26, 2022, for the West Pond.
 10. Removal of CCR plus one foot of material was completed on July 20, 2023, for the East Pond.
 - 11. Removal of CCR plus one foot of material was completed on September 18, 2023, for FGDSA.

Both am Guoss January 19, 2024 Geosyntec Consultants, Inc. Texas Firm Registration No. 1182 SIONAL EN

Potentiometric Contours: Uppermost Aquifer October 2023

AEP Pirkey Power Plant Hallsville, Texas

Figure

4

Geosyntec^D consultants

Columbus, Ohio 2024/01/10

APPENDIX 2- Statistical Analyses

The reports summarizing the statistical evaluation follow.

Memorandum

Date: June 5, 2023

To: David Miller (AEP)

Copies to: Leslie Fuerschbach (AEP)

From: Allison Kreinberg (Geosyntec)

Subject: Evaluation of Detection Monitoring Data at Pirkey Plant's Landfill

In accordance with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (30 TAC 352, "CCR rule"), the second semiannual detection monitoring event of 2022 at the Landfill, an existing CCR unit at the Pirkey Power Plant located in Hallsville, Texas, was completed on November 14, 2022. Based on the results, a two-of-two verification sampling was completed on February 28, 2023.

A data quality review was completed to assess if the data collected for this semiannual detection monitoring event met the objectives outlined in TCEQ Draft Technical Guidance No. 32 related to groundwater sampling and analysis¹. The data were determined usable for supporting project objectives, as documented in the review memoranda provided in Attachment A.

Background values (prediction limits) for the LF were previously calculated in January 2018. An alternative source demonstration (ASD) was certified on January 7, 2020 which resulted in a revision from interwell tests to intrawell tests for the pH, sulfate, and TDS prediction limits. After a minimum of four detection monitoring events, the results of those events were compared to the existing background and the dataset was updated as appropriate. Revised upper prediction limits (UPLs) were calculated for each Appendix III parameter to represent background values. Lower prediction limits (LPLs) were also calculated for pH. Details on the calculation of these revised background values are described in Geosyntec's *Statistical Analysis Summary* report, dated January 27, 2021.

¹ TCEQ. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action: Draft Technical Guidance No. 32. May 2020.

Evaluation of Detection Monitoring Data – Pirkey Landfill June 5, 2023
Page 2

To achieve an acceptably high statistical power while maintaining a site-wide false-positive rate (SWFPR) of 10% per year or less, prediction limits were calculated based on a one-of-two retesting procedure. With this procedure, a statistically significant increase (SSI) is only concluded if both samples in a series of two exceeds the UPL (or are below the LPL for pH). In practice, if the initial result did not exceed the UPL, a second sample was not collected or analyzed.

Detection monitoring results and the relevant background values are compared in Table 1. Noted exceedances are described in the list below.

- Boron concentrations exceeded the intrawell UPL of 0.0433 mg/L in both the initial (0.078 mg/L) and second (0.049 mg/L) samples collected at AD-23. Therefore, an SSI over background is concluded for boron at AD-23.
- Chloride concentrations exceeded the intrawell UPL of 9.54 mg/L in both the initial (11.1 mg/L) and second (11.7 mg/L) samples collected at AD-36. Therefore, an SSI over background is concluded for chloride at AD-36.

In response to the exceedances noted above, the Pirkey LF will either transition to assessment monitoring or an ASD for boron and chloride will be conducted in accordance with 30 TAC 352.931. The statistical analysis was conducted in accordance with 30 TAC 352.931 and completed within 90 days of sampling and analysis. A certification of these statistics by a qualified professional engineer is provided in Attachment B.

Table 1. Detection Monitoring Data Evaluation Detection Summary Memorandum Pirkey Plant, Landfill

Amalarta	Unit	Description	AD	D-23	AD) -34	AD	-36	
Analyte	Unit	Description	11/14/2022	2/28/2023	11/14/2022	2/28/2023	11/14/2022	2/28/2023	
Boron	mg/L	Intrawell Background Value (UPL)	0.0	433	0.1	45	0.0702		
DOIOII	nig/L	Analytical Result	0.078	0.049	0.067		0.068	-	
Calcium	mg/L	Intrawell Background Value (UPL)	0.5	536	42	2.8	0.3	04	
Calcium	mg/L	Analytical Result	0.24		44.6	41.9	0.28	-	
Chloride	mg/L	Intrawell Background Value (UPL)	8.	88	9.	35	9.54		
Cinoride	mg/L	Analytical Result	7.49		7.47	-	11.1	11.7	
Fluoride	mg/L	Intrawell Background Value (UPL)	1.	00	1.3	29	0.0	800	
riuoride	mg/L	Analytical Result	0.06		0.44	-	0.07	-	
		Intrawell Background Value (UPL)	5	.2	4	.2	5.7		
pН	SU	Intrawell Background Value (LPL)	2	.8	2	.9	3.5		
		Analytical Result	4.5		3.5	-	4.5	-	
Sulfate	mg/L	Intrawell Background Value (UPL)	14	4.5	1,2	280	4.20		
Sullate	mg/L	Analytical Result	8.03		1,250		2.93		
Total Dissolved Solids	mg/L	Intrawell Background Value (UPL)	1	11	1,7	700	98.5		
Total Dissolved Solids	mg/L	Analytical Result	80		1,720	1,640	50		

Notes:

Bold values exceed the background value.

Background values are shaded gray.

LPL: Lower prediction limit mg/L: milligrams per liter

SU: standard units

UPL: Upper prediction limit

ATTACHMENT A Data Quality Review Memoranda

Memorandum

Date: January 20, 2023

To: David Miller (AEP)

Copies to: Leslie Fuerschbach (AEP)

From: Allison Kreinberg (Geosyntec)

Subject: Data Quality Review – H.W. Pirkey Power Plant

November 2022 Sampling Event

This memorandum summarizes the findings of a data quality review for groundwater samples collected at the H.W. Pirkey Power Plant, located in Pittsburg, Texas in November 2022. The groundwater samples were collected to comply with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR Rule"). The groundwater samples were analyzed for 40 CFR 257 Appendix III and IV constituents, plus additional constituents collected to support site evaluation efforts.

The following sample data groups (SDGs) were associated with the November 2022 sampling event and are reviewed in this memorandum:

- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223647
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223649
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223664
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 223668

The laboratory reports for SDGs 223647 and 223649 were reissued in December 2022 with amended matrix spike precision calculations. The data included in the revised laboratory reports associated with these SDGs were reviewed to assess if they met the objectives outlined in TCEQ Draft Technical Guideline No. 32¹ prior to submittal of this data to TCEQ.

¹ TCEQ. 2020. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action Draft Technical Guidance No. 32. May.

Data Quality Review – Pirkey November 2022 Data January 20, 2023 Page 2

The following data quality issues were identified:

- As reported in SDG 223664, chromium, cobalt, and molybdenum were detected in the equipment blank sample "Equipment Blank" collected on 11/16/2022. The detected chromium concentration in the equipment blank (0.47 μg/L) was more than 10% of the detected values in the groundwater samples, which could result in high bias for all groundwater chromium results. The detected cobalt concentration in the equipment blank (0.143 μg/L) was more than 10% of the detected value in sample "AD-18" (0.723 μg/L), which could result in high bias in the "AD-18" cobalt results. The estimated molybdenum concentration in the equipment blank (0.2 μg/L) was more than 10% of the detected value in sample "Duplicate-2" (0.2 μg/L), which could result in high bias in the "Duplicate-2" molybdenum results. Molybdenum was not detected in the other groundwater samples.
- As reported in SDG 223649, the relative percent difference (RPD) for sulfate concentrations from parent sample "AD-36" and duplicate sample "Landfill Duplicate" was 86%. The "AD-36" sulfate results should be considered estimated.
- As reported in SDG 223664, the following matrix spike (MS) and matrix spike duplicate (MSD) recovery for sodium (160% and 223%, respectively) associated with sample "AD-2" was above the acceptable range of 75-125%. The MS recovery for sodium (50.4%) associated with sample "AD-30" was below the acceptable range of 75-125%. The associated samples ("AD-2" and "AD-30") were flagged M1: the associated MS or MSD recovery was outside acceptance limits. The "AD-2" and "AD-30" sodium results should be considered estimated. Sodium is not a regulated Appendix III or IV constituent.
- As reported in SDG 223664, the RPD for radium-226 (52.5%) in the laboratory duplicate was above the acceptable limit of 25%. The "AD-12" radium-226 result was flagged P1: the precision between duplicate results was above acceptance limits. The "AD-12" radium-226 results should be considered estimated.

Based on these findings, the majority of the data reported in these SDGs are considered accurate and complete. Although the QC failures mentioned above will result in some limitations of data use since the affected results are considered estimated or have elevated reporting limits, the data are considered usable for supporting project objectives.

Memorandum

Date: April 28, 2023

To: David Miller (AEP)

Copies to: Jill Parker-Witt (AEP)

From: Allison Kreinberg (Geosyntec)

Subject: Data Quality Review – Pirkey Power Plant

February 2023 Sampling Event

This memorandum summarizes the findings of a data quality review for groundwater samples collected at the Pirkey Power Plant, located in Hallsville, Texas in February and March 2023. The groundwater samples were collected to comply with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR Rule"). 40 CFR 257 Appendix III constituents were analyzed.

The following sample data groups (SDGs) were associated with the February and March 2023 sampling event and are reviewed in this memorandum:

- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 230657
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 230702

The data included in these SDGs were reviewed to assess if they met the objectives outlined in TCEQ Draft Technical Guideline No. 32¹ prior to submittal of this data to TCEQ.

The following data quality issues were identified:

• As reported in SDG 230702, boron was detected in the equipment blank sample "EQUIPMENT BLANK" collected on 2/28/2023. The detected boron concentration in the

¹ TCEQ. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action: Technical Guidance No. 32. May 2020.

Data Quality Review – Pirkey February 2023 Data April 28, 2023 Page 2

equipment blank (0.009 mg/L) was more than 10% of the detected values for boron in sample AD-23 (0.049 mg/L), which could result in high bias in the AD-23 boron results.

Based on these findings, the majority of the data reported in these SDGs are considered accurate and complete. Although the QC failures mentioned above will result in some limitations of data use since the affected results are considered estimated or have elevated reporting limits, the data are considered usable for supporting project objectives.

ATTACHMENT B Certification by a Qualified Professional Engineer

CERTIFICATION BY QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected statistical method, described above and in the January 27, 2021 *Statistical Analysis Summary* report, is appropriate for evaluating the groundwater monitoring data for the Pirkey Landfill CCR management area and that the requirements of 30 TAC 352.931(a) have been met.

David Anthony Mille	r	STATE OF TELE
Printed Name of Licen	sed Professional Engineer	DAVID ANTHONY MILLER
David Ant	thony Miller	112498 CENSED
Signature		Miller
112498	Texas	06.07.2023
License Number	Licensing State	Date

Memorandum

Date: November 28, 2023

To: David Miller (AEP)

Copies to: Leslie Fuerschbach (AEP)

From: Allison Kreinberg (Geosyntec)

Subject: Evaluation of Detection Monitoring Data at Pirkey Plant's Landfill

In accordance with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (30 TAC 352, "CCR rule"), the first semiannual detection monitoring event of 2023 at the Landfill, an existing CCR unit at the Pirkey Power Plant in Hallsville, Texas, was completed on June 27, 2023. Based on the results, a two-of-two verification sampling was completed on August 23, 2023.

A data quality review was completed to assess if the data collected for this semiannual detection monitoring event met the objectives outlined in TCEQ Draft Technical Guidance No. 32 related to groundwater sampling and analysis¹. The data were determined usable for supporting project objectives, as documented in the review memoranda provided in Attachment A.

Background values (prediction limits) for the LF were previously calculated in January 2018. An alternative source demonstration (ASD) was certified on January 7, 2020 which resulted in a revision from interwell tests to intrawell tests for the pH, sulfate, and TDS prediction limits. After a minimum of four detection monitoring events, the results of those events were compared to the existing background and the dataset was updated as appropriate. Revised upper prediction limits (UPLs) were calculated for each Appendix III parameter to represent background values. Lower prediction limits (LPLs) were also calculated for pH. Details on the calculation of these revised background values are described in Geosyntec's *Statistical Analysis Summary* report, dated January 27, 2021.

¹ TCEQ. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action: Draft Technical Guidance No. 32. May 2020.

Evaluation of Detection Monitoring Data – Pirkey Landfill November 28, 2023 Page 2

To achieve an acceptably high statistical power while maintaining a site-wide false-positive rate (SWFPR) of 10% per year or less, prediction limits were calculated based on a one-of-two retesting procedure. With this procedure, a statistically significant increase (SSI) is only concluded if both samples in a series of two exceeds the UPL (or are below the LPL for pH). In practice, if the initial result did not exceed the UPL, a second sample was not collected or analyzed.

Detection monitoring results and the relevant background values are compared in Table 1. Noted exceedances are described in the list below.

- Calcium concentrations were above the intrawell UPL of 0.304 mg/L in both the initial (0.88 mg/L) and second (1.22 mg/L) samples collected at AD-36. Therefore, an SSI over background is concluded for calcium at AD-36.
- Chloride concentrations were above the intrawell UPL of 9.54 mg/L in both the initial (11.1 mg/L) and second (11.8 mg/L) samples collected at AD-36. Therefore, an SSI over background is concluded for calcium at AD-36.

In response to the exceedances noted above, the Pirkey LF will either transition to assessment monitoring or an ASD for calcium and chloride at AD-36 will be conducted in accordance with 30 TAC 352.931. The statistical analysis was conducted in accordance with 30 TAC 352.931 and completed within 90 days of sampling and analysis. A certification of these statistics by a qualified professional engineer is provided in Attachment B.

Table 1. Detection Monitoring Data Evaluation Detection Summary Memorandum Pirkey - Landfill

A 14-	T T!4	Demoderation	AΓ)-23	AD	0-34	AD	0-36	
Analyte	Unit	Description	6/27/2023	8/23/2023	6/27/2023	8/23/2023	6/27/2023	8/23/2023	
Boron	mg/L	Intrawell Background Value (UPL)	0.0	433	0.1	45	0.0702		
DOIOII	IIIg/L	Analytical Result	0.061	0.026	0.057	-	0.067	-	
Calcium	mg/L	Intrawell Background Value (UPL)	0.5	536	42	2.8	0.3	304	
Calcium	mg/L	Analytical Result	0.44		40.1		0.88	1.22	
Chloride	mg/L	Intrawell Background Value (UPL)	8.	88	9.	35	9.54		
Cinoriae	IIIg/L	Analytical Result	7.55		7.18		11.1	11.8	
Fluoride	mg/L	Intrawell Background Value (UPL)	1.00		1.	29	0.0800		
Tuonae	mg/L	Analytical Result	0.04		0.63		0.06	-	
		Intrawell Background Value (UPL)	5	.2	4	.2	5.7		
pН	SU	Intrawell Background Value (LPL)	2.8		2.9		3	.5	
		Analytical Result	4.5		3.7		4.0	-	
Sulfate	mg/L	Intrawell Background Value (UPL)	14	1.5	1,2	280	4.	20	
Suitate	mg/L	Analytical Result	7.7		1,230		3.6		
Total Dissolved Solids	mg/L	Intrawell Background Value (UPL)	1	11	1,7	700	98.5		
Total Dissolved Solids	mg/L	Analytical Result	70		1,710	1,560	60		

Notes:

1. Bold values exceed the background value.

2. Background values are shaded gray.

LPL: lower prediction limit mg/L: milligrams per liter

SU: standard units

UPL: upper prediction limit

ATTACHMENT A Data Quality Review Memoranda

Memorandum

Date: September 19, 2023

To: David Miller (AEP)

Copies to: Leslie Fuerschbach (AEP)

From: Allison Kreinberg (Geosyntec)

Subject: Data Quality Review – Pirkey Power Plant

June 2023 Sampling Event

This memorandum summarizes the findings of a data quality review for groundwater samples collected at the Pirkey Power Plant in Hallsville, Texas in June 2023. The groundwater samples were collected to comply with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR Rule"). 40 CFR 257 Appendix III constituents were analyzed.

The following sample data groups (SDGs) were associated with the June 2023 sampling event and are reviewed in this memorandum:

- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 231962
- Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 231989

The data included in these SDGs were reviewed to assess if they met the objectives outlined in TCEQ Draft Technical Guideline No. 32¹ prior to submittal of this data to TCEQ.

No data quality issues were identified. Based on these findings, the data reported in these SDGs are considered accurate and complete and the data are considered usable for supporting project objectives.

¹ TCEQ. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action: Technical Guidance No. 32. May 2020.

Memorandum

Date: October 27, 2023

To: David Miller (AEP)

Copies to: Leslie Fuerschbach (AEP)

From: Allison Kreinberg (Geosyntec)

Subject: Data Quality Review – Pirkey Power Plant

August 2023 Sampling Event

This memorandum summarizes the findings of a data quality review for groundwater samples collected at the Pirkey Power Plant, located in Hallsville, Texas in August 2023. The groundwater samples were collected to comply with the Texas Commission on Environmental Quality's (TCEQ's) regulations regarding the disposal of coal combustion residuals (CCRs) in landfills and surface impoundments (Title 30 Chapter 352, "CCR Rule"). 40 CFR 257 Appendix III constituents were analyzed.

The following sample data groups (SDGs) were associated with the August 2023 sampling event and are reviewed in this memorandum:

• Dolan Chemical Laboratory (Groveport, Ohio) Job ID # 232658

The data included in this SDG was reviewed to assess if they met the objectives outlined in TCEQ Draft Technical Guideline No. 32¹ prior to submittal of this data to TCEQ.

No data quality issues were identified. Based on these findings, the data reported in this SDG are considered accurate and complete and the data are considered usable for supporting project objectives.

⁻

¹ TCEQ. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action: Technical Guidance No. 32. May 2020.

ATTACHMENT B Certification by a Qualified Professional Engineer

CERTIFICATION BY QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected statistical method, described above and in the January 27, 2021 *Statistical Analysis Summary* report, is appropriate for evaluating the groundwater monitoring data for the Pirkey Landfill CCR management area and that the requirements of 30 TAC 352.931(a) have been met.

David Anthony Mil	ler	STATE OF TEXTS
Printed Name of Licen	sed Professional Engineer	DAVID ANTHONY MILLER 112498
David Lathony N Signature	liller	SOJONAL ENGLIS
Signature		
112498	Texas	12.19.2023
License Number	Licensing State	Date

AMERICAN ELECTRIC POWER

engineers | scientists | innovators

STATISTICAL ANALYSIS SUMMARY, BACKGROUND UPDATE CALCULATIONS

LANDFILL
H.W. Pirkey Power Plant
Hallsville, Texas

Prepared for

American Electric Power

1 Riverside Plaza Columbus, Ohio 43215-2372

Prepared by

Geosyntec Consultants, Inc. 500 West Wilson Bridge Road, Suite 250 Worthington, Ohio 43085

Project Number: CHA8500B

January 25, 2024

TABLE OF CONTENTS

1.	INT	RODU	CTION	1
	1.1	Previo	ous Monitoring Events and Background Calculations	1
		110.11		
2.	STA	TISTIC	CAL ANALYSIS AND BACKGROUND DATA UPDATE	2
			Validation and QA/QC	
			tical Analysis	
		2.2.1	Outlier Evaluation	2
		2.2.2	Establishment of Updated Background Dataset	3
		2.2.3	Updated Prediction Limits	4
	2.3	Concl	usions	5
3.	REF	ERENO	CES	6
		,		

LIST OF TABLES

Table 1: Groundwater Data SummaryTable 2: Background Level Summary

LIST OF ATTACHMENTS

Attachment A: Certification by Qualified Professional Engineer

Attachment B: Statistical Analysis Output

ACRONYMS AND ABBREVIATIONS

ANOVA analysis of variance

CCR coal combustion residuals

LPL lower prediction limit

QA/QC quality assurance and quality control

TCEQ Texas Commission on Environmental Quality

TDS total dissolved solids
UPL upper prediction limit

USEPA United States Environmental Protection Agency

1. INTRODUCTION

Groundwater monitoring has been conducted at the Landfill, an existing coal combustions residuals (CCR) unit at the H.W. Pirkey Power Plant in Hallsville, Texas, in accordance with Texas Commission on Environmental Quality (TCEQ) regulations regarding the disposal of CCR in landfills and surface impoundments (Texas Administrative Code, Title 30, Chapter 352). It is required under the CCR rule to establish background concentrations for Appendix III parameters in groundwater. These background concentrations are used to calculate prediction limits for future detection monitoring events.

Background concentration values for Appendix III parameters were last calculated for the Landfill in January 2021. Since then, six semiannual detection monitoring events were conducted. This report details how data from these recent groundwater monitoring results were analyzed and incorporated into the LF background dataset and provides updated prediction limits.

1.1 Previous Monitoring Events and Background Calculations

Before May 2017, eight monitoring events were completed to establish background concentrations and calculate prediction limits for Appendix III and Appendix IV parameters under the CCR rule. The data were reviewed for outliers and trends before upper prediction limits (UPLs) were calculated for each Appendix III parameter and lower prediction limits (LPLs) were established for pH. Intrawell prediction limits were selected for boron, calcium, chloride, and fluoride, with a one-of-two resampling plan. Interwell prediction limits were selected for pH, sulfate, and total dissolved solids (TDS) with a one-of-two resampling plan; however, the interwell prediction limits were revised to intrawell tests following collection of additional data which determined that former mining activities in the vicinity of the Landfill were affecting groundwater quality at downgradient well AD-34 (Geosyntec 2020). The statistical analyses completed to establish background levels are detailed in the January 2018 *Statistical Analysis Summary* report (Geosyntec 2018).

Calculated background values should be updated every four to eight measurements, as recommended in the United States Environmental Protection Agency (USEPA) *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance* (USEPA 2009). These updated background concentration values are used to revise the site-specific prediction limits. The prediction limits have previously been updated twice.

In January 2021, prediction limits for Appendix III parameters were updated with data collected up to July 2020 (Geosyntec 2021a). Intrawell testing (using a one-of-two retesting procedure) was selected as the method of analysis and these prediction limits were used for detection monitoring events completed between November 2020 and August 2023. Intrawell prediction limits were also calculated for downgradient well AD-36, which replaced AD-35 in October 2018 after AD-35 was decommissioned in November 2018 due to Landfill expansion activities (Arcadis, 2018; Geosyntec 2021a).

2. STATISTICAL ANALYSIS AND BACKGROUND DATA UPDATE

Six semiannual detection monitoring events were conducted since the last background update (Table 1). Verification sampling was completed (on an individual well or parameter basis) if the initial results for each detection monitoring event identified possible exceedances. Therefore, a minimum of six samples have been collected from each compliance well since the previous background update.

Data from the six semiannual detection monitoring events conducted at the Landfill between November 2020 and August 2023, including both initial and verification results, have been evaluated for inclusion in the background dataset. The detection monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. The data were reviewed for outliers, with one value removed from the dataset before the UPLs for each Appendix III parameter and the LPL for pH were updated to represent background values. The selected statistical methods have been certified by a qualified professional engineer (Attachment A).

2.1 Data Validation and QA/QC

Chemical analysis was completed by an analytical laboratory certified by the National Environmental Laboratory Accreditation Program. Quality assurance and quality control (QA/QC) samples used by the analytical laboratory included laboratory reagent blanks, continuing calibration verification samples, and laboratory fortified blanks.

The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.10.0.15 statistics software. The export file was checked against the analytical data for transcription errors and completeness. No QA/QC issues that would impact data usability were noted.

2.2 Statistical Analysis

Statistical analyses for the Landfill were conducted in accordance with the *Statistical Analysis Plan* (Geosyntec 2021b). These statistical analyses incorporated data from the six semiannual detection monitoring events and associated verification sampling events conducted between November 2020 and August 2023 (Table 1). The complete statistical analysis results are included in Attachment B.

Time series plots of Appendix III parameters (Appendix B) were used to evaluate concentrations over time and to provide an initial screening of suspected outliers and trends. Box plots were also compiled to provide visual representation of variations between wells and within individual wells (Attachment B).

2.2.1 Outlier Evaluation

Potential outliers were evaluated using Tukey's outlier test. That is, data points were considered potential outliers if they met one of the following criteria:

$$x_i < \tilde{x}_{0.25} - 3 \times IQR \quad (1)$$

or
$$x_i > \tilde{x}_{0.75} + 3 \times IQR \quad (2)$$

where:

 $x_i = \text{individual data point}$ $\tilde{x}_{0.25} = \text{first quartile}$ $\tilde{x}_{0.75} = \text{third quartile}$ $IQR = \text{the interquartile range} = \tilde{x}_{0.75} - \tilde{x}_{0.25}$

Data that were evaluated as potential outliers are summarized in Attachment B. One outlier was identified in the data collected for the six most recent detection monitoring events: a high boron value of 0.206 milligrams per liter (mg/L) at background well AD-16 on November 17, 2021. This outlier was removed from the dataset to generate a prediction limit which is more conservative from a regulatory perspective.

2.2.2 Establishment of Updated Background Dataset

Analysis of variance (ANOVA) was conducted during the initial background screening to assist in evaluating whether intrawell testing is the most appropriate statistical approach for assessing Appendix III parameters. Intrawell tests, which compare compliance data from a single well to background data within the same well, are most appropriate 1) when upgradient wells exhibit spatial variation; 2) when statistical limits constructed from upgradient wells would not be conservative from a regulatory perspective; or 3) when downgradient water quality is not impacted compared to upgradient water quality for the same parameter. It is necessary to update background statistical limits (calculated prediction limits) periodically because natural systems change continuously with physical changes to the environment. For intrawell analyses, data for all wells and constituents are reevaluated when a minimum of four new data points are available. These four (or more) new data points are used to determine whether earlier concentrations are representative of present-day groundwater quality.

Mann-Whitney (Wilcoxon rank-sum) tests were used to compare the medians of historical data (May 2016–July 2020) to the new compliance samples (November 2020 - August 2023). Results (Appendix B) were evaluated to determine whether the medians of the two groups were similar at the 99% confidence level. Where no significant difference was found, the new compliance data were added to the background dataset. Where a statistically significant difference was found, the data were reviewed to evaluate the cause of the difference and to assess which was most appropriate: adding newer data to the background dataset, replacing the background dataset with the newer data, or continuing to use the existing background dataset. If the differences appeared to have been caused by a release, then the previous background dataset would continue to be used.

Significant differences were found between the two groups for the following upgradient well/parameter pairs:

- A decrease was found for fluoride at AD-12
- A decrease was found for sulfate at AD-16.

The background datasets for fluoride at AD-12 was updated because the magnitudes of the differences were minimal, and these data represent naturally occurring groundwater quality not impacted by a release. A steady decrease since 2019 was noted for sulfate concentrations at AD-16; therefore, this dataset was truncated to use the most recent eight sampling events to construct a statistical limit that is more representative of current conditions. Additionally, while a statistically significant difference was not identified at the 99% confidence level for chloride at upgradient well AD-16, a steady increase in concentrations was noted since 2016. The background dataset for chloride at AD-16 was not updated using the more recent sampling results to maintain a more conservative prediction limit.

Statistically significant differences were found between the two groups for the following downgradient well/parameter pairs:

- An increase was found for boron at AD-23.
- A decrease was found for boron at AD-34.
- Increases were found for calcium, sulfate, and TDS at AD-34.

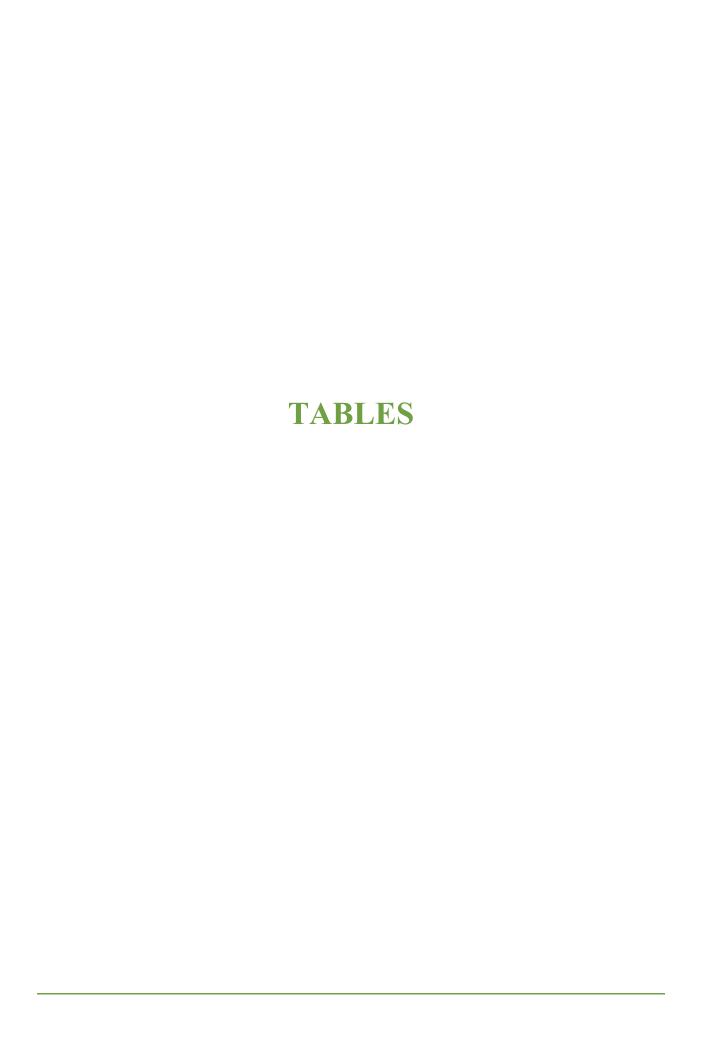
For the downgradient well/parameter pairs with statistically significant increases or decreases listed above, the magnitude of the difference was small or similar to those observed in upgradient wells; therefore, the background dataset was updated to include the compliance dataset.

After the revised background set was established, a parametric or nonparametric analysis was selected based on the distribution of the data and the frequency of nondetect data. Estimated results less than the practical quantitation limit (PQL)—that is, "J-flagged" data—were considered detections, and the estimated results were used in the statistical analyses. Nonparametric analyses were selected for datasets with at least 50% nondetect data or datasets that could not be normalized. Parametric analyses were selected for datasets (either transformed or untransformed) that passed the Shapiro-Wilk/Shapiro-Francía test for normality. The Kaplan-Meier nondetect adjustment was applied to datasets with between 15% and 50% nondetect data. For datasets with fewer than 15% nondetect data, nondetect data were replaced with one half of the PQL. The selected analysis (i.e., parametric or nonparametric) and transformation (where applicable) for each background dataset are shown in Attachment B.

2.2.3 Updated Prediction Limits

Except as noted above, all historical data through August 2023 were used to update the intrawell UPLs (and intrawell LPLs, for pH) and to represent background values (Table 2).

The intrawell UPLs and LPLs were calculated for a one-of-two retesting procedure; that is, if at least one sample in a series of two has no measurement greater than the UPL and if the pH result is greater than or equal to the LPL, then it can be concluded that a statistically significant increase has not occurred. In practice, where the initial result is not greater than the UPL and where the pH result is greater than or equal to the LPL, a second sample will not be collected. The retesting procedures allow an acceptably high statistical power to detect changes at downgradient wells for constituents evaluated with intrawell prediction limits.


2.3 Conclusions

Six detection monitoring events were completed between November 2020 and August 2023 in accordance with the CCR rule. The laboratory and field data from these events were reviewed prior to statistical analysis, and no QA/QC issues that impacted data usability were identified. Mann-Whitney tests were completed to evaluate whether data from the detection monitoring events could be added to the existing background dataset. Where appropriate, the background datasets were updated, and UPLs and LPLs were recalculated. Intrawell testing (using a one-of-two retesting procedure) was selected as the method of analysis, and prediction limits were updated for all Appendix III parameters.

3. REFERENCES

- Arcadis. 2018. Landfill CCR Groundwater Monitoring Network Evaluation (Updated October 2018). H. W. Pirkey Plant. October.
- Geosyntec. 2018. Statistical Analysis Summary. Landfill J. Robert Welsh Plant. Geosyntec Consultants, Inc. February.
- Geosyntec. 2020. Alternative Source Demonstration Report. Federal CCR Rule H.W. Pirkey Power Plant Landfill. Geosyntec Consultants, Inc. January.
- Geosyntec. 2021a. Statistical Analysis Summary Background Update Calculations. H.W. Pirkey Plant, Landfill. Geosyntec Consultants, Inc. January.
- Geosyntec. 2021b. *Statistical Analysis Plan J. Robert Welsh Plant*. Geosyntec Consultants, Inc. September.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance. United States Environmental Protection Agency. EPA 530/R-09-007. March

Table 1. Groundwater Data Summary Statistical Analysis Summary - Background Update Calculations Pirkey Plant - Landfill

		AD-8							AD-12								
Parameter	Unit	11/3/2020	5/26/2021	11/17/2021	6/22/2022	11/14/2022	6/27/2023	11/2/2020	3/8/2021	5/24/2021	11/15/2021	3/28/2022	6/20/2022	11/15/2022	2/27/2023	6/26/2023	
		2020-D2	2021-D1	2021-D2	2022-D1	2022-D2	2023-D1	2020-D2	2020-D2-R1	2021-D1	2021-D2	2021-D2-R1	2022-D1	2022-D2	2022-D2-R1	2023-D1	
Boron	mg/L	0.822	0.986	0.693	1.04	1.03	0.994	0.03 J1	0.01 J1	0.032 J1	0.012 J1	0.021 J1	0.042 J1	0.013 J1	0.021 J1	0.019 J1	
Calcium	mg/L	18.5	93.4	21.9 M1, P3	37.2 M1	17.9	92.7	0.3 J1	0.2 J1	0.2 J1	0.28	0.20	0.32	0.36	0.34	0.21	
Chloride	mg/L	15.8	3.28	15.4	17.0	23.1	6.97	4.65	6.46	5.54	8.03	6.10	7.59	8.03	6.51	4.68	
Fluoride	mg/L	2.50	0.35	2.31	2.85	2.04	0.31	0.08	0.11	0.12	0.07	0.07	0.09	0.08	0.07	0.06	
Sulfate	mg/L	119	168	97.2	117	119	182	3.3	3.8	5.46	2.90	3.80	4.81	3.39	3.90	2.9	
Total Dissolved Solids	mg/L	237	390	220	270	240	410	74	68	70	90	60 L1	80	70	70	80	
pН	SU	4.1	5.9	4.2	5.0	4.5	5.8	4.3	4.1	4.2	3.5	3.9	4.3	4.7	3.8	4.6	

AD-16									AD-23									
Parameter	Unit	11/3/2020	5/26/2021	11/17/2021	6/22/2022	11/14/2022	6/27/2023	11/4/2020	5/26/2021	11/17/2021	1/26/2022	6/22/2022	8/30/2022	11/14/2022	2/28/2023	6/27/2023	8/23/2023	
		2020-D2	2021-D1	2021-D2	2022-D1	2022-D2	2023-D1	2020-D2	2021-D1	2021-D2	2021-D2-R1	2022-D1	2022-D1-R1	2022-D2	2022-D2-R1	2023-D1	2023-D1-R1	
Boron	mg/L	0.05 U1	0.016 J1	0.206	0.021 J1	0.024 J1	0.016 J1	0.05 U1	0.023 J1	0.045 J1	0.040 J1	0.057	0.032 J1	0.078	0.049 J1	0.061	0.026 J1	
Calcium	mg/L	0.817	0.8	0.94	1.80	0.91	0.79	0.2 J1	0.3	0.22		0.25		0.24		0.44		
Chloride	mg/L	19.9	23.2	22.3	24.7	25.2	28.9	6.97	6.94	7.11		7.32		7.49		7.55		
Fluoride	mg/L	0.07	0.13	0.07	0.10	0.07	0.08	0.05 J1	0.06	0.05 J1		0.07		0.06		0.04 J1		
Sulfate	mg/L	11.0	7.36	9.64	9.58	6.68	7.3	7.9	7.90	7.84		9.52		8.03		7.7		
Total Dissolved Solids	mg/L	105	120	110	110	90	120	71	70	70		80		80		70		
pН	SU	4.4	4.4	4.3	4.5	4.3	4.4	3.9	3.6	3.9	4.1	3.6	3.9	4.5	4.4	4.5	4.4	

				AD)-27			AD-34										
Parameter	Unit	11/3/2020	5/26/2021	11/17/2021	6/22/2022	11/14/2022	6/27/2023	11/4/2020	5/26/2021	7/27/2021	11/17/2021	1/26/2022	6/22/2022	8/30/2022	11/14/2022	2/28/2023	6/27/2023	8/23/2023
		2020-D2	2021-D1	2021-D2	2022-D1	2022-D2	2023-D1	2020-D2	2021-D1	2021-D1-R1	2021-D2	2021-D2-R1	2022-D1	2022-D1-R1	2022-D2	2022-D2-R1	2023-D1	2023-D1-R1
Boron	mg/L	0.03 J1	0.029 J1	0.040 J1	0.028 J1	0.034 J1	0.032 J1	0.060	0.063		0.069		0.066		0.067		0.057	
Calcium	mg/L	3.45	3.6	3.76	3.88	3.79	3.86	39.5	39.7		45.8	42.6	45.8	46.0	44.6	41.9	40.1	
Chloride	mg/L	10.8	13.5	11.6	12.5	12.7	13.6	7.10	7.44		7.09		7.38		7.47		7.18	
Fluoride	mg/L	0.19	0.25	0.20	0.22	0.20	0.14	0.82	2.1	0.82	1.11		1.20		0.44		0.63	
Sulfate	mg/L	53.1	50.8	56.4	57.2	59.4	59.9	1,090	1,110		1,280		1,260		1,250		1,230	
Total Dissolved Solids	mg/L	196	230	190 P1	210	180	210	1,670	1,670		1,850	1,720 S7	1,750	1,650	1,720	1,640	1,710	1,560
pН	SU	3.6	3.5	3.7	3.3	4.0	4.2	3.4	2.9	3.2	3.1	3.4	3.7	4.0	3.5	3.8	3.7	3.8

	AD-36											
Parameter	Unit	11/4/2020	5/26/2021	7/27/2021	11/17/2021	6/22/2022	8/30/2022	11/14/2022	2/28/2023	6/27/2023	8/23/2023	
		2020-D2	2021-D1	2021-D1-R1	2021-D2	2022-D1	2022-D1-R1	2022-D2	2022-D2-R1	2023-D1	2023-D1-R1	
Boron	mg/L	0.068	0.057		0.070	0.059		0.068		0.067		
Calcium	mg/L	0.2 J1	0.6	0.3	0.25	0.38	0.28	0.28		0.88	1.22	
Chloride	mg/L	7.99	10.6	8.67	8.97	10.1	10.3	11.1	11.7	11.1	11.8	
Fluoride	mg/L	0.06 J1	0.10	0.07	0.05 J1	0.09	0.07	0.07		0.06		
Sulfate	mg/L	3.1	4.08		2.89	5.00	3.00	2.93		3.6		
Total Dissolved Solids	mg/L	57	60		50 P1	60		50		60 P1		
pН	SU	4.6	4.0	3.9	4.0	4.6	4.9	4.5	4.5	4.0	4.2	

Notes:

- --: Not Measured
- D1: First semiannual detection monitoring event of the year
- D2: Second semiannual detection monitoring event of the year
- J1: Estimated value. Parameter was detected in concentrations below the reporting limit. In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.
- L1: The associated laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) recovery was outside acceptance limits.
- mg/L: milligrams per liter
- M1: The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.
- P1: The precision between duplicate results was above acceptance limits.
- P3: The precision on the matrix spike duplicate (MSD) was above acceptance limits.
- R1: First verification event associated with detection monitoring round
- SU: standard unit
- S7: Sample did not achieve constant weight.
- U1: Parameter was not present in concentrations above the method detection limit and is reported as the reporting limit. In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

Table 2. Background Level Summary Statistical Analysis Summary – Background Update Calculations H.W. Pirkey Plant – Landfill

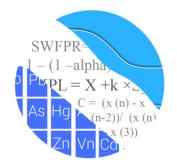
Parameter	Unit	Description	AD-23	AD-34	AD-36
Boron	mg/L	Intrawell Background Value (UPL)	0.0612	0.108	0.0747
Calcium	mg/L	Intrawell Background Value (UPL)	0.503	46.1	1.22
Chloride	mg/L	Intrawell Background Value (UPL)	8.92	8.97	11.8
Fluoride	mg/L	Intrawell Background Value (UPL)	0.156	1.58	0.0980
рН	SU	Intrawell Background Value (UPL)	5.0	4.1	5.2
рп	30	Intrawell Background Value (LPL)	3.1	2.9	3.7
Sulfate	mg/L	Intrawell Background Value (UPL)	13.6	1,340	4.77
Total Dissolved Solids	mg/L	Intrawell Background Value (UPL)	104	1,840	84.9

Notes:

LPL: lower prediction limit mg/L: milligrams per liter

SU: standard units

UPL: upper prediction limit


Certification by Qualified Professional Engineer

I certify that selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Pirkey Landfill CCR management area and that the requirements of § 352.931(a) have been met.

David Anthony M	A STA	A STORY	
Printed Name of Licens	sed Professional Engineer	1	NTHONY MILLER
David Lathon	Miller		ONAL ENGLY
Signature			
112498	Texas	01.25.2024	
License Number	Licensing State	Date	

ATTACHMENT B Statistical Analysis Output

GROUNDWATER STATS CONSULTING

December 29, 2023

Geosyntec Consultants Attn: Ms. Allison Kreinberg 500 W. Wilson Bridge Road, Suite 250 Worthington, OH 43085

Re: Pirkey Landfill

Background Update – 2023

Dear Ms. Kreinberg,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the 2023 background update of groundwater data at American Electric Power Company's Pirkey Landfill. This site is in Detection Monitoring and the analysis complies with the federal rule for the Disposal of Coal Combustion Residuals (CCR) from Electric Utilities (CCR Rule, 2015) as well as with the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling began at the site for the CCR program in 2016. The monitoring well network, as provided by Geosyntec Consultants, is listed below. Note that downgradient well AD-35 was originally in the well network but has been abandoned and replaced with well AD-36.

o **Upgradient wells:** AD-8, AD-12, AD-16, and AD-27

o Downgradient wells: AD-23, AD-34, and AD-36

Data were sent electronically, and the statistical analysis was conducted according to the Statistical Analysis Plan and screening evaluation prepared by GSC and approved by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to GSC. The background update performed during this analysis was reviewed by Kristina Rayner, Founder and Senior Statistician for Groundwater Stats Consulting

The CCR program consists of the following Appendix III constituents:

o boron, calcium, chloride, fluoride, pH, sulfate, and TDS

Time series plots for these parameters at all wells are provided for the purpose of screening data at these wells (Figure A). Additionally, a separate section of box plots is included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells. When values in background have been flagged as outliers, they may be seen in a lighter font and as a disconnected symbol on the graphs.

Due to varying detection limits in background data sets, a substitution of the most recent reporting limit is used for all non-detects. Note that for calculation of intrawell prediction limits, substitution of the most recent reporting limit is performed separately for each well/parameter pair. In some cases, the reporting limit provided by the laboratory contains varying limits for a given parameter; therefore, the substitution may differ from well to well. This generally gives the most conservative limit in each case. Reporting limit changes may occur depending on laboratory capabilities and in the case of fluoride, elevated reporting limits were replaced by the most recent reporting limit of 0.15 mg/L and was substituted across all non-detects for all wells.

In earlier analyses, data at all wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix III parameters based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves are provided to demonstrate that the selected statistical methods for Appendix III parameters comply with the USEPA Unified Guidance. The EPA suggests the selected statistical method should provide at least 55% power at 3 standard deviations or at least 80% power at 4 standard deviations.

Summary of Statistical Methods:

• Intrawell prediction limits, combined with a 1-of-2 resample plan for boron, calcium, chloride, fluoride, pH, sulfate, and TDS

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the false positive rate associated with the parametric limits is based on an annual 10% (5% per semi-annual

event) as recommended by the EPA Unified Guidance (2009), the false positive rate associated with the nonparametric limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits.

- No statistical analyses are required on wells and analytes containing 100% non-detects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data for parametric limits. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the intrawell case, data for all wells and constituents may be re-evaluated when a minimum of 4 new data points are available to determine whether earlier concentrations are representative of present-day groundwater quality. In some cases, the earlier portion of data is deselected prior to construction of limits to provide sensitive limits that will rapidly detect changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Appendix III Background Update Summary – 2023

Outlier Analysis

Prior to updating background data, observations were evaluated using Tukey's outlier test and visual screening through the June 2023 (and in some cases, August 2023) sample events. Tukey's outlier test only noted outliers for boron in upgradient wells AD-16 and AD-27, fluoride in upgradient well AD-27, and sulfate in upgradient well AD-27 among the Appendix III parameters. Among the identified values, the highest values for boron at wells AD-16 and AD-27 and fluoride at AD-27 were flagged as outliers to construct

statistical limits that are conservative from regulatory perspective. Any values identified by Tukey's test but not flagged, such as the value for sulfate at AD-27, appeared to be similar to other concentrations within their respective wells. Although not identified by Tukey's test, the highest value for boron at downgradient well AD-34 was flagged in order to reduce variation and construct statistical limits that are representative of present-day groundwater quality conditions. A summary of Tukey's test results and a list of flagged values follows this letter (Figure C).

Mann-Whitney Evaluation

For all Appendix III parameters, the Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through July 2020 to the new compliance samples at each well through June/August 2023 (Figure D). The test evaluates whether the groups are statistically different at the 99% confidence level. If no significant difference is found, background data may be updated with compliance data. Well/constituent pairs with truncated records from the previous update maintained the truncated portion for the Mann-Whitney test. Statistically significant differences (either an increase or decrease in median concentrations) were found between the two groups for the following well/constituent pairs:

Increase:

Boron: AD-23
Calcium: AD-34
Sulfate: AD-34
TDS: AD-34

Decrease

• Boron: AD-34

Fluoride: AD-12 (upgradient)Sulfate: AD-16 (upgradient)

Typically, when the test concludes that the medians of the two groups are statistically significantly different, particularly in the downgradient wells, the background data are not updated to include the newer data unless it can be reasonably justified that the change in concentrations reflects a shift unrelated to practices at the site. In studies such as the current one, in which at least one of the segments being compared is of short duration, the comparison is complicated by the fact that normal short-term variation may be mistaken for long-term change in medians.

Although statistically significant differences in medians were identified at the 99% confidence level, the following well/constituent pairs had compliance concentrations

similar to existing historical measurements and would result in minimal changes to existing statistical limits; therefore, the respective records were updated: boron, calcium, sulfate, and TDS at downgradient well AD-34, and fluoride at upgradient well AD-12.

For boron at downgradient well AD-23, although a statistically significant increase in concentrations was identified, the increase in median concentrations is small relative to overall concentrations and all observations are at least an order of magnitude smaller than concentrations found at multiple upgradient wells; therefore, the record for this well/constituent pair was updated.

While a statistically significant difference was not identified at the 99% confidence level for chloride at upgradient well AD-16, this well/constituent pair has exhibited a constant increase in concentrations since it was first sampled in 2016. Therefore, to maintain conservative limits, the record for this well/constituent pair was not updated at this time.

Regarding sulfate at upgradient well AD-16, since the concentrations have steadily decreased since 2019, the earlier portions of the records were deselected prior to construction of statistical limits so that the limits are more representative of present-day water quality conditions. This record will utilize the most recent 8 measurements beginning from 8/15/2019.

As mentioned during the previous update, calcium at upgradient well AD-16 and chloride at upgradient well AD-27 used a truncated portion of the record the earlier portions of the records were deselected prior to construction of statistical limits so that limits are more representative of present-day water quality conditions. The records for these well/constituent pairs will utilize measurements beginning from 4/10/2017 onward.

A full list of well/constituent pairs with truncated records follows this letter in the Date Range Table. Table entries with "overall" date ranges indicate background data sets not updated with data through June/August 2023. Background data sets for all other well/constituent pairs were updated with data through June/August 2023 for construction of intrawell prediction limits. A summary of the Mann-Whitney results follows this letter, and the test results are included with the Mann Whitney test section at the end of this report. All records will be re-evaluated for updating statistical limits when a minimum of 4 samples are available.

Prediction Limits

Intrawell prediction limits using all historical data through June/August 2023, except for the cases mentioned above, combined with a 1-of-2 resample plan, were constructed, and a summary of the updated limits follows this letter (Figure E).

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Pirkey Landfill. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

Andrew Collins

Project Manager

Kristina Rayner Senior Statistician

Kristina Rayner

Sanitas™ v.10.0.15 Software licensed to . U

Page 1

Date Ranges

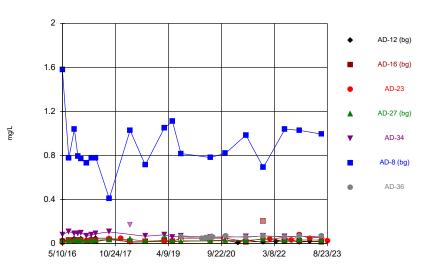
Date: 12/28/2023 8:50 AM

Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Calcium, total (mg/L)

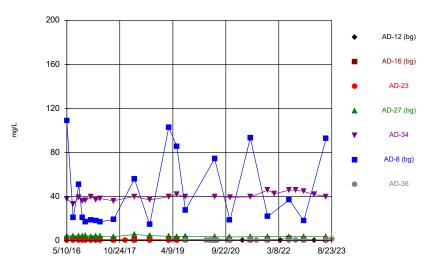
AD-16 background:4/10/2017-6/27/2023

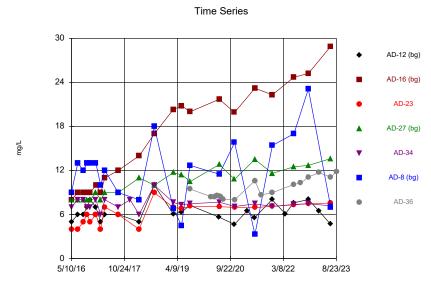
Chloride, total (mg/L)


AD-16 background:4/10/2017-6/3/2020, overall:4/10/2017-6/3/2020

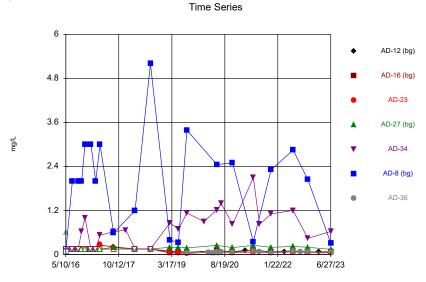
AD-27 background:4/10/2017-6/27/2023

Sulfate, total (mg/L)

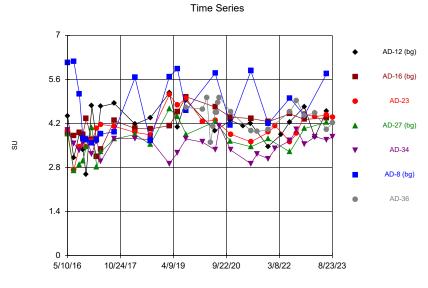

AD-16 background:8/15/2019-6/27/2023


Constituent: Boron, total Analysis Run 12/15/2023 3:48 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Time Series


Constituent: Calcium, total Analysis Run 12/15/2023 3:48 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG

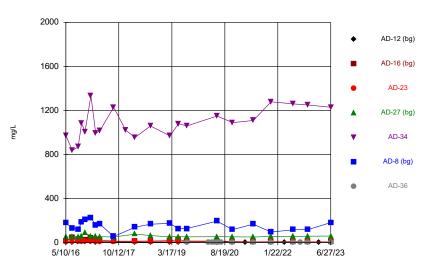

Constituent: Chloride, total Analysis Run 12/15/2023 3:48 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values.

Constituent: Fluoride, total Analysis Run 12/15/2023 3:48 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

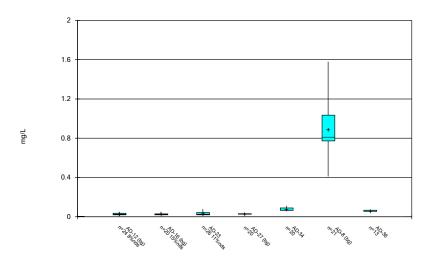
Sanitas** v.10.0.15 Software licensed to . UG

Constituent: pH, field Analysis Run 12/15/2023 3:48 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

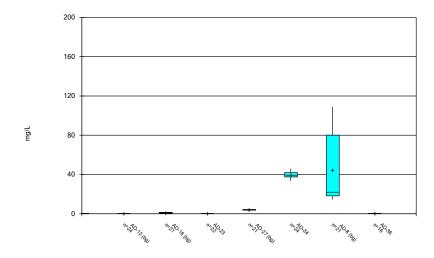

Time Series

Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values.

2000 AD-12 (bg) AD-16 (bg) 1600 AD-23 1200 AD-27 (bg) mg/L AD-34 800 AD-8 (bg) AD-36 400 5/10/16 10/24/17 4/9/19 9/22/20 3/8/22 8/23/23

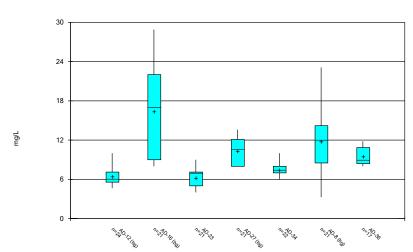

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/15/2023 3:48 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Time Series


Constituent: Sulfate, total Analysis Run 12/15/2023 3:48 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

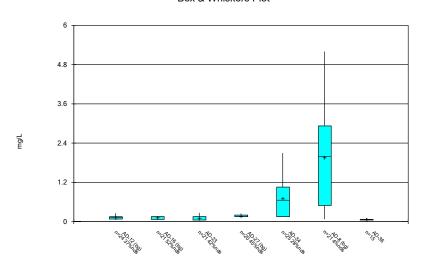
Box & Whiskers Plot

Constituent: Boron, total Analysis Run 12/15/2023 3:49 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill


Box & Whiskers Plot

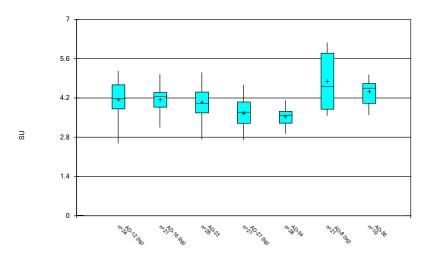
Constituent: Calcium, total Analysis Run 12/15/2023 3:49 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG


Box & Whiskers Plot

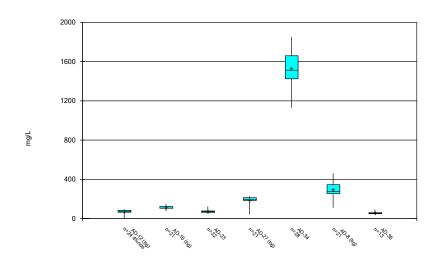
Constituent: Chloride, total Analysis Run 12/15/2023 3:49 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG


Box & Whiskers Plot

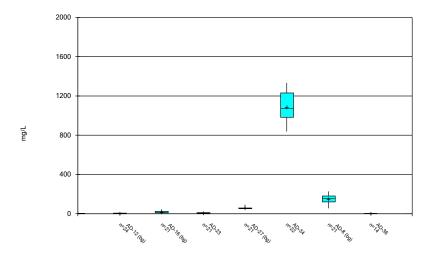
Constituent: Fluoride, total Analysis Run 12/15/2023 3:49 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG


Box & Whiskers Plot

Constituent: pH, field Analysis Run 12/15/2023 3:49 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG


Box & Whiskers Plot

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/15/2023 3:49 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG

Box & Whiskers Plot

Constituent: Sulfate, total Analysis Run 12/15/2023 3:49 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Outlier Summary

Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill Printed 12/15/2023, 3:50 PM

AD-16 Boron, total (mg/L) AD-27 Boron, total (mg/L) AD-34 Boron, total (mg/L) AD-27 Fluoride, total (mg/L)

5/11/2016 0.6176 (J,o)

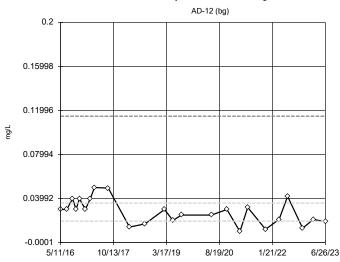
3/21/2018 0.171 (o)

2/28/2019 0.07 (J,o)

11/17/2021 0.206 (o)

Tukey's Outlier Test - Significant Results

Pirkey Landfill Data: Pirkey Landfill Printed 12/15/2023, 8:56 AM


Constituent	Well	Outlier	Value(s)	Date(s)	Meth	iodAlpha N	Mean	Std. Dev.	Distribution	on Normality Test
Boron, total (mg/L)	AD-16 (bg)	Yes	0.206	11/17/2021	NP	NaN 21	0.03303	0.04003	In(x)	ShapiroWilk
Boron, total (mg/L)	AD-27 (bg)	Yes	0.07	2/28/2019	NP	NaN 21	0.03118	0.01048	In(x)	ShapiroWilk
Fluoride, total (mg/L)	AD-27 (bg)	Yes	0.6176	5/11/2016	NP	NaN 21	0.1997	0.1016	In(x)	ShapiroWilk
Sulfate, total (mg/L)	AD-27 (bg)	Yes	92	11/15/2016	NP	NaN 21	58.22	9.785	In(x)	ShapiroWilk

Tukey's Outlier Test - All Results

Pirkey Landfill Data: Pirkey Landfill Printed 12/15/2023, 8:56 AM

Constituent	Well	Outlier	Value(s)	Date(s)	Meth	odAlpha N	<u>Mean</u>	Std. Dev.	Distribution	on Normality Test
Boron, total (mg/L)	AD-12 (bg)	No	n/a	n/a	NP	NaN 24	0.02794	0.01142	sqrt(x)	ShapiroWilk
Boron, total (mg/L)	AD-16 (bg)	Yes	0.206	11/17/2021	NP	NaN 21	0.03303	0.04003	ln(x)	ShapiroWilk
Boron, total (mg/L)	AD-23	No	n/a	n/a	NP	NaN 26	0.03241	0.01574	ln(x)	ShapiroWilk
Boron, total (mg/L)	AD-27 (bg)	Yes	0.07	2/28/2019	NP	NaN 21	0.03118	0.01048	ln(x)	ShapiroWilk
Boron, total (mg/L)	AD-34	No	n/a	n/a	NP	NaN 21	0.08124	0.02607	ln(x)	ShapiroWilk
Boron, total (mg/L)	AD-8 (bg)	No	n/a	n/a	NP	NaN 21	0.8918	0.2304	x^(1/3)	ShapiroWilk
Boron, total (mg/L)	AD-36	No	n/a	n/a	NP	NaN 13	0.06062	0.006764	sqrt(x)	ShapiroWilk
Calcium, total (mg/L)	AD-12 (bg)	No	n/a	n/a	NP	NaN 24	0.294	0.06475	normal	ShapiroWilk
Calcium, total (mg/L)	AD-16 (bg)	No	n/a	n/a	NP	NaN 21	1.178	0.3909	ln(x)	ShapiroWilk
Calcium, total (mg/L)	AD-23	No	n/a	n/a	NP	NaN 22	0.307	0.1013	ln(x)	ShapiroWilk
Calcium, total (mg/L)	AD-27 (bg)	No	n/a	n/a	NP	NaN 21	4.055	0.4789	In(x)	ShapiroWilk
Calcium, total (mg/L)	AD-34	No	n/a	n/a	NP	NaN 24	39.95	3.346	ln(x)	ShapiroWilk
Calcium, total (mg/L)	AD-8 (bg)	No	n/a	n/a	NP	NaN 21	44.49	33.76	ln(x)	ShapiroWilk
Calcium, total (mg/L)	AD-36	No	n/a	n/a	NP	NaN 16	0.3706	0.2906	ln(x)	ShapiroWilk
Chloride, total (mg/L)	AD-12 (bg)	No	n/a	n/a	NP	NaN 24	6.41	1.281	ln(x)	ShapiroWilk
Chloride, total (mg/L)	AD-16 (bg)	No	n/a	n/a	NP	NaN 21	16.38	6.751	normal	ShapiroWilk
Chloride, total (mg/L)	AD-23	No	n/a	n/a	NP	NaN 21	6.254	1.415	x^2	ShapiroWilk
Chloride, total (mg/L)	AD-27 (bg)	No	n/a	n/a	NP	NaN 21	10.34	2.006	normal	ShapiroWilk
Chloride, total (mg/L)	AD-34	No	n/a	n/a	NP	NaN 22	7.445	0.8006	In(x)	ShapiroWilk
Chloride, total (mg/L)	AD-8 (bg)	No	n/a	n/a	NP	NaN 21	11.76	4.671	sqrt(x)	ShapiroWilk
Chloride, total (mg/L)	AD-36	No	n/a	n/a	NP	NaN 17	9.541	1.325	ln(x)	ShapiroWilk
Fluoride, total (mg/L)	AD-12 (bg)	No	n/a	n/a	NP	NaN 24	0.1212	0.04954	ln(x)	ShapiroWilk
Fluoride, total (mg/L)	AD-16 (bg)	No	n/a	n/a	NP	NaN 21	0.1176	0.0382	ln(x)	ShapiroWilk
Fluoride, total (mg/L)	AD-23	No	n/a	n/a	NP	NaN 21	0.1108	0.06475	ln(x)	ShapiroWilk
Fluoride, total (mg/L)	AD-27 (bg)	Yes	0.6176	5/11/2016	NP	NaN 21	0.1997	0.1016	ln(x)	ShapiroWilk
Fluoride, total (mg/L)	AD-34	Yes No	0.6176 n/a	5/11/2016 n/a	NP	NaN 25	0.7118	0.4883	In(x) sqrt(x)	ShapiroWilk
Fluoride, total (mg/L) Fluoride, total (mg/L)	AD-34 AD-8 (bg)				NP NP	NaN 25 NaN 21	0.7118 1.952	0.4883 1.297		ShapiroWilk ShapiroWilk
Fluoride, total (mg/L) Fluoride, total (mg/L) Fluoride, total (mg/L)	AD-34 AD-8 (bg) AD-36	No No No	n/a	n/a	NP NP NP	NaN 25 NaN 21 NaN 15	0.7118 1.952 0.06533	0.4883 1.297 0.01552	sqrt(x) normal ln(x)	ShapiroWilk ShapiroWilk ShapiroWilk
Fluoride, total (mg/L) Fluoride, total (mg/L) Fluoride, total (mg/L) pH, field (SU)	AD-34 AD-8 (bg) AD-36 AD-12 (bg)	No No No No	n/a n/a n/a n/a	n/a n/a n/a n/a	NP NP NP	NaN 25 NaN 21 NaN 15 NaN 24	0.7118 1.952 0.06533 4.142	0.4883 1.297 0.01552 0.6185	sqrt(x) normal ln(x) x^3	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Fluoride, total (mg/L) Fluoride, total (mg/L) Fluoride, total (mg/L) pH, field (SU) pH, field (SU)	AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg)	No No No No	n/a n/a n/a n/a n/a	n/a n/a n/a n/a n/a	NP NP NP NP	NaN 25 NaN 21 NaN 15 NaN 24 NaN 21	0.7118 1.952 0.06533 4.142 4.148	0.4883 1.297 0.01552 0.6185 0.4401	sqrt(x) normal ln(x) x^3 x^2	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Fluoride, total (mg/L) Fluoride, total (mg/L) Fluoride, total (mg/L) pH, field (SU) pH, field (SU) pH, field (SU)	AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-23	No No No No No	n/a n/a n/a n/a n/a	n/a n/a n/a n/a n/a	NP NP NP NP NP	NaN 25 NaN 21 NaN 15 NaN 24 NaN 21 NaN 26	0.7118 1.952 0.06533 4.142 4.148 4.052	0.4883 1.297 0.01552 0.6185 0.4401 0.5142	sqrt(x) normal ln(x) x^3 x^2 normal	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Fluoride, total (mg/L) Fluoride, total (mg/L) Fluoride, total (mg/L) pH, field (SU) pH, field (SU) pH, field (SU) pH, field (SU)	AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-23 AD-27 (bg)	No No No No No No	n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a n/a n/a	NP NP NP NP NP NP	NaN 25 NaN 21 NaN 15 NaN 24 NaN 21 NaN 26 NaN 21	0.7118 1.952 0.06533 4.142 4.148 4.052 3.657	0.4883 1.297 0.01552 0.6185 0.4401 0.5142 0.5355	sqrt(x) normal ln(x) x^3 x^2 normal normal	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Fluoride, total (mg/L) Fluoride, total (mg/L) Fluoride, total (mg/L) pH, field (SU)	AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-23 AD-27 (bg) AD-34	No No No No No No No	n/a n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a n/a n/a n/a	NP NP NP NP NP NP NP	NaN 25 NaN 21 NaN 15 NaN 24 NaN 21 NaN 26 NaN 21 NaN 28	0.7118 1.952 0.06533 4.142 4.148 4.052 3.657 3.524	0.4883 1.297 0.01552 0.6185 0.4401 0.5142 0.5355 0.3187	sqrt(x) normal ln(x) x^3 x^2 normal normal x^3	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Fluoride, total (mg/L) Fluoride, total (mg/L) Fluoride, total (mg/L) pH, field (SU)	AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-23 AD-27 (bg) AD-34 AD-8 (bg)	No N	n/a	n/a	NP NP NP NP NP NP NP NP	NaN 25 NaN 21 NaN 24 NaN 21 NaN 26 NaN 21 NaN 28 NaN 21	0.7118 1.952 0.06533 4.142 4.148 4.052 3.657 3.524 4.796	0.4883 1.297 0.01552 0.6185 0.4401 0.5142 0.5355 0.3187 0.9714	sqrt(x) normal ln(x) x^3 x^2 normal normal x^3 ln(x)	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Fluoride, total (mg/L) Fluoride, total (mg/L) Fluoride, total (mg/L) pH, field (SU)	AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-23 AD-27 (bg) AD-34 AD-8 (bg) AD-36	No N	n/a	n/a	NP	NaN 25 NaN 21 NaN 15 NaN 24 NaN 21 NaN 26 NaN 21 NaN 28 NaN 21 NaN 19	0.7118 1.952 0.06533 4.142 4.148 4.052 3.657 3.524 4.796 4.438	0.4883 1.297 0.01552 0.6185 0.4401 0.5142 0.5355 0.3187 0.9714 0.4102	sqrt(x) normal ln(x) x^3 x^2 normal normal x^3 ln(x) x^3	ShapiroWilk
Fluoride, total (mg/L) Fluoride, total (mg/L) Fluoride, total (mg/L) pH, field (SU) Sulfate, total (mg/L)	AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-23 AD-27 (bg) AD-34 AD-8 (bg) AD-36 AD-12 (bg)	No N	n/a	n/a	NP	NaN 25 NaN 21 NaN 15 NaN 24 NaN 26 NaN 21 NaN 28 NaN 21 NaN 19 NaN 24	0.7118 1.952 0.06533 4.142 4.148 4.052 3.657 3.524 4.796 4.438 4.473	0.4883 1.297 0.01552 0.6185 0.4401 0.5142 0.5355 0.3187 0.9714 0.4102 1.473	sqrt(x) normal ln(x) x^3 x^2 normal normal x^3 ln(x) x^3	ShapiroWilk
Fluoride, total (mg/L) Fluoride, total (mg/L) Fluoride, total (mg/L) pH, field (SU) Sulfate, total (mg/L)	AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-23 AD-27 (bg) AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg)	No N	n/a	n/a	NP N	NaN 25 NaN 21 NaN 24 NaN 26 NaN 26 NaN 21 NaN 28 NaN 21 NaN 29 NaN 24 NaN 24	0.7118 1.952 0.06533 4.142 4.148 4.052 3.657 3.524 4.796 4.438 4.473 18.52	0.4883 1.297 0.01552 0.6185 0.4401 0.5142 0.5355 0.3187 0.9714 0.4102 1.473 10.87	sqrt(x) normal ln(x) x^3 x^2 normal normal x^3 ln(x) x^3 ln(x)	ShapiroWilk
Fluoride, total (mg/L) Fluoride, total (mg/L) Fluoride, total (mg/L) pH, field (SU) Sulfate, total (mg/L) Sulfate, total (mg/L)	AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-27 (bg) AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-16 (bg)	No N	n/a	n/a	NP N	NaN 25 NaN 21 NaN 24 NaN 26 NaN 26 NaN 21 NaN 28 NaN 21 NaN 29 NaN 24 NaN 24 NaN 24 NaN 21	0.7118 1.952 0.06533 4.142 4.148 4.052 3.657 3.524 4.796 4.438 4.473 18.52 9.814	0.4883 1.297 0.01552 0.6185 0.4401 0.5142 0.5355 0.3187 0.9714 0.4102 1.473 10.87 2.035	sqrt(x) normal ln(x) x^3 x^2 normal normal x^3 ln(x) x^3 ln(x) ln(x)	ShapiroWilk
Fluoride, total (mg/L) Fluoride, total (mg/L) Fluoride, total (mg/L) pH, field (SU) Sulfate, total (mg/L) Sulfate, total (mg/L)	AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-23 AD-27 (bg) AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-23 AD-17 (bg) AD-17 (bg)	No N	n/a	n/a	NP N	NaN 25 NaN 21 NaN 24 NaN 21 NaN 26 NaN 21 NaN 21 NaN 19 NaN 24 NaN 21 NaN 21 NaN 21 NaN 21	0.7118 1.952 0.06533 4.142 4.148 4.052 3.657 3.524 4.796 4.438 4.473 18.52 9.814 58.22	0.4883 1.297 0.01552 0.6185 0.4401 0.5142 0.5355 0.3187 0.9714 0.4102 1.473 10.87 2.035 9.785	sqrt(x) normal ln(x) x^3 x^2 normal normal x^3 ln(x) x^3 ln(x) ln(x) ln(x)	ShapiroWilk
Fluoride, total (mg/L) Fluoride, total (mg/L) Fluoride, total (mg/L) pH, field (SU) Sulfate, total (mg/L) Sulfate, total (mg/L) Sulfate, total (mg/L) Sulfate, total (mg/L)	AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-23 AD-27 (bg) AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-16 (bg) AD-27 (bg) AD-36	No N	n/a	n/a	NP N	NaN 25 NaN 21 NaN 24 NaN 21 NaN 26 NaN 21 NaN 21 NaN 21 NaN 24 NaN 21 NaN 21 NaN 21 NaN 21 NaN 21 NaN 21	0.7118 1.952 0.06533 4.142 4.148 4.052 3.657 3.524 4.796 4.438 4.473 18.52 9.814 58.22	0.4883 1.297 0.01552 0.6185 0.4401 0.5142 0.5355 0.3187 0.9714 0.4102 1.473 10.87 2.035 9.785 134.5	sqrt(x) normal ln(x) x^3 x^2 normal normal x^3 ln(x) x^3 ln(x) ln(x) ln(x)	ShapiroWilk
Fluoride, total (mg/L) Fluoride, total (mg/L) Fluoride, total (mg/L) pH, field (SU) Sulfate, total (mg/L)	AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-23 AD-27 (bg) AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-37 AD-17 (bg) AD-38 AD-19 (bg) AD-39 AD-39 AD-30 AD-30 AD-30 AD-30 AD-31 AD-31 AD-31 AD-31 AD-31 AD-31 AD-31 AD-31	No N	n/a	n/a	NP N	NaN 25 NaN 21 NaN 24 NaN 26 NaN 21 NaN 21 NaN 21 NaN 24 NaN 21 NaN 21 NaN 21 NaN 21 NaN 21 NaN 22 NaN 21	0.7118 1.952 0.06533 4.142 4.148 4.052 3.657 3.524 4.796 4.438 4.473 18.52 9.814 58.22 1085	0.4883 1.297 0.01552 0.6185 0.4401 0.5142 0.5355 0.3187 0.9714 0.4102 1.473 10.87 2.035 9.785 134.5	sqrt(x) normal ln(x) x^3 x^2 normal normal x^3 ln(x) x^3 ln(x) ln(x) ln(x) ln(x) normal	ShapiroWilk
Fluoride, total (mg/L) Fluoride, total (mg/L) Fluoride, total (mg/L) pH, field (SU) Sulfate, total (mg/L)	AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-23 AD-27 (bg) AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-23 AD-7 (bg) AD-36 AD-19 (bg) AD-36 AD-23 AD-27 (bg) AD-34 AD-8 (bg) AD-34 AD-8 (bg) AD-36	No N	n/a	n/a	NP N	NaN 25 NaN 21 NaN 24 NaN 26 NaN 21 NaN 28 NaN 21 NaN 21 NaN 24 NaN 21 NaN 22 NaN 22	0.7118 1.952 0.06533 4.142 4.148 4.052 3.657 3.524 4.796 4.438 4.473 18.52 9.814 58.22 1085 151 3.443	0.4883 1.297 0.01552 0.6185 0.4401 0.5142 0.5355 0.3187 0.9714 0.4102 1.473 10.87 2.035 9.785 134.5 40.79 0.6521	sqrt(x) normal ln(x) x^3 x^2 normal normal x^3 ln(x) ln(x) ln(x) ln(x) ln(x) normal x^4(1/3)	ShapiroWilk
Fluoride, total (mg/L) Fluoride, total (mg/L) Fluoride, total (mg/L) pH, field (SU) Sulfate, total (mg/L)	AD-34 AD-36 AD-12 (bg) AD-16 (bg) AD-23 AD-27 (bg) AD-36 AD-12 (bg) AD-36 AD-12 (bg) AD-36 AD-12 (bg) AD-23 AD-16 (bg) AD-36 AD-112 (bg) AD-36 AD-12 (bg) AD-36 AD-12 (bg) AD-34 AD-8 (bg) AD-34 AD-8 (bg) AD-36 AD-12 (bg)	No N	n/a	n/a	NP N	NaN 25 NaN 21 NaN 24 NaN 26 NaN 21 NaN 21 NaN 21 NaN 24 NaN 21 NaN 22 NaN 24 NaN 24	0.7118 1.952 0.06533 4.142 4.148 4.052 3.657 3.524 4.796 4.438 4.473 18.52 9.814 58.22 1085 151 3.443 71.23	0.4883 1.297 0.01552 0.6185 0.4401 0.5142 0.5355 0.3187 0.9714 0.4102 1.473 10.87 2.035 9.785 134.5 40.79 0.6521 20.76	sqrt(x) normal ln(x) x^3 x^2 normal normal x^3 ln(x) x^3 ln(x) ln(x) ln(x) ln(x) x^4 x^4 x^6 x^6 x^6 x^6 x^6 x^7 x^7	ShapiroWilk
Fluoride, total (mg/L) Fluoride, total (mg/L) Fluoride, total (mg/L) pH, field (SU) Sulfate, total (mg/L) Total Dissolved Solids [TDS] (mg/L)	AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-27 (bg) AD-34 AD-36 AD-12 (bg) AD-16 (bg) AD-36 AD-12 (bg) AD-23 AD-27 (bg) AD-36 AD-12 (bg) AD-36 AD-12 (bg) AD-36 AD-16 (bg) AD-36 AD-17 (bg) AD-36 AD-18 (bg) AD-36 AD-19 (bg) AD-36 AD-19 (bg) AD-36 AD-112 (bg) AD-16 (bg)	No N	n/a	n/a	NP N	NaN 25 NaN 21 NaN 24 NaN 26 NaN 21 NaN 28 NaN 21 NaN 22 NaN 22 NaN 24 NaN 24 NaN 24 NaN 24	0.7118 1.952 0.06533 4.142 4.148 4.052 3.657 3.524 4.796 4.438 4.473 18.52 9.814 58.22 1085 151 3.443 71.23 113.4	0.4883 1.297 0.01552 0.6185 0.4401 0.5142 0.5355 0.3187 0.9714 0.4102 1.473 10.87 2.035 9.785 134.5 40.79 0.6521 20.76 16.04	sqrt(x) normal ln(x) x^3 x^2 normal normal x^3 ln(x) ln(x) ln(x) ln(x) in(x) x^4	ShapiroWilk
Fluoride, total (mg/L) Fluoride, total (mg/L) Fluoride, total (mg/L) pH, field (SU) Sulfate, total (mg/L) Total Dissolved Solids [TDS] (mg/L) Total Dissolved Solids [TDS] (mg/L)	AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-23 AD-27 (bg) AD-34 AD-36 AD-12 (bg) AD-16 (bg) AD-36 AD-12 (bg) AD-36 AD-12 (bg) AD-34 AD-27 (bg) AD-36 AD-16 (bg) AD-36 AD-17 (bg) AD-36 AD-18 (bg) AD-36 AD-18 (bg) AD-36 AD-19 (bg) AD-36 AD-19 (bg) AD-36 AD-19 (bg) AD-16 (bg) AD-16 (bg)	No N	n/a	n/a	NP N	NaN 25 NaN 21 NaN 24 NaN 21 NaN 22 NaN 21 NaN 22 NaN 21 NaN 24 NaN 24 NaN 24 NaN 24 NaN 24 NaN 24	0.7118 1.952 0.06533 4.142 4.148 4.052 3.657 3.524 4.796 4.438 4.473 18.52 9.814 58.22 1085 151 3.443 71.23 113.4 72.77	0.4883 1.297 0.01552 0.6185 0.4401 0.5142 0.5355 0.3187 0.9714 0.4102 1.473 10.87 2.035 9.785 134.5 40.79 0.6521 20.76 16.04 16.41	sqrt(x) normal ln(x) x^3 x^2 normal normal x^3 ln(x) ln(x) ln(x) ln(x) ln(x) companies x^4(1/3) x^2 x^2 ln(x)	ShapiroWilk
Fluoride, total (mg/L) Fluoride, total (mg/L) Fluoride, total (mg/L) pH, field (SU) Sulfate, total (mg/L) Total Dissolved Solids [TDS] (mg/L) Total Dissolved Solids [TDS] (mg/L) Total Dissolved Solids [TDS] (mg/L)	AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-23 AD-27 (bg) AD-34 AD-8 (bg) AD-16 (bg) AD-16 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-36 AD-12 (bg) AD-34 AD-8 (bg) AD-36 AD-17 (bg) AD-18 (bg) AD-23 AD-27 (bg)	No N	n/a	n/a	NP N	NaN 25 NaN 21 NaN 24 NaN 21 NaN 26 NaN 21 NaN 21 NaN 21 NaN 24 NaN 21 NaN 21 NaN 21 NaN 21 NaN 21 NaN 22 NaN 21 NaN 22 NaN 24 NaN 24 NaN 24 NaN 24 NaN 24 NaN 24 NaN 22 NaN 22 NaN 21	0.7118 1.952 0.06533 4.142 4.148 4.052 3.657 3.524 4.796 4.438 4.473 18.52 9.814 58.22 1085 151 3.443 71.23 113.4 72.77 191.9	0.4883 1.297 0.01552 0.6185 0.4401 0.5142 0.5355 0.3187 0.9714 0.4102 1.473 10.87 2.035 9.785 134.5 40.79 0.6521 20.76 16.04 16.41 37.63	sqrt(x) normal ln(x) x^3 x^2 normal normal x^3 ln(x) ln(x) ln(x) ln(x) ln(x) cormal x^4(1/3) x^2 x^2 ln(x) x^5	ShapiroWilk
Fluoride, total (mg/L) Fluoride, total (mg/L) Fluoride, total (mg/L) pH, field (SU) Sulfate, total (mg/L) Total Dissolved Solids [TDS] (mg/L)	AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-23 AD-27 (bg) AD-34 AD-8 (bg) AD-12 (bg) AD-16 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-33 AD-27 (bg) AD-34 AD-8 (bg) AD-34 AD-9 (bg) AD-16 (bg) AD-17 (bg) AD-18 (bg) AD-19 (bg) AD-27 (bg) AD-27 (bg) AD-34	No N	n/a	n/a	N P N P N P N P N P N P N P N P N P N P	NaN 25 NaN 21 NaN 24 NaN 26 NaN 21 NaN 21 NaN 21 NaN 24 NaN 21 NaN 21 NaN 21 NaN 21 NaN 21 NaN 21 NaN 24 NaN 24 NaN 24 NaN 24 NaN 22 NaN 24 NaN 24 NaN 22 NaN 23 NaN 24 NaN 22 NaN 23 NaN 24 NaN 22 NaN 23 NaN 24 NaN 25 NaN 26	0.7118 1.952 0.06533 4.142 4.148 4.052 3.657 3.524 4.796 4.438 4.473 18.52 9.814 58.22 1085 151 3.443 71.23 113.4 72.77 191.9 1527	0.4883 1.297 0.01552 0.6185 0.4401 0.5142 0.5355 0.3187 0.9714 0.4102 1.473 10.87 2.035 9.785 134.5 40.79 0.6521 20.76 16.04 16.41 37.63 173.6	sqrt(x) normal ln(x) x^3 x^2 normal normal x^3 ln(x) ln(x) ln(x) ln(x) ln(x) contact x^2 x^2 ln(x) x^2 x^2 ln(x) x^5 x^3	ShapiroWilk
Fluoride, total (mg/L) Fluoride, total (mg/L) Fluoride, total (mg/L) pH, field (SU) Sulfate, total (mg/L) Total Dissolved Solids [TDS] (mg/L) Total Dissolved Solids [TDS] (mg/L) Total Dissolved Solids [TDS] (mg/L)	AD-34 AD-8 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-23 AD-27 (bg) AD-34 AD-8 (bg) AD-16 (bg) AD-16 (bg) AD-36 AD-12 (bg) AD-16 (bg) AD-36 AD-12 (bg) AD-34 AD-8 (bg) AD-36 AD-17 (bg) AD-18 (bg) AD-23 AD-27 (bg)	No N	n/a	n/a	NP N	NaN 25 NaN 21 NaN 24 NaN 21 NaN 26 NaN 21 NaN 21 NaN 21 NaN 24 NaN 21 NaN 21 NaN 21 NaN 21 NaN 21 NaN 22 NaN 21 NaN 22 NaN 24 NaN 24 NaN 24 NaN 24 NaN 24 NaN 24 NaN 22 NaN 22 NaN 21	0.7118 1.952 0.06533 4.142 4.148 4.052 3.657 3.524 4.796 4.438 4.473 18.52 9.814 58.22 1085 151 3.443 71.23 113.4 72.77 191.9	0.4883 1.297 0.01552 0.6185 0.4401 0.5142 0.5355 0.3187 0.9714 0.4102 1.473 10.87 2.035 9.785 134.5 40.79 0.6521 20.76 16.04 16.41 37.63	sqrt(x) normal ln(x) x^3 x^2 normal normal x^3 ln(x) ln(x) ln(x) ln(x) ln(x) cormal x^4(1/3) x^2 x^2 ln(x) x^5	ShapiroWilk

Tukey's Outlier Screening

Constituent: Boron, total Analysis Run 12/15/2023 8:54 AM Pirkey Landfill Data: Pirkey Landfill

n = 24

ed by user.

