Annual Groundwater Monitoring Report

Appalachian Power Company John E. Amos Plant Landfill CCR Unit Winfield, West Virginia

January 2025

Prepared by: American Electric Power Service Corporation 1 Riverside Plaza Columbus, Ohio 43215

BOUNDLESS ENERGY

Table of Contents

I.	Overview	1
II.	Groundwater Monitoring Well Locations and Identification Numbers	3
III.	Monitoring Wells Installed or Decommissioned	5
IV.	Groundwater Quality Data and Static Water Elevation Data, With Flow Rate and Direction Calculations and Discussion	5
V.	Groundwater Quality Data Statistical Analysis	5
VI.	Alternative Source Demonstrations	5
VII.	Discussion About Transition Between Monitoring Requirements or Alternate Monitoring Frequency	6
VIII.	Other Information Required	6
IX.	Description of Any Problems Encountered in 2024 and Actions Taken	6
X.	A Projection of Key Activities for the Upcoming Year	6

Page

- Appendix 1 Groundwater Data Tables and Figures
- Appendix 2 Groundwater Statistical Analyses
- Appendix 3 Alternative Source Demonstrations
- Appendix 4 Not applicable
- Appendix 5 Not applicable

Abbreviations:

ASD – Alternate Source Demonstration CCR – Coal Combustion Residual GWPS – Groundwater Protection Standard SSI – Statistically Significant Increase SSL – Statistically Significant Level AMLF – Amos Landfill

I. <u>Overview</u>

This *Annual Groundwater Monitoring and Corrective Action Report* (Report) has been prepared to report the status of activities for the preceding year for an existing Landfill CCR unit at Appalachian Power Company's, a wholly-owned subsidiary of American Electric Power Company (AEP), John E. Amos Power Plant. The USEPA's CCR rules require that the Annual Groundwater Monitoring Report be posted to the operating record for the preceding year no later than January 31.

In general, the following activities were completed:

- The Amos Landfill (AMLF) CCR Unit began 2024 in detection monitoring and continued in detection monitoring throughout the year.
- Groundwater data underwent various validation tests, including tests for completeness, valid values, transcription errors, and consistent units.
- Groundwater data summary tables, groundwater velocity, and flow direction maps are included in **Appendix 1**.
- The Amos Landfill (AMLF) continued in detection monitoring throughout all of 2024.
- Statistical analysis for the October 2023 detection monitoring sampling event was completed in March 2024. The statistical report for the event resulted in confirmed statistically significant increases (SSIs) of the following:
 - MW-1801: Chloride
 - MW-1802: Calcium and Sulfate

Due to these confirmed SSIs, an alternative source demonstration (ASD) was successfully completed in June 2024. The AMLF continued in detection monitoring. The statistical analysis is included in **Appendix 2** and the ASD is included in **Appendix 3**.

- Statistical analysis for the May 2024 detection monitoring sampling event was completed in October 2024. The statistical report for the event resulted in confirmed SSIs of the following:
 - MW-1801: Chloride
 - MW-1802: Calcium and Sulfate

An alternative source demonstration (ASD) was successfully completed in early January 2025. The AMLF continued in detection monitoring. The statistical analysis is included in **Appendix 2** and the ASD is included in **Appendix 3**.

• A detection monitoring event was conducted at the AMLF in October 2024. This event is undergoing statistical analysis still.

The major components of this annual report, to the extent applicable at this time, are presented in sections that follow:

- A map/aerial photograph showing the Amos Landfill CCR management unit, all groundwater monitoring wells, and monitoring well identification numbers.
- All of the monitoring data collected, including the rate and direction of groundwater flow, plus a summary showing the number of samples collected per monitoring well, the dates the samples were collected and whether the sample was collected as part of detection monitoring or assessment monitoring programs (**Appendix 1**).
- Statistical comparison of monitoring data to determine if there have been SSI(s) or SSL(s) (Attached as **Appendix 2**, where applicable);
- Discussion of the alternative source demonstrations (Appendix 3).
- A summary of any transition between monitoring programs or an alternate monitoring frequency, for example the date and circumstances for transitioning from detection monitoring to assessment monitoring, in addition to identifying the constituents detected at a statistically significant increase over background concentrations, if applicable (Appendix 4). This is not applicable to this report
- Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a statement as to why that happened (Appendix 5). This is not applicable to this report.
- Other information required to be included in the annual report such as assessment of corrective measures, if applicable.

In addition, this report summarizes key actions completed, and where applicable, describes any problems encountered and actions taken to resolve those problems. The report includes a projection of key activities for the upcoming year.

II. <u>Groundwater Monitoring Well Locations and Identification Numbers</u>

Figure 1 depicts the PE-certified groundwater monitoring network, the monitoring well locations, and their corresponding identification numbers. The groundwater monitoring well network was updated in 2020. MW-1801 and MW-1802 replaced MW-1 and MW-5.

The monitoring well distribution adequately covers downgradient and upgradient areas as detailed in the revised *Groundwater Monitoring Well Network Evaluation Report*, referenced above, that was placed on the American Electric Power CCR public internet site on June 5, 2020. The groundwater quality monitoring network includes the following:

- Five upgradient wells: MW-6, MW-7R, MW-8, MW-9, and MW-10; and
- Four downgradient wells: MW-1801, MW-1802, MW-2, and MW-4.

Upgradient Sampling Location
 Downgradient Sampling Location

FGD Landfill

- Monitoring well coordinates provided by AEP.

Site Layout FGD Landfill

AEP Amos Generating Plant Winfield, West Virginia

Geosyntec[>] 2022/01/26

Figure

1

Columbus, Ohio

III. Monitoring Wells Installed or Decommissioned

No monitoring wells were installed or decommissioned in 2024. The network design, as summarized in the *Groundwater Monitoring Well Network Evaluation* (2020) and as posted at the CCR website for Amos Plant's John E. Amos Landfill, did not change. That network design report, viewable on the AEP CCR web site, discusses the facility location, the hydrogeological setting, the hydrostratigraphic units, the uppermost aquifer, downgradient monitoring well locations and the upgradient monitoring well locations.

IV. <u>Groundwater Quality Data and Static Water Elevation Data. With Flow Rate and</u> <u>Direction Calculations and Discussion</u>

Appendix 1 contains tables showing the groundwater quality data collected since initiating CCR background sampling through results received in 2024. Static water elevation data from each monitoring event in 2024 are also shown in **Appendix 1**, along with the groundwater velocity calculations, groundwater flow direction, and potentiometric maps developed after each sampling event.

V. Groundwater Quality Data Statistical Analysis

Statistical analysis for the October 2023 detection monitoring sampling event was completed in March 2024. The statistical report for the event resulted in confirmed statistically significant increases (SSIs) at MW-1801 for Chloride and at MW-1802 for Calcium and Sulfate. Due to these confirmed SSIs, an alternative source demonstration (ASD) was performed and successfully completed in June 2024. The AMLF continued in detection monitoring. The statistical analysis is included in **Appendix 2** and the ASD is included in **Appendix 3**.

Statistical analysis for the May 2024 detection monitoring sampling event was completed in October 2024. The statistical report for the event resulted in confirmed SSIs at MW-1801 for Chloride and at MW-1802 for Calcium and Sulfate. An alternative source demonstration (ASD) was successfully completed in early January 2025. The AMLF continued in detection monitoring. The statistical analysis is included in **Appendix 2** and the ASD is included in **Appendix 3**.

A detection monitoring event was conducted at the AMLF in October 2024. This event is undergoing statistical analysis still.

VI. <u>Alternative Source Demonstrations</u>

An alternative source demonstration (ASD) relative to the Appendix III SSIs (chloride at MW-1801, calcium and sulfate at MW-1802) resulting from the October 2023 detection monitoring

event was completed in June 2024. The demonstration concluded that the groundwater quality and Appendix III indicator parameter SSIs identified in the statistical evaluation is attributable to an alternative source. The successful ASD for this event is attached in **Appendix 3**.

Because the ASD for the October 2023 samples was successful, the landfill remained in detection monitoring for the first semiannual samples of 2024.

An ASD relative to the Appendix III SSIs (chloride at MW-1801, calcium and sulfate at MW-1802) resulting from the May 2024 detection monitoring event was completed in January 2025. The demonstration concluded that the groundwater quality and Appendix III indicator parameter SSIs identified in the statistical evaluation is attributable to an alternative source. The successful ASD for this event is attached in **Appendix 3**.