Data were square root transformed to achieve best W statistic (graph shown in original units).

low cutoff = -0.00009613, based on IQR multiplier of 3.

No outliers found. Tukey's method select-

Data were natural log transformed to achieve

best W statistic (graph

High cutoff = 0.4087, low cutoff = 0.002081, based on IQR multiplier

shown in original units).

ed by user.

Sanitas™ v.10.0.15 Software licensed to . UG

Tukey's Outlier Screening AD-23 0.5 0.4 0.3 0.2 0.1 0 \$ 5/10/16 10/24/17 4/9/19 9/22/20 3/8/22 8/23/23

Constituent: Boron, total Analysis Run 12/15/2023 8:54 AM Pirkey Landfill Data: Pirkey Landfill

No outliers found. Tukey's method select-

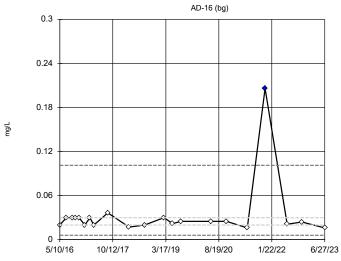
High cutoff = 0.1148,

Tukey's Outlier Screening

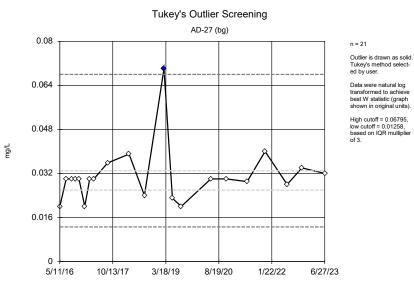
n = 21

Outlier is drawn as solid. Tukey's method select-

Data were natural log transformed to achieve

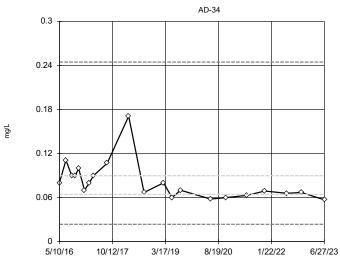

best W statistic (graph

shown in original units).


High cutoff = 0.1013,

low cutoff = 0.005926

based on IQR multiplier of 3.



Constituent: Boron, total Analysis Run 12/15/2023 8:54 AM Pirkey Landfill Data: Pirkey Landfill

Constituent: Boron, total Analysis Run 12/15/2023 8:54 AM Pirkey Landfill Data: Pirkey Landfill

Tukey's Outlier Screening

n = 21

n = 13

ed by user.

No outliers found. Tukey's method select-

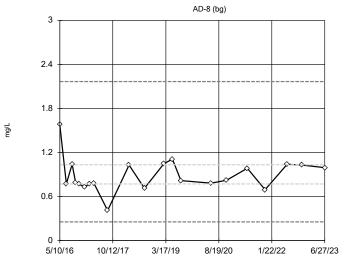
Data were square root

transformed to achieve

best W statistic (graph

shown in original units).

High cutoff = 0.1148, low cutoff = 0.02383, based on IQR multiplier


No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.2447, low cutoff = 0.02372, based on IQR multiplier of 3.

Constituent: Boron, total Analysis Run 12/15/2023 8:54 AM Pirkey Landfill Data: Pirkey Landfill

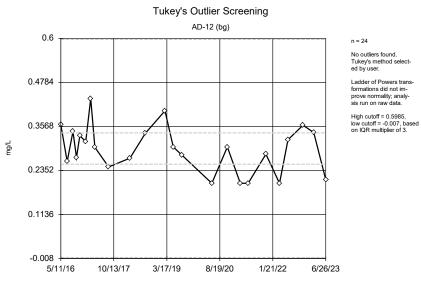
Tukey's Outlier Screening

n = 21

No outliers found. Tukey's method select-

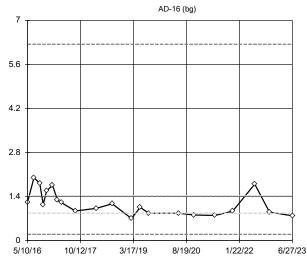
Data were cube root transformed to achieve best W statistic (graph shown in original units).

High cutoff = 2.167, low cutoff = 0.2558, based on IQR multiplier of 3.


Constituent: Boron, total Analysis Run 12/15/2023 8:54 AM
Pirkey Landfill Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG

Tukey's Outlier Screening AD-36 0.2 0.16 0.12 0.08 0.04 0.04 0.04 0.04 0.04 0.05 8/13/19 5/21/20 2/28/21 12/8/21 9/17/22 6/27/23


Constituent: Boron, total Analysis Run 12/15/2023 8:54 AM Pirkey Landfill Data: Pirkey Landfill

Sanitas $^{\text{\tiny TM}}$ v.10.0.15 Software licensed to . UG

Constituent: Calcium, total Analysis Run 12/15/2023 8:54 AM
Pirkey Landfill Data: Pirkey Landfill

Tukey's Outlier Screening

No outliers found. Tukey's method selected by user.

n = 21

Data were natural log transformed to achieve best W statistic (graph shown in original units).

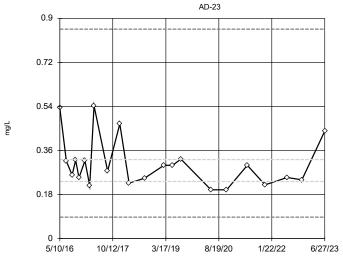
High cutoff = 6.244, low cutoff = 0.1996, based on IQR multiplier of 3.

No outliers found.

ed by user.

Tukey's method select-

Data were natural log transformed to achieve


best W statistic (graph

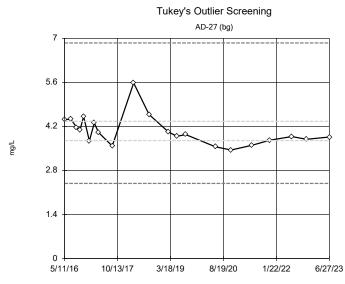
shown in original units).

High cutoff = 6.851, low cutoff = 2.386, based on IQR multiplier of 3.

Constituent: Calcium, total Analysis Run 12/15/2023 8:54 AM Pirkey Landfill Data: Pirkey Landfill

Tukey's Outlier Screening

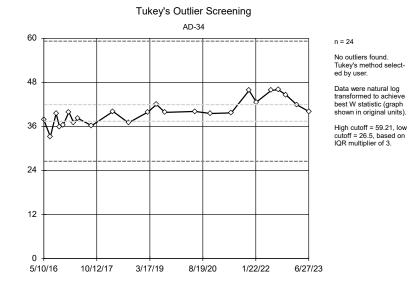
n = 22


No outliers found. Tukey's method selected by user.

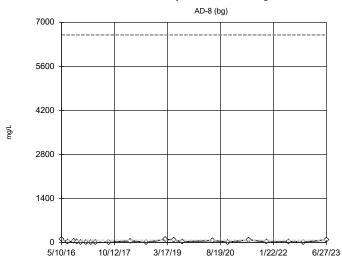
Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.8559, low cutoff = 0.08808, based on IQR multiplier of 3.

Constituent: Calcium, total Analysis Run 12/15/2023 8:54 AM
Pirkey Landfill Data: Pirkey Landfill


$Sanitas^{\text{\tiny{TM}}}\,v.10.0.15$ Software licensed to . UG

Constituent: Calcium, total Analysis Run 12/15/2023 8:54 AM
Pirkey Landfill Data: Pirkey Landfill


Sanitas $^{\text{\tiny TM}}$ v.10.0.15 Software licensed to . UG

mg/L

Constituent: Calcium, total Analysis Run 12/15/2023 8:54 AM
Pirkey Landfill Data: Pirkey Landfill

Tukey's Outlier Screening

Constituent: Calcium, total Analysis Run 12/15/2023 8:54 AM
Pirkey Landfill Data: Pirkey Landfill

n = 21

n = 24

ed by user.

No outliers found. Tukey's method select-

Data were natural log transformed to achieve

best W statistic (graph

shown in original units).

High cutoff = 14.75, low cutoff = 2.696, based on IQR multiplier of 3.

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 6604, low cutoff = 0.221, based on IQR multiplier of 3.

Sanitas™ v.10.0.15 Software licensed to . UG

Tukey's Outlier Screening AD-12 (bg) 16 12 8 4 0 5/11/16 10/13/17 3/17/19 8/19/20 1/21/22 6/26/23

Constituent: Chloride, total Analysis Run 12/15/2023 8:54 AM
Pirkey Landfill Data: Pirkey Landfill

Tukey's Outlier Screening

n = 16

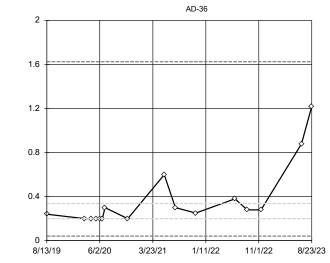
ed by user.

No outliers found.

Tukey's method select-

Data were natural log

transformed to achieve

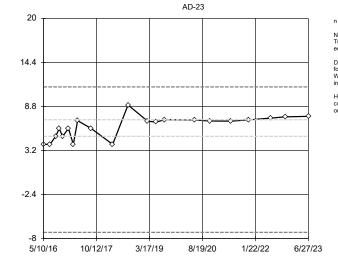

best W statistic (graph

shown in original units).

High cutoff = 1.625, low

cutoff = 0.04157, based

on IQR multiplier of 3.


Constituent: Calcium, total Analysis Run 12/15/2023 8:54 AM
Pirkey Landfill Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG

Constituent: Chloride, total Analysis Run 12/15/2023 8:54 AM
Pirkey Landfill Data: Pirkey Landfill

Tukey's Outlier Screening

Constituent: Chloride, total Analysis Run 12/15/2023 8:54 AM
Pirkey Landfill Data: Pirkey Landfill

n = 21

n = 22

ed by user.

No outliers found.

Tukey's method select-

Data were natural log transformed to achieve

best W statistic (graph

shown in original units).

High cutoff = 11.94, low cutoff = 4.689, based

on IQR multiplier of 3.

No outliers found. Tukey's method selected by user.

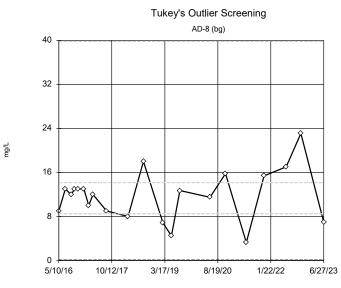
Data were square transformed to achieve best W statistic (graph shown in original units).

High cutoff = 11.29, low cutoff = -7.202, based on IQR multiplier of 3.

Pirkey Landfill Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG

Tukey's Outlier Screening AD-34 16 12 8 4 5/10/16 10/12/17 3/17/19 8/19/20 1/22/22 6/27/23


Constituent: Chloride, total Analysis Run 12/15/2023 8:54 AM
Pirkey Landfill Data: Pirkey Landfill

Tukey's Outlier Screening

Constituent: Chloride, total Analysis Run 12/15/2023 8:54 AM
Pirkey Landfill Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG

Constituent: Chloride, total Analysis Run 12/15/2023 8:54 AM
Pirkey Landfill Data: Pirkey Landfill

n = 21

n = 21

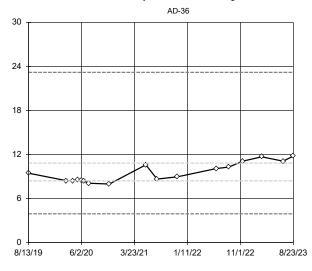
No outliers found. Tukey's method select-

Ladder of Powers transformations did not im-

sis run on raw data.

High cutoff = 24.4, low

cutoff = -4.3, based on


IQR multiplier of 3.

No outliers found. Tukey's method selected by user.

Data were square root transformed to achieve best W statistic (graph shown in original units).

High cutoff = 39.9, low cutoff = 0.1311, based on IQR multiplier of 3.

Tukey's Outlier Screening

Constituent: Chloride, total Analysis Run 12/15/2023 8:54 AM Pirkey Landfill Data: Pirkey Landfill

n = 17

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 23.19, low cutoff = 3.938, based on IQR multiplier of 3.

Sanitas™ v.10.0.15 Software licensed to . UG

Tukey's Outlier Screening AD-16 (bg) 2 n = 21 No outliers found. Tukey's method selected by user. 1.6 Data were natural log transformed to achieve best W statistic (graph shown in original units). High cutoff = 1.476, low cutoff = 0.007114, based on IQR multiplier of 3. 1.2 0.8 0.4 5/10/16 10/12/17 3/17/19 8/19/20 1/22/22 6/27/23

Constituent: Fluoride, total Analysis Run 12/15/2023 8:55 AM Pirkey Landfill Data: Pirkey Landfill

Tukey's Outlier Screening

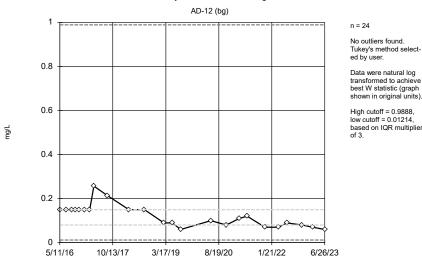
n = 24

No outliers found.

Data were natural log

transformed to achieve

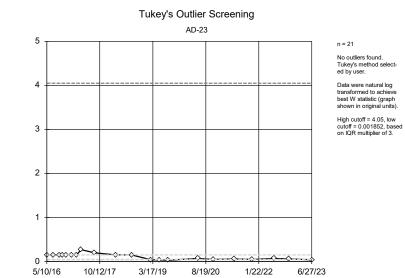
best W statistic (graph


shown in original units).

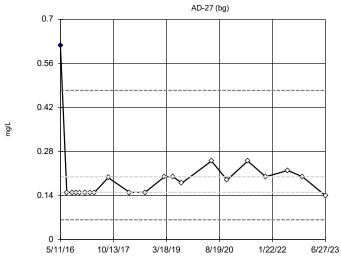
High cutoff = 0.9888.

low cutoff = 0.01214.

based on IQR multiplier


ed by user.

Constituent: Fluoride, total Analysis Run 12/15/2023 8:54 AM Pirkey Landfill Data: Pirkey Landfill


Sanitas™ v.10.0.15 Software licensed to . UG

mg/L

Constituent: Fluoride, total Analysis Run 12/15/2023 8:55 AM Pirkey Landfill Data: Pirkey Landfill

Tukey's Outlier Screening

Constituent: Fluoride, total Analysis Run 12/15/2023 8:55 AM Pirkey Landfill Data: Pirkey Landfill

n = 21

n = 21

ed by user.

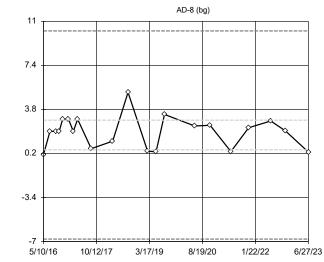
No outliers found. Tukey's method select-

Ladder of Powers trans-

High cutoff = 10.22, low cutoff = -6.801, based on IQR multiplier of 3.

formations did not improve normality; analysis run on raw data.

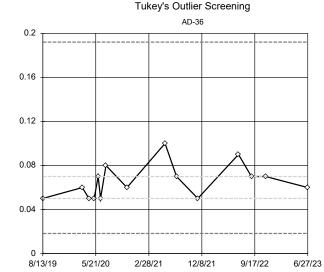
Outlier is drawn as solid. Tukey's method selected by user.


Data were natural log transformed to achieve best W statistic (graph shown in original units).

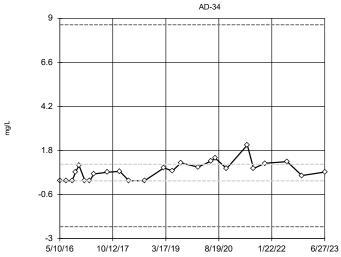
High cutoff = 0.4741, low cutoff = 0.06328, based on IQR multiplier of 3.

Sanitas™ v.10.0.15 Software licensed to . UG

mg/L


Tukey's Outlier Screening

Constituent: Fluoride, total Analysis Run 12/15/2023 8:55 AM Pirkey Landfill Data: Pirkey Landfill


Sanitas™ v.10.0.15 Software licensed to . UG

mg/L

Constituent: Fluoride, total Analysis Run 12/15/2023 8:55 AM Pirkey Landfill Data: Pirkey Landfill

Tukey's Outlier Screening

Constituent: Fluoride, total Analysis Run 12/15/2023 8:55 AM Pirkey Landfill Data: Pirkey Landfill

n = 25

No outliers found. Tukey's method selected by user.

Data were square root transformed to achieve best W statistic (graph shown in original units).

High cutoff = 8,661, low cutoff = -2.339, based on IQR multiplier of 3.

No outliers found. Tukey's method select-

Data were natural log transformed to achieve

best W statistic (graph shown in original units).

High cutoff = 0.1921, low cutoff = 0.01822, based on IQR multiplier

ed by user.

of 3.

SU

SC

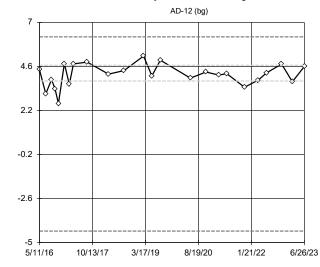
Tukey's Outlier Screening

n = 24

No outliers found. Tukey's method select-

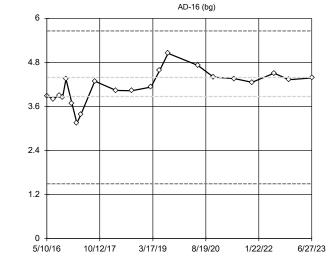
Data were cube transform-

ed to achieve best W stat-


High cutoff = 6.217, low

cutoff = -4.37, based

on IQR multiplier of 3.


istic (graph shown in

original units).

Constituent: pH, field Analysis Run 12/15/2023 8:55 AM
Pirkey Landfill Data: Pirkey Landfill

Tukey's Outlier Screening

n = 21

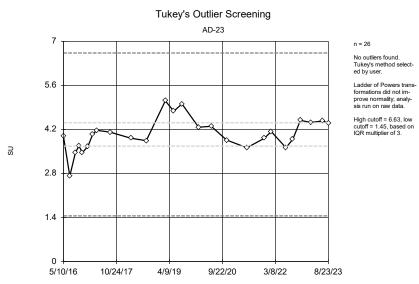
No outliers found. Tukey's method select-

Data were square trans-

W statistic (graph shown

formed to achieve best

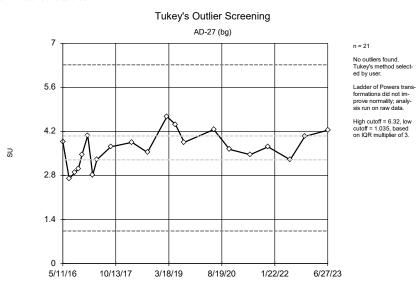
High cutoff = 5.66, low


cutoff = 1.499, based

on IQR multiplier of 3.

in original units).

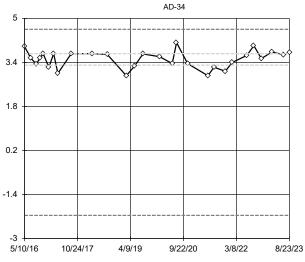
Constituent: pH, field Analysis Run 12/15/2023 8:55 AM
Pirkey Landfill Data: Pirkey Landfill


Sanitas™ v.10.0.15 Software licensed to . UG

Constituent: pH, field Analysis Run 12/15/2023 8:55 AM

Pirkey Landfill Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG



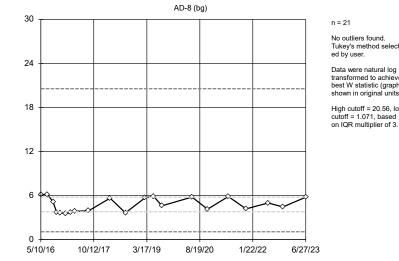
Constituent: pH, field Analysis Run 12/15/2023 8:55 AM
Pirkey Landfill Data: Pirkey Landfill

SU

SC

Tukey's Outlier Screening

Constituent: pH, field Analysis Run 12/15/2023 8:55 AM Pirkey Landfill Data: Pirkey Landfill


n = 28

No outliers found. Tukey's method select-

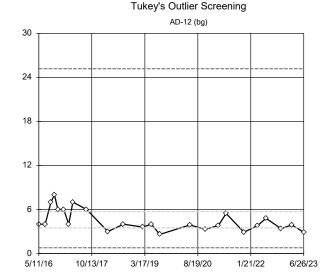
Data were cube transformed to achieve best W statistic (graph shown in original units).

High cutoff = 4.604, low cutoff = -2.153, based on IQR multiplier of 3.

Tukey's Outlier Screening

Constituent: pH, field Analysis Run 12/15/2023 8:55 AM Pirkey Landfill Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG


Tukey's Outlier Screening AD-36 n = 19 No outliers found. Tukey's method selected by user. 4.8 Data were cube transformed to achieve best W statistic (graph shown in original units). High cutoff = 6.078, low cutoff = -3.815, based on IQR multiplier of 3. 2.6 S 0.4 -1.8 8/13/19 6/2/20 3/23/21 1/11/22 11/1/22 8/23/23

Constituent: pH, field Analysis Run 12/15/2023 8:55 AM

Pirkey Landfill Data: Pirkey Landfill

mg/L

Sanitas™ v.10.0.15 Software licensed to . UG

Constituent: Sulfate, total Analysis Run 12/15/2023 8:55 AM Pirkey Landfill Data: Pirkey Landfill

n = 24

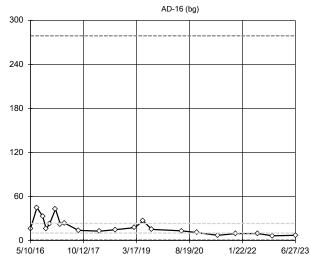
n = 21

No outliers found. Tukey's method selected by user.

Data were natural log

transformed to achieve

best W statistic (graph shown in original units).


High cutoff = 20.56, low

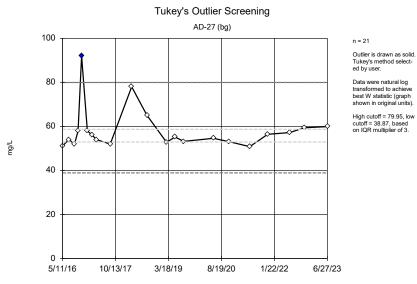
No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 25.17, low cutoff = 0.7943, based on IQR multiplier of 3.

Tukey's Outlier Screening

Constituent: Sulfate, total Analysis Run 12/15/2023 8:55 AM
Pirkey Landfill Data: Pirkey Landfill


n = 21

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 279, low cutoff = 0.867, based on IQR multiplier of 3.

Sanitas™ v.10.0.15 Software licensed to . UG

Constituent: Sulfate, total Analysis Run 12/15/2023 8:55 AM
Pirkey Landfill Data: Pirkey Landfill

Tukey's Outlier Screening

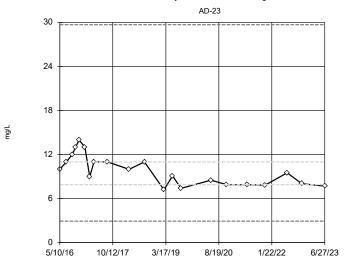
n = 21

No outliers found.

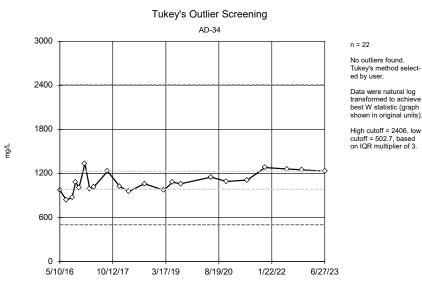
ed by user.

Tukey's method select-

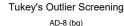
Data were natural log

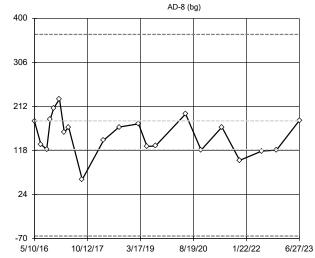

transformed to achieve

best W statistic (graph


shown in original units).

High cutoff = 29.7, low

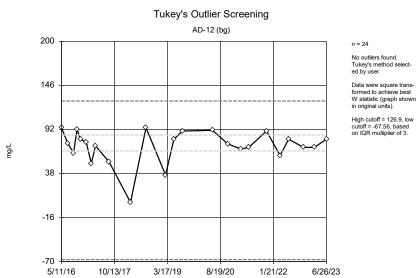

cutoff = 2.926, based on IQR multiplier of 3.



Constituent: Sulfate, total Analysis Run 12/15/2023 8:55 AM
Pirkey Landfill Data: Pirkey Landfill

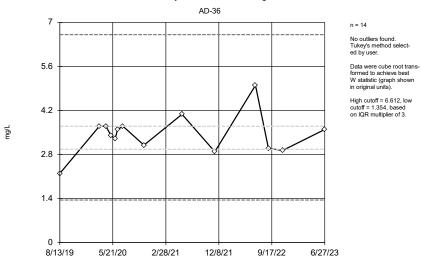
Constituent: Sulfate, total Analysis Run 12/15/2023 8:55 AM
Pirkey Landfill Data: Pirkey Landfill

Constituent: Sulfate, total Analysis Run 12/15/2023 8:55 AM
Pirkey Landfill Data: Pirkey Landfill

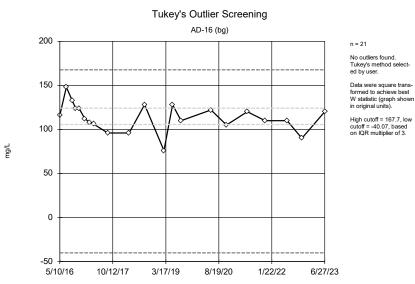

n = 21

No outliers found. Tukey's method selected by user.

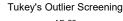
Ladder of Powers transformations did not improve normality; analysis run on raw data.

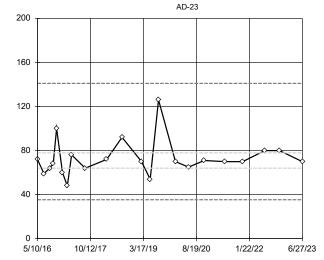

High cutoff = 366, low cutoff = -64.5, based on IQR multiplier of 3.

Sanitas™ v.10.0.15 Software licensed to . UG



Constituent: Total Dissolved Solids [TDS] Analysis Run 12/15/2023 8:55 AM
Pirkey Landfill Data: Pirkey Landfill


Tukey's Outlier Screening



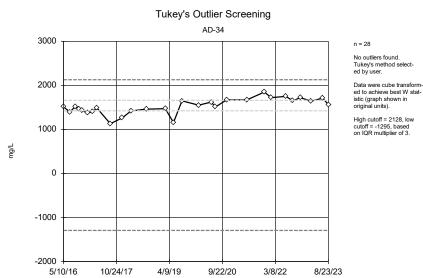
Constituent: Sulfate, total Analysis Run 12/15/2023 8:55 AM
Pirkey Landfill Data: Pirkey Landfill

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/15/2023 8:55 AM
Pirkey Landfill Data: Pirkey Landfill

n = 22

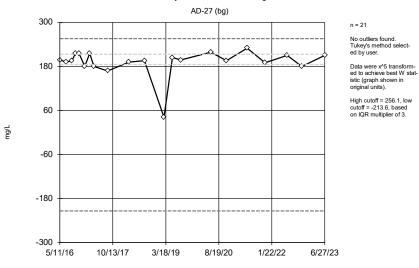
No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph

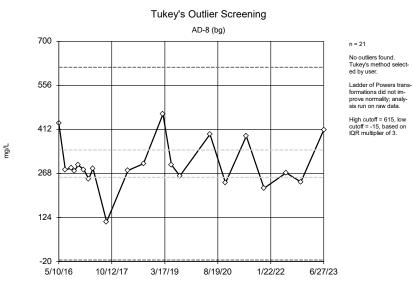

shown in original units).

High cutoff = 141, low

cutoff = 35.39, based on IQR multiplier of 3.

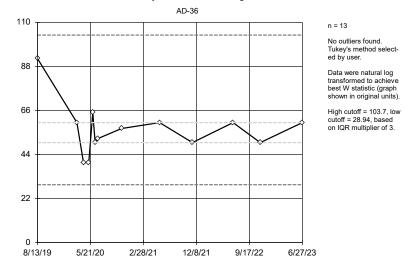

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/15/2023 8:55 AM Pirkey Landfill Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG



Constituent: Total Dissolved Solids [TDS] Analysis Run 12/15/2023 8:55 AM Pirkey Landfill Data: Pirkey Landfill

Tukey's Outlier Screening

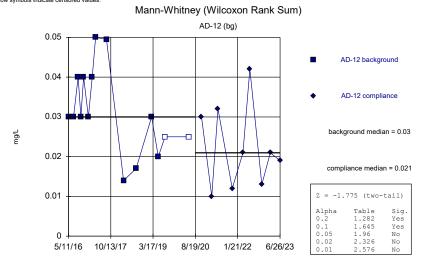


Constituent: Total Dissolved Solids [TDS] Analysis Run 12/15/2023 8:55 AM Pirkey Landfill Data: Pirkey Landfill

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/15/2023 8:55 AM Pirkey Landfill Data: Pirkey Landfill

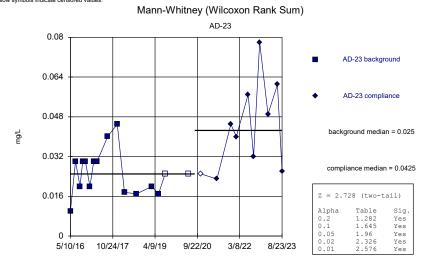
Tukey's Outlier Screening

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/15/2023 8:55 AM
Pirkey Landfill Data: Pirkey Landfill

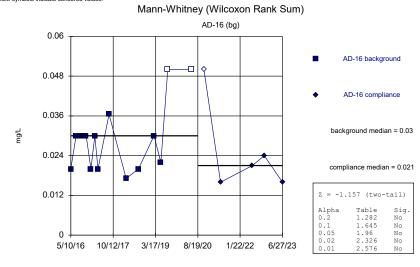

Welch's t-test/Mann-Whitney - Significant Results

	Pirkey Landfill	Client: Geosyntec	Data: Pirkey La	andfill F	Printed 12/15/2023, 3:53 PM		
Constituent	Well		Calc.	0.01	<u>Alpha</u>	Sig.	Method
Boron, total (mg/L)	AD-23		2.728	Yes	0.01	Yes	Mann-W
Boron, total (mg/L)	AD-34		-2.609	Yes	0.01	Yes	Mann-W
Calcium, total (mg/L)	AD-34		3.076	Yes	0.01	Yes	Mann-W
Fluoride, total (mg/L)	AD-12 (bg)		-3.223	Yes	0.01	Yes	Mann-W
Sulfate, total (mg/L)	AD-16 (bg)		-3.543	Yes	0.01	Yes	Mann-W
Sulfate, total (mg/L)	AD-34		2.729	Yes	0.01	Yes	Mann-W
Total Dissolved Solids [TDS] (mg/L)	AD-34		4.148	Yes	0.01	Yes	Mann-W

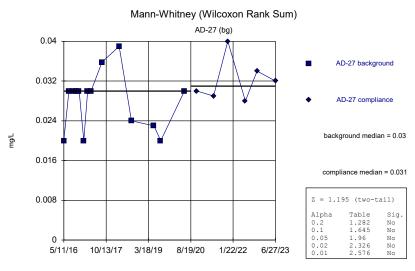
Welch's t-test/Mann-Whitney - All Results

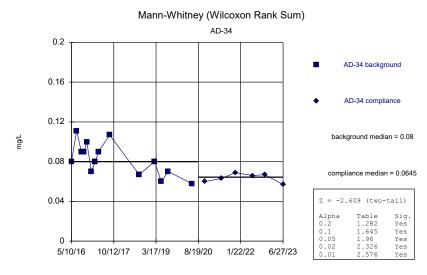

	Pirkey Landfill Client: Ge	eosyntec Data: Pirkey Lar	ndfill Printed 12	2/15/2023, 3:53 PM		
Constituent	Well	Calc.	0.01	<u>Alpha</u>	Sig.	Method
Boron, total (mg/L)	AD-12 (bg)	-1.775	No	0.01	No	Mann-W
Boron, total (mg/L)	AD-16 (bg)	-1.157	No	0.01	No	Mann-W
Boron, total (mg/L)	AD-23	2.728	Yes	0.01	Yes	Mann-W
Boron, total (mg/L)	AD-27 (bg)	1.195	No	0.01	No	Mann-W
Boron, total (mg/L)	AD-34	-2.609	Yes	0.01	Yes	Mann-W
Boron, total (mg/L)	AD-8 (bg)	0.5843	No	0.01	No	Mann-W
Boron, total (mg/L)	AD-36	2.149	No	0.01	No	Mann-W
Calcium, total (mg/L)	AD-12 (bg)	-1.195	No	0.01	No	Mann-W
Calcium, total (mg/L)	AD-16 (bg)	-0.9682	No	0.01	No	Mann-W
Calcium, total (mg/L)	AD-23	-1.255	No	0.01	No	Mann-W
Calcium, total (mg/L)	AD-27 (bg)	-2.452	No	0.01	No	Mann-W
Calcium, total (mg/L)	AD-34	3.076	Yes	0.01	Yes	Mann-W
Calcium, total (mg/L)	AD-8 (bg)	0.3503	No	0.01	No	Mann-W
Calcium, total (mg/L)	AD-36	2.504	No	0.01	No	Mann-W
Chloride, total (mg/L)	AD-12 (bg)	0.2992	No	0.01	No	Mann-W
Chloride, total (mg/L)	AD-16 (bg)	2.517	No	0.01	No	Mann-W
Chloride, total (mg/L)	AD-23	2.426	No	0.01	No	Mann-W
Chloride, total (mg/L)	AD-27 (bg)	2.003	No	0.01	No	Mann-W
Chloride, total (mg/L)	AD-34	-0.6322	No	0.01	No	Mann-W
Chloride, total (mg/L)	AD-8 (bg)	1.055	No	0.01	No	Mann-W
Chloride, total (mg/L)	AD-36	2.49	No	0.01	No	Mann-W
Fluoride, total (mg/L)	AD-12 (bg)	-3.223	Yes	0.01	Yes	Mann-W
Fluoride, total (mg/L)	AD-16 (bg)	-2.364	No	0.01	No	Mann-W
Fluoride, total (mg/L)	AD-23	-2.276	No	0.01	No	Mann-W
Fluoride, total (mg/L)	AD-27 (bg)	1.564	No	0.01	No	Mann-W
Fluoride, total (mg/L)	AD-34	1.622	No	0.01	No	Mann-W
Fluoride, total (mg/L)	AD-8 (bg)	-0.3519	No	0.01	No	Mann-W
Fluoride, total (mg/L)	AD-36	1.552	No	0.01	No	Mann-W
pH, field (SU)	AD-12 (bg)	-0.3578	No	0.01	No	Mann-W
pH, field (SU)	AD-16 (bg)	1.829	No	0.01	No	Mann-W
pH, field (SU)	AD-23	0.3164	No	0.01	No	Mann-W
pH, field (SU)	AD-27 (bg)	0.1559	No	0.01	No	Mann-W
pH, field (SU)	AD-34	-0.3532	No	0.01	No	Mann-W
pH, field (SU)	AD-8 (bg)	0.506	No	0.01	No	Mann-W
pH, field (SU)	AD-36	-1.675	No	0.01	No	Mann-W
Sulfate, total (mg/L)	AD-12 (bg)	-2.07	No	0.01	No	Mann-W
Sulfate, total (mg/L)	AD-16 (bg)	-3.543	Yes	0.01	Yes	Mann-W
Sulfate, total (mg/L)	AD-23	-2.385	No	0.01	No	Mann-W
Sulfate, total (mg/L)	AD-27 (bg)	0.1948	No	0.01	No	Mann-W
Sulfate, total (mg/L)	AD-34	2.729	Yes	0.01	Yes	Mann-W
Sulfate, total (mg/L)	AD-8 (bg)	-1.754	No	0.01	No	Mann-W
Sulfate, total (mg/L)	AD-36	-0.4497	No	0.01	No	Mann-W
Total Dissolved Solids [TDS] (mg/L)	AD-12 (bg)	-0.5685	No	0.01	No	Mann-W
Total Dissolved Solids [TDS] (mg/L)	AD-16 (bg)	-1.132	No	0.01	No	Mann-W
Total Dissolved Solids [TDS] (mg/L)	AD-23	1.076	No	0.01	No	Mann-W
Total Dissolved Solids [TDS] (mg/L)	AD-27 (bg)	0.4303	No	0.01	No	Mann-W
Total Dissolved Solids [TDS] (mg/L)	AD-34	4.148	Yes	0.01	Yes	Mann-W
Total Dissolved Solids [TDS] (mg/L)	AD-8 (bg)	-1.13	No	0.01	No	Mann-W
Total Dissolved Solids [TDS] (mg/L)	AD-36	0.1459	No	0.01	No	Mann-W

Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values


Constituent: Boron, total Analysis Run 12/15/2023 3:50 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

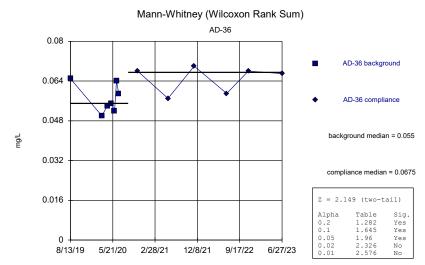
Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values.


Constituent: Boron, total Analysis Run 12/15/2023 3:50 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

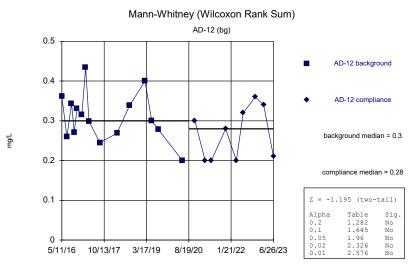

Sanitas™ v.10.0.15 Software licensed to . UG

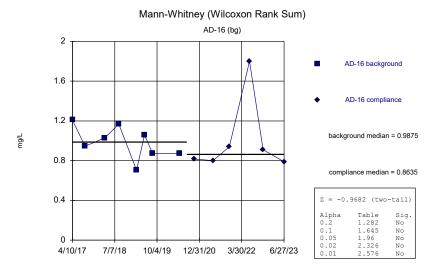
Constituent: Boron, total Analysis Run 12/15/2023 3:50 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG



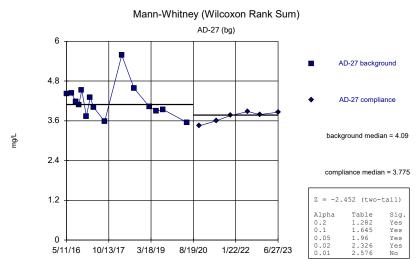
Constituent: Boron, total Analysis Run 12/15/2023 3:50 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

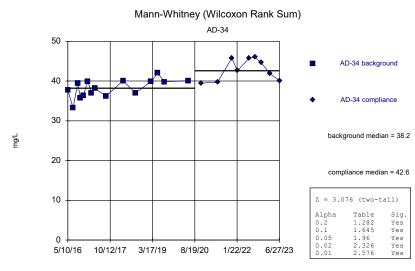

Mann-Whitney (Wilcoxon Rank Sum) AD-8 (bg) AD-8 background 1.6 AD-8 compliance 1.2 background median = 0.783 mg/L 0.8 compliance median = 0.99 Z = 0.5843 (two-tail) 0.4 Alpha 0.2 0.1 0.05 Table Sig. 1.282 No No 0.02 2.326 No 5/10/16 10/12/17 3/17/19 8/19/20 1/22/22 6/27/23 No

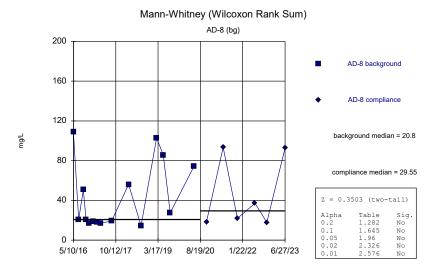

Constituent: Boron, total Analysis Run 12/15/2023 3:50 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG

Constituent: Boron, total Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

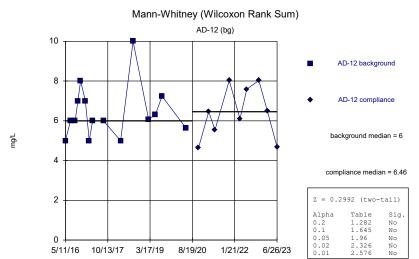


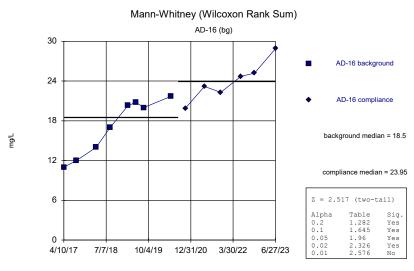

Constituent: Calcium, total Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

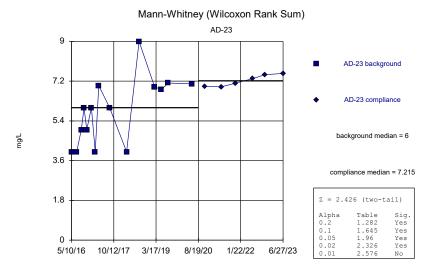

Mann-Whitney (Wilcoxon Rank Sum) AD-23 0.6 AD-23 background 0.48 AD-23 compliance 0.36 background median = 0.3 mg/L 0.24 compliance median = 0.245 0.12 Z = -1.255 (two-tail) Alpha 0.2 0.1 0.05 Table Sig. 1.282 No No 0.02 2.326 No 5/10/16 10/12/17 3/17/19 8/19/20 1/22/22 6/27/23 No

Constituent: Calcium, total Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG

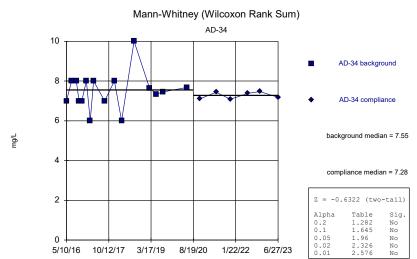


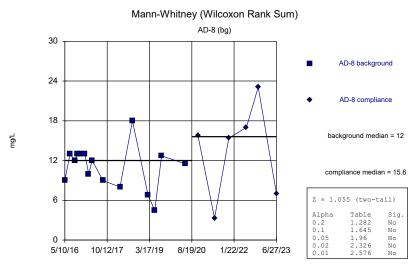

Constituent: Calcium, total Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill


Mann-Whitney (Wilcoxon Rank Sum) AD-36 AD-36 background 1.6 AD-36 compliance 1.2 background median = 0.2 mg/L 0.8 compliance median = 0.3 0.4 Z = 2.504 (two-tail) Table 1.282 1.645 Alpha 0.2 Sig. Yes 0.1 Yes Yes 0.02 2.326 Yes 8/13/19 3/23/21 1/11/22 11/1/22 8/23/23 6/2/20 No

Constituent: Calcium, total Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG




Constituent: Chloride, total Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Mann-Whitney (Wilcoxon Rank Sum) AD-27 (bg) 20 AD-27 background 16 AD-27 compliance 12 background median = 10.75 mg/L 8 compliance median = 12.6 Z = 2.003 (two-tail)Alpha 0.2 0.1 0.05 Table 1.282 1.645 Sig. Yes Yes Yes 0.02 2.326 No 7/7/18 10/4/19 12/31/20 3/30/22 6/27/23 4/10/17 No

Constituent: Chloride, total Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG

20

16

12

8/13/19

6/2/20

3/23/21

mg/L

8/23/23

Z = 2.49 (two-tail)

Table 1.282

1.645

2.326

2.576

Yes

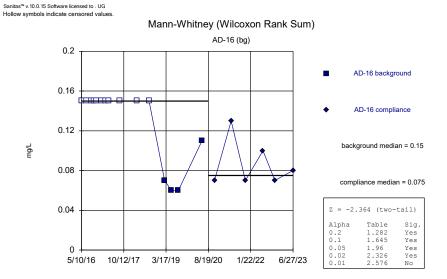
Yes

Yes

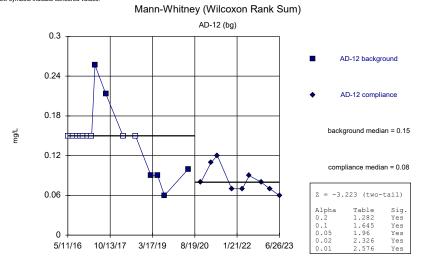
Yes

No

Alpha

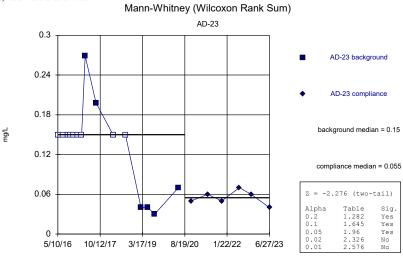

0.2 0.1 0.05

0.02


Constituent: Chloride, total Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

11/1/22

1/11/22



Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values

Constituent: Fluoride, total Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values.

0.3

0.24

0.18

0.12

0.06

7/13/16

12/3/17

4/25/19

mg/L

Alpha

0.2 0.1 0.05

0.02

Table 1.282

1.645

2.326

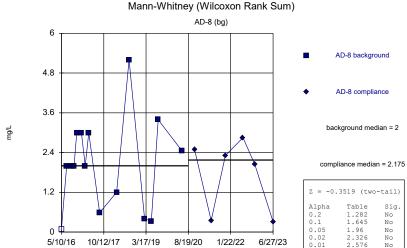
2.576

Yes

No

No

No


Constituent: Fluoride, total Analysis Run 12/15/2023 3:51 PM Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

2/4/22

6/27/23

9/14/20

Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values

Sanitas™ v.10.0.15 Software licensed to . UG

Mann-Whitney (Wilcoxon Rank Sum) AD-34 AD-34 background 2.4 AD-34 compliance 1.8 background median = 0.6231 mg/L 1.2 compliance median = 0.82 Z = 1.622 (two-tail) Alpha 0.2 Table Sig. Yes 1.282 0.1 No 曲台

Constituent: Fluoride, total Analysis Run 12/15/2023 3:51 PM Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

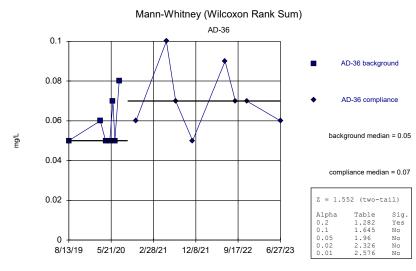
1/22/22

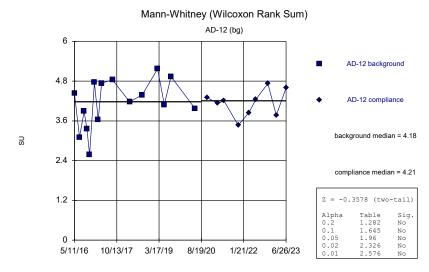
6/27/23

8/19/20

0.02

2.326

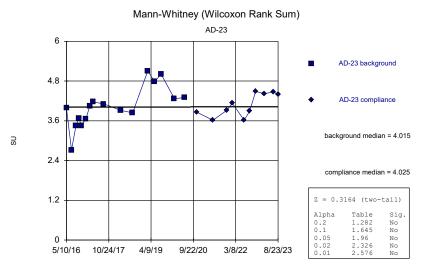

No


No

Sanitas™ v.10.0.15 Software licensed to . UG

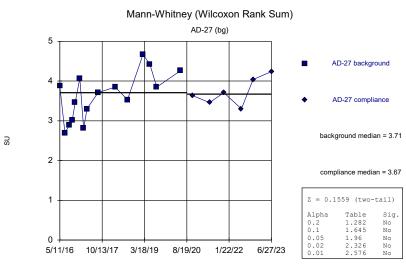
5/10/16

10/12/17 3/17/19

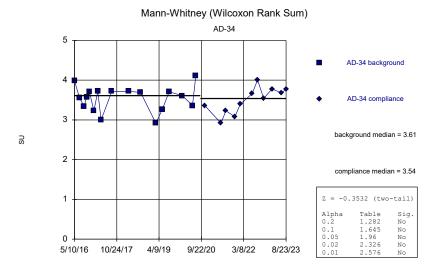


Constituent: pH, field Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Mann-Whitney (Wilcoxon Rank Sum) AD-16 (bg) AD-16 background 4.8 AD-16 compliance 3.6 background median = 4.03 SU 2.4 compliance median = 4.37 1.2 Z = 1.829 (two-tail) Alpha 0.2 0.1 0.05 Table 1.282 1.645 Sig. Yes Yes 0.02 2.326 No 5/10/16 10/12/17 3/17/19 8/19/20 1/22/22 6/27/23 No


Constituent: pH, field Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

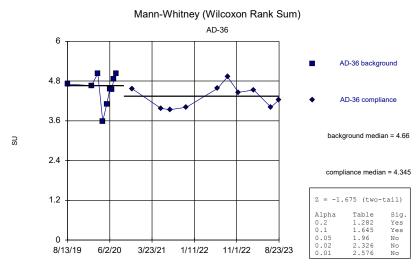
Sanitas™ v.10.0.15 Software licensed to . UG



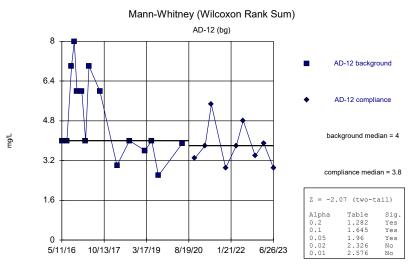
Constituent: pH, field Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

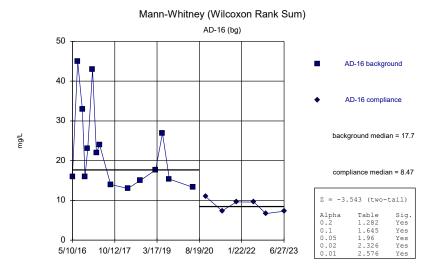
Sanitas™ v.10.0.15 Software licensed to . UG

Constituent: pH, field Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill



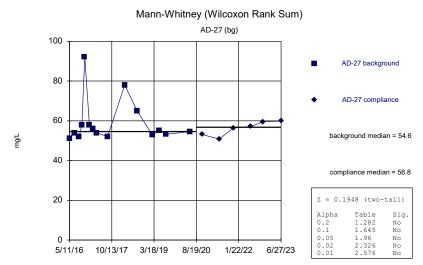
Constituent: pH, field Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill


Mann-Whitney (Wilcoxon Rank Sum) AD-8 (bg) AD-8 background 5.6 AD-8 compliance 4.2 background median = 4.61 SU 2.8 compliance median = 4.735 Z = 0.506 (two-tail) Alpha 0.2 0.1 0.05 Table 1.282 No No 0.02 2.326 No 5/10/16 10/12/17 3/17/19 8/19/20 1/22/22 6/27/23 No

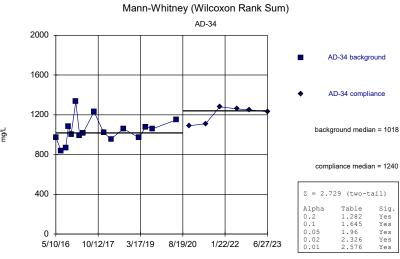

Constituent: pH, field Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG

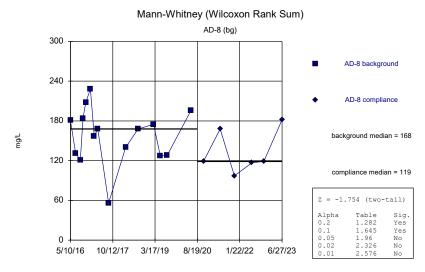
Constituent: pH, field Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill


Constituent: Sulfate, total Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

AD-23 20 AD-23 background 16 AD-23 compliance 12 background median = 11 mg/L compliance median = 7.9 Z = -2.385 (two-tail) Alpha 0.2 0.1 0.05 Table 1.282 1.645 Sig. Yes Yes Yes 0.02 2.326 Yes 5/10/16 10/12/17 3/17/19 8/19/20 1/22/22 6/27/23 No


Mann-Whitney (Wilcoxon Rank Sum)

Constituent: Sulfate, total Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill


Sanitas™ v.10.0.15 Software licensed to . UG

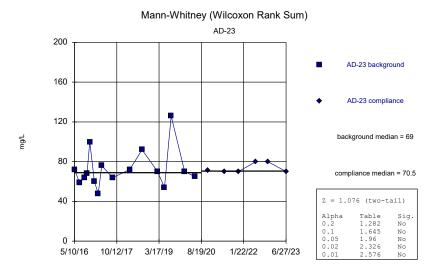
Sanitas $^{\text{\tiny TM}}$ v.10.0.15 Software licensed to . UG

Sanitas™ v.10.0.15 Software licensed to . UG

Constituent: Sulfate, total Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Mann-Whitney (Wilcoxon Rank Sum) AD-36 AD-36 background AD-36 compliance 3 background median = 3.6 mg/L 2 compliance median = 3.1 Z = -0.4497 (two-tail) Table Sig. 1.282 No 0.1 No 0.02 2.326 No 8/13/19 5/21/20 2/28/21 12/8/21 9/17/22 6/27/23 No

Constituent: Sulfate, total Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill


Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values Mann-Whitney (Wilcoxon Rank Sum) AD-12 (bg) 100 AD-12 background 80 AD-12 compliance 60 background median = 76 40 compliance median = 70 Z = -0.5685 (two-tail) 20 Alpha Table Sig. 0.2 1.282 No 1.645 No 0.05 1.96 No 8/19/20 1/21/22 6/26/23 5/11/16 10/13/17 3/17/19 2.576

Mann-Whitney (Wilcoxon Rank Sum) AD-16 (bg) 200 AD-16 background 160 AD-16 compliance 120 mg/L background median = 116 80 compliance median = 110 Z = -1.132 (two-tail)40 Alpha Table Sig. 1.282 0.2 No No 0.05 1.96 No 8/19/20 1/22/22 6/27/23 5/10/16 10/12/17 3/17/19 2.576

Sanitas™ v.10.0.15 Software licensed to . UG

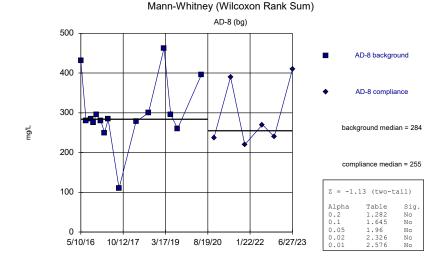
5/10/16 10/24/17

Sanitas™ v.10.0.15 Software licensed to . UG

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Mann-Whitney (Wilcoxon Rank Sum)

AD-27 (bg) 300 AD-27 background 240 AD-27 compliance 180 background median = 196 mg/L 120 compliance median = 203 60 Z = 0.4303 (two-tail)Table Sig. 1.282 No 0.1 No 0.02 2.326 No 5/11/16 10/13/17 3/18/19 8/19/20 1/22/22 6/27/23 No


Mann-Whitney (Wilcoxon Rank Sum)

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

AD-34 AD-34 background AD-34 compliance background median = 1462 compliance median = 1690 Z = 4.148 (two-tail) Alpha Table Sig.

9/22/20

4/9/19

3/8/22

8/23/23

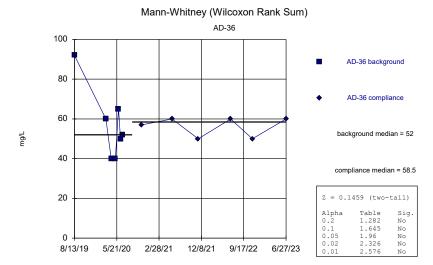
0.2

0.05

0.02

1.282

1.645


1.96

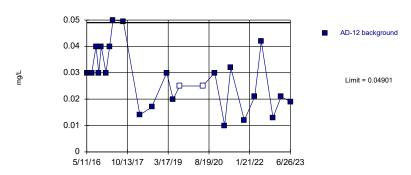
2.576

Yes

Yes

Yes

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/15/2023 3:51 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

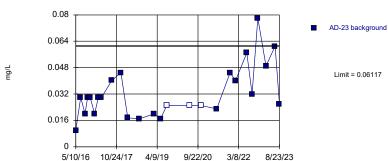

Intrawell Prediction Limits - All Results

Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill Printed 12/15/2023, 4:04 PM

Constituent	Well	Upper Lim.	Lower Lir	n.Date	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	n Alpha	Method	
Boron, total (mg/L)	AD-12	0.04901	n/a	n/a	1 future	n/a	24	0.02794	0.01142	8.333	None	No	0.002505	Param Intra 1 of 2	
Boron, total (mg/L)	AD-16	0.05019	n/a	n/a	1 future	n/a	20	0.1649	0.03123	15	None	sqrt(x)	0.002505	Param Intra 1 of 2	
Boron, total (mg/L)	AD-23	0.06117	n/a	n/a	1 future	n/a	26	0.03241	0.01574	11.54	None	No	0.002505	Param Intra 1 of 2	
Boron, total (mg/L)	AD-27	0.03999	n/a	n/a	1 future	n/a	20	0.02924	0.00568	0	None	No	0.002505	Param Intra 1 of 2	
Boron, total (mg/L)	AD-34	0.1079	n/a	n/a	1 future	n/a	20	0.07675	0.01644	0	None	No	0.002505	Param Intra 1 of 2	
Boron, total (mg/L)	AD-8	1.325	n/a	n/a	1 future	n/a	21	0.8918	0.2304	0	None	No	0.002505	Param Intra 1 of 2	
Boron, total (mg/L)	AD-36	0.07466	n/a	n/a	1 future	n/a	13	0.06062	0.006764	0	None	No	0.002505	Param Intra 1 of 2	
Calcium, total (mg/L)	AD-12	0.4135	n/a	n/a	1 future	n/a	24	0.294	0.06475	0	None	No	0.002505	Param Intra 1 of 2	
Calcium, total (mg/L)	AD-16	1.561	n/a	n/a	1 future	n/a	14	-0.03379	0.2348	0	None	ln(x)	0.002505	Param Intra 1 of 2	
Calcium, total (mg/L)	AD-23	0.5032	n/a	n/a	1 future	n/a	22	0.6678	0.06826	0	None	x^(1/3)	0.002505	Param Intra 1 of 2	
Calcium, total (mg/L)	AD-27	4.957	n/a	n/a	1 future	n/a	21	2.011	0.1148	0	None	sqrt(x)	0.002505	Param Intra 1 of 2	
Calcium, total (mg/L)	AD-34	46.13	n/a	n/a	1 future	n/a	24	39.95	3.346	0	None	No	0.002505	Param Intra 1 of 2	
Calcium, total (mg/L)	AD-8	109	n/a	n/a	1 future	n/a	21	n/a	n/a	0	n/a	n/a	0.003999	NP Intra (normality) 1 of 2	
Calcium, total (mg/L)	AD-36	1.22	n/a	n/a	1 future	n/a	16	n/a	n/a	0	n/a	n/a	0.006456	NP Intra (normality) 1 of 2	
Chloride, total (mg/L)	AD-12	8.775	n/a	n/a	1 future	n/a	24	6.41	1.281	0	None	No	0.002505	Param Intra 1 of 2	
Chloride, total (mg/L)	AD-16	27.54	n/a	n/a	1 future	n/a	8	17.1	4.248	0	None	No	0.002505	Param Intra 1 of 2	
Chloride, total (mg/L)	AD-23	8.915	n/a	n/a	1 future	n/a	21	6.254	1.415	0	None	No	0.002505	Param Intra 1 of 2	
Chloride, total (mg/L)	AD-27	14.49	n/a	n/a	1 future	n/a	14	11.44	1.494	0	None	No	0.002505	Param Intra 1 of 2	
Chloride, total (mg/L)	AD-34	8.974	n/a	n/a	1 future	n/a	22	1.95	0.06837	0	None	x^(1/3)	0.002505	Param Intra 1 of 2	
Chloride, total (mg/L)	AD-8	20.55	n/a	n/a	1 future	n/a	21	11.76	4.671	0	None	No	0.002505	Param Intra 1 of 2	
Chloride, total (mg/L)	AD-36	11.8	n/a	n/a	1 future	n/a	17	n/a	n/a	0	n/a	n/a	0.005914	NP Intra (normality) 1 of 2	
Fluoride, total (mg/L)	AD-12	0.1738	n/a	n/a	1 future	n/a	24	0.2926	0.06732	37.5	Kaplan-Meier	sqrt(x)	0.002505	Param Intra 1 of 2	
Fluoride, total (mg/L)	AD-16	0.15	n/a	n/a	1 future	n/a	21	n/a	n/a	52.38	n/a	n/a	0.003999	NP Intra (NDs) 1 of 2	
Fluoride, total (mg/L)	AD-23	0.1559	n/a	n/a	1 future	n/a	21	0.2281	0.08869	42.86	Kaplan-Meier	sqrt(x)	0.002505	Param Intra 1 of 2	
Fluoride, total (mg/L)	AD-27	0.25	n/a	n/a	1 future	n/a	20	n/a	n/a	45	n/a	n/a	0.004291	NP Intra (normality) 1 of 2	
Fluoride, total (mg/L)	AD-34	1.583	n/a	n/a	1 future	n/a	25	0.694	0.4846	28	Kaplan-Meier	No	0.002505	Param Intra 1 of 2	
Fluoride, total (mg/L)	AD-8	4.392	n/a	n/a	1 future	n/a	21	1.952	1.297	4.762	None	No	0.002505	Param Intra 1 of 2	
Fluoride, total (mg/L)	AD-36	0.098	n/a	n/a	1 future	n/a	15	0.254	0.02944	0	None	sqrt(x)	0.002505	Param Intra 1 of 2	
pH, field (SU)	AD-12	5.283	3	n/a	1 future	n/a	24	4.142	0.6185	0	None	No	0.001253	Param Intra 1 of 2	
pH, field (SU)	AD-16	4.976	3.32	n/a	1 future	n/a	21	4.148	0.4401	0	None	No	0.001253	Param Intra 1 of 2	
pH, field (SU)	AD-23	4.991	3.112	n/a	1 future	n/a	26	4.052	0.5142	0	None	No	0.001253	Param Intra 1 of 2	
pH, field (SU)	AD-27	4.664	2.65	n/a	1 future	n/a	21	3.657	0.5355	0	None	No	0.001253	Param Intra 1 of 2	
pH, field (SU)	AD-34	4.102	2.946	n/a	1 future	n/a	28	3.524	0.3187	0	None	No	0.001253	Param Intra 1 of 2	
pH, field (SU)	AD-8	6.745	3.102	n/a	1 future	n/a	21	2.179	0.2223	0	None	sqrt(x)	0.001253	Param Intra 1 of 2	
pH, field (SU)	AD-36	5.222	3.654	n/a	1 future	n/a	19	4.438	0.4102	0	None	No	0.001253	Param Intra 1 of 2	
Sulfate, total (mg/L)	AD-12	7.318	n/a	n/a	1 future	n/a	24	2.09	0.3335	0	None	sqrt(x)	0.002505	Param Intra 1 of 2	
Sulfate, total (mg/L)	AD-16	17.62	n/a	n/a	1 future	n/a	8	10.03	3.085	0	None	No	0.002505	Param Intra 1 of 2	
Sulfate, total (mg/L)	AD-23	13.64	n/a	n/a	1 future	n/a	21	9.814	2.035	0	None	No	0.002505	Param Intra 1 of 2	
Sulfate, total (mg/L)	AD-27	92	n/a	n/a	1 future	n/a	21	n/a	n/a	0	n/a	n/a	0.003999	NP Intra (normality) 1 of 2	
Sulfate, total (mg/L)	AD-34	1336	n/a	n/a	1 future	n/a	22	1085	134.5	0	None	No	0.002505	Param Intra 1 of 2	
Sulfate, total (mg/L)	AD-8	227.7	n/a	n/a	1 future	n/a	21	151	40.79	0	None	No	0.002505	Param Intra 1 of 2	
Sulfate, total (mg/L)	AD-36	4.774	n/a	n/a	1 future	n/a	14	3.443	0.6521	0	None	No	0.002505	Param Intra 1 of 2	
Total Dissolved Solids [TDS] (mg/L)	AD-12	99.22	n/a	n/a	1 future	n/a	24	5487	2361	4.167	None	x^2	0.002505	Param Intra 1 of 2	
Total Dissolved Solids [TDS] (mg/L)	AD-16	143.6	n/a	n/a	1 future	n/a	21	113.4	16.04	0	None	No	0.002505	Param Intra 1 of 2	
Total Dissolved Solids [TDS] (mg/L)	AD-23	103.5	n/a	n/a	1 future	n/a	22	8.485	0.9048	0	None	sqrt(x)	0.002505	Param Intra 1 of 2	
Total Dissolved Solids [TDS] (mg/L)	AD-27	231.9	n/a	n/a	1 future	n/a	21	7683576	2541812	0	None	x^3	0.002505	Param Intra 1 of 2	
Total Dissolved Solids [TDS] (mg/L)	AD-34	1842	n/a	n/a	1 future	n/a	28	1527	173.6	0	None	No	0.002505	Param Intra 1 of 2	
Total Dissolved Solids [TDS] (mg/L)	AD-8	449.6	n/a	n/a	1 future	n/a	21	297.7	80.75	0	None	No	0.002505	Param Intra 1 of 2	
Total Dissolved Solids [TDS] (mg/L)	AD-36	84.86	n/a	n/a	1 future	n/a	13	7.482	0.8332	0	None	sqrt(x)	0.002505	Param Intra 1 of 2	

Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values

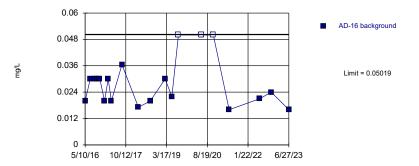
Prediction Limit Intrawell Parametric, AD-12 (bg)



Background Data Summary: Mean=0.02794, Std. Dev.=0.01142, n=24, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9519, critical = 0.884. Kappa = 1.846 (c=7, w=3, 1 of 2, event alpha = 0.005132). Report alpha = 0.002505. Assumes I future value.