VII. <u>Discussion About Transition Between Monitoring Requirements or Alternate</u> <u>Monitoring Frequency</u>

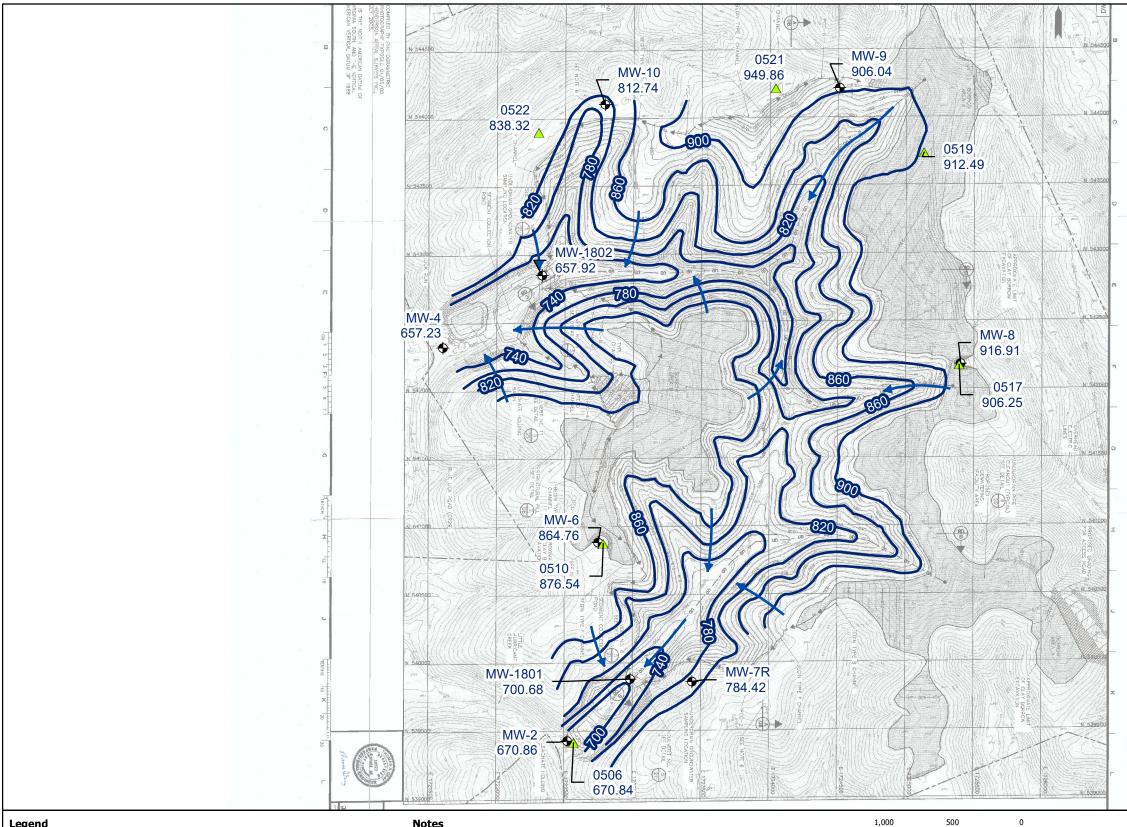
As of this annual report date there has been no transition between detection monitoring and assessment monitoring. Detection monitoring will continue in 2025 pending the results of the aforementioned statistical analysis regarding the October 2024 groundwater sampling event. If the statistical analysis of the October 2024 event confirms any SSIs, an ASD will be investigated. If the ASD is successful, the AMLF will remain in detection monitoring. If the ASD is not successful, the AMLF will proceed with assessment monitoring as required by 40 CFR 257.95.

Regarding defining an alternate monitoring frequency, the groundwater velocity and monitoring well production are high enough at this facility that no modification to the semiannual assessment monitoring frequency is needed.

VIII. Other Information Required

As required by the CCR detection monitoring rules in 40 CFR 257.94, sampling all CCR wells for the Appendix III parameters was completed in 2024. All required information has been included in this annual groundwater monitoring report.

IX. Description of Any Problems Encountered in 2024 and Actions Taken


No significant problems were encountered. The low flow sampling effort went smoothly and the schedule was met to support the 2024 annual groundwater report preparation covering the groundwater monitoring activities in 2024.

X. <u>A Projection of Key Activities for the Upcoming Year</u>

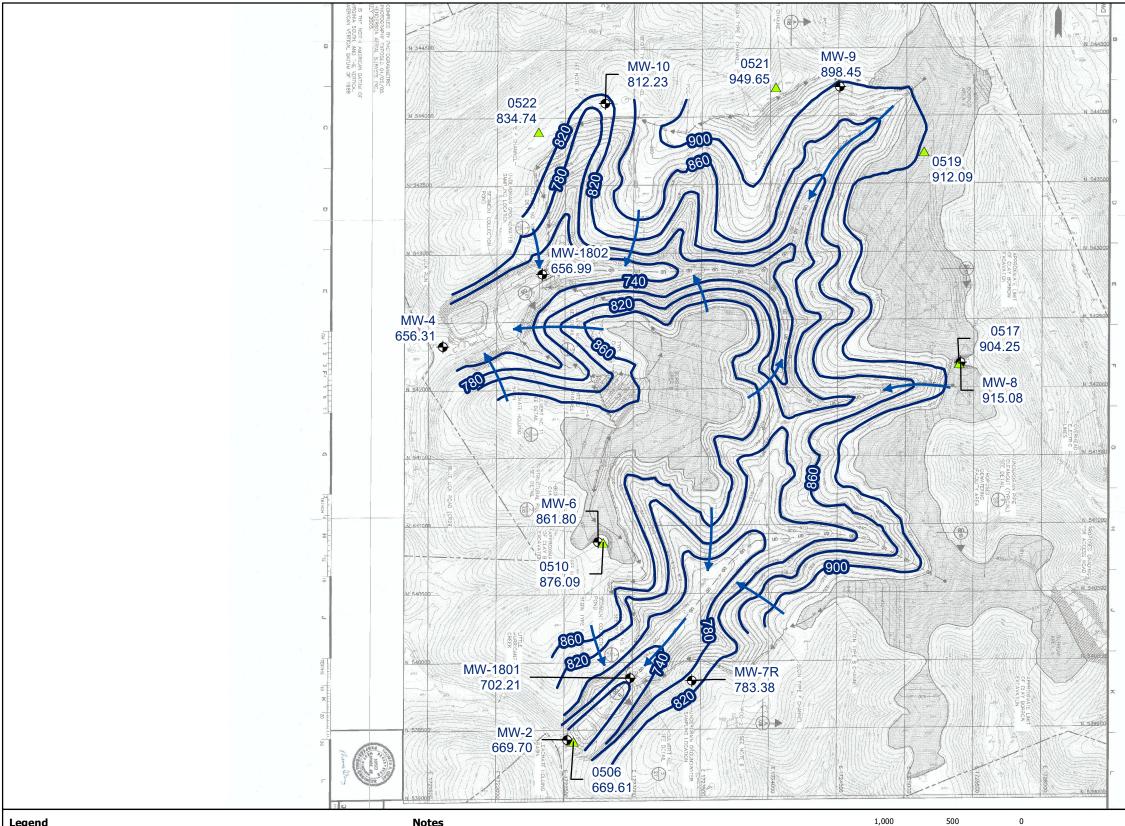
Key activities for 2025 include:

- Complete statistical evaluation for the October 2024 detection monitoring event.
- Perform an ASD, if necessary, for the October 2024 detection monitoring event if any SSIs are confirmed. If the ASD if necessary and is unsuccessful, the CCR unit will transition into assessment monitoring. If it is successful or no SSIs are confirmed, the CCR unit will continue detection monitoring on a semi-annual basis.
- Respond to any new data received in light of what the CCR rule requires.
- Preparation of the 2025 annual groundwater report.

Figures and Tables showing the groundwater monitoring network, data collected, and the rate and direction of groundwater flow.

Legend

- Groundwater Monitoring Well
- A Piezometer
- Groundwater Elevation Contour
- ----> Groundwater Flow Direction


Notes

- 1. Monitoring well coordinates and water level data (collected on May 6, 2024) provided by AEP.
- As of 2023, a portion of the liner in Cell 4 was replaced with a riprap drainage blanket; re-lining construction is ongoing.
 Topography and drainage system basemap from AEP Drawing No. 13-30500-05-A (topographic contour interval: 10 feet).

- 4. Groundwater elevation units are feet above mean sea level (amsl).

Ν
A
ş

1,000 Feet	Potentiometric Sur	face Map - Uppermo May 2024	st Aquifer
	AEP A Win		
	Geosy	ntec ^D	Figure
	Columbus, Ohio	2024/06/06	X

Legend

- Groundwater Monitoring Well
- A Piezometer
- Groundwater Elevation Contour
- ----> Groundwater Flow Direction

Notes

1. Monitoring well coordinates and water level data (collected on October 14, 2024) provided by AEP.

As of 2023, a portion of the liner in Cell 4 was replaced with a riprap drainage blanket; re-lining construction is ongoing.
 Topography and drainage system basemap from AEP Drawing No. 13-30500-05-A

(topographic contour interval: 10 feet).