Constituent: Boron, total Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

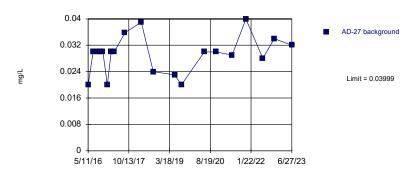
Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values



Background Data Summary: Mean=0.03241, Std. Dev.=0.01574, n=26, 11.54% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8974, critical = 0.891. Kappa = 1.827 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

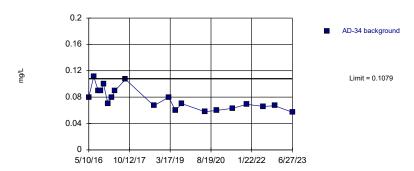
Prediction Limit

Intrawell Parametric, AD-16 (bg)



Background Data Summary (based on square root transformation): Mean=0.1649, Std. Dev.=0.03123, n=20, 15% NDs. Normality test: Shapino Wilk @alpha = 0.01, calculated = 0.8766, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

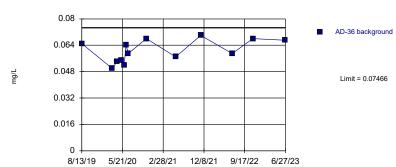
Constituent: Boron, total Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill


Sanitas™ v.10.0.15 Software licensed to . UG

Prediction Limit Intrawell Parametric, AD-27 (bg)

Background Data Summary: Mean=0.02924, Std. Dev.=0.00568, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9109, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

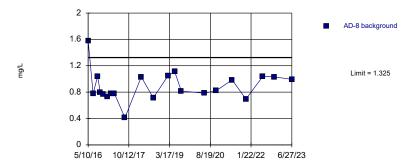
Prediction Limit Intrawell Parametric, AD-34



Background Data Summary: Mean=0.07675, Std. Dev.=0.01644, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9076, critical = 0.868. Kappa = 1.892 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Boron, total Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG


Prediction Limit Intrawell Parametric, AD-36

Background Data Summary: Mean=0.06062, Std. Dev.=0.006764, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9312, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

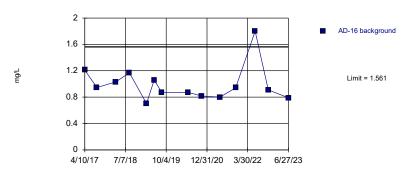
Prediction Limit

Intrawell Parametric, AD-8 (bg)



Background Data Summary: Mean=0.8918, Std. Dev.=0.2304, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Boron, total Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill


Sanitas™ v.10.0.15 Software licensed to . UG

Prediction Limit Intrawell Parametric, AD-12 (bg)

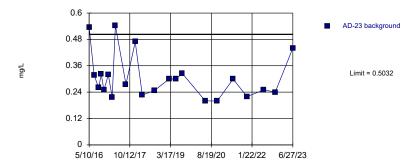
Background Data Summary: Mean=0.294, Std. Dev.=0.06475, n=24. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9552, critical = 0.884. Kappa = 1.846 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Parametric, AD-16 (bg)

Background Data Summary (based on natural log transformation): Mean=-0.03379, Std. Dev.=0.2348, n=14. Normality test: Shapiro Wilk (@alpha = 0.05, calculated = 0.897, critical = 0.874. Kappa = 2.041 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

Constituent: Calcium, total Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG


Prediction Limit Intrawell Parametric, AD-27 (bg)

Background Data Summary (based on square root transformation): Mean=2.011, Std. Dev.=0.1148, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8962, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.005132). Report alpha = 0.002505. Assumes 1 future value.

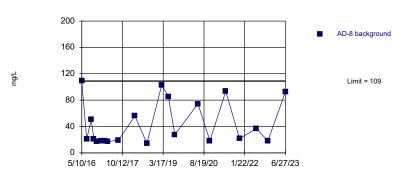
Prediction Limit

Intrawell Parametric, AD-23



Background Data Summary (based on cube root transformation): Mean=0.6678, Std. Dev.=0.06826, n=22. Normality test: Shapiro Wilk (@alpha = 0.01, calculated = 0.8836, critical = 0.878. Kappa = 1.869 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

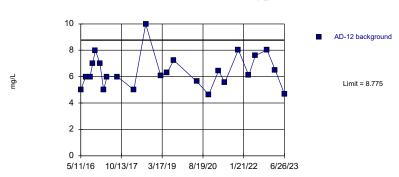
Constituent: Calcium, total Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill


Sanitas™ v.10.0.15 Software licensed to . UG

Prediction Limit Intrawell Parametric, AD-34

Background Data Summary: Mean=39.95, Std. Dev.=3.346, n=24. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9492, critical = 0.884. Kappa = 1.846 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Non-parametric, AD-8 (bg)



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 21 background values. Well-constituent pair annual alpha = 0.007982. Individual comparison alpha = 0.003999 (1 of 2). Assumes 1 future value.

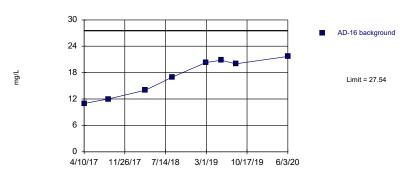
Constituent: Calcium, total Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG

Background Data Summary: Mean=6.41, Std. Dev.=1.281, n=24. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9305, critical = 0.884. Kappa = 1.846 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

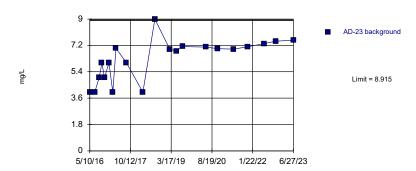
Prediction Limit

Intrawell Non-parametric, AD-36



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 16 background values. Well-constituent pair annual alpha = 0.01287. Individual comparison alpha = 0.006456 (1 of 2). Assumes 1 future value.

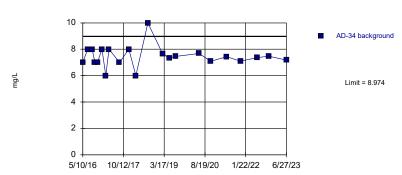
Constituent: Calcium, total Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill


Sanitas™ v.10.0.15 Software licensed to . UG

Prediction Limit Intrawell Parametric, AD-16 (bg)

Background Data Summary: Mean=17.1, Std. Dev.=4.248, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.877, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

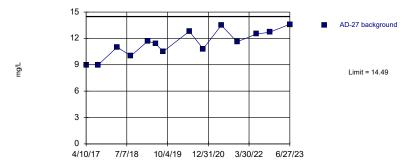
Prediction Limit Intrawell Parametric, AD-23



Background Data Summary: Mean=6.254, Std. Dev.=1.415, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8906, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Chloride, total Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG


Prediction Limit Intrawell Parametric, AD-34

Background Data Summary (based on cube root transformation): Mean=1.95, Std. Dev.=0.06837, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8781, critical = 0.878. Kappa = 1.869 (c=7, w=3, 1 of 2, event alpha = 0.005132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit

Intrawell Parametric, AD-27 (bg)



Background Data Summary: Mean=11.44, Std. Dev.=1.494, n=14. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9531, critical = 0.874. Kappa = 2.041 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Chloride, total Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

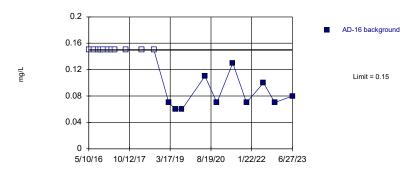
Sanitas™ v.10.0.15 Software licensed to . UG


Prediction Limit Intrawell Parametric, AD-8 (bg)

Background Data Summary: Mean=11.76, Std. Dev.=4.671, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9744, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

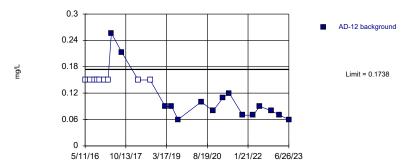
Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values.

Prediction Limit Intrawell Non-parametric, AD-36



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 17 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Assumes 1 future value.

Constituent: Chloride, total Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill


Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values

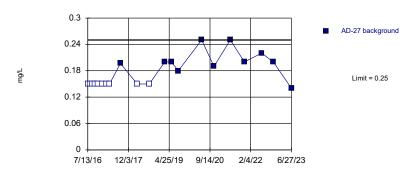
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 21 background values. 52.38% NDs. Well-constituent pair annual alpha = 0.007982. Individual comparison alpha = 0.003999 (1 of 2). Assumes 1 future value.

Prediction Limit Intrawell Parametric, AD-12 (bg)

Background Data Summary (based on square root transformation) (after Kaplan-Meier Adjustment): Mean=0.2926, Std. Dev.=0.06732, n=24, 37.5% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9088, critical = 0.884. Kappa = 1.846 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Fluoride, total Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

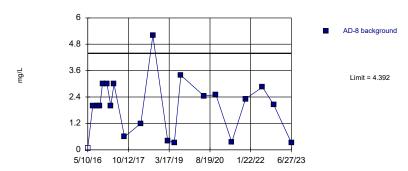
Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values.


Prediction Limit Intrawell Parametric, AD-23

Background Data Summary (based on square root transformation) (after Kaplan-Meier Adjustment): Mean=0,2281, Std. Dev.=0.08869, n=21, 42.86% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8738, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values

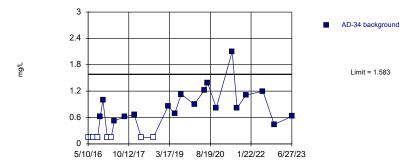
Prediction Limit Intrawell Non-parametric, AD-27 (bg)



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 20 background values. 45% NDs. Well-constituent pair annual alpha = 0.008564. Individual comparison alpha = 0.004291 (1 of 2). Assumes 1 future value.

Constituent: Fluoride, total Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

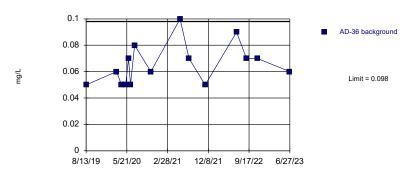
Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values


Prediction Limit Intrawell Parametric, AD-8 (bg)

Background Data Summary: Mean=1.952, Std. Dev.=1.297, n=21, 4.762% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9229, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

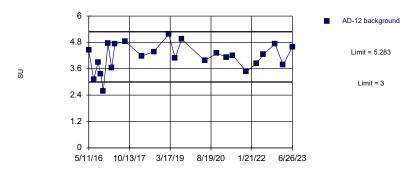
Prediction Limit

Intrawell Parametric, AD-34



Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.694, Std. Dev.=0.4846, n=25, 28% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9067, critical = 0.888. Kappa = 1.834 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Fluoride, total Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill


Sanitas™ v.10.0.15 Software licensed to . UG

Prediction Limit Intrawell Parametric, AD-36

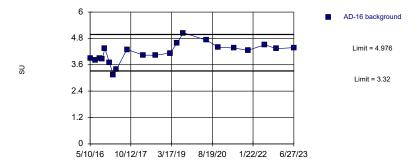
Background Data Summary (based on square root transformation): Mean=0.254, Std. Dev.=0.02944, n=15. Normality test: Shapiro Wilk @alpha = 0.055, calculated = 0.8838, critical = 0.881. Kappa = 2.006 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Parametric, AD-12 (bg)

Background Data Summary: Mean=4.142, Std. Dev.=0.6185, n=24. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9715, critical = 0.884. Kappa = 1.846 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: pH, field Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

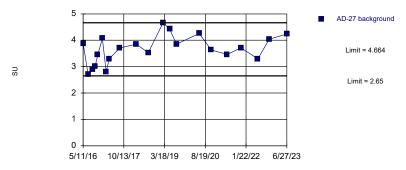
Sanitas™ v.10.0.15 Software licensed to . UG



Background Data Summary: Mean=4.052, Std. Dev.=0.5142, n=26. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9735, critical = 0.891. Kappa = 1.827 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

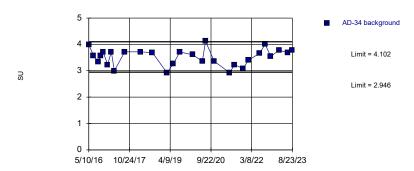
Prediction Limit

Intrawell Parametric, AD-16 (bg)



Background Data Summary: Mean=4.148, Std. Dev.=0.4401, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.976, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: pH, field Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill


Sanitas™ v.10.0.15 Software licensed to . UG

Prediction Limit Intrawell Parametric, AD-27 (bg)

Background Data Summary: Mean=3.657, Std. Dev.=0.5355, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9815, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

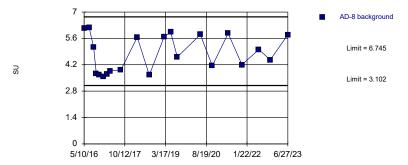
Prediction Limit Intrawell Parametric, AD-34

Background Data Summary: Mean=3.524, Std. Dev.=0.3187, n=28. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9527, critical = 0.896. Kappa = 1.814 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: pH, field Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG

Prediction Limit Intrawell Parametric, AD-36

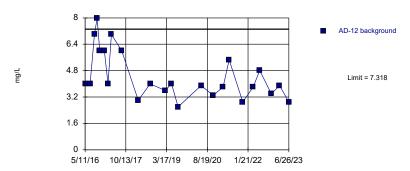


Background Data Summary: Mean=4.438, Std. Dev.=0.4102, n=19. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9452, critical = 0.901. Kappa = 1.912 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: pH, field Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

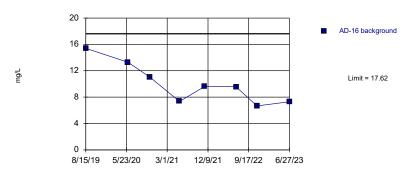
Prediction Limit

Intrawell Parametric, AD-8 (bg)



Background Data Summary (based on square root transformation): Mean=2.179, Std. Dev.=0.2223, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8741, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005265. Assumes 1 future value.

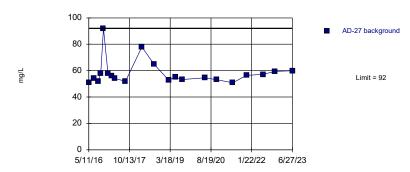
Constituent: pH, field Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill


Sanitas™ v.10.0.15 Software licensed to . UG

Prediction Limit Intrawell Parametric, AD-12 (bg)

Background Data Summary (based on square root transformation): Mean=2.09, Std. Dev.=0.3335, n=24. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9084, critical = 0.884. Kappa = 1.846 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

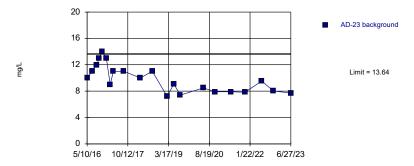
Prediction Limit Intrawell Parametric, AD-16 (bg)



Background Data Summary: Mean=10.03, Std. Dev.=3.085, n=8. Normality test: Shapiro Wilk @alpha = 0.1, calculated = 0.9163, critical = 0.851. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Sulfate, total Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

Sanitas™ v.10.0.15 Software licensed to . UG



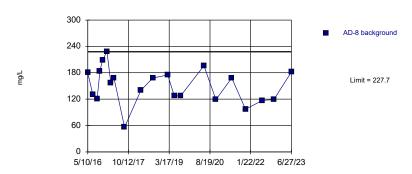
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 21 background values. Well-constituent pair annual alpha = 0.007982. Individual comparison alpha = 0.003999 (1 of 2). Assumes 1 future value.

Prediction Limit

Intrawell Parametric, AD-23

Background Data Summary: Mean=9.814, Std. Dev.=2.035, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9271, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

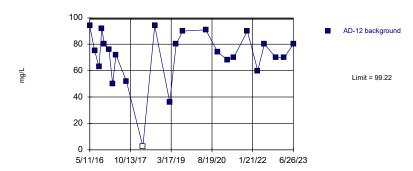
Constituent: Sulfate, total Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill


Sanitas™ v.10.0.15 Software licensed to . UG

Prediction Limit Intrawell Parametric, AD-34

Background Data Summary: Mean=1085, Std. Dev.=134.5, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9639, critical = 0.878. Kappa = 1.869 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

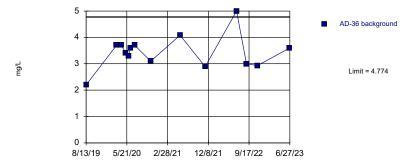
Prediction Limit Intrawell Parametric, AD-8 (bg)



Background Data Summary: Mean=151, Std. Dev.=40.79, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9711, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Sulfate, total Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

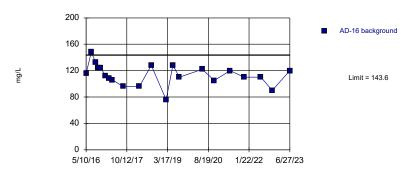
Sanitas™ v.10.0.15 Software licensed to . UG Hollow symbols indicate censored values


Prediction Limit Intrawell Parametric, AD-12 (bg)

Background Data Summary (based on square transformation): Mean=5487, Std. Dev.=2361, n=24, 4.167% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9519, critical = 0.884. Kappa = 1.846 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit

Intrawell Parametric, AD-36



Background Data Summary: Mean=3.443, Std. Dev.=0.6521, n=14. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9418, critical = 0.874. Kappa = 2.041 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Sulfate, total Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill


Sanitas™ v.10.0.15 Software licensed to . UG

Prediction Limit Intrawell Parametric, AD-16 (bg)

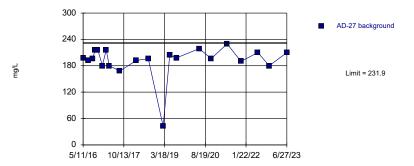
Background Data Summary: Mean=113.4, Std. Dev.=16.04, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9799, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Parametric, AD-23

Background Data Summary (based on square root transformation): Mean=8.485, Std. Dev.=0.9048, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8843, critical = 0.878. Kappa = 1.869 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005205. Assumes 1 future value.

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

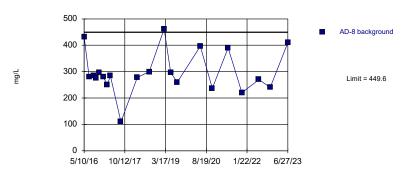
Sanitas™ v.10.0.15 Software licensed to . UG



Background Data Summary: Mean=1527, Std. Dev.=173.6, n=28. Normality test: Shapiro Wilk @alpha = 0.01, collalated = 0.9629, critical = 0.896. Kappa = 1.814 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

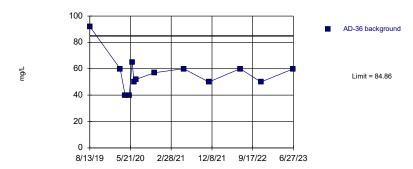
Prediction Limit

Intrawell Parametric, AD-27 (bg)



Background Data Summary (based on cube transformation): Mean=7683576, Std. Dev.=2541812, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9174, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.005255. Assumes 1 future value.

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill


Sanitas™ v.10.0.15 Software licensed to . UG

Prediction Limit Intrawell Parametric, AD-8 (bg)

Background Data Summary: Mean=297.7, Std. Dev.=80.75, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9044, critical = 0.873. Kappa = 1.88 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit Intrawell Parametric, AD-36

Background Data Summary (based on square root transformation): Mean=7.482, Std. Dev.=0.8332, n=13. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8814, critical = 0.866. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/15/2023 4:03 PM
Pirkey Landfill Client: Geosyntec Data: Pirkey Landfill

APPENDIX 3- Alternate Source Demonstrations

Alternate source demonstrations are included in this appendix. Alternate sources are sources or reasons that explain that statistically significant increases over background or statistically significant levels above the groundwater protection standard are not attributable to the CCR unit.

engineers | scientists | innovators

ALTERNATIVE SOURCE DEMONSTRATION REPORT TEXAS STATE CCR RULE

H.W. Pirkey Power Plant Landfill Registration No. CCR 104 Hallsville, Texas

Prepared for

American Electric Power

1 Riverside Plaza Columbus, Ohio 43215-2372

Prepared by

Geosyntec Consultants, Inc. 500 West Wilson Bridge Road, Suite 250 Worthington, Ohio 43085

Project CHA8495B

September 2023

TABLE OF CONTENTS

1.	INTI 1.1	RODUCTION AND SUMMARY				
	1.1	Demonstration of Alternative Sources				
2. SUMMARY OF SITE CONDITIONS						
3.	ALT 3.1	ERNATIVE SOURCE DEMONSTRATION 5 Proposed Alternative Source 5 3.1.1 Boron 5 3.1.2 Chloride 5 Sampling Requirements 6				
4.	CON	ICLUSIONS AND RECOMMENDATIONS7				
5.	REFERENCES					
		LIST OF TABLES				
Table 1:		Detection Monitoring Data Evaluation				
		LIST OF FIGURES				
Figure 1:		Potentiometric Contours - Uppermost Aquifer. November 2022.				
Figure 2:		Landfill Location Relative to Former Lignite Mine Area				
Figure 3:		Boron Time Series Graph				
Figure 4:		Sulfate Time Series Graph				
Figure 5:		Non-CCR Pond Construction Photograph				
Figure 6:		AD-36 Location Photograph				
		LIST OF ATTACHMENTS				
Atta	ichme	ent A: Arcadis Geologic Cross Sections				
Atta	ichme	ent B: February 2023 Pirkey Landfill Resample Laboratory Analytical Report				
Atta	ichme	ent C: February 2023 Pirkey Landfill Leachate Laboratory Analytical Report				
Atta	ichme	ent D: AD-36 Boring Log and Well Construction Diagram				
Atta	ichme	ent E: Certification by a Qualified Professional Engineer				

ACRONYMS AND ABBREVIATIONS

AEP American Electric Power

ASD alternative source demonstration

CCR coal combustion residuals

EPRI Electric Power Research Institute

HDPE high-density polyethylene

LPL lower prediction limit

mg/L milligrams per liter

SSI statistically significant increase

TAC Texas Administrative Code

TCEQ Texas Commission on Environmental Quality

UPL upper prediction limit

1. INTRODUCTION AND SUMMARY

This alternative source demonstration (ASD) report has been prepared to address statistically significant increases (SSIs) for boron and chloride in the groundwater monitoring network at the H.W. Pirkey Plant Landfill (Landfill) in Hallsville, Texas, following the second semiannual detection monitoring event of 2022. The H.W. Pirkey Plant has four coal combustion residuals (CCR) storage units regulated by the Texas Commission on Environmental Quality (TCEQ) under Registration No. CCR104, including the Landfill (**Figure 1**). The western side of the Landfill overlies a former lignite mining area, as shown on **Figure 2**.

Background groundwater concentrations for the Landfill were initially calculated in January 2018 with data from at least eight monitoring events (Geosyntec 2018). Upper prediction limits (UPLs) were calculated for each Appendix III parameter to represent background values. Lower prediction limits (LPLs) were also calculated for pH.

An ASD was certified on January 7, 2020. Because of the presence of lignite mine spoils within the screened interval at downgradient well AD-34, this ASD resulted in a switch from interwell tests to intrawell tests for evaluation of pH, sulfate, and total dissolved solids prediction limits (Geosyntec 2020). The interwell and intrawell prediction limits were updated once sufficient data could be incorporated into the background data set (Geosyntec 2021). Prediction limits were calculated based on a one-of-two retesting procedure to maintain an appropriate site-wide false positive rate. With this procedure, an SSI is concluded only if both samples in a series of two exceed the UPL or, in the case of pH, are below the LPL.

In November 2022, a semiannual detection monitoring event was conducted at the Landfill in accordance with Title 30, §352.941(a) of the Texas Administrative Code (TAC), and the results were compared to the calculated prediction limits. Where initial exceedances were identified, verification resampling was completed in February 2023. Following verification resampling, an SSI for boron was identified at well AD-23 by intrawell analysis and an SSI for chloride was identified at well AD-36 by intrawell analysis. A summary of the detection monitoring analytical results for the downgradient compliance wells and the calculated prediction limits to which they were compared is provided in **Table 1**.

1.1 CCR Rule Requirements

TCEQ regulations regarding detection monitoring programs for CCR landfills and surface impoundments provide owners and operators with the option to make an ASD when an SSI is identified:

In making a demonstration under this section, the owner or operator must . . . within 90 days of making a determination of an SSI over the background value for any Appendix III constituent adopted by reference in §352.1421 of this title, submit a report prepared and certified in accordance with §352.4 of this title (relating to Engineering and Geoscientific Information), to the executive director, and any local pollution agency with jurisdiction that has requested to be notified, demonstrating that a source other than a coal combustion residuals unit caused the SSI or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. (30 TAC §352.941(c)(2)).

Pursuant to 30 TAC §352.941(c)(2), Geosyntec Consultants, Inc. (Geosyntec) has prepared this ASD report on behalf of American Electric Power (AEP) to document that the SSIs identified for boron and chloride in the groundwater monitoring network for the Landfill are from a source other than the Landfill.

1.2 Demonstration of Alternative Sources

An evaluation was completed to assess possible alternative sources to which the identified SSIs could be attributed. Alternative sources were categorized into the following five types, based on methods provided by the Electric Power Research Institute (EPRI 2017):

- ASD Type I: Sampling Causes
- ASD Type II: Laboratory Causes
- ASD Type III: Statistical Evaluation Causes
- ASD Type IV: Natural Variation
- ASD Type V: Alternative Sources

A demonstration was conducted to show that the SSIs identified for boron and chloride were based on a Type IV cause and Type V cause, respectively, and not by a release from the Pirkey Landfill.

2. SUMMARY OF SITE CONDITIONS

The Landfill design and construction, regional geology and site hydrogeology, and groundwater monitoring network and flow conditions are described below.

2.1 Landfill Design and Construction

The Pirkey Landfill was designed to receive CCR materials including fly ash, bottom ash, economizer ash, and stabilized flue gas desulfurization sludge (Arcadis 2022). The Landfill consists of cells which have been constructed periodically since 1984, when the first cell was developed at the northeastern corner of the Landfill. The most recent cell that has been developed was constructed at the southeast corner of the Landfill beginning in 2018. The Landfill is now approximately 134 acres in size.

The Landfill was constructed within an unnamed tributary creek, and the base of the Landfill is partially excavated into the creek bed (Arcadis 2022). Earthen embankments were installed around portions of the Landfill to control stormwater flow. Leachate is drained from the Landfill via bottom area drains and collection pipes installed at the base of the Landfill. From previous investigations of the Landfill summarized by Arcadis (2022), the Landfill was constructed with an engineered liner. The initial cells included a 3-foot thick compacted soil liner. In 1995, the design was modified to include a 60-mil thick high-density polyethylene (HDPE) geomembrane liner overlying a geosynthetic clay liner. The most recent cell was constructed with a single-composite liner system consisting of, from top to bottom: a 2-foot thick leachate drainage layer; a 60-mil thick HDPE geomembrane liner; and a 2-foot thick compacted clay liner (Akron Consulting, LLC 2022).

As of December 2022, the 2018 expansion is the only cell still actively receiving waste. The approximate area of active waste placement is shown in **Figure 2**. The remainder of the Landfill is either considered closed and covered by a final vegetative cover or closure turf material or considered inactive with temporary soil cover (AEP 2022).

2.2 Regional Geology / Site Hydrogeology

The Landfill is positioned on an outcrop of the Eocene-age Recklaw Formation, which consists predominantly of clay and fine-grained sand (Arcadis 2022). The Recklaw Formation is underlain by the Carrizo Sand, which crops out in the topographically lower southern portion of the plant. The Carrizo Sand consists of fine- to medium-grained sand interbedded with silt and clay.

The Landfill monitoring well network monitors groundwater within the uppermost aquifer, which was defined by Arcadis (2022) as very-fine- to fine-grained clayey and silty sand located below and adjacent to the Landfill, between an elevation of approximately 270 and 330 feet above mean sea level. Cross sections and a cross-section location map from the Arcadis Monitoring Well Network Report (2022) are provided as **Attachment A**. Geologic cross sections C-C' and D-D' show the subsurface structure of the uppermost aquifer (indicated as clayey silty sand, brown to gray) underlying the Landfill. These geologic cross sections also demonstrate lateral continuity of the uppermost aquifer, spanning both directions underneath the entire length of the Landfill.

2.3 Groundwater Monitoring Network and Flow Conditions

The Landfill monitoring well network consists of upgradient monitoring wells AD-8, AD-12, AD-16, and AD-27, and downgradient compliance wells AD-23, AD-34, and AD-36. AD-36 was installed in April 2019 (after the initial monitoring well network was already in place) as a replacement for well AD-35, which was decommissioned in November 2018 due to the Landfill expansion (Arcadis 2022). The groundwater flow direction near the Landfill is south-southwesterly (**Figure 1**). Seasonal variability in groundwater flow direction has not been observed since the monitoring well network was installed.

3. ALTERNATIVE SOURCE DEMONSTRATION

The ASD evaluation methods, proposed alternative sources for boron and chloride, and future groundwater sampling requirements are described below.

3.1 Proposed Alternative Source

An initial review of site geochemistry, site historical data, and laboratory quality assurance and quality control data did not identify alternative sources for boron and chloride due to Type I (sampling), Type II (laboratory), or Type III (statistical evaluation) issues. Groundwater sampling, laboratory analysis, and statistical evaluations were generally completed in accordance with 30 TAC §352.941(a) and the draft TCEQ guidance for groundwater monitoring (TCEQ 2020). Based on a review of groundwater data, the SSI for boron was attributed to natural variation, a Type IV issue. The SSI for chloride was attributed to anthropogenic impacts associated with construction activities near the Landfill, which is a Type V issue.

3.1.1 **Boron**

An SSI for boron was observed at downgradient well AD-23. Boron concentrations at AD-23 are within the range of those observed at other wells in the groundwater monitoring network (**Figure 3**). Upgradient background well AD-8 consistently has greater boron concentrations than downgradient well AD-23. Given that the uppermost aquifer unit is horizontally continuous in the area surrounding the Landfill (**Attachment A**), migration of boron from this upgradient location to downgradient wells is feasible. Therefore, the boron concentrations observed at AD-23 are within the expected range attributable to natural variation within the aquifer.

Furthermore, it is difficult to quantify any increase in boron concentrations at AD-23 based on the February 2023 verification resample laboratory results. Boron was detected at AD-23 at concentrations between the method detection limit and the reporting limit; therefore, the value was J-flagged and interpreted as estimated (**Attachment B**). The equipment blank associated with AD-23 also had detectable levels of boron. The detected boron concentration in the equipment blank (estimated [J-flagged] value of 0.009 milligrams per liter [mg/L]) was more than 10% of the reported value for boron in sample AD-23 (estimated [J-flagged] value of 0.049 mg/L), which could result in a high bias in the AD-23 boron results.

Sulfate concentration trends at AD-23 do not support a release from the Landfill. Sulfate is considered a geochemically conservative parameter and indicator for potential CCR releases. A review of the sulfate concentrations at downgradient well AD-23 over time do not display an increasing trend (**Figure 4**). A leachate sample collected in February 2023 from the Landfill had a reported sulfate concentration of 329 mg/L, which is over an order of magnitude higher than those observed at AD-23 (**Attachment C**). If Landfill leachate were impacting groundwater quality at downgradient wells, an increase in sulfate concentrations at AD-23 would also be expected. Therefore, the variability of boron in groundwater at AD-23 should not be attributed to a release from the Landfill.

3.1.2 Chloride

An SSI for chloride was observed at well AD-36, which is located immediately downgradient of the Landfill adjacent to a non-CCR pond. A number of construction activities were completed in the vicinity of AD-36 in late 2022 and early 2023, including earthworks and construction to support

the installation of an evaporation system associated with plant closure. An area of the non-CCR pond immediately adjacent to AD-36 was bermed and lined to support its use as brine storage, as shown in the photograph provided in **Figure 5**.

Well AD-36 is screened from 5-15 feet below ground surface, as shown in the boring log and well construction diagram provided as **Attachment D**. Given the proximity of AD-36's screen to the ground surface and the construction activities occurring immediately adjacent to AD-36 within the non-CCR pond, these construction activities likely resulted in a change to groundwater composition at AD-36. The location of AD-36 relative to the brine storage area that was recently constructed is shown in **Figure 6**.

The attribution of the chloride SSI to anthropogenic impacts associated with site construction instead of a release from the Landfill is further support by the lack of increasing sulfate concentrations at AD-36. As discussed in Section 3.1.1, sulfate is an indicator for potential CCR releases. A review of the sulfate concentrations at downgradient well AD-36 over time do not display an increasing trend (**Figure 4**). Therefore, the change in chloride in groundwater at AD-36 should not be attributed to a release from the Landfill.

3.2 Sampling Requirements

As the ASD presented above supports the position that the identified SSIs are not due to a release from the Pirkey Landfill, the unit will remain in the detection monitoring program. Groundwater at the unit will continue to be sampled for Appendix III parameters semiannually.

4. CONCLUSIONS AND RECOMMENDATIONS

The preceding information serves as the ASD prepared in accordance with 30 TAC §352.941(c)(2) and supports the position that the SSIs for boron and chloride identified during detection monitoring in November 2022 were not due to a release from the Landfill. The identified SSIs should instead be attributed to natural variation (boron) and anthropogenic impacts due to site construction activities (chloride). Therefore, no further action is warranted, and the Pirkey Landfill will remain in the detection monitoring program. Certification of this ASD by a qualified professional engineer is provided in **Attachment E**.

5. REFERENCES

- AEP. 2022. 2022 Annual Landfill Inspection Report. H.W. Pirkey Plant. American Electric Power. December.
- Akron Consulting, LLC. 2022. 2018 Landfill Cell Liner and Leachate Collection Construction Certification. January.
- Arcadis. 2022. Landfill CCR Groundwater Monitoring Well Network Evaluation Update. H.W. Pirkey Power Plant. January.
- Broom, M.E., and B.N. Myers. 1966. Report 27 Ground-Water Resources of Harrison County, Texas. Texas Water Development Board. United States Geological Survey. August.
- EPRI. 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites. 3002010920. Electric Power Research Institute. October.
- Geosyntec. 2018. Statistical Analysis Summary Landfill. H.W. Pirkey Power Plant. Hallsville, Texas. Geosyntec Consultants, Inc. January.
- Geosyntec. 2020. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Plant Landfill. Hallsville, Texas. Geosyntec Consultants, Inc. January.
- Geosyntec. 2021. Statistical Analysis Summary Background Update Calculations. H.W. Pirkey Plant Landfill. Hallsville, Texas. Geosyntec Consultants, Inc. October.
- Geosyntec. 2023. Alternative Source Demonstration Report Texas State CCR Rule. H. W. Pirkey Plant Landfill. Hallsville, Texas. Geosyntec Consultants, Inc. February.
- TAC. 2020. Texas Administrative Code, Title 30, Part 1, Chapter 352: Coal Combustion Residuals Waste Management. May 22.
- TCEQ. 2020. Coal Combustion Residuals Groundwater Monitoring and Corrective Action Draft Technical Guideline No. 32. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action. Texas Commission on Environmental Quality, Waste Permits Division. May.

TABLES

Table 1. Detection Monitoring Data Evaluation Alternative Source Demonstration Report Pirkey Plant, Landfill

A 14 -	Unit	Description	AD-23		AD-34		AD-36	
Analyte			11/14/2022	2/28/2023	11/14/2022	2/28/2023	11/14/2022	2/28/2023
Boron	ma/I	Intrawell Background Value (UPL)	0.0433		0.145		0.0702	
Doron	mg/L	Analytical Result	0.078	0.049 J1	0.067		0.068	
Calcium	mg/L	Intrawell Background Value (UPL)	0.536		42.8		0.304	
Calcium	IIIg/L	Analytical Result	0.24		44.6	41.9	0.28	
Chloride	mg/L	Intrawell Background Value (UPL)	8.88		9.35		9.54	
Cilioride		Analytical Result	7.49		7.47		11.1	11.7
Fluoride	mg/L	Intrawell Background Value (UPL)	1.00		1.29		0.0800	
Truoride		Analytical Result	0.06		0.44		0.07	
		Intrawell Background Value (UPL)	5.2		4.2		5.7	
pН	SU	Intrawell Background Value (LPL)	2.8		2.9		3.5	
		Analytical Result	4.5		3.5		4.5	
Sulfate	mg/L	Intrawell Background Value (UPL)	14.5		1,280		4.20	
Sullate	mg/L	Analytical Result	8.03		1,250		2.93	
Total Dissolved Solids	mg/L	Intrawell Background Value (UPL)	111		1,700		98.5	
Total Dissolved Solids		Analytical Result	80		1,720	1,640	50	

Notes:

Bold values exceed the background value.

Background values are shaded gray.

LPL: lower prediction limit mg/L: milligrams per liter

SU: standard units

UPL: upper prediction limit

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

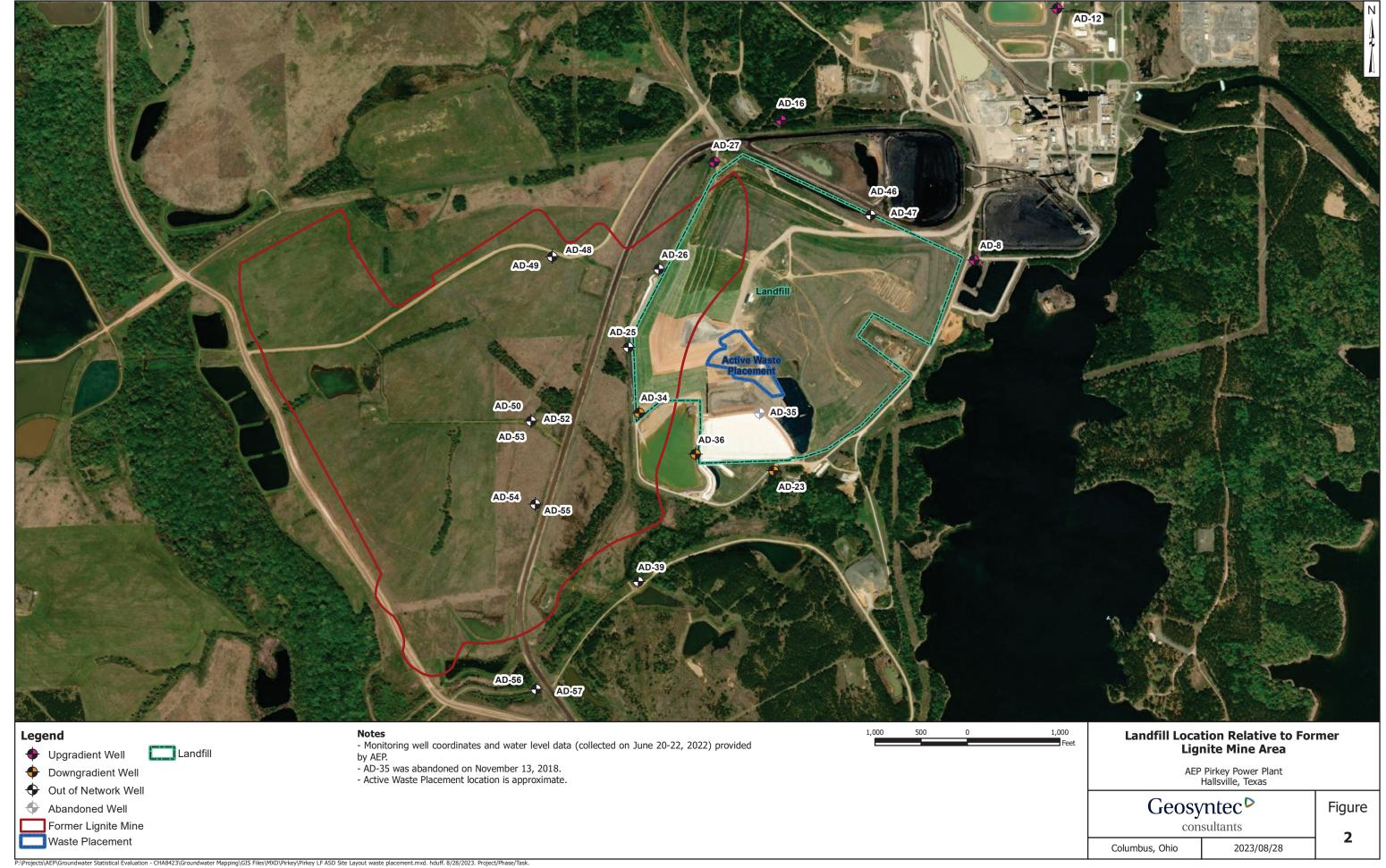
FIGURES

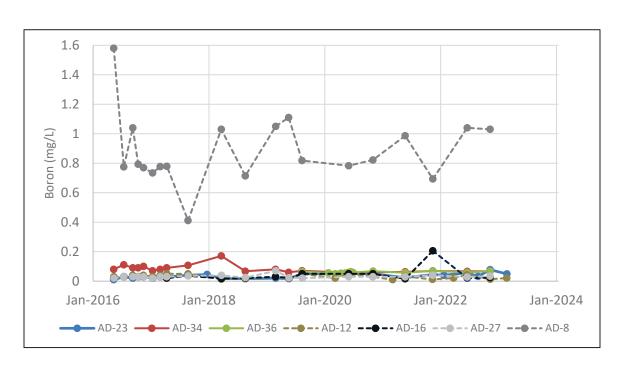
Legend

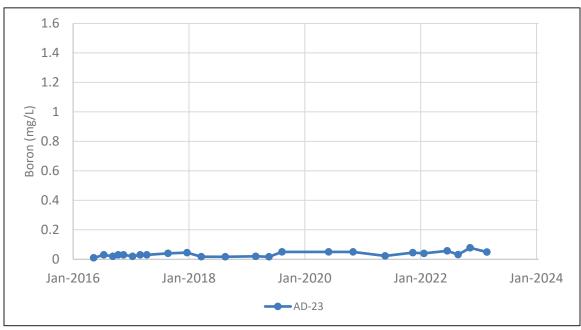
- Out of Network
- EBAP
- ◆ WBAP
- Landfill
- Stackout Area
- EBAP and WBAP
- Groundwater Monitoring Wells

 All CCR Unit Networks
 - Piezometer
 - ---- Groundwater Elevation Contour
 - **- -** Groundwater Elevation Contours (Inferred)
 - → Approximate Groundwater Flow Direction

Notes


- Monitoring well coordinates and water level data (collected on November 15, 2022) provided by AEP.
- Site features based on information available in CCR Groundwater Monitoring Well Network Evaluation Update (Arcadis, 2022) provided by AEP.
- Groundwater elevation units are feet above mean sea level.
- AD-10, AD-19, AD-20, AD-21, AD-29, and W-3 were not gauged during the November 2022
- AD-35 was abandoned on November 13, 2018.



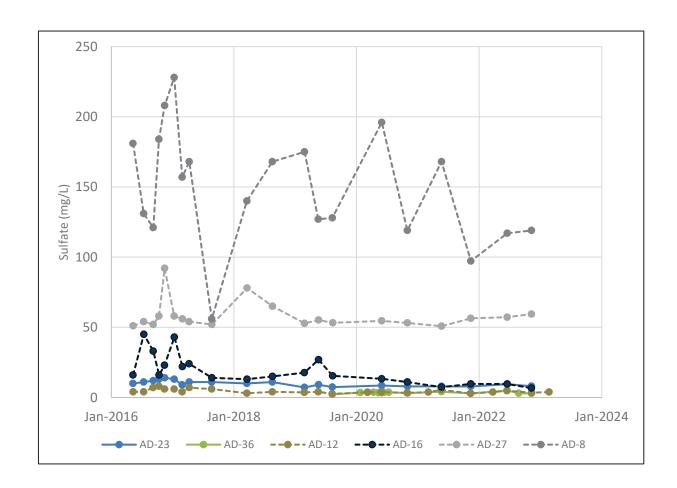

Potentiometric Contours - Uppermost Aquifer November 2022

AEP Pirkey Power Plant Hallsville, Texas

Geosy	Figure	
con		
Columbus, Ohio	2023/01/17	1

Notes: Boron concentrations are shown in milligrams per liter (mg/L). Solid lines represent downgradient wells and dashed lines represent upgradient wells.

Boron Time Series Graph Pirkey Landfill



ELECTRIC

Aug-2023

Figure

3

Notes: Sulfate concentrations are shown in milligrams per liter (mg/L). Solid lines represent downgradient wells and dashed lines represent upgradient wells. AD-34 is not shown due to effect of acid mine drainage on sulfate concentrations at that location.

Sulfate Time Series Graph Pirkey Landfill

Notes: Photograph illustrating the construction of a lined brine tank immediately adjacent to monitoring well AD-36. The photograph was taken looking south on July 28, 2023.

Non-CCR Pond Construction Photograph Pirkey Landfill

Figure

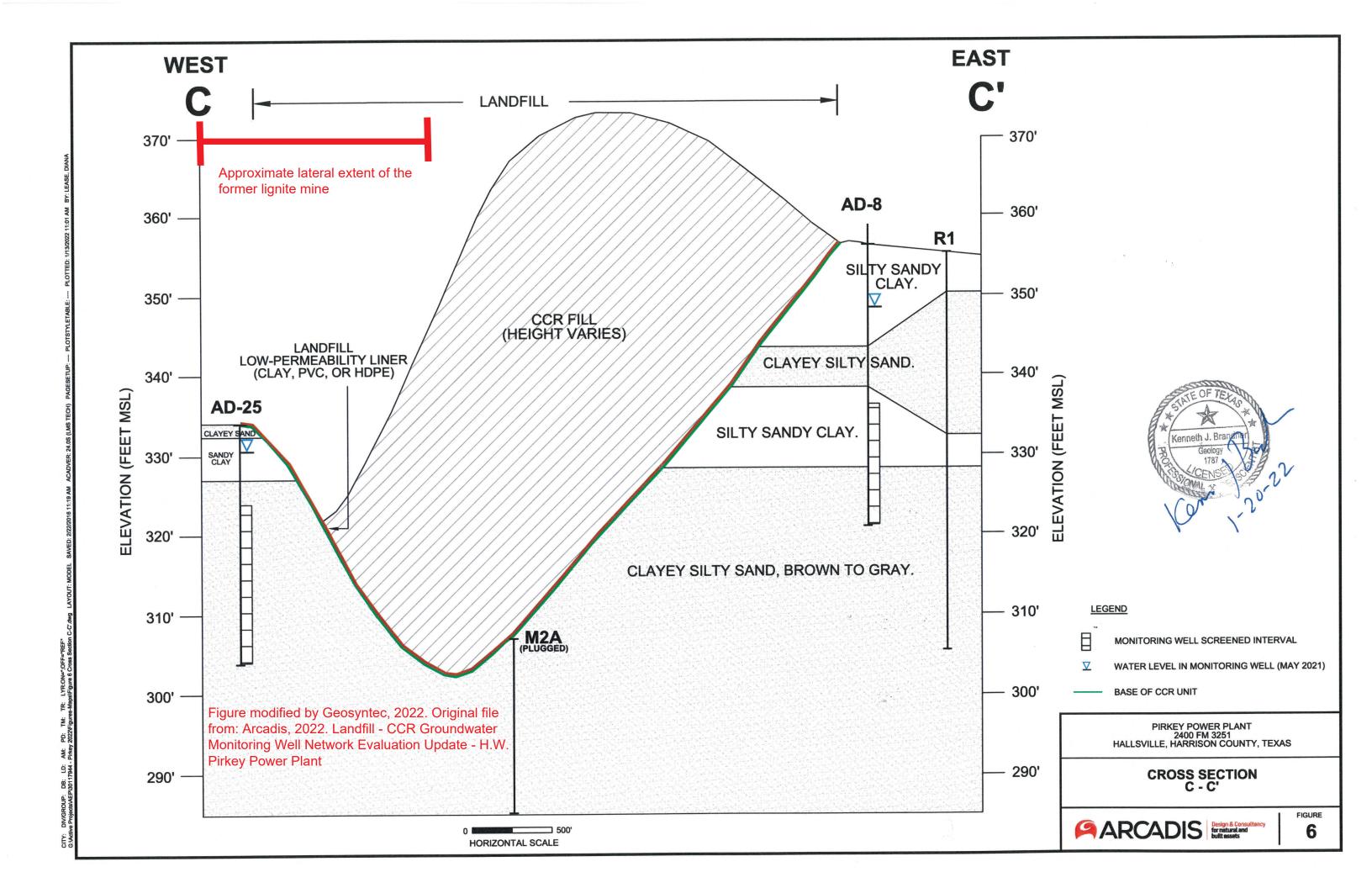
Columbus, Ohio

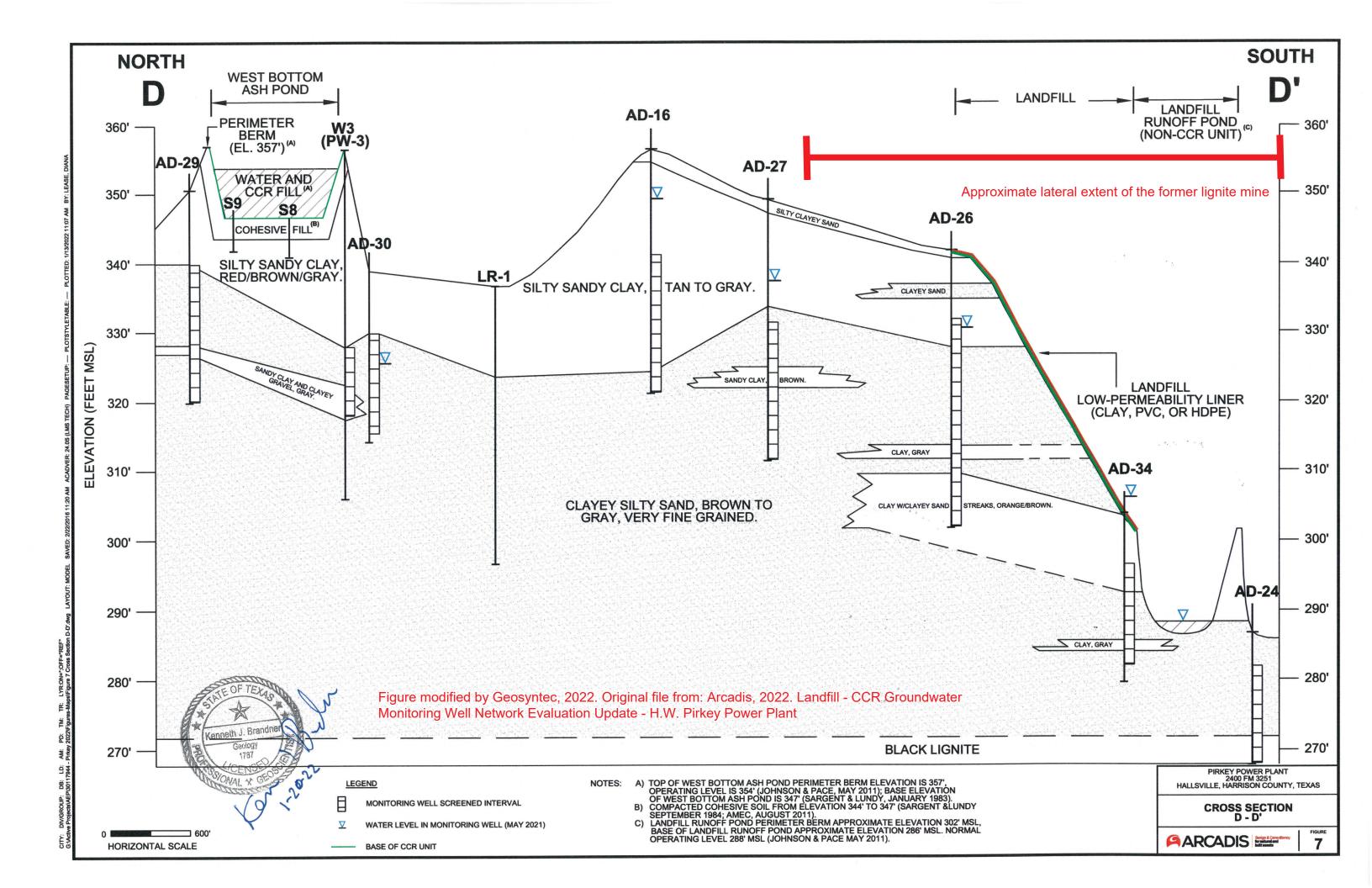
Aug-2023

5

Notes: Photograph depicting the location of AD-36 relative to the newly constructed brine tank portion of the non-CCR pond. The photograph was taken looking northwest on August 28, 2023.

AD-36 Location Photograph Pirkey Landfill




Figure

Columbus, Ohio Aug-2023 6

ATTACHMENT A Arcadis Geologic Cross Sections

Document Path: T:\ ENV\AEP\Pirkey Plant\MXD\Updated\Figure 3 - Site Layout and Well Locations.mxd

ATTACHMENT B

February 2023 Pirkey Landfill Resample Laboratory Analytical Report

Water Analysis Report

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230702 Customer: Pirkey Power Station Date Reported: 04/06/2023

Customer Sample ID: AD-23 Customer Description:

Lab Number: 230702-001 Preparation:

Date Collected: 02/28/2023 12:05 EST Date Received: 03/06/2023 14:20 EST

Metals

Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method

Boron 0.049 mg/L 1 0.050 0.009 J1 GES 03/08/2023 19:48 EPA 200.8-1994, Rev. 5.4

Customer Sample ID: AD-34 Customer Description:

Lab Number: 230702-002 Preparation:

Date Collected: 02/28/2023 12:13 EST Date Received: 03/06/2023 14:20 EST

Metals

Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method

Calcium 41.9 mg/L 1 0.05 0.02 GES 03/08/2023 20:03 EPA 200.8-1994, Rev. 5.4

Customer Sample ID: DUPLICATE AD-34 Customer Description:

Lab Number: 230702-003 Preparation:

Date Collected: 02/28/2023 12:13 EST Date Received: 03/06/2023 14:20 EST

Metals

Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method

Calcium 40.8 mg/L 1 0.05 0.02 GES 03/08/2023 20:08 EPA 200.8-1994, Rev. 5.4

Customer Sample ID: EQUIPMENT BLANK Customer Description:

Lab Number: 230702-004 Preparation:

Date Collected: 02/28/2023 11:35 EST Date Received: 03/06/2023 14:20 EST

Metals

Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method Boron 0.009 mg/L 0.050 0.009 J1 **GES** 03/08/2023 20:14 EPA 200.8-1994, Rev. 5.4 Calcium <0.02 mg/L 0.05 0.02 U1 GES 03/08/2023 20:14 EPA 200.8-1994, Rev. 5.4

Water Analysis Report

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230702 Customer: Pirkey Power Station Date Reported: 04/06/2023

Customer Sample ID: FIELD BLANK

Customer Description:

Lab Number: 230702-005

Preparation:

Date Collected: 02/28/2023 11:37 EST

Date Received: 03/06/2023 14:20 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	<0.009 mg/L	1	0.050	0.009 U1	GES	03/08/2023 20:19	EPA 200.8-1994, Rev. 5.4
Calcium	<0.02 mg/L	1	0.05	0.02 U1	GES	03/08/2023 20:19	EPA 200.8-1994, Rev. 5.4

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.
- U1 Not detected at or above method detection limit (MDL).

ATTACHMENT C 2023 Pirkey Landfill L

February 2023 Pirkey Landfill Leachate Laboratory Analytical Report

Water Analysis Report

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230659 Customer: Pirkey Power Station Date Reported: 04/06/2023

Customer Sample ID: EBAP Customer Description: TG-32

Lab Number: 230659-003 Preparation:

Date Collected: 03/01/2023 00:23 EST Date Received: 03/02/2023 10:30 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.59 mg/L	5	0.25	0.05	CRJ	03/16/2023 13:42	EPA 300.1 -1997, Rev. 1.0
Chloride	84.5 mg/L	5	0.10	0.05	CRJ	03/16/2023 13:42	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.56 mg/L	5	0.15	0.05	CRJ	03/16/2023 13:42	EPA 300.1 -1997, Rev. 1.0
Sulfate	2780 mg/L	100	20	3	CRJ	03/16/2023 19:11	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	03/03/2023 11:26	SM 2320B-2011	
TDS, Filterable Residue	3900 mg/L	20	1000	400	SDW	03/07/2023 10:50	SM 2540C-2015	

Customer Sample ID: Leachate Customer Description: TG-32

Lab Number: 230659-004 Preparation:

Date Collected: 02/28/2023 10:55 EST Date Received: 03/02/2023 10:30 EST

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	1.82 mg/L	5	0.25	0.05	CRJ	03/16/2023 14:15	EPA 300.1 -1997, Rev. 1.0
Chloride	41.7 mg/L	5	0.10	0.05	CRJ	03/16/2023 14:15	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.47 mg/L	5	0.15	0.05	CRJ	03/16/2023 14:15	EPA 300.1 -1997, Rev. 1.0
Sulfate	329 mg/L	50	10	2	CRJ	03/16/2023 21:23	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units D	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	94 mg/L	1	20	5	MGK	03/03/2023 11:26	SM 2320B-2011
TDS, Filterable Residue	600 mg/L	20	1000	400 J1	SDW	03/03/2023 12:09	SM 2540C-2015

ATTACHMENT D AD-36 Boring Log and Well Construction Diagram

SOIL/WELL BORING LOG Well/Boring #: AD-36 Date Drilled: 4/24/19 15 feet 8.25 inches Depth of Boring/well: Diameter of Boring: 2 inches Length of Screen: 10 feet Diameter of Screen: **Auckland Consulting LLC** 5 feet Length of Casing: Diameter of Casing: 2 inches 0.010 inches Filter Pack: 20/40 Slot Size: Logged By: John J. Tayntor Sch 40 PVC Screen Material: TBPE Firm No. F16721 //// - Clay - Concrete/cement - Silty Sand AEP - Pirkey Power Station 99202 Harrison County Silty Clay Sandy Clay C&S Lease - Bentonite Drilling Co.: Buford E. Collier Driller: :::: - Sand - Lignite Drilling Method: Hollow Stem Auger - Well Screen 04/30/2019 IIIII - Gravel ∇ - Initial Water Level PID Depth **GEOLOGIC** Lithology Depth Well Completion Remarks DESCRIPTION Classification and Lithology Feet ppm Feet -0.0Fill - Reddish Brown, Sandy Lean Clay (CL) with gravel CL/Fill **-** 5.0 Reddish Brown and Tan, Clayey Sand (SC), with gravel SC **-** 10.0 Reddish brown, Sandy Lean Clay (CL), few gravel CL 11-14 Reddish brown, Clayey Sand (SC), with gravel SC 14-15 **-** 15.0 Well TD = 15 feet. *Soil descriptions based on visual observations and intervals are approximate. MW Location Coordinates: N6871017.4, E3202874.4

CERTIFICATION BY A QUALIFIED PROFESSIONAL ENGINEER

I certify that the above described alternative source demonstration is appropriate for evaluating the groundwater monitoring data for the Pirkey Landfill CCR management area and that the requirements of 30 TAC §352.941(c)(2) have been met.

Beth Ann C	Gross
------------	-------

Signature

Printed Name of Licensed Professional Engineer

Bets am Geors

Geosyntec Consultants 2039 Centre Pointe Blvd, Suite 103 Tallahassee, Florida 32308

Texas Registered Engineering Firm No. F-1182

79864 <u>Texas</u>

License Number Licensing State

September 5, 2023

Date

APPENDIX 4- Field Reports

Facility: Pilley	Sampling Period: 2-2-23	
Sampling Contractor:	Signature: That Simples	

Well No.	Well Locked	Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Housing, and Pad in Good Shape	Well Properly Labeled	Well cap present	Comments
B-2				/		g.		no lack
ADIL		/	V	/	_		~	I abolad as MW-12
AD-32	/	/	/			/	_	
AD-31	<u></u>	~		/		✓	/	
AD: 26	1	/	/	/		_		
AD-25	/	/	-	_	/		~	
AD-36	/	_	~					
AD-23	/	/	/					
7								
							E.	
							6 11 11	1: 6-1

<u>Instructions:</u> Complete form and submit to AEP Environmental Services with Field Data. Place check mark for items that are satisfactory. Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

Facility: AFP PIRK MP	Sampling Period: FRAUAN 127-28, 2023
Sampling Contractor:	Signature:

Well No.	Well Locked	Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Housing, and Pad in Good Shape	Well Properly Labeled	Well cap present	Comments	
A0-13	V	✓	V			/	/		
AD-22	V	V		V	/	✓	<u> </u>		
AD-33			V	1	/	✓	/		
AD-2	V		~	√	✓ 	¥/	V		
13-3				V	✓		V	NO LOCH	
PD-18	V	V	✓	V		√	\checkmark		Almas S
AD-4					/	V	\checkmark	BETT IN ACCESS	ACCESS IS ALONG STEEP SLOPE ON ACROS DIFCH SOMETIMES WA
AD-7	V	V	√	$\sqrt{}$		V	✓	RUSTED HARATOOP	W
AD-34	V	V	V	V		\checkmark	✓	HINCE RUSTION + BROKEFN	BEOFFIED WITH UT
	-								
	.								

<u>Instructions:</u> Complete form and submit to AEP Environmental Services with Field Data. Place check mark for items that are satisfactory. Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

Facility Name	HEP PIRKEY PP
Sample by	Kfory miDenaid

Depth to water, feet (TOC)	15.92	
Measured Total Depth, feet (TO	40.36	

Sample Location ID	AD-Z	
Depth to water date	02/27/23	

urge Sta	bilization Data								
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
•	(from TOC)	(mL/min)	(S.U.)	(µS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1038	15.98	200	3.86	772	1,2	2,13	399	70.76	
1043	16,21	200	3,81	751	0.0	1.97	398	20.69	
1048	16,28	200	3,78	752	0.0	1,97	398	20,68	
1053	16.30	200	3,78	752	0,0	1,84	397	20.72	
									•
	·								
-				. <u> </u>					
_			<u>. </u>	<u> </u>					
				<u> </u>		-			
				<u></u>					
				<u> </u>		<u> </u>			-
							<u> </u>		

Total volume purged	
Sample appearance	CIFAN
Sample time	10SS.
Sample date	02/27/23

Facility Name	A ED PIAMON PP
Sample by	Kinny mi Donald

Depth to water, feet (TOC)		10,75	
Measured Total Depth, feet (*	roc)	47,29	

Sample Location ID	A 0-4	
Depth to water date	D 2/28/23	

Purge Sta	bilization Data		<u>-</u>							
Tima	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
0856	10.79	1,80	4,84	84	18,3	4.21	414	18.80	<u>.</u>	
0801	10:82	180	4.87	84	16.8	2.89	408	19.63		
0906	10,86	180	4.87	84	16.5	2,85	402	19.87		
09/1	10,90	180	4,89_	84	17,2	2.81	396	19.91		
				<u> </u>						
		. "								
ĺ									-	
										<u></u>
				<u></u>						
_				·						
ĺ				···			<u> </u>			
			-				<u> </u>			

Total volume purged		
Sample appearance	CIGAN	
Sample time	0913	
Sample date	02/28/23	

DUP-2 Wadminis

	<u> </u>
Facility Name	Pinnon PP
Sample by	KIMMY REDONALU

Depth to water, feet (TOC)	14,1(
Measured Total Depth, feet (TOC)	41.98

Sample Location ID	AU-7	
Depth to water date	1 02/23/23	

Purge Sta	bilization Data									
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
1001	14.51	170	3,48	337	1, 3	2,87	446	23,21		
1006	14,53	176	3,58	360	2.4	1.34	439	23,39		
10/)	14.58	178	3,62	368	2,8	1,29	431	23.42		
1016	14,63)70	3,63	374	2,2	_ کے ا	427	23,47		
	-									
							-			
	<u>-</u> -									
_										
							<u> </u>			
	<u> </u>		-		-					
			<u> </u>			<u> </u>	<u> </u>		-	
_			-						·	
			-							
					-					
				-	_		<u> </u>			

Total volume purged	
Sample appearance	CILAR
Sample time	1018
Sample date	07/18/13

Facility Name	
Sample by	Pivley
D	MH Honiltin
Depth to water, feet (TOC)	16
Measured Total Depth, feet (TOC)	13.25
7.	52.00

Sample Location ID	AD -D	
Donalis		
Depth to water date	2-77-32	

Time	oilization Data Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond	Turbidity	D.O.	ORP	Tompout		
934	13.64	300	3.68	(μS/cm)	(N.T.U)	(mg/L)'	(mV)	Temperature (°C)		
454	14.04	300	3.80	50 50	3.8	5.38	264	264	-	
					2.1	5.27	273	283		-
	·								_	
									, ,	
		-						2 ,		
		i i								p
						-		24 0		

Total volume purged	,
Sample appearance	Cleef
Sample time	621
Sample date),)7,)3

Dup-1

Facility Name	AEP PINNOY PP
Sample by	KAMA Mi Denaid

Depth to water, feet (To	DC)	11.40	
Measured Total Depth, f	eet (TOC)	40.70	

Sample Location ID	A 0-13	
Depth to water date	02/27/23	

Purge Sta	bilization Data		,						·
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
1	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
0755	12.02	200	5,30	426	202	6.24	301_	20.31	
0800	12,15	200	4.91	423	178	2,49	284	20.25	
0800	12.23	200	4,83	421	101	2,42	242	20.19	
08/0	12,33	700	4.80	419	97.4	2,39	238	20:12	
0815	12,41	200	4,78	419	89.1	7,34	231	20.26	
				,				_	
		:							
						ļ <u> </u>		<u>.</u>	
	·								

Total volume purged	
Sample appearance	
Sample time	08/7
Sample date	02/27/23

•

Facility Name	PIPKEY PP
Sample by	KENNY McDONALD

<u> </u>	
Depth to water, feet (TOC)	3,85
Measured Total Depth, feet (TOC)	28,42

Sample Location ID	HD-18	
_		
Depth to water date	02/27/23	

Purge Sta	bilization Data									
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
1207	5,01	1/0	4.08	58	7,3	3,41	43/	16.02		
12/2	5.97	110	4,3,5	52	4.2	2.73	418	17.53		
	•			<u> </u>						
				,						
			-	WON'T HOL	o water L	Mr. FL			-	
	· <u> </u>						_	<u> </u>		
										·
						<u> </u>				
			<u> </u>							
	<u> </u>								<u>. </u>	
						,			<u> </u>	

Total volume purged		
Sample appearance	(l tan	
Sample time	() 825	
Sample date	02/28/23	

Facility Name	AFP PIRMOUPP
Sample by	Kinny Mi Donald

Depth to water, feet (TOC)	9,04
Measured Total Depth, feet (TOC)	32.70

Sample Location ID	A0-22	
Depth to water date	02/27/23	

Purge Sta	bilization Data									
Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.)	Spec Cond (µS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
0850	9.10	180	4,05	949	8.7	7,16	33 5	20.70		
0855	9.11	180	4.05	969	4,1	1.47	334	20.34		
0900	9.15	180	4,05	974	1,3	1.42	328	20.39		
2090	9,17	180	4,06	977	h 6	1.38	325	20,41		
1.2				•			<u>. </u>			
								-		
						<u></u>				
				· ·						
				<u> </u>						
				· · · · · · · · · · · · · · · · · · ·				<u> </u>		
						-		<u> </u>		
						<u> </u>				
						 				
	<u> </u>						<u> </u>			
				<u></u>				<u> </u>	l	

Total volume purged	
Sample appearance	CIMA
Sample time	0907
Sample date	02/17/13

Facility Name Sample by	Pillen
	17-17 Hentin
Depth-to water, feet (TOC)	3 34
Measured Total Depth, feet (TOC)	30,50

Sample Location ID	1 AD. 23
Depth to water date	7-58-54

Time Water I (from 1038 3-1043 3-1103 30.1103	Depth Flow Rate (mL/min) は	Spec Cond (μS/cm) 72 71 71 70 64 7σ	Turbidity (N.T.U) O Q 2.1 3.5 4.5	D.O. (mg/L) 2.86 3.15 3.25 3.35 3.33 3.34	ORP (mV) 239 22-7 228 221 226	Temperature (°C) 21.88 21.76 21.64 51.65 21.63 21.64	

Total volume purged	
Sample appearance	Clev
Sample time	
Sample date	2-7625

Facility Name Sample by	
Meth Hemilton	Sample Location ID
Depth-to water, feet (TOC) Measured Total Depth, feet (TOC)	Depth to water date
Purge Stabilization Data	[-26-23
Time Water Depth Flow Pate	

Time \$\(\begin{align*} \begin{align*} \chi_{\left(\beta) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Water Depth (from TOC) Solution (From TOC)	Flow Rate (mL/min) \(\frac{1}{2} \cdot \) \(\frac{1}{2} \cdot \)	pH (S.U.) 4.71 3.87 3.5(3.5c 3.0(Spec Cond (μS/cm) 1, 16, 1, 17, 1, 17, 1, 17, 1, 17,	Turbidity (N.T.U) 2	D.O. (mg/L) 1,7 % 0,7 Z 0,5 S - U7 0,43	ORP (mV) \{ \cdot \cdo	Temperature (°C) 2=.3C 2=.3C 2=.3U 2=.3U 2=.51		
otal volum	me purged								·	
ample ap ample tin ample da		2 -	138 28.23							

Total volume purged		
Sample appearance	Cley	
Sample time	428	
Sample date	2.58.53	

Facility Name	
Sample by	Tidley Nal 12:11
Depth-to water, feet (TOC)	Madt Hawilt
Measured Total Depth, feet (15.45
	47.76

Sample Location ID	AD-27
Donati	
Depth to water date	7-78-23

rige Stabiliz: Time \$23 \$25 \$33 \$33	Vater Depth (from TOC) 16:24 16:55	Flow Rate (mL/min) 300. 3-0. 3-0	pH (S.U.) 5.76 4.27 3.50	Spec Cond (µS/cm) 2, 3e 2, 80	Turbidity (N.T.U) 24.1 64.8	D.O. (mg/L) 2 17 0.56	ORP (mV) 145	Temperature (°C) ./7.5(
843 843 843	16.78 16.84 16.40 16.45	300 300 300 300 300	3.10 2.47 2.47 2.41 3.00	2 cxe 2 oso 2 osc 2 osc 2 osc	68.5 46.4 31.5 27.7 27.5	1.14	276 36 318 3-7 3-3 302	15.64 15.73 15.75 15.76 2-08 20.06	
			,					2 .	,
				-					

Total volume purged		<u> </u>
Sample appearance	clor	
Sample time	900	
Sample date	2-78-73	

Landfill daplicate

	•
Facility Name Sample by	
Jak Homilto	Sample Location ID
Depth to water, feet (TOC) Measured Total Depth, feet (TOC)	
37:32	Depth to water date

C1 1	<u> </u>	•
Sample Location ID		15,51
	· · · · · · · · · · · · · · · · · · ·	
Depth to water date		<u> </u>
Deptil to water date	<u>.</u>	フィフィファ

rge Stabilizat , Wa Time	ater Depth	Flow Rate	- pH	Span C i i					
(f (125	10 TOC) 6.76 6.86 6.83	(mL/min) 220 220 220 220	(S.U.) 3.58 3.58 3.50	Spec Cond (μS/cm) 2 4 7 2 1 φ 2 5 φ	Turbidity (N.T.U) (N.T.U) (N.T.U) (N.T.U)	D.O. (mg/L) 1.71 0.55 0.37	ORP (mV) 291 316	Temperature (°C)	
1147	6.85	7.2+	3.48	301	18.7	0.35	325 336	23.34 23.46 23.52	
					·		·		
	·					,			P

Total volume purged	
Sample appearance	1 0:1
Sample time	1147
Sample date	2-77.72

Facility Name	17
Sample by	Tilley
	Maint Hamilton
Depth to water, feet (TOC)	
Measured Total Depth, feet (TOC)	9,70
(1.50)	34/1

Sample Location ID	AN-32	
D	7,530	
Depth to water date	> > 7.71	

*

Purge Stabilization Data Time Water Depth	FI. D.	·						
Time (from TOC) \(\sigma^{\alpha} \) \(\cdot 2 \) \(Flow Rate (mL/min) 2c 21c 21c 21c 21c	pH (s.u.) 3.24 3.25 3.21 3.28 3.32	Spec Cond (μS/cm) 421 425 435 433	Turbidity (N.T.U) 65.6 43.5 71.6 9.5	D.O. (mg/L) 1.53 0.78 0.45 0.46	ORP (mV) 318 334 345 347 348	Temperature (°C) 21.3 21.84 22.15 22.42	
			0.00					
							2 .	
								,

Total volume purged	
Sample appearance	1 10.1
Sample time	1103
Sample date	2.7.7.7.3

,

, D

Facility Name	PIRKM PP
Sample by	KINNY MODERALU

.

Depth to water, feet (TOC)		17,19	
Measured Total Depth, feet (TOC)	•	32,50	

Sample Location ID	A D-33
	,
Depth to water date	02/27/23

Time a	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1941	12,24	200	3,95	264	1.3	7,13	365	20.97	
946	12,21	700	4.07	252	4.6	1.50	356	21,33	-
951	12.21	700	4107	250	2, Š	1,49	354	21,40	
956	12,22	200	4.67	248	2,2	1146	353	21,48	
	25 A								
	f = //.								
	,								
	·			•					
		·			<u></u>				
·					~				
				· .					
				· .	·		<u> </u>		
		-							
					_				I

Clan
0958
07/27/23

Facility Name	AEP PIRKMPP.	
Sample by	Kerry McDored	

Depth to water, feet (TOC)

Measured Total Depth, feet (TOC)

70

26.05

Sample Location ID	A0-34
Depth to water date	

bilization Data									
Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
	120	3.87	1610	2,6	2,87				
0,81	1,20	3,82	1610	3,4					
	120	3.81	1,610						
0.95	120	3.78	1630	7,2	1,24	353	24,4/1		
		-							
			-	-					
				····					
			,						
					<u> </u>				
			_		1	<u> </u>			
	Water Depth	Water Depth Flow Rate (from TOC) (mL/min) 0,74 120 0,81 120 0,90 120	Water Depth Flow Rate (mL/min) pH (s.U.) 0,74 120 3,87 0,81 120 3,82 0,90 120 3,81	Water Depth (from TOC) Flow Rate (mL/min) pH (s.U.) Spec Cond (μS/cm) 0,79 120 3,87 1010 0,81 120 3,82 1610 0,90 120 3,81 1610 0.95 170 3,78 1630	Water Depth (from TOC) Flow Rate (mL/min) pH (s.u.) Spec Cond (μS/cm) Turbidity (N.T.U) 0,79 120 3,87 100 2,0 0,81 120 3,82 1610 3,4 0,90 120 3,81 1610 5,7 0.95 170 3,78 1630 7,2	Water Depth (from TOC) Flow Rate (mL/min) pH (s.U.) Spec Cond (μS/cm) Turbidity (N.T.U) D.O. (mg/L) 0,79 120 3,87 1610 2,6 2,87 0,81 120 3,82 1610 3,9 1.36 0,90 120 3,81 1610 5,7 1,28 0,95 170 3,78 1630 7,2 1,24	Water Depth (from TOC) Flow Rate (mL/min) pH (s.u.) Spec Cond (μS/cm) Turbidity (N.T.U) D.O. (mg/L) ORP (mV) 0,74 120 3,87 1610 2,6 2,87 373 0,81 120 3,82 1610 3,4 1,36 364 0,90 120 3,81 1610 5,7 1,28 358 0,95 170 3,78 1630 7,2 1,24 353	Water Depth (from TOC) Flow Rate (mL/min) pH (s.u.) Spec Cond (μs/cm) Turbidity (N.T.U) D.O. (mg/L) ORP (mV) Temperature (mV) 0,74 120 3,87 1610 2,6 2,87 373 24,40 0,81 120 3,82 1610 3,4 1,36 364 24,42 0,90 120 3,81 1610 5,7 1,28 358 24,446 0,95 170 3,78 1630 7,2 1,24 353 24,446	Water Depth (from TOC) Flow Rate (mL/min) pH (s.u.) Spec Cond (μS/cm) Turbidity (N.T.U) D.O. (mg/L) (mV) ORP (mV) Temperature (°C) 0,7 Ч 120 3,87 1010 2,0 2,87 373 24,40 0,8 1 120 3,82 16,10 3,4 1,36 3,64 24,46 0,9 0 120 3,81 16,10 5,7 1,28 358 24,46 0,95 170 3,78 1630 7,2 1,24 353 24,41g

Total volume purged	
Sample appearance	CLENN
Sample time	1/13
Sample date	02/28/23

Facility Name	· P
Sample by	1 of Icey North Hymilton
Depth-to water, feet (Measured Total Depth,	roc) 7,65

	· · · · · · · · · · · · · · · · · · ·
Sample Location ID	AD-36
Depth to water date	2-7873

٦ .	oilization Data Water Depth	p-2-					•		· · ·	•
ime c c	(from TOC) S.01 8.06 \$ \$ \$	Flow Rate (mL/min) 226 226 226	pH (S.U.) 4.6e 4.56 4.53	Spec Cond (µS/cm) 47 70 64	Turbidity (N.T.U) 17. 3 4.4	D.O. (mg/L) 2-01 C 5-1	ORP (mV) 13 . 158 i73	Temperature (°C) といって、 ここれ 7人 ここれ 2人		
					(*·			•4		

		ببر المتناب المتناب	
Total volume purged			
Sample appearance	clev	•	•
Sample time	1923		
Sample date	2-78-3/		
·			
-		•	

.

Facility Name	D AL
Sample by	[//cey
	Matt Hanilton

Measured Total Depth, feet (TOC)

| 16.55 |
| Measured Total Depth, feet (TOC) | 51.44 |

Sample Location ID	B-7
. 0	
Depth to water date	2-77-00)>>

74	bilization Data Water Depth				A STATE OF THE PARTY OF THE PAR	CALLED THE CHICAGO CONTRACTOR OF THE CONTRACTOR			
835 844 845	(from TOC) 16.9 17.03 17.16	Flow Rate (mL/min) 306 300	pH (S.U.) 4.46 5.08 5.61	Spec Cond (μS/cm) 23	Turbidity (N.T.U) O G	D.O. (mg/L) 1/70 0.65	ORP (mV)	Temperature (°C) 15.57	
						,			
								2 3	
		·							,
				·					

Total volume purged		
Sample appearance	clear	
Sample time	857	
Sample date	2-27-73	

Dap-B

Facility Name	HER PIRKEY PP
Sample by	KINNY MIDENAL d

Depth to water, feet (TOC)	12.50
Measured Total Depth, feet (TOC)	37,49

Sample Location ID	B-3
Depth to water date	62/77/23

Purge Sta	bilization Data								1	
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (µS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
1141	13.63	102	4,55	278	6.7	2,83	366	20,47		
1146	15.02	102	4,80	197	2.8	1.91	370_	20.5%		-
	<u> </u>								<u> </u>	
										•
	·		WO	NIT HOLD	ATK LEVI	fl				
	··									
									:	
				·	<u> </u>	ļ.——				
,						<u> </u>				

Total volume purged	
Sample appearance	Clean
Sample time	0,755
Sample date	02/18/23

acility Na ample by	ime): (ICEY	Hamilly]					
Depth to	water, feet (TOC)		1/2/9	TIMEN LEG	<u> </u>	Sample Locat	ion ID	EBAP		
	Total Depth, feet (TOC)			-	Depth to wat	er date	2.28-	23	
	oilization Data					• .				
Time (123)	Water Depth (from TOC)	Flow Rate (mL/min)	・ pH (S.U.) - 口、ソフ	Spec Cond (µS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
							•	, , , , , , , , , , , , , , , , , , ,		
				,						-
			·		F-	 				

Total volume purged	
Sample appearance	(6)
Sample time	1123
Sample date	2-28-23

Facility Name Sample by	
Depth to water, feet (TOC)	Sample Location ID
Measured Total Depth, feet (TOC)	Depth to water date 2-28-23

īme	Water Depth (from TOC)	Flow Rate (mL/min)	рН	Spec Cond	Turbidity				-
177		(miz/min)	(S.U.)	(μS/cm) &15	(N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
								-2.16	

Total volume purged	
Sample appearance	(let
Sample time	C
Sample date	>-28-53

Well No.	Well Locked	Fastener and Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Protective Cover, Barriers and Pad in Good Shape	Weli Properly Labeled	Well Cap Present and Vented*	Comments
B-7								no label top won't do
An-31								no & (-bo)
WP > 20					/			
MAP -2	\mathcal{C}						<u> </u>	Overgrown
Ap. 17								OVERSY-VA
AP.27					-			
AD-25	1/	. ,		-	~			
1417.525			/					OURIGIONA
123	-							

^{*}Not all wells will be vented, especially flush mounted wells. If that is the case, please note "flush mount well" in the comments.

Facility: Afr PIAH PP	Sampling Period: JUNE 7023
Sampling Contractor: FAGIF	Signature:

Well No.	Well Locked	Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Housing, and Pad in Good Shape	Well Properly Labeled	Well cap present	Comments	
AD-13	V	V	V	V	V	V	V		
AD-22	V	V	✓	V	✓ <u> </u>	<u> </u>	V		
A0-33		V	V	$\sqrt{}$	\checkmark	\checkmark	\		
AD-7R	\vee	✓	✓	$\sqrt{}$	\checkmark		V	NO LABFL	
B-3	<u> </u>	\checkmark	$\sqrt{}$	\checkmark	V			NO LABEL	
AD-18	$\sqrt{}$	√	✓		\checkmark	\checkmark	/	TRAIL TO WHILL ARMY AROUND	WELL NEEDSCIFANING
AD-16	/		>	•	✓	✓	/	TRAIL TO WALL NEGOS CHARAPO	NEFOS NEW LOCK
A0-07	\checkmark	✓	✓	✓	✓	✓	✓		
A0-04					V	✓	/	NEFOS LOCK NEFOS WEFO FATING	LIMITA ALCISS TE WELL
								t are entirepretary	

<u>Instructions:</u> Complete form and submit to AEP Environmental Services with Field Data. Place check mark for items that are satisfactory. Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

Facility: Pirkey	Sampling Period:	Jue 2023
Sampling Contractor: Fuyle	Signature:	111

Well No.	Well Locked	Fastener and Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Protective Cover, Barriers and Pad in Good	Well Properly Labeled	Well Cap Present and Vented*	Comments
AD-12	5	5	5	5	Shape	5	5	
AD-32	5	5	5	5	5	5	5	
AD-a	5	5	5	5	5	5	5	
AD-28	5	5	5	5	5	5	5	
AD-26	3	5	5	5	5	5	5	
AD-34	.5	5	5	5	4	5	5	tinge Broken
AD.3	5	5	5	5	5	5	5	
A0-36	5	5	5	5	5	5	5	

^{*}Not all wells will be vented, especially flush mounted wells. If that is the case, please note "flush mount well" in the comments.

Facility Name	ADD D
Sample by	110 finer
	1883

Depth to water, feet (TOC)

Measured Total Depth, feet (TOC)

40-36

Sample Location ID	Ann
	7)0-a
Depth to water date	6/21/20

Time	Water Depth	Flow Rate	рН	Spec Cond	T 1	- Charles and Char	CONTRACTOR OF THE PERSON OF TH	and to be the second of the second		
024	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	Turbidity	D.O.	ORP	Temperature		T
	(7-03	200		206	(N.T.U)	(mg/L)	(mV)	(°C)		
034	17.06	200	3.69	714	2.8	9-10	382	26.36		-
039	()-10	20	3.35	716	1.6	1.29	. 384	24-93		
59	17-13	200	3-85	713	1-3	1-25	380	24-72		-
					173	1-24	379	24-86		
										-
			0.1							
	1									
		•						V 1		
								1		1
	1 1					-				
	,		-							
					, re-					
								••		1
										1
	THE THE THE PARTY OF THE PARTY	THE RESIDENCE OF THE PERSON OF	ROMENOUS REPORT OF THE PARTY OF	PROPERTY OF THE PROPERTY OF TH						<u> </u>

Total volume purged	
Sample appearance	den
Sample time	1042
Sample date	6/26/22

Facility Name Sample by	P. Ikey Mist H-milton	_
Depth-to water, feet (7	oct	_

Sample Location ID	AD-3
Depth to water date	
popul to water date	6-27-23

Donth to	
Depth-to water, feet (TOC)	
Measured Total Depth, feet (TOC)	30.3
7	5749
A CONTRACTOR OF THE PARTY OF TH	

1	bilization Data Water Depth	Fire D	<u>'</u>			-				
Fime 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	(from TOC) 33.72 33.8/, 33.45 34.67	Flow Rate (mL/min) 22 22 22 22c 22c	pH (S.U.) 6.01 5.55 5.72 5.84	Spec Cond (μS/cm) 2 <i>el</i> , 185 173	Turbidity (N.T.U) 3 4 8 /2 6.4 6.8	D.O. (mg/L) 1.53 1.11: 1.0[ORP (mV) 157 186 173	Temperature (°C) 26.55 25.68 25.61 25.55		
						<u> </u>				
			<u> </u>					<u> </u>		
	· .									
						<u> </u>	-			100
			-							
									· · · · · · · · · · · · · · · · · · ·	
								**		

Total volume purged	
Sample appearance	der
Sample time	la
Sample date	6-27-23

Facility Name	AFP PIRHOV PP		
Sample by	Korny MiDarkd		

Depth to water, feet (TOC)	14.13
Measured Total Depth, feet (TOC)	47.29

Sample Location ID	AD-04	
Depth to water date	1 0/2/27/25	

Purge Sta	bilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1053	14,19	164	4.47	98	42,3	4.28	377	24.68	
1658	14,23	164	4,51	98	37.6	3,74	362	24,59	
1103	14,25	164	4,53	95	36,5	3,69	360	24.55	
1108	14.41	11, 4	4153	92	34.9	3,63	366	24,51	

Total volume purged	
Sample appearance	TURSID
Sample time	11.10
Sample date	06/27/23

Facility Name	AFP PIRKTYPP	
Sample by	Kerry Mc Denaud	

Depth to water, feet (TOC)	14,96
Measured Total Depth, feet (TOC)	41,98

Sample Location ID	AD-07	
--------------------	-------	--

Depth to water date	06/27/23	
---------------------	----------	--

Purge Sta	bilization Data	п							
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
0934	15,13	174	3,84	316	1,1	2/13	321	24,91	w will a second
0939	15,20	174	3,80	32/	0	1.84	321	24,83	
0944	15,24	174	3,77	33 4	0.8	1,80	321	24.77	
0949	15,26	174	3.76	338	0,4	1,77	322	24.75	
							3,		
					-				
						3			

Total volume purged	
Sample appearance	CLAAL
Sample time	0951
Sample date	06/27/23

Facility Name	AEP	Dickey	
Sample by	RE	3	

Depth to water, feet (TOC)	12.56	
Measured Total Depth, feet (TOC)	31.33	

Sample Location ID	AD-8
Depth to water date	6/2/22

urge Sta	bilization Data			AND COMPANY OF THE PROPERTY OF	AND THE PROPERTY OF THE PARTY O			an and the second secon	THE PERSON WAS THE SOUTH OF THE PERSON
Time WUS (ICO WIS CONO	Water Depth (from TOC) (3.28 3.33 (3.35 (3.35	Flow Rate (mL/min) (67 63 63	pH (S.U.) 5.68 5.73 5.78 5.79	Spec Cond (μS/cm) 565 573 583 583	Turbidity (N.T.U) (Y-0) 7.6 7.6 7.7	D.O. (mg/L) 7.43 2.1(9.8 2.04	ORP (mV) (20 (66 /63 /58	Temperature (°C) 26.20 16.11 26.00 16.04	
SACH CONTRACTOR OF THE PROPERTY OF THE PROPERT		AND THE PROPERTY OF THE PROPER							

Total volume purged		
Sample appearance	dew	
Sample time	1024	
Sample date	6/27/27	

Deplicate

Facility Name	AEP PINH CY PP
Sample by	Kenny MiDonald

Depth to water, feet (TOC)	8,48	
Measured Total Depth, feet (TOC)	33,03	

Sample Location ID	AD-7K	
Depth to water date	06/26/23	

Purge Sta	abilization Data									
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
1025	8.48	120	4,67	241	6.4	2,04	273	28,92		
1030	8,50	120	4.76	240	2, 1	1,98	765	28,08		
1039	8,50	120	4.81	246	1.7	1,94	257	27.13		
1040	8.51	170	4.83	247	1,5	1.91	253	27.04		
1045	8.50	170	4,88	250	1.3	1.87	249	26,92		
						,				
N .					2					
					¥					
				8						
									¥	
									1	
							3.00			t
										7.

Total volume purged	
Sample appearance	CLGAR
Sample time	1047
Sample date	06/26/27

Facility Name	AFP Do
Sample by	He Pricey
	RES 1

Depth to water, feet (TOC)	10.0
Measured Total Depth, feet (TOC)	19-89
	5 250

Sample Location ID	AD- Q
Depth to water date	6/21/1

Time	Water Depth (from TOC) (3.2/	Flow Rate (mL/min)	pH (S.U.) 4.36	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L) 2.36	ORP (mV)	Temperature (°C)	
9743 9753	(3.5%	300	4.44 4.56 4.60	40 40 42	3.6 8.4 3.0	(.90	32x 32x	54.86 54.23 54.23 56.63	
		1							

Total volume purged	
Sample appearance	dat
Sample time	O)CF
Sample date	(/26/27

Facility Name	AFP PIRACT PD
Sample by	King Mi Donald

Depth to water, feet (TOC) 12,29

Measured Total Depth, feet (TOC) 40,70

Sample Location ID	AD-13	
		VIII.00-32-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-

Depth to water date 06/26/23

Purge Sta	abilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
0711	12136	174	5.52	702	128	5.27	194	25,49	
07/6	12,40	179	5,50	580	40.3	4,14	182	25,57	
0721	12,45	179	5,48	5.71.	36.8	4,10	173	25,61	
0726	12,48	174	5,47	569	31,2	4.07	170	25,63	
		1.							

Total volume purged	
Sample appearance	SLIGHTLY TURBID
Sample time	0728
Sample date	06/24/23

Duplicate - 1 1200

Facility Name	A CAPIANTY PP
Sample by	Ktory McDenald
Depth to water, feet (TOC)	17.61
Measured Total Depth, feet (TOC)	787U

Sample Location ID	AO-16
Depth to water date	06/27/23

Purge Sta	bilization Data								
T:	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
Time	(from TQC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
0837	17.45	192	4.30	159	41.2	1.47	3 <i>08</i>	75.2	
0842	17.67	192	4.33	159	33,6	1.15	3 16	25.07	
0847	17,72	192	437	160	35.7	1,12	319	24,93	
0852	17.76	192	4.38	159	37,9	1.09	322	24.91	
0857	17,77	192	4.38	159	38,2	1,06	325	24,88	
				• ,					
		·							
							•		
			: :						
									
			:-	-			W-1	·	
				-					
	 .								
									
					-				

Total volume purged	· · · · · · · · · · · · · · · · · · ·
Sample appearance	Clean
Sample time	0859
Sample date	06/27/23

Facility Name	
Sample by	Listey.
D	Mitt Hamilta
Depth-to water, feet (TOC))0.6/
Measured Total Depth, feet ((OC) 3,10

Sample Location ID	
T TO GOLD IT ID	AD-11
Depth to water date	
	6-26-23

ime 3 <i>c</i> 3 <i>5</i>	Water Depth (from TOC) 21.11 21.12	Flow Rate (mL/min) 200 200	pH (s.u.) 4.06 4.35	Spec Cond (µS/cm) le (Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
47	21,12) er 2er	4.48 4.48	ς2 - δ- 76	31.3 4.1 4.3	3.56	375 365 414 422	25.18 25.10 25.22 24.16	
							·		
									,
		:			``				
	·				(t-)				
									

Sample appearance Cless Sample time 1147	otal volume purged	
Sample time		1) and
Sample date 6-26-23	ample date	6-26-23

Facility Name	AFP PIRMEY PP
Sample by	Ktrny M (Dinaed

Depth to water, feet (TOC)	5, 46
Measured Total Depth, feet (TOC) 28,42

Sample Location ID	AO-18
Depth to water date	04/24/23

Purge Sta	bilization Data									
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
1138	6.24	108	4,52	50	21,9	2,27	264	25,13		
1143	7.09	108	4,40	51	18.6	1.93	284	25.16		
						ļ				
								•		
				WON'T HOLD	WATER LA	FL.			<u> </u>	
				·						
									<u> </u>	
					<u> </u>					
 			<u> </u>						<u> </u>	

Total volume purged	
Sample appearance	Cloan
Sample time	0742
Sample date	06/27/27

Facility Name	AFP PINHON PP
Sample by	Ktury miDonald

Depth to water, feet (TOC)		10.2	2
Measured Total Depth, feet (ГОС)	321	70

Sample Location ID	AD-22
•	

Depth to water date	06/26/23

_	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	·
0826	10.42	164	4,28	810	8,4	4.12	226	25,23	
0831	10,44	169	4,13	852	0	2,37	724	25,18	
0836	10.47	164	4,09	857	1,1	2,31	218	25,07	
0841	10,50	164	4,07	861	0	2,26	2/6	24.91	
	 								
	·								

Total volume purged	
Sample appearance	Chan
Sample time	0843
Sample date	06/26/23

Facility Name	
dentry Mame	
Sample by	Picket
	Clatt How! It an
D	
Depth-to water, feet (TOC)	
Measured Total Depth, feet	24.17
Teet ((100).

Sample Location ID	A)-23
Depth to water date	4-27-23

lime	Water Depth	Flow Rate	· pH	Spec Cond		-				·
44 44 54 54	(from TOC) 30.25 20) 30.27 30,28 30,28 30,28	(mL/min) 270 220 \$\mathref{T}\$\tag{2}\$2	(S.U.) 4.63 4.54 4.53 4.45 4.47	(μS/cm) 3 i 4 13 10 17 17 17 17 17 17 17 17	Turbidity (N.T.U) \$,3 14.5 7,2 6,5 6.3	D.O. (mg/L) 7.15 3.05 2.51 2.18	ORP ·(mV) 2/2 · 2/1 2.74 2.75 2.71	Temperature (°C) 24.61 26.61 26.16 25.86 25.72		
						,				
								a v		
				·					·	ŕ
										———

Total volume purged	
Sample appearance	Cer.
Sample time	1006
Sample date	6-27-23

Facility Name	
Sample by	Privey
Donth	Mit Hamilla
Depth to water, feet (TOC) Measured Total Depth, feet (T	74.3
Total Depth, feet (1	oc). 27,38

Sample Location ID	An- 25
Depth to water date	6-27-23

.]

lime	oilization Data Water Depth (from TOC)	Flow Rate	- pH	Spec Cond	Turbidity	_		****	,
-55	8.71 8.85	(mL/min) [20 [20	(S.U.) 4,42 4,51	(µS/cm) & 75	(N.T.U)	D.O. (mg/L) 2-24	ORP (mV) 275	Temperature (°C)	
10	5.43	120	4.73	474 1,024	37.1 37.5 37.3	1-63	226	29.35	
						1.28	184	26.82	·
								2 3	
		1							,
								*49	

Total volume purged	
Sample appearance	Cler
Sample time	517
Sample date	6-27-23

Facility Name	AEP Pirtue
Sample by	303

Depth to water, feet (TOC)

Measured Total Depth, feet (TOC)

15.42

42.73

Sample Location ID	20,21	
	175-06	

Depth to water date 6/27/23

Purge Sta	bilization Data		The Control of State of Control of the Control of the Control of the Control of Control	WHEN THE PROPERTY OF THE PROPE	THE RESERVE OF THE PROPERTY OF	CHANGE AND ADMILITATION THROUGH SPRING	Motoryte 2 - Market 24 to Think 2002 and	THE PROPERTY OF THE PROPERTY O	THE PERSONNELSE WAS ASSESSED.	Contraction to the contraction of
Time 0730	Water Depth (from TOC) (5.83 (6.13	Flow Rate (mL/min)	pH (S.U.) 4.76 3.56	Spec Cond (ルS/cm)	Turbidity (N.T.U) 75.4 Y3.0	D.O. (mg/L) (5.6	ORP (mV) 156	Temperature (°C) 24.67 34.14		
0740	16,25	300	3.36	2066 2066	27.7	1.8	249	24.62		

Total volume purged	
Sample appearance	dev
Sample time	0743
Sample date	6/27/27

Facility Name	
Sample by	Piller.
	MAN Andrew
Depth-to water, feet (TOC)	
Measured Total Depth, feet (100
	11

Donth	 Sample Location ID AD-27
Deput to Water date	 Depth to water date / 2.7.2.3

	*			.81	_]		-c. dute	6.27.2	\$
Purge Sta	bilization Data							i e	
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.D.)	Spec Cond	Turbidity	D.O.			-
8-8 813	20,28 20,32	300	(S.U.) 4.25 4.21	(μS/cm) 	(N.T.U) (N.T.U)	(mg/L)	ORP (mV) 2/2	Temperature (°C)	
\$18 \$23 \$28	20.34	3~1 3~1	426	236 235 234	27.5	2.48	275	27.6° 29.82 25.31	
<u> 5-8</u>	20.36	361	4.24	233	7.6	2.14.	283	25.31 25.64 24.91	
	· · · · · · · · · · · · · · · · · · ·				·		,		
							•		

Total volume purged	
Sample appearance	Les
Sample time	830
Sample date	6-27.23

Facility Name	120 Drote
Sample by	Act Tivey
	BUS
Depth to water, feet (TO	CIT

Sample Leasting	10		 		
Sample Location	עוו	1	240	7-	
			11/	1	
			 	00	

Depth to water, feet (TOC)

Measured Total Depth, feet (TOC)

33-39

Depth to water date 6/26/23

Purge Stabilization Data	(M. A. Control of the Control of th	Comment of the second s	CHEMBER SON, Service Chember Commence of the C		7	<i>\$0</i>	i .	
Time Water Depth (from TOC) ((13) (7.38) (13) (7.56) (143) (7.56) (143) (7.58)	Flow Rate (mL/min)	pH (S.U.) 4.43 4-32 4-25 4-25	Spec Cond (µS/cm) ((「	Turbidity (N.T.U) 2-3 5-1 3-2 3.6	D.O. (mg/L) 10/69 2.53 3.65 3.00	ORP (mV) 337 375 350	Temperature (°C) 26.5/ 24.55 24.55	
		-						
				,r				
The state of the s	Control of the Contro		and the first of the state of the second state of the second seco	THE RESIDENCE AND THE PERSONNEL SERVICE AND				

Total volume purged	
Sample appearance	1/045
Sample time	1/26
Sample date	(126/22

Facility Name	
Sample by	
1 - M for	14
Depth-to water, feet (TOC) 4 4	<u> </u>
Measured Total Depth, feet (TOC)	<u> </u>

Sample Location ID	AD-30
Depth to water date	1.2623

Time 104 1046 105 1056	zation Data Water Depth (from TOC) 20.10 20.15 10.16 20.16	Flow Rate (mL/min) 22a 22a 22a 22a	pH (s.u.) 4.43 4.34 4.55 4.67	Spec Cond (µS/cm) (413) 41.5	Turbidity (N.T.U) 46.3 34.5	D.O. (mg/L) 0.55 0.86 6.82	ORP (mV) 334 3e(Temperature (°C) 24.16 27.85		
	20.16	72c	4.98	424 423	&,5 &,3	0.81	218	27.02 26.85 21.75		
		3							·	

Cles
11=3
6-7/-73

Facility Name	Pirkey
Sample by	11-14 Hailts
Depth to water, feet (TOC) Measured Total Depth, feet (T	

Sample Location ID	
	777 31
Depth to water date	6-26-23

Water Depth (from TOC) 3 \	Flow Rate (mL/min) 22= 22= 22=	pH (S.U.) 3.64 4.01 4.12	Spec Cond (µS/cm) 2.5.5 2.6.5	Turbidity (N.T.U) So-7 34.3	D.O. (mg/L) 5.43 3.4)	ORP (mV) 274	Temperature (°C) .) (5 7 . 2 5 . 6 2	
1354 20.73 139 20.74	22 <i>c</i> 22 <i>c</i>	4.19	296	15.5 16.2 16.2	4,40	3=7 313 316	25.3c 25.14 25.13	

Total volume purged	
Sample appearance	Cless
Sample time	1001
Sample date	6-2.6-2.3

Facility Name	AEP Profess
Sample by	Bral Poter

Depth to water, feet (TOC)	15-83
Measured Total Depth, feet (TOC)	34.65

Sample Location ID	AD-32

Depth to water date	(12/22
, and the didec	6/26/27

Total volume purged		
Sample appearance	Clear	
Sample time	0930	
Sample date	6/26/22	

Facility Name	HEP PINHON PP
Sample by	Kenny McDoward

		_	
Depth to water, feet (TOC)		12,56	
Measured Total Depth, feet (ГОС)	32.50	

Sample Location ID	HO-33

Depth to water date	06/26/23	

Purge Sta	bilization Data									
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S _. U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
0917	12,60.	180	4,15	245	2.6	3,26	276	24.21		
0922	12.61	180	4.11	206	2,4	2, 95	264	24,16		
0927	12,61	180	4.50	204	2,4	2,91	260'	24.08		
0932	12,63	180	4,08	201	214	2,87	258	24.02	•	
					<u>'</u>	· .				
Serv										

	·									
			-							
					ļ					
					·	<u> </u>				

Total volume purged	·
Sample appearance	Cloud
Sample time	0934
Sample date	06/26/23

Facility Name	AEP Pirker
Sample by	BOR

Depth to water, feet (TOC)	TOC
Measured Total Depth, feet (TOC)	26.35

Sample Location ID	40-34	
Depth to water date	1 1/22/22	

Purge Sta	bilization Data	THE PERSON AND THE WAY SERVICE THE PROPERTY OF THE PERSON AND THE	Section to the Section of the Sectio	THE RESIDENCE OF THE PROPERTY	ACCUS DELICOTES DE SELECTION DE L'ANGUELLE D			ATTACH AND THE STREET OF THE S	Account Charles and the County of the County
Time 2820 2830 2835	Water Depth (from TOC) 5.54 0.62 0.76 6.84	Flow Rate (mL/min) (24 (24 (24	pH (S.U.) 3.78 3.72 3.69 3.69	Spec Cond (μS/cm) (3 ω (7 9 ο (7 3 γ	Turbidity (N.T.U) 6.8 6.4 6.0 5.8	D.O. (mg/L) 2.96 2.33 2.12 2.60	ORP (mV) を6 (の人 (ひく	Temperature (°C) 24.33 24.16 24.08 34.24	
I CONTRACTOR OF THE PROPERTY O	NATIONAL TRANSPORTER TO ANALYSIS AND ANALYSI		SET THE IN YOUR EST SELECT THE REAL PROPERTY AND ADDRESS OF THE SELECT O	MARKET WHE CONTROL AND ESTIMATE CONTROL CONTRO					

Total volume purged	
Sample appearance	(leas
Sample time	0839
Sample date	6/22/22

Facility Name	ADR Dillo
Sample by	Ben

Depth to water, feet (TOC)	9.21	
Measured Total Depth, feet (TOC)	().(0)	

Sample Location ID	AD-36
	1
Depth to water date	6/22/22

Total volume purged		
Sample appearance	dew	/
Sample time	0536	
Sample date	(2/22/22	

Facility Name	·
Sample by	
Mart I tomiltu	Sample Location ID
Depth-to water, feet (TOC)	13-2
Measured Total Depth, feet (TOC)	Depth to water date 6-2 6-2 7
5.44	676-23

1	bilization Data Water Depth	-1-				* *	-			•
Fime 821 826 831	(from TOC) [8:5] 18:62	Flow Rate (mL/min) 3ce 3ce 3ce	2.63 5.63 5.63	Spec Cond (µS/cm) 64 13	Turbidity (N.T.U) 1.8	D.O. (mg/L) 6.16 5.3e 5.24	ORP (mV) 336 327 315	Temperature (°C) . 24.(8) 2.53		
	-					 				
			,			·	·			
							<u> </u>			<u> </u>
							<u> </u>			
										 -
	· .								· —	
									·	
			1	•				•••	·	
				· · ·						
										+

Total volume purged	
Sample appearance	Clark
Sample time	828
Sample date	12/22

Duplicate 1245

Facility Name	HEP PIRALT PR
Sample by	Kenny Ma (Venued

	· • · · · · · · · · · · · · · · · · · ·
Depth to water, feet (TOC)	14,60
Measured Total Depth, feet (TOC)	37.49

Sample Location ID	$\hat{\mathcal{B}}$ -3
Depth to water date	06/24/23

						<u> </u>	· · · · · · · · · · · · · · · · · · ·		
Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature		İ
(from TOC)	(mL/min)	(S.U.)					(°C)		<u> </u>
			256		261	229			
16.30	104	5,45_	252	1611	2,28	204	25.21		
	,		<u></u>						<u></u>
									<u>.</u>
			WOFT HO	LO WATER	LOVE				
					_				j
		· · ·							
					·, ·				
		_	<u>.</u>						
		-				_			
					<u> </u>				
	<u>·</u>								
	1	(from TOC) (mL/min)	(from TOC) (mL/min) (S.U.)	(from TOC) (mL/min) (S.U.) (μS/cm) 1 S.S 1 10 4 5.78 256 16.30 10 4 5.45 252	(from TOC) (mL/min) (S.U.) (μS/cm) (N.T.U) 1 S, S I 10 Y S, 38 2 S G 18, 2 1 G, 3 D 10 Y S, Y S 2 S Z 1 G I	(from TOC) (mL/min) (S.U.) (μS/cm) (N.T.U) (mg/L) S,S 10	(from TOC) (mL/min) (S.U.) (µS/cm) (N.T.U) (mg/L) (mV) S.S. 10 4 5.78 256 18.2 2.61 2.29 16.30 10 4 5.45 252 16.1 2.28 2.04	(from TOC) (mL/min) (S.U.) (µS/cm) (N.T.U) (mg/L) (mV) (°C) S, S	(from TOC) (mL/min) (S.U.) (µS/cm) (N.T.U) (mg/L) (mV) (°C) S,S 104 S,78 256 18.2 2.61 22.9 25.2 6.30 104 S,45 25.2 16.1 2.28 204 25.2 VOP'T Hold WATH LOVIL

Total volume purged	
Sample appearance	Clar
Sample time	0700
Sample date	06/27/23

Facility Name	AEP Pirkey PP
Sample by	Brad Bates

Depth to water, feet (TOC)		17.45	
Measured Total Depth, feet (TOC)		40.36	,

Sample Location ID	AD-02

Depth to water date	8/23/2023

Purge Stabilization Data									
	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
946	17.72	200	3.78	734	0.8	1.78	368	24.02	
951	17.73	200	3.80	741	0	1.69	368	24.06	
956	17.75	200	3.79	744	0	1.66	364	24.13	
1001	17.75	200	3.77	745	0.3	1.64	368	24.18	

Total volume purged	
Sample appearance	Clear
Sample time	1003
Sample date	8/23/2023

Facility Name	AEP Pirkey PP
Sample by	Kenny McDonald

Depth to water, feet (TOC)		19.54	
Measured Total Depth, feet (TOC)	47.29	

Sample Location ID	AD-04

Purge Stabilization Data									
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
711	19.57	160	4.63	88	51.3	3.24	382	22.97	
716	19.58	160	4.62	89	50.6	2.89	380	23.01	
721	19.58	160	4.62	90	48.2	2.85	377	23.04	
726	19.58	160	4.61	91	52.3	2.81	384	23.10	
	_								
	·								
	_								

Total volume purged	
Sample appearance	Turbid
Sample time	728
Sample date	8/23/2023

Facility Name	AEP Pirkey PP
Sample by	Kenny McDonald

Depth to water, feet (TOC)		19.52	
Measured Total Depth, feet (TOC)		52.00	

Sample Location ID	AD-12

Depth to water date	8/23/2023

Purge Stabilization Data										
r dige 5tt		Fla Data	11	C C	To code to dita.	I 5.0	ODD	T	T	I
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
829	19.63	290	3.89	71	2.4	4.23	304	22.98		
834	19.66	290	3.88	68	0.0	4.19	311	22.87		
839	19.68	290	3.88	63	0.0	4.16	313	22.84		
844	19.71	290	3.84	63	0.0	4.11	317	22.82		

Total volume purged	
Sample appearance	Clear
Sample time	846
Sample date	8/23/2023

Facility Name	AEP Pirkey PP
Sample by	Kenny McDonald

Depth to water, feet (TOC)		9.25	
Measured Total Depth, feet (TOC)	28.42	

Sample Location ID	AD-18

Depth to water date	8/23/2023

Purge Stabilization Data									
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
808	10.13	104	4.41	48	11.4	2.68	311	24.21	
813	11.24	104	4.37	48	6.3	2.31	304	24.36	
			W	on't hold water lev	⁄el				

Total volume purged	
Sample appearance	Clear
Sample time	950
Sample date	8/23/2023

Facility Name	AEP Pirkey PP
Sample by	Brad Bates

Depth to water, feet (TOC)		29.71	
Measured Total Depth, feet (TOC)		38.50	

Sample Location ID	AD-23

Depth to water date	8/23/2023

Purge Sta	abilization Data								
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
811	30.02	200	4.51	97	11.2	6.85	254	24.08	
816	30.02	200	4.47	94	6.4	4.01	241	23.84	
821	30.04	200	4.46	90	3.4	3.22	237	23.67	
826	30.05	200	4.41	88	3.9	2.97	233	23.65	
831	30.05	200	4.40	88	3.6	2.95	231	23.61	
836	30.08	200	4.40	86	3.3	2.96	229	23.58	
	_								

Total volume purged	
Sample appearance	Clear
Sample time	838
Sample date	8/23/2023

Facility Name	AEP Pirkey PP
Sample by	Kenny McDonald

Depth to water, feet (TOC)		23.01	
Measured Total Depth, feet (TOC)		37.32	

Sample Location ID	AD-31

Depth to water date	8/23/2023

Purge Sta	Purge Stabilization Data								
Timo	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature	
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
906	23.58	240	4.03	294	16.4	2.81	301	24.13	
911	23.61	240	4.03	302	15.8	2.54	306	24.17	
916	23.64	240	4.00	308	15.6	2.53	314	24.12	
921	23.65	240	4.01	311	15.6	2.51	320	24.08	

Total volume purged	
Sample appearance	Clear
Sample time	923
Sample date	8/23/2023

Facility Name	AEP Pirkey PP
Sample by	Brad Bates

Depth to water, feet (TOC)		17.72	
Measured Total Depth, feet (TOC)		34.61	

Sample Location ID	AD-32

Depth to water date	8/23/2023

Purge Stabilization Data										
i dige ste				T		1		1	1	1
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
904	18.24	200	3.65	341	21.6	2.41	274	23.84		
909	18.26	200	3.62	338	10.2	1.05	269	23.81		
914	18.27	200	3.61	335	9.8	1.03	262	23.74		
919	18.29	200	3.61	330	9.6	1.03	258	23.76		

Total volume purged	
Sample appearance	Clear
Sample time	921
Sample date	8/23/2023

Facility Name	AEP Pirkey PP
Sample by	Brad Bates

Depth to water, feet (TOC)		Top of Casing
Measured Total Depth, feet (TOC)		26.05

Sample Location ID	AD-34

Depth to water date	8/23/2023

Purge Stabilization Data									
Turge Sta		_, _			I	T		I _	
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature	1
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
728	0.36	120	3.80	1,760	3.6	2.34	147	24.28	
733	0.41	120	3.77	1,740	2.1	2.06	154	24.19	
738	0.48	120	3.77	1740	2.4	2.01	159	24.17	
743	0.52	120	3.77	1720	2.2	1.99	163	24.13	

Total volume purged	
Sample appearance	Clear
Sample time	745
Sample date	8/23/2023

Facility Name	AEP Pirkey PP
Sample by	Brad Bates

Depth to water, feet (TOC)		6.29	
Measured Total Depth, feet (TOC)	17.10	

Sample Location ID	AD-36

Depth to water date	8/23/2023

Purge Stabilization Data									
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
649	6.35	150	4.28	92	22.7	2.13	197	24.13	
654	6.41	150	4.26	89	6.4	0.97	206	24.16	
659	6.46	150	4.26	86	5.8	0.86	211	24.19	
704	6.49	150	4.23	84	5.2	0.77	213	24.22	

Total volume purged				
Sample appearance	Clear			
Sample time	706			
Sample date	8/23/2023			

CCR Groundwater Monitoring Well Inspection Form

Facility: P. 1/2ey	Sampling Period: Oct 2023
Sampling Contractor: Esk	Signature: Signature:

Well No.	Well Locked	Fastener and Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Protective Cover, Barriers and Pad in Good Shape	Well Properly Labeled	Well Cap Present and Vented*	Comments
BZ			_			<u> </u>		
AD-12		_				<u> </u>		
AD-32	/	/	/				/	
10-28	<u> </u>		<u></u>					
Ap. 17	/							
25°CA	<u> </u>	-		. —			_	
A D-20	_	_					/	
An.26	/	/	مسد				/	
AD-27								
ADV3	<u></u>							

^{*}Not all wells will be vented, especially flush mounted wells. If that is the case, please note "flush mount well" in the comments.

CCR Groundwater Monitoring Well Inspection Form

Facility: Aft Pinner PP	Sampling Period: October 2023
Sampling Contractor: FAGLA	Signature:

Well No.	Well Locked	Lock Functioning	Well Locked After Sampling	Access to Well Maintained	Well Casing, Housing, and Pad in Good Shape	Well Properly Labeled	Well cap present	Comments
AD-13	V	V	√	S	✓ /	\checkmark	<u> </u>	
A0-7K	√	V	V	V	✓		V	NOLAGEL
AD-22	\checkmark	\checkmark	· /	V	V	V	V	
AD-33	V	~	V	~	✓	V	J	
A0-18	V	✓	V	V	√	√	V	
B-3	V	V	V	V	V	•		NOLABIL
AD-34	V	/	V	~	/	V		
AD-36	V	✓ ·	✓	√	V	✓	V	
PO-8	V	V	V	V	✓	/	V	
PO-16	V	√	V	✓	\	<u> </u>		
			- it to AFD Favirons					

<u>Instructions:</u> Complete form and submit to AEP Environmental Services with Field Data. Place check mark for items that are satisfactory. Unsatisfactory items should be left blank with a note in the comments section on what needs to be remedied.

Facility Name	
Sample by	P. HCOV
	Motor Hamilton
Depth to water, feet (TOC)	2= 3 =
Measured Total Depth, feet (TOC)	31(2)

Sample Location ID	AD-3
•	
Depth to water date	10-15-22

Purge Sta	bilization Data								
Time 1/27 1/37 1/45 1/47	Water Depth (from TOC) 37.51 27.64 37.75 37.86 37.64	Flow Rate (mL/min) 27- 27- 27- 27- 27- 27- 27-	PH (S.U.) 4.42 4.71 4.75 4.76 4.77	Spec Cond (μS/cm) 156 131 124 124	Turbidity (N.T.U)	D.O. (mg/L) 7.7c 1.25 6.78 6.70	ORP (mV) 265 275 24 191	Temperature (°C) 23.26 21.52 21.54 21.44 21.37	
						·			
	·								

57.45

Total volume purged	
Sample appearance	rlev
Sample time	1147
Sample date	6-18-23

Facility Name	AFP PIAKET PP
Sample by	Klary M (Donfid

Depth to water, feet (TOC)		12.00	
Measured Total Depth, feet (1	ГОС)	33.03	

Sample Location ID	A 17-7R	
	. , .	
Depth to water date	10/17/23	

Purge Sta	abilization Data								
Time	Water Depth (from TOC)	Flow Rate (mL/min)	рН (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
0851	12.55	240	5,59	128	3,7	2.27	148	16.84	
0856	12,58	240	5.60	107	1,2	1.53	158	,	
0901	12,60	240	5,61	104	0.7	1:48	164	17,16	
0906	12,61	240	5.61	105	0,9	1,46	174	17/21	
			:						
					_				
						<u> </u>			
·									
	- ;								
N+									
						1			

Total volume purged	
Sample appearance	CUMPA
Sample time	0908
Sample date	10/17/23

DUPLICATE A 1400.

Facility Name	Afr Pinny PP
Sample by	Kinny miDensil

Depth to water, feet (TOC) 14,77

Measured Total Depth, feet (TOC) 31,33

Sample Location ID	1 A0-8	

Depth to water date	10/18/23

Purge Sta	bilization Data								
Time o	Water Depth	Flow Rate	рH	Spec Cond	Turbidity	D.O.	ORP	Temperature	
Time	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)	
1037	14.91	200	4,34	312	16,3	4.16	290	23,13	
1042	14.92	200	4.26	319	5, 4	2,23	286	23,50	
1047	14.92	200	4.24	323	6,2	2,18	280	73,49	
1032	14,94	200	4.21	326	5.7	2,09	277	23,49	
	7.7								
	<u> </u>								
									

Total volume purged	
Sample appearance	Chen
Sample time	1054
Sample date	10/18/23

Facility Name	Parket
Sample by	Pilley Meth Itmilla
Depth to water, feet (TOC)	(NAV 4-4
Measured Total Depth, feet (TOC)	21.10

Sample Location ID	
	1/7 <u>D-</u> 1/
•	
N- 11:	
Depth to water date	(m.17.3 A
· · · · · · · · · · · · · · · · · · ·	10-11-65

Purge Stal	bilization Data								
Time	Water Depth (from TOC) ととの「 えとのら えと、から えと、「「」 えて、よる	Flow Rate (mL/min) 30- 30- 30- 30-	pH (S.U.) 3.64 3.71 3.82 3.84	Spec Cond (µS/cm) 53 54 54 55	Turbidity (N.T.U) 48.5 11.2 5.3 5.3	D.O. (mg/L) 7.06 2.18 2.10	ORP (mV) 254 305 316	Temperature (°C) 16-41 >-64 21,17 21,26	
						,	-		
									,
·									

Total volume purged	
Sample appearance	(1ea)
Sample time	441
Sample date	1-17-23

•

Facility Name	AEP PIANTY PP
Sample by	Ktony M. (Pensal d

Depth to water, feet (TOC)	15.9
Measured Total Depth, feet (TOC)	40.76

Sample Location ID A17-13	
	110 13

Depth to water date	10/17/23	

Purge Sta	bilization Data		· · · · ·	<u> </u>						
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
0749	16.03	170	SZZ	434	57.2	3,68	78	15.21		
0754	16,10	170	5.42	436	32,6	2.17	72	18,36		
0759	110.14	170	5.45	430	31.5	2,11	71	19,45		
0804	16.19	170	5.47	439	24,8	2.08	69	19,71		
0809	16,21	170	5,47	439	27.3	2,05	68	19.79		
		·								
							•••			
ļ						:				
										<u> </u>
									,	
<u> </u>										
									<u> </u>	

Total volume purged	
Sample appearance	CIFAN
Sample time	0811
Sample date	10/17/23

Facility Name	AFPPIANTAPP
Sample by	KLANY MIDENAID

Depth to water, feet (TOC)		20,60	
Measured Total Depth, feet (TOC)	38,24	

Sample Location ID	AD-16
	* !

Depth to water date	10/18/23	, , , , , , ,

Purge Sta	bilization Data		· · · · · · · · · · · · · · · · · · ·							
Time	Water Depth (from TOC)	Flow Rate	pH	Spec Cond	Turbidity -	D.O.	ORP	Temperature		1.
1125	20.97	(mL/min) 9 2	(S.U.) 4,20	(μS/cm)) 2.5	(N.T.U) 5,3	(mg/L) 3, 2 4	(mV) 282	(°C) 21.49		1
1/30	21,03	192	4,24	121	5.9	2,71	276	21.62		
1135	21,15	192	4.21	121	5.1	2.68	274	71.62		
1140	21,35	192	4,20	121	5,5	2,63	273	21,60		·
									<u> </u>	<u> </u>
									<u> </u>	
				<u> </u>					<u> </u>	<u> </u>
										, <u>.</u>
	4	,								
									1	

Total volume purged	
Sample appearance	Class
Sample time	1142
Sample date	10/18/23

Pivel	
1,100	<u>.</u>
Met Hinilta	
38.17	4.1
-23.18	
	Picey Ment Hinilta 23.16

	" ,
Sample Location ID	1017
	741711
Donah	
Depth to water date	[0-17.7]

Purge Sta	ibilization Data		·						•	
Time 1154 1155 12 04	Water Depth (from TOC) えることを ころ、34 ころ、37 ころ、46	Flow Rate (mL/min) Zee Lee 2ee Zee	pH (S.U.) 3.76 3.24 3.16 3.14	Spec Cond (μS/cm) (14 135 145	Turbidity (N.T.U) 17.7 4.8 5.4	D.O. (mg/L) 5.52 1.33 1.33	ORP (mV) 412 415 417 417	Temperature (°C) .2 > 14 .2 4 · cc .2 3 · 16 .2 3 · 17		
						,			·	
Ed. 10-2 (10-2)										
		:								
								*7		

.

Total volume purged	
Sample appearance	Clast
Sample time	121\
Sample date	12-17-23

ì

.

Facility Name	Aft Pirkonft
Sample by	Kinry Milanned

Depth to water, feet (TOC)	10.62
Measured Total Depth, feet (TOC)	28,42

Sample Location ID	AD-18
Depth to water date	10/17/23

Purge Sta	bilization Data	•								
Time ⁻	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (µS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
1148	12.06	110	3,83	55	3.8	1.83	356	21.29		
1153	13.13	110	3,86	64	7,4	1,64	368	21,34		
<u> </u>										
			wor	17 4-10ch.	VATIN HUIL					

									_	
	•		.,							

Total volume purged	<u> </u>
Sample appearance	Cran
Sample time	0747
Sample date	10/18/23

Facility Name	ALP PIRKM PP
Sample by	KHMY MCDONAL

Depth to water, feet (TOC)	13.81
Measured Total Depth, feet (TOC)	32,70

Sample Location ID	AD-22

Depth to water date	10/17/23	

Purge Sta	bilization Data									
Time	Water Depth	Flow Rate	рH	Spec Cond	Turbidity	D.O.	ORP	Temperature		
	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°Ç)		
0958	11,57	150	3,96	737	2,4	4,02	272	21.36		
1003	11.57	150	4,00	740	0.0	3.56	272	11,32		
1008	11.58	150	4.01	743	0.0	3.54	274	21.30		
1013	11.60	150	4,00	750	0.0	3,53	267	21,29		
								· <u></u>	ļ	
		,		1						
	-									
					-					
				<u></u>						

Total volume purged	
Sample appearance	CUran
Sample time	. 1015
Sample date	10/17/13

Facility Name	Pilley		
Sample by	Moth	ton. Hi	

Depth to water, feet (TOC)	> 1.75
Measured Total Depth, feet (TOC)	38-20

Sample Location ID	AD. 33	
Depth to water date	18-18-23	

	rotal ocptil, reet (100/	38-	<u>Σ</u> c				10-18	
urge Sta	bilization Data							*	
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity	D.O.	ORP	Temperature	
828	30.01	२२०	4.34	\$-2	(N.T.U)	(mg/L)	-(mV)	(°C)	
833	3=,01	72°	3.84	<u> </u>	18.2	9.34	436	14.18	
838	30.01	220	3.90	73	77.7	4.02	.481	17.33	
843	30,01	220	3.45		28.2	2.72	457	18.60	
	35(4)		303	74	29,1	2.69	455	18.72	
						<u> </u>			
			 				·		
-	· · · · · · · · · · · · · · · · · · ·								
							 		
						 			

•

Total volume purged	
Sample appearance	Mari
Sample time	\$45
Sample date	10-18-23

Facility Name	8:
Sample by	Pilley 11
Denth to water 6	M-4f / Itenlity
Depth to water, feet (TOC) Measured Total Depth, feet (TOC)	11.16
	27.38

Sample Location ID	ND-52
Depth to water date	16-18-23

Time	Water Depth	Flow Rate	· pH	C0:					· · · · · · · · · · · · · · · · · · ·	
	(from TOC)	(mL/min)	(S,U.)	Spec Cond	Turbidity	D.O.	ORP	Temperature		
912	11.52	127	3.60	(μS/cm)	(N.T.U)	(mg/L)	·(mV)	(°C)		
921	11 61	125	3.63	9-9	54,3	5.87	286	15.11	<u> </u>	
926	11.68	125	4.25	<u> </u>	46.5	1.02	. 211	22.02		
531	11.75	(25	4, 29	944	35,2	1.05) = 2	52.48	 	
938	11.82	125	4.31	957	35,9	1, 13.	195	22.73		
				968	34.9	1 16	190	22.86	-	
									 	-
										
					<u> </u>				 -	 -
			1.				_		 	
									 	
			 			·				+
									<u> </u>	
										
		<u>.</u>	 							
					,m,					+
										+
		<u> </u>					·		 	
										

Total volume purged	
Sample appearance	cle d
Sample time	938
Sample date	10-18-23

Facility Name	P.
Sample by	1, (/cc/
	Mett / Henilly
Depth-to water, feet (TOC)	1630
Measured Total Depth, feet (TO	C) (12 - 12 - 12 - 12 - 12 - 12 - 12 - 12

Sample Location ID	AD-26
Depth to water date	10-16->>

Purge Sta	bilization Data						,		
Time 0002 1007 1017 10	Water Depth (from TOC) (b, b) (c, g, 7) 17.11	Flow Rate (mL/min) 3 = 0 3 = 0 3 = 0 3 = 0	pH (S.U.) 3.36 3.31 3.33	Spec Cond (µS/cm) 2.060).180 2.100	Turbidity (N.T.U) 77.3 47.9 33.6 33.6	D.O. (mg/L) 2,42 0.73 0.55	ORP (mV) 278 263 284 284	Temperature (°C) 21.35 2(\$4 22, 22,	
						·			
								• •	-

Total volume purged	
Sample appearance	¿ es/
Sample time	1619
Sample date	10-18-23

Facility Name	0.7
Sample by	Month Hamilton
Depth to water, feet (TOC)	7416
Measured Total Depth, feet (TOC)	1 4 6

Sample Location ID	An-27
Depth to water date	116-73

Purge Sta	bilization Data					·			•	
Time 1044 1054 1054	Water Depth (from TOC) 24.41 24.55 スパル 24.69	Flow Rate (mL/min) 300 3-0 300 300	pH (S.U.) 3.45 3.45 3.44 3.44	Spec Cond (µS/cm) 21\ 23& 236 234	Turbidity (N.T.U) \$. \$ 10- \(\) 7. \(\) 7. \(\) 7. \(\)	D.O. (mg/L) 5,86 0.13 0,85 0.81	ORP (mV) 265 287 3-3 3 10	Temperature		
						,				
								-7-		

Total volume purged		•
Sample appearance	Cle.1	
Sample time	//e/	
Sample date	10-18-73	<u> </u>

Facility Name		
Sample by	lickey	
	Most / Hamilta	
Depth to water, feet	(TOC)	
Measured Total Depth		

Sample Location ID	AD-28
Depth to water date	(0.17-73

		-		ı			•	
Purge Stabilization Data			,				(***-	
Time Water Depth (from TOC) -7 -7 -7 -7	Flow Rate (mL/min) 22c 22c 22c	pH (S.U.) 3,81 2,37 2,53	Spec Cond (µS/cm) (µS/cm) (QS) (10) (96)	Turbidity (N.T.U) 43 . 4 9.1 5.2	D.O. (mg/L) (.37 2./5	ORP (mV) 3 6 - 3 5 &	Temperature (°C) 27 46 71.52 21.57	
								·
	i							*
		·					• • •	
								<u> </u>

Total volume purged		
Sample appearance	C lety	
Sample time	11/4	
Sample date	1e-17.23	

Facility Name	
Sample by	filler,
	Mith Henita
Depth to water, feet (TOC)	20 734
Measured Total Depth, feet (TOC)

Sample Location ID	AD-3a
Depth to water date	10.17.23

- se sta	bilization Data								•	
Time io17 io2) io27 lo32	Water Depth (from TOC) 21. て こしまし 21. 子) 21. 子)	Flow Rate (mL/min) 226 226 226 226	рН (S.U.) 5.21 4.35 4.35 4.18	Spec Cond (µS/cm) 330 428 443 444	Turbidity (N.T.U) 24.5 10 4.2 9.4	D.O. (mg/L) 6.5 1.2 ~ 0.4 C. 0.95	ORP (mV) 22e .178 215 215	Temperature (°C) 21,63 23,26 23,63 23,81		
										,
	,									

Total volume purged	
Sample appearance	Cleur
Sample time	1-34
Sample date	10-17-23

Facility Name	APP PIRKUS PP
Sample by	Kithy MIDINAU

Depth to water, feet (TOC)	15.44
Measured Total Depth, feet (TOC)	32,50

Sample Location ID	A0-33
Depth to water date	10/17/23

•

urge Sta	bilization Data	I			<u> </u>	1 50	OPP	T		1
Time	Water Depth	Flow Rate	pН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
THITE	(from TOC)	(mL/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		ļ
1048	15.56	220	4.27	217	1,8	3,28	282	22.10		
053	15,56	220	4,20	171	019	2,24	302	22,18		
058	15.57	2 Z Ò	4,04	170),/	2,15	309	22,22		
1103	15.57	220	3,97	172	1.0	2,15	312	22,24		<u>L</u>
1108	15.58	220	3,95	177	0,6	2,13	315	22,29		
<u> </u>	1 414 (1			· ,	- 1.3/					
										[
				-						
		-								1-
				<u>.</u>		-				
·										
			<u> </u>		-					
										
						 				
									····	
										
							<u> </u>			\vdash

Total volume purged	
Sample appearance	ciun
Sample time	1110
Sample date	10/17/23

Facility Name	AFPPINHMPP
Sample by	KMM MIDERAN

Depth to water, feet (TOC)	toc	_
Measured Total Depth, feet (1	тос)	

Sample Location ID	AD-34	
Depth to water date	10/18/23	

Purge Sta	bilization Data								
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)	
0964	0.69	120	3,30	1590	7,8	2,41	333	19.63	
0909	0,70	120	3,27	1640	8,7	2,30	331	20.03	
0914	73 و	120	ろ。マフ	1660	9.1	2.28	321	20,35	
0919	0,74	120	3,27	1660	8,2	228	315	20,38	
•			,			·			.*
							. <u>.</u>		
- 1"					<u></u>				
	···								

Total volume purged	
Sample appearance	China
Sample time	0921
Sample date	10/18/73

DUPLICATE-C 1400

Facility Name	AEP PIANOM PP
Sample by	Ktory M (Denkel

Depth to water, feet (TOC)	8.72
Measured Total Depth, feet (TOC) 17,10

Sample Location ID	HD-36	
Depth to water date	10/18/23	

uige sta	bilization Data			0 0 1	- 1.1.1m	1 00	ODD	Tanana amatu ma		1
Time	Water Depth	Flow Rate	рН	Spec Cond	Turbidity	D.O.	ORP	Temperature		
111111111111111111111111111111111111111	(from TOC)	(mĻ/min)	(S.U.)	(μS/cm)	(N.T.U)	(mg/L)	(mV)	(°C)		
0951	8.91	110	4.16	119	7,2	6,21	288	20,87		
956	8.89	110	4,19	87	3,6	4.86	279	20.68		
001	8.88	110	4.19	81	2,9	4,83	7.73	20,20		
1006	8.89	1/0	4.19	Κ 0	3.1	4,80	270	20.71	-	
		1,, 0								
								_		
						<u> </u>				
						<u> </u>	<u> </u>		-	
						1				
		<u> </u>								
		 		-						
				- · - · · · · · · · · · · · · · · · · ·		 	 			
						-				
						 	<u> </u>			
							<u> </u>	<u></u>		
	· · · · · · · · · · · · · · · · · · ·							1		

Total volume purged	
Sample appearance	clear
Sample time	1008
Sample date	10/18/23

.

Facility Name	Pickey
Sample by	M-H Hamilta

Depth to water, feet (TOC)	28 45
Measured Total Depth, feet (TOC)	57.44

Sample Location ID	B-2
Depth to water date	10-17-23

Purge Sta	bilization Data							**	W	
Time	Water Depth (from TOC) しょう	Flow Rate (mL/min) 3 _c	pH (S.U.) 4.31	Spec Cond (µS/cm)	· Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV) (& 7	Temperature (°C)		
824 821 834	29,00	3e. 3e.	4.44	126	23.4	1184	136	5 c 7.81 8-40		
63 ° 844	29,09 29,11 29,12	300 300 300	4.66	123	13.2	0.81	97 90	18.56 18.65		
			1.08	122	1.5	0,77	85	18.70		
				-						

Total volume purged		
Sample appearance	Cley	
Sample time	844	<u>-</u>
Sample date	10-17-23	

Duplicate B 1315

Facility Name	AFPPIRAM PP
Sample by	Kinry McDenaid

Depth to water, feet (TOC)	17.67
Measured Total Depth, feet (TOC)	37.49

Sample Location ID	B-3	
Depth to water date	111/17/22	j

Purge Sta	abilization Data				• • • • • • • • • • • • • • • • • • • •					-
Time	Water Depth (from TOC)	Flow Rate (mL/min)	pH (S.U.)	Spec Cond (μS/cm)	Turbidity (N.T.U)	D.O. (mg/L)	ORP (mV)	Temperature (°C)		
1211	18.72	102	4,80	226	8.4	2,41	368	22,41		
1216	19.63	102	4.91	209	6,3	2,30	288	21,93		
									:	
				WON'T HOL	o waren to	vM/				
	:		: 							
·		,		-						

Total volume purged	
Sample appearance	CLAM
Sample time	0814
Sample date	10/18/23

APPENDIX 5- Analytical Laboratory Reports

Water Analysis Report

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230702 Customer: Pirkey Power Station Date Reported: 04/06/2023

Customer Sample ID: AD-23 Customer Description:

Lab Number: 230702-001 Preparation:

Date Collected: 02/28/2023 12:05 EST Date Received: 03/06/2023 14:20 EST

Metals

Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method

Boron 0.049 mg/L 1 0.050 0.009 J1 GES 03/08/2023 19:48 EPA 200.8-1994, Rev. 5.4

Customer Sample ID: AD-34 Customer Description:

Lab Number: 230702-002 Preparation:

Date Collected: 02/28/2023 12:13 EST Date Received: 03/06/2023 14:20 EST

Metals

Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method

Calcium 41.9 mg/L 1 0.05 0.02 GES 03/08/2023 20:03 EPA 200.8-1994, Rev. 5.4

Customer Sample ID: DUPLICATE AD-34 Customer Description:

Lab Number: 230702-003 Preparation:

Date Collected: 02/28/2023 12:13 EST Date Received: 03/06/2023 14:20 EST

Metals

Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method

Calcium 40.8 mg/L 1 0.05 0.02 GES 03/08/2023 20:08 EPA 200.8-1994, Rev. 5.4

Customer Sample ID: EQUIPMENT BLANK Customer Description:

Lab Number: 230702-004 Preparation:

Date Collected: 02/28/2023 11:35 EST Date Received: 03/06/2023 14:20 EST

Metals

Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method **Boron** 0.009 mg/L 0.050 0.009 J1 **GES** 03/08/2023 20:14 EPA 200.8-1994, Rev. 5.4 Calcium <0.02 mg/L 0.05 0.02 U1 GES 03/08/2023 20:14 EPA 200.8-1994, Rev. 5.4

Water Analysis Report

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230702 Customer: Pirkey Power Station Date Reported: 04/06/2023

Customer Sample ID: FIELD BLANK

Customer Description:

Lab Number: 230702-005

Preparation:

Date Collected: 02/28/2023 11:37 EST

Date Received: 03/06/2023 14:20 EST

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	<0.009 mg/L	1	0.050	0.009 U1	GES	03/08/2023 20:19	EPA 200.8-1994, Rev. 5.4
Calcium	<0.02 mg/L	1	0.05	0.02 U1	GES	03/08/2023 20:19	EPA 200.8-1994, Rev. 5.4

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.
- U1 Not detected at or above method detection limit (MDL).