4. Groundwater elevation units are feet above mean sea level (ft amsl).

N

1,000 Feet		face Map - Uppermo October 2024	ost Aquifer
		mos Generating Plant field, West Virginia	
	Geosy	ntec ^D	Figure
	con	X	
	Columbus, Ohio	2025/01/07	~

Table 1: Residence Time Calculation Summary Amos Landfill

2024-01^[3] 2024-07^[3] 2024-05 2024-10 Groundwater Groundwater Groundwater Groundwater CCR Groundwater Groundwater Groundwater Groundwater Well Diameter Monitoring Residence Residence Residence Residence Management Velocity Velocity Velocity Velocity Well (inches) Time Time Time Time Unit (ft/year) (ft/year) (ft/year) (ft/year) (days) (days) (days) (days) MW-2^[2] 2.0 3.1 20 2.7 22 3.9 16 3.7 17 MW-4^[2] 2.0 2.0 30 2.0 30 39 37 1.6 1.6 MW-6^[1] 0.5 129.0 0.5 122 0.5 101 2.0 131 0.6 MW-7R^[1] 2.0 4.0 15.4 2.7 22 2.7 23 3.1 19 MW-8^[1] Landfill 2.0 0.9 67.3 0.6 96 0.6 104 0.6 104 MW-9^[1] 2.0 0.9 70.4 0.9 66 0.8 72 0.8 76 MW-10^[1] 2.0 0.9 67.7 2.2 28 2.2 27 2.3 26 MW-1801^[2] 2.0 2.4 26 2.5 25 25 2.1 28 2.5 MW-1802^[2] 2.0 2.9 3.0 20 3.1 3.1 21 20 19

Notes:

[1] - Background Well

[2] - Downgradient Well

[3] - Two-of-two verification sampling

Table 1. Groundwater Data Summary: MW-1 Amos - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
8/23/2016	Background	0.044	31.1	3.45	0.09 J1	6.2	30.6	182
10/18/2016	Background	0.060	29.0	3.31	0.09	6.5	30.8	232
11/9/2016	Background	0.076	29.9	3.42	0.10	6.5	31.3	194
12/13/2016	Background	0.065	29.3	3.08	0.07 J1	6.1	27.7	250
2/9/2017	Background	0.050	26.8	3.16	0.09	6.3	27.9	234
3/16/2017	Background	0.046	28.4	3.32	0.09	7.5	29.4	216
5/23/2017	Background	0.123	30.2	3.19	0.09	6.6	28.5	215
6/21/2017	Background	0.037	28.1	4.94	0.08	6.4	31.9	204
11/1/2017	Detection	0.047	28.7	3.08	0.10	6.4	30.2	224
5/2/2018	Detection	0.134	27.2	3.22	0.10	6.5	29.9	194
11/29/2018	Detection	0.143	26.4	3.07	0.11	6.7	27.8	191
12/18/2018	Detection	0.07 J1				6.5		
6/11/2019	Detection	0.04 J1	28.1	2.86	0.11	7.0	29.9	184
11/6/2019	Detection	0.04 J1	30.1	3.20	0.10	6.2	29.4	193

Table 1. Groundwater Data Summary: MW-1 Amos - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
8/23/2016	Background	0.04 J1	0.27	207	0.024	0.02 J1	0.3	0.097	0.0848	0.09 J1	0.186	0.017	< 0.002 U1	0.04 J1	0.9	0.01 J1
10/18/2016	Background	0.04 J1	0.62	206	0.050	0.03	0.627	0.306	1.24	0.09	0.567	0.017	0.002 J1	0.08 J1	1.4	0.05 J1
11/9/2016	Background	0.04 J1	0.44	210	0.036	0.03	0.564	0.200	1.001	0.10	0.450	0.020	< 0.002 U1	0.14	1.3	0.088
12/13/2016	Background	0.05 J1	1.09	232	0.100	0.01 J1	2.16	0.613	0.6701	0.07 J1	1.45	0.027	< 0.002 U1	0.11	1.7	0.02 J1
2/9/2017	Background	0.03 J1	0.37	184	0.026	0.02 J1	0.401	0.174	0.836	0.09	0.340	0.015	< 0.002 U1	0.21	1.6	0.02 J1
3/16/2017	Background	0.06	0.67	200	0.057	0.06	0.993	0.393	0.73	0.09	1.03	0.012	0.003 J1	0.10	1.1	0.02 J1
5/23/2017	Background	0.08	0.40	211	0.032	0.05	0.555	0.292	3.243	0.09	0.697	0.026	< 0.002 U1	0.11	1.1	0.01 J1
6/21/2017	Background	0.07	0.43	200	0.031	0.06	0.547	0.289	1.379	0.08	0.753	0.013	< 0.002 U1	0.10	1.2	0.02 J1

Table 1. Groundwater Data Summary: MW-2 Amos - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
	_	mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
8/23/2016	Background	0.201	1.99	4.00	1.34	8.7	12.0	362
10/17/2016	Background	0.198	1.53	4.21	1.26	9.1	11.8	354
11/8/2016	Background	0.216	1.46	4.13	1.30	8.2	11.3	378
12/13/2016	Background	0.217	1.65	2.99	1.19	8.5	7.6	350
2/8/2017	Background	0.190	1.56	2.66	1.33	8.7	7.4	374
3/14/2017	Background	0.184	1.81	3.91	1.20	8.4	7.7	354
5/23/2017	Background	0.187	1.42	4.23	1.17	8.7	8.1	354
6/21/2017	Background	0.189	1.56	3.47	1.19	8.5	7.4	356
11/1/2017	Detection	0.202	1.88	2.34	1.46	8.8	8.6	394
1/8/2018	Detection	0.251			1.07	8.4		353
5/1/2018	Detection	0.241	3.50	3.90	1.45	8.5	9.4	344
6/19/2018	Detection	0.338	1.79		1.28	8.5		
9/24/2018	Detection	0.215						
11/28/2018	Detection	0.235	1.84	5.09	1.15	8.5	8.5	355
12/17/2018	Detection					8.6		
1/24/2019	Detection	0.218						
6/11/2019	Detection	0.215	1.80	3.26	1.63	8.7	9.4	379
7/22/2019	Detection				1.41	8.7		
11/6/2019	Detection	0.203	1.73	3.44	1.66	8.6	9.5	379
2/11/2020	Detection				1.37	8.5		
5/5/2020	Detection	0.174	2.76	5.08	1.37	8.6	7.8	368
7/7/2020	Detection		2.74			8.5		
11/3/2020	Detection	0.179	1.69	4.31	1.45	8.8	9.0	378
5/4/2021	Detection	0.220	2.04	3.60	1.62	8.7	8.2	386
7/21/2021	Detection				1.41	8.4		
11/2/2021	Detection	0.221	1.80	2.85	1.70	8.6	6.97	380
3/1/2022	Detection				0.09	6.3		
5/24/2022	Detection	0.227	1.82	3.39	1.60	6.1	9.29	370 L1
7/27/2022	Detection					8.7		
11/1/2022	Detection	0.215	1.89 M1	2.93	1.63	8.8	8.31	380
5/26/2023	Detection	0.187	1.52	3.55	1.68	8.7	9.5	380
10/17/2023	Detection	0.217	2.20	3.39	1.51	8.5	8.7	360
5/9/2024	Detection	0.185	1.66	4.25	1.39	8.6	8.1	370
10/17/2024	Detection	0.226	2.04	3.76	1.49	8.4	7.3	380

Table 1. Groundwater Data Summary: MW-2Amos - LFAppendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
8/23/2016	Background	0.03 J1	6.57	51.8	0.129	0.14	1.3	1.02	0.904	1.34	1.24	0.009	< 0.002 U1	6.04	0.2 J1	0.03 J1
10/17/2016	Background	0.01 J1	3.94	25.7	0.040	0.005 J1	0.592	0.290	0.208	1.26	0.258	0.010	< 0.002 U1	3.70	0.09 J1	0.067
11/8/2016	Background	0.01 J1	3.54	23.7	0.02 J1	< 0.004 U1	0.295	0.107	0.8825	1.30	0.077	0.008	< 0.002 U1	3.84	0.05 J1	< 0.01 U1
12/13/2016	Background	0.01 J1	4.36	27.1	0.009 J1	< 0.004 U1	0.952	0.075	0.288	1.19	0.068	0.011	< 0.002 U1	6.11	0.05 J1	< 0.01 U1
2/8/2017	Background	< 0.01 U1	4.09	25.5	0.032	0.005 J1	0.571	0.287	1.109	1.33	0.279	0.009	< 0.002 U1	5.55	0.1	0.02 J1
3/14/2017	Background	0.02 J1	3.72	31.9	0.071	0.02	1.01	0.573	2.863	1.20	0.651	0.010	0.002 J1	3.46	0.2	0.02 J1
5/23/2017	Background	0.03 J1	3.59	27.2	0.043	0.009 J1	0.605	0.341	0.796	1.17	0.333	0.010	< 0.002 U1	3.70	0.1	< 0.01 U1
6/21/2017	Background	0.03 J1	3.80	27.7	0.028	0.01 J1	0.490	0.234	1.1188	1.19	0.229	0.004	0.003 J1	4.57	0.08 J1	0.03 J1

Table 1. Groundwater Data Summary: MW-4 Amos - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
8/23/2016	Background	0.173	0.914	14.1	1.49	9.9	10.7	368
10/18/2016	Background	0.165	0.807	13.9	1.33	9.8	11.7	386
11/7/2016	Background	0.203	0.842	14.6	1.44	9.5	11.1	376
12/13/2016	Background	0.180	0.836	15.7	1.34	9.0	8.0	372
2/8/2017	Background	0.170	0.807	14.9	1.40	9.3	8.0	412
3/14/2017	Background	0.173	0.855	14.5	1.46	8.8	7.4	381
5/23/2017	Background	0.190	0.750	15.3	1.38	9.2	7.9	390
6/20/2017	Background	0.161	0.814	15.1	1.36	9.1	7.6	392
11/1/2017	Detection	0.194	0.766	14.2	1.36	9.4	9.3	404
1/8/2018	Detection	0.145			1.37	3.3		
5/1/2018	Detection	0.199	0.783	14.9	1.47	9.2	9.0	380
11/27/2018	Detection	0.188	0.807	14.1	1.42	8.8	8.8	383
6/12/2019	Detection	0.167	0.788	14.4	1.46	8.6	9.0	415
11/6/2019	Detection	0.173	0.761	14.9	1.49	9.2	9.4	382
5/5/2020	Detection	0.150	0.790	15.2	1.37	9.2	8.4	397
11/3/2020	Detection	0.157	0.783	17.1	1.53	9.4	9.7	397
1/5/2021	Detection			18.0	1.48	9.4		
5/4/2021	Detection	0.168	0.695	19.7	1.50	9.2	8.8	410
7/21/2021	Detection			20.8		9.0		
11/4/2021	Detection	0.167	0.7	21.8	1.40	9.1	7.86	390
3/1/2022	Detection			25.1		9.3		
5/25/2022	Detection	0.171	0.95	24.2	1.34	8.3	9.79	400 L1
7/26/2022	Detection		0.89			9.2		
11/1/2022	Detection	0.170	0.87	26.1	1.28	9.3	9.39	400
2/8/2023	Detection			27.5		9.2		
5/26/2023	Detection	0.151	0.77	23.8	1.39	9.0	9.8	400
10/17/2023	Detection	0.165	0.90 M1	23.3	1.35	9.4	9.5	370
5/9/2024	Detection	0.151	0.85	23.7	1.34	9.1	9.3	390
10/17/2024	Detection	0.153	0.77	22.7	1.36	9.2	8.6	410

Table 1. Groundwater Data Summary: MW-4 Amos - LF Appendix IV Constituents

Collection Date	Program	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
8/23/2016	Background	0.01 J1	9.61	24.1	0.020	0.11	0.9	0.158	0.444	1.49	0.371	0.008	< 0.002 U1	8.82	0.09 J1	< 0.01 U1
10/18/2016	Background	< 0.01 U1	8.81	20.2	< 0.005 U1	0.006 J1	0.064	0.014	0.152	1.33	0.021	0.002	< 0.002 U1	8.01	< 0.03 U1	0.03 J1
11/7/2016	Background	< 0.01 U1	9.07	21.5	< 0.005 U1	< 0.004 U1	1.68	0.029	1.56	1.44	0.007 J1	0.003	< 0.002 U1	8.14	< 0.03 U1	< 0.01 U1
12/13/2016	Background	< 0.01 U1	9.44	22.4	< 0.005 U1	< 0.004 U1	0.169	0.011	0.16	1.34	0.009 J1	0.007	< 0.002 U1	8.94	< 0.03 U1	0.02 J1
2/8/2017	Background	< 0.01 U1	8.78	19.2	0.006 J1	< 0.004 U1	0.122	0.043	0.567	1.40	0.064	0.006	< 0.002 U1	8.15	< 0.03 U1	0.03 J1
3/14/2017	Background	< 0.01 U1	10.1	20.4	0.005 J1	0.005 J1	0.523	0.041	1.456	1.46	0.114	0.006	< 0.002 U1	9.70	< 0.03 U1	< 0.01 U1
5/23/2017	Background	0.02 J1	8.96	21.1	< 0.004 U1	< 0.005 U1	0.104	0.008 J1	0.872	1.38	0.01 J1	0.012	< 0.002 U1	8.21	< 0.03 U1	< 0.01 U1
6/20/2017	Background	0.02 J1	9.15	21.8	0.004 J1	0.005 J1	0.157	0.037	0.905	1.36	0.039	0.005	< 0.002 U1	7.86	0.05 J1	< 0.01 U1

Table 1. Groundwater Data Summary: MW-5 Amos - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
8/23/2016	Background	0.032	18.4	3.59	0.14	9.9	29.3	124
10/18/2016	Background	0.034	15.6	3.61	0.12	6.4	29.3	148
11/8/2016	Background	0.034	14.3	3.52	0.11	6.3	25.5	92
12/13/2016	Background	0.015	14.6	3.61	0.07	8.2	24.3	100
2/8/2017	Background	0.030	14.1	3.54	0.09	6.4	24.0	126
3/16/2017	Background	0.026	15.9	3.72	0.09	7.0	24.9	158
5/23/2017	Background	0.032	13.7	3.70	0.09	6.3	24.2	108
6/20/2017	Background	0.017	14.5	3.66	0.08	6.0	27.8	102
11/1/2017	Detection	0.046	15.6	4.09	0.09	6.1	28.4	136
1/8/2018	Detection			4.22		6.7		
5/2/2018	Detection	0.123	14.3	4.39	0.09	6.2	26.3	122
6/20/2018	Detection	0.126		4.61		6.1		
11/29/2018	Detection	0.122	14.1	4.86	0.13	7.4	24.5	113
12/17/2018	Detection			4.77		6.2		
6/12/2019	Detection	0.02 J1	16.2	4.60	0.11	6.1	26.4	132
7/22/2019	Detection			4.61		6.0		
11/5/2019	Detection	0.03 J1	18.3	5.21	0.10		28.3	131
11/6/2019	Detection					6.0		
2/11/2020	Detection		18.5			5.8		

Table 1. Groundwater Data Summary: MW-5 Amos - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
8/23/2016	Background	0.04 J1	0.47	93.3	0.02 J1	0.07	0.3	0.188	1.025	0.14	0.263	0.006	< 0.002 U1	0.17	0.1	0.01 J1
10/18/2016	Background	0.04 J1	0.34	82.5	0.02 J1	0.02	0.546	0.198	0.353	0.12	0.250	0.005	< 0.002 U1	0.16	0.2	0.03 J1
11/8/2016	Background	0.04 J1	0.49	80.1	0.050	0.05	0.945	0.446	1.847	0.11	0.698	< 0.0002 U1	< 0.002 U1	0.14	0.1	0.01 J1
12/13/2016	Background	0.04 J1	0.51	80.9	0.033	0.03	0.622	0.339	1.18	0.07	0.442	0.010	< 0.002 U1	0.18	0.2	0.070
2/8/2017	Background	0.02 J1	0.30	70.2	0.022	0.02 J1	0.465	0.217	0.5868	0.09	0.257	0.005	< 0.002 U1	0.14	0.1	0.02 J1
3/16/2017	Background	0.09	2.32	121	0.183	0.21	4.43	2.92	1.096	0.09	3.77	0.002	0.008	0.40	0.9	0.04 J1
5/23/2017	Background	0.06	0.21	77.7	0.01 J1	0.02	0.248	0.072	1.312	0.09	0.093	0.011	< 0.002 U1	0.14	0.09 J1	< 0.01 U1
6/20/2017	Background	0.02 J1	0.25	80.6	0.01 J1	0.03	0.291	0.092	1.141	0.08	0.097	< 0.0002 U1	< 0.002 U1	0.09 J1	0.09 J1	< 0.01 U1