Chain of Custody Record Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125 Program: Coal Combustion Residuals (CCR) Site Contact: Date: For Lab Use Only: Jonathan Barnhill (318-673-3803) Contacts: COC/Order #: Michael Ohlinger (614-836-4184) 40 mL Glass vial or 260 mL PTFE lined bottle, HCL**, pH<2 40 mL Glass vial or 250 mL PTFE tined bottle, HCL", pH<2 Project Name: Pirkey - LF Resample Three 250 mL 251 mL 1 L (six every Contact Name: Leslie Fuerschbach Analysis Turnaround Time (in Calendar Days) bottle. bottle. 230702 bottle, Oth*) pH<2, pH<2. Cool, L bottles, Contact Phone: 318-423-3805 HNO₃ HNO₃ pH<2, HNO₃ 0-6°C CI, SO4, Alkalinity Ra-228 Sampler(s): Matt Hamilton Kenny McDonald Sampler(s) Initials Sample TDS, F, Ra-226, <u>۾</u> Type Sample Sample and (C=Comp. # of 휸 8 Sample Identification Date Time G=Grab) Matrix Cont. Sample Specific Notes: m AD-23 1105 G GW 1 2/28/2023 AD-34 2/28/2023 1113 G GW .1 Х GW **DUPLICATE AD-34** 2/28/2023 1113 G 1 Х **EQUIPMENT BLANK** 1035 G GW 2/28/2023 1 X FIELD BLANK 2/28/2023 1037 G GW X 2 2 Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other ; F= filter in field Six 1L Bottles must be collected for Radium for every 10th sample. Special Instructions/QC Requirements & Comments: Relinquished Date/Time: Received by: Date/Time: 500 3-1-23 Relinquished by: Company: Date/Time: Received by: Date/Time:

Received in Laboratory by:

2:20PM

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

Date/Time:

Company:

Relinquished by:

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
(Cooler) Box Bag Envelope	PONY UPS (EedE) USPS
	Other
Plant/Customer Pirkey	Number of Plastic Containers:
Opened By MSO/NUE/TTP	Number of Glass Containers:
Date/Time3/1/23 2,20pm	Number of Mercury Containers:
	or K/A Initial:on ice/ ho ice
	- If No, specify each deviation:
	Comments
l	Comments
Requested turnaround: Koutine	If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) NO₂ or N (24 hr)	O ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	Comments
Were samples labeled properly?	Comments
Were correct containers used? (Y) N	Comments
Was pH checked & Color Coding done? Y	N or N/A Initial & Date: MGK /TTP / WCL
pH paper (circle one): MQuant,PN1.09535.0001,LC	OT# [OR] Lab Rat,P(14801,LOT# X000RWDG21
- Was Add'l Preservative needed? Y N If	Yes: By whom & when:(See Prep Book)
Is sample filtration requested? Y / N	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID#	Date & Time :
Lamed by Man	nts:
Reviewed by	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Water Analysis Report

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230657 Customer: Pirkey Power Station Date Reported: 03/29/2023

Customer Sample ID: AD-34 Customer Description: TG-32

Lab Number: 230657-001 Preparation:

Date Collected: 03/01/2023 00:13 EST Date Received: 03/02/2023 10:30 EST

Wet Chemistry

Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method

TDS, Filterable Residue 1640 mg/L 1 50 20 SDW 03/03/2023 11:05 SM 2540C-2015

Customer Sample ID: AD-36 Customer Description: TG-32

Lab Number: 230657-002 Preparation:

Date Collected: 02/28/2023 11:23 EST Date Received: 03/02/2023 10:30 EST

Ion Chromatography

Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method

Chloride 11.7 mg/L 2 0.04 0.02 CRJ 03/16/2023 12:37 EPA 300.1 -1997, Rev. 1.0

Customer Sample ID: DUPLICATE AD-34 Customer Description: TG-32

Lab Number: 230657-003 Preparation:

Date Collected: 03/01/2023 00:13 EST Date Received: 03/02/2023 10:30 EST

Wet Chemistry

Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method

TDS, Filterable Residue 1660 mg/L 1 50 20 SDW 03/03/2023 11:13 SM 2540C-2015

Water Analysis Report

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 230657 Customer: Pirkey Power Station Date Reported: 03/29/2023

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Chain of Custody Record Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125 Program: Coal Combustion Residuals (CCR) For Lab Use Only: Jonathan Barnhill (318-673-3803) Site Contact: Date: Contacts: Michael Ohlinger (614-836-4184) COC/Order #: 40 mL Glass vial or 250 mL PTFE lined bottle, HCL**, pH<2 40 mL Glass vial or 250 mL PTFE lined bottle, HCL**, pH<2 Project Name: Pirkey - AD-34 Three 250 mL (six every 11 Contact Name: Leslie Fuerschbach bottle, Analysis Turnaround Time (in Calendar Days) 1 L bottle, bottle, (Oth 230657 pH<2, Cool. Cool, L bottles, Contact Phone: 318-423-3805 HNO₃ 6°C 0-6°C pH<2, HNO₃ Matt Hamilton Kenny McDonald Sampler(s): ğ Sampler(s) Initials Ca, Na, K, Chloride Ra-226, Sample Type Sample Sample (C=Comp, 윤 œ, Sample Specific Notes: Sample Identification Date Time G=Grab) Matrix Cont. AD-34 1113 G GW х 2/28/2023 AD-36 2/28/2023 1023 G GW 1 Х **DUPLICATE AD-34** G GW X 1113 2/28/2023 2 1 2 Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other ; F= filter in field Six 1L Bottles must be collected for Radium for every 10th sample. Special Instructions/QC Requirements & Comments: Company Date/Time: Relinguished b Date/Time: Received by: 150 Date/Time: Date/Time: Relinguished by: Company: Received by:

Received in Laboratory by:

10:30 Am

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

Company:

Relinquished by:

Date/Time:

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type Delivery Type	
Cooler Box Bag Envelope PONY UPS FEDEX USPS	
Other	[
Plant/Customer <u>fifte fower Station</u> Number of Plastic Containers: 3	
Opened By Michael Number of Glass Containers:	
Date/Time 03/02/23 10:30Am Number of Mercury Containers:	l l
Were all temperatures within 0-6°C? (I) N or N/A Initial: MOL (on ice / no	
(IR Gun Ser# 2213689000 , Expir. 03/24/2024) - If No, specify each deviation: Was container in good condition? Y N Comments	
	1
Was Chain of Custody received? (V) / N Comments	
pH (15 min) Cr ⁺⁶ (pres) NO ₂ or NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pr	i i
Was COC filled out property? / N Comments	
Were samples labeled properly? (?)/ N Comments	
Were correct containers used?	
Was pH checked & Color Coding done? (9) N or N/A Initial & Date: MGC 03/0	12/23
pH paper (circle one): MQuant,PN1.09535.0001,LOT# [OR] Lab Rat,PN4801,LOT#	RWDG21
- Was Add'l Preservative needed? Y / N If Yes: By whom & when: (See F	rep Book)
Is sample filtration requested? Y / W Comments (See F	Prep Book)
Was the customer contacted? If Yes: Person Contacted:	
Lab ID# 930657 Initial & Date & Time : Logged by MSO Comments:	
Reviewed by MGC	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Municipal Solid Waste Laboratory Review Checklist

This da	ıta pack	age cons	ists of:		
X	(which	includes		iew checklist consisting of Table 1, ed on this page), Table 2, Supporti	
х	R1	Field ch	ain-of-custody documentati	on	
х	R2	Sample	identification cross-referen	ce	
x	R3	(a) Iter NE (b) Dilt (c) Pre (d) Cle	ns specified in NELAC Char LAC Standard ution factors paration methods anup methods	for each environmental sample the oter 5 for reporting results, e.g., Sec atively identified compounds (TICs	etion 5.5.10 in 2003
X	R4	(a) Cal	te recovery data including: culated recovery (%R) : laboratory's surrogate QC l	imits	
x	R ₅	Test rep	orts/summary forms for bla	ink samples	
x	R6	(a) LC: (b) Cal	orts/summary forms for lab S spiking amounts culated %R for each analyte e laboratory's LCS QC limits	poratory control samples (LCSs) inc	cluding:
×	R7	(a) Sar (b) MS (c) Cor (d) Cal	nples associated with the M /MSD spiking amounts	D analyte measured in the parent a rcent differences (RPDs)	_
X	R8	(a) The	ory analytical duplicate (if a e amount of analyte measure e calculated RPD e laboratory's QC limits for a	-	
х	R9	List of n	nethod quantitation limits (MQLs) for each analyte for each mo	ethod and matrix
×	R10	Other p	roblems or anomalies		
×	The Ex	ception	Report for every item for wh	ich the result is "No" or "NR" (Not	Reviewed)
packag require reports by the laborat	e as be ements s. By m laborat tory in t	en review of the me y signat tory as ha the Labor	wed by the laboratory and is ethods used, except where n ure below, I affirm to the be aving the potential to affect	lease of this laboratory data packag complete and technically compliar oted by the laboratory in the attack st of my knowledge, all problems/a the quality of the data, have been in I no information or data have been	nt with the ned exception nomalies, observed lentified by the
respon used is statem	ding to responent is to	rule. The sible for rue.	e official signing the cover p	n-house laboratory controlled by the age of the rule-required report in we and is by signature affirming the al	hich these data are
Timo	thy Ar	nold	Joh Ush	Chemist Principal	3/17/2023
Name	(printed	d)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Timothy Arnold

LRC Date: 3/17/2023

Laboratory Job Number: 230657

Prep Batch Number(s): QC2303127

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	Yes	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
_	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	1	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	Ī	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
65	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Timothy Arnold

LRC Date: 3/17/2023

Laboratory Job Number: 230657

Prep Batch Number(s): QC2303127

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	Ī	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	-
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
,	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation	1	
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)	4	
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Nai	me: American Electric Power Dolan Chemical Laboratory
Project Name:	
	E: Timothy Arnold
LRC Date: 3/17	
	Number: 230657
Prep Batch Nui	mber(s): QC2303127

Exception Report No.	Description	
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>	

	V 2000 V	

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

TDS Laboratory Review Checklist

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: X This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. $\overline{\mathsf{X}}$ Rı Field chain-of-custody documentation X R₂ Sample identification cross-reference $|\mathbf{x}|$ Test reports (analytical data sheets) for each environmental sample that includes: **R**3 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA **R**4 Surrogate recovery data including: (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits Test reports/summary forms for blank samples × **R**5 $|\mathbf{x}|$ **R6** Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits $\overline{\mathbf{x}}$ **R**7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits \mathbf{x} Laboratory analytical duplicate (if applicable) recovery and precision: **R8** (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates \mathbf{x} List of method quantitation limits (MQLs) for each analyte for each method and matrix R9 \mathbf{x} R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Michael Ohlinger

Name (printed)

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey AD-34

Reviewer Name: Michael Ohlinger

LRC Date: 3/29/23

Laboratory Job Number: 230657

Prep Batch Number(s): QC2303072

Item¹ Analytes²		Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	NA	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
-	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
ı	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	Todas
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey AD-34

Reviewer Name: Michael Ohlinger

LRC Date: 3/29/23

Laboratory Job Number: 230657

Prep Batch Number(s): QC2303072

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S 2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴	
\$6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
\$7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I «	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		<u>_</u>
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
\$12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
\$13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S 15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Nam	e: American Electric Power Dolan Chemical Laboratory
Project Name: <u>P</u>	Pirkey AD-34
Reviewer Name:	Michael Ohlinger
LRC Date: 3/29/2	23
0.000	Number: 230657
	ber(s): QC2303072

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231989 Customer: Pirkey Power Station Date Reported: 08/04/2023

Customer Sample ID: AD-8 Customer Description: TG-32

Lab Number: 231989-001 Preparation:

Date Collected: 06/27/2023 11:24 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.994 mg/L	1	0.050	0.007	GES	07/06/2023 11:45	EPA 200.8-1994, Rev. 5.4
Calcium	92.7 mg/L	1	0.05	0.01	GES	07/06/2023 11:45	EPA 200.8-1994, Rev. 5.4
Magnesium	6.68 mg/L	1	0.100	0.006	GES	07/06/2023 11:45	EPA 200.8-1994, Rev. 5.4
Potassium	0.862 mg/L	1	0.100	0.008	GES	07/06/2023 11:45	EPA 200.8-1994, Rev. 5.4
Sodium	7.24 mg/L	1	0.20	0.01	GES	07/06/2023 11:45	EPA 200.8-1994, Rev. 5.4
Strontium	0.547 mg/L	1	0.00200	0.00005	GES	07/06/2023 11:45	EPA 200.8-1994, Rev. 5.4

Customer Sample ID: AD-16 Customer Description: TG-32

Lab Number: 231989-002 Preparation:

Date Collected: 06/27/2023 09:59 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.016 mg/L	1	0.050	0.007 J1	GES	07/06/2023 12:54	EPA 200.8-1994, Rev. 5.4
Calcium	0.79 mg/L	1	0.05	0.01	GES	07/06/2023 12:54	EPA 200.8-1994, Rev. 5.4
Magnesium	1.74 mg/L	1	0.100	0.006	GES	07/06/2023 12:54	EPA 200.8-1994, Rev. 5.4
Potassium	0.932 mg/L	1	0.100	0.008	GES	07/06/2023 12:54	EPA 200.8-1994, Rev. 5.4
Sodium	15.0 mg/L	1	0.20	0.01	GES	07/06/2023 12:54	EPA 200.8-1994, Rev. 5.4
Strontium	0.0114 mg/L	1	0.00200	0.00005	GES	07/06/2023 12:54	EPA 200.8-1994. Rev. 5.4

Customer Sample ID: AD-23 Customer Description: TG-32

Lab Number: 231989-003 Preparation:

Date Collected: 06/27/2023 11:06 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifier	s Analyst	Analysis Date	Method
Boron	0.061 mg/L	1	0.050	0.007	GES	07/06/2023 14:27	EPA 200.8-1994, Rev. 5.4
Calcium	0.44 mg/L	1	0.05	0.01	GES	07/06/2023 14:27	EPA 200.8-1994, Rev. 5.4
Magnesium	0.296 mg/L	1	0.100	0.006	GES	07/06/2023 14:27	EPA 200.8-1994, Rev. 5.4
Potassium	3.46 mg/L	1	0.100	0.008	GES	07/06/2023 14:27	EPA 200.8-1994, Rev. 5.4
Sodium	2.73 mg/L	1	0.20	0.01	GES	07/06/2023 14:27	EPA 200.8-1994, Rev. 5.4
Strontium	0.00375 mg/L	1	0.00200	0.00005	GES	07/06/2023 14:27	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231989 Customer: Pirkey Power Station Date Reported: 08/04/2023

Customer Sample ID: AD-27 Customer Description: TG-32

Lab Number: 231989-004 Preparation:

Date Collected: 06/27/2023 09:30 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.032 mg/L	1	0.050	0.007 J1	GES	07/06/2023 14:32	EPA 200.8-1994, Rev. 5.4
Calcium	3.86 mg/L	1	0.05	0.01	GES	07/06/2023 14:32	EPA 200.8-1994, Rev. 5.4
Magnesium	4.89 mg/L	1	0.100	0.006	GES	07/06/2023 14:32	EPA 200.8-1994, Rev. 5.4
Potassium	1.99 mg/L	1	0.100	0.008	GES	07/06/2023 14:32	EPA 200.8-1994, Rev. 5.4
Sodium	8.15 mg/L	1	0.20	0.01	GES	07/06/2023 14:32	EPA 200.8-1994, Rev. 5.4
Strontium	0.0587 mg/L	1	0.00200	0.00005	GES	07/06/2023 14:32	EPA 200.8-1994, Rev. 5.4

Customer Sample ID: AD-34 Customer Description: TG-32

Lab Number: 231989-005 Preparation:

Date Collected: 06/27/2023 09:39 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.057 mg/L	1	0.050	0.007	GES	07/06/2023 14:38	EPA 200.8-1994, Rev. 5.4
Calcium	40.1 mg/L	1	0.05	0.01	GES	07/06/2023 14:38	EPA 200.8-1994, Rev. 5.4
Magnesium	36.0 mg/L	1	0.100	0.006	GES	07/06/2023 14:38	EPA 200.8-1994, Rev. 5.4
Potassium	7.10 mg/L	1	0.100	0.008	GES	07/06/2023 14:38	EPA 200.8-1994, Rev. 5.4
Sodium	14.0 mg/L	1	0.20	0.01	GES	07/06/2023 14:38	EPA 200.8-1994, Rev. 5.4
Strontium	0.446 mg/L	1	0.00200	0.00005	GES	07/06/2023 14:38	EPA 200.8-1994. Rev. 5.4

Customer Sample ID: AD-36 Customer Description: TG-32

Lab Number: 231989-006 Preparation:

Date Collected: 06/27/2023 10:36 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.067 mg/L	1	0.050	0.007	GES	07/06/2023 14:43	EPA 200.8-1994, Rev. 5.4
Calcium	0.88 mg/L	1	0.05	0.01	GES	07/06/2023 14:43	EPA 200.8-1994, Rev. 5.4
Magnesium	1.78 mg/L	1	0.100	0.006	GES	07/06/2023 14:43	EPA 200.8-1994, Rev. 5.4
Potassium	1.61 mg/L	1	0.100	0.008	GES	07/06/2023 14:43	EPA 200.8-1994, Rev. 5.4
Sodium	5.13 mg/L	1	0.20	0.01	GES	07/06/2023 14:43	EPA 200.8-1994, Rev. 5.4
Strontium	0.00953 mg/L	1	0.00200	0.00005	GES	07/06/2023 14:43	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231989 Customer: Pirkey Power Station Date Reported: 08/04/2023

Customer Sample ID: Landfill Duplicate Customer Description: TG-32

Lab Number: 231989-007 Preparation:

Date Collected: 06/27/2023 10:00 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.960 mg/L	1	0.050	0.007	GES	07/06/2023 14:48	EPA 200.8-1994, Rev. 5.4
Calcium	93.4 mg/L	1	0.05	0.01	GES	07/06/2023 14:48	EPA 200.8-1994, Rev. 5.4
Magnesium	6.75 mg/L	1	0.100	0.006	GES	07/06/2023 14:48	EPA 200.8-1994, Rev. 5.4
Potassium	0.847 mg/L	1	0.100	0.008	GES	07/06/2023 14:48	EPA 200.8-1994, Rev. 5.4
Sodium	7.19 mg/L	1	0.20	0.01	GES	07/06/2023 14:48	EPA 200.8-1994, Rev. 5.4
Strontium	0.557 mg/L	1	0.00200	0.00005	GES	07/06/2023 14:48	EPA 200.8-1994, Rev. 5.4

Customer Sample ID: Equipment Blank - Landfill Customer Description: TG-32

Lab Number: 231989-008 Preparation:

Date Collected: 06/27/2023 10:37 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	<0.007 mg/L	1	0.050	0.007 U1	GES	07/06/2023 14:53	EPA 200.8-1994, Rev. 5.4
Calcium	<0.01 mg/L	1	0.05	0.01 U1	GES	07/06/2023 14:53	EPA 200.8-1994, Rev. 5.4
Magnesium	<0.006 mg/L	1	0.100	0.006 U1	GES	07/06/2023 14:53	EPA 200.8-1994, Rev. 5.4
Potassium	<0.008 mg/L	1	0.100	0.008 U1	GES	07/06/2023 14:53	EPA 200.8-1994, Rev. 5.4
Sodium	<0.01 mg/L	1	0.20	0.01 U1	GES	07/06/2023 14:53	EPA 200.8-1994, Rev. 5.4
Strontium	<0.0005 mg/L	1	0.00200	0.00005 U1	GES	07/06/2023 14:53	EPA 200.8-1994. Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231989 Customer: Pirkey Power Station Date Reported: 08/04/2023

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

U1 - Not detected at or above method detection limit (MDL).

Chain of Custody Record Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125 Program: Coal Combustion Residuals (CCR) For Lab Use Only: Site Contact: Date: Michael Ohlinger (614-836-4184) Contacts: COC/Order #: Dave Conover (614-836-4219) Three Fleid-filter 125 mL (six every 250 mL 250 mL PTFE lined Project Name: Pirkey PP CCR-Landfill 10th*) Field Filtered bottle. bottle, then bottle, L bottler 231989 Analysis Turnaround Time (in Calendar Days) 126 mL PTFE Contact Name: Leslie Fuerschbach pH<2, pH<2, pH<2, HCL** lined bottle Routine (28 days for Monitoring Wells) HNO3 Contact Phone: 318-673-2744 HNO HNO₃ pH<2 HCL", pH<2 ŝ ું કુ Sampler(s): Matt Hamilton Kenny McDonald Ra-226, Ra-228 Sampler(s) Initials Ca K Mg, Na Dissolved Sample Type Sample Sample (C=Comp, # of 8, 2, 4 Sample Specific Notes: Sample Identification Date Time G=Grab) Matrix Cont. 1024 G GW 6/27/2023 Х AD-8 6/27/2023 859 G GW Х AD-16 1006 G GW 6/27/2023 Х AD-23 6/27/2023 830 G GW Х AD-27 G GW 6/27/2023 839 Х AD-34 G GW 6/27/2023 936 Х AD-36 G GW 900 6/27/2023 1 Х Landfill Duplicate 6/27/2023 937 G GW 1 Х Equipment Blank - Landfill 2 F4 2 4 Preservation Used: 1= ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other ; F= filter in field Six 1L Bottles must be collected for Radium for every 10th sample. Special Instructions/QC Requirements & Comments: TG-32 needed Relinquished by Date/Time: Received by: Date/Time: Company: Received by: Relinquished by: Date/Time: Received in Laboratory by: Relinquished by: Company: 11:30 AM

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FEEEX USPS
	Other
Plant/Customer Pirkey	
Opened By MGK / WCG	Number of Glass Containers:
	Number of Mercury Containers:
	or N/A Initial:on ice / no ice
	4) - If No, specify each deviation:
	Comments
l	Comments
	If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) NO₂ or N (24 hr)	NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	Comments
Were samples labeled properly? (Y) N	Comments
Were correct containers used? (V) N	
Was pH checked & Color Coding done? Y	N or N/A Initial & Date: W(L 6/30/23
pH paper (circle one): MQuant,PN1.09535.0001,L0	OT#
- Was Add'l Preservative needed? Y	Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / N	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# 231989 Initial &	Date & Time :
Logged by MSO	nts:
W// / -	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

٠,

Municipal Solid Waste Laboratory Review Checklist

This da	ata pack	tage consists of	:							
x	(which		eportable data identified	checklist consisting of Tablon this page), Table 2, Supp						
x	R1	Field chain-of	Field chain-of-custody documentation							
x	R2	Sample identi	fication cross-reference							
x	R3	(a) Items specified NELAC S(b) Dilution f(c) Preparati(d) Cleanup f	orts (analytical data sheets) for each environmental sample that includes: ns specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 200 LAC Standard ution factors paration methods anup methods equired for the project, tentatively identified compounds (TICs)							
NA	R4	Surrogate reco	overy data including: d recovery (%R) atory's surrogate QC limi							
x	R ₅	Test reports/s	summary forms for blank	samples						
×	R6	(a) LCS spiki (b) Calculate		itory control samples (LCSs) including:					
×	R7	(a) Samples (b) MS/MSD(c) Concentr(d) Calculate	orts for project matrix spike/matrix spike duplicates (MS/MSDs) including: ples associated with the MS/MSD clearly identified MSD spiking amounts centration of each MS/MSD analyte measured in the parent and spiked samples ulated %Rs and relative percent differences (RPDs) laboratory's MS/MSD QC limits							
x	R8	(a) The amou	unt of analyte measured i	-	on:					
x	R9	List of method	d quantitation limits (MQ	Ls) for each analyte for each	h method and matrix					
x	R10	Other problem	ns or anomalies							
x	The Ex	ception Repor	t for every item for which	the result is "No" or "NR" (Not Reviewed)					
packag require reports by the laborat	ge as be ements s. By m laborat tory in t	en reviewed by of the methods y signature be tory as having t	the laboratory and is con sused, except where note low, I affirm to the best on the potential to affect the Review Checklist, and no	e of this laboratory data pac nplete and technically comp d by the laboratory in the at f my knowledge, all problen quality of the data, have be information or data have b	pliant with the tached exception ns/anomalies, observed en identified by the					
respon used is	ding to	rule. The offici sible for releas	ial signing the cover page ing this data package and	ouse laboratory controlled by of the rule-required report lis by signature affirming the	in which these data are					
Jona	than E	Barnhill	বিশ্বনীন পৰ্বাপী কৰিব কৰিব কৰিব কৰিব কৰিব কৰিব কৰিব কৰিব	Lab Supervisor	08/03/2023					
Name	(printed	d)	Signature	Official Title	Date					

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 08/03/2023

Laboratory Job Number: 231989

Prep Batch Number(s): PB23070303 QC2307047

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER1
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	<u> </u>	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	<u>.</u>
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 08/03/2023

Laboratory Job Number: 231989

Prep Batch Number(s): PB23070303 QC2307047

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
_	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	Yes	
	I	Were ion abundance data within the method-required QC limits?	Yes	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	Yes	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	Ĭ	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 08/03/2023

Laboratory Job Number: 231989

Prep Batch Number(s): PB23070303 QC2307047

Description
Linear Dynamic Range (LDR) study used to determine upper limit of analyte calibration
CCB acceptance criteria is CCB<2.2*MDL.

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

³ NA - Not applicable; NR - Not reviewed.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231962 Customer: Pirkey Power Station Date Reported: 08/01/2023

Customer Sample ID: AD-8 Customer Description: TG-32

Lab Number: 231962-001 Preparation:

Date Collected: 06/27/2023 11:24 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.24 mg/L	2	0.10	0.02	CRJ	07/15/2023 01:04	EPA 300.1 -1997, Rev. 1.0
Chloride	6.97 mg/L	2	0.04	0.01	CRJ	07/15/2023 01:04	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.31 mg/L	2	0.06	0.02	CRJ	07/15/2023 01:04	EPA 300.1 -1997, Rev. 1.0
Sulfate	182 mg/L	10	3.0	0.6	CRJ	07/15/2023 00:31	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	87 mg/L	1	20	5	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	410 mg/L	1	50	20	JAB	06/30/2023 15:25	SM 2540C-2015

Customer Sample ID: AD-16 Customer Description: TG-32

Lab Number: 231962-002 Preparation:

Date Collected: 06/27/2023 09:59 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.15 mg/L	2	0.10	0.02	CRJ	07/15/2023 02:10	EPA 300.1 -1997, Rev. 1.0
Chloride	28.9 mg/L	2	0.04	0.01	CRJ	07/15/2023 02:10	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.08 mg/L	2	0.06	0.02	CRJ	07/15/2023 02:10	EPA 300.1 -1997, Rev. 1.0
Sulfate	7.3 mg/L	2	0.6	0.1	CRJ	07/15/2023 02:10	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units D	ilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	120 mg/L	1	50	20	JAB	06/30/2023 15:26	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231962 Customer: Pirkey Power Station Date Reported: 08/01/2023

Customer Sample ID: AD-23 Customer Description: TG-32

Lab Number: 231962-003 Preparation:

Date Collected: 06/27/2023 11:06 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.16 mg/L	2	0.10	0.02	CRJ	07/15/2023 02:43	EPA 300.1 -1997, Rev. 1.0
Chloride	7.55 mg/L	2	0.04	0.01	CRJ	07/15/2023 02:43	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.04 mg/L	2	0.06	0.02 J1	CRJ	07/15/2023 02:43	EPA 300.1 -1997, Rev. 1.0
Sulfate	7.7 mg/L	2	0.6	0.1	CRJ	07/15/2023 02:43	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011	
TDS, Filterable Residue	70 mg/L	1	50	20	JAB	06/30/2023 15:27	SM 2540C-2015	

Customer Sample ID: AD-27 Customer Description: TG-32

Lab Number: 231962-004 Preparation:

Date Collected: 06/27/2023 09:30 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.30 mg/L	2	0.10	0.02	CRJ	07/15/2023 03:16	EPA 300.1 -1997, Rev. 1.0
Chloride	13.6 mg/L	2	0.04	0.01	CRJ	07/15/2023 03:16	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.14 mg/L	2	0.06	0.02	CRJ	07/15/2023 03:16	EPA 300.1 -1997, Rev. 1.0
Sulfate	59.9 mg/L	2	0.6	0.1	CRJ	07/15/2023 03:16	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	210 mg/L	1	50	20	JAB	06/30/2023 15:36	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231962 Customer: Pirkey Power Station Date Reported: 08/01/2023

Customer Sample ID: AD-34 Customer Description: TG-32

Lab Number: 231962-005 Preparation:

Date Collected: 06/27/2023 09:39 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.14 mg/L	5	0.25	0.05 J1	CRJ	07/15/2023 04:54	EPA 300.1 -1997, Rev. 1.0
Chloride	7.18 mg/L	5	0.10	0.03	CRJ	07/15/2023 04:54	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.63 mg/L	5	0.15	0.05	CRJ	07/15/2023 04:54	EPA 300.1 -1997, Rev. 1.0
Sulfate	1230 mg/L	50	15	3	CRJ	07/15/2023 04:21	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	1710 mg/L	1	50	20	JAB	06/30/2023 15:37	SM 2540C-2015

Customer Sample ID: AD-36 Customer Description: TG-32

Lab Number: 231962-006 Preparation:

Date Collected: 06/27/2023 10:36 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.35 mg/L	2	0.10	0.02	CRJ	07/15/2023 06:00	EPA 300.1 -1997, Rev. 1.0
Chloride	11.1 mg/L	2	0.04	0.01	CRJ	07/15/2023 06:00	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.06 mg/L	2	0.06	0.02	CRJ	07/15/2023 06:00	EPA 300.1 -1997, Rev. 1.0
Sulfate	3.6 mg/L	2	0.6	0.1	CRJ	07/15/2023 06:00	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units I	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	60 mg/L	1	50	20 P1	JAB	06/30/2023 15:38	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231962 Customer: Pirkey Power Station Date Reported: 08/01/2023

Customer Sample ID: Landfill Duplicate

Customer Description: TG-32

Lab Number: 231962-007

Preparation:

Date Collected: 06/27/2023 10:00 EDT

Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.24 mg/L	2	0.10	0.02	CRJ	07/14/2023 14:49	EPA 300.1 -1997, Rev. 1.0
Chloride	6.96 mg/L	2	0.04	0.01	CRJ	07/14/2023 14:49	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.32 mg/L	2	0.06	0.02	CRJ	07/14/2023 14:49	EPA 300.1 -1997, Rev. 1.0
Sulfate	183 mg/L	10	3.0	0.6	CRJ	07/14/2023 23:58	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	85 mg/L	1	20	5	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	420 mg/L	2	100	40	JAB	06/30/2023 15:47	SM 2540C-2015

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231962 Customer: Pirkey Power Station Date Reported: 08/01/2023

Data Qualifer Legend

- U1 Not detected at or above method detection limit (MDL).
- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.
- P1 The precision between duplicate results was above acceptance limits.

Chain of Custody Record Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125 Program: Coal Combustion Residuals (CCR) Date: For Lab Use Only: Michael Ohlinger (614-836-4184) Site Contact: Contacts: COC/Order # Dave Conover (614-836-4219) Field-filter Three 250 mL Project Name: Pirkey PP CCR - Landfill 250 mL 1 L bottle (six every 231962 bottle. bottle, Cool, 0-6C 10th*) Analysis Turnaround Time (in Calendar Days) Contact Name: Leslie Fuerschbach pH<2, then pH<2, L bottles. Routine (28 days for Monitoring Wells) 318-673-2744 HNO₃ HNO₃ pH<2, HNO3 Contact Phone: Dissolved Mercury , SO4, Br, Alkalinity Matt Hamilton Kenny McDonald Ra-228 Sampler(s) Initials Sample Ra-226, Type F, Cl, TDS, 7 Sample Sample (C=Comp, # of G=Grab) Sample Specific Notes Sample Identification Date Time Matrix Cont. 6/27/2023 1024 G GW AD-8 Х 6/27/2023 859 G GW 1 AD-16 Х 6/27/2023 1006 G GW 1 Х AD-23 6/27/2023 830 G GW 1 Х AD-27 6/27/2023 839 G GW 1 AD-34 Х 6/27/2023 936 G GW 1 Х AD-36 G GW 6/27/2023 900 1 **Landfill Duplicate** Х F4 Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other ; F= filter in field Six 1L Bottles must be collected for Radium for every 10th sample. Special Instructions/QC Requirements & Comments: TG-32 needed Company: Date/Time: Received by: Relinquished by 1600 Relinquished by Company: Date/Time: Received by: Date/Time: Relinquished by: Date/Time: Received in Laboratory by:

Company:

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
(c)	
Cooler Box Bag Envelope	PONY UPS (FedEX USPS
	Other
Plant/Customer PIFICEY PI	Number of Plastic Containers: 7
Opened By MISTING MICONG	Number of Glass Containers:
Date/Time 06 29 23 10:45 Am	Number of Mercury Containers:
Were all temperatures within 0-6°C? (9/N	or N/A Initial: MC (on ice / no ice
(IR Gun Ser# 2213689000 , Expir. 03/24/202	24) - If No, specify each deviation:
^	Comments
Was Chain of Custody received? (y) / N	Comments
	If RUSH, who was notified?
pH (15 min) Cr⁴6 (pres) NO₂ or l (24 hr)	NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? (ŷ/N	Comments
Were samples labeled property? 🐧 / N	Comments
Were correct containers used?	Comments
Was pH checked & Color Coding done?	N or N/A Initial & Date: MGC 06/29/23
pH paper (circle one): MQuant,PN1.09535.0001,L	OT# {OR] Lab Rat, PN4801, LOT# X000RW00321 Exp 11/15/2024
	f Yes: By whom & when:(See Prep Book)
Is sample filtration requested? Y / 🚱	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# 231962 Initial &	Date & Time :
	ents:
Reviewed by	
	•

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

.

4

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: х This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. × Field chain-of-custody documentation Rı X R_2 Sample identification cross-reference x Test reports (analytical data sheets) for each environmental sample that includes: R3 (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA R4 Surrogate recovery data including: (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits Test reports/summary forms for blank samples х **R**5 |x|**R6** Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: $|\mathbf{x}|$ **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits Laboratory analytical duplicate (if applicable) recovery and precision: $\left[\mathbf{x} \right]$ R8 (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates $\left[\mathbf{x} \right]$ R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix $\overline{\mathbf{x}}$ Other problems or anomalies $|\mathbf{x}|$ The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) **Release Statement:** I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Michael Ohilnger Chemist 8/1/2023

Official Title

Name (printed)

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR - Landfill

Reviewer Name: Michael Ohlinger

LRC Date: 8/1/2023

Laboratory Job Number: 231962

Prep Batch Number(s): QC2306250

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	i
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	ī	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	_
R10	0, 1	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR - Landfill

Reviewer Name: Michael Ohlinger

LRC Date: 8/1/2023

Laboratory Job Number: 231962

Prep Batch Number(s): QC2306250

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	_
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	1	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions	3	
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S 16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR - Landfill

Reviewer Name: Michael Ohlinger

LRC Date: 8/1/2023

Laboratory Job Number: 231962

Prep Batch Number(s): QC2306250

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB<0.5*MQL.

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This da	ata pacl	kage consists of:
×	(which	ignature page, and the laboratory review checklist consisting of Table 1, Reportable Data includes the reportable data identified on this page), Table 2, Supporting Data, and 3, Exception Reports.
х	R1	Field chain-of-custody documentation
x	R2	Sample identification cross-reference
x	R3	 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs)
x	R4	Surrogate recovery data including: (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits
х	R5	Test reports/summary forms for blank samples
X	R6	Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits
×	R7	Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits
X	R8	Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates
х	R9	List of method quantitation limits (MQLs) for each analyte for each method and matrix
х	R10	Other problems or anomalies
x	The Ex	xception Report for every item for which the result is "No" or "NR" (Not Reviewed)
packag require reporta by the labora	ge as be ements s. By m labora tory in	tement: I am responsible for the release of this laboratory data package. This data seen reviewed by the laboratory and is complete and technically compliant with the of the methods used, except where noted by the laboratory in the attached exception by signature below, I affirm to the best of my knowledge, all problems/anomalies, observed tory as having the potential to affect the quality of the data, have been identified by the the Laboratory Review Checklist, and no information or data have been knowingly withheld fect the quality of the data.
respor used is statem	iding to	

Official Title

Signature

Name (printed)

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR Landfill

Reviewer Name: Tim Arnold

LRC Date: 7/17/23

Laboratory Job Number: 231962

Prep Batch Number(s): QC2307103

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	Yes	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	1	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
ż	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	-
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR Landfill

Reviewer Name: Tim Arnold

LRC Date: 7/17/23

Laboratory Job Number: 231962

Prep Batch Number(s): QC2307103

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes_	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S 3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
.67	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
59	I	Serial dilutions, post digestion spikes, and method of standard additions	, "Y	
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	s Y
S10	O, I	Method detection limit (MDL) studies		0
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
\$11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S 13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		82
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey PP CCR Landfill
Reviewer Name: Tim Arnold
LRC Date: 7/17/23
Laboratory Job Number: 231962
Prep Batch Number(s): QC2307103

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: X This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. Field chain-of-custody documentation $\left[\times \right]$ R_1 [x]R2 Sample identification cross-reference $\left[\mathbf{x} \right]$ Test reports (analytical data sheets) for each environmental sample that includes: R₃ (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate OC limits X Test reports/summary forms for blank samples **R**5 х R6 Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: x **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits \square Laboratory analytical duplicate (if applicable) recovery and precision: R8 (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates |x|R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix $|\mathbf{x}|$ R10 Other problems or anomalies х The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) **Release Statement:** I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. **Check, if applicable:** () This laboratory is an in-house laboratory controlled by the person

Michael Ohlinger
Name (printed)

Michael Ohlinger
Signature

Chemist
Official Title
Date

responding to rule. The official signing the cover page of the rule-required report in which these data are

used is responsible for releasing this data package and is by signature affirming the above release

statement is true.

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR - Landfill

Reviewer Name: Michael Ohlinger

LRC Date: 8/1/2023

Laboratory Job Number: 231962

Prep Batch Number(s): QC2306244

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4	
R1	O, I	Chain-of-custody (COC)			
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes		
	I	Were all departures from standard conditions described in an exception report?	NA		
R2	O, I	Sample and quality control (QC) identification			
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes		
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes		
R3	O, I	Test reports			
	I	Were all samples prepared and analyzed within holding times?	Yes		
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA		
	I	Were calculations checked by a peer or supervisor?	Yes		
	I	Were all analyte identifications checked by a peer or supervisor?	Yes		
	I	Were sample quantitation limits reported for all analytes not detected?	Yes		
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA		
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA		
	I	If required for the project, TICs reported?	NA		
R4	0	Surrogate recovery data			
	I	Were surrogates added prior to extraction?	NA		
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA		
R5	0, 1	Test reports/summary forms for blank samples			
	I	Were appropriate type(s) of blanks analyzed?	Yes		
	I	Were blanks analyzed at the appropriate frequency?	Yes		

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	Ι	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR - Landfill

Reviewer Name: Michael Ohlinger

LRC Date: 8/1/2023

Laboratory Job Number: 231962

Prep Batch Number(s): QC2306244

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	ľ	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S 2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S 3	0	Mass spectral tuning:		
	ĭ	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4	
S6	0	Dual column confirmation			
	I	Did dual column confirmation results meet the method-required QC?	NA		
\$7	0	Tentatively identified compounds (TICs):			
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA		
S8	I	Interference Check Sample (ICS) results:			
	I	Were percent recoveries within method QC limits?	NA		
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		-	
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA		
S10	O, I	Method detection limit (MDL) studies			
	I	Was a MDL study performed for each reported analyte?	Yes		
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes		
S11	O, I	Proficiency test reports:			
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes		
S12	O, I	Standards documentation			
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes		
S13,	O, I	Compound/analyte identification procedures			
	I	Are the procedures for compound/analyte identification documented?	Yes		
S14	O, I	Demonstration of analyst competency (DOC)			
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes		
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes		
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)			
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes		
\$16	O, I	Laboratory standard operating procedures (SOPs):			
	I	Are laboratory SOPs current and on file for each method performed?	Yes		

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP CCR - Landfill

Reviewer Name: Michael Ohlinger

LRC Date: 8/1/2023

Laboratory Job Number: 231962

Prep Batch Number(s): QC2306244

Exception Report No.	Description

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231960 Customer: Pirkey Power Station Date Reported: 08/01/2023

Customer Sample ID: AD-2 Customer Description: TG-32

Lab Number: 231960-001 Preparation:

Date Collected: 06/26/2023 11:42 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.35 mg/L	2	0.10	0.02	CRJ	07/12/2023 11:48	EPA 300.1 -1997, Rev. 1.0
Chloride	30.8 mg/L	2	0.04	0.01	CRJ	07/12/2023 11:48	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.19 mg/L	2	0.06	0.02	CRJ	07/12/2023 11:48	EPA 300.1 -1997, Rev. 1.0
Sulfate	271 mg/L	10	3.0	0.6	CRJ	07/12/2023 11:16	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011	
TDS, Filterable Residue	530 mg/L	1	50	20	JAB	06/30/2023 10:53	SM 2540C-2015	

Customer Sample ID: AD-3 Customer Description: TG-32

Lab Number: 231960-002 Preparation:

Date Collected: 06/27/2023 12:01 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.06 mg/L	2	0.10	0.02 J1	CRJ	07/12/2023 14:33	EPA 300.1 -1997, Rev. 1.0
Chloride	5.67 mg/L	2	0.04	0.01	CRJ	07/12/2023 14:33	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.03 mg/L	2	0.06	0.02 J1	CRJ	07/12/2023 14:33	EPA 300.1 -1997, Rev. 1.0
Sulfate	22.4 mg/L	2	0.6	0.1	CRJ	07/12/2023 14:33	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	150 mg/L	1	50	20	JAB	06/30/2023 10:56	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231960 Customer: Pirkey Power Station Date Reported: 08/01/2023

Customer Sample ID: AD-4 Customer Description: TG-32

Lab Number: 231960-003 Preparation:

Date Collected: 06/27/2023 12:10 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.30 mg/L	2	0.10	0.02	CRJ	07/12/2023 15:06	EPA 300.1 -1997, Rev. 1.0
Chloride	3.97 mg/L	2	0.04	0.01	CRJ	07/12/2023 15:06	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.02 mg/L	2	0.06	0.02 J1	CRJ	07/12/2023 15:06	EPA 300.1 -1997, Rev. 1.0
Sulfate	18.9 mg/L	2	0.6	0.1	CRJ	07/12/2023 15:06	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011	
TDS, Filterable Residue	150 mg/L	1	50	20	JAB	06/30/2023 11:02	SM 2540C-2015	

Customer Sample ID: AD-7 Customer Description: TG-32

Lab Number: 231960-004 Preparation:

Date Collected: 06/27/2023 10:51 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	2.85 mg/L	2	0.10	0.02	CRJ	07/12/2023 19:29	EPA 300.1 -1997, Rev. 1.0
Chloride	31.2 mg/L	2	0.04	0.01	CRJ	07/12/2023 19:29	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.40 mg/L	2	0.06	0.02	CRJ	07/12/2023 19:29	EPA 300.1 -1997, Rev. 1.0
Sulfate	74.6 mg/L	2	0.6	0.1	CRJ	07/12/2023 19:29	EPA 300.1 -1997, Rev. 1.0

Param	eter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Alkalini	ty, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011	
TDS, Filt	terable Residue	290 mg/L	1	50	20	JAB	06/30/2023 11:01	SM 2540C-2015	

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231960 Customer: Pirkey Power Station Date Reported: 08/01/2023

Customer Sample ID: AD-12 Customer Description: TG-32

Lab Number: 231960-005 Preparation:

Date Collected: 06/26/2023 08:55 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.05 mg/L	2	0.10	0.02 J1	CRJ	07/12/2023 18:23	EPA 300.1 -1997, Rev. 1.0
Chloride	4.68 mg/L	2	0.04	0.01	CRJ	07/12/2023 18:23	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.06 mg/L	2	0.06	0.02	CRJ	07/12/2023 18:23	EPA 300.1 -1997, Rev. 1.0
Sulfate	2.9 mg/L	2	0.6	0.1	CRJ	07/12/2023 18:23	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011	
TDS, Filterable Residue	80 mg/L	1	50	20	JAB	06/30/2023 11:07	SM 2540C-2015	

Customer Sample ID: AD-13 Customer Description: TG-32

Lab Number: 231960-006 Preparation:

Date Collected: 06/26/2023 08:28 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.25 mg/L	2	0.10	0.02	CRJ	07/12/2023 21:41	EPA 300.1 -1997, Rev. 1.0
Chloride	48.7 mg/L	10	0.20	0.05	CRJ	07/12/2023 21:08	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.23 mg/L	2	0.06	0.02	CRJ	07/12/2023 21:41	EPA 300.1 -1997, Rev. 1.0
Sulfate	112 mg/L	10	3.0	0.6	CRJ	07/12/2023 21:08	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS Filterable Residue	280 mg/l	1	50	20	IAR	06/30/2023 11:00	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231960 Customer: Pirkey Power Station Date Reported: 08/01/2023

Customer Sample ID: AD-17 Customer Description: TG-32

Lab Number: 231960-007 Preparation:

Date Collected: 06/26/2023 12:47 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.16 mg/L	2	0.10	0.02	CRJ	07/12/2023 20:35	EPA 300.1 -1997, Rev. 1.0
Chloride	15.4 mg/L	2	0.04	0.01	CRJ	07/12/2023 20:35	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.19 mg/L	2	0.06	0.02	CRJ	07/12/2023 20:35	EPA 300.1 -1997, Rev. 1.0
Sulfate	2.4 mg/L	2	0.6	0.1	CRJ	07/12/2023 20:35	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	60 mg/L	1	50	20	JAB	06/30/2023 11:14	SM 2540C-2015

Customer Sample ID: AD-18 Customer Description: TG-32

Lab Number: 231960-008 Preparation:

Date Collected: 06/27/2023 08:42 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.04 mg/L	2	0.10	0.02 J1	CRJ	07/12/2023 22:47	EPA 300.1 -1997, Rev. 1.0
Chloride	5.28 mg/L	2	0.04	0.01	CRJ	07/12/2023 22:47	EPA 300.1 -1997, Rev. 1.0
Fluoride	<0.02 mg/L	2	0.06	0.02 U1	CRJ	07/12/2023 22:47	EPA 300.1 -1997, Rev. 1.0
Sulfate	8.2 mg/L	2	0.6	0.1	CRJ	07/12/2023 22:47	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	110 mg/L	1	50	20	JAB	06/30/2023 11:16	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231960 Customer: Pirkey Power Station Date Reported: 08/01/2023

Customer Sample ID: AD-22 Customer Description: TG-32

Lab Number: 231960-009 Preparation:

Date Collected: 06/26/2023 09:43 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.48 mg/L	2	0.10	0.02	CRJ	07/13/2023 03:10	EPA 300.1 -1997, Rev. 1.0
Chloride	93.9 mg/L	25	0.5	0.1	CRJ	07/13/2023 02:37	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.63 mg/L	2	0.06	0.02	CRJ	07/13/2023 03:10	EPA 300.1 -1997, Rev. 1.0
Sulfate	350 mg/L	25	8	2	CRJ	07/13/2023 02:37	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011	
TDS, Filterable Residue	680 mg/L	1	50	20	JAB	06/30/2023 11:23	SM 2540C-2015	

Customer Sample ID: AD-28 Customer Description: TG-32

Lab Number: 231960-010 Preparation:

Date Collected: 06/26/2023 12:26 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.06 mg/L	2	0.10	0.02 J1	CRJ	07/12/2023 23:20	EPA 300.1 -1997, Rev. 1.0
Chloride	4.14 mg/L	2	0.04	0.01	CRJ	07/12/2023 23:20	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.54 mg/L	2	0.06	0.02	CRJ	07/12/2023 23:20	EPA 300.1 -1997, Rev. 1.0
Sulfate	25.9 mg/L	2	0.6	0.1	CRJ	07/12/2023 23:20	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	120 mg/L	1	50	20	JAB	06/30/2023 11:24	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231960 Customer: Pirkey Power Station Date Reported: 08/01/2023

Customer Sample ID: AD-30 Customer Description: TG-32

Lab Number: 231960-011 Preparation:

Date Collected: 06/26/2023 12:03 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.20 mg/L	2	0.10	0.02	CRJ	07/13/2023 05:22	EPA 300.1 -1997, Rev. 1.0
Chloride	18.2 mg/L	2	0.04	0.01	CRJ	07/13/2023 05:22	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.04 mg/L	2	0.06	0.02 J1	CRJ	07/13/2023 05:22	EPA 300.1 -1997, Rev. 1.0
Sulfate	147 mg/L	10	3.0	0.6	CRJ	07/13/2023 04:49	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	300 mg/L	1	50	20	JAB	06/30/2023 11:31	SM 2540C-2015

Customer Sample ID: AD-31 Customer Description: TG-32

Lab Number: 231960-012 Preparation:

Date Collected: 06/26/2023 11:01 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.26 mg/L	2	0.10	0.02	CRJ	07/13/2023 04:16	EPA 300.1 -1997, Rev. 1.0
Chloride	21.2 mg/L	2	0.04	0.01	CRJ	07/13/2023 04:16	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.1 mg/L	2	0.06	0.02	CRJ	07/13/2023 04:16	EPA 300.1 -1997, Rev. 1.0
Sulfate	82.1 mg/L	2	0.6	0.1	CRJ	07/13/2023 04:16	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units Dil	ution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	280 mg/L	1	50	20	JAB	06/30/2023 11:32	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231960 Customer: Pirkey Power Station Date Reported: 08/01/2023

Customer Sample ID: AD-32 Customer Description: TG-32

Lab Number: 231960-013 Preparation:

Date Collected: 06/26/2023 09:30 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	1.17 mg/L	2	0.10	0.02	CRJ	07/13/2023 07:01	EPA 300.1 -1997, Rev. 1.0
Chloride	14.5 mg/L	2	0.04	0.01	CRJ	07/13/2023 07:01	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.13 mg/L	2	0.06	0.02	CRJ	07/13/2023 07:01	EPA 300.1 -1997, Rev. 1.0
Sulfate	119 mg/L	25	8	2	CRJ	07/13/2023 06:28	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	260 mg/L	1	50	20	JAB	06/30/2023 11:37	SM 2540C-2015

Customer Sample ID: AD-33 Customer Description: TG-32

Lab Number: 231960-014 Preparation:

Date Collected: 06/26/2023 11:34 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.28 mg/L	2	0.10	0.02	CRJ	07/13/2023 08:07	EPA 300.1 -1997, Rev. 1.0
Chloride	9.50 mg/L	2	0.04	0.01	CRJ	07/13/2023 08:07	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.21 mg/L	2	0.06	0.02	CRJ	07/13/2023 08:07	EPA 300.1 -1997, Rev. 1.0
Sulfate	58.4 mg/L	2	0.6	0.1	CRJ	07/13/2023 08:07	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	200 mg/L	1	50	20	JAB	06/30/2023 11:38	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231960 Customer: Pirkey Power Station Date Reported: 08/01/2023

Customer Sample ID: Duplicate - 1 Customer Description: TG-32

Lab Number: 231960-015 Preparation:

Date Collected: 06/26/2023 13:00 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.25 mg/L	2	0.10	0.02	CRJ	07/12/2023 12:54	EPA 300.1 -1997, Rev. 1.0
Chloride	48.3 mg/L	10	0.20	0.05	CRJ	07/12/2023 10:43	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.22 mg/L	2	0.06	0.02	CRJ	07/12/2023 12:54	EPA 300.1 -1997, Rev. 1.0
Sulfate	112 mg/L	10	3.0	0.6	CRJ	07/12/2023 10:43	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	300 mg/L	1	50	20	JAB	06/30/2023 11:51	SM 2540C-2015

Customer Sample ID: Field Blank Customer Description: TG-32

Lab Number: 231960-016 Preparation:

Date Collected: 06/26/2023 12:25 EDT Date Received: 06/29/2023 10:45 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	<0.02 mg/L	2	0.10	0.02 U1	CRJ	07/12/2023 10:10	EPA 300.1 -1997, Rev. 1.0
Chloride	0.27 mg/L	2	0.04	0.01	CRJ	07/12/2023 10:10	EPA 300.1 -1997, Rev. 1.0
Fluoride	<0.02 mg/L	2	0.06	0.02 U1	CRJ	07/12/2023 10:10	EPA 300.1 -1997, Rev. 1.0
Sulfate	<0.1 mg/L	2	0.6	0.1 U1	CRJ	07/12/2023 10:10	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	06/29/2023 14:54	SM 2320B-2011
TDS, Filterable Residue	<20 mg/L	1	50	20 U1	JAB	06/30/2023 11:52	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231960 Customer: Pirkey Power Station Date Reported: 08/01/2023

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

U1 - Not detected at or above method detection limit (MDL).

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

Chain of Custody Record

Dolan Chemical Laboratory (DCL)

4001 Bixby Road

Sample Specific Notes: For Lab Use Only: 231960 COC/Order # Date (six every 10th") 1 L bottles, pH<2, HNO3 Three Ra-226, Ra-228 1 t. bottle, Cool, 0-6C **TDS, Alkalinity** Program: Coal Combustion Residuals (CCR) × E' CI' 204' BL' Field-filter 250 mL bottle, then pH<2, HNO3 Dissolved Mercury 250 mL bottle, pH<2, HNO3 Mercury Routine (28 days for Monitoring Wells) Slatini (s)reigmaS Cont. Analysis Turnaround Time (in Calendar Days) -Matrix SN გ <u></u>8 ĞΚ Š Š Š 80 Š Š <u>₹</u> <u>Ş</u> Sample Type (C=Comp, G=Grab) O G O Ø Q Φ Ø O Q G Ö O Sample 1130 1126 1103 Time 1042 1101 1147 100 100 742 8 951 755 728 6/26/2023 Sample 6/26/2023 6/26/2023 6/27/2023 6/27/2023 6/27/2023 6/26/2023 6262023 627/2023 6/26/2023 6/26/2023 6262023 Date Michael Ohlinger (614-836-4184) Sampler(s): Matt Hamilton Kenny McDonald Dave Conover (614-836-4219) Project Name: Pirkey PP Semi-Annual CCR Groveport, Ohio 43125 Sample Identification Leslie Fuerschbach 318-673-2744 AD-12 AD-18 AD-13 AD-17 AD-28 AD-30 AD-22 AD-2 AP-3 **AD4** AP-7 AD-31 Contact Name: Contact Phone: Contacts:

eservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other

4

7

4

; F= filter in field

Special Instructions/QC Requirements & Comments:

TG-32 needed

Relinquished by M	Company:	Date/Time: 1600 (-26-23	Received by:	DateTime
Relinquished by:	Company	Date/Time.	Received by:	Date/Time:
Relinquished by	Company:	Date/Time:	Received in Laboratory by:	Date/Time: 6/29/23 10:45AM
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	ed for Coal Combustion Residua	al (CCR) Sampling - Shr	eveport, Rev. 1, 1/10/17	

Six 1L Bottles must be collected for Radium for every 10th sample.

Chain of Custody Record

Dolan Chemical Laboratory (DCL.) 4001 Bixby Road				ភ	ain of	hain of Custody Record	y Reco	Đ		
Groveport, Ohio 43125				rogra	n: Coal	Program: Coal Combustion Residuals (CCR)	Residuals	(CCR)		
Contacts: Michael Ohlinger (614-836-4184) Dave Conover (614-836-4219)					Site	Site Contact:	Conference and a second	2	Date:	For Lab Use Only:
휥ᄀ	Analysis	fumaround	Analysis Turnaround Time (in Calendar Days)	endar Da	(S)	250 mL bottle, pH<2,	E \$	1 L bottle Cool 0-6C	Three (six every 10th*)	
Contact Phone: 318-673-2744 Sampler(s): Matt Hamilton Kenny McDonald	₹	100 (25 day	(* Kounne (28 days for Monttoring Wells)	iii A	-	HNO3	Elecury E	er, inity	PH-22 HN03	
Sample Identification	Sample Date	Sample	Sample Type (C=Comp, G=Grab)	Matrix	O # O p 2 p 2 p 2 p 2 p 3 p 3 p 3 p 3 p 3 p 3 p 3 p 3 p 3 p 3	Wercury	M beviossiQ	E' CI' 204'	Ra-226, Ra	Sample Specific Notes:
AD-32	6/26/2023	830	ŋ	GW	-			×		
AD-33	6/23/2023	934	ŋ	GW	-			×		
Duplicate - 1	6/26/2023	1200	ဗ	GW	-			×		
Field Blank	6/26/2023	1125	ဗ	GW	-			×		
	1340									
		8								
				Г						
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3; 5=Na	OH; 6= Ot	her	; F= fi	; F= filter in field	4	F4	1	4	
* Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th	sample.					ō.			

Special Instructions/QC Requirements & Comments:

TG-32 needed

Relinquished By MI	Company: Engle	Date/Time: $16c$ Received by:		Date/Time:
Relinquished by:	Company:	Date/Time:	Received by:	Date/Time:
Relinquished by	Company	Date/Time:	Received in Liboratury by.	Date/Time: 6/29/23 10,454m
THE STATE OF THE SECOND	The County of th	-1000 callana obs	4 4/40/47	

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Gooler Box Bag Envelope	PONY UPS (FedEX USPS
	Other
Plant/Customer PIPKEY Pl	Number of Plastic Containers: 16
Opened By Mistha Michael	
Date/Time 06/29/23 10:4574m	Number of Mercury Containers:
Were all temperatures within 0-6°C?(y)/N	or N/A Initial: /// (on ice / no ice
	4 - If No, specify each deviation:
	Comments
Was Chain of Custody received? (V/N	Comments
Requested turnaround: <u>KoUThe</u>	If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) NO₂ or N (24 hr)	NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	Comments
Were samples labeled properly? $\sqrt[3]{N}$	Comments
Were correct containers used? \(\textstyle / N \)	Comments
Was pH checked & Color Coding done?	N or N/A Initial & Date: M(F(C 06/29/2)
pH paper (circle one): MQuant,PN1.09535.0001,L0	OT#[OR] Lab Rat,PN4801,LOT#
	Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / (§)	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID#	Date & Time :
Logged by 150 Commer	nts: AU-53 listed as taken on 23 @ 934 on coc while on
noch be	offer as 6/26 @ 91,34. West with bottle due to all offer
	with bottle due to all other imples being taken 6/22 & 6/27. MST
V	6/2

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: X This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. Field chain-of-custody documentation X R1 X R_2 Sample identification cross-reference X R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits X Test reports/summary forms for blank samples R5 Test reports/summary forms for laboratory control samples (LCSs) including: X R6 (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits X **R**7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits X R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates X: R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix X R10 Other problems or anomalies X. The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) **Release Statement:** I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. **Check, if applicable:** () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this daya package and is by signature affirming the above release statement is true. Michael Ohilnger Chemist 8/1/2023

Official Title

Name (printed)

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey PP Semi-Annual CCR
Reviewer Name: Michael Ohlinger

LRC Date: 8/1/2023

Laboratory Job Number: 231960

Prep Batch Number(s): QC2306250

Exception Result Item¹ Analytes² Description (Yes, No, Report No.4 NA, NR)3 R1 0, I Chain-of-custody (COC) Did samples meet the laboratory's standard conditions I Yes of sample acceptability upon receipt? Were all departures from standard conditions described I Yes in an exception report? R2 O, I Sample and quality control (QC) identification Are all field sample ID numbers cross-referenced to the Ι Yes laboratory ID numbers? Are all laboratory ID numbers cross-referenced to the Ι Yes corresponding QC data? R3 O, I Test reports Were all samples prepared and analyzed within holding I Yes times? Other than those results < MQL, were all other raw Ι NA values bracketed by calibration standards? Were calculations checked by a peer or supervisor? Ι Yes Were all analyte identifications checked by a peer or I Yes supervisor? Were sample quantitation limits reported for all Ι Yes analytes not detected? Were all results for soil and sediment samples reported NA I on a dry weight basis? Was % moisture (or solids) reported for all soil and I NA sediment samples? I If required for the project, TICs reported? NA R4 Surrogate recovery data 0 Were surrogates added prior to extraction? NA Ι Were surrogate percent recoveries in all samples within Į NA the laboratory QC limits? R5 0, I Test reports/summary forms for blank samples Ι Were appropriate type(s) of blanks analyzed? Yes Were blanks analyzed at the appropriate frequency? Yes I

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
•	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	ľ	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	,
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Michael Ohlinger

LRC Date: 8/1/2023

Laboratory Job Number: 231960

Prep Batch Number(s): QC2306250

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		(
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	I ANTAL
	I	Were percent RSDs or correlation coefficient criteria met?	NA	2
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	1	Was the appropriate compound for the method used for tuning?	NA	11
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
59	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	0, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	111111111111111111111111111111111111111
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey PP Semi-Annual CCR
Reviewer Name: Michael Ohlinger
LRC Date: 8/1/2023
Laboratory Job Number: 231960
Prep Batch Number(s): QC2306250

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB<0.5*MQL.
*6*c	

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This da	ata pack	age o	consists of:				
x	(which	incl	are page, and the laboratory review ch ades the reportable data identified on ception Reports.				
x	R1	Field	d chain-of-custody documentation				
x	R2	Sam	ple identification cross-reference				
x	R3	(a) (b) (c) (d)	reports (analytical data sheets) for exitems specified in NELAC Chapter 5 NELAC Standard Dilution factors Preparation methods Cleanup methods If required for the project, tentatively	for reporting results, e.g., Sect	ion 5.5.10 in 2003		
X	R4	(a)	ogate recovery data including: Calculated recovery (%R) The laboratory's surrogate QC limits	¥1			
x	R ₅	Test	reports/summary forms for blank sa	mples			
X	R6	(a) (b)	reports/summary forms for laborate LCS spiking amounts Calculated %R for each analyte The laboratory's LCS QC limits	ory control samples (LCSs) inc	luding:		
×	R7	Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits					
X	R8	 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates 					
х	R9	List	of method quantitation limits (MQLs	s) for each analyte for each me	thod and matrix		
x	R10	Oth	er problems or anomalies				
x	The Ex	cept	ion Report for every item for which th	ne result is "No" or "NR" (Not	Reviewed)		
packag require reports by the labora	ge as be ements s. By m laborat tory in t	en re of th y sig tory a the L	ent: I am responsible for the release of eviewed by the laboratory and is completed to the complete methods used, except where noted light and the best of reasoning the potential to affect the quaboratory Review Checklist, and no integral to a first the design of the data.	plete and technically complian by the laboratory in the attach ny knowledge, all problems/a nality of the data, have been id	t with the ed exception nomalies, observed entified by the		
respor used is	iding to	rule. sible	This laboratory is an in-hour the official signing the cover page of for releasing this data package and is	f the rule-required report in w	hich these data are		
Tim /	Arnold		UM Clark	Principle Chemist	07/13/23		
Name	(printed	4)	Signature	Official Title	Date		

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Tim Arnold

LRC Date: 7/13/23

Laboratory Job Number: 231960

Prep Batch Number(s): QC2307086

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
:	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	Yes	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	Ī	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I ,	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
E	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	, I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
·	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	1	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
-	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
>	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual CCR

Reviewer Name: Tim Arnold

LRC Date: 7/13/23

Laboratory Job Number: 231960

Prep Batch Number(s): QC2307086

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S 1	O, I	Initial calibration (ICAL)		-
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
_	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
<u>S3</u>	0	Mass spectral tuning:		
R	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)	2	13
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		1 4
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):	Y	
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	:
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey PP Semi-Annual CCR
Reviewer Name: Tim Arnold
LRC Date: 7/13/23
Laboratory Job Number: 231960
Prep Batch Number(s): QC2307086

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>

³ NA - Not applicable; NR - Not reviewed.

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: × This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. X R1 Field chain-of-custody documentation X R2 Sample identification cross-reference X R₃ Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) M R4 Surrogate recovery data including: (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits $|\mathbf{x}|$ **R5** Test reports/summary forms for blank samples х Test reports/summary forms for laboratory control samples (LCSs) including: R6 (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits **R**7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: X (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits \mathbf{x} Laboratory analytical duplicate (if applicable) recovery and precision: R8 (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates $|\mathbf{x}|$ List of method quantitation limits (MQLs) for each analyte for each method and matrix R9 X Other problems or anomalies $\left[\mathbf{x} \right]$ The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) **Release Statement:** I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Michael Ohlinger Chemist 8/1/2023

Official Title

Name (printed)

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual

Reviewer Name: Michael Ohlinger

LRC Date: 8/1/2023

Laboratory Job Number: 231960

Prep Batch Number(s): QC2306244

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	NA	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	, , , , , , , , , , , , , , , , , , ,
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	0, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	<u>Ye</u> s	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Semi-Annual

Reviewer Name: Michael Ohlinger

LRC Date: 8/1/2023

Laboratory Job Number: 231960

Prep Batch Number(s): QC2306244

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		4
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	e in the second
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		Ų.
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S 16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name: Pirk	key PP Semi-Annual
Reviewer Name: 💄	flichael Ohlinger
LRC Date: 8/1/202	3
Laboratory Job Nu	mber: 231960
Prep Batch Numbe	r(s): QC2306244

Exception Report No.	Description

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-2 Customer Description: TG-32

Lab Number: 231985-001 Preparation:

Date Collected: 06/26/2023 11:42 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result	Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.009	μg/L	1	0.100	0.008	J1	GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Arsenic	1.14	μg/L	1	0.10	0.03		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Barium	13.5	µg/L	1	0.20	0.05		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Beryllium	0.744	µg/L	1	0.050	0.007		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Boron	3.06	mg/L	1	0.050	0.007		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Cadmium	0.119	μg/L	1	0.020	0.004		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Calcium	3.53	mg/L	1	0.05	0.01		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Chromium	0.49	μg/L	1	0.30	0.07		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Cobalt	27.3	µg/L	1	0.020	0.005		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Lead	0.60	µg/L	1	0.20	0.05		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Lithium	0.0595	mg/L	1	0.00030	0.00007		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Magnesium	7.46	mg/L	1	0.100	0.006		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Mercury	157	ng/L	2	10	4		RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1	µg/L	1	0.5	0.1	U1	GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Potassium	1.38	mg/L	1	0.100	0.008		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Selenium	4.32	µg/L	1	0.50	0.04		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Sodium	108	mg/L	1	0.20	0.01		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Strontium	0.0540	mg/L	1	0.00200	0.00005		GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4
Thallium	0.11	µg/L	1	0.20	0.02	J1	GES	07/11/2023 23:33	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.49 pCi/L	0.11	0.14	TTP	07/11/2023 11:33	SW-846 9315-1986, Rev. 0
Carrier Recovery	89.5 %					
Radium-228	0.87 pCi/L	0.16	0.50	ST	07/10/2023 16:11	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	80.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-2 Customer Description: TG-32

Lab Number: 231985-001-01 Preparation: Dissolved

Date Collected: 06/26/2023 11:42 EDT Date Received: 06/30/2023 11:30 EDT

motalo							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.008 μg/L	1	0.100	0.008 J1	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Arsenic	1.10 µg/L	1	0.10	0.03	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Barium	13.3 µg/L	1	0.20	0.05	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Beryllium	0.746 μg/L	1	0.050	0.007	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Cadmium	0. 11 0 μg/L	1	0.020	0.004	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Chromium	0.59 μg/L	1	0.30	0.07	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Cobalt	27.4 μg/L	1	0.020	0.005	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Iron	0.229 mg/L	1	0.020	0.003	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Lead	0.61 µg/L	1	0.20	0.05	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Lithium	0.0599 mg/L	1	0.00030	0.00007	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Manganese	0.102 mg/L	1	0.00100	0.00008	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Selenium	4.14 µg/L	1	0.50	0.04	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4
Thallium	0.11 µg/L	1	0.20	0.02 J1	GES	07/11/2023 23:38	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-3 Customer Description: TG-32

Lab Number: 231985-002 Preparation:

Date Collected: 06/27/2023 12:01 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result l	Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.011 µ	µg/L	1	0.100	0.008 J1	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Arsenic	0.80 կ	µg/L	1	0.10	0.03	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Barium	52.2 µ	µg/L	1	0.20	0.05	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Beryllium	0.200 µ	µg/L	1	0.050	0.007	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Boron	0.037 r	mg/L	1	0.050	0.007 J1	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Cadmium	0.020 µ	µg/L	1	0.020	0.004	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Calcium	2.95 r	mg/L	1	0.05	0.01	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Chromium	0.31 µ	µg/L	1	0.30	0.07	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Cobalt	2.79 μ	µg/L	1	0.020	0.005	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Lead	0.25 μ	µg/L	1	0.20	0.05	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Lithium	0.0414 r	mg/L	1	0.00030	0.00007	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Magnesium	1.42 r	mg/L	1	0.100	0.006	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Mercury	<2 r	ng/L	1	5	2 U1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µ	µg/L	1	0.5	0.1 U1	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Potassium	2.06 r	mg/L	1	0.100	0.008	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Selenium	0.04 μ	µg/L	1	0.50	0.04 J1	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Sodium	8.14 r	mg/L	1	0.20	0.01	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Strontium	0.0213 r	mg/L	1	0.00200	0.00005	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 μ	µg/L	1	0.20	0.02 J1	GES	07/11/2023 23:43	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.54 pCi/L	0.12	0.18	TTP	07/11/2023 11:33	SW-846 9315-1986, Rev. 0
Carrier Recovery	86.5 %					
Radium-228	0.37 pCi/L	0.12	0.38	ST	07/10/2023 16:11	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	89.9 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-3 Customer Description: TG-32

Lab Number: 231985-002-01 Preparation: Dissolved

Date Collected: 06/27/2023 12:01 EDT Date Received: 06/30/2023 11:30 EDT

motalo							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.018 μg/L	1	0.100	0.008 J1	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Arsenic	0.06 μg/L	1	0.10	0.03 J1	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Barium	52.1 μg/L	1	0.20	0.05	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 1 80 μg/L	1	0.050	0.007	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Cadmium	0.016 μg/L	1	0.020	0.004 J1	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Chromium	0.34 µg/L	1	0.30	0.07	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Cobalt	2.78 μg/L	1	0.020	0.005	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Iron	0.074 mg/L	1	0.020	0.003	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Lithium	0.0424 mg/L	1	0.00030	0.00007	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Manganese	0.0315 mg/L	1	0.00100	0.00008	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Selenium	0.05 μg/L	1	0.50	0.04 J1	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 µg/L	1	0.20	0.02 J1	GES	07/11/2023 23:49	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-4 Customer Description: TG-32

Lab Number: 231985-003 Preparation:

Date Collected: 06/27/2023 12:10 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.018 µg/L	1	0.100	0.008 J1	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Arsenic	1.23 µg/L	1	0.10	0.03	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Barium	132 µg/L	1	0.20	0.05	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Beryllium	0.376 μg/L	1	0.050	0.007	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Boron	0.018 mg/L	1	0.050	0.007 J1	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Cadmium	0.021 µg/L	1	0.020	0.004	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Calcium	2.90 mg/L	1	0.05	0.01	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Chromium	0.56 µg/L	1	0.30	0.07	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Cobalt	3.89 µg/L	1	0.020	0.005	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Lead	0.15 µg/L	1	0.20	0.05 J1	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Lithium	0.0240 mg/L	1	0.00030	0.00007	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Magnesium	0.737 mg/L	1	0.100	0.006	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Mercury	3 ng/L	1	5	2 J1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Potassium	2.32 mg/L	1	0.100	0.008	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Selenium	0.14 µg/L	1	0.50	0.04 J1	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Sodium	6.68 mg/L	1	0.20	0.01	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Strontium	0.0248 mg/L	1	0.00200	0.00005	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 µg/L	1	0.20	0.02 J1	GES	07/11/2023 23:54	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.38 pCi/L	0.22	0.20	TTP	07/07/2023 13:34	SW-846 9315-1986, Rev. 0
Carrier Recovery	97.0 %					
Radium-228	0.34 pCi/L	0.15	0.50	ST	07/10/2023 16:11	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	74.0 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Customer: Pirkey Power Station Job ID: 231985 **Date Reported: 10/29/2023**

Customer Sample ID: AD-4 **Customer Description: TG-32**

Lab Number: 231985-003-01 **Preparation: Dissolved**

Date Collected: 06/27/2023 12:10 EDT Date Received: 06/30/2023 11:30 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Arsenic	0.03 µg/L	1	0.10	0.03 J1	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Barium	122 µg/L	1	0.20	0.05	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Beryllium	0.361 µg/L	1	0.050	0.007	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Cadmium	0.019 µg/L	1	0.020	0.004 J1	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Chromium	0.28 µg/L	1	0.30	0.07 J1	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Cobalt	3.82 µg/L	1	0.020	0.005	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Iron	0.142 mg/L	1	0.020	0.003	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Lithium	0.0245 mg/L	1	0.00030	0.00007	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Manganese	0.0358 mg/L	1	0.00100	0.00008	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 µg/L	1	0.20	0.02 J1	GES	07/11/2023 23:59	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-7 Customer Description: TG-32

Lab Number: 231985-004 Preparation:

Date Collected: 06/27/2023 10:51 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifier	s Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Arsenic	1.14 µg/L	1	0.10	0.03	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Barium	40.3 μg/L	1	0.20	0.05	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Beryllium	5.11 µg/L	1	0.050	0.007	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Boron	2.02 mg/L	1	0.050	0.007	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Cadmium	0.691 μg/L	1	0.020	0.004	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Calcium	5.73 mg/L	1	0.05	0.01	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Chromium	0.47 μg/L	1	0.30	0.07	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Cobalt	39.3 μg/L	1	0.020	0.005	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Lead	0.88 µg/L	1	0.20	0.05	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Lithium	0.0780 mg/L	1	0.00030	0.00007	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Magnesium	9.21 mg/L	1	0.100	0.006	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Mercury	1220 ng/L	48	240	90	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Potassium	2.05 mg/L	1	0.100	0.008	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Selenium	4.53 μg/L	1	0.50	0.04	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Sodium	17.1 mg/L	1	0.20	0.01	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Strontium	0.0776 mg/L	1	0.00200	0.00005	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4
Thallium	0.20 μg/L	1	0.20	0.02	GES	07/12/2023 00:04	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.29 pCi/L	0.24	0.31	TTP	07/07/2023 13:34	SW-846 9315-1986, Rev. 0
Carrier Recovery	88.5 %					
Radium-228	3.40 pCi/L	0.19	0.50	ST	07/10/2023 16:11	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	80.7 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-7 Customer Description: TG-32

Lab Number: 231985-004-01 Preparation: Dissolved

Date Collected: 06/27/2023 10:51 EDT Date Received: 06/30/2023 11:30 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Arsenic	1.14 µg/L	1	0.10	0.03	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Barium	40.4 μg/L	1	0.20	0.05	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Beryllium	5. 13 μg/L	1	0.050	0.007	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Cadmium	0.692 μg/L	1	0.020	0.004	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Chromium	0.55 µg/L	1	0.30	0.07	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Cobalt	39.9 μg/L	1	0.020	0.005	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Iron	0.049 mg/L	1	0.020	0.003	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Lead	0.87 µg/L	1	0.20	0.05	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Lithium	0.0785 mg/L	1	0.00030	0.00007	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Manganese	0.0812 mg/L	1	0.00100	0.00008	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Selenium	4.57 μg/L	1	0.50	0.04	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4
Thallium	0.18 µg/L	1	0.20	0.02 J1	GES	07/12/2023 00:09	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-12 Customer Description: TG-32

Lab Number: 231985-005 Preparation:

Date Collected: 06/26/2023 08:55 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.015 μg/L	1	0.100	0.008 J1	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Arsenic	0. 11 μg/L	1	0.10	0.03	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Barium	16.3 µg/L	1	0.20	0.05	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 11 0 μg/L	1	0.050	0.007	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Boron	0.019 mg/L	1	0.050	0.007 J1	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Cadmium	0.007 μg/L	1	0.020	0.004 J1	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Calcium	0.21 mg/L	1	0.05	0.01	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Chromium	0.45 μg/L	1	0.30	0.07	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Cobalt	0.932 μg/L	1	0.020	0.005	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Lead	0. 11 μg/L	1	0.20	0.05 J1	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Lithium	0.00487 mg/L	1	0.00030	0.00007	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Magnesium	0.291 mg/L	1	0.100	0.006	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.7 μg/L	1	0.5	0.1	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Potassium	0.175 mg/L	1	0.100	0.008	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Selenium	0.23 μg/L	1	0.50	0.04 J1	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Sodium	3.34 mg/L	1	0.20	0.01	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Strontium	0.00203 mg/L	1	0.00200	0.00005	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	07/12/2023 00:14	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.45 pCi/L	0.13	0.21	TTP	07/07/2023 13:34	SW-846 9315-1986, Rev. 0
Carrier Recovery	106 %					
Radium-228	-0.11 pCi/L	0.14	0.50	ST	07/10/2023 16:11	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	79.1 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-12 Customer Description: TG-32

Lab Number: 231985-005-01 Preparation: Dissolved

Date Collected: 06/26/2023 08:55 EDT Date Received: 06/30/2023 11:30 EDT

motare							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.014 μg/L	1	0.100	0.008 J1	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Arsenic	0.1 μg/L	1	0.10	0.03	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Barium	16.5 µg/L	1	0.20	0.05	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 112 μg/L	1	0.050	0.007	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Cadmium	0.006 μg/L	1	0.020	0.004 J1	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Chromium	0.51 µg/L	1	0.30	0.07	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Cobalt	0.926 μg/L	1	0.020	0.005	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Iron	0.113 mg/L	1	0.020	0.003	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Lead	0. 11 μg/L	1	0.20	0.05 J1	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Lithium	0.00485 mg/L	1	0.00030	0.00007	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Manganese	0.00340 mg/L	1	0.00100	0.00008	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	0.5 µg/L	1	0.5	0.1	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Selenium	0.25 μg/L	1	0.50	0.04 J1	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	07/12/2023 00:19	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-13 Customer Description: TG-32

Lab Number: 231985-006 Preparation:

Date Collected: 06/26/2023 08:28 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Arsenic	1.56 µg/L	1	0.10	0.03	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Barium	39.8 μg/L	1	0.20	0.05	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Beryllium	0.234 μg/L	1	0.050	0.007	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Boron	0.067 mg/L	1	0.050	0.007	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Calcium	10.6 mg/L	1	0.05	0.01	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Chromium	0.31 μg/L	1	0.30	0.07	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Cobalt	51.5 µg/L	1	0.020	0.005	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Lithium	0.142 mg/L	1	0.00030	0.00007	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Magnesium	14.5 mg/L	1	0.100	0.006	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Potassium	4.98 mg/L	1	0.100	0.008	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Sodium	20.9 mg/L	1	0.20	0.01	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Strontium	0.0706 mg/L	1	0.00200	0.00005	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4
Thallium	0.03 μg/L	1	0.20	0.02 J1	GES	07/12/2023 01:26	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.68 pCi/L	0.17	0.24	TTP	07/07/2023 13:34	SW-846 9315-1986, Rev. 0
Carrier Recovery	88.5 %					
Radium-228	0.93 pCi/L	0.14	0.45	ST	07/10/2023 16:11	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	87.0 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-13 Customer Description: TG-32

Lab Number: 231985-006-01 Preparation: Dissolved

Date Collected: 06/26/2023 08:28 EDT Date Received: 06/30/2023 11:30 EDT

motono							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Arsenic	1.18 µg/L	1	0.10	0.03	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Barium	39.9 μg/L	1	0.20	0.05	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Beryllium	0.193 μg/L	1	0.050	0.007	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Chromium	0.26 μg/L	1	0.30	0.07 J1	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Cobalt	52.0 μg/L	1	0.020	0.005	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Iron	45.0 mg/L	5	0.10	0.02	GES	07/12/2023 11:16	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Lithium	0.142 mg/L	1	0.00030	0.00007	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Manganese	0.520 mg/L	1	0.00100	0.00008	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4
Thallium	0.03 µg/L	1	0.20	0.02 J1	GES	07/12/2023 01:31	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-17 Customer Description: TG-32

Lab Number: 231985-007 Preparation:

Date Collected: 06/26/2023 12:47 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.008 μg/L	1	0.100	0.008 J1	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Arsenic	0.16 µg/L	1	0.10	0.03	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Barium	112 µg/L	1	0.20	0.05	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Beryllium	0.354 μg/L	1	0.050	0.007	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Boron	0.032 mg/L	1	0.050	0.007 J1	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Cadmium	0.022 μg/L	1	0.020	0.004	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Calcium	0.23 mg/L	1	0.05	0.01	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Chromium	0.49 μg/L	1	0.30	0.07	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Cobalt	5. 1 5 μg/L	1	0.020	0.005	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Lead	0. 1 3 μg/L	1	0.20	0.05 J1	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Lithium	0.0106 mg/L	1	0.00030	0.00007	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Magnesium	1.60 mg/L	1	0.100	0.006	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Mercury	297 ng/L	4	20	7	RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Potassium	0.384 mg/L	1	0.100	0.008	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Selenium	0. 1 7 μg/L	1	0.50	0.04 J1	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Sodium	5.80 mg/L	1	0.20	0.01	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Strontium	0.00855 mg/L	1	0.00200	0.00005	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	07/12/2023 01:36	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.10 pCi/L	0.27	0.24	TTP	07/07/2023 13:34	SW-846 9315-1986, Rev. 0
Carrier Recovery	105 %					
Radium-228	0.80 pCi/L	0.16	0.52	ST	07/10/2023 16:11	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	80.2 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-17 Customer Description: TG-32