Table 1. Groundwater Data Summary: MW-6 Amos - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
8/24/2016	Background	0.095	40.7	7.78	0.26	7.6	41.3	408
10/19/2016	Background	0.093	39.8	7.67	0.23	7.9	51.1	438
11/7/2016	Background	0.147	42.7	7.76	0.25	7.7	51.6	426
12/12/2016	Background	0.109	44.4	8.17	0.20	7.5	54.0	414
2/7/2017	Background	0.122	36.7	7.20	0.23	7.5	31.1	380
3/16/2017	Background	0.098	37.1	7.09	0.24	7.9	29.1	388
5/22/2017	Background	0.171	33.7	6.89	0.23	7.7	24.7	359
6/19/2017	Background	0.154	37.2	7.01	0.21	7.4	33.1	386
11/2/2017	Detection	0.159	41.3	7.77	0.22	7.5	51.8	440
5/1/2018	Detection	0.163	33.4	6.94	0.26	7.4	24.7	358
11/28/2018	Detection	0.156	35.8	6.85	0.24	7.6	22.9	333
6/12/2019	Detection	0.08 J1	32.8	6.85	0.28	7.7	21.9	363
11/6/2019	Detection	0.100	39.8	8.00	0.24	7.4	33.2	390
5/7/2020	Detection	0.092	37.0	6.61	0.21	7.6	14.9	349
11/4/2020	Detection	0.088	38.4	7.63	0.28	7.7	32.5	375
5/4/2021	Detection	0.101	34.7	7.33	0.27	7.5	19.0	354
11/4/2021	Detection	0.093	35.1	7.51	0.25	7.4	22.1	360
5/26/2022	Detection	0.092	45.5	8.63	0.24	7.5	19.2	350 L1
11/2/2022	Detection	0.099	42.3	8.56	0.23	7.6	23.8	360
5/31/2023	Detection	0.091	39.1	8.84	0.23	7.3	19.9	350
10/18/2023	Detection	0.096	43.4	8.44	0.23	7.4	30.7	360
5/8/2024	Detection	0.094	39.5	9.30	0.23	7.3	23.9	350
10/17/2024	Detection	0.091	43.1	8.96	0.24	7.4	33.6	430

Table 1. Groundwater Data Summary: MW-6 Amos - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
8/24/2016	Background	0.04 J1	6.03	245	0.036	0.03	0.5	0.183	2.318	0.26	0.461	0.015	< 0.002 U1	0.77	0.09 J1	0.138
10/19/2016	Background	0.02 J1	6.42	235	0.033	0.005 J1	0.413	0.148	0.697	0.23	0.381	0.015	< 0.002 U1	0.36	0.09 J1	0.02 J1
11/7/2016	Background	0.01 J1	6.64	250	0.009 J1	< 0.004 U1	0.160	0.023	2.70	0.25	0.053	0.011	< 0.002 U1	0.36	< 0.03 U1	< 0.01 U1
12/12/2016	Background	0.01 J1	7.36	246	0.006 J1	0.01 J1	0.104	0.020	1.878	0.20	0.039	0.023	< 0.002 U1	0.39	0.04 J1	0.03 J1
2/7/2017	Background	< 0.01 U1	5.47	199	0.02 J1	< 0.004 U1	0.207	0.073	1.151	0.23	0.160	0.013	< 0.002 U1	0.44	0.05 J1	0.01 J1
3/16/2017	Background	0.03 J1	4.44	224	< 0.005 U1	0.005 J1	0.498	0.028	1.844	0.24	0.048	0.009	0.003 J1	0.53	0.03 J1	< 0.01 U1
5/22/2017	Background	0.04 J1	4.58	218	0.02 J1	0.009 J1	0.175	0.063	2.4	0.23	0.117	0.019	< 0.002 U1	0.50	0.04 J1	0.01 J1
6/19/2017	Background	0.03 J1	4.86	233	0.01 J1	< 0.005 U1	0.274	0.051	1.617	0.21	0.136	0.011	< 0.002 U1	0.44	0.04 J1	< 0.01 U1

Table 1. Groundwater Data Summary: MW-7R Amos - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
8/24/2016	Background	0.106	31.0	4.13	0.36	7.7	228	678
10/18/2016	Background	0.083	30.9	3.86	0.32	8.0	229	706
11/8/2016	Background	0.102	33.5	3.78	0.31	7.0	209	618
12/14/2016	Background	0.084	32.2	3.94	0.26	7.6	217	606
2/9/2017	Background	0.071	37.7	3.45	0.22	7.6	186	542
3/14/2017	Background	0.078	33.6	3.79	0.30	7.7	215	640
5/24/2017	Background	0.072	30.4	3.80	0.29	7.6	226	663
6/21/2017	Background	0.092	32.5	3.60	0.26	7.6	246	680
11/2/2017	Detection	0.109	31.7	3.59	0.28	7.6	211	636
5/1/2018	Detection	0.145	30.3	4.09	0.36	7.7	239	688
11/28/2018	Detection	0.118	44.4	3.65	0.26	7.4	201	627
6/12/2019	Detection	0.1 J1	36.8	3.75	0.35	7.4	226	700
11/6/2019	Detection	0.099	26.6	4.15	0.34	7.5	217	655
5/6/2020	Detection	0.079	41.7	3.68	0.28	7.5	208	629
11/3/2020	Detection	0.077	37.9	3.93	0.35	7.6	247	731
5/4/2021	Detection	0.096	33.0	3.86	0.37	7.6	220	708
11/4/2021	Detection	0.090	29.0	3.76	0.33	7.5	210	730
5/26/2022	Detection	0.092	38.5	3.87	0.33	7.5	219	690 L1
11/2/2022	Detection	0.087	38.8	3.89	0.31	7.6	249	720
5/30/2023	Detection	0.071	46.8	3.55	0.26	7.3	198	650
10/17/2023	Detection	0.082	37.2	3.62	0.29	7.5	225	710
5/8/2024	Detection	0.095	30.4	3.62	0.33	7.4	197	670
10/17/2024	Detection	0.094	37.4 M1	3.70	0.30	7.4	224	720

Table 1. Groundwater Data Summary: MW-7R Amos - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
8/24/2016	Background	0.11	8.37	60.8	0.155	0.04	1.0	0.368	1.043	0.36	1.52	0.016	0.004 J1	25.7	0.4	0.061
10/18/2016	Background	0.07	7.13	51.4	0.111	0.01 J1	0.760	0.279	0.959	0.32	0.961	0.012	0.002 J1	23.2	0.3	0.03 J1
11/8/2016	Background	0.08	5.81	42.2	0.026	0.02	2.82	0.084	1.895	0.31	0.261	0.013	< 0.002 U1	17.5	0.2	0.01 J1
12/14/2016	Background	0.09	7.33	44.3	0.028	0.01 J1	1.73	0.103	0.962	0.26	0.249	0.014	< 0.002 U1	24.6	0.2	0.02 J1
2/9/2017	Background	0.05	4.21	41.7	0.01 J1	0.01 J1	0.217	0.065	0.0996	0.22	0.156	0.012	< 0.002 U1	11.7	0.08 J1	0.02 J1
3/14/2017	Background	0.08	7.02	40.2	0.01 J1	0.01 J1	0.234	0.064	2.735	0.30	0.154	0.010	< 0.002 U1	24.6	0.1	0.02 J1
5/24/2017	Background	0.10	7.48	42.0	0.01 J1	0.01 J1	0.242	0.080	0.3888	0.29	0.171	0.016	< 0.002 U1	25.7	0.2	0.01 J1
6/21/2017	Background	0.08	6.69	39.1	0.006 J1	0.006 J1	0.154	0.043	1.497	0.26	0.064	0.010	< 0.002 U1	22.9	0.1	0.01 J1

Table 1. Groundwater Data Summary: MW-8 Amos - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
8/24/2016	Background	0.021	141	13.3	0.16	7.0	73.6	578
10/19/2016	Background	0.037	135	12.6	0.15	7.2	66.5	538
11/9/2016	Background	0.029	137	5.12	0.07	6.9	26.1	532
12/14/2016	Background	0.017	136	14.2	0.13	6.8	59.7	504
2/8/2017	Background	0.092	132	12.9	0.15	6.9	67.5	540
3/15/2017	Background	0.074	151	13.5	0.16	7.2	74.5	623
5/24/2017	Background	0.031	137	13.9	0.14	6.8	73.2	596
6/20/2017	Background	0.034	139	12.6	0.13	6.9	77.2	574
11/2/2017	Detection	0.031	125	12.1	0.15	6.8	63.1	526
5/1/2018	Detection	0.065	136	13.1	0.17	6.9	78.8	592
11/29/2018	Detection	0.05 J1	126	13.2	0.17	6.8	58.8	558
6/12/2019	Detection	0.03 J1	125	8.58	0.20	7.6	54.5	540
11/6/2019	Detection	< 0.02 U1	134	21.2	0.16	6.8	78.6	613
5/7/2020	Detection	< 0.02 U1	115	15.3	0.15	7.0	98.4	590
11/4/2020	Detection	< 0.02 U1	112	9.87	0.20	6.8	87.3	549
5/4/2021	Detection	0.02 J1	94.1	6.32	0.20	7.1	73.8	472
11/3/2021	Detection	< 0.09 U1	111	60.9	0.18	7.0	64.9	570
5/26/2022	Detection	0.020 J1	102	63.8	0.17	7.4	76.3	560 L1
11/2/2022	Detection	0.023 J1	107	76.8	0.16	7.0	79.9	580
5/30/2023	Detection	0.045 J1	125	87.4	0.15	7.0	97.7	630
10/17/2023	Detection	0.023 J1	112	73.5	0.15	7.0	98.3	590
5/9/2024	Detection	0.022 J1	97.7	67.2	0.17	7.3	125	640
10/18/2024	Detection	0.024 J1	119	128	0.15	6.8	127	700

Table 1. Groundwater Data Summary: MW-8 Amos - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
8/24/2016	Background	0.04 J1	0.41	221	0.021	0.04	0.4	0.270	0.776	0.16	0.393	0.013	< 0.002 U1	0.40	0.2	0.03 J1
10/19/2016	Background	0.03 J1	0.35	195	0.01 J1	0.04	0.158	0.140	0.746	0.15	0.279	0.006	< 0.002 U1	0.07 J1	0.2	0.02 J1
11/9/2016	Background	0.02 J1	0.25	209	0.008 J1	< 0.004 U1	0.164	0.082	1.113	0.07	0.028	0.004	< 0.002 U1	0.08 J1	0.2	0.02 J1
12/14/2016	Background	0.03 J1	0.32	212	0.008 J1	0.008 J1	0.097	0.083	1.582	0.13	0.062	0.013	< 0.002 U1	0.10	0.2	0.02 J1
2/8/2017	Background	0.03 J1	0.37	192	0.01 J1	0.007 J1	0.131	0.059	1.223	0.15	0.109	0.007	< 0.002 U1	0.47	0.1	0.136
3/15/2017	Background	0.05 J1	1.44	270	0.069	0.02 J1	2.39	1.02	3.405	0.16	1.43	0.011	0.003 J1	0.28	0.4	0.02 J1
5/24/2017	Background	0.07	0.47	201	0.02 J1	0.009 J1	0.354	0.201	1.257	0.14	0.260	0.016	< 0.002 U1	0.11	0.2	0.01 J1
6/20/2017	Background	0.03 J1	0.35	182	0.02 J1	0.007 J1	0.192	0.077	1.065	0.13	0.142	0.005	< 0.002 U1	0.07 J1	0.3	0.02 J1

Table 1. Groundwater Data Summary: MW-9 Amos - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
8/24/2016	Background	0.064	80.1	6.30	0.24	7.3	37.3	414
10/19/2016	Background	0.042	103	6.09	0.18	7.5	36.4	444
11/9/2016	Background	0.076	90.6	6.11	0.22	7.2	34.5	420
12/13/2016	Background	0.057	94.4	6.59	0.18	7.1	35.1	390
2/8/2017	Background	0.052	99.0	6.22	0.16	7.1	34.9	382
3/15/2017	Background	0.093	99.1	6.26	0.22	7.4	35.8	402
5/23/2017	Background	0.084	86.4	6.21	0.18	7.1	34.8	438
6/20/2017	Background	0.079	93.8	6.17	0.15	7.0	38.4	424
11/2/2017	Detection	0.075	79.1	5.97	0.20	7.1	33.1	404
5/1/2018	Detection	0.200	73.1	6.14	0.26	7.2	30.9	402
11/29/2018	Detection	0.09 J1	78.8	6.08	0.21	7.1	31.6	412
6/11/2019	Detection	0.04 J1	97.6	6.03	0.20	7.3	37.9	436
11/7/2019	Detection	0.04 J1	85.8	6.11	0.19	7.3	38.2	442
5/6/2020	Detection	0.03 J1	80.3	2.53	0.22	7.2	22.4	333
11/4/2020	Detection	0.056	61.5	2.73	0.30	7.1	28.4	362
5/4/2021	Detection	0.064	57.0	3.96	0.28	7.2	29.8	396
11/3/2021	Detection	0.054	72.7	4.47	0.23	7.2	28.2	410
5/26/2022	Detection	0.052	99.4	4.78	0.21	7.7	33.9	410 L1
11/3/2022	Detection	0.064	84.7 M1	4.77	0.22	7.2	31.1	420
5/31/2023	Detection	0.041 J1	74.3	3.66	0.20	6.9	27.7	400
10/17/2023	Detection	0.052	60.6	3.67	0.22	7.1	28.1	380
5/8/2024	Detection	0.066	71.2	4.38	0.22	7.0	28.2	410
10/18/2024	Detection	0.054	59.3	2.61	0.25	7.0	20.3	350

Table 1. Groundwater Data Summary: MW-9 Amos - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
8/24/2016	Background	0.07	1.45	443	0.025	0.03	0.8	0.464	1.831	0.24	0.565	0.017	< 0.002 U1	0.48	0.2	0.03 J1
10/19/2016	Background	0.04 J1	3.75	441	0.025	0.01 J1	0.625	0.372	3.035	0.18	0.478	0.010	< 0.002 U1	0.27	0.1	0.03 J1
11/9/2016	Background	0.05 J1	1.12	491	< 0.005 U1	0.02 J1	0.207	0.020	1.735	0.22	0.046	0.008	< 0.002 U1	0.41	0.1	0.03 J1
12/13/2016	Background	0.04 J1	1.23	497	< 0.005 U1	0.04	0.540	0.032	0.39	0.18	0.084	0.019	< 0.002 U1	0.56	0.2	< 0.01 U1
2/8/2017	Background	0.02 J1	1.78	388	< 0.005 U1	0.03	0.078	0.033	1.448	0.16	0.058	0.012	< 0.002 U1	0.27	0.1	0.02 J1
3/15/2017	Background	0.04 J1	4.40	603	0.074	0.04	1.43	1.51	2.365	0.22	1.81	0.009	0.002 J1	0.37	0.5	0.04 J1
5/23/2017	Background	0.07	0.96	425	< 0.004 U1	0.02 J1	0.117	0.021	2.173	0.18	0.063	0.021	< 0.002 U1	0.37	0.2	0.02 J1
6/20/2017	Background	0.05 J1	1.35	441	< 0.004 U1	0.03	0.094	0.066	1.992	0.15	0.038	0.014	< 0.002 U1	0.33	0.07 J1	0.02 J1

Table 1. Groundwater Data Summary: MW-10 Amos - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
8/24/2016	Background	0.087	1.68	5.54	0.89	9.0	19.1	512
10/19/2016	Background	0.081	1.09	4.49	0.72	9.6	18.0	504
11/9/2016	Background	0.118	2.31	5.46	0.92	8.9	16.9	546
12/13/2016	Background	0.076	1.24	4.15	0.38	8.7	14.1	482
2/8/2017	Background	0.113	1.37	4.24	0.57	9.1	14.4	504
3/14/2017	Background	0.125	1.18	4.60	0.50	8.7	13.3	499
5/24/2017	Background	0.081	1.16	4.19	0.43	8.9	14.3	467
6/20/2017	Background	0.078	1.04	4.11	0.44	8.6	14.9	492
11/2/2017	Detection	0.095	1.12	5.08	0.55	9.2	17.0	508
5/2/2018	Detection	0.157	1.74	5.67	0.69	9.2	16.7	522
11/29/2018	Detection	0.174	1.03	5.27	0.59	8.7	15.3	506
6/11/2019	Detection	0.08 J1	1.03	5.12	0.72	9.0	16.0	524
11/6/2019	Detection	0.076	1.43	5.62	0.52	8.7	16.8	490
5/6/2020	Detection	0.074	1.25	4.90	0.60	8.6	13.0	526
11/4/2020	Detection	0.071	1.18	5.77	0.73	8.9	16.5	523
5/4/2021	Detection	0.081	0.916	5.48	0.73	9.0	14.7	519
11/5/2021	Detection	0.257	0.9	16.4	4.88	8.8	17.8	490
5/25/2022	Detection	0.083	1.44	4.10	0.51	6.0	14.1	510 L1
11/3/2022	Detection	0.088	1.68	5.60	0.65	7.5	14.4	520
5/30/2023	Detection	0.074	1.12	4.32	0.59	8.6	14.1	510
10/18/2023	Detection	0.068	1.96	5.22	0.57	8.4	15.2	450
5/14/2024	Detection	0.040 J1	0.74	5.07	0.38	8.4	13.8	470
10/17/2024	Detection					9.0		
10/18/2024	Detection	0.065	1.25	4.28	0.37		12.7	500

Table 1. Groundwater Data Summary: MW-10Amos - LFAppendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
8/24/2016	Background	0.36	24.5	105	0.058	0.26	0.5	0.367	0.769	0.89	1.11	0.010	0.003 J1	3.08	0.5	0.01 J1
10/19/2016	Background	0.26	19.4	62.4	0.02 J1	0.01 J1	0.373	0.102	0.0283	0.72	0.357	0.008	< 0.002 U1	2.58	0.4	0.082
11/9/2016	Background	0.38	21.5	144	0.264	0.05	3.96	1.66	0.168	0.92	3.41	0.007	0.004 J1	2.53	1.1	0.057
12/13/2016	Background	0.63	17.1	69.8	0.029	0.20	1.63	0.212	0.0992	0.38	0.895	0.019	< 0.002 U1	2.79	0.7	< 0.01 U1
2/8/2017	Background	0.38	22.8	92.9	0.124	0.04	2.28	0.850	0.14643	0.57	1.89	0.008	0.003 J1	2.76	1.9	0.071
3/14/2017	Background	0.32	21.2	69.0	0.039	0.01 J1	0.965	0.280	2.089	0.50	0.635	0.010	0.003 J1	3.38	2.3	0.02 J1
5/24/2017	Background	0.23	9.07	55.6	0.022	0.02 J1	0.500	0.151	1.06	0.43	0.469	0.011	< 0.002 U1	3.52	0.5	0.01 J1
6/20/2017	Background	0.30	17.7	61.7	0.025	0.01 J1	0.577	0.170	0.1376	0.44	0.448	0.004	< 0.002 U1	2.40	1.0	0.01 J1