Lab Number: 231985-007-01 Preparation: Dissolved

Date Collected: 06/26/2023 12:47 EDT Date Received: 06/30/2023 11:30 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.009 μg/L	1	0.100	0.008 J1	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Arsenic	0.08 µg/L	1	0.10	0.03 J1	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Barium	121 µg/L	1	0.20	0.05	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Beryllium	0.369 µg/L	1	0.050	0.007	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Cadmium	0.023 µg/L	1	0.020	0.004	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Chromium	0.37 µg/L	1	0.30	0.07	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Cobalt	5.50 μg/L	1	0.020	0.005	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Iron	0.006 mg/L	1	0.020	0.003 J1	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Lead	0.12 µg/L	1	0.20	0.05 J1	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Lithium	0.0111 mg/L	1	0.00030	0.00007	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Manganese	0.00528 mg/L	1	0.00100	0.00008	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Selenium	0.16 µg/L	1	0.50	0.04 J1	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	07/12/2023 01:42	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-18 Customer Description: TG-32

Lab Number: 231985-008 Preparation:

Date Collected: 06/27/2023 08:42 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.009 µg/L	1	0.100	0.008 J1	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Arsenic	0.55 µg/L	1	0.10	0.03	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Barium	89.0 μg/L	1	0.20	0.05	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Beryllium	0.132 µg/L	1	0.050	0.007	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Boron	0.009 mg/L	. 1	0.050	0.007 J1	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Cadmium	0.013 µg/L	1	0.020	0.004 J1	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Calcium	0.23 mg/L	. 1	0.05	0.01	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Chromium	0.57 μg/L	1	0.30	0.07	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Cobalt	0.933 μg/L	1	0.020	0.005	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Lead	0.13 μg/L	1	0.20	0.05 J1	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Lithium	0.0138 mg/L	. 1	0.00030	0.00007	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Magnesium	0.325 mg/L	. 1	0.100	0.006	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Mercury	10 ng/L	1	5	2	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Potassium	0.776 mg/L	. 1	0.100	0.008	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Selenium	0. 1 5 μg/L	1	0.50	0.04 J1	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Sodium	5.51 mg/L	. 1	0.20	0.01	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Strontium	0.00483 mg/L	. 1	0.00200	0.00005	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 µg/L	1	0.20	0.02 J1	GES	07/12/2023 01:47	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.57 pCi/L	0.14	0.20	TTP	07/07/2023 13:34	SW-846 9315-1986, Rev. 0
Carrier Recovery	102 %					
Radium-228	1.96 pCi/L	0.28	0.89	ST	07/10/2023 16:11	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	69.4 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-18 Customer Description: TG-32

Lab Number: 231985-008-01 Preparation: Dissolved

Date Collected: 06/27/2023 08:42 EDT Date Received: 06/30/2023 11:30 EDT

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.009 μg/L	1	0.100	0.008 J1	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Arsenic	0.05 µg/L	1	0.10	0.03 J1	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Barium	91.9 µg/L	1	0.20	0.05	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 15 0 μg/L	1	0.050	0.007	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Cadmium	0.014 μg/L	1	0.020	0.004 J1	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Chromium	0.24 µg/L	1	0.30	0.07 J1	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Cobalt	0.966 μg/L	1	0.020	0.005	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Iron	0.022 mg/L	1	0.020	0.003	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Lithium	0.0149 mg/L	1	0.00030	0.00007	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Manganese	0.00426 mg/L	1	0.00100	0.00008	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Selenium	0.07 μg/L	1	0.50	0.04 J1	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4
Thallium	0.03 µg/L	1	0.20	0.02 J1	GES	07/12/2023 01:52	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-22 Customer Description: TG-32

Lab Number: 231985-009 Preparation:

Date Collected: 06/26/2023 09:43 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qua	lifiers Analyst	Analysis Date	Method
Antimony	<0.04 µg/L	5	0.50	0.04 U1	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Arsenic	3.4 µg/L	5	0.5	0.2	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Barium	13.5 µg/L	5	1.0	0.3	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Beryllium	7.71 µg/L	5	0.25	0.04	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Boron	0.06 mg/L	5	0.25	0.04 J1	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Cadmium	1.09 µg/L	5	0.10	0.02	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Calcium	15.5 mg/L	5	0.25	0.05	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Chromium	0.7 µg/L	5	1.5	0.4 J1	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Cobalt	109 µg/L	5	0.10	0.03	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Lead	<0.3 µg/L	5	1.0	0.3 U1	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Lithium	0.236 mg/L	5	0.0015	0.0004	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Magnesium	21.4 mg/L	5	0.50	0.03	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Mercury	29 ng/L	1	5	2	RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.5 µg/L	5	2.5	0.5 U1	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Potassium	4.55 mg/L	5	0.50	0.04	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Selenium	7.0 µg/L	5	2.5	0.2	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Sodium	90.8 mg/L	5	1.00	0.05	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Strontium	0.121 mg/L	5	0.0100	0.0003	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4
Thallium	0.2 µg/L	5	1.0	0.1 J1	GES	07/12/2023 11:21	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.51 pCi/L	0.27	0.28	TTP	07/07/2023 13:34	SW-846 9315-1986, Rev. 0
Carrier Recovery	68.9 %					
Radium-228	2.26 pCi/L	0.17	0.48	ST	07/10/2023 16:11	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	80.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-22 Customer Description: TG-32

Lab Number: 231985-009-01 Preparation: Dissolved

Date Collected: 06/26/2023 09:43 EDT Date Received: 06/30/2023 11:30 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Arsenic	3.44 µg/L	1	0.10	0.03	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Barium	11.6 µg/L	1	0.20	0.05	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Beryllium	5.90 μg/L	1	0.050	0.007	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Cadmium	1.09 µg/L	1	0.020	0.004	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Chromium	0.41 µg/L	1	0.30	0.07	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Cobalt	112 µg/L	1	0.020	0.005	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Iron	37.4 mg/L	5	0.10	0.02	GES	07/12/2023 11:26	EPA 200.8-1994, Rev. 5.4
Lead	0.15 µg/L	1	0.20	0.05 J1	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Lithium	0.188 mg/L	1	0.00030	0.00007	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Manganese	0.453 mg/L	1	0.00100	0.00008	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Mercury	3 ng/L	1	5	2 J1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Selenium	8.05 μg/L	1	0.50	0.04	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4
Thallium	0.20 µg/L	1	0.20	0.02	GES	07/12/2023 02:02	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-28 Customer Description: TG-32

Lab Number: 231985-010 Preparation:

Date Collected: 06/26/2023 12:26 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.015 µg/L	1	0.100	0.008 J1	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Arsenic	0.22 µg/L	1	0.10	0.03	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Barium	11 9 μg/L	1	0.20	0.05	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Beryllium	0.562 μg/L	1	0.050	0.007	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Boron	0.299 mg/L	1	0.050	0.007	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Cadmium	0.054 μg/L	1	0.020	0.004	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Calcium	1.48 mg/L	1	0.05	0.01	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Chromium	0.47 µg/L	1	0.30	0.07	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Cobalt	13.1 µg/L	1	0.020	0.005	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Lead	0. 11 μg/L	1	0.20	0.05 J1	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Lithium	0.0235 mg/L	1	0.00030	0.00007	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Magnesium	2.89 mg/L	1	0.100	0.006	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Mercury	13 ng/L	1	5	2	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Potassium	0.764 mg/L	1	0.100	0.008	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Selenium	0.21 μg/L	1	0.50	0.04 J1	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Sodium	5.82 mg/L	1	0.20	0.01	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Strontium	0.0204 mg/L	1	0.00200	0.00005	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4
Thallium	0.03 µg/L	1	0.20	0.02 J1	GES	07/12/2023 02:07	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.64 pCi/L	0.31	0.19	TTP	07/07/2023 13:34	SW-846 9315-1986, Rev. 0
Carrier Recovery	90.8 %					
Radium-228	1.36 pCi/L	0.16	0.47	ST	07/12/2023 14:00	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	88.9 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-28 Customer Description: TG-32

Lab Number: 231985-010-01 Preparation: Dissolved

Date Collected: 06/26/2023 12:26 EDT Date Received: 06/30/2023 11:30 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Arsenic	0.07 µg/L	1	0.10	0.03 J1	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Barium	117 μg/L	1	0.20	0.05	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Beryllium	0.495 μg/L	1	0.050	0.007	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Cadmium	0.044 µg/L	1	0.020	0.004	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Chromium	0.36 µg/L	1	0.30	0.07	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Cobalt	12.2 μg/L	1	0.020	0.005	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Iron	0.010 mg/L	1	0.020	0.003 J1	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Lead	0.08 µg/L	1	0.20	0.05 J1	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Lithium	0.0232 mg/L	1	0.00030	0.00007	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Manganese	0.0496 mg/L	1	0.00100	0.00008	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Mercury	2 ng/L	1	5	2 J1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Selenium	0.21 μg/L	1	0.50	0.04 J1	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4
Thallium	0.02 µg/L	1	0.20	0.02 J1	GES	07/12/2023 02:12	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-30 Customer Description: TG-32

Lab Number: 231985-011 Preparation:

Date Collected: 06/26/2023 12:03 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.010 μg/L	1	0.100	0.008 J1	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Arsenic	0.21 μg/L	1	0.10	0.03	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Barium	76.7 μg/L	1	0.20	0.05	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Beryllium	0.086 μg/L	1	0.050	0.007	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Boron	1.80 mg/L	1	0.050	0.007	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Cadmium	0.008 µg/L	1	0.020	0.004 J1	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Calcium	0.54 mg/L	1	0.05	0.01	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Chromium	0.57 μg/L	1	0.30	0.07	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Cobalt	3.81 µg/L	1	0.020	0.005	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Lead	0.08 µg/L	1	0.20	0.05 J1	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Lithium	0.00896 mg/L	1	0.00030	0.00007	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Magnesium	1.92 mg/L	1	0.100	0.006	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Mercury	130 ng/L	2	10	4	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Potassium	0.754 mg/L	1	0.100	0.008	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Selenium	0.45 μg/L	1	0.50	0.04 J1	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Sodium	71.8 mg/L	1	0.20	0.01	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Strontium	0.00865 mg/L	1	0.00200	0.00005	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 µg/L	1	0.20	0.02 J1	GES	07/25/2023 20:36	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.12 pCi/L	0.21	0.22	TTP	07/07/2023 13:34	SW-846 9315-1986, Rev. 0
Carrier Recovery	90.2 %					
Radium-228	0.56 pCi/L	0.15	0.48	ST	07/12/2023 14:00	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	85.8 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-30 Customer Description: TG-32

Lab Number: 231985-011-01 Preparation: Dissolved

Date Collected: 06/26/2023 12:03 EDT Date Received: 06/30/2023 11:30 EDT

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.008 μg/L	1	0.100	0.008 J1	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Arsenic	0.15 µg/L	1	0.10	0.03	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Barium	61.6 µg/L	1	0.20	0.05	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Beryllium	0.103 μg/L	1	0.050	0.007	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Cadmium	0.009 μg/L	1	0.020	0.004 J1	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Chromium	0.30 μg/L	1	0.30	0.07	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Cobalt	3.83 µg/L	1	0.020	0.005	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Iron	0.024 mg/L	1	0.020	0.003	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Lithium	0.00897 mg/L	1	0.00030	0.00007	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Manganese	0.0143 mg/L	1	0.00100	0.00008	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Selenium	0.35 μg/L	1	0.50	0.04 J1	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4
Thallium	0.03 µg/L	1	0.20	0.02 J1	GES	07/25/2023 20:41	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-31 Customer Description: TG-32

Lab Number: 231985-012 Preparation:

Date Collected: 06/26/2023 11:01 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.009 μg/L	1	0.100	0.008 J1	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Arsenic	0.36 µg/L	1	0.10	0.03	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Barium	32.9 µg/L	1	0.20	0.05	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Beryllium	1.08 µg/L	5	0.25	0.04	GES	07/26/2023 11:44	EPA 200.8-1994, Rev. 5.4
Boron	0.025 mg/L	1	0.050	0.007 J1	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Cadmium	0.064 μg/L	1	0.020	0.004	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Calcium	2.69 mg/L	1	0.05	0.01	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Chromium	0.63 μg/L	1	0.30	0.07	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Cobalt	10.1 μg/L	1	0.020	0.005	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Lead	0.33 µg/L	1	0.20	0.05	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Lithium	0.0889 mg/L	5	0.0015	0.0004	GES	07/26/2023 11:44	EPA 200.8-1994, Rev. 5.4
Magnesium	3.92 mg/L	1	0.100	0.006	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Mercury	77 ng/L	1	5	2	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Potassium	1.55 mg/L	1	0.100	0.008	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Selenium	0.78 μg/L	1	0.50	0.04	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Sodium	31.1 mg/L	1	0.20	0.01	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Strontium	0.0389 mg/L	1	0.00200	0.00005	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4
Thallium	0.09 μg/L	1	0.20	0.02 J1	GES	07/25/2023 20:46	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.21 pCi/L	0.29	0.26	TTP	07/07/2023 13:34	SW-846 9315-1986, Rev. 0
Carrier Recovery	90.9 %					
Radium-228	2.08 pCi/L	0.16	0.44	ST	07/12/2023 14:00	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	82.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-31 Customer Description: TG-32

Lab Number: 231985-012-01 Preparation: Dissolved

Date Collected: 06/26/2023 11:01 EDT Date Received: 06/30/2023 11:30 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.009 µg/L	1	0.100	0.008 J1	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4
Arsenic	0.26 µg/L	1	0.10	0.03	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4
Barium	31.1 µg/L	1	0.20	0.05	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4
Beryllium	1.06 µg/L	5	0.25	0.04	GES	07/26/2023 11:49	EPA 200.8-1994, Rev. 5.4
Cadmium	0.065 µg/L	1	0.020	0.004	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4
Chromium	0.34 µg/L	1	0.30	0.07	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4
Cobalt	9.88 µg/L	1	0.020	0.005	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4
Iron	0.109 mg/L	1	0.020	0.003	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4
Lead	0.28 µg/L	1	0.20	0.05	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4
Lithium	0.0871 mg/L	5	0.0015	0.0004	GES	07/26/2023 11:49	EPA 200.8-1994, Rev. 5.4
Manganese	0.0257 mg/L	1	0.00100	0.00008	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4
Mercury	7 ng/L	1	5	2	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4
Selenium	0.80 µg/L	1	0.50	0.04	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4
Thallium	0.08 µg/L	1	0.20	0.02 J1	GES	07/25/2023 20:51	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-32 Customer Description: TG-32

Lab Number: 231985-013 Preparation:

Date Collected: 06/26/2023 09:30 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.012 μg/L	1	0.100	0.008 J1	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Arsenic	1.53 µg/L	1	0.10	0.03	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Barium	23.4 μg/L	1	0.20	0.05	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Beryllium	0.905 μg/L	1	0.050	0.007	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Boron	0.595 mg/L	1	0.050	0.007	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Cadmium	0.042 μg/L	1	0.020	0.004	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Calcium	5.26 mg/L	1	0.05	0.01	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Chromium	0.61 μg/L	1	0.30	0.07	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Cobalt	1 5.9 μg/L	1	0.020	0.005	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Lead	0. 1 7 μg/L	1	0.20	0.05 J1	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Lithium	0.0500 mg/L	1	0.00030	0.00007	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Magnesium	5.74 mg/L	1	0.100	0.006	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Mercury	760 ng/L	10	50	20	RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Potassium	2.57 mg/L	1	0.100	0.008	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Selenium	1.59 μg/L	1	0.50	0.04	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Sodium	27.0 mg/L	1	0.20	0.01	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Strontium	0.0736 mg/L	1	0.00200	0.00005	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4
Thallium	0. 11 μg/L	1	0.20	0.02 J1	GES	07/25/2023 20:56	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.41 pCi/L	0.20	0.17	TTP	07/11/2023 12:45	SW-846 9315-1986, Rev. 0
Carrier Recovery	87.4 %					
Radium-228	2.52 pCi/L	0.17	0.46	ST	07/12/2023 14:00	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	85.3 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-32 Customer Description: TG-32

Lab Number: 231985-013-01 Preparation: Dissolved

Date Collected: 06/26/2023 09:30 EDT Date Received: 06/30/2023 11:30 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.009 µg/L	1	0.100	0.008 J1	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Arsenic	1.29 µg/L	1	0.10	0.03	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Barium	23.4 µg/L	1	0.20	0.05	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Beryllium	1.08 µg/L	1	0.050	0.007	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Cadmium	0.064 µg/L	1	0.020	0.004	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Chromium	0.38 µg/L	1	0.30	0.07	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Cobalt	17.1 µg/L	1	0.020	0.005	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Iron	10.7 mg/L	1	0.020	0.003	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Lead	0. 11 µg/L	1	0.20	0.05 J1	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Lithium	0.0527 mg/L	1	0.00030	0.00007	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Manganese	0.0782 mg/L	1	0.00100	0.00008	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Mercury	27 ng/L	1	5	2	RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Selenium	1.74 µg/L	1	0.50	0.04	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4
Thallium	0.10 µg/L	1	0.20	0.02 J1	GES	07/25/2023 21:01	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-33 Customer Description: TG-32

Lab Number: 231985-014 Preparation:

Date Collected: 06/26/2023 10:34 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL I	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.021 µg/L	1	0.100	0.008 J	J1	GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Arsenic	1.08 µg/L	1	0.10	0.03		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Barium	41.4 µg/L	1	0.20	0.05		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Beryllium	1.48 µg/L	5	0.25	0.04		GES	07/26/2023 11:54	EPA 200.8-1994, Rev. 5.4
Boron	0.114 mg/L	. 1	0.050	0.007		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Cadmium	0.056 μg/L	1	0.020	0.004		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Calcium	1.73 mg/l	. 1	0.05	0.01		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Chromium	0.39 μg/L	1	0.30	0.07		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Cobalt	1 0.7 μg/L	1	0.020	0.005		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Lead	0.48 μg/L	1	0.20	0.05		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Lithium	0.0246 mg/L	. 5	0.0015	0.0004		GES	07/26/2023 11:54	EPA 200.8-1994, Rev. 5.4
Magnesium	4.05 mg/L	. 1	0.100	0.006		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Mercury	5610 ng/L	100	500	200		RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 l	U1	GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Potassium	0.271 mg/l	. 1	0.100	0.008		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Selenium	4.21 µg/L	1	0.50	0.04		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Sodium	16.8 mg/l	. 1	0.20	0.01		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Strontium	0.0303 mg/L	. 1	0.00200	0.00005		GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4
Thallium	0.03 µg/L	1	0.20	0.02 J	J 1	GES	07/25/2023 21:07	EPA 200.8-1994, Rev. 5.4

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.78 pCi/L	0.17	0.24	TTP	07/11/2023 12:45	SW-846 9315-1986, Rev. 0
Carrier Recovery	86.1 %					
Radium-228	1.18 pCi/L	0.16	0.48	ST	07/12/2023 14:00	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	87.7 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: AD-33 Customer Description: TG-32

Lab Number: 231985-014-01 Preparation: Dissolved

Date Collected: 06/26/2023 10:34 EDT Date Received: 06/30/2023 11:30 EDT

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.008 μg/L	1	0.100	0.008 J1	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Arsenic	1.07 μg/L	1	0.10	0.03	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Barium	40.5 μg/L	1	0.20	0.05	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Beryllium	1.17 μg/L	1	0.050	0.007	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Cadmium	0.053 μg/L	1	0.020	0.004	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Chromium	0.29 μg/L	1	0.30	0.07 J1	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Cobalt	10.4 μg/L	1	0.020	0.005	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Iron	0.014 mg/L	1	0.020	0.003 J1	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Lead	0.26 μg/L	1	0.20	0.05	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Lithium	0.0202 mg/L	1	0.00030	0.00007	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Manganese	0.00629 mg/L	1	0.00100	0.00008	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Mercury	670 ng/L	10	50	20	RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Selenium	4.09 μg/L	1	0.50	0.04	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4
Thallium	0.03 µg/L	1	0.20	0.02 J1	GES	07/25/2023 21:12	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: Duplicate - 1 Customer Description: TG-32

Lab Number: 231985-015 Preparation:

Date Collected: 06/26/2023 13:00 EDT Date Received: 06/30/2023 11:30 EDT

Motalo							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Arsenic	1.55 µg/L	1	0.10	0.03	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Barium	39.1 μg/L	1	0.20	0.05	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Beryllium	0.223 μg/L	1	0.050	0.007	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Boron	0.069 mg/L	1	0.050	0.007	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Calcium	10.5 mg/L	1	0.05	0.01	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Chromium	0.29 μg/L	1	0.30	0.07 J1	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Cobalt	53.7 μg/L	1	0.020	0.005	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Lithium	0.141 mg/L	1	0.00030	0.00007	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Magnesium	14.9 mg/L	1	0.100	0.006	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Potassium	4.98 mg/L	1	0.100	0.008	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Sodium	21.3 mg/L	1	0.20	0.01	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Strontium	0.0691 mg/L	1	0.00200	0.00005	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4
Thallium	0.03 µg/L	1	0.20	0.02 J1	GES	07/25/2023 21:17	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: Duplicate - 1 Customer Description: TG-32

Lab Number: 231985-015-01 Preparation: Dissolved

Date Collected: 06/26/2023 13:00 EDT Date Received: 06/30/2023 11:30 EDT

····otaio							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Arsenic	1.17 µg/L	1	0.10	0.03	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Barium	39.6 μg/L	1	0.20	0.05	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Beryllium	0.210 μg/L	1	0.050	0.007	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Chromium	0.28 μg/L	1	0.30	0.07 J1	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Cobalt	53.1 μg/L	1	0.020	0.005	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Iron	43.0 mg/L	5	0.10	0.02	GES	07/26/2023 12:04	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Lithium	0.141 mg/L	1	0.00030	0.00007	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Manganese	0.520 mg/L	1	0.00100	0.00008	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/06/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4
Thallium	0.02 µg/L	1	0.20	0.02 J1	GES	07/25/2023 21:22	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Reissued

Job ID: 231985 Customer: Pirkey Power Station Date Reported: 10/29/2023

Customer Sample ID: Equipment Blank Customer Description: TG-32

Lab Number: 231985-016 Preparation:

Date Collected: 06/26/2023 09:40 EDT Date Received: 06/30/2023 11:30 EDT

Motalo							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/L	1	0.10	0.03 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Barium	<0.05 µg/L	1	0.20	0.05 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Beryllium	0.027 μg/L	1	0.050	0.007 J1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Boron	<0.007 mg/L	1	0.050	0.007 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Calcium	<0.01 mg/L	1	0.05	0.01 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Chromium	0.32 μg/L	1	0.30	0.07	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Cobalt	0.037 μg/L	1	0.020	0.005	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Lithium	<0.00007 mg/L	1	0.00030	0.00007 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Magnesium	<0.006 mg/L	1	0.100	0.006 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Potassium	<0.008 mg/L	1	0.100	0.008 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Sodium	<0.01 mg/L	1	0.20	0.01 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Strontium	<0.00005 mg/L	1	0.00200	0.00005 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	07/25/2023 21:27	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125

Phone: 614-836-4221 Audinet: 210-4221

Reissued

Customer: Pirkey Power Station Date Reported: 10/29/2023 Job ID: 231985

Customer Sample ID: Field Blank Customer Description: TG-32

Lab Number: 231985-017 Preparation:

Date Collected: 06/26/2023 12:25 EDT Date Received: 06/30/2023 11:30 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifier	s Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/L	1	0.10	0.03 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Barium	<0.05 µg/L	1	0.20	0.05 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Beryllium	0.015 μg/L	1	0.050	0.007 J1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Boron	<0.007 mg/L	1	0.050	0.007 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Calcium	<0.01 mg/L	1	0.05	0.01 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Chromium	0.53 μg/L	1	0.30	0.07	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Cobalt	0.036 μg/L	1	0.020	0.005	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Lithium	<0.00007 mg/L	1	0.00030	0.00007 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Magnesium	<0.006 mg/L	1	0.100	0.006 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	07/10/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Potassium	<0.008 mg/L	1	0.100	0.008 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Sodium	<0.01 mg/L	1	0.20	0.01 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Strontium	<0.00005 mg/L	1	0.00200	0.00005 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	07/25/2023 21:32	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.20 pCi/L	0.08	0.19	TTP	07/11/2023 12:45	SW-846 9315-1986, Rev. 0
Carrier Recovery	87.8 %					
Radium-228	-0.02 pCi/L	0.13	0.46	ST	07/12/2023 14:00	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	89.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

231985

Job Comments:

Report originally issued 8/4/23. Report reissued 10/29/23 to correct rounding errors on report and EDD.

Job ID: 231985

Water Analysis Report

Reissued

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Customer: Pirkey Power Station Date Reported: 10/29/2023

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael & Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.
- U1 Not detected at or above method detection limit (MDL).

Chain of Custody Record Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125 Program: Coal Combustion Residuals (CCR) Site Contact: Date: For Lab Use Only: Michael Ohlinger (614-836-4184) Contacts: COC/Order #: Dave Conover (614-836-4219) Field-filter 250 mL 250 mL (six every 250 mL Project Name: Pirkey PP CCR 250 mL Glass Glass 10th*) bottle, bottle, then bottle. bottle. L bottles Analysis Turnaround Time (in Calendar Days) Contact Name: Leslie Fuerschbach 231985 pH<2, pH<2, HCL**, HCL** pH<2, Routine (28 days for Monitoring Wells) HNO₃ HNO₃ HNO3 pH<2 Contact Phone: 318-673-2744 pH<2 Ba, ⊏, S BF Be, C Li, Mg Ra-228 Mercury Sampler(s): Matt Hamilton Kenny McDonald mpler(s) Initlals Sb, t Co, I Se, Ba, I K, L Se, Dissolved St Be, Cd, Cr, C Mn, Mo, Pb, \$ B ℃ Dissolved Sample Ra-226, A C S Type Sample Sample (C=Comp. # of Matrix Sample Identification Date Time G=Grab) Cont. Sample Specific Notes: 7 6/26/2023 G GW 1042 х Х Х Х Х AD-2 G GW 7 6/27/2023 1101 Х Х Х Х Х AD-3 7 6/27/2023 1110 G GW Х Х Х AD-4 Х Х G GW 7 6/27/2023 951 AD-7 Х Х Х Х Х 755 6/26/2023 G GW 7 AD-12 Х Х Х Х Х 6/26/2023 728 G GW 10 Х Х Х **AD-13** 6/26/2023 1147 G GW 7 Х Х Х AD-17 GW 7 6/27/2023 742 G Х Х Х **AD-18** 6/26/2023 843 G GW 7 X Х Х Х Х AD-22 GW 7 6/26/2023 1126 G Х Х Х Х Х AD-28 GW 7 G 6/26/2023 1103 AD-30 Х Х Х Х Х GW 7 6/26/2023 1001 G X Х Х Х Х AD-31 F4 4 2 F2 Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other : F= fitter in field Six 1L Bottles must be collected for Radium for every 10th sample. Special Instructions/QC Requirements & Comments: TG-32 needed Company: Date/Time: Received by: 6-28-23 Date/Time: Relinquished by Received by:

Received in Paboratory by:

11:30 Am

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

Date/Time:

Company:

Relinquished by:

Chain of Custody Record Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125 **Program: Coal Combustion Residuals (CCR)** Michael Ohlinger (614-836-4184) Site Contact: Date: For Lab Use Only: Contacts: COC/Order #: Dave Conover (614-836-4219) Three Field-filter 250 mL 250 mL (six every 250 mL Project Name: Pirkey PP CCR 250 mL Glass Glass 10th*) bottle, bottle, then bottle. bottle, L bottles Analysis Turnaround Time (in Calendar Days) Contact Name: Leslie Fuerschbach pH<2, pH<2, HCL** HCL** pH<2, @ Routine (28 days for Monitoring Wells) Contact Phone: 318-673-2744 HNO₃ HNO₃ HNO3 pH<2 pH<2 8 1 Be, Ca LI, Mg, e, Sr, Ti Ra-228 Mercury Sampler(s): Matt Hamilton Kenny McDonald Sampler(s) Initials Dissolved Sb, As Be, Cd, Cr, Co, F Mn, Mo, Pb, Se, 1 <u>а</u> Dissolved Sample Ra-226, Туре Sample Sample (C=Comp. # of Sample Identification Date Time G=Grab) Matrix Cont. Sample Specific Notes: G GW 7 6/26/2023 830 Х Х Х Х Х AD-32 934 G GW 7 6/23/2023 Х Х Х Х Х AD-33 GW 6/26/2023 1200 G Х Х Х Duplicate - 1 Х 6/26/2023 840 G GW 2 **Equipment Blank** Х Х GW 6/26/2023 1125 G 5 Field Blank Х Х Х 2 F4 F2 : F= filter in field Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Six 1L Bottles must be collected for Radium for every 10th sample. Special Instructions/QC Requirements & Comments: TG-32 needed Company: Date/Time: Received by: 1600 Date/Time: Received by: Relinquished by: Company: Relinquished by: Company: Date/Time: Received in Leboratory by: 6/30/23 11:30 AM

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shrevefort, Rev. 1, 1/10/17

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer Pickey	Number of Plastic Containers:
Opened By WCb / Mbk 6/30/23	Number of Glass Containers: 32
′	Number of Mercury Containers:
F	or N/A Initial:on ice / no ice
	4) - If No, specify each deviation: Comments
	If RUSH, who was notified?
	IO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? \(\textstyle	Comments
Were samples labeled properly? (Y) N	Comments
Were correct containers used? YN	Comments
Was pH checked & Color Coding done? Y	N or N/A Initial & Date: MGK WCG (190)23
pH paper (circle one): MQuant,PN1.09535.0001,LC	OT# [OR) Lab Rat, PN4801, LOT# X000RWOG21 Exp 11/15/2024
- Was Add'l Preservative needed? Y N If	Yes: By whom & when:(See Prep Book)
Is sample filtration requested? Y	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# 23/985 Initial & I	Date & Time :
Logged by MSO	nts:
W// / -	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

-

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: х This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. $\left(\mathbf{x} \right)$ Field chain-of-custody documentation R1 X R_2 Sample identification cross-reference X **R**3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) M Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits $\overline{\mathbf{x}}$ Test reports/summary forms for blank samples **R**5 X **R6** Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: $\left[\mathsf{x} \right]$ **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits Х R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates x List of method quantitation limits (MQLs) for each analyte for each method and matrix R9 X R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Tamisha Palmer		Chemical Laboratory Technician, Prin	07/11/2023
Name (printed)	Signatuke	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 07/011/2023

Laboratory Job Number: 231985

Prep Batch Number(s): PB23070304

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
•	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	0, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	No	ER1
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	NA	
	I	Were analytical duplicates analyzed at the appropriate frequency?	NA	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	NA	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 07/011/2023

Laboratory Job Number: 231985

Prep Batch Number(s): PB23070304

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S 4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		,
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
_S14	O, I	Demonstration of analyst competency (DOC)		_
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	О, І	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey Power
Reviewer Name: Tamisha Palmer
LRC Date: 07/011/2023
Laboratory Job Number: 231985
Prep Batch Number(s): PB23070304

Exception Report No.	Description
ER1	The precision between the MS and MSD was not within 25%
<u>.</u>	
<u> </u>	

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Page 4 of 4

Radium 228 Sample Prep Batch Worksheet [RM: EPA SW846 9320]

Form SOP-7115

WWAG Radium 228 Sample Prep Batch Worksheet [Radium SOPs] Rev. 5, 02/13/2023

2nd Table - DETERMINATION OF BARIUM CARRIER RECOVERY OR 226 Prep Sheet Precipitation Times.

•		USD	1/5														US 2.1	5.17	SE	
20	19	18	17	16	IS	14	13	12	II	0I	9	8	7	73875 6	S,	4	33	2	1	Sample ID/Bottle ID
/				7.2845	7.3316	7.3261	7,3348	7.3003	7.3011	7.2830	7.2914	7.3067	7.3091	7.2874	7,3119	7.3197	7.458	7.2017	7.3233	Planchet initial wt - g
			/	7.3416	7.3884	7.3791	7.3858	7.3606	7.3600	7.3393	7.3484	7.3625	7.3640	7.3418	7.3674	7.3774	7.4038	7.4175	7.3820	Planchet + Ba ppt final wt - g
	ST	07/12/23				- Code						A. A								Comments

Radium 228 Sample Prep Batch Worksheet

Form SOP-7115

Rev. 5, 02/13/2023

Strontium 05/25/23 Methyl Orange 00/20/23 Ammonium Sulfide	EDTA (ID#) 00/26/23 Ammonium Sulfate 06/13/23 Citric Acid 09/08/23 Pb Cs	Prepared Reagents Dates: See current Reagent Prep records	18N Sulfuric acid, (i.e. 50% v/v) (GFS Chemical , PN 1977) 22150092 11/16/2022	19N Sodium hydroxide, (GFS Chemical , PN 2131) 23010160 01/24/2023	10N Sodium hydroxide, (Fisher , PN SS255-1) 213058 03/28/2022	M152-35 07	INO3 to 100 mL with distilled water Prep Date	PN 6471-500 ML) 1110352	16N (conc) Nitric Acid, (J.T. Baker , PN 9598-34) 2212062003 05/17/2022	15N (conc) Ammonium Hydroxide, NH4OH (Fisher, PN A669C-212) 250389 218097 (Bylo23) 09/122022 (Bylo23)		"DI water", (ASTM Type II) (Circle one below) (IN-HOUSE or purchased from Koger)	
Ammonium Sulfide 04/17/2023	8/23 Pb Carrier 00/29/23		11/16/2022	01/24/2023	03/28/2022	19.1	. 1	05/27/2022	05/17/2022	04/24/2023 04/2 022 11/6/23	03/28/2022	06/21/23	

Radium 228 Sample Prep Batch Worksheet [RM: EPA SW846 9320]

Form SOP-7115

Rev. 5, 02/13/2023

WWAG Radium 228 Sample Prep Batch Worksheet [Radium SOPs]

ASSUFANCE SA ASSUFANCE SA AREA OF RADIUM MSD ~ 10 pC mL of Radium MI Treat MI Tr	Page 2 of 4	RM: EPA	KM: EPA SW846 9320		WWAG	Radium 228 Sample Prep	WWAG Radium 228 Sample Prep Batch Worksheet [Kadium SCPs]	
Radium-228 Spike Value: 5-146-pC	Quality Assuran	ce Samples - pre	pared and analyze	d in the same manne	as the samples.	,		
T5-125% Rec and ≤ 25% rpd Radium-228 Spike Value: 5-146 PC 60-140% Rec and ≤ 25% rpd colution standard into a 1000-mL acidified Distilled I water. 60-140% Rec and ≤ 25% rpd colution standard into a 1000-mL acidified sample. Balance used: (Model/Serial Number): Mettler Toledo XS204, SN B13 6222 909 Planchets: Planchets: Planchets: Cat. No. 7525-371-01 Lot # NA 72.0 9 25 - 053 Cat. No. 229766 Lot #22000-052-1x Cat. No. 7525-371-01 Lot # NA 72.0 9 25 - 053 Cat. No. 7525-371-01 Lot # Passach Plus Eppendori Eppendori Eppendori Eppendori Eppendori Eppendori Co22491351 Co22491351 Eppendori Eppendori Eppendori Co22491351 Co22491351 Eppendori Co22492038	MB Prepare an l	LRB every twenty	or less samples.	≤ 0.95 (TNI c	ritical value)			
### Planchets: 21 A Lot # 210522-060 Mix Lot Brand: Cell Treat Cat. No. 7525-371-01 Lot # N/A **Diagraph Plus Passerch Plus Eppendori LCS and LCSD	("QC"), ~ 10 pC	M.	75-125% Rec	and ≤ 25% rpd	Radium-228 Spi	ike Value: 5-146 PC	ما دروس وما مراجع	
### Research Plus ###################################	Pipet 1.0 mL of R	adium-228 spikir	ıg solution standarı	l into a 1000-mL aci	dified Distilled I water.	Inlat Cas Prace	9.00 051	
Balance used: (Model/Serial Number): Mettler Toledo XS204, SN B13 6222 909	MS and MSD ~	10 pCi/L		60-140% Rec	and ≤ 25% rpd	Illiet Gas Fressu	ne. J. W. C.	
Balance used: (Model/Serial Number): Mettler Toledo XS204, SN B13 6222 909	Pipet 1.0 mL of K	adium-228 spikir	ng solution standard	l into a 1000-mL aci	dified sample.			
Planchets: Planchets: Planchets: Planchets: Planchets: Planchets: Planchets: Planchets: Planchets: Planchets: Planchets:	Traceability Inf	ormation:		Balance used:	(Model/Serial Number)	Alterna I	204, SN B13 6222 909	
0.7 In h2 5T 21 K IOO B 2T Syringe filters (0.45-micron pore size) 220 9 25 - 05 2 00020494 Lot #21.1060 B. Brand: Cell Treat Cat. No.: 229766 Lot #220804-052-17 0.1 -1mL) (0.1 -1mL) (0.25 - 2.5 mL) (0.5 - 5 mL) (1-10 mL) 4652555 J37233F M457391 2074526 L17911F Eppendorf Eppendorf Eppendorf Eppendorf Eppendorf Research Plus Research Plus Research Plus Research Plus Eppendorf Eppendorf Eppendorf Eppendorf 022491351 022491351 Eppendorf Eppendorf Eppendorf	Centrifuge Tube			# 210522-060 Mix Lot			Lot # N/A	
Cat. No.: 8300020494 Lot # 21.L060.B. Brand: Cell Treat Cat. No.: 229766 Lot #23004040FFF 0.1 - Im.L.) \$\begin{align*} \ (0.1 - Im.L.) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Syringes (30mL,	Norm-J, Luer loc		21 K 100 B	Syringe filters (0.45-mic		220925-052-1	Ä
V (0.1 - Im.L) V (0.1 - Im.L) (0.1 - Im.L) V (0.25 - 2.5 m.L) V (0.5 - 5 m.L) V (1-10 m.L) used: 1269178 4652555 37233F M457391 2074526 L17911F Eppendorf Eppendorf Eppendorf Eppendorf Eppendorf Eppendorf Research Plus Research Plus Research Plus Research Plus Research Plus md: Eppendorf Eppendorf Eppendorf Eppendorf 022491351 022491351 022491351 Eppendorf Eppendorf	Brand: Henke-Sass	Cat. No.:	8	ot # 21.1060 B.		at. No.: 229766	1	242
Iused: 1269179 4652555 J37233F M457391 2074526 Eppendori Eppendori Eppendori Eppendori Eppendori Eppendori Eppendori Eppendori Eppendori Plus Research Plus Research Plus Research Plus Research Plus Research Plus Eppendori Eppe	7		(0.1 -1mL)	(0.1 -1mL)	√ (0.25 -2.5 mL)	√(0.5-5 mL		Ц
Eppendorf Eppendorf Eppendorf Eppendorf Eppendorf Research Plus Research Plus Research Plus Research Plus Ind: Eppendorf Eppendorf Eppendorf Eppendorf 022491351 022491351 022491351 Eppendorf Eppendorf	Pipettes used:	1269178	4652555	J37233F	M457391	2074526	L17911F	
Research Plus Research Plus Research Plus Research Plus Research Plus Research Plus ind: Eppendorf Eppendorf Eppendorf Eppendorf Eppendorf 022491351 022491351 022491351 Eppendorf Eppendorf	Serial #	Eppendorf	Eppendori	Eppendorf	Eppendorf	Eppendorf	Eppendori	<u></u>
ind: Eppendorf Eppendorf Eppendorf Eppendorf Eppendorf 022491351 022491351 022491351 Eppendorf Eppendorf		Research Plus	Research Plus	Research Plus	Research Plus	Research Plu		
022491351 022491351 022491351	Tip Brand:	Eppendorf	Eppendorf	Eppendorf	Eppendorf	Eppendorf	Eppendorf	
	Cat. No.	022491351	022491351	022491351			022492098	L

Foot notes for 1" Table

ميا
אָּ
6
fe
2
킁
nce Date" is the
Ď
2
രു
10
=
굸
ے
ate
O
pre
~
are
Ø
=
8,
ed for LRB
B
B
=
œ
3
9
진
9
2
ଟ
0
ij
×
ö
ă.
gin
묾
Ξ
6
₽.
=
2
S
<u> </u>
굺
필
ď
fo
=
standard for LFB/LFBI
Ü
1
77
<u>B</u>
Ġ
7
3
$\stackrel{\sim}{\rightarrow}$
S
; and
죠
S
=
2
₽.
- 5
α.
date
æ
77
ō
for fi
for field
for field s
for field san
for field samp
for field s

4"t0, "Time of last BaSO4 ppt" is the time (and date) of the last BaSO4 precipitation (= t0).

5"Aging Time" (in hours) just after addition of 5mL of 19N NaOH. The Aging Time must be ≥ 37 hours.
6"Time of Yt ppt" is the time (and date) of Yttrium precipitation.

nalysis
Date:
07/13
23

Analyst:

Form SOP 7403 WWAG Radium 228 Sample Prep Batch Calculations Rev 1, 02/14/2022

Sample Prep Batch Calculations (by EPA SW846 9320) Radium 228

Page 1 of 1

(Wt on Planchet) in Theoretical Yttrium Carrier)
Yt Carrier Prep Date: 8/1/2022
0.0288 (g of Yttrium)
Theoretical Yttrium Carrier
0 0.000000 0.0000
0 0.000000 0.0000
0 0.000000 0.0000
0 0.000000 0.0000
0 0.000000 0.0000
0 0.000000 0.0000
0 0.000000 0.0000
7.352 0.0245 0.850694 85.0694
7.388 0.0244 0.847222 84.7222
7.3526 0.0237 0.822917 82.2917
7.3581 0.0244 0.847222 84.7222
7.3317 0.0247 0.857639 85.7639
7.3432 0.024 0.833333 83.3333
7.3331 0.0227 0.788194 78.8194
7.3129 0.0245 0.850694 85.0694
7.3083 0.0245 0.850694 85.0694
7.3496 0.0242 0.840278 84.0278
7.2955 0.0237 0.822917 82.2917
7.3134 0.0241 0.836806 83.6806
7.3619 0.024 0.833333 83.3333
7.322 0.0251 0.871528 87.1528
7.3608 0.0238 0.826389 82.6389
7.3912 0.0233 0.809028 80.9028
Yt Final (g) # Yt Weight (g) Yt Recovery %

This form is used in compliance with the Dolan Radiation Safety Program, and these activities may only be performed by employees who have completed the Dolan Radiation Workers Program. Contact

Date: 07/13/23

Analyst: _

Initial and Final weights are from Form SOP-7115, the Ra228 Sample Prep Batch Worksheet

CANBERRA

Radiation Safety Amplified.

Unknown Batch Report

Batch Id	Device Name
PB23070606 228	Drawer D
	_

Procedure	Calibration
Unknown Radium 228	Strontium-90

Eff Type		Count Mode
Constant	Alpha	Simultaneous
Constant	Beta	neous

						-						
Detector 3D	0.483	2.92 +/-0.217	3.5 +/-0.171	0.32	0.381 +/-0.124	0.192 +/-0.04	120.00	7/12/2023 2:00:48 PM	0	_	231991-001MS	15
Detector 3C	0.417	0.803 +/-0.148	1.48	0.27	0.246 +/-0.098	0.142 +/-0.0344	120.00	7/12/2023 2:00:48 PM	0	<u> </u>	231991-002	=
Detector 38	0.461	1.24 +/-0.173	1.77 +/-0.121	0.322	0.157 +/-0.0999	0.117 +/-0.0312	120.00	7/12/2023 2:00:47 PM	0	-	231985-013	7
Detector 3A	0.446	2.42 +/-0.195	3.08 +/-0.16	0.265	0.416	0.208	120.00	7/12/2023 2:00:46 PM	0		LCSD	ω
Detector 2D	0.516	1.37 +/-0.191	1.95 +/-0.127	0.418	0.469 +/-0.155	0.217 +/-0.0425	120.00	7/12/2023 2:00:48 PM	0		231991-005	4
Detector 2C	0.412	0.0865 +/-0.119	0.717 +/-0.0773	0.359	-0.0825 +/-0.0782	0.0333	120.00	7/12/2023 2:00:47 PM	0		231991-001	ö
Detector 2B	0.441	1.03 +/-0.163	1.63 +/-0.116	0.363	0.177 +/-0.112	0.1 +/-0.0289	120.00	7/12/2023 2:00:47 PM	•	<u> </u>	231985-012	თ
Detector 2A	0.413	2.63 +/-0.199	3.03 +/-0.159	0.283	0.421 +/-0.122	0.192 +/-0.04	120.00	7/12/2023 2:00:46 PM	0	-	င္လ	N
Detector 1D	0.512	0.652 +/-0.17	1.28 +/-0.103	0.42	0.21 +/-0.131	0.15 +/-0.0354	120.00	7/12/2023 2:00:48 PM	0	-	231991-004	ಪ
Detector 1C	0.46	-0.0114 +/-0.133	0.725	0.305	0.145 +/-0.094	0.108 +/-0.03	120.00	7/12/2023 2:00:47 PM	0	-	231985-017	10
Detector 1B	0.48	0.279 +/-0.148	0.908	0.388	0.113 +/-0.112	0.108	120.00	7/12/2023 2:00:47 PM	0		231985-011	Un
Detector 1A	0.484	0.302 +/-0.151	0.883 +/-0.0858	0.276	0.23 +/-0.0997	0.117	120.00	7/12/2023 2:00:46 PM	0	-	M.BLK	-
Detector	MDA	Concentration (pCi/L)	Rate (CPM)	MDA	Q Concentration (pCVL)	Rate (CPM)	Count Time (Minutes)	Start Date/Time	Residual (mg)	Sample Amount (L)	Sample ID	Sample Ordinal
		,	1]						

Unknown Batch Report

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data х (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. Field chain-of-custody documentation × R1 Х R₂ Sample identification cross-reference Test reports (analytical data sheets) for each environmental sample that includes: х RЗ (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) Surrogate recovery data including: NA **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits Test reports/summary forms for blank samples х **R**5 Test reports/summary forms for laboratory control samples (LCSs) including: х **R6** (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: $|\mathbf{x}|$ **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits Laboratory analytical duplicate (if applicable) recovery and precision: × **R8** (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates List of method quantitation limits (MQLs) for each analyte for each method and matrix $\overline{\mathsf{X}}$ R9 X Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) х Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Chemical Technician Prin Tamisha Palmer 07/13/2023 Name (printed) Official Title Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 07/13/2023

Laboratory Job Number: 231985, 231991

Prep Batch Number(s): PB23070606

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	NA	
	I	Were analytical duplicates analyzed at the appropriate frequency?	NA	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	NA	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		1
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 07/13/2023

Laboratory Job Number: 231985, 231991

Prep Batch Number(s): PB23070606

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		- 30
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		_
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	О, І	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	20,0
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12				
	I	Yes		
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)	_	
	1	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Nai	me: American Electric Power Dolan Chemical Laboratory
Project Name:	
•	a: Tamisha Palmer
LRC Date: 07/	
	Number: 231985, 231991
	nber(s): PB23070606

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: x This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. R_1 Field chain-of-custody documentation × × R2 Sample identification cross-reference × R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits X Test reports/summary forms for blank samples **R**5 х R6 Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits × Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits × R8 Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates $\overline{\mathsf{x}}$ R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix x R10 Other problems or anomalies × The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: • This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Jonathan Barnhill Lab Supervisor 08/03/2023 Official Title Name (printed) Signature Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 08/03/2023

Laboratory Job Number: 231985

Prep Batch Number(s): PB23070502 PB23070503 QC2307072 QC2307106 QC2307184 QC2307222

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	YES	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER1
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	YES	
	I	Were MS/MSD RPDs within laboratory QC limits?	YES	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	·
	ı	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 08/03/2023

Laboratory Job Number: 231985

Prep Batch Number(s): PB23070502 PB23070503 QC2307072 QC2307106 QC2307184 QC2307222

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	Yes	
	I	Were ion abundance data within the method-required QC limits?	Yes	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	Yes	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
\$7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		F H0121 = 11
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 08/03/2023

Laboratory Job Number: 231985

Prep Batch Number(s): PB23070502 PB23070503 QC2307072 QC2307106 QC2307184 QC2307222

Exception Report No.	Description
ER1	Linear Dynamic Range (LDR) study used to determine upper limit of analyte calibration.
ER2	CCB acceptance criteria is CCB<2.2*MDL.

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This da	ıta pack	tage co	onsists of:				
x	(which	inclu	re page, and the laboratory revi des the reportable data identific eption Reports.				
×	R1	Field	chain-of-custody documentation	n			
x	R2	Samp	le identification cross-referenc	е			
x	R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 200 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs)						
NA	R4	(a) (gate recovery data including: Calculated recovery (%R) 'he laboratory's surrogate QC li	mits			
x	R5		reports/summary forms for bla		S		
×	R6	(a) I (b) C	reports/summary forms for labo LCS spiking amounts Calculated %R for each analyte The laboratory's LCS QC limits	oratory co	ntrol samples (LCSs)) inclu	ding:
×	R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked sample (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits				-		
x	R8	(a) 7 (b) 7	ratory analytical duplicate (if ap The amount of analyte measure The calculated RPD The laboratory's QC limits for an	d in the du	plicate	on:	
х	R9	List o	f method quantitation limits (N	(IQLs) for	each analyte for each	ı meth	od and matrix
x	R10	Other	problems or anomalies				
×	The Ex	ceptic	on Report for every item for whi	ch the resi	ult is "No" or "NR" (Not R	eviewed)
packag require reports by the laborat	e as be ments s. By m laborat cory in t	en revof the y sign tory as the Lal	et: I am responsible for the releasewed by the laboratory and is a methods used, except where not ature below, I affirm to the best having the potential to affect the boratory Review Checklist, and equality of the data.	complete a sted by the t of my kno ne quality	and technically comp laboratory in the attory owledge, all problem of the data, have bee	oliant v tached ns/and en ider	with the d exception omalies, observed ntified by the
respon used is	ding to	rule. I sible f	This laboratory is an in The official signing the cover particle or releasing this data package a	ge of the r	ule-required report i	in whi	ch these data are
Sunit	a Tim	sina	Trusing	C	hemist Associat	е	07/12/2023
Name	(printed	d)	Signature	<u></u>	fficial Title		Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 07/12/2023

Laboratory Job Number: 231985

Prep Batch Number(s): PB23070305, PB23070306, PB23070605

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	Ο, Ι	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	No	ER1
R9	O, I	Method quantitation limits (MQLs):		
****	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	V (2011)

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 07/12/2023

Laboratory Job Number: 231985

Prep Batch Number(s): PB23070305, PB23070306, PB23070605

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	- -

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power Station

Reviewer Name: Sunita Timsina

LRC Date: 07/12/2023

Laboratory Job Number: 231985

Prep Batch Number(s): PB23070305, PB23070306, PB23070605

Exception Report No.	Description
ER1	PB23070605, RPD between a sample and duplicate sample was above acceptance limit.
<u></u>	
<u></u>	

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Table 1. Reportable Data.

Laboratory Name:	
Project Name:	
Reviewer Name:	
LRC Date:	
Laboratory Job Number:	
Prep Batch Number(s):	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
		Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?		
		Were all departures from standard conditions described in an exception report?		
R2	O, I	Sample and quality control (QC) identification		
		Are all field sample ID numbers cross-referenced to the laboratory ID numbers?		
		Are all laboratory ID numbers cross-referenced to the corresponding QC data?		
R3	O, I	Test reports		
		Were all samples prepared and analyzed within holding times?		
		Other than those results < MQL, were all other raw values bracketed by calibration standards?		
		Were calculations checked by a peer or supervisor?		
		Were all analyte identifications checked by a peer or supervisor?		
		Were sample quantitation limits reported for all analytes not detected?		
		Were all results for soil and sediment samples reported on a dry weight basis?		
		Was % moisture (or solids) reported for all soil and sediment samples?		
		If required for the project, TICs reported?		
R4	0	Surrogate recovery data		
		Were surrogates added prior to extraction?		
		Were surrogate percent recoveries in all samples within the laboratory QC limits?		
R5	O, I	Test reports/summary forms for blank samples		
		Were appropriate type(s) of blanks analyzed?		
1		Were blanks analyzed at the appropriate frequency?		

I tem ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
		Were method blanks taken through the entire analytical process, including preparation and, if applicable,		
		cleanup procedures?		
		Were blank concentrations < MQL?		
R6	O, I	Laboratory control samples (LCS):		
		Were all COCs included in the LCS?		
		Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?		
		Were LCSs analyzed at the required frequency?		
		Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?		
		Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?		
		Was the LCSD RPD within QC limits?		
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
		Were the project/method specified analytes included in the MS and MSD?		
		Were MS/MSD analyzed at the appropriate frequency?		
		Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?		
		Were MS/MSD RPDs within laboratory QC limits?		
R8	O, I	Analytical duplicate data		
		Were appropriate analytical duplicates analyzed for each matrix?		
		Were analytical duplicates analyzed at the appropriate frequency?		
		Were RPDs or relative standard deviations within the laboratory QC limits?		
R9	O, I	Method quantitation limits (MQLs):		
		Are the MQLs for each method analyte included in the laboratory data package?		
		Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?		
		Are unadjusted MQLs included in the laboratory data package?		
R10	O, I	Other problems/anomalies		
		Are all known problems/anomalies/special conditions noted in this LRC and ER?		
		Were all necessary corrective actions performed for the reported data?		
		Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?		

Table 2. Supporting Data.

Laboratory Name:	
Project Name:	
Reviewer Name:	
LRC Date:	
Laboratory Job Number:	
Prep Batch Number(s):	

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
		Were response factors and/or relative response factors for each analyte within QC limits?		
		Were percent RSDs or correlation coefficient criteria met?		
		Was the number of standards recommended in the method used for all analytes?		
		Were all points generated between the lowest and highest standard used to calculate the curve?		
		Are ICAL data available for all instruments used?		
		Has the initial calibration curve been verified using an appropriate second source standard?		
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
		Was the CCV analyzed at the method-required frequency?		
		Were percent differences for each analyte within the method-required QC limits?		
		Was the ICAL curve verified for each analyte?		
		Was the absolute value of the analyte concentration in the inorganic CCB < MDL?		
S3	0	Mass spectral tuning:		
		Was the appropriate compound for the method used for tuning?		
		Were ion abundance data within the method-required QC limits?		
S4	0	Internal standards (IS):		
		Were IS area counts and retention times within the method-required QC limits?		
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
		Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?		
		Were data associated with manual integrations flagged on the raw data?		

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
		Did dual column confirmation results meet the method-required QC?		
S7	0	Tentatively identified compounds (TICs):		
		If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?		
S8	I	Interference Check Sample (ICS) results:		
		Were percent recoveries within method QC limits?		
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
		Were percent differences, recoveries, and the linearity within the QC limits specified in the method?		
S10	O, I	Method detection limit (MDL) studies		
		Was a MDL study performed for each reported analyte?		
		Is the MDL either adjusted or supported by the analysis of DCSs?		
S11	O, I	Proficiency test reports:		
		Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?		
S12	O, I	Standards documentation		
		Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?		
S13	O, I	Compound/analyte identification procedures		
		Are the procedures for compound/analyte identification documented?		
S14	O, I	Demonstration of analyst competency (DOC)		
		Was DOC conducted consistent with NELAC Chapter 5C?		
		Is documentation of the analyst's competency up-to-date and on file?		
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
		Are all the methods used to generate the data documented, verified, and validated, where applicable?		
S16	O, I	Laboratory standard operating procedures (SOPs):		
		Are laboratory SOPs current and on file for each method performed?		

Table 3. Exception Reports.

Laboratory Name:	
Project Name:	
Reviewer Name:	
LRC Date:	
Laboratory Job Number:	
Prep Batch Number(s):	

Exception Report No.	Description

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Water Analysis Report

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 232658 Customer: Pirkey Power Station Date Reported: 09/22/2023

Customer Sample ID: AD-23 Customer Description: TG-32

Lab Number: 232658-001 Preparation:

Date Collected: 08/23/2023 09:38 EDT Date Received: 08/25/2023 12:53 EDT

Metals

Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method

Boron 0.026 mg/L 1 0.050 0.007 J1 GES 08/30/2023 12:10 EPA 200.8-1994, Rev. 5.4

Customer Sample ID: AD-34 Customer Description: TG-32

Lab Number: 232658-002 Preparation:

Date Collected: 08/23/2023 08:45 EDT Date Received: 08/25/2023 12:53 EDT

Wet Chemistry

Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method

TDS, Filterable Residue 1560 mg/L 1 50 20 ELT 08/28/2023 09:19 SM 2540C-2015

Customer Sample ID: AD-36 Customer Description: TG-32

Lab Number: 232658-003 Preparation:

Date Collected: 08/23/2023 08:06 EDT Date Received: 08/25/2023 12:53 EDT

Ion Chromatography

Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method

Chloride 11.8 mg/L 2 0.04 0.01 CRJ 08/29/2023 13:16 EPA 300.1-1997, Rev. 1.0

Metals

Parameter Result Units Dilution RL MDL Data Qualifiers Analyst Analysis Date Method

Calcium 1.22 mg/L 1 0.05 0.01 GES 08/30/2023 12:15 EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 232658 Customer: Pirkey Power Station Date Reported: 09/22/2023

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

232658 **Chain of Custody Record** Doian Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125 Program: Coal Combustion Residuals (CCR) Michael Ohlinger (614-836-4184) Site Contact: Date: For Lab Use Only: Contacts: Dave Conover (614-836-4219) COC/Order #: 250 mL 250 mL 250 mL Project Name: Pirkey PP Landfill CCR Resample 1 L bottle bottle, bottle. bottle. Cool, 0-6C Analysis Turnaround Time (in Calendar Days) Contact Name: Leslie Fuerschbach Cool, 0-6C pH<2, pH<2. Routine (28 days for Monitoring Wells) Contact Phone: 318-673-2744 HNO3 HNO₃ Sampler(s): Kenny McDonald **Brad Bates** Sampler(s) Initials Chloride Sample Calcium Type TOS Sample Sample (C=Comp. # of Sample Identification Date Time G=Grab) Matrix Cont. Sample Specific Notes: AD-23 838 G **GW** 8/23/2023 X AD-34 G GW 8/23/2023 745 X AD-36 706 G GW 2 8/23/2023 X X F4 Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other ; F= filter in field Six 1L Bottles must be collected for Radium for every 10th sample. Special Instructions/QC Requirements & Comments:

TG-32 needed

WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer PIKAL DP	Number of Plastic Containers:
<i>y</i> .	
Opened By Misgha	Number of Glass Containers:
Date/Time 08/25/23 [1555 A	
(IR Gun Ser# 2213689000 , Expir. 03/24/2024	or N/A Initial: Mb((on ice no ice) - If No, specify each deviation:
	Comments
Was Chain of Custody received? () N	Comments
Requested turnaround: 21 doys	If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) NO ₂ or N (24 hr)	O ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	Comments
Were samples labeled properly? \mathcal{O} / N	Comments
Were correct containers used? O/N	Comments
Was pH checked & Color Coding done? Y/	Nor N/A Initial & Date: MGC 08 28723
pH paper (circle one): MQuant PN1.09535.0001,LO	T# [OR] Lab Rat, PN4801, LOT# X000RW 2521 Exp 11/15/20
- Was Add'l Preservative needed? Y	Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / 🔊	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# 232658 Initial & D	Date & Time :
Logged by //(/	ts:
Reviewed by WCG	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Municipal Solid Waste Laboratory Review Checklist

This d	ata pacl	kage consis	ts of:		
X	(which		ne reportable data identified	checklist consisting of Table 1, on this page), Table 2, Supporti	
х	R1	Field chai	n-of-custody documentation		
x	R2	Sample id	entification cross-reference		
×	R3	(a) Items NELA (b) Diluti (c) Prepa (d) Clean	specified in NELAC Chapter C Standard on factors ration methods up methods	r each environmental sample the 5 for reporting results, e.g., Second reporting results, e.g., Second relationships and the following results are relationships as a second relationships and the following results are relationships as a second relationships are relationships as a second relationships are relationships and relationships are relationships as a second relationship and relationships are relationships as a second relation relationships are relation	ction 5.5.10 in 2003
X	R4	(a) Calcu	recovery data including: lated recovery (%R) aboratory's surrogate QC limi	its	
x	R5	Test repor	ts/summary forms for blank	samples	
х	R6	(a) LCS s (b) Calcu	ts/summary forms for labora piking amounts lated %R for each analyte aboratory's LCS QC limits	atory control samples (LCSs) in	cluding:
x	R7	(a) Samp (b) MS/N (c) Conce (d) Calcu	les associated with the MS/N ASD spiking amounts	nalyte measured in the parent a nt differences (RPDs)	,
X	R8	(a) The a	y analytical duplicate (if appl mount of analyte measured i alculated RPD aboratory's QC limits for anal	•	
x	R9	List of me	thod quantitation limits (MQ	Ls) for each analyte for each m	ethod and matrix
x	R10	Other pro	blems or anomalies		
X	The Ex	ception Re	port for every item for which	the result is "No" or "NR" (Not	Reviewed)
packag require report by the labora	ge as be ements s. By m labora tory in t	een reviewe of the meth y signatur tory as hav the Laborat	d by the laboratory and is con nods used, except where note to below, I affirm to the best of ing the potential to affect the	se of this laboratory data package implete and technically compliant dby the laboratory in the attack of my knowledge, all problems/aquality of the data, have been in the important of the data of the data have been in th	nt with the ned exception nomalies, observed dentified by the
respor used is statem	nding to s respor nent is t	rule. The d sible for re rue.	fficial signing the cover page	ouse laboratory controlled by the of the rule-required report in valid is by signature affirming the a	which these data are
	Arnold		July Mentel	Chemist Principal	9/7/2023
Name	(printed	d)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey PP Landfill CCR Resample
Reviewer Name: Tim Arnold

LRC Date: 9/7/2023

Laboratory Job Number: 232658

Prep Batch Number(s): QC2308242

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	Yes	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		1
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	, I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
`	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	DESCRIPTION OF THE PERSON OF T
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	1	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	-
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Landfill CCR Resample

Reviewer Name: Tim Arnold

LRC Date: 9/7/2023

Laboratory Job Number: 232658

Prep Batch Number(s): QC2308242

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	, I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	1	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I .	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	1	Were percent differences for each analyte within the method-required QC limits?	Yes	A
	I	Was the ICAL curve verified for each analyte?	Yes	-
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	1	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	О, І	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
58	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
-	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
,	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name: Pirl	key PP Landfill CCR Resample
Reviewer Name: T	
LRC Date: 9/7/202	
Laboratory Job Nu	mber: 232658
Prep Batch Number	

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This d	ata nack	age consists	of·		
x x	This si	gnature page	, and the laboratory review cl reportable data identified on		
×	Rı	•	of-custody documentation		
×	R2		tification cross-reference		
x	R3	(a) Items space(b) Dilution(c) Prepara(d) Cleanup	tion methods	for reporting results,	e.g., Section 5.5.10 in 2003
NA	R4	(a) Calculat	covery data including: ted recovery (%R) pratory's surrogate QC limits		
x	R5	Test reports	summary forms for blank sa	mples	
X	R6	(a) LCS spi (b) Calculat	summary forms for laborate king amounts ed %R for each analyte oratory's LCS QC limits	ory control samples (L	CSs) including:
X	R7	(a) Samples(b) MS/MS(c) Concent(d) Calculat	for project matrix spike/mat s associated with the MS/MS D spiking amounts tration of each MS/MSD ana ted %Rs and relative percent pratory's MS/MSD QC limits	D clearly identified lyte measured in the p differences (RPDs)	
x	R8	(a) The am (b) The calc	nalytical duplicate (if application of analyte measured in culated RPD pratory's QC limits for analyt	the duplicate	ecision:
×	R9	List of meth	od quantitation limits (MQLs	s) for each analyte for	each method and matrix
×	R10	Other proble	ems or anomalies		
X	The Ex	ception Repo	rt for every item for which th	ne result is "No" or "N	R" (Not Reviewed)
packag require reports by the labora that w	ge as be ements s. By m laborat tory in t ould aff	en reviewed lof the methody signature better as having the Laborator ect the quality		plete and technically copy the laboratory in the highest open the laboratory in the	ompliant with the e attached exception clems/anomalies, observed been identified by the ve been knowingly withheld
respon used is	iding to	rule. The offi sible for relea	This laboratory is an in-hou cial signing the cover page of asing this data package and is	f the rule-required rep	ort in which these data are
Sano	Ira Wil	lliams	Sought & HAllows	Chemist	9-14-2023

Official Title

Signature

Name (printed)

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey

Reviewer Name: Sandra Williams

LRC Date: 9-14-2023

Laboratory Job Number: 232658

Prep Batch Number(s): QC2308258

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	NA	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	. I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey

Reviewer Name: Sandra Williams

LRC Date: 9-14-2023

Laboratory Job Number: 232658

Prep Batch Number(s): QC2308258

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	1	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	NA	
	ī	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	1	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	ī	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4	
S6	0	Dual column confirmation			
	Ī	Did dual column confirmation results meet the method-required QC?	NA		
S7	0	Tentatively identified compounds (TICs):			
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA		
S8	I	Interference Check Sample (ICS) results:			
	I	Were percent recoveries within method QC limits?	NA		
S9 	I	Serial dilutions, post digestion spikes, and method of standard additions			
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA		
S10	O, I	Method detection limit (MDL) studies			
	I	Was a MDL study performed for each reported analyte?	Yes		
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes		
S11	O, I	Proficiency test reports:		-	
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes		
S12	O, I	Standards documentation			
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes		
S13	O, I	Compound/analyte identification procedures			
	I	Are the procedures for compound/analyte identification documented?	Yes		
S14	O, I	Demonstration of analyst competency (DOC)			
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes		
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes		
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		9	
	1	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes		
S16	O, I	Laboratory standard operating procedures (SOPs):			
	I	Are laboratory SOPs current and on file for each method performed?	Yes		

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Labora	itory
Project Name: Pirkey	
Reviewer Name: Sandra Williams	
LRC Date: 9-14-2023	
Laboratory Job Number: 232658	
Prep Batch Number(s): QC2308258	

Exception Report No.	Description
<u> </u>	
<u> </u>	

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This da	ata pack	cage	consists of:						
х	(which	incl		table data		klist consisting of is page), Table 2, S			
x	R1	Fiel	d chain-of-cus	tody docu	mentation				
x	R2	Sam	ple identificat	ion cross-	reference				
х	R3	 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 200 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) 							
NA	R4	(a)	rogate recovery Calculated red The laborator	covery (%	R)				
×	R5	Test	reports/sum	nary form	s for blank sam	ples			
x	R6	(a) (b)	reports/sum LCS spiking a Calculated %I The laborator	imounts R for each	analyte	control samples (I	.CSs) inclu	ding:	
x	R7	(a) (b) (c) (d)	Samples asso MS/MSD spil Concentration	ciated wit king amou n of each I Rs and rel	h the MS/MSD onts MS/MSD analyt ative percent dif	spike duplicates (clearly identified e measured in the p fferences (RPDs)	, ·	· ·	
x	R8	(a) (b)	The amount of The calculated	of analyte d RPD	cate (if applicabl measured in the nits for analytica	-	ecision:		
×	R9	List	of method qua	antitation	limits (MQLs) f	or each analyte for	each meth	od and matrix	
M.	R10	Oth	er problems o	r anomali	es				
×	The Ex	cept	ion Report for	every iter	n for which the	result is "No" or "N	IR" (Not Re	eviewed)	
packag require reports by the laborat	ge as be ements s. By m laborat tory in t	en re of the y sig tory a the L	eviewed by the e methods use gnature below, as having the p	laborator d, except I affirm to otential to iew Check	y and is comple where noted by o the best of my o affect the qual	this laboratory data te and technically of the laboratory in the knowledge, all pro ity of the data, have rmation or data ha	compliant v ne attached blems/and e been ider	with the l exception omalies, observed ntified by the	
respon used is	ding to	rule. Isible	. The official si	igning the	cover page of the	laboratory controll le rule-required rep y signature affirmi	port in whi	ch these data are	
Jona	than E	Barn	hill		Improv. gr it in return to gr id. If you had go be being you had go being you, if young lighter but's that these water-to-to first. It had been for the returned you frequent for the soften that is yourse graph of your first that yourse frequence of your first that yourse graph of your first that yourse frequence of your first that your first that your frequence of	Lab Superviso	or	9-21-2023	
Name	(printe	d)	Sig	nature		Official Title		Date	

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Landfill CCR Resample

Reviewer Name: Jonathan Barnhill

LRC Date: 9-21-2023

Laboratory Job Number: 232658

Prep Batch Number(s): PB23082902 QC2308264

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER1
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	1	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey PP Landfill CCR Resample

Reviewer Name: Jonathan Barnhill

LRC Date: 9-21-2023

Laboratory Job Number: 232658

Prep Batch Number(s): PB23082902 QC2308264

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	Yes	
	I	Were ion abundance data within the method-required QC limits?	Yes	
54	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	Yes	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴	
S6	0	Dual column confirmation			
	I	Did dual column confirmation results meet the method-required QC?	NA		
S7	0	Tentatively identified compounds (TICs):			
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA		
S8	I	Interference Check Sample (ICS) results:			
	I	Were percent recoveries within method QC limits?	NA		
S9	I	Serial dilutions, post digestion spikes, and method of standard additions			
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	-	
S10	O, I	Method detection limit (MDL) studies			
	I	Was a MDL study performed for each reported analyte?	Yes		
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes		
S11	O, I	Proficiency test reports:			
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes		
S12	O, I	Standards documentation			
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes		
S13	O, I	Compound/analyte identification procedures			
	I	Are the procedures for compound/analyte identification documented?	Yes		
S14	O, I	Demonstration of analyst competency (DOC)			
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	111.9	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes		
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)			
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes		
S16	O, I	Laboratory standard operating procedures (SOPs):			
	I	Are laboratory SOPs current and on file for each method performed?	Yes		

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey PP Landfill CCR Resample
Reviewer Name: Jonathan Barnhill
LRC Date: 9-21-2023
Laboratory Job Number: 232658
Prep Batch Number(s): PB23082902 QC2308264

Exception Report No.	Description
ER1	Linear Dynamic Range (LDR) study used to determine upper limit of analyte calibration.
ER2	CCB acceptance criteria is CCB<2.2*MDL.

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233280 Customer: Pirkey Power Station Date Reported: 12/08/2023

Customer Sample ID: AD-8 Customer Description: TG-32

Lab Number: 233280-001 Preparation:

Date Collected: 10/18/2023 11:54 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	1.11 mg/L	1	0.050	0.007	GES	11/01/2023 11:44	EPA 200.8-1994, Rev. 5.4
Calcium	19.6 mg/L	1	0.05	0.01	GES	11/01/2023 11:44	EPA 200.8-1994, Rev. 5.4
Magnesium	2.27 mg/L	1	0.100	0.006	GES	11/01/2023 11:44	EPA 200.8-1994, Rev. 5.4
Potassium	0.595 mg/L	1	0.100	0.008	GES	11/01/2023 11:44	EPA 200.8-1994, Rev. 5.4
Sodium	13.4 mg/L	1	0.20	0.01	GES	11/01/2023 11:44	EPA 200.8-1994, Rev. 5.4

Customer Sample ID: AD-16 Customer Description: TG-32

Lab Number: 233280-002 Preparation:

Date Collected: 10/18/2023 12:42 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.026 mg/L	1	0.050	0.007 J1	GES	11/01/2023 10:43	EPA 200.8-1994, Rev. 5.4
Calcium	1.13 mg/L	1	0.05	0.01	GES	11/01/2023 10:43	EPA 200.8-1994, Rev. 5.4
Magnesium	1.83 mg/L	1	0.100	0.006	GES	11/01/2023 10:43	EPA 200.8-1994, Rev. 5.4
Potassium	1.90 mg/L	1	0.100	0.008	GES	11/01/2023 10:43	EPA 200.8-1994, Rev. 5.4
Sodium	10.8 mg/L	1	0.20	0.01	GES	11/01/2023 10:43	EPA 200.8-1994, Rev. 5.4

Customer Sample ID: AD-23 Customer Description: TG-32

Lab Number: 233280-003 Preparation:

Date Collected: 10/18/2023 09:45 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.051 mg/L	1	0.050	0.007	GES	11/01/2023 10:48	EPA 200.8-1994, Rev. 5.4
Calcium	0.26 mg/L	1	0.05	0.01	GES	11/01/2023 10:48	EPA 200.8-1994, Rev. 5.4
Magnesium	0.211 mg/L	1	0.100	0.006	GES	11/01/2023 10:48	EPA 200.8-1994, Rev. 5.4
Potassium	4.19 mg/L	1	0.100	0.008	GES	11/01/2023 10:48	EPA 200.8-1994, Rev. 5.4
Sodium	3.07 mg/L	1	0.20	0.01	GES	11/01/2023 10:48	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233280 Customer: Pirkey Power Station Date Reported: 12/08/2023

Customer Sample ID: AD-27 Customer Description: TG-32

Lab Number: 233280-004 Preparation:

Date Collected: 10/18/2023 12:01 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.040 mg/L	1	0.050	0.007 J1	GES	11/01/2023 12:00	EPA 200.8-1994, Rev. 5.4
Calcium	3.76 mg/L	1	0.05	0.01	GES	11/01/2023 12:00	EPA 200.8-1994, Rev. 5.4
Magnesium	4.95 mg/L	1	0.100	0.006	GES	11/01/2023 12:00	EPA 200.8-1994, Rev. 5.4
Potassium	2.10 mg/L	1	0.100	0.008	GES	11/01/2023 12:00	EPA 200.8-1994, Rev. 5.4
Sodium	7.78 mg/L	1	0.20	0.01	GES	11/01/2023 12:00	EPA 200.8-1994, Rev. 5.4

Customer Sample ID: AD-34 Customer Description: TG-32

Lab Number: 233280-005 Preparation:

Date Collected: 10/18/2023 10:21 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.057 mg/L	1	0.050	0.007	GES	11/01/2023 12:05	EPA 200.8-1994, Rev. 5.4
Calcium	34.6 mg/L	1	0.05	0.01	GES	11/01/2023 12:05	EPA 200.8-1994, Rev. 5.4
Magnesium	30.4 mg/L	1	0.100	0.006	GES	11/01/2023 12:05	EPA 200.8-1994, Rev. 5.4
Potassium	6.55 mg/L	1	0.100	0.008	GES	11/01/2023 12:05	EPA 200.8-1994, Rev. 5.4
Sodium	12.9 mg/L	1	0.20	0.01	GES	11/01/2023 12:05	EPA 200.8-1994, Rev. 5.4

Customer Sample ID: AD-36 Customer Description: TG-32

Lab Number: 233280-006 Preparation:

Date Collected: 10/18/2023 11:08 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.081 mg/L	1	0.050	0.007	GES	11/01/2023 12:10	EPA 200.8-1994, Rev. 5.4
Calcium	0.76 mg/L	1	0.05	0.01	GES	11/01/2023 12:10	EPA 200.8-1994, Rev. 5.4
Magnesium	1.85 mg/L	1	0.100	0.006	GES	11/01/2023 12:10	EPA 200.8-1994, Rev. 5.4
Potassium	1.74 mg/L	1	0.100	0.008	GES	11/01/2023 12:10	EPA 200.8-1994, Rev. 5.4
Sodium	5.54 mg/L	1	0.20	0.01	GES	11/01/2023 12:10	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233280 Customer: Pirkey Power Station Date Reported: 12/08/2023

Customer Sample ID: DUPLICATE C Customer Description: TG-32

Lab Number: 233280-007 Preparation:

Date Collected: 10/18/2023 15:00 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	0.060 mg/L	1	0.050	0.007	GES	11/01/2023 12:15	EPA 200.8-1994, Rev. 5.4
Calcium	38.2 mg/L	1	0.05	0.01	GES	11/01/2023 12:15	EPA 200.8-1994, Rev. 5.4
Magnesium	33.5 mg/L	1	0.100	0.006	GES	11/01/2023 12:15	EPA 200.8-1994, Rev. 5.4
Potassium	7.17 mg/L	1	0.100	0.008	GES	11/01/2023 12:15	EPA 200.8-1994, Rev. 5.4
Sodium	14.2 mg/L	1	0.20	0.01	GES	11/01/2023 12:15	EPA 200.8-1994, Rev. 5.4

Customer Sample ID: EQUIPMENT BLANK Customer Description: TG-32

Lab Number: 233280-008 Preparation:

Date Collected: 10/18/2023 10:47 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	<0.007 mg/L	1	0.050	0.007 U1	GES	11/01/2023 12:20	EPA 200.8-1994, Rev. 5.4
Calcium	0.02 mg/L	1	0.05	0.01 J1	GES	11/01/2023 12:20	EPA 200.8-1994, Rev. 5.4
Magnesium	0.006 mg/L	1	0.100	0.006 J1	GES	11/01/2023 12:20	EPA 200.8-1994, Rev. 5.4
Potassium	<0.008 mg/L	1	0.100	0.008 U1	GES	11/01/2023 12:20	EPA 200.8-1994, Rev. 5.4
Sodium	<0.01 mg/L	1	0.20	0.01 U1	GES	11/01/2023 12:20	EPA 200.8-1994. Rev. 5.4

Customer Sample ID: FIELD BLANK Customer Description: TG-32

Lab Number: 233280-009 Preparation:

Date Collected: 10/18/2023 10:54 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Boron	<0.007 mg/L	1	0.050	0.007 U1	GES	11/01/2023 12:25	EPA 200.8-1994, Rev. 5.4
Calcium	<0.01 mg/L	1	0.05	0.01 U1	GES	11/01/2023 12:25	EPA 200.8-1994, Rev. 5.4
Magnesium	<0.006 mg/L	1	0.100	0.006 U1	GES	11/01/2023 12:25	EPA 200.8-1994, Rev. 5.4
Potassium	<0.008 mg/L	1	0.100	0.008 U1	GES	11/01/2023 12:25	EPA 200.8-1994, Rev. 5.4
Sodium	<0.01 mg/L	1	0.20	0.01 U1	GES	11/01/2023 12:25	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233280 Customer: Pirkey Power Station Date Reported: 12/08/2023

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhul S. Ollinga

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.
- U1 Not detected at or above method detection limit (MDL).

Chain of Custody Record Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125 Program: Coal Combustion Residuals (CCR) Jonathan Bamhill (318-673-3803) Site Contact: Date: For Lab Use Only: Contacts: Michael Ohlinger (614-836-4184) COC/Order#: Project Name: Pirkey - LF Metals Field-filter 250 mL 250 mL Three 250 mL 250 mL Glass Glass (six every Contact Name: Leslie Fuerschbach Analysis Turnaround Time (in Calendar Days) bottle. bottle. bottle. 233280 bottle. 10th*) pH<2, then pH<2, HCL** HCL** 1 L bottles, Contact Phone: 318-423-3805 HNO₃ HNO₃ pH<2, HNO pH<2 pH<2 Sampler(s): Matt Hamilton Kenny McDonald Ra-226, Ra-228 Sampler(s) Initials Ca, Na, K, Mg, Sample Type Sample Sample (C=Comp, # of Sample Identification Date Time G=Grab) Matrix Cont. Sample Specific Notes: AD-8 GW 10/18/2023 1054 G AD-16 10/18/2023 1142 G GW 1 Х AD-23 845 G GW 10/18/2023 1 AD-27 1101 G GW 1 10/18/2023 AD-34 G 10/18/2023 921 GW AD-36 10/18/2023 1008 G GW 1 X **DUPLICATE C** 1400 G GW 1 10/18/2023 X **EQUIPMENT BLANK** G GW 10/18/2023 947 FIELD BLANK 10/18/2023 954 G GW F4 2 F2 Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other ; F= filter in field Six 1L Bottles must be collected for Radium for every 10th sample. Special Instructions/QC Requirements & Comments: Relinquished by Company: Date/Time: Received by: Date/Time: 15c 10-19-23 Date/Time: Relinquished by: Company: Received by: Date/Time:

Received in Laboratory by:

10

11:00

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

Date/Time:

Company:

Relinquished by:

MATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer Pilkty	Number of Plastic Containers:
Opened By MGK MSO	Number of Glass Containers:
Date/Time 10/23/23 11:00	
Were all temperatures within 0-6°C? Y / N	o(N/A) Initial:on ice / no ice
(IR Gun Ser# 2213689000, Expir. 03/24/202	24) - If No, specify each deviation:
Was container in good condition? (Y) / N	Comments
Was Chain of Custody received? (N	Comments
Requested turnaround: Rout in	If RUSH, who was notified?
pH (15 min) Cr*6 (pres) NO ₂ or I (24 hr)	NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	Comments
Were samples labeled properly? N	Comments
Were correct containers used? (Y) N	Comments
Was pH checked & Color Coding done?) N or N/A Initial & Date: MSO 10/23/23
pH paper (circle one): MQuant.PN1.09535.0001,L	OT# [ORTLab Rat,PN4801.LQT# X000RWDG21 Exp 11/15/2024
- Was Add'l Preservative needed? Y / N II	Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / N	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# 232780 Initial &	Date & Time :
Logged by M50	nts:
Reviewed by MGC	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Municipal Solid Waste Laboratory Review Checklist

This da	ata pack	cage consists of	•		
х	(which		eportable data identified o	checklist consisting of Table n this page), Table 2, Supp	
x	R1	Field chain-of	-custody documentation		
x	R2	Sample identi	fication cross-reference		
X	R3	(a) Items spe NELAC S (b) Dilution i (c) Preparati (d) Cleanup i	cified in NELAC Chapter ; tandard actors on methods nethods	each environmental sample 5 for reporting results, e.g., ely identified compounds (T	Section 5.5.10 in 2003
NA	R4	(a) Calculate	overy data including: d recovery (%R) atory's surrogate QC limit	s	
X	R ₅	Test reports/s	ummary forms for blank s	samples	
x	R6	(a) LCS spiki (b) Calculate		tory control samples (LCSs)) including:
x	R7	(a) Samples(b) MS/MSD(c) Concentr(d) Calculate	associated with the MS/M spiking amounts	alyte measured in the parent differences (RPDs)	-
x	R8	(a) The amount (b) The calcu	ant of analyte measured ir	-	on:
x	R9	List of method	d quantitation limits (MQI	Ls) for each analyte for each	n method and matrix
×	R10	Other probler	ns or anomalies	·	
×	The Ex	ception Repor	t for every item for which	the result is "No" or "NR" (Not Reviewed)
packag require reportaby the labora	ge as be ements s. By m labora tory in	een reviewed by of the methods by signature be tory as having	y the laboratory and is con s used, except where noted low, I affirm to the best of the potential to affect the of Review Checklist, and no	e of this laboratory data pac aplete and technically comp by the laboratory in the at my knowledge, all problem quality of the data, have bee information or data have b	oliant with the tached exception ns/anomalies, observed en identified by the
respor used is	nding to	rule. The offic sible for releas	ial signing the cover page	use laboratory controlled b of the rule-required report is by signature affirming th	in which these data are
Jona	than E	Barnhill	Represented in Audionological and Audionological and Audionological and Audionological and Audionological and Audionological and Audionological Audionologic	Lab Supervisor	12/7/2023
Name	(printe	d)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 12/7/2023

Laboratory Job Number: 233280

Prep Batch Number(s): PB23103102 QC2311013

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, 1	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER1
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I _	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	5.4

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 12/7/2023

Laboratory Job Number: 233280

Prep Batch Number(s): PB23103102 QC2311013

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
•	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	7.3
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	Yes	:
	I	Were ion abundance data within the method-required QC limits?	Yes	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	Yes	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	(0)
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
59	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	***
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	0, I	Compound/analyte identification procedures		
*	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name: Pirk	
Reviewer Name: J	
LRC Date: 12/7/20	
Laboratory Job Nu	
Prep Batch Numbe	r(s): PB23103102 QC2311013

Exception Report No.	Description									
ER1	Linear Dynamic Range (LDR) study used to determine upper limit of analyte calibration.									
ER2	CCB acceptance criteria is CCB<2.2*MDL.									
<u> </u>										

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

O = organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233269 Customer: Pirkey Power Station Date Reported: 11/29/2023

Customer Sample ID: AD-8 Customer Description: TG-32

Lab Number: 233269-001 Preparation:

Date Collected: 10/18/2023 11:54 EDT Date Received: 10/20/2023 10:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	1.01 mg/L	2	0.10	0.02	CRJ	11/13/2023 21:06	EPA 300.1 -1997, Rev. 1.0
Chloride	21.9 mg/L	2	0.04	0.01	CRJ	11/13/2023 21:06	EPA 300.1 -1997, Rev. 1.0
Fluoride	2.26 mg/L	2	0.06	0.02	CRJ	11/13/2023 21:06	EPA 300.1 -1997, Rev. 1.0
Sulfate	99.4 mg/L	2	0.6	0.1	CRJ	11/13/2023 21:06	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	10/23/2023 15:48	SM 2320B-2011
TDS, Filterable Residue	230 mg/L	1	50	20	ELT	10/23/2023 08:40	SM 2540C-2015

Customer Sample ID: AD-16 Customer Description: TG-32

Lab Number: 233269-002 Preparation:

Date Collected: 10/18/2023 12:42 EDT Date Received: 10/20/2023 10:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.15 mg/L	2	0.10	0.02	CRJ	11/13/2023 22:45	EPA 300.1 -1997, Rev. 1.0
Chloride	22.0 mg/L	2	0.04	0.01	CRJ	11/13/2023 22:45	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.07 mg/L	2	0.06	0.02	CRJ	11/13/2023 22:45	EPA 300.1 -1997, Rev. 1.0
Sulfate	9.3 mg/L	2	0.6	0.1	CRJ	11/13/2023 22:45	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units I	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	10/23/2023 15:48	SM 2320B-2011
TDS, Filterable Residue	97 mg/L	1	50	20	ELT	10/23/2023 08:40	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233269 Customer: Pirkey Power Station Date Reported: 11/29/2023

Customer Sample ID: AD-23 Customer Description: TG-32

Lab Number: 233269-003 Preparation:

Date Collected: 10/18/2023 09:45 EDT Date Received: 10/20/2023 10:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.21 mg/L	2	0.10	0.02	CRJ	11/13/2023 23:17	EPA 300.1 -1997, Rev. 1.0
Chloride	7.99 mg/L	2	0.04	0.01	CRJ	11/13/2023 23:17	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.05 mg/L	2	0.06	0.02 J1	CRJ	11/13/2023 23:17	EPA 300.1 -1997, Rev. 1.0
Sulfate	7.7 mg/L	2	0.6	0.1	CRJ	11/13/2023 23:17	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	10/23/2023 15:48	SM 2320B-2011
TDS, Filterable Residue	44 mg/L	1	50	20 J1	ELT	10/23/2023 08:46	SM 2540C-2015

Customer Sample ID: AD-27 Customer Description: TG-32

Lab Number: 233269-004 Preparation:

Date Collected: 10/18/2023 12:01 EDT Date Received: 10/20/2023 10:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.29 mg/L	2	0.10	0.02	CRJ	11/13/2023 23:50	EPA 300.1 -1997, Rev. 1.0
Chloride	12.1 mg/L	2	0.04	0.01	CRJ	11/13/2023 23:50	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.19 mg/L	2	0.06	0.02	CRJ	11/13/2023 23:50	EPA 300.1 -1997, Rev. 1.0
Sulfate	61.5 mg/L	2	0.6	0.1	CRJ	11/13/2023 23:50	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units D	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	10/23/2023 15:48	SM 2320B-2011
TDS, Filterable Residue	180 mg/L	1	50	20	ELT	10/24/2023 12:04	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233269 Customer: Pirkey Power Station Date Reported: 11/29/2023

Customer Sample ID: AD-34 Customer Description: TG-32

Lab Number: 233269-005 Preparation:

Date Collected: 10/18/2023 10:21 EDT Date Received: 10/20/2023 10:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.22 mg/L	5	0.25	0.05 J1	CRJ	11/14/2023 01:29	EPA 300.1 -1997, Rev. 1.0
Chloride	7.33 mg/L	5	0.10	0.03	CRJ	11/14/2023 01:29	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.74 mg/L	5	0.15	0.05	CRJ	11/14/2023 01:29	EPA 300.1 -1997, Rev. 1.0
Sulfate	1160 mg/L	50	15	3	CRJ	11/14/2023 00:56	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	10/23/2023 15:48	SM 2320B-2011
TDS, Filterable Residue	1620 mg/L	1	50	20	ELT	10/23/2023 09:25	SM 2540C-2015

Customer Sample ID: AD-36 Customer Description: TG-32

Lab Number: 233269-006 Preparation:

Date Collected: 10/18/2023 11:08 EDT Date Received: 10/20/2023 10:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.44 mg/L	2	0.10	0.02	CRJ	11/14/2023 02:35	EPA 300.1 -1997, Rev. 1.0
Chloride	12.4 mg/L	2	0.04	0.01	CRJ	11/14/2023 02:35	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.07 mg/L	2	0.06	0.02	CRJ	11/14/2023 02:35	EPA 300.1 -1997, Rev. 1.0
Sulfate	3.1 mg/L	2	0.6	0.1	CRJ	11/14/2023 02:35	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units I	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	10/23/2023 15:48	SM 2320B-2011
TDS, Filterable Residue	52 mg/L	1	50	20	ELT	10/23/2023 09:35	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233269 Customer: Pirkey Power Station Date Reported: 11/29/2023

Customer Sample ID: DUPLICATE C Customer Description: TG-32

Lab Number: 233269-007 Preparation:

Date Collected: 10/18/2023 15:00 EDT Date Received: 10/20/2023 10:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.22 mg/L	5	0.25	0.05 J1	CRJ	11/14/2023 06:26	EPA 300.1 -1997, Rev. 1.0
Chloride	7.31 mg/L	5	0.10	0.03	CRJ	11/14/2023 06:26	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.74 mg/L	5	0.15	0.05	CRJ	11/14/2023 06:26	EPA 300.1 -1997, Rev. 1.0
Sulfate	1170 mg/L	50	15	3	CRJ	11/14/2023 05:53	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	10/23/2023 15:48	SM 2320B-2011
TDS, Filterable Residue	1620 mg/L	1	50	20	ELT	10/23/2023 09:35	SM 2540C-2015

Customer Sample ID: EQUIPMENT BLANK

Lab Number: 233269-008

Date Collected: 10/18/2023 10:47 EDT

Customer Description: TG-32

Preparation:

Date Received: 10/20/2023 10:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	<0.02 mg/L	2	0.10	0.02 U1	CRJ	11/14/2023 07:31	EPA 300.1 -1997, Rev. 1.0
Chloride	0.11 mg/L	2	0.04	0.01	CRJ	11/14/2023 07:31	EPA 300.1 -1997, Rev. 1.0
Fluoride	<0.02 mg/L	2	0.06	0.02 U1	CRJ	11/14/2023 07:31	EPA 300.1 -1997, Rev. 1.0
Sulfate	0.1 mg/L	2	0.6	0.1 J1	CRJ	11/14/2023 07:31	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	10/23/2023 15:48	SM 2320B-2011
TDS, Filterable Residue	<20 mg/L	1	50	20 U1	ELT	10/23/2023 09:42	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233269 Customer: Pirkey Power Station Date Reported: 11/29/2023

Customer Sample ID: FIELD BLANK Customer Description: TG-32

Lab Number: 233269-009 Preparation:

Date Collected: 10/18/2023 10:54 EDT Date Received: 10/20/2023 10:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	<0.02 mg/L	2	0.10	0.02 U1	CRJ	11/14/2023 08:04	EPA 300.1 -1997, Rev. 1.0
Chloride	0.11 mg/L	2	0.04	0.01	CRJ	11/14/2023 08:04	EPA 300.1 -1997, Rev. 1.0
Fluoride	<0.02 mg/L	2	0.06	0.02 U1	CRJ	11/14/2023 08:04	EPA 300.1 -1997, Rev. 1.0
Sulfate	<0.1 mg/L	2	0.6	0.1 U1	CRJ	11/14/2023 08:04	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units I	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	10/23/2023 15:48	SM 2320B-2011
TDS, Filterable Residue	<20 mg/L	1	50	20 U1	ELT	10/23/2023 09:42	SM 2540C-2015

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233269 Customer: Pirkey Power Station Date Reported: 11/29/2023

Data Qualifer Legend

U1 - Not detected at or above method detection limit (MDL).

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

Chain of Custody Record Dolan Chemical Laboratory (DCL) 4001 Blxby Road Groveport, Ohio 43125 Program: Coal Combustion Residuals (CCR) Site Contact: Date: For Lab Use Only: Jonathan Barnhill (318-673-3803) Contacts: Michael Ohlinger (614-836-4184) COC/Order #: 40 mL Glass vial or 250 mL PTFE lined bottle, HCL**, pH<2 40 mL Glass vial or 250 mL PTFE lined bottle, HCL**, pH<2 Project Name: Pirkey - AD-34 Fleid-filter Three 250 mL 250 mL 1 L (six every Contact Name: Leslie Fuerschbach bottle, Analysis Turnaround Time (in Calendar Days) bottle, then bottle, Oth*) 233769 pH<2, pH<2, Cool, L bottles, HNO₃ HNO₃ Contact Phone: 318-423-3805 0-6°C pH<2, HNO TDS, F, Cl, SO,, Br, Alkalinity B, Ca, Ll, Sb, As, B Be, Cd, Cr, Co, Fe, Mn, Mo, Pb, Se, TL and Na, K, Mg, Sr Matt Hamilton Kenny McDonald Ra-226, Ra-228 Ca, Na, K, Mg, Sampler(s) Initials **Sample** Type Sample Sample (C=Comp 윤 윤 Sample Identification Date Time G=Grab) Matrix Cont. Sample Specific Notes: AD-8 10/18/2023 1054 G GW Х AD-16 1142 G GW 10/18/2023 G GW AD-23 10/18/2023 845 AD-27 1101 G GW 10/18/2023 AD-34 921 G GW Х 10/18/2023 G GW X AD-36 1008 10/18/2023 **DUPLICATE C** 1400 G GW Х 10/18/2023 GW G X **EQUIPMENT BLANK** 947 10/18/2023 954 G GW X **FIELD BLANK** 10/18/2023 2 F4 1 2 ; F= filter in field Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Six 1L Bottles must be collected for Radium for every 10th sample. Special Instructions/QC Requirements & Comments: Date/Time: Relinquished by: Company: Date/Time: Received by: 1500 10-19-23 Date/Time: Relinquished by: Company: Date/Time Received by:

Received in Laporatory by:

10:00

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

Date/Time:

Company:

Relinquished by:

MATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer Rickey	Number of Plastic Containers:
Opened By WCk MUL	Number of Glass Containers:
Date/Time 10/20/23 1000	Number of Mercury Containers:
_	or N/A Initial: WCL MCK on ice no ice
Was container in good condition? 🕅 / N	Comments
	Comments
Requested turnaround: 1/17/23	If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) NO₂ or N (24 hr)	NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? (y)/ N	Comments
Were samples labeled properly? (ỹ) N	Comments
Were correct containers used? (Y)/N	Comments
Was pH checked & Color Coding done?	N or NA Initial & Date: WCh MCK 10/20/23
pH paper (circle one): MQuant.PN1.09535.0001,L	OT#(OR, Lab Rat.PN4801.LOT# X000RWDG21 Exp 11/15/2024
- Was Add'l Preservative needed? Y / Ŋ lf	Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / N	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# 233269 Initial &	Date & Time :
Logged by	nts.
Reviewed by W(G	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Municipal Solid Waste Laboratory Review Checklist

This da	ita pack	age consists of				
×	(which		eportable data ident		klist consisting of Ta is page), Table 2, Su	able 1, Reportable Data pporting Data, and
×	R1	Field chain-of	-custody document	ation		
×	R2	Sample identi	fication cross-refere	ence		
x	R3	(a) Items specified NELAC S(b) Dilution it(c) Preparati(d) Cleanup it	cified in NELAC Ch tandard actors on methods nethods	apter 5 for	environmental sam reporting results, e	g., Section 5.5.10 in 2003
NA	R4	(a) Calculate	overy data including d recovery (%R) atory's surrogate Q			
x	R5	Test reports/s	summary forms for	blank sam	ples	
X	R6	(a) LCS spiki (b) Calculate		te	control samples (L.C	Ss) including:
X	R7	(a) Samples(b) MS/MSD(c) Concentr(d) Calculate	associated with the spiking amounts	MS/MSD ((SD analyto percent dif	clearly identified e measured in the pa	S/MSDs) including: arent and spiked samples
X	R8	(a) The amount (b) The calcu	unt of analyte meas	ured in the	-	sision:
×	R9	List of method	d quantitation limits	s (MQLs) f	or each analyte for e	ach method and matrix
×	R10	Other probler	ns or anomalies			
x	The Ex	ception Repor	t for every item for	which the	result is "No" or "NR	" (Not Reviewed)
packag require reports by the laborat	ge as be ements s. By m laborat tory in t	en reviewed by of the methods y signature be tory as having	y the laboratory and s used, except where low, I affirm to the the potential to affe Review Checklist, a	is comple noted by best of my ct the qual	knowledge, all prob ity of the data, have	
respon used is statem Mich	ding to respondent is to ael Oh	rule. The offic asible for releas rue. ailnger	ial signing the cover sing this data packa Muhael	page of th	laboratory controlle te rule-required repo y signature affirming Chemist Official Title	ort in which these data are g the above release 11/29/23
Name	(printe	u)	Signature	/	Omciai Titie	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Michael Ohlinger

LRC Date: 11/29/23

Laboratory Job Number: 233269

Prep Batch Number(s): QC2310189

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	Į
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	ī	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD) if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Michael Ohlinger

LRC Date: 11/29/23

Laboratory Job Number: 233269

Prep Batch Number(s): QC2310189

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	3
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S 2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	Ī	Were IS area counts and retention times within the method-required QC limits?	NA	
S 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S 6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	A 794 18
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Na	me: American Electric Power Dolan Chemical Laboratory
Project Name:	Pirkey CCR
Reviewer Nam	e: Michael Ohlinger
LRC Date: 11/	
Laboratory Jol	Number: 233269
Prep Batch Nu	mber(s): QC2310189

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB<0.5*MQL.

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This da	ta pack	age consists of	:		
x	(which		eportable data identified	v checklist consisting of Table 1, on this page), Table 2, Supporti	
X	R1	Field chain-of	-custody documentation		
x	R2	Sample identi	fication cross-reference		
X	R3	(a) Items specified NELAC S(b) Dilution f(c) Preparati(d) Cleanup f	cified in NELAC Chapte tandard actors on methods nethods	r each environmental sample th r 5 for reporting results, e.g., Sec vely identified compounds (TICs	ction 5.5.10 in 2003
X	R4	(a) Calculate	overy data including: d recovery (%R) atory's surrogate QC lim	its	
x	R5		ummary forms for blank		
x	R6	(a) LCS spiki (b) Calculate		atory control samples (LCSs) in	cluding:
x	R7	(a) Samples(b) MS/MSD(c) Concentr(d) Calculate	associated with the MS/1 spiking amounts	nalyte measured in the parent a ent differences (RPDs)	
x	R8	(a) The amou	ant of analyte measured	•	
X	R9	List of method	l quantitation limits (MC	(Ls) for each analyte for each m	ethod and matrix
X	R10	Other problem	ns or anomalies		
x	The Ex	ception Repor	t for every item for whicl	n the result is "No" or "NR" (Not	Reviewed)
packag require reports by the laborat	e as be ments s. By m laborat ory in t	en reviewed by of the methods y signature be ory as having t	the laboratory and is consused, except where note low, I affirm to the best of the potential to affect the Review Checklist, and n	se of this laboratory data package implete and technically compliated by the laboratory in the attacl of my knowledge, all problems/acquality of the data, have been in information or data have been	nt with the hed exception anomalies, observed dentified by the
respon used is	ding to	rule. The offici sible for releas	ial signing the cover page	nouse laboratory controlled by the of the rule-required report in vertile distributed is by signature affirming the a	which these data are
Tim A	rnold		July Buld	Principle Chemist	11/15/2023
Name	printed	l)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Tim Arnold

LRC Date: 11/15/2023

Laboratory Job Number: 233269

Prep Batch Number(s): QC2311117

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	Yes	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	0, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I .	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	1
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
===	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	1	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Tim Arnold

LRC Date: 11/15/2023

Laboratory Job Number: 233269

Prep Batch Number(s): QC2311117

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S <u>3</u>	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	i I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S 9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	M
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Tim Arnold

LRC Date: 11/15/2023

Laboratory Job Number: 233269

Prep Batch Number(s): QC2311117

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>
	10.00

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: \mathbf{x} This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. X R_1 Field chain-of-custody documentation X R₂ Sample identification cross-reference \square R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) M R4 Surrogate recovery data including: (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits Test reports/summary forms for blank samples × R_5 $|\mathbf{x}|$ **R6** Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: $|\mathsf{x}|$ **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits X Laboratory analytical duplicate (if applicable) recovery and precision: **R8** (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates $\left[\mathbf{x} \right]$ List of method quantitation limits (MQLs) for each analyte for each method and matrix R9 × R10 Other problems or anomalies × The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) **Release Statement:** I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. Check, if applicable: () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Chemist Michael Ohlinger 11/29/23 Name (printed) Official Title Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Michael Ohlinger

LRC Date: 11/29/23

Laboratory Job Number: 233269

Prep Batch Number(s): QC2310229 QC23 0245

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	NA	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
•	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
_	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Michael Ohlinger

LRC Date: 11/29/23

Laboratory Job Number: 233269

Prep Batch Number(s): QC2310229, QL2310245

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	NA	
-	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
52	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S 6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	-
\$15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		0.0381
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		p
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Michael Ohlinger

LRC Date: 11/29/23

Laboratory Job Number: 233269

Prep Batch Number(s): QC2310229

Exception Report No.	Description

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: AD-3 Customer Description: TG-32

Lab Number: 233279-001 Preparation:

Date Collected: 10/18/2023 12:47 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	11/02/2023 19:29	EPA 200.8-1994, Rev. 5.4
Arsenic	0.57 μg/L	1	0.10	0.03	GES	11/02/2023 19:29	EPA 200.8-1994, Rev. 5.4
Barium	57.7 μg/L	1	0.20	0.05	GES	11/02/2023 19:29	EPA 200.8-1994, Rev. 5.4
Beryllium	0.174 µg/L	1	0.050	0.007	GES	11/02/2023 19:29	EPA 200.8-1994, Rev. 5.4
Boron	0.036 mg/L	1	0.050	0.007 J1	GES	11/02/2023 19:29	EPA 200.8-1994, Rev. 5.4
Cadmium	0.016 µg/L	1	0.020	0.004 J1	GES	11/02/2023 19:29	EPA 200.8-1994, Rev. 5.4
Calcium	4.04 mg/L	1	0.05	0.01	GES	11/02/2023 19:29	EPA 200.8-1994, Rev. 5.4
Chromium	0.33 µg/L	1	0.30	0.07	GES	11/06/2023 16:07	EPA 200.8-1994, Rev. 5.4
Cobalt	3.70 µg/L	1	0.020	0.005	GES	11/02/2023 19:29	EPA 200.8-1994, Rev. 5.4
Lead	0.12 µg/L	1	0.20	0.05 J1	GES	11/02/2023 19:29	EPA 200.8-1994, Rev. 5.4
Lithium	0.0587 mg/L	1	0.00030	0.00007	GES	11/02/2023 19:29	EPA 200.8-1994, Rev. 5.4
Magnesium	2.07 mg/L	1	0.100	0.006	GES	11/02/2023 19:29	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	10/26/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/02/2023 19:29	EPA 200.8-1994, Rev. 5.4
Potassium	2.46 mg/L	1	0.100	0.008	GES	11/02/2023 19:29	EPA 200.8-1994, Rev. 5.4
Selenium	0.04 µg/L	1	0.50	0.04 J1	GES	11/02/2023 19:29	EPA 200.8-1994, Rev. 5.4
Sodium	9.00 mg/L	1	0.20	0.01	GES	11/02/2023 19:29	EPA 200.8-1994, Rev. 5.4
Strontium	0.0279 mg/L	1	0.00200	0.00005	GES	11/02/2023 19:29	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 µg/L	1	0.20	0.02 J1	GES	11/02/2023 19:29	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.64 pCi/L	0.14	0.19	ST	11/20/2023 12:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	83.6 %					
Radium-228	0.55 pCi/L	0.21	0.70	ST	11/16/2023 16:35	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	64.1 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: AD-3 Customer Description: TG-32

Lab Number: 233279-001-01 Preparation: Dissolved

Date Collected: 10/18/2023 12:47 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	11/02/2023 19:45	EPA 200.8-1994, Rev. 5.4
Arsenic	0.37 μg/L	1	0.10	0.03	GES	11/02/2023 19:45	EPA 200.8-1994, Rev. 5.4
Barium	59.8 μg/L	1	0.20	0.05	GES	11/02/2023 19:45	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 171 μg/L	1	0.050	0.007	GES	11/02/2023 19:45	EPA 200.8-1994, Rev. 5.4
Boron	0.041 mg/L	1	0.050	0.007 J1	GES	11/02/2023 19:45	EPA 200.8-1994, Rev. 5.4
Cadmium	0.015 µg/L	1	0.020	0.004 J1	GES	11/02/2023 19:45	EPA 200.8-1994, Rev. 5.4
Calcium	4.26 mg/L	1	0.05	0.01	GES	11/02/2023 19:45	EPA 200.8-1994, Rev. 5.4
Chromium	0.32 μg/L	1	0.30	0.07	GES	11/06/2023 16:12	EPA 200.8-1994, Rev. 5.4
Cobalt	3.97 µg/L	1	0.020	0.005	GES	11/02/2023 19:45	EPA 200.8-1994, Rev. 5.4
Iron	2.85 mg/L	1	0.020	0.003	GES	11/02/2023 19:45	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/02/2023 19:45	EPA 200.8-1994, Rev. 5.4
Lithium	0.0610 mg/L	1	0.00030	0.00007	GES	11/02/2023 19:45	EPA 200.8-1994, Rev. 5.4
Magnesium	2.20 mg/L	1	0.100	0.006	GES	11/02/2023 19:45	EPA 200.8-1994, Rev. 5.4
Manganese	0.0532 mg/L	1	0.00100	0.00008	GES	11/02/2023 19:45	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	10/26/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/02/2023 19:45	EPA 200.8-1994, Rev. 5.4
Potassium	2.59 mg/L	1	0.100	0.008	GES	11/02/2023 19:45	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	11/02/2023 19:45	EPA 200.8-1994, Rev. 5.4
Sodium	9.46 mg/L	1	0.20	0.01	GES	11/02/2023 19:45	EPA 200.8-1994, Rev. 5.4
Strontium	0.0291 mg/L	1	0.00200	0.00005	GES	11/02/2023 19:45	EPA 200.8-1994, Rev. 5.4
Thallium	0.07 μg/L	1	0.20	0.02 J1	GES	11/02/2023 19:45	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: AD-7R Customer Description: TG-32

Lab Number: 233279-002 Preparation:

Date Collected: 10/17/2023 10:08 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.009 µg/L	1	0.100	0.008 J1	GES	11/02/2023 19:50	EPA 200.8-1994, Rev. 5.4
Arsenic	1.22 µg/L	1	0.10	0.03	GES	11/02/2023 19:50	EPA 200.8-1994, Rev. 5.4
Barium	64.2 μg/L	1	0.20	0.05	GES	11/02/2023 19:50	EPA 200.8-1994, Rev. 5.4
Beryllium	1.64 µg/L	1	0.050	0.007	GES	11/02/2023 19:50	EPA 200.8-1994, Rev. 5.4
Boron	0.089 mg/L	1	0.050	0.007	GES	11/02/2023 19:50	EPA 200.8-1994, Rev. 5.4
Cadmium	0.324 µg/L	1	0.020	0.004	GES	11/02/2023 19:50	EPA 200.8-1994, Rev. 5.4
Calcium	2.70 mg/L	1	0.05	0.01	GES	11/02/2023 19:50	EPA 200.8-1994, Rev. 5.4
Chromium	0.64 µg/L	1	0.30	0.07	GES	11/06/2023 16:17	EPA 200.8-1994, Rev. 5.4
Cobalt	14.2 µg/L	1	0.020	0.005	GES	11/02/2023 19:50	EPA 200.8-1994, Rev. 5.4
Lead	0.22 µg/L	1	0.20	0.05	GES	11/02/2023 19:50	EPA 200.8-1994, Rev. 5.4
Lithium	0.0402 mg/L	1	0.00030	0.00007	GES	11/02/2023 19:50	EPA 200.8-1994, Rev. 5.4
Magnesium	4.42 mg/L	1	0.100	0.006	GES	11/02/2023 19:50	EPA 200.8-1994, Rev. 5.4
Mercury	41 ng/L	1	5	2	RLP	10/26/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/02/2023 19:50	EPA 200.8-1994, Rev. 5.4
Potassium	1.52 mg/L	1	0.100	0.008	GES	11/02/2023 19:50	EPA 200.8-1994, Rev. 5.4
Selenium	2.90 μg/L	1	0.50	0.04	GES	11/02/2023 19:50	EPA 200.8-1994, Rev. 5.4
Sodium	19.0 mg/L	1	0.20	0.01	GES	11/02/2023 19:50	EPA 200.8-1994, Rev. 5.4
Strontium	0.0325 mg/L	1	0.00200	0.00005	GES	11/02/2023 19:50	EPA 200.8-1994, Rev. 5.4
Thallium	0.14 µg/L	1	0.20	0.02 J1	GES	11/02/2023 19:50	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.25 pCi/L	0.18	0.13	ST	11/20/2023 12:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	92.0 %					
Radium-228	2 pCi/L	0.20	0.59	ST	11/16/2023 16:35	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	69.8 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: AD-7R Customer Description: TG-32

Lab Number: 233279-002-01 Preparation: Dissolved

Date Collected: 10/17/2023 10:08 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	11/02/2023 19:55	EPA 200.8-1994, Rev. 5.4
Arsenic	0.94 µg/L	1	0.10	0.03	GES	11/02/2023 19:55	EPA 200.8-1994, Rev. 5.4
Barium	66.6 µg/L	1	0.20	0.05	GES	11/02/2023 19:55	EPA 200.8-1994, Rev. 5.4
Beryllium	1.63 µg/L	1	0.050	0.007	GES	11/02/2023 19:55	EPA 200.8-1994, Rev. 5.4
Boron	0.089 mg/L	1	0.050	0.007	GES	11/02/2023 19:55	EPA 200.8-1994, Rev. 5.4
Cadmium	0.348 µg/L	1	0.020	0.004	GES	11/02/2023 19:55	EPA 200.8-1994, Rev. 5.4
Calcium	2.87 mg/L	1	0.05	0.01	GES	11/02/2023 19:55	EPA 200.8-1994, Rev. 5.4
Chromium	0.25 μg/L	1	0.30	0.07 J1	GES	11/06/2023 16:22	EPA 200.8-1994, Rev. 5.4
Cobalt	14.9 µg/L	1	0.020	0.005	GES	11/02/2023 19:55	EPA 200.8-1994, Rev. 5.4
Iron	1.68 mg/L	1	0.020	0.003	GES	11/02/2023 19:55	EPA 200.8-1994, Rev. 5.4
Lead	0. 1 5 μg/L	1	0.20	0.05 J1	GES	11/02/2023 19:55	EPA 200.8-1994, Rev. 5.4
Lithium	0.0408 mg/L	1	0.00030	0.00007	GES	11/02/2023 19:55	EPA 200.8-1994, Rev. 5.4
Magnesium	4.65 mg/L	1	0.100	0.006	GES	11/02/2023 19:55	EPA 200.8-1994, Rev. 5.4
Manganese	0.0412 mg/L	1	0.00100	0.00008	GES	11/02/2023 19:55	EPA 200.8-1994, Rev. 5.4
Mercury	11 ng/L	1	5	2	RLP	10/26/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/02/2023 19:55	EPA 200.8-1994, Rev. 5.4
Potassium	1.59 mg/L	1	0.100	0.008	GES	11/02/2023 19:55	EPA 200.8-1994, Rev. 5.4
Selenium	2.84 µg/L	1	0.50	0.04	GES	11/02/2023 19:55	EPA 200.8-1994, Rev. 5.4
Sodium	20.0 mg/L	1	0.20	0.01	GES	11/02/2023 19:55	EPA 200.8-1994, Rev. 5.4
Strontium	0.0322 mg/L	1	0.00200	0.00005	GES	11/02/2023 19:55	EPA 200.8-1994, Rev. 5.4
Thallium	0.14 µg/L	1	0.20	0.02 J1	GES	11/02/2023 19:55	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: AD-12 Customer Description: TG-32

Lab Number: 233279-003 Preparation:

Date Collected: 10/17/2023 10:41 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Parameter	Result l	Units	Dilution	RL	MDL Data Qual	ifiers Analyst	Analysis Date	Method
Antimony	0.01 μ	µg/L	1	0.100	0.008 J1	GES	11/02/2023 20:00	EPA 200.8-1994, Rev. 5.4
Arsenic	0.06 լ	µg/L	1	0.10	0.03 J1	GES	11/02/2023 20:00	EPA 200.8-1994, Rev. 5.4
Barium	23.6 լ	µg/L	1	0.20	0.05	GES	11/02/2023 20:00	EPA 200.8-1994, Rev. 5.4
Beryllium	0.142	µg/L	1	0.050	0.007	GES	11/02/2023 20:00	EPA 200.8-1994, Rev. 5.4
Boron	0.015 r	mg/L	1	0.050	0.007 J1	GES	11/02/2023 20:00	EPA 200.8-1994, Rev. 5.4
Cadmium	0.006 μ	µg/L	1	0.020	0.004 J1	GES	11/02/2023 20:00	EPA 200.8-1994, Rev. 5.4
Calcium	0.27 r	mg/L	1	0.05	0.01	GES	11/02/2023 20:00	EPA 200.8-1994, Rev. 5.4
Chromium	0.31 μ	µg/L	1	0.30	0.07	GES	11/06/2023 16:27	EPA 200.8-1994, Rev. 5.4
Cobalt	1.19 μ	µg/L	1	0.020	0.005	GES	11/02/2023 20:00	EPA 200.8-1994, Rev. 5.4
Lead	0.07 μ	µg/L	1	0.20	0.05 J1	GES	11/02/2023 20:00	EPA 200.8-1994, Rev. 5.4
Lithium	0.00891 r	mg/L	1	0.00030	0.00007	GES	11/02/2023 20:00	EPA 200.8-1994, Rev. 5.4
Magnesium	0.389 r	mg/L	1	0.100	0.006	GES	11/02/2023 20:00	EPA 200.8-1994, Rev. 5.4
Mercury	<2 r	ng/L	1	5	2 U1	RLP	10/26/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µ	µg/L	1	0.5	0.1 U1	GES	11/02/2023 20:00	EPA 200.8-1994, Rev. 5.4
Potassium	0.431 r	mg/L	1	0.100	0.008	GES	11/02/2023 20:00	EPA 200.8-1994, Rev. 5.4
Selenium	0. 21 µ	µg/L	1	0.50	0.04 J1	GES	11/02/2023 20:00	EPA 200.8-1994, Rev. 5.4
Sodium	4.93 r	mg/L	1	0.20	0.01	GES	11/02/2023 20:00	EPA 200.8-1994, Rev. 5.4
Strontium	0.00286 r	mg/L	1	0.00200	0.00005	GES	11/02/2023 20:00	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µ	µg/L	1	0.20	0.02 U1	GES	11/02/2023 20:00	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.51 pCi/L	0.12	0.16	ST	11/20/2023 12:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	84.2 %					
Radium-228	0.57 pCi/L	0.22	0.72	ST	11/16/2023 16:35	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	62.5 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: AD-12 Customer Description: TG-32

Lab Number: 233279-003-01 Preparation: Dissolved

Date Collected: 10/17/2023 10:41 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Motals									
Parameter	Result	Units	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.012	μg/L	1	0.100	0.008	J1	GES	11/02/2023 20:05	EPA 200.8-1994, Rev. 5.4
Arsenic	0.06	µg/L	1	0.10	0.03	J1	GES	11/02/2023 20:05	EPA 200.8-1994, Rev. 5.4
Barium	23.4	µg/L	1	0.20	0.05		GES	11/02/2023 20:05	EPA 200.8-1994, Rev. 5.4
Beryllium	0.133	µg/L	1	0.050	0.007		GES	11/02/2023 20:05	EPA 200.8-1994, Rev. 5.4
Boron	0.014	mg/L	1	0.050	0.007	J1	GES	11/02/2023 20:05	EPA 200.8-1994, Rev. 5.4
Cadmium	0.008	µg/L	1	0.020	0.004	J1	GES	11/02/2023 20:05	EPA 200.8-1994, Rev. 5.4
Calcium	0.30	mg/L	1	0.05	0.01		GES	11/02/2023 20:05	EPA 200.8-1994, Rev. 5.4
Chromium	0.26	µg/L	1	0.30	0.07	J1	GES	11/06/2023 16:32	EPA 200.8-1994, Rev. 5.4
Cobalt	1.17	µg/L	1	0.020	0.005		GES	11/02/2023 20:05	EPA 200.8-1994, Rev. 5.4
Iron	0.021	mg/L	1	0.020	0.003		GES	11/02/2023 20:05	EPA 200.8-1994, Rev. 5.4
Lead	0.07	µg/L	1	0.20	0.05	J1	GES	11/02/2023 20:05	EPA 200.8-1994, Rev. 5.4
Lithium	0.00847	mg/L	1	0.00030	0.00007		GES	11/02/2023 20:05	EPA 200.8-1994, Rev. 5.4
Magnesium	0.397	mg/L	1	0.100	0.006		GES	11/02/2023 20:05	EPA 200.8-1994, Rev. 5.4
Manganese	0.00420	mg/L	1	0.00100	0.00008		GES	11/02/2023 20:05	EPA 200.8-1994, Rev. 5.4
Mercury	<2	ng/L	1	5	2	U1	RLP	10/26/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1	µg/L	1	0.5	0.1	U1	GES	11/02/2023 20:05	EPA 200.8-1994, Rev. 5.4
Potassium	0.427	mg/L	1	0.100	0.008		GES	11/02/2023 20:05	EPA 200.8-1994, Rev. 5.4
Selenium	0.13	μg/L	1	0.50	0.04	J1	GES	11/02/2023 20:05	EPA 200.8-1994, Rev. 5.4
Sodium	4.88	mg/L	1	0.20	0.01		GES	11/02/2023 20:05	EPA 200.8-1994, Rev. 5.4
Strontium	0.00295	mg/L	1	0.00200	0.00005		GES	11/02/2023 20:05	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02	μg/L	1	0.20	0.02	U1	GES	11/02/2023 20:05	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: AD-13 Customer Description: TG-32

Lab Number: 233279-004 Preparation:

Date Collected: 10/17/2023 09:11 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	11/02/2023 20:10	EPA 200.8-1994, Rev. 5.4
Arsenic	5.71 μg/L	1	0.10	0.03	GES	11/02/2023 20:10	EPA 200.8-1994, Rev. 5.4
Barium	41.2 µg/L	1	0.20	0.05	GES	11/02/2023 20:10	EPA 200.8-1994, Rev. 5.4
Beryllium	0.559 μg/L	1	0.050	0.007	GES	11/02/2023 20:10	EPA 200.8-1994, Rev. 5.4
Boron	0.068 mg/L	1	0.050	0.007	GES	11/02/2023 20:10	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	11/02/2023 20:10	EPA 200.8-1994, Rev. 5.4
Calcium	9.49 mg/L	1	0.05	0.01	GES	11/02/2023 20:10	EPA 200.8-1994, Rev. 5.4
Chromium	0.22 μg/L	1	0.30	0.07 J1	GES	11/06/2023 16:37	EPA 200.8-1994, Rev. 5.4
Cobalt	47.6 μg/L	1	0.020	0.005	GES	11/02/2023 20:10	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/02/2023 20:10	EPA 200.8-1994, Rev. 5.4
Lithium	0.137 mg/L	1	0.00030	0.00007	GES	11/02/2023 20:10	EPA 200.8-1994, Rev. 5.4
Magnesium	14.1 mg/L	1	0.100	0.006	GES	11/02/2023 20:10	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	10/26/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/02/2023 20:10	EPA 200.8-1994, Rev. 5.4
Potassium	5.13 mg/L	1	0.100	0.008	GES	11/02/2023 20:10	EPA 200.8-1994, Rev. 5.4
Selenium	0. 1 3 μg/L	1	0.50	0.04 J1	GES	11/02/2023 20:10	EPA 200.8-1994, Rev. 5.4
Sodium	22.0 mg/L	1	0.20	0.01	GES	11/02/2023 20:10	EPA 200.8-1994, Rev. 5.4
Strontium	0.0428 mg/L	1	0.00200	0.00005	GES	11/02/2023 20:10	EPA 200.8-1994, Rev. 5.4
Thallium	0.02 μg/L	1	0.20	0.02 J1	GES	11/02/2023 20:10	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.05 pCi/L	0.17	0.14	ST	11/20/2023 12:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	84.7 %					
Radium-228	-0.65 pCi/L	0.22	0.76	ST	11/16/2023 16:35	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	67.0 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: AD-13 Customer Description: TG-32

Lab Number: 233279-004-01 Preparation: Dissolved

Date Collected: 10/17/2023 09:11 EDT Date Received: 10/23/2023 11:00 EDT

Metals

METais							
Parameter	Result Unit	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	11/02/2023 20:15	EPA 200.8-1994, Rev. 5.4
Arsenic	1.80 µg/L	1	0.10	0.03	GES	11/02/2023 20:15	EPA 200.8-1994, Rev. 5.4
Barium	39.0 μg/L	1	0.20	0.05	GES	11/02/2023 20:15	EPA 200.8-1994, Rev. 5.4
Beryllium	0.267 μg/L	1	0.050	0.007	GES	11/02/2023 20:15	EPA 200.8-1994, Rev. 5.4
Boron	0.068 mg/	. 1	0.050	0.007	GES	11/02/2023 20:15	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	11/02/2023 20:15	EPA 200.8-1994, Rev. 5.4
Calcium	9.34 mg/	. 1	0.05	0.01	GES	11/02/2023 20:15	EPA 200.8-1994, Rev. 5.4
Chromium	0.5 μg/L	2	0.6	0.1 J1	GES	11/06/2023 16:43	EPA 200.8-1994, Rev. 5.4
Cobalt	46.7 μg/L	1	0.020	0.005	GES	11/02/2023 20:15	EPA 200.8-1994, Rev. 5.4
Iron	44.3 mg/	_ 2	0.040	0.006	GES	11/06/2023 16:43	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/02/2023 20:15	EPA 200.8-1994, Rev. 5.4
Lithium	0.135 mg/	. 1	0.00030	0.00007	GES	11/02/2023 20:15	EPA 200.8-1994, Rev. 5.4
Magnesium	13.8 mg/	. 1	0.100	0.006	GES	11/02/2023 20:15	EPA 200.8-1994, Rev. 5.4
Manganese	0.480 mg/	. 1	0.00100	0.00008	GES	11/02/2023 20:15	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	10/26/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/02/2023 20:15	EPA 200.8-1994, Rev. 5.4
Potassium	5.04 mg/	. 1	0.100	0.008	GES	11/02/2023 20:15	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	11/02/2023 20:15	EPA 200.8-1994, Rev. 5.4
Sodium	21.4 mg/	. 1	0.20	0.01	GES	11/02/2023 20:15	EPA 200.8-1994, Rev. 5.4
Strontium	0.0419 mg/	. 1	0.00200	0.00005	GES	11/02/2023 20:15	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	11/02/2023 20:15	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: AD-17 Customer Description: TG-32

Lab Number: 233279-005 Preparation:

Date Collected: 10/17/2023 13:11 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Parameter	Result U	Jnits	Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 μ	ıg/L	1	0.100	0.008	U1	GES	11/02/2023 20:21	EPA 200.8-1994, Rev. 5.4
Arsenic	0.22 μ	ıg/L	1	0.10	0.03		GES	11/02/2023 20:21	EPA 200.8-1994, Rev. 5.4
Barium	249 μ	ıg/L	1	0.20	0.05		GES	11/02/2023 20:21	EPA 200.8-1994, Rev. 5.4
Beryllium	0.667 μ	ıg/L	1	0.050	0.007		GES	11/02/2023 20:21	EPA 200.8-1994, Rev. 5.4
Boron	0.023 n	ng/L	1	0.050	0.007	J1	GES	11/02/2023 20:21	EPA 200.8-1994, Rev. 5.4
Cadmium	0.054 μ	ıg/L	1	0.020	0.004		GES	11/02/2023 20:21	EPA 200.8-1994, Rev. 5.4
Calcium	0.94 n	ng/L	1	0.05	0.01		GES	11/02/2023 20:21	EPA 200.8-1994, Rev. 5.4
Chromium	0.31 μ	ıg/L	1	0.30	0.07		GES	11/06/2023 16:48	EPA 200.8-1994, Rev. 5.4
Cobalt	11 .0 µ	ıg/L	1	0.020	0.005		GES	11/02/2023 20:21	EPA 200.8-1994, Rev. 5.4
Lead	0.12 μ	ıg/L	1	0.20	0.05	J1	GES	11/02/2023 20:21	EPA 200.8-1994, Rev. 5.4
Lithium	0.0244 n	ng/L	1	0.00030	0.00007		GES	11/02/2023 20:21	EPA 200.8-1994, Rev. 5.4
Magnesium	4.05 n	ng/L	1	0.100	0.006		GES	11/02/2023 20:21	EPA 200.8-1994, Rev. 5.4
Mercury	1 96 n	ng/L	4	20	7		RLP	10/26/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µ	ıg/L	1	0.5	0.1	U1	GES	11/02/2023 20:21	EPA 200.8-1994, Rev. 5.4
Potassium	1.08 n	ng/L	1	0.100	0.008		GES	11/02/2023 20:21	EPA 200.8-1994, Rev. 5.4
Selenium	0.58 μ	ıg/L	1	0.50	0.04		GES	11/02/2023 20:21	EPA 200.8-1994, Rev. 5.4
Sodium	7.75 n	ng/L	1	0.20	0.01		GES	11/02/2023 20:21	EPA 200.8-1994, Rev. 5.4
Strontium	0.0193 n	ng/L	1	0.00200	0.00005		GES	11/02/2023 20:21	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 μ	ıg/L	1	0.20	0.02	J1	GES	11/02/2023 20:21	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	2.11 pCi/L	0.23	0.13	ST	11/20/2023 12:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	96.7 %					
Radium-228	3.28 pCi/L	0.19	0.53	ST	11/16/2023 16:35	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	81.2 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: AD-17 Customer Description: TG-32

Lab Number: 233279-005-01 Preparation: Dissolved

Date Collected: 10/17/2023 13:11 EDT Date Received: 10/23/2023 11:00 EDT

Metals

motalo							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	11/02/2023 20:26	EPA 200.8-1994, Rev. 5.4
Arsenic	0.20 μg/L	1	0.10	0.03	GES	11/02/2023 20:26	EPA 200.8-1994, Rev. 5.4
Barium	251 µg/L	1	0.20	0.05	GES	11/02/2023 20:26	EPA 200.8-1994, Rev. 5.4
Beryllium	0.664 μg/L	1	0.050	0.007	GES	11/02/2023 20:26	EPA 200.8-1994, Rev. 5.4
Boron	0.023 mg/L	1	0.050	0.007 J1	GES	11/02/2023 20:26	EPA 200.8-1994, Rev. 5.4
Cadmium	0.051 µg/L	1	0.020	0.004	GES	11/02/2023 20:26	EPA 200.8-1994, Rev. 5.4
Calcium	1.01 mg/L	1	0.05	0.01	GES	11/02/2023 20:26	EPA 200.8-1994, Rev. 5.4
Chromium	0.28 μg/L	1	0.30	0.07 J1	GES	11/06/2023 16:53	EPA 200.8-1994, Rev. 5.4
Cobalt	11.2 µg/L	1	0.020	0.005	GES	11/02/2023 20:26	EPA 200.8-1994, Rev. 5.4
Iron	0.032 mg/L	1	0.020	0.003	GES	11/02/2023 20:26	EPA 200.8-1994, Rev. 5.4
Lead	0.14 µg/L	1	0.20	0.05 J1	GES	11/02/2023 20:26	EPA 200.8-1994, Rev. 5.4
Lithium	0.0243 mg/L	1	0.00030	0.00007	GES	11/02/2023 20:26	EPA 200.8-1994, Rev. 5.4
Magnesium	4.15 mg/L	1	0.100	0.006	GES	11/02/2023 20:26	EPA 200.8-1994, Rev. 5.4
Manganese	0.0381 mg/L	1	0.00100	0.00008	GES	11/02/2023 20:26	EPA 200.8-1994, Rev. 5.4
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/02/2023 20:26	EPA 200.8-1994, Rev. 5.4
Potassium	1.12 mg/L	1	0.100	0.008	GES	11/02/2023 20:26	EPA 200.8-1994, Rev. 5.4
Selenium	0.63 µg/L	1	0.50	0.04	GES	11/02/2023 20:26	EPA 200.8-1994, Rev. 5.4
Sodium	7.96 mg/L	1	0.20	0.01	GES	11/02/2023 20:26	EPA 200.8-1994, Rev. 5.4
Strontium	0.0195 mg/L	1	0.00200	0.00005	GES	11/02/2023 20:26	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 μg/L	1	0.20	0.02 J1	GES	11/02/2023 20:26	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: AD-18 Customer Description: TG-32

Lab Number: 233279-006 Preparation:

Date Collected: 10/18/2023 08:47 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifier	s Analyst	Analysis Date	Method
Antimony	0.023 μg/L	1	0.100	0.008 J1	GES	11/02/2023 21:53	EPA 200.8-1994, Rev. 5.4
Arsenic	0.43 μg/L	1	0.10	0.03	GES	11/02/2023 21:53	EPA 200.8-1994, Rev. 5.4
Barium	84.0 µg/L	1	0.20	0.05	GES	11/02/2023 21:53	EPA 200.8-1994, Rev. 5.4
Beryllium	0. 12 7 μg/L	1	0.050	0.007	GES	11/02/2023 21:53	EPA 200.8-1994, Rev. 5.4
Boron	0.011 mg/L	1	0.050	0.007 J1	GES	11/02/2023 21:53	EPA 200.8-1994, Rev. 5.4
Cadmium	0.018 µg/L	1	0.020	0.004 J1	GES	11/02/2023 21:53	EPA 200.8-1994, Rev. 5.4
Calcium	0.35 mg/L	1	0.05	0.01	GES	11/02/2023 21:53	EPA 200.8-1994, Rev. 5.4
Chromium	0.52 μg/L	1	0.30	0.07	GES	11/02/2023 21:53	EPA 200.8-1994, Rev. 5.4
Cobalt	1.26 µg/L	1	0.020	0.005	GES	11/02/2023 21:53	EPA 200.8-1994, Rev. 5.4
Lead	0.12 µg/L	1	0.20	0.05 J1	GES	11/02/2023 21:53	EPA 200.8-1994, Rev. 5.4
Lithium	0.0186 mg/L	1	0.00030	0.00007	GES	11/02/2023 21:53	EPA 200.8-1994, Rev. 5.4
Magnesium	0.407 mg/L	1	0.100	0.006	GES	11/02/2023 21:53	EPA 200.8-1994, Rev. 5.4
Mercury	84 ng/L	1	5	2	RLP	10/26/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/02/2023 21:53	EPA 200.8-1994, Rev. 5.4
Potassium	1.03 mg/L	1	0.100	0.008	GES	11/02/2023 21:53	EPA 200.8-1994, Rev. 5.4
Selenium	0. 1 7 μg/L	1	0.50	0.04 J1	GES	11/02/2023 21:53	EPA 200.8-1994, Rev. 5.4
Sodium	5.98 mg/L	1	0.20	0.01	GES	11/02/2023 21:53	EPA 200.8-1994, Rev. 5.4
Strontium	0.00612 mg/L	1	0.00200	0.00005	GES	11/02/2023 21:53	EPA 200.8-1994, Rev. 5.4
Thallium	0.05 μg/L	1	0.20	0.02 J1	GES	11/02/2023 21:53	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.78 pCi/L	0.14	0.13	ST	11/20/2023 12:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	96.4 %					
Radium-228	0.49 pCi/L	0.17	0.58	ST	11/16/2023 16:35	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	64.9 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: AD-18 Customer Description: TG-32

Lab Number: 233279-006-01 Preparation: Dissolved

Date Collected: 10/18/2023 08:47 EDT Date Received: 10/23/2023 11:00 EDT

Metals

motano							
Parameter	Result Units	Dilution	RL	MDL Data Qualifie	ers Analyst	Analysis Date	Method
Antimony	0.009 μg/L	1	0.100	0.008 J1	GES	11/02/2023 22:08	EPA 200.8-1994, Rev. 5.4
Arsenic	0.06 μg/L	1	0.10	0.03 J1	GES	11/02/2023 22:08	EPA 200.8-1994, Rev. 5.4
Barium	82.9 µg/L	1	0.20	0.05	GES	11/02/2023 22:08	EPA 200.8-1994, Rev. 5.4
Beryllium	0.124 µg/L	1	0.050	0.007	GES	11/02/2023 22:08	EPA 200.8-1994, Rev. 5.4
Boron	0.013 mg/L	1	0.050	0.007 J1	GES	11/02/2023 22:08	EPA 200.8-1994, Rev. 5.4
Cadmium	0.016 µg/L	1	0.020	0.004 J1	GES	11/02/2023 22:08	EPA 200.8-1994, Rev. 5.4
Calcium	0.37 mg/L	1	0.05	0.01	GES	11/02/2023 22:08	EPA 200.8-1994, Rev. 5.4
Chromium	0.30 µg/L	1	0.30	0.07	GES	11/02/2023 22:08	EPA 200.8-1994, Rev. 5.4
Cobalt	1.21 µg/L	1	0.020	0.005	GES	11/02/2023 22:08	EPA 200.8-1994, Rev. 5.4
Iron	0.107 mg/L	1	0.020	0.003	GES	11/02/2023 22:08	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/02/2023 22:08	EPA 200.8-1994, Rev. 5.4
Lithium	0.0186 mg/L	1	0.00030	0.00007	GES	11/02/2023 22:08	EPA 200.8-1994, Rev. 5.4
Magnesium	0.389 mg/L	1	0.100	0.006	GES	11/02/2023 22:08	EPA 200.8-1994, Rev. 5.4
Manganese	0.00719 mg/L	1	0.00100	0.00008	GES	11/02/2023 22:08	EPA 200.8-1994, Rev. 5.4
Mercury	1 5 ng/L	1	5	2	RLP	10/26/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/02/2023 22:08	EPA 200.8-1994, Rev. 5.4
Potassium	1.00 mg/L	1	0.100	0.008	GES	11/02/2023 22:08	EPA 200.8-1994, Rev. 5.4
Selenium	0.1 µg/L	1	0.50	0.04 J1	GES	11/02/2023 22:08	EPA 200.8-1994, Rev. 5.4
Sodium	5.88 mg/L	1	0.20	0.01	GES	11/02/2023 22:08	EPA 200.8-1994, Rev. 5.4
Strontium	0.00572 mg/L	1	0.00200	0.00005	GES	11/02/2023 22:08	EPA 200.8-1994, Rev. 5.4
Thallium	0.06 µg/L	1	0.20	0.02 J1	GES	11/02/2023 22:08	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: AD-22 Customer Description: TG-32

Lab Number: 233279-007 Preparation:

Date Collected: 10/17/2023 11:15 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	11/02/2023 22:14	EPA 200.8-1994, Rev. 5.4
Arsenic	1.57 µg/L	1	0.10	0.03	GES	11/02/2023 22:14	EPA 200.8-1994, Rev. 5.4
Barium	19.1 µg/L	1	0.20	0.05	GES	11/02/2023 22:14	EPA 200.8-1994, Rev. 5.4
Beryllium	2.65 μg/L	1	0.050	0.007	GES	11/02/2023 22:14	EPA 200.8-1994, Rev. 5.4
Boron	0.020 mg/L	1	0.050	0.007 J1	GES	11/02/2023 22:14	EPA 200.8-1994, Rev. 5.4
Cadmium	0.551 μg/L	1	0.020	0.004	GES	11/02/2023 22:14	EPA 200.8-1994, Rev. 5.4
Calcium	9.26 mg/L	1	0.05	0.01	GES	11/02/2023 22:14	EPA 200.8-1994, Rev. 5.4
Chromium	0.33 μg/L	1	0.30	0.07	GES	11/02/2023 22:14	EPA 200.8-1994, Rev. 5.4
Cobalt	55.3 μg/L	1	0.020	0.005	GES	11/02/2023 22:14	EPA 200.8-1994, Rev. 5.4
Lead	0.18 µg/L	1	0.20	0.05 J1	GES	11/02/2023 22:14	EPA 200.8-1994, Rev. 5.4
Lithium	0.0772 mg/L	1	0.00030	0.00007	GES	11/02/2023 22:14	EPA 200.8-1994, Rev. 5.4
Magnesium	14.3 mg/L	1	0.100	0.006	GES	11/02/2023 22:14	EPA 200.8-1994, Rev. 5.4
Mercury	301 ng/L	4	20	7	RLP	10/30/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/02/2023 22:14	EPA 200.8-1994, Rev. 5.4
Potassium	3.03 mg/L	1	0.100	0.008	GES	11/02/2023 22:14	EPA 200.8-1994, Rev. 5.4
Selenium	4.78 μg/L	1	0.50	0.04	GES	11/02/2023 22:14	EPA 200.8-1994, Rev. 5.4
Sodium	76.9 mg/L	1	0.20	0.01	GES	11/02/2023 22:14	EPA 200.8-1994, Rev. 5.4
Strontium	0.0892 mg/L	1	0.00200	0.00005	GES	11/02/2023 22:14	EPA 200.8-1994, Rev. 5.4
Thallium	0.15 µg/L	1	0.20	0.02 J1	GES	11/02/2023 22:14	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.93 pCi/L	0.16	0.17	ST	11/20/2023 12:42	SW-846 9315-1986, Rev. 0
Carrier Recovery	88.4 %					
Radium-228	1.68 pCi/L	0.18	0.55	ST	11/17/2023 16:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	71.9 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: AD-22 Customer Description: TG-32

Lab Number: 233279-007-01 Preparation: Dissolved

Date Collected: 10/17/2023 11:15 EDT Date Received: 10/23/2023 11:00 EDT

Motais							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	11/02/2023 22:19	EPA 200.8-1994, Rev. 5.4
Arsenic	1.49 µg/L	1	0.10	0.03	GES	11/02/2023 22:19	EPA 200.8-1994, Rev. 5.4
Barium	18.8 µg/L	1	0.20	0.05	GES	11/02/2023 22:19	EPA 200.8-1994, Rev. 5.4
Beryllium	2.62 µg/L	1	0.050	0.007	GES	11/02/2023 22:19	EPA 200.8-1994, Rev. 5.4
Boron	0.019 mg/L	1	0.050	0.007 J1	GES	11/02/2023 22:19	EPA 200.8-1994, Rev. 5.4
Cadmium	0.540 µg/L	1	0.020	0.004	GES	11/02/2023 22:19	EPA 200.8-1994, Rev. 5.4
Calcium	9.33 mg/L	1	0.05	0.01	GES	11/02/2023 22:19	EPA 200.8-1994, Rev. 5.4
Chromium	0.30 μg/L	1	0.30	0.07	GES	11/02/2023 22:19	EPA 200.8-1994, Rev. 5.4
Cobalt	55.1 µg/L	1	0.020	0.005	GES	11/02/2023 22:19	EPA 200.8-1994, Rev. 5.4
Iron	20.1 mg/L	1	0.020	0.003	GES	11/02/2023 22:19	EPA 200.8-1994, Rev. 5.4
Lead	0.17 μg/L	1	0.20	0.05 J1	GES	11/02/2023 22:19	EPA 200.8-1994, Rev. 5.4
Lithium	0.0783 mg/L	1	0.00030	0.00007	GES	11/02/2023 22:19	EPA 200.8-1994, Rev. 5.4
Magnesium	14.3 mg/L	1	0.100	0.006	GES	11/02/2023 22:19	EPA 200.8-1994, Rev. 5.4
Manganese	0.250 mg/L	1	0.00100	0.00008	GES	11/02/2023 22:19	EPA 200.8-1994, Rev. 5.4
Mercury	40 ng/L	1	5	2	RLP	10/26/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/02/2023 22:19	EPA 200.8-1994, Rev. 5.4
Potassium	3.02 mg/L	1	0.100	0.008	GES	11/02/2023 22:19	EPA 200.8-1994, Rev. 5.4
Selenium	4.79 μg/L	1	0.50	0.04	GES	11/02/2023 22:19	EPA 200.8-1994, Rev. 5.4
Sodium	77.5 mg/L	1	0.20	0.01	GES	11/02/2023 22:19	EPA 200.8-1994, Rev. 5.4
Strontium	0.0878 mg/L	1	0.00200	0.00005	GES	11/02/2023 22:19	EPA 200.8-1994, Rev. 5.4
Thallium	0.15 μg/L	1	0.20	0.02 J1	GES	11/02/2023 22:19	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: AD-28 Customer Description: TG-32

Lab Number: 233279-008 Preparation:

Date Collected: 10/17/2023 12:14 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Parameter	Result Unit	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.009 μg/L	1	0.100	0.008 J1	GES	11/02/2023 22:24	EPA 200.8-1994, Rev. 5.4
Arsenic	0. 1 6 μg/L	1	0.10	0.03	GES	11/02/2023 22:24	EPA 200.8-1994, Rev. 5.4
Barium	114 µg/L	1	0.20	0.05	GES	11/02/2023 22:24	EPA 200.8-1994, Rev. 5.4
Beryllium	0.469 μg/L	1	0.050	0.007	GES	11/02/2023 22:24	EPA 200.8-1994, Rev. 5.4
Boron	0.294 mg/l	. 1	0.050	0.007	GES	11/02/2023 22:24	EPA 200.8-1994, Rev. 5.4
Cadmium	0.043 μg/L	1	0.020	0.004	GES	11/02/2023 22:24	EPA 200.8-1994, Rev. 5.4
Calcium	1.23 mg/l	. 1	0.05	0.01	GES	11/02/2023 22:24	EPA 200.8-1994, Rev. 5.4
Chromium	0.42 μg/L	1	0.30	0.07	GES	11/02/2023 22:24	EPA 200.8-1994, Rev. 5.4
Cobalt	1 0.9 μg/L	1	0.020	0.005	GES	11/02/2023 22:24	EPA 200.8-1994, Rev. 5.4
Lead	0.09 μg/L	1	0.20	0.05 J1	GES	11/02/2023 22:24	EPA 200.8-1994, Rev. 5.4
Lithium	0.0262 mg/l	. 1	0.00030	0.00007	GES	11/02/2023 22:24	EPA 200.8-1994, Rev. 5.4
Magnesium	2.51 mg/l	. 1	0.100	0.006	GES	11/02/2023 22:24	EPA 200.8-1994, Rev. 5.4
Mercury	9 ng/L	1	5	2	RLP	10/26/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/02/2023 22:24	EPA 200.8-1994, Rev. 5.4
Potassium	0.795 mg/l	. 1	0.100	0.008	GES	11/02/2023 22:24	EPA 200.8-1994, Rev. 5.4
Selenium	0.22 μg/L	1	0.50	0.04 J1	GES	11/02/2023 22:24	EPA 200.8-1994, Rev. 5.4
Sodium	5.54 mg/l	. 1	0.20	0.01	GES	11/02/2023 22:24	EPA 200.8-1994, Rev. 5.4
Strontium	0.0178 mg/l	. 1	0.00200	0.00005	GES	11/02/2023 22:24	EPA 200.8-1994, Rev. 5.4
Thallium	0.03 µg/L	1	0.20	0.02 J1	GES	11/02/2023 22:24	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1.10 pCi/L	0.17	0.14	ST	11/20/2023 09:08	SW-846 9315-1986, Rev. 0
Carrier Recovery	94.7 %					
Radium-228	1.21 pCi/L	0.15	0.45	ST	11/17/2023 16:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	85.0 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: AD-28 Customer Description: TG-32

Lab Number: 233279-008-01 Preparation: Dissolved

Date Collected: 10/17/2023 12:14 EDT Date Received: 10/23/2023 11:00 EDT

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.009 µg/L	1	0.100	0.008 J1	GES	11/02/2023 22:29	EPA 200.8-1994, Rev. 5.4
Arsenic	0.07 µg/L	1	0.10	0.03 J1	GES	11/02/2023 22:29	EPA 200.8-1994, Rev. 5.4
Barium	118 µg/L	1	0.20	0.05	GES	11/02/2023 22:29	EPA 200.8-1994, Rev. 5.4
Beryllium	0.468 µg/L	1	0.050	0.007	GES	11/02/2023 22:29	EPA 200.8-1994, Rev. 5.4
Boron	0.312 mg/L	1	0.050	0.007	GES	11/02/2023 22:29	EPA 200.8-1994, Rev. 5.4
Cadmium	0.045 µg/L	1	0.020	0.004	GES	11/02/2023 22:29	EPA 200.8-1994, Rev. 5.4
Calcium	1.39 mg/L	1	0.05	0.01	GES	11/02/2023 22:29	EPA 200.8-1994, Rev. 5.4
Chromium	0.63 µg/L	1	0.30	0.07	GES	11/02/2023 22:29	EPA 200.8-1994, Rev. 5.4
Cobalt	11.6 µg/L	1	0.020	0.005	GES	11/02/2023 22:29	EPA 200.8-1994, Rev. 5.4
Iron	0.253 mg/L	1	0.020	0.003	GES	11/02/2023 22:29	EPA 200.8-1994, Rev. 5.4
Lead	0.09 μg/L	1	0.20	0.05 J1	GES	11/02/2023 22:29	EPA 200.8-1994, Rev. 5.4
Lithium	0.0265 mg/L	1	0.00030	0.00007	GES	11/02/2023 22:29	EPA 200.8-1994, Rev. 5.4
Magnesium	2.71 mg/L	1	0.100	0.006	GES	11/02/2023 22:29	EPA 200.8-1994, Rev. 5.4
Manganese	0.0511 mg/L	1	0.00100	0.00008	GES	11/02/2023 22:29	EPA 200.8-1994, Rev. 5.4
Mercury	5 ng/L	1	5	2	RLP	10/26/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/02/2023 22:29	EPA 200.8-1994, Rev. 5.4
Potassium	0.866 mg/L	1	0.100	0.008	GES	11/02/2023 22:29	EPA 200.8-1994, Rev. 5.4
Selenium	0.20 μg/L	1	0.50	0.04 J1	GES	11/02/2023 22:29	EPA 200.8-1994, Rev. 5.4
Sodium	5.97 mg/L	1	0.20	0.01	GES	11/02/2023 22:29	EPA 200.8-1994, Rev. 5.4
Strontium	0.0185 mg/L	1	0.00200	0.00005	GES	11/02/2023 22:29	EPA 200.8-1994, Rev. 5.4
Thallium	0.03 μg/L	1	0.20	0.02 J1	GES	11/02/2023 22:29	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: AD-30 Customer Description: TG-32