Table 1. Groundwater Data Summary: MW-1801 Amos - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
12/18/2018	Background	0.273	1.76	10.4	5.01	8.9	8.1	498
1/24/2019	Background	0.247	1.59	10.8	5.19	8.9	7.2	490
2/21/2019	Background	0.219	1.38	11.0	5.26	9.0	6.8	550
3/13/2019	Background	0.251	1.55	11.1	5.32	9.0	6.6	509
4/23/2019	Background	0.246	1.50	11.3	5.35	9.1	8.2	507
6/11/2019	Background	0.260	1.45	10.4	5.03	9.4	6.5	506
7/23/2019	Background	0.246	1.41	10.8	5.47	8.8	7.2	502
11/5/2019	Background	0.255	1.46	11.7	5.36	8.7	7.0	501
5/7/2020	Detection	0.252	1.65	11.6	4.98	8.9	6.8	541
11/4/2020	Detection	0.215	1.52	12.5	5.34	9.0	7.5	535
1/5/2021	Detection			11.7		9.0		
5/5/2021	Detection	0.250	1.65	13.1	5.24	8.8	9.1	542
7/21/2021	Detection			13.1		8.6	7.63	
11/4/2021	Detection	0.245	1.5	13.5	5.13	8.7	6.31	530
2/28/2022	Detection			13.2		8.8		
5/25/2022	Detection	0.265	1.78	14.4	5.22	8.4	5.42	510 L1
7/27/2022	Detection			14.0		8.8		
11/1/2022	Detection	0.253	1.57	15.0	5.38	8.9	5.66	520
2/8/2023	Detection			14.2		8.8		
5/31/2023	Detection	0.220	1.47	14.9	5.32	8.6	4.6	510
7/19/2023	Detection			15.3		8.8		
10/17/2023	Detection	0.239	1.76	15.2	5.13	8.7	5.3	510
1/26/2024	Detection			14.2		8.8		
5/9/2024	Detection	0.225	1.68	16.2	5.28	8.7	4.6	510
7/16/2024	Detection			16.3		8.9		
10/17/2024	Detection	0.252	1.73	16.5	5.24	8.6	3.7	530

Table 1. Groundwater Data Summary: MW-1801 Amos - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
12/18/2018	Background	0.30	13.5	39.3	0.113	0.07	3.30	0.876	0.816	5.01	0.966	< 0.009 U1	< 0.002 U1	58.4	0.3	< 0.1 U1
1/24/2019	Background	0.14	11.8	34.6	0.08 J1	< 0.01 U1	2.56	0.436	0.983	5.19	0.544	0.032	< 0.002 U1	64.5	0.2 J1	< 0.1 U1
2/21/2019	Background	0.14	10.4	28.7	0.02 J1	< 0.01 U1	0.585	0.162	0.175	5.26	0.272	< 0.009 U1	< 0.002 U1	66.3	0.1 J1	< 0.1 U1
3/13/2019	Background	0.1 J1	9.02	26.6	< 0.02 U1	< 0.01 U1	0.463	0.143	0.58	5.32	0.116	< 0.009 U1	< 0.002 U1	60.8	0.05 J1	< 0.1 U1
4/23/2019	Background	0.14	9.95	30.9	0.02 J1	< 0.01 U1	0.722	0.180	0.751	5.35	0.240	< 0.009 U1	< 0.002 U1	69.4	0.06 J1	< 0.1 U1
6/11/2019	Background	0.1 J1	7.80	25.4	< 0.02 U1	< 0.01 U1	0.336	0.120	0.208	5.03	0.09 J1	< 0.009 U1	< 0.002 U1	61.6	0.05 J1	< 0.1 U1
7/23/2019	Background	0.06 J1	7.95	26.2	< 0.02 U1	< 0.01 U1	0.229	0.092	0.569	5.47	0.07 J1	< 0.02 U1	< 0.002 U1	62.7	< 0.03 U1	< 0.1 U1
11/5/2019	Background	0.04 J1	7.74	25.9	< 0.02 U1	< 0.01 U1	0.483	0.073	0.29	5.36	0.07 J1	0.00829	< 0.002 U1	62.8	< 0.03 U1	< 0.1 U1

Table 1. Groundwater Data Summary: MW-1802 Amos - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids mg/L	
		mg/L	mg/L	mg/L	mg/L	SU	mg/L		
12/17/2018	Background	0.267	0.821	8.33	4.79	9.1	20.6	482	
1/25/2019	Background	0.249	0.924	8.87	4.82	9.1	20.3	451	
2/21/2019	Background	0.233	0.840	8.94	4.87	9.3	20.1	532	
3/13/2019	Background	0.234	0.860	9.21	4.75	9.3	18.8	477	
4/24/2019	Background	0.242	2 0.910		5.04	9.2	21.2	478	
6/12/2019	Background	0.253	0.876	9.01	4.54	9.0	19.1	476	
7/23/2019	Background	0.236	0.865	8.80	5.16	9.0	20.7	476	
11/5/2019	Background	0.254	0.892	9.90	4.84	8.9	19.7	460	
5/7/2020	Detection	0.258	0.963	9.12	4.91	8.8	15.2	490	
11/4/2020	Detection	0.223	0.974	10.7	4.89	9.2	19.0	494	
1/5/2021	Detection			10.7		9.3			
5/5/2021	Detection	0.258	0.800	11.5	4.88	9.1	17.9	508	
7/22/2021	Detection			13.5		8.8			
11/4/2021	Detection	0.082	1.0	5.47	0.73 9.0		13.2	510	
3/1/2022	Detection		1.0			9.1			
5/25/2022	Detection	0.273	1.14	17.0	4.71	6.1	19.0	520 L1	
7/27/2022	Detection		1.16	14.9		9.1			
11/4/2022	Detection	0.261	1.13	17.0	4.86	9.2	18.2	510	
2/8/2023	Detection		0.99	16.8		8.8			
5/26/2023	Detection	0.221	0.82	17.2	4.99	8.9	19.3	510	
7/19/2023	Detection			16.3		9.1			
10/17/2023	Detection	0.247	1.14	12.9	5.01	9.2	32.8	480	
1/26/2024	Detection		1.16			9.0	29.4		
5/9/2024	Detection	0.226	1.10	12.6	5.33	9.0	36.2	500	
7/17/2024	Detection		1.12		5.13	9.0	24.9		
10/17/2024	Detection	0.247	0.97	13.3	5.25	8.9	34.2	520	

Table 1. Groundwater Data Summary: MW-1802 Amos - LF Appendix IV Constituents

Collection Date	Monitoring Program	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
12/17/2018	Background	0.03 J1	6.08	15.5	< 0.02 U1	< 0.01 U1	0.296	0.081	0.445	4.79	0.1 J1	< 0.009 U1	< 0.002 U1	22.7	0.04 J1	< 0.1 U1
1/25/2019	Background	0.05 J1	6.00	17.1	0.03 J1	< 0.01 U1	0.497	0.219	0.522	4.82	0.214	0.03 J1	< 0.002 U1	23.1	0.05 J1	< 0.1 U1
2/21/2019	Background	0.03 J1	6.42	16.1	< 0.02 U1	< 0.01 U1	0.232	0.083	0.1739	4.87	0.08 J1	< 0.009 U1	< 0.002 U1	24.9	< 0.03 U1	< 0.1 U1
3/13/2019	Background	0.04 J1	6.28	15.2	< 0.02 U1	< 0.01 U1	0.269	0.074	0.0735	4.75	0.1 J1	< 0.009 U1	< 0.002 U1	23.9	< 0.03 U1	< 0.1 U1
4/24/2019	Background	0.08 J1	6.24	17.0	< 0.02 U1	< 0.01 U1	0.300	0.099	0.281	5.04	0.142	< 0.009 U1	< 0.002 U1	28.0	0.06 J1	< 0.1 U1
6/12/2019	Background	0.02 J1	5.66	13.6	< 0.02 U1	< 0.01 U1	0.08 J1	0.03 J1	0.418	4.54	0.04 J1	< 0.009 U1	< 0.002 U1	23.3	< 0.03 U1	< 0.1 U1
7/23/2019	Background	0.04 J1	6.43	15.5	< 0.02 U1	< 0.01 U1	0.281	0.071	0.0519	5.16	0.1 J1	< 0.02 U1	< 0.002 U1	26.9	0.05 J1	< 0.1 U1
11/5/2019	Background	0.04 J1	6.37	14.6	< 0.02 U1	< 0.01 U1	0.273	0.04 J1	0.2057	4.84	0.06 J1	0.00714	< 0.002 U1	26.8	0.05 J1	< 0.1 U1

Table 1. Groundwater Data Summary Amos - Landfill

Notes:

1. Combined radium values were calculated from the sum of the reported radium-226 and radium-228 results.

Radium data quality flags were not included. Reported negative radium-226 or radium-228 results were replaced with zero.