Lab Number: 233279-009 Preparation:

Date Collected: 10/17/2023 11:34 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	11/02/2023 22:34	EPA 200.8-1994, Rev. 5.4
Arsenic	0. 1 7 μg/L	1	0.10	0.03	GES	11/02/2023 22:34	EPA 200.8-1994, Rev. 5.4
Barium	63.8 µg/L	1	0.20	0.05	GES	11/02/2023 22:34	EPA 200.8-1994, Rev. 5.4
Beryllium	0.090 μg/L	1	0.050	0.007	GES	11/02/2023 22:34	EPA 200.8-1994, Rev. 5.4
Boron	2.07 mg/L	1	0.050	0.007	GES	11/02/2023 22:34	EPA 200.8-1994, Rev. 5.4
Cadmium	0.01 μg/L	1	0.020	0.004 J1	GES	11/02/2023 22:34	EPA 200.8-1994, Rev. 5.4
Calcium	0.79 mg/L	1	0.05	0.01	GES	11/02/2023 22:34	EPA 200.8-1994, Rev. 5.4
Chromium	0.44 µg/L	1	0.30	0.07	GES	11/02/2023 22:34	EPA 200.8-1994, Rev. 5.4
Cobalt	4.11 µg/L	1	0.020	0.005	GES	11/02/2023 22:34	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	11/02/2023 22:34	EPA 200.8-1994, Rev. 5.4
Lithium	0.0124 mg/L	1	0.00030	0.00007	GES	11/02/2023 22:34	EPA 200.8-1994, Rev. 5.4
Magnesium	2.19 mg/L	1	0.100	0.006	GES	11/02/2023 22:34	EPA 200.8-1994, Rev. 5.4
Mercury	5 ng/L	1	5	2	RLP	10/30/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/02/2023 22:34	EPA 200.8-1994, Rev. 5.4
Potassium	0.931 mg/L	1	0.100	0.008	GES	11/02/2023 22:34	EPA 200.8-1994, Rev. 5.4
Selenium	0.42 μg/L	1	0.50	0.04 J1	GES	11/02/2023 22:34	EPA 200.8-1994, Rev. 5.4
Sodium	77.4 mg/L	1	0.20	0.01	GES	11/02/2023 22:34	EPA 200.8-1994, Rev. 5.4
Strontium	0.0103 mg/L	1	0.00200	0.00005	GES	11/02/2023 22:34	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 µg/L	1	0.20	0.02 J1	GES	11/02/2023 22:34	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.99 pCi/L	0.18	0.17	ST	11/20/2023 09:08	SW-846 9315-1986, Rev. 0
Carrier Recovery	78.5 %					
Radium-228	-0.14 pCi/L	0.18	0.63	ST	11/17/2023 16:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	71.8 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: AD-30 Customer Description: TG-32

Lab Number: 233279-009-01 Preparation: Dissolved

Date Collected: 10/17/2023 11:34 EDT Date Received: 10/23/2023 11:00 EDT

Parameter	Result Uni	s Dilution	RL	MDL	Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.008 µg/	. 1	0.100	0.008	J1	GES	11/02/2023 22:39	EPA 200.8-1994, Rev. 5.4
Arsenic	0.14 µg/	. 1	0.10	0.03		GES	11/02/2023 22:39	EPA 200.8-1994, Rev. 5.4
Barium	53.8 μg/	. 1	0.20	0.05		GES	11/02/2023 22:39	EPA 200.8-1994, Rev. 5.4
Beryllium	0.088 µg/	. 1	0.050	0.007		GES	11/02/2023 22:39	EPA 200.8-1994, Rev. 5.4
Boron	2.06 mg/	L 1	0.050	0.007		GES	11/02/2023 22:39	EPA 200.8-1994, Rev. 5.4
Cadmium	0.01 µg/	. 1	0.020	0.004	J1	GES	11/02/2023 22:39	EPA 200.8-1994, Rev. 5.4
Calcium	0.83 mg/	L 1	0.05	0.01		GES	11/02/2023 22:39	EPA 200.8-1994, Rev. 5.4
Chromium	0.42 µg/	. 1	0.30	0.07		GES	11/02/2023 22:39	EPA 200.8-1994, Rev. 5.4
Cobalt	4.13 µg/	. 1	0.020	0.005		GES	11/02/2023 22:39	EPA 200.8-1994, Rev. 5.4
Iron	0.250 mg/	L 1	0.020	0.003		GES	11/02/2023 22:39	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/	. 1	0.20	0.05	U1	GES	11/02/2023 22:39	EPA 200.8-1994, Rev. 5.4
Lithium	0.0123 mg/	L 1	0.00030	0.00007		GES	11/02/2023 22:39	EPA 200.8-1994, Rev. 5.4
Magnesium	2.18 mg/	L 1	0.100	0.006		GES	11/02/2023 22:39	EPA 200.8-1994, Rev. 5.4
Manganese	0.0234 mg/	L 1	0.00100	0.00008		GES	11/02/2023 22:39	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/	. 1	5	2	U1	RLP	10/26/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/	. 1	0.5	0.1	U1	GES	11/02/2023 22:39	EPA 200.8-1994, Rev. 5.4
Potassium	0.935 mg/	L 1	0.100	0.008		GES	11/02/2023 22:39	EPA 200.8-1994, Rev. 5.4
Selenium	0.33 µg/	. 1	0.50	0.04	J1	GES	11/02/2023 22:39	EPA 200.8-1994, Rev. 5.4
Sodium	76.8 mg/	L 1	0.20	0.01		GES	11/02/2023 22:39	EPA 200.8-1994, Rev. 5.4
Strontium	0.0102 mg/	L 1	0.00200	0.00005		GES	11/02/2023 22:39	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 µg/	. 1	0.20	0.02	J1	GES	11/02/2023 22:39	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: AD-33 Customer Description: TG-32

Lab Number: 233279-010 Preparation:

Date Collected: 10/17/2023 12:10 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifier	s Analyst	Analysis Date	Method
Antimony	0.009 μg/L	1	0.100	0.008 J1	GES	11/02/2023 22:44	EPA 200.8-1994, Rev. 5.4
Arsenic	0.58 µg/L	1	0.10	0.03	GES	11/02/2023 22:44	EPA 200.8-1994, Rev. 5.4
Barium	45.9 μg/L	1	0.20	0.05	GES	11/02/2023 22:44	EPA 200.8-1994, Rev. 5.4
Beryllium	1.00 µg/L	1	0.050	0.007	GES	11/02/2023 22:44	EPA 200.8-1994, Rev. 5.4
Boron	0.094 mg/l	. 1	0.050	0.007	GES	11/02/2023 22:44	EPA 200.8-1994, Rev. 5.4
Cadmium	0.037 μg/L	1	0.020	0.004	GES	11/02/2023 22:44	EPA 200.8-1994, Rev. 5.4
Calcium	1.15 mg/l	. 1	0.05	0.01	GES	11/02/2023 22:44	EPA 200.8-1994, Rev. 5.4
Chromium	0.33 µg/L	1	0.30	0.07	GES	11/02/2023 22:44	EPA 200.8-1994, Rev. 5.4
Cobalt	7.51 µg/L	1	0.020	0.005	GES	11/02/2023 22:44	EPA 200.8-1994, Rev. 5.4
Lead	0.22 µg/L	1	0.20	0.05	GES	11/02/2023 22:44	EPA 200.8-1994, Rev. 5.4
Lithium	0.0194 mg/l	. 1	0.00030	0.00007	GES	11/02/2023 22:44	EPA 200.8-1994, Rev. 5.4
Magnesium	2.95 mg/l	. 1	0.100	0.006	GES	11/02/2023 22:44	EPA 200.8-1994, Rev. 5.4
Mercury	6120 ng/L	100	500	200	RLP	10/30/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/02/2023 22:44	EPA 200.8-1994, Rev. 5.4
Potassium	0.283 mg/l	. 1	0.100	0.008	GES	11/02/2023 22:44	EPA 200.8-1994, Rev. 5.4
Selenium	1.97 µg/L	1	0.50	0.04	GES	11/02/2023 22:44	EPA 200.8-1994, Rev. 5.4
Sodium	15.1 mg/l	. 1	0.20	0.01	GES	11/02/2023 22:44	EPA 200.8-1994, Rev. 5.4
Strontium	0.0223 mg/l	. 1	0.00200	0.00005	GES	11/02/2023 22:44	EPA 200.8-1994, Rev. 5.4
Thallium	0.04 µg/L	1	0.20	0.02 J1	GES	11/02/2023 22:44	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	1 pCi/L	0.17	0.17	ST	11/20/2023 09:08	SW-846 9315-1986, Rev. 0
Carrier Recovery	87.1 %					
Radium-228	0.79 pCi/L	0.16	0.53	ST	11/17/2023 16:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	76.7 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: AD-33 Customer Description: TG-32

Lab Number: 233279-010-01 Preparation: Dissolved

Date Collected: 10/17/2023 12:10 EDT Date Received: 10/23/2023 11:00 EDT

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	0.009 μg/L	1	0.100	0.008 J1	GES	11/02/2023 22:49	EPA 200.8-1994, Rev. 5.4
Arsenic	0.50 μg/L	1	0.10	0.03	GES	11/02/2023 22:49	EPA 200.8-1994, Rev. 5.4
Barium	44.3 µg/L	1	0.20	0.05	GES	11/02/2023 22:49	EPA 200.8-1994, Rev. 5.4
Beryllium	0.977 μg/L	1	0.050	0.007	GES	11/02/2023 22:49	EPA 200.8-1994, Rev. 5.4
Boron	0.086 mg/L	1	0.050	0.007	GES	11/02/2023 22:49	EPA 200.8-1994, Rev. 5.4
Cadmium	0.037 μg/L	1	0.020	0.004	GES	11/02/2023 22:49	EPA 200.8-1994, Rev. 5.4
Calcium	1.14 mg/L	1	0.05	0.01	GES	11/02/2023 22:49	EPA 200.8-1994, Rev. 5.4
Chromium	0.26 μg/L	1	0.30	0.07 J1	GES	11/02/2023 22:49	EPA 200.8-1994, Rev. 5.4
Cobalt	7.12 µg/L	1	0.020	0.005	GES	11/02/2023 22:49	EPA 200.8-1994, Rev. 5.4
Iron	0.057 mg/L	1	0.020	0.003	GES	11/02/2023 22:49	EPA 200.8-1994, Rev. 5.4
Lead	0.21 μg/L	1	0.20	0.05	GES	11/02/2023 22:49	EPA 200.8-1994, Rev. 5.4
Lithium	0.0191 mg/L	1	0.00030	0.00007	GES	11/02/2023 22:49	EPA 200.8-1994, Rev. 5.4
Magnesium	2.75 mg/L	1	0.100	0.006	GES	11/02/2023 22:49	EPA 200.8-1994, Rev. 5.4
Manganese	0.00547 mg/L	1	0.00100	0.00008	GES	11/02/2023 22:49	EPA 200.8-1994, Rev. 5.4
Mercury	110 ng/L	2	10	4	RLP	10/30/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	11/02/2023 22:49	EPA 200.8-1994, Rev. 5.4
Potassium	0.284 mg/L	1	0.100	0.008	GES	11/02/2023 22:49	EPA 200.8-1994, Rev. 5.4
Selenium	2.00 μg/L	1	0.50	0.04	GES	11/02/2023 22:49	EPA 200.8-1994, Rev. 5.4
Sodium	14.5 mg/L	1	0.20	0.01	GES	11/02/2023 22:49	EPA 200.8-1994, Rev. 5.4
Strontium	0.0214 mg/L	1	0.00200	0.00005	GES	11/02/2023 22:49	EPA 200.8-1994, Rev. 5.4
Thallium	0.03 μg/L	1	0.20	0.02 J1	GES	11/02/2023 22:49	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: DUPLICATE A Customer Description: TG-32

Lab Number: 233279-011 Preparation:

Date Collected: 10/17/2023 15:00 EDT Date Received: 10/23/2023 11:00 EDT

motalo							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	10/30/2023 20:14	EPA 200.8-1994, Rev. 5.4
Arsenic	1.23 µg/L	1	0.10	0.03	GES	10/30/2023 20:14	EPA 200.8-1994, Rev. 5.4
Barium	66.8 μg/L	1	0.20	0.05 M1	GES	10/30/2023 20:14	EPA 200.8-1994, Rev. 5.4
Beryllium	1.61 µg/L	1	0.050	0.007 M1	GES	10/30/2023 20:14	EPA 200.8-1994, Rev. 5.4
Boron	0.090 mg/L	1	0.050	0.007	GES	10/30/2023 20:14	EPA 200.8-1994, Rev. 5.4
Cadmium	0.378 μg/L	1	0.020	0.004	GES	10/30/2023 20:14	EPA 200.8-1994, Rev. 5.4
Calcium	2.85 mg/L	1	0.05	0.01 M1	GES	10/30/2023 20:14	EPA 200.8-1994, Rev. 5.4
Chromium	0.47 μg/L	1	0.30	0.07	GES	10/30/2023 20:14	EPA 200.8-1994, Rev. 5.4
Cobalt	16.3 µg/L	1	0.020	0.005 M1	GES	10/30/2023 20:14	EPA 200.8-1994, Rev. 5.4
Lead	0. 1 9 μg/L	1	0.20	0.05 J1	GES	10/30/2023 20:14	EPA 200.8-1994, Rev. 5.4
Lithium	0.0399 mg/L	1	0.00030	0.00007 M1	GES	10/30/2023 20:14	EPA 200.8-1994, Rev. 5.4
Magnesium	4.82 mg/L	1	0.100	0.006 M1	GES	10/30/2023 20:14	EPA 200.8-1994, Rev. 5.4
Mercury	33 ng/L	1	5	2	RLP	10/26/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	10/30/2023 20:14	EPA 200.8-1994, Rev. 5.4
Potassium	1.62 mg/L	1	0.100	0.008	GES	10/30/2023 20:14	EPA 200.8-1994, Rev. 5.4
Selenium	3.35 µg/L	1	0.50	0.04	GES	10/30/2023 20:14	EPA 200.8-1994, Rev. 5.4
Sodium	21.3 mg/L	1	0.20	0.01 M1	GES	10/30/2023 20:14	EPA 200.8-1994, Rev. 5.4
Strontium	0.0335 mg/L	1	0.00200	0.00005 M1	GES	10/30/2023 20:14	EPA 200.8-1994, Rev. 5.4
Thallium	0.14 µg/L	1	0.20	0.02 J1	GES	10/30/2023 20:14	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: DUPLICATE A Customer Description: TG-32

Lab Number: 233279-011-01 Preparation: Dissolved

Date Collected: 10/17/2023 15:00 EDT Date Received: 10/23/2023 11:00 EDT

Motals							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	10/30/2023 21:20	EPA 200.8-1994, Rev. 5.4
Arsenic	1.06 µg/L	1	0.10	0.03	GES	10/30/2023 21:20	EPA 200.8-1994, Rev. 5.4
Barium	65.7 μg/L	1	0.20	0.05	GES	10/30/2023 21:20	EPA 200.8-1994, Rev. 5.4
Beryllium	1.58 µg/L	1	0.050	0.007	GES	10/30/2023 21:20	EPA 200.8-1994, Rev. 5.4
Boron	0.089 mg/L	1	0.050	0.007	GES	10/30/2023 21:20	EPA 200.8-1994, Rev. 5.4
Cadmium	0.378 μg/L	1	0.020	0.004	GES	10/30/2023 21:20	EPA 200.8-1994, Rev. 5.4
Calcium	2.78 mg/L	1	0.05	0.01	GES	10/30/2023 21:20	EPA 200.8-1994, Rev. 5.4
Chromium	0.39 μg/L	1	0.30	0.07	GES	10/30/2023 21:20	EPA 200.8-1994, Rev. 5.4
Cobalt	1 6.0 μg/L	1	0.020	0.005	GES	10/30/2023 21:20	EPA 200.8-1994, Rev. 5.4
Iron	1.84 mg/L	1	0.020	0.003	GES	10/30/2023 21:20	EPA 200.8-1994, Rev. 5.4
Lead	0. 1 5 μg/L	1	0.20	0.05 J1	GES	10/30/2023 21:20	EPA 200.8-1994, Rev. 5.4
Lithium	0.0394 mg/L	1	0.00030	0.00007	GES	10/30/2023 21:20	EPA 200.8-1994, Rev. 5.4
Magnesium	4.72 mg/L	1	0.100	0.006	GES	10/30/2023 21:20	EPA 200.8-1994, Rev. 5.4
Manganese	0.0427 mg/L	1	0.00100	0.00008	GES	10/30/2023 21:20	EPA 200.8-1994, Rev. 5.4
Mercury	14 ng/L	1	5	2	RLP	10/26/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	10/30/2023 21:20	EPA 200.8-1994, Rev. 5.4
Potassium	1.58 mg/L	1	0.100	0.008	GES	10/30/2023 21:20	EPA 200.8-1994, Rev. 5.4
Selenium	3.19 µg/L	1	0.50	0.04	GES	10/30/2023 21:20	EPA 200.8-1994, Rev. 5.4
Sodium	20.8 mg/L	1	0.20	0.01	GES	10/30/2023 21:20	EPA 200.8-1994, Rev. 5.4
Strontium	0.0330 mg/L	1	0.00200	0.00005	GES	10/30/2023 21:20	EPA 200.8-1994, Rev. 5.4
Thallium	0. 1 5 μg/L	1	0.20	0.02 J1	GES	10/30/2023 21:20	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: EQUIPMENT BLANK Customer Description: TG-32

Lab Number: 233279-012 Preparation:

Date Collected: 10/17/2023 11:15 EDT Date Received: 10/23/2023 11:00 EDT

Motaio							
Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	10/30/2023 21:25	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/L	1	0.10	0.03 U1	GES	10/30/2023 21:25	EPA 200.8-1994, Rev. 5.4
Barium	<0.05 µg/L	1	0.20	0.05 U1	GES	10/30/2023 21:25	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.007 µg/L	1	0.050	0.007 U1	GES	10/30/2023 21:25	EPA 200.8-1994, Rev. 5.4
Boron	<0.007 mg/L	1	0.050	0.007 U1	GES	10/30/2023 21:25	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	10/30/2023 21:25	EPA 200.8-1994, Rev. 5.4
Calcium	<0.01 mg/L	1	0.05	0.01 U1	GES	10/30/2023 21:25	EPA 200.8-1994, Rev. 5.4
Chromium	0.38 µg/L	1	0.30	0.07	GES	10/30/2023 21:25	EPA 200.8-1994, Rev. 5.4
Cobalt	0.035 μg/L	1	0.020	0.005	GES	10/30/2023 21:25	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	10/30/2023 21:25	EPA 200.8-1994, Rev. 5.4
Lithium	<0.00007 mg/L	1	0.00030	0.00007 U1	GES	10/30/2023 21:25	EPA 200.8-1994, Rev. 5.4
Magnesium	<0.006 mg/L	1	0.100	0.006 U1	GES	10/30/2023 21:25	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	10/26/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	10/30/2023 21:25	EPA 200.8-1994, Rev. 5.4
Potassium	<0.008 mg/L	1	0.100	0.008 U1	GES	10/30/2023 21:25	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	10/30/2023 21:25	EPA 200.8-1994, Rev. 5.4
Sodium	<0.01 mg/L	1	0.20	0.01 U1	GES	10/30/2023 21:25	EPA 200.8-1994, Rev. 5.4
Strontium	<0.00005 mg/L	1	0.00200	0.00005 U1	GES	10/30/2023 21:25	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	10/30/2023 21:25	EPA 200.8-1994, Rev. 5.4

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

Customer Sample ID: FIELD BLANK Customer Description: TG-32

Lab Number: 233279-013 Preparation:

Date Collected: 10/17/2023 11:18 EDT Date Received: 10/23/2023 11:00 EDT

Metals

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	s Analyst	Analysis Date	Method
Antimony	<0.008 µg/L	1	0.100	0.008 U1	GES	10/30/2023 21:30	EPA 200.8-1994, Rev. 5.4
Arsenic	<0.03 µg/L	1	0.10	0.03 U1	GES	10/30/2023 21:30	EPA 200.8-1994, Rev. 5.4
Barium	<0.05 µg/L	1	0.20	0.05 U1	GES	10/30/2023 21:30	EPA 200.8-1994, Rev. 5.4
Beryllium	<0.007 µg/L	1	0.050	0.007 U1	GES	10/30/2023 21:30	EPA 200.8-1994, Rev. 5.4
Boron	<0.007 mg/L	1	0.050	0.007 U1	GES	10/30/2023 21:30	EPA 200.8-1994, Rev. 5.4
Cadmium	<0.004 µg/L	1	0.020	0.004 U1	GES	10/30/2023 21:30	EPA 200.8-1994, Rev. 5.4
Calcium	<0.01 mg/L	1	0.05	0.01 U1	GES	10/30/2023 21:30	EPA 200.8-1994, Rev. 5.4
Chromium	0.51 μg/L	1	0.30	0.07	GES	10/30/2023 21:30	EPA 200.8-1994, Rev. 5.4
Cobalt	0.045 μg/L	1	0.020	0.005	GES	10/30/2023 21:30	EPA 200.8-1994, Rev. 5.4
Lead	<0.05 µg/L	1	0.20	0.05 U1	GES	10/30/2023 21:30	EPA 200.8-1994, Rev. 5.4
Lithium	<0.00007 mg/L	1	0.00030	0.00007 U1	GES	10/30/2023 21:30	EPA 200.8-1994, Rev. 5.4
Magnesium	<0.006 mg/L	1	0.100	0.006 U1	GES	10/30/2023 21:30	EPA 200.8-1994, Rev. 5.4
Mercury	<2 ng/L	1	5	2 U1	RLP	10/26/2023 00:00	EPA 245.7-2005, Rev. 2.0
Molybdenum	<0.1 µg/L	1	0.5	0.1 U1	GES	10/30/2023 21:30	EPA 200.8-1994, Rev. 5.4
Potassium	<0.008 mg/L	1	0.100	0.008 U1	GES	10/30/2023 21:30	EPA 200.8-1994, Rev. 5.4
Selenium	<0.04 µg/L	1	0.50	0.04 U1	GES	10/30/2023 21:30	EPA 200.8-1994, Rev. 5.4
Sodium	<0.01 mg/L	1	0.20	0.01 U1	GES	10/30/2023 21:30	EPA 200.8-1994, Rev. 5.4
Strontium	<0.00005 mg/L	1	0.00200	0.00005 U1	GES	10/30/2023 21:30	EPA 200.8-1994, Rev. 5.4
Thallium	<0.02 µg/L	1	0.20	0.02 U1	GES	10/30/2023 21:30	EPA 200.8-1994, Rev. 5.4

Radiochemistry

Parameter	Result Units	UNC*(+/-)	MDA* Data Qualifiers	Analyst	Analysis Date	Method
Radium-226	0.32 pCi/L	0.09	0.16	ST	11/20/2023 09:08	SW-846 9315-1986, Rev. 0
Carrier Recovery	101 %					
Radium-228	0.07 pCi/L	0.14	0.47	ST	11/17/2023 16:32	SW-846 9320-2014, Rev. 1.0
Carrier Recovery	89.6 %					

^{*} The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233279 Customer: Pirkey Power Station Date Reported: 12/12/2023

233279-005-01 Comments:

Hg bottle was broken upon arrival.

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael & Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Data Qualifer Legend

- U1 Not detected at or above method detection limit (MDL).
- J1 Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.
- M1 The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.

Dolan Chemical Laboratory (DCL)				오	ain o	fCu	stody	Chain of Custody Record	<u>a</u>			
Groveport, Ohio 43125			_	Program:		Comb	ustion	Residuals	(CCR)			
Jonathan Barnhill (318-673-3803) Contacts: Michael Ohlinger (814-836-4184)						Conta	*	Site Contact:	Date:			For Lab Use Only: COC/Order #:
Project Name: Pirkey - CCR Metals								Field-filter	Three	250 mL	250 mL	
Contact Name: Leslie Fuerschbach	Analysis Turnaround Time (in Calendar Days)	maround T	ime (in Cal	endar Da	<u>ş</u>	E 8			(six every	Glass bottle.	Glass bottle.)
Contact Phone: 318-423-3805					_		PH<2,	Ŋ	L bottles, pH<2, HNO,	HCL™, pH<2	HCL	233 2019
Sampler(s): Matt Hamilton Kenny McDonald					Hale .	As, Ba,	g, Sr	o, Fe, Se, TL	-228			
Sample Identification	Sample Sample	Sample (C	Sample Type (C=Comp, G=Grab)	Matrix	Complex Sampler(s) In	B, Ca, Li, Sb	Be, Cd, Cr, C Mo, Se, TL and Na, K, N	B, Ca, Li, Sb Be, Cd, Cr, C Mn, Mo, Pb, and Na, K, M	Ra-226, Ra	Hg	Hg	Sample Specific Notes:
AD-3	10/18/2023	1147	G	GW	7		×	×	×	×	×	
AD-7R	10/17/2023	908	၈	GW	6		×	×	×	×	×	
AD-12	10/17/2023	941	၈	Ø₩	7		×	×	×	×	×	
AD-13	10/17/2023	811	၈	GW We	7	-	×	×	×	×	×	
AD-17	10/17/2023	1211	၀	GW.	7	\vdash	×	×	×	×	×	
AD-18	10/18/2023	747	ြ	ew W	7	+	×	×	×	×	×	
AD 20	1077/2023		, 6	2 8	1	+	\	•	< >	< >	·	
AD-30	10/17/2023	1034	၈	GW	7	Н	×	×	×	×	×	2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
AD-33	10/17/2023	1110	၈	G₩	7	H	×	×	×	×	×	
DUPLICATE A	10/17/2023	1400	၈	GW	4	+	×	×		×	×	
EQUIPMENT BLANK	10/17/2023	1015	ြ	GW	2	-	×			×		30 50 50 50 50 50 50 50 50 50 50 50 50 50
FIELD BLANK	10/17/2023	1018	၈	GW	On On	+	×		×	×		
Preservation Used: 1= ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	1NO3; 5=NaC)H; 6= Oth	er 	[. 	F= filter in field	ă	4	F4	4	2	F2	
* Six 1L Bottles must be collected for Radium for every 10th sample	every 10th s	ample.										
ons/QC Requirements & Comm	is	TG-32										
Bot Bruban	Company E	Engle		Date/Time:	23	Sca Re	Received by:					Date/Time:
	Company:	(Date/Time	100	77	Received by:					Date/Time:
Relinquished by:	Company:			Date/Time	, is	R	ceived in I	abogatory b	Received in Laboratory by:	H	/	Date/Time:/0/23/23 // 00

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

MATER & WASTE SAMPLE RECEIPT FORM

Mar a tr	
Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS (edEX) USPS
	Other
Plant/Customer Library	
,	
Opened By	Number of Glass Containers: 24
Date/Time 15/23/73 11:00	Number of Mercury Containers:
	or (N/A) Initial: on ice / no ice
192	If No, specify each deviation:
Was container in good condition? (Y) N	Comments
Was Chain of Custody received? Y N	Comments
Requested turnaround:	If RUSH, who was notified?
	O ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? N	Comments
Were samples labeled properly? N	Comments
Were correct containers used?	Comments
Was pH checked & Color Coding done? Y	N or N/A Initial & Date: Jacob 10/25/23 M90 10/23/23
	T#[OR] Lab Rat, PN4801, LOT#X000RWDG21 Exp 11/15/2024
- Was Add'l Preservative needed? Y N If	Yes: By whom & when:(See Prep Book)
Is sample filtration requested? Y	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# 233779 Initial & E	Date & Time :
	its:
Logged by	
Reviewed by MC(C	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

MATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
\vee	Other
Plant/Customer Pil frag	Number of Plastic Containers:
Opened By MSO	Number of Glass Containers:
Date/Time	Number of Mercury Containers:
	/ N or N/A Initial:on ice no ice
(0	N Comments
Was Chain of Custody received?	N Comments
Requested turnaround: Koutim	If RUSH, who was notified?
pH (15 min) Cr*6 (pres) NO ₂ (24 hr)	or NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	N Comments
Were samples labeled properly?	N Comments
Were correct containers used?	N Comments
Was pH checked & Color Coding done	? (V) N or N/A Initial & Date: MS 10/24/23
pH paper (circle one): MQuant,PN1.09535.0	001,LOT#[OR] Lab Rat,PN4801.LOT#
- Was Add'l Preservative needed? Y /	A) If Yes: By whom & when:(See Prep Book)
Is sample filtration requested? Y /	© Comments (See Prep Book)
Was the customer contacted?	'es: Person Contacted:
Lab ID# 233 279 Initi	at & Date & Time :
Lab ID# 233 279 Initi Logged by	mments:
Reviewed by MGC	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Municipal Solid Waste Laboratory Review Checklist

This d	ata pacl	cage (consists of:		
X	(which	incl	ure page, and the laboratory review checudes the reportable data identified on the ception Reports.		
x	R1	Fiel	d chain-of-custody documentation		
X	R2	Sam	ple identification cross-reference		
x	R3	(a) (b) (c) (d)	t reports (analytical data sheets) for each Items specified in NELAC Chapter 5 for NELAC Standard Dilution factors Preparation methods Cleanup methods If required for the project, tentatively in	r reporting results, e.g., Sect	t includes: ion 5.5.10 in 2003
NA	R4	(a)	rogate recovery data including: Calculated recovery (%R) The laboratory's surrogate QC limits		
х	R ₅	Test	t reports/summary forms for blank sam	ples	
x	R6	(a) (b)	t reports/summary forms for laboratory LCS spiking amounts Calculated %R for each analyte The laboratory's LCS QC limits	control samples (LCSs) incl	uding:
×	R7	(a) (b) (c) (d)	reports for project matrix spike/matrix Samples associated with the MS/MSD of MS/MSD spiking amounts Concentration of each MS/MSD analyt Calculated %Rs and relative percent diff The laboratory's MS/MSD QC limits	clearly identified e measured in the parent an	
X	R8	(a) (b)	oratory analytical duplicate (if applicabl The amount of analyte measured in the The calculated RPD The laboratory's QC limits for analytica	e duplicate	
х	R9		of method quantitation limits (MQLs) f	-	hod and matrix
x	R10	Oth	er problems or anomalies		
x	The Ex	cepti	ion Report for every item for which the	result is "No" or "NR" (Not I	Reviewed)
packag require reports by the labora	ge as be ements s. By m laborat tory in t	en re of the y sig tory a the La	ent: I am responsible for the release of the viewed by the laboratory and is complete methods used, except where noted by the palors at the best of my as having the potential to affect the qualitationary Review Checklist, and no informe quality of the data.	te and technically compliant the laboratory in the attache knowledge, all problems/an ity of the data, have been ide	with the ed exception omalies, observed entified by the
respon used is	ıding to	rule. sible	able: This laboratory is an in-house. The official signing the cover page of the for releasing this data package and is by	ie rule-required report in wh	ich these data are
Susa	ınn Su	Izma	Signature Signature	Senior Chemist	12-7-2023
Name	(printed	d)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey

Reviewer Name: Susann Sulzmann

LRC Date: 12-7-2023

Laboratory Job Number: 233279

Prep Batch Number(s): PB23102509, PB23102510

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		<u></u>
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	ves	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	ves	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	ves	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey

Reviewer Name: Susann Sulzmann

LRC Date: 12-7-2023

Laboratory Job Number: 233279

Prep Batch Number(s): PB23102509, PB23102510

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?		
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	ž.

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	auro .
S14	O, I	Demonstration of analyst competency (DOC)		
	1	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	-40 20
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	О, І	Verification/validation documentation for methods (NELAC Chap 5n 5)		7.00
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory
Project Name: Pirkey

Reviewer Name: Susann Sulzmann

LRC Date: 12-7-2023

Laboratory Job Number: 233279

Prep Batch Number(s): PB23102509, PB23102510

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>
<u> </u>	

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This da	ata pack	tage consists of	f:			
×	(which		eportable data i		dist consisting of Tables s page), Table 2, Supp	
х	R1	Field chain-of	-custody docur	nentation		
x	R2	Sample identi	fication cross-r	eference		
X.	R3	(a) Items spe NELAC S (b) Dilution (c) Preparati (d) Cleanup (d)	ecified in NELA tandard factors on methods methods	C Chapter 5 for	environmental sample reporting results, e.g., entified compounds (T	Section 5.5.10 in 2003
NA	R4	(a) Calculate	overy data inclu d recovery (%R atory's surroga	.)		
х	R5	Test reports/s	summary forms	for blank samp	les	
×	R6	(a) LCS spik (b) Calculate		ınalyte	control samples (LCSs)) including:
x	R7	(a) Samples(b) MS/MSD(c) Concentr(d) Calculate	associated with spiking amour ation of each M	the MS/MSD c nts IS/MSD analyte tive percent diff	spike duplicates (MS/I learly identified measured in the paren erences (RPDs)	MSDs) including: nt and spiked samples
×	R8	(a) The amount (b) The calcu	unt of analyte n llated RPD	ate (if applicable neasured in the ts for analytical	•	on:
х	R9	List of method	d quantitation l	imits (MQLs) fo	or each analyte for each	n method and matrix
x	R10	Other probler	ns or anomalie	5		
x	The Ex	ception Repor	t for every item	for which the r	esult is "No" or "NR" (Not Reviewed)
packag require reports by the labora	ge as be ements s. By m laborat tory in t	en reviewed by of the methods y signature be tory as having	y the laboratory s used, except w clow, I affirm to the potential to Review Checkl	and is complet where noted by t the best of my l affect the quali	y of the data, have bee	oliant with the tached exception ns/anomalies, observed
respon used is	ding to	rule. The offic sible for releas	ial signing the o	over page of the	aboratory controlled be rule-required report signature affirming th	in which these data are
Jona	than E	Barnhill	-	Specify pip of the conflicts pulphole into course or a finance and what lime and a similar department of the course of the cours	Lab Supervisor	12/7/2023
Name	(printe	d)	Signature		Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 12/7/2023

Laboratory Job Number: 233279

Prep Batch Number(s): PB23110202 PB23110205 PB23110803 QC2310261 QC2311029 QC2311083

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	No	ER1
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	No	ER3
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Jonathan Barnhill

LRC Date: 12/7/2023

Laboratory Job Number: 233279

Prep Batch Number(s): PB23102703 PB23110202 PB23110205 PB23110603 QC2310261 QC2311029 QC2311063

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER2
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	Yes	
	I	Were ion abundance data within the method-required QC limits?	Yes	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	Yes	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
<u>58</u>	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):	-	
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Nai	me: American Electric Power Dolan Chemical Laboratory
Project Name:	
•	Jonathan Barnhill
LRC Date: 12/7	
4000	Number: 233279
Prep Batch Nur	PD00+00700 PD00+40000 RB00+4000F PB00+40000 AC3910261 AC3914030 AC3914062

Exception Report No.	Description
ER1	Linear Dynamic Range (LDR) study used to determine upper limit of analyte calibration.
ER2	CCB acceptance criteria is CCB<2.2*MDL.
ER3	Sample 233279-011 failed to meet acceptance criteria on Matrix spike for Ca Li Ba Be Co Na Mg Sr

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of:

	•		
x	(which	ature page, and the laboratory review checklist consisting of Table 1, Reportable Data cludes the reportable data identified on this page), Table 2, Supporting Data, and Exception Reports.	a
×	R1	eld chain-of-custody documentation	
×	R2	imple identification cross-reference	
×	R3	est reports (analytical data sheets) for each environmental sample that includes:) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 20 NELAC Standard) Dilution factors) Preparation methods) Cleanup methods) If required for the project, tentatively identified compounds (TICs)	003
NA	R4	nrrogate recovery data including:) Calculated recovery (%R)) The laboratory's surrogate QC limits	
x	R ₅	est reports/summary forms for blank samples	
x	R6	est reports/summary forms for laboratory control samples (LCSs) including:) LCS spiking amounts) Calculated %R for each analyte) The laboratory's LCS QC limits	
X	R7	est reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:) Samples associated with the MS/MSD clearly identified) MS/MSD spiking amounts) Concentration of each MS/MSD analyte measured in the parent and spiked sample) Calculated %Rs and relative percent differences (RPDs)) The laboratory's MS/MSD QC limits	les
×	R8	aboratory analytical duplicate (if applicable) recovery and precision:) The amount of analyte measured in the duplicate) The calculated RPD) The laboratory's QC limits for analytical duplicates	
×	R9	st of method quantitation limits (MQLs) for each analyte for each method and matri	x
x	R10	ther problems or anomalies	
x	The Ex	ption Report for every item for which the result is "No" or "NR" (Not Reviewed)	
packag require reports by the laborat	se Stat ge as be ements s. By m laborat tory in t	nent: I am responsible for the release of this laboratory data package. This data reviewed by the laboratory and is complete and technically compliant with the the methods used, except where noted by the laboratory in the attached exception signature below, I affirm to the best of my knowledge, all problems/anomalies, observas having the potential to affect the quality of the data, have been identified by the Laboratory Review Checklist, and no information or data have been knowingly with the quality of the data.	
respon used is statem	ding to respon ent is t		
	sha T.		3
Name	(printed	Signature Official Title Date	

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 12/08/2023

 Laboratory Job Number:
 233279

 Prep Batch Number(s):
 PB23111406, PB23111407

Result **Exception** Item¹ Analytes² Description (Yes, No, Report No.4 NA, NR)3 Chain-of-custody (COC) R1 O, I Did samples meet the laboratory's standard conditions I Yes of sample acceptability upon receipt? Were all departures from standard conditions described I Yes in an exception report? Sample and quality control (QC) identification R2 O, I Are all field sample ID numbers cross-referenced to the I Yes laboratory ID numbers? Are all laboratory ID numbers cross-referenced to the Ι Yes corresponding QC data? R3 O, I **Test reports** Were all samples prepared and analyzed within holding Ι Yes times? Other than those results < MQL, were all other raw I NA values bracketed by calibration standards? Ι Were calculations checked by a peer or supervisor? Yes Were all analyte identifications checked by a peer or I Yes supervisor? Were sample quantitation limits reported for all I Yes analytes not detected? Were all results for soil and sediment samples reported I NA on a dry weight basis? Was % moisture (or solids) reported for all soil and I NA sediment samples? I If required for the project, TICs reported? NA R4 0 Surrogate recovery data Ι Were surrogates added prior to extraction? NA Were surrogate percent recoveries in all samples within Ι NA the laboratory QC limits? Test reports/summary forms for blank samples R5 0, I Were appropriate type(s) of blanks analyzed? Ι Yes Were blanks analyzed at the appropriate frequency? Yes

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	0, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	No	ER1
	I	Were analytical duplicates analyzed at the appropriate frequency?	No	ER1
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	No	ER1
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 12/08/2023

Laboratory Job Number: 233279

Prep Batch Number(s): PB23111406, PB23111407

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
52	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S 5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey Power

Reviewer Name: Tamisha Palmer

LRC Date: 12/08/2023

Laboratory Job Number: 233279

Prep Batch Number(s): PB23111406, PB23111407

Exception Report No.	Description
ER1	Both batches did not have samples available for duplicates.

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: X This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. X Field chain-of-custody documentation R₁ X R₂ Sample identification cross-reference х R₃ Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits X Test reports/summary forms for blank samples **R**5 x Test reports/summary forms for laboratory control samples (LCSs) including: **R6** (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits x Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits $|\mathbf{x}|$ **R8** Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's OC limits for analytical duplicates List of method quantitation limits (MQLs) for each analyte for each method and matrix X R9 \mathbf{x} Rio Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) $\overline{\mathbf{x}}$

Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Tamisha T. Palmer	Tamist Falmer	Chemical Tech. Principal	12/08/2023
Name (printed)	Signature	Official Title	Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey

Reviewer Name: Tamisha Palmer

LRC Date: 12/11/2023

Laboratory Job Number: 233279

Prep Batch Number(s): PB23111102, PB23111103

Item ¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	0, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
·	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):	8	
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	1
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	ER1
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	ER1
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	ER1
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	ER1
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	NA	
	I	Were analytical duplicates analyzed at the appropriate frequency?	NA	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	NA	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Radium Laboratory Review Checklist

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey

Reviewer Name: Tamisha Palmer

LRC Date: 12/11/2023

Laboratory Job Number: 233279

Prep Batch Number(s): PB23111102, PB23111103

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	0, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	Yes	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S 2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Radium Laboratory Review Checklist

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S 6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S 7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	1	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	1	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Radium Laboratory Review Checklist

Table 3. Exception Reports.

Laboratory Name:	American Electric Power Dolan Chemical Laboratory
Project Name: Pirk	кеу
Reviewer Name: \Box	amisha Palmer
LRC Date: 12/11/2	023
Laboratory Job Nu	mber: 233279
Prep Batch Numbe	r(s): PB23111102, PB23111103

Exception Report No.	Description
ER1	PB23111103- there was no MS, MSD associated with prep batch.

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233267 Customer: Pirkey Power Station Date Reported: 11/29/2023

Customer Sample ID: AD-3 Customer Description: TG-32

Lab Number: 233267-001 Preparation:

Date Collected: 10/18/2023 12:47 EDT Date Received: 10/20/2023 10:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.05 mg/L	2	0.10	0.02 J1	CRJ	11/10/2023 16:27	EPA 300.1 -1997, Rev. 1.0
Chloride	6.17 mg/L	2	0.04	0.01	CRJ	11/10/2023 16:27	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.06 mg/L	2	0.06	0.02	CRJ	11/10/2023 16:27	EPA 300.1 -1997, Rev. 1.0
Sulfate	28.6 mg/L	2	0.6	0.1	CRJ	11/10/2023 16:27	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method	
Alkalinity, as CaCO3	5 mg/L	1	20	5 J1	MGK	10/23/2023 15:48	SM 2320B-2011	
TDS, Filterable Residue	140 mg/L	1	50	20	ELT	10/23/2023 07:40	SM 2540C-2015	

Customer Sample ID: AD-7R Customer Description: TG-32

Lab Number: 233267-002 Preparation:

Date Collected: 10/17/2023 10:08 EDT Date Received: 10/20/2023 10:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	1.12 mg/L	2	0.10	0.02	CRJ	11/10/2023 18:50	EPA 300.1 -1997, Rev. 1.0
Chloride	24.1 mg/L	2	0.04	0.01	CRJ	11/10/2023 18:50	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.16 mg/L	2	0.06	0.02	CRJ	11/10/2023 18:50	EPA 300.1 -1997, Rev. 1.0
Sulfate	39.9 mg/L	2	0.6	0.1	CRJ	11/10/2023 18:50	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units I	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	10/23/2023 15:48	SM 2320B-2011
TDS, Filterable Residue	190 mg/L	1	50	20	ELT	10/23/2023 07:40	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233267 Customer: Pirkey Power Station Date Reported: 11/29/2023

Customer Sample ID: AD-12 Customer Description: TG-32

Lab Number: 233267-003 Preparation:

Date Collected: 10/17/2023 10:41 EDT Date Received: 10/20/2023 10:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.09 mg/L	2	0.10	0.02 J1	CRJ	11/10/2023 19:26	EPA 300.1 -1997, Rev. 1.0
Chloride	6.74 mg/L	2	0.04	0.01	CRJ	11/10/2023 19:26	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.07 mg/L	2	0.06	0.02	CRJ	11/10/2023 19:26	EPA 300.1 -1997, Rev. 1.0
Sulfate	2.7 mg/L	2	0.6	0.1	CRJ	11/10/2023 19:26	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	10/23/2023 15:48	SM 2320B-2011
TDS, Filterable Residue	58 mg/L	1	50	20	ELT	10/23/2023 07:40	SM 2540C-2015

Customer Sample ID: AD-13 Customer Description: TG-32

Lab Number: 233267-004 Preparation:

Date Collected: 10/17/2023 09:11 EDT Date Received: 10/20/2023 10:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.23 mg/L	2	0.10	0.02	CRJ	11/10/2023 17:39	EPA 300.1 -1997, Rev. 1.0
Chloride	42.9 mg/L	10	0.20	0.05	CRJ	11/10/2023 17:03	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.45 mg/L	2	0.06	0.02	CRJ	11/10/2023 17:39	EPA 300.1 -1997, Rev. 1.0
Sulfate	86.9 mg/L	10	3.0	0.6	CRJ	11/10/2023 17:03	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	47 mg/L	1	20	5	MGK	10/23/2023 15:48	SM 2320B-2011
TDS, Filterable Residue	280 mg/L	1	50	20	ELT	10/23/2023 08:01	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233267 Customer: Pirkey Power Station Date Reported: 11/29/2023

Customer Sample ID: AD-17 Customer Description: TG-32

Lab Number: 233267-005 Preparation:

Date Collected: 10/17/2023 13:11 EDT Date Received: 10/20/2023 10:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.13 mg/L	2	0.10	0.02	CRJ	11/10/2023 20:02	EPA 300.1 -1997, Rev. 1.0
Chloride	29.7 mg/L	2	0.04	0.01	CRJ	11/10/2023 20:02	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.27 mg/L	2	0.06	0.02	CRJ	11/10/2023 20:02	EPA 300.1 -1997, Rev. 1.0
Sulfate	1.6 mg/L	2	0.6	0.1	CRJ	11/10/2023 20:02	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	10/23/2023 15:48	SM 2320B-2011
TDS, Filterable Residue	77 mg/L	1	50	20	ELT	10/23/2023 08:07	SM 2540C-2015

Customer Sample ID: AD-18 Customer Description: TG-32

Lab Number: 233267-006 Preparation:

Date Collected: 10/18/2023 08:47 EDT Date Received: 10/20/2023 10:00 EDT

Ion Chromatography

Parameter	Result Units I	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.03 mg/L	2	0.10	0.02 J1	CRJ	11/10/2023 22:26	EPA 300.1 -1997, Rev. 1.0
Chloride	5.05 mg/L	2	0.04	0.01	CRJ	11/10/2023 22:26	EPA 300.1 -1997, Rev. 1.0
Fluoride	<0.02 mg/L	2	0.06	0.02 U1	CRJ	11/10/2023 22:26	EPA 300.1 -1997, Rev. 1.0
Sulfate	10 mg/L	2	0.6	0.1	CRJ	11/10/2023 22:26	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	10/23/2023 15:48	SM 2320B-2011
TDS, Filterable Residue	98 mg/L	1	50	20	ELT	10/23/2023 08:07	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233267 Customer: Pirkey Power Station Date Reported: 11/29/2023

Customer Sample ID: AD-22 Customer Description: TG-32

Lab Number: 233267-007 Preparation:

Date Collected: 10/17/2023 11:15 EDT Date Received: 10/20/2023 10:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.60 mg/L	2	0.10	0.02	CRJ	11/11/2023 02:37	EPA 300.1 -1997, Rev. 1.0
Chloride	80.5 mg/L	25	0.5	0.1	CRJ	11/10/2023 20:38	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.26 mg/L	2	0.06	0.02	CRJ	11/11/2023 02:37	EPA 300.1 -1997, Rev. 1.0
Sulfate	212 mg/L	25	8	2	CRJ	11/10/2023 20:38	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	10/23/2023 15:48	SM 2320B-2011
TDS, Filterable Residue	480 mg/L	1	50	20	ELT	10/23/2023 08:07	SM 2540C-2015

Customer Sample ID: AD-28 Customer Description: TG-32

Lab Number: 233267-008 Preparation:

Date Collected: 10/17/2023 12:14 EDT Date Received: 10/20/2023 10:00 EDT

Ion Chromatography

Parameter	Result Units I	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.06 mg/L	2	0.10	0.02 J1	CRJ	11/11/2023 06:48	EPA 300.1 -1997, Rev. 1.0
Chloride	4.64 mg/L	2	0.04	0.01	CRJ	11/11/2023 06:48	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.50 mg/L	2	0.06	0.02	CRJ	11/11/2023 06:48	EPA 300.1 -1997, Rev. 1.0
Sulfate	22.1 mg/L	2	0.6	0.1	CRJ	11/11/2023 06:48	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	10/23/2023 15:48	SM 2320B-2011
TDS Filterable Pesidue	94 mg/l	1	50	20	FIT	10/23/2023 08:14	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233267 Customer: Pirkey Power Station Date Reported: 11/29/2023

Customer Sample ID: AD-30 Customer Description: TG-32

Lab Number: 233267-009 Preparation:

Date Collected: 10/17/2023 11:34 EDT Date Received: 10/20/2023 10:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.23 mg/L	2	0.10	0.02	CRJ	11/11/2023 02:01	EPA 300.1 -1997, Rev. 1.0
Chloride	26.7 mg/L	2	0.04	0.01	CRJ	11/11/2023 02:01	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.05 mg/L	2	0.06	0.02 J1	CRJ	11/11/2023 02:01	EPA 300.1 -1997, Rev. 1.0
Sulfate	148 mg/L	10	3.0	0.6	CRJ	11/10/2023 21:50	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	10/23/2023 15:48	SM 2320B-2011
TDS, Filterable Residue	290 mg/L	1	50	20	ELT	10/23/2023 08:14	SM 2540C-2015

Customer Sample ID: AD-33 Customer Description: TG-32

Lab Number: 233267-010 Preparation:

Date Collected: 10/17/2023 12:10 EDT Date Received: 10/20/2023 10:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	0.22 mg/L	2	0.10	0.02	CRJ	11/11/2023 07:24	EPA 300.1 -1997, Rev. 1.0
Chloride	9.03 mg/L	2	0.04	0.01	CRJ	11/11/2023 07:24	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.18 mg/L	2	0.06	0.02	CRJ	11/11/2023 07:24	EPA 300.1 -1997, Rev. 1.0
Sulfate	41.7 mg/L	2	0.6	0.1	CRJ	11/11/2023 07:24	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units I	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	10/23/2023 15:48	SM 2320B-2011
TDS, Filterable Residue	130 mg/L	1	50	20	ELT	10/23/2023 08:14	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233267 Customer: Pirkey Power Station Date Reported: 11/29/2023

Customer Sample ID: DUPLICATE A Customer Description: TG-32

Lab Number: 233267-011 Preparation:

Date Collected: 10/17/2023 15:00 EDT Date Received: 10/20/2023 10:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	1.16 mg/L	2	0.10	0.02	CRJ	11/11/2023 05:36	EPA 300.1 -1997, Rev. 1.0
Chloride	24.4 mg/L	2	0.04	0.01	CRJ	11/11/2023 05:36	EPA 300.1 -1997, Rev. 1.0
Fluoride	0.16 mg/L	2	0.06	0.02	CRJ	11/11/2023 05:36	EPA 300.1 -1997, Rev. 1.0
Sulfate	39.9 mg/L	2	0.6	0.1	CRJ	11/11/2023 05:36	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	10/23/2023 15:48	SM 2320B-2011
TDS, Filterable Residue	160 mg/L	1	50	20	ELT	10/23/2023 08:14	SM 2540C-2015

Customer Description: TG-32

Customer Sample ID: EQUIPMENT BLANK

Lab Number: 233267-012 Preparation:

Date Collected: 10/17/2023 11:15 EDT Date Received: 10/20/2023 10:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	<0.02 mg/L	2	0.10	0.02 U1	CRJ	11/11/2023 03:48	EPA 300.1 -1997, Rev. 1.0
Chloride	0.13 mg/L	2	0.04	0.01	CRJ	11/11/2023 03:48	EPA 300.1 -1997, Rev. 1.0
Fluoride	<0.02 mg/L	2	0.06	0.02 U1	CRJ	11/11/2023 03:48	EPA 300.1 -1997, Rev. 1.0
Sulfate	0.2 mg/L	2	0.6	0.1 J1	CRJ	11/11/2023 03:48	EPA 300.1 -1997, Rev. 1.0

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	10/23/2023 15:48	SM 2320B-2011
TDS, Filterable Residue	<20 mg/L	1	50	20 U1	ELT	10/23/2023 08:21	SM 2540C-2015

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233267 Customer: Pirkey Power Station Date Reported: 11/29/2023

Customer Sample ID: FIELD BLANK Customer Description: TG-32

Lab Number: 233267-013 Preparation:

Date Collected: 10/17/2023 11:18 EDT Date Received: 10/20/2023 10:00 EDT

Ion Chromatography

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Bromide	<0.02 mg/L	2	0.10	0.02 U1	CRJ	11/11/2023 04:24	EPA 300.1 -1997, Rev. 1.0
Chloride	0.13 mg/L	2	0.04	0.01	CRJ	11/11/2023 04:24	EPA 300.1 -1997, Rev. 1.0
Fluoride	<0.02 mg/L	2	0.06	0.02 U1	CRJ	11/11/2023 04:24	EPA 300.1 -1997, Rev. 1.0
Sulfate	0.2 mg/L	2	0.6	0.1 J1	CRJ	11/11/2023 04:24	EPA 300.1 -1997, Rev. 1.0

Wet Chemistry

Parameter	Result Units	Dilution	RL	MDL Data Qualifiers	Analyst	Analysis Date	Method
Alkalinity, as CaCO3	<5 mg/L	1	20	5 U1	MGK	10/23/2023 15:48	SM 2320B-2011
TDS, Filterable Residue	<20 mg/L	1	50	20 U1	ELT	10/23/2023 08:21	SM 2540C-2015

Report Verification

This report and the above data have been confirmed by the following analyst.

Michael Ohlinger, Chemist

Email: msohlinger@aep.com
Phone: 614-836-4184
Audinet: 8-210-4184

Muhael S. Ollinger

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED. ALL TIMES LISTED ARE IN THE EASTERN TIME ZONE.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 Phone: 614-836-4221 Audinet: 210-4221

Job ID: 233267 Customer: Pirkey Power Station Date Reported: 11/29/2023

Data Qualifer Legend

J1 - Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

U1 - Not detected at or above method detection limit (MDL).

Chain of Custody Record

Dolan Chemical Laboratory (DCL)

Sample Specific Notes For Lab Use Only: COC/Order #: bottle, HCL", pH<2 6H 40 mL Glass vial or 250 mL PTFE lined 40 mL Glass vial or 250 mL PTFE lined bottle, HCL**, pH<2 βН N Date: (six every 10th*) L bottles, pH<2, HNO Ra-226, Ra-228 Program: Coal Combustion Residuals (CCR) 1 L bottle, Cool, 0-6°C Br, Alkalinity × × × × × TDS, F, CI, SO., bottle, then Field-filter 250 mL and Na, K, Mg, Sr 품 장, 양 B, Ca, Ll, Sb, As, Ba, Be, Cd, Cr, Co, Fe, Mn, Mo, Pb, Se, TL 7 B, Ce, Li, Sb, As, Bs, Be, Cd, Cr, Co, Pb, Mo, Se, TL and Na, K, Mg, St 250 mL bottle, pH<2, ; F= filter in field Sampler(s) Initials Analysis Turnaround Time (in Calendar Days) Matrix Š ĕ Š Š 8 Š გ § Š ĕ ⋛ 8 Š Sample
Type
(C=Comp,
G=Grab) O G ଠା O ပ ပ O O Ø O G O G reservation Used: 1* Ice, 2* HCI; 3* H2SO4; 4*HNO3; 5*NaOH; 6* Other Sample 1015 113 1400 Time 1034 1015 1018 1147 121 1114 908 811 ጀ 747 10/17/2023 10/18/2023 10/17/2023 10/17/2023 10/17/2023 10/18/2023 10/17/2023 10/17/2023 10/17/2023 10/17/2023 10/17/2023 10/17/2023 10/17/2023 Sample Date Jonathan Barnhill (318-673-3803) Michael Ohlinger (614-836-4184) Matt Hamilton Kenny McDonald 318-423-3805 Groveport, Ohio 43125 Leslie Fuerschbach Sample Identification EQUIPMENT BLANK **DUPLICATE A** FIELD BLANK AD-13 AD-18 AD-30 AD-7R AD-12 AD-17 AD-28 AD-22 AD-3 Project Name: Pirkey - CCR Contact Name: Contact Phone: Contacts: Sampler(s):

Special Instructions/QC Requirements & Comments:
TG-32

Deliconiehod by:	Company	Date/Time:	Received hv.	Date/Time
Marine De la Marine	TY TY		1 partiagn	
Relinquished by:	Company	Date/Time:	Received by:	Date/Time:
Relinquished by:	Company	Date/Time:	Received in Laboratory by:	Date/Time: Date / Color
			10000	0-101
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	ord for Coal Combustion Residu	al (CCR) Sampling - Sh	neveport, Rev. 1, 1/10/17	

 $^{^{\}star}$ Six 1L. Bottles must be collected for Radium for every 10th sample.

WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer Pirkey	Number of Plastic Containers: 13
Opened By WCk MUL	Number of Glass Containers:
	Number of Mercury Containers:
1	N or N/A Initial: WCL- MC-K on ice no ice (2024) - If No, specify each deviation:
Was container in good condition? 🥎 /	N Comments
	N Comments If RUSH, who was notified?
	or NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? (y)/ N	Comments
Were samples labeled properly? (y)/ N	Comments
Were correct containers used? (Y)/N	
Was pH checked & Color Coding done?	MN or MAN Initial & Date: WCh MGK 10/20/23
pH paper (circle one): MQuant,PN1.09535.00	01,LOT#[OR_Lab Rat.PN4801.LOT# X000RWDG21 Exp 11/15/2023
- Was Add'l Preservative needed? Y /) If Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y /	N) Comments (See Prep Book)
Was the customer contacted?	es: Person Contacted:
Lab ID# 233267 Initia	I & Date & Time :
Logged by MSU	ments
Reviewed by WCG	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: \mathbf{x} This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. \square R₁ Field chain-of-custody documentation X R₂ Sample identification cross-reference X R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC Standard** (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) X Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits Test reports/summary forms for blank samples x **R**5 X Test reports/summary forms for laboratory control samples (LCSs) including: **R6** (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS QC limits $\left[\mathbf{x} \right]$ Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD QC limits $|\mathbf{x}|$ **R8** Laboratory analytical duplicate (if applicable) recovery and precision: (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates \mathbf{x} R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix × **R10** Other problems or anomalies X The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) **Release Statement:** I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. **Check, if applicable:** () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. Tim Arnold Principle Chemistr 11/13/2023

Official Title

Name (printed)

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Tim Arnold

LRC Date: 11/13/2023

Laboratory Job Number: 233267

Prep Batch Number(s): QC2311105

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	0, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	Yes	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
·	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	Yes	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	Yes	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No. ⁴
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	Yes	
	I	Were MS/MSD analyzed at the appropriate frequency?	Yes	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Were MS/MSD RPDs within laboratory QC limits?	Yes	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Tim Arnold

LRC Date: 11/13/2023

Laboratory Job Number: 233267

Prep Batch Number(s): QC2311105

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	Yes	
	I	Was the number of standards recommended in the method used for all analytes?	Yes	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes	
	I	Are ICAL data available for all instruments used?	Yes	
- 54	I	Has the initial calibration curve been verified using an appropriate second source standard?	Yes	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	Yes	
	I	Were percent differences for each analyte within the method-required QC limits?	Yes	
	I	Was the ICAL curve verified for each analyte?	Yes	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1
S 3	0	Mass spectral tuning:		
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	Were IS area counts and retention times within the method-required QC limits?	NA	
S5 _	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		_
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
\$15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Tim Arnold

LRC Date: 11/13/2023

Laboratory Job Number: 233267

Prep Batch Number(s): QC2311105

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB <mql.< th=""></mql.<>
<u></u>	
	100 - 100 -

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

²O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: x This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. \square R_1 Field chain-of-custody documentation R₂ Sample identification cross-reference \square R3 Test reports (analytical data sheets) for each environmental sample that includes: (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 **NELAC** Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) Surrogate recovery data including: NA **R4** (a) Calculated recovery (%R) (b) The laboratory's surrogate OC limits Test reports/summary forms for blank samples \mathbf{x} **R**5 \mathbf{x} Test reports/summary forms for laboratory control samples (LCSs) including: **R6** (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS OC limits $|\mathsf{x}|$ Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: **R**7 (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD OC limits $|\mathbf{x}|$ Laboratory analytical duplicate (if applicable) recovery and precision: **R8** (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates X R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix X R₁₀ Other problems or anomalies \mathbf{x} The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. **Check, if applicable:** () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. had Olly Chemist Michael Ohlinger 11/29/23

Official Title

Name (printed)

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Michael Ohlinger

LRC Date: 11/29/23

Laboratory Job Number: 233267

Prep Batch Number(s): QC2310229

Item¹	Analytes ²	Analytes ² Description		Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	NA	
R2	O, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	Ο, Ι	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	O, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	0, 1	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
•	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Michael Ohlinger

LRC Date: 11/29/23

Laboratory Job Number: 233267

Prep Batch Number(s): QC2310229

Item¹	em ¹ Analytes ² Description		Result (Yes, No, NA, NR) ³	Exception Report No.4
S1	O, I	Initial calibration (ICAL)		
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA	
	I	Were percent RSDs or correlation coefficient criteria met?	NA	
	I	Was the number of standards recommended in the method used for all analytes?	NA	
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	NA	
	I	Are ICAL data available for all instruments used?	NA	
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA	
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):		
	I	Was the CCV analyzed at the method-required frequency?	NA	
	I	Were percent differences for each analyte within the method-required QC limits?	NA	
	I	Was the ICAL curve verified for each analyte?	NA	
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	NA	
S3	O Mass spectral tuning:			
	I	Was the appropriate compound for the method used for tuning?	NA	
	I	Were ion abundance data within the method-required QC limits?	NA	
S4	0	Internal standards (IS):		
	I	NA		
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		2-
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes	
	I	Were data associated with manual integrations flagged on the raw data?	NA	

Item ¹ Analytes ² Description		Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation		
	I	Did dual column confirmation results meet the method-required QC?	NA	
\$7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	O, I	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
*	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation	:	
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)		
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to- date and on file?	Yes	
S15	O, I	Verification/validation documentation for methods (NELAC Chap 5n 5)		
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Michael Ohlinger

LRC Date: 11/29/23

Laboratory Job Number: 233267

Prep Batch Number(s): QC2310229

Exception Report No.	Description
122.00	

Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

Municipal Solid Waste Laboratory Review Checklist

This data package consists of: X This signature page, and the laboratory review checklist consisting of Table 1, Reportable Data (which includes the reportable data identified on this page), Table 2, Supporting Data, and Table 3, Exception Reports. R1 \mathbf{x} Field chain-of-custody documentation X R₂ Sample identification cross-reference X Test reports (analytical data sheets) for each environmental sample that includes: R₃ (a) Items specified in NELAC Chapter 5 for reporting results, e.g., Section 5.5.10 in 2003 NELAC Standard (b) Dilution factors (c) Preparation methods (d) Cleanup methods (e) If required for the project, tentatively identified compounds (TICs) NA. Surrogate recovery data including: **R**4 (a) Calculated recovery (%R) (b) The laboratory's surrogate QC limits Test reports/summary forms for blank samples [x]**R**5 Test reports/summary forms for laboratory control samples (LCSs) including: \mathbf{x} **R6** (a) LCS spiking amounts (b) Calculated %R for each analyte (c) The laboratory's LCS OC limits X **R**7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) Samples associated with the MS/MSD clearly identified (b) MS/MSD spiking amounts (c) Concentration of each MS/MSD analyte measured in the parent and spiked samples (d) Calculated %Rs and relative percent differences (RPDs) (e) The laboratory's MS/MSD OC limits Laboratory analytical duplicate (if applicable) recovery and precision: X R8 (a) The amount of analyte measured in the duplicate (b) The calculated RPD (c) The laboratory's QC limits for analytical duplicates List of method quantitation limits (MQLs) for each analyte for each method and matrix $|\mathbf{x}|$ R9 \mathbf{x} R10 Other problems or anomalies The Exception Report for every item for which the result is "No" or "NR" (Not Reviewed) Release Statement: I am responsible for the release of this laboratory data package. This data package as been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data. **Check, if applicable:** () This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report in which these data are used is responsible for releasing this data package and is by signature affirming the above release

Chemist

Official Title

statement is true.

Name (printed)

Michael Ohilnger

11/29/23

Date

Table 1. Reportable Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Michael Ohlinger

LRC Date: 11/29/23

Laboratory Job Number: 233267

Prep Batch Number(s): QC2310189

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
R1	O, I	Chain-of-custody (COC)		
	I	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Yes	
	I	Were all departures from standard conditions described in an exception report?	Yes	
R2	0, I	Sample and quality control (QC) identification		
	I	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Yes	
	I	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Yes	
R3	O, I	Test reports		
	I	Were all samples prepared and analyzed within holding times?	Yes	
	I	Other than those results < MQL, were all other raw values bracketed by calibration standards?	NA	
% —	I	Were calculations checked by a peer or supervisor?	Yes	
	I	Were all analyte identifications checked by a peer or supervisor?	Yes	
	I	Were sample quantitation limits reported for all analytes not detected?	Yes	
	I	Were all results for soil and sediment samples reported on a dry weight basis?	NA	
	I	Was % moisture (or solids) reported for all soil and sediment samples?	NA	
	I	If required for the project, TICs reported?	NA	
R4	0	Surrogate recovery data		
	I	Were surrogates added prior to extraction?	NA	
	I	Were surrogate percent recoveries in all samples within the laboratory QC limits?	NA	
R5	O, I	Test reports/summary forms for blank samples		
	I	Were appropriate type(s) of blanks analyzed?	Yes	
	I	Were blanks analyzed at the appropriate frequency?	Yes	

Item¹	Analytes ²	Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
	I	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Yes	
	I	Were blank concentrations < MQL?	Yes	,
R6	O, I	Laboratory control samples (LCS):		
	I	Were all COCs included in the LCS?	Yes	
<u>.</u> .	I	Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Yes	
	I	Were LCSs analyzed at the required frequency?	Yes	
	I .	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Yes	
	I	Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SQLs?	Yes	
	I	Was the LCSD RPD within QC limits?	Yes	
R7	O, I	Matrix spike (MS) and matrix spike duplicate (MSD) data		
	I	Were the project/method specified analytes included in the MS and MSD?	NA	
	I	Were MS/MSD analyzed at the appropriate frequency?	NA	
	I	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	NA	
	I	Were MS/MSD RPDs within laboratory QC limits?	NA	
R8	O, I	Analytical duplicate data		
	I	Were appropriate analytical duplicates analyzed for each matrix?	Yes	
	I	Were analytical duplicates analyzed at the appropriate frequency?	Yes	
	I	Were RPDs or relative standard deviations within the laboratory QC limits?	Yes	
R9	0, I	Method quantitation limits (MQLs):		
	I	Are the MQLs for each method analyte included in the laboratory data package?	Yes	
	I	Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Yes	
	I	Are unadjusted MQLs included in the laboratory data package?	Yes	
R10	O, I	Other problems/anomalies		
	I	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Yes	
	I	Were all necessary corrective actions performed for the reported data?	Yes	
	I	Was applicable and available technology used to lower the SQL minimize the matrix interference affects on the sample results?	Yes	

Table 2. Supporting Data.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Michael Ohlinger

LRC Date: 11/29/23

Laboratory Job Number: 233267

Prep Batch Number(s): QC2310189

Item¹	em¹ Analytes² Description		Result (Yes, No, NA, NR) ³	Exception Report No.4	
S1	0, I	Initial calibration (ICAL)			
	I	Were response factors and/or relative response factors for each analyte within QC limits?	NA		
	I	Were percent RSDs or correlation coefficient criteria met?	NA	1,000	
	I	Was the number of standards recommended in the method used for all analytes?	NA		
	I	Were all points generated between the lowest and highest standard used to calculate the curve?	Yes		
	I	Are ICAL data available for all instruments used?	NA		
	I	Has the initial calibration curve been verified using an appropriate second source standard?	NA		
S2	O, I	Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):			
	I	Was the CCV analyzed at the method-required frequency?	Yes		
	I	Were percent differences for each analyte within the method-required QC limits?	Yes		
	I	Was the ICAL curve verified for each analyte?	Yes		
	I	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	No	ER1	
S3	0	Mass spectral tuning:			
	I	Was the appropriate compound for the method used for tuning?	NA		
	I	Were ion abundance data within the method-required QC limits?	NA		
S4	0	Internal standards (IS):			
	I	Were IS area counts and retention times within the method-required QC limits?	NA		
S5	O, I	Raw data (NELAC section 1 appendix A glossary, and section 5.)		n. n. h.	
	I	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Yes		
	I	Were data associated with manual integrations flagged on the raw data?	NA		

Item¹ Analytes² De		Description	Result (Yes, No, NA, NR) ³	Exception Report No.4
S6	0	Dual column confirmation	,	
	I	Did dual column confirmation results meet the method-required QC?	NA	
S7	0	Tentatively identified compounds (TICs):		
	I	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	NA	
S8	I	Interference Check Sample (ICS) results:		
	I	Were percent recoveries within method QC limits?	NA	
S9	I	Serial dilutions, post digestion spikes, and method of standard additions		
	I	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	NA	
S10	Ι ,Ο	Method detection limit (MDL) studies		
	I	Was a MDL study performed for each reported analyte?	Yes	
	I	Is the MDL either adjusted or supported by the analysis of DCSs?	Yes	
S11	O, I	Proficiency test reports:		
	I	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Yes	
S12	O, I	Standards documentation		
	I	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Yes	
S13	O, I	Compound/analyte identification procedures		
	I	Are the procedures for compound/analyte identification documented?	Yes	
S14	O, I	Demonstration of analyst competency (DOC)	_	
	I	Was DOC conducted consistent with NELAC Chapter 5C?	Yes	
	I	Is documentation of the analyst's competency up-to-date and on file?	Yes	
S15	O, I		7	
	I	Are all the methods used to generate the data documented, verified, and validated, where applicable?	Yes	
S16	O, I	Laboratory standard operating procedures (SOPs):		
	I	Are laboratory SOPs current and on file for each method performed?	Yes	

Table 3. Exception Reports.

Laboratory Name: American Electric Power Dolan Chemical Laboratory

Project Name: Pirkey CCR

Reviewer Name: Michael Ohlinger

LRC Date: 11/29/23

Laboratory Job Number: 233267

Prep Batch Number(s): QC2310189

Exception Report No.	Description
ER1	CCB acceptance criteria is CCB<0.5*MQL.
·	

¹ Items identified by the letter "R" must be available as a hard copy or as a .pdf file. Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O - organic analyses; I - inorganic analyses (including general chemistry constituents, when applicable).

³ NA - Not applicable; NR - Not reviewed.

⁴ Exception Report identification number; an Exception Report should be completed for an item if the result is "No" or "NR."

APPENDIX 6- Well Installation/Decommissioning Logs

Reports documenting monitoring well plugging and abandonment or well installation are included in the appendix.

STATE OF TEXAS PLUGGING REPORT for Tracking #232687

Owner: SWEPCO Owner Well #: MW-7 (AD-7)

Address: 2400 FM 3251 Grid #: 35-37-1

Hallsville, TX 75650

Well Location: 2400 FM 3251 32° 27' 40.81" N

Hallsville, TX 75650 Longitude: 094° 29' 12.31" W

Well County: Harrison Elevation: No Data

Well Type: Monitor

Drilling Information

Company: No Data Date Drilled: 10/3/1983

Driller: No Data License Number: No Data

 Diameter (in.)
 Top Depth (ft.)
 Bottom Depth (ft.)

 Borehole:
 10
 0
 40

Plugging Information

Date Plugged: 9/12/2023 Plugger: Rich Herman

Plug Method: Pour in 3/8 bentonite chips when standing water in well is less than 100 feet depth,

cement top 2 feet

Casing Left in Well:

Plug(s) Placed in Well:

Dla (in.)	Top (ft.)	Bottom (ft.)	Top (ft.)	Bottom (ft.)	Description (number of sacks & material)
4	0	40	0	40	Bentonite 9 Bags/Sacks

Certification Data: The driller certified that the driller plugged this well (or the well was plugged under the

driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in

the reports(s) being returned for completion and resubmittal.

Company Information: ETTL Engineers & Consultants, Inc.

1717 East Erwin Street

Tyler, TX 75702

Driller Name: Rich Herman License Number: 59385

Comments: All casing and screen left in the hole. When attempting to pull, 3' of stickup was all

that came out. No cement cap per client request due to grading that is currently

going on