--: Not analyzed

<: Non-detect value. Analytes which were not detected are shown as less than the method detection limit (MDL) followed by a 'U1' flag.

In analytical data prior to 5/18/2021, U1 flags were reported as U in the analytical report.

J1: Concentration estimated. Analyte was detected between the method detection limit and the reporting limit.

In analytical data prior to 5/18/2021, J1 flags were reported as J in the analytical report.

L1: The associated laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) recovery was outside acceptance limits.

M1: The associated matrix spike (MS) or matrix spike duplicate (MSD) recovery was outside acceptance limits.

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

 μ g/L: micrograms per liter

APPENDIX 2

The statistical analysis reports completed in 2024 follow.

500 West Wilson Bridge Road, Suite 250 Worthington, Ohio 43085 PH 614.468.0415 FAX 614.468.0416 www.geosyntec.com

Memorandum

Subject:	Evaluation of Detection Monitoring Data at Amos Plant's Landfill (LF)
From:	Allison Kreinberg (Geosyntec)
Copies to:	Marie Gildow (AEP)
To:	David Miller (AEP)
Date:	March 25, 2024

In accordance with United States Environmental Protection Agency (USEPA) regulations regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (40 CFR 257 Subpart D, "CCR rule"), the second semiannual detection monitoring event of 2023 at the Landfill (LF), an existing CCR unit at the Amos Power Plant located in Winfield, West Virginia was completed on October 27, 2023. Based on the results, verification sampling was completed on January 26, 2024.

Background values for the LF were previously calculated in January 2018. In May 2020, monitoring wells MW-1 and MW-5 were removed from the groundwater monitoring network and replaced with wells MW-1801 and MW-1802. Following completion of eight background monitoring events, upper prediction limits (UPLs) and lower prediction limits (LPLs) were calculated for MW-1801 and MW-1802. After a minimum of four detection monitoring events, the results of those events were compared to the existing background and the data set was updated as appropriate for all wells in the groundwater monitoring network. Revised UPLs were calculated for pH. Details on the calculation of these revised background values are described in Geosyntec's *Statistical Analysis Summary – Background Update Calculations* report, dated August 26, 2022.

To achieve an acceptably high statistical power while maintaining a site-wide false-positive rate (SWFPR) of 10% per year or less, prediction limits were calculated based on a one-of-two retesting procedure. With this procedure, a statistically significant increase (SSI) is concluded only if both samples in a series of two exceed the UPL (or are below the LPL for pH). In practice, if the initial result did not exceed the UPL, a second sample was not collected or analyzed.

Evaluation of Detection Monitoring Data – Amos LF March 25, 2024 Page 2

Detection monitoring results and the relevant background values are compared in Table 1 and noted exceedances are described in the list below.

- Calcium concentrations exceeded the intrawell UPL of 1.05 mg/L in both the initial (1.14 mg/L) and second (1.16 mg/L) samples collected at MW-1802. Thus, an SSI over background is concluded for calcium at MW-1802.
- Chloride concentrations exceeded the intrawell UPL of 14.0 mg/L in both the initial (15.2 mg/L) and second (14.2 mg/L) samples collected at MW-1801. Thus, an SSI over background is concluded for chloride at MW-1801.
- Sulfate concentrations exceeded the intrawell UPL of 24.2 mg/L in both the initial (32.8 mg/L) and second (29.4 mg/L) samples collected at MW-1802. Thus, an SSI over background is concluded for sulfate at MW-1802.

In response to the exceedance noted above, the Amos LF CCR unit will either transition to assessment monitoring or an alternative source demonstration (ASD) for calcium, chloride, and sulfate will be conducted in accordance with 40 CFR 257.94(e)(2). If the ASD is successful, the Amos LF will remain in detection monitoring.

The statistical analysis was conducted within 90 days of completion of sampling and analysis in accordance with 40 CFR 257.93(h)(2). A certification of these statistics by a qualified professional engineer is provided in Attachment A.

Table 1. Detection Monitoring Data ComparisonDetection Summary MemorandumAmos Plant – Landfill

Analyte Unit		Description	MW-2	MW-4	MW-	1801	MW-1802		
Analyte	Unit	Description	10/17/2023	10/17/2023	10/17/2023	1/26/2024	10/17/2023	1/26/2024	
Boron	mg/L	Intrawell Background Value (UPL)	0.243	0.206	0.2	0.293		0.282	
DOIOII	iiig/L	Analytical Result	0.217	0.165	0.239		0.247		
Calcium	mg/L	Intrawell Background Value (UPL)	3.50	0.904	1.	78	1.	05	
Calcium	iiig/L	Analytical Result	2.20	0.90	1.76		1.14	1.16	
Chloride	mg/L	Intrawell Background Value (UPL)	5.32	25.1	14.0		13.4		
Cilionae	iiig/L	Analytical Result	3.39	23.3	15.2	14.2	12.9		
Fluoride	mg/L	Intrawell Background Value (UPL)	1.74	1.55	5.58		5.32		
Tuonde	iiig/L	Analytical Result	1.51	1.35	5.13		5.01		
		Intrawell Background Value (UPL)	8.9	9.8	9.3		9.4		
pН	SU	Intrawell Background Value (LPL)	8.2	8.6	8.	.5	8	.7	
		Analytical Result	8.5	9.4	8.7	8.8	9.2	9.0	
Sulfate	mg/L	Intrawell Background Value (UPL)	12.1	11.5	9.0	05	24	.2	
Sunate	ing/L	Analytical Result	8.7	9.5	5.3		32.8	29.4	
Total Dissolved	mg/L	Intrawell Background Value (UPL)	396	419	56	53	52	27	
Solids	mg/L	Analytical Result	360	370	510		480		

Notes:

1. Bold values exceed the background value.

2. Background values are shaded gray.

LPL: Lower prediction limit

mg/L: milligrams per liter

SU: standard units

UPL: Upper prediction limit

ATTACHMENT A Certification by a Qualified Professional Engineer

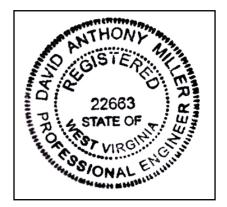
CERTIFICATION BY QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected statistical method, described above and in the August 26, 2022 *Statistical Analysis Summary* report, is appropriate for evaluating the groundwater monitoring data for the Amos LF CCR management area and that the requirements of 40 CFR 257.93(f) have been met.

David Anthony Miller

Printed Name of Licensed Professional Engineer

David knothony Miller


Signature

22663

West Virginia

License Number

Licensing State

03.25.2024 Date

500 West Wilson Bridge Road, Suite 250 Worthington, Ohio 43085 PH 614.468.0415 FAX 614.468.0416 www.geosyntec.com

Memorandum

Subject:	Evaluation of Detection Monitoring Data at Amos Plant's Landfill (LF)
From:	Allison Kreinberg (Geosyntec)
Copies to:	Marie Gildow (AEP)
To:	David Miller (AEP)
Date:	October 16, 2024

In accordance with United States Environmental Protection Agency (USEPA) regulations regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (40 CFR 257 Subpart D, "CCR rule"), the first semiannual detection monitoring event of 2024 at the Landfill (LF), an existing CCR unit at the Amos Power Plant located in Winfield, West Virginia was completed on May 9, 2024. Based on the results, verification sampling was completed on July 16-17, 2024.

Background values for the LF were previously calculated in January 2018. In May 2020, monitoring wells MW-1 and MW-5 were removed from the groundwater monitoring network and replaced with wells MW-1801 and MW-1802. Following completion of eight background monitoring events, upper prediction limits (UPLs) and lower prediction limits (LPLs) were calculated for MW-1801 and MW-1802. After a minimum of four detection monitoring events, the results of those events were compared to the existing background and the data set was updated as appropriate for all wells in the groundwater monitoring network. Revised UPLs were calculated for pH. Details on the calculation of these revised background values are described in Geosyntec's *Statistical Analysis Summary – Background Update Calculations* report, dated August 26, 2022.

To achieve an acceptably high statistical power while maintaining a site-wide false-positive rate (SWFPR) of 10% per year or less, prediction limits were calculated based on a one-of-two retesting procedure. With this procedure, a statistically significant increase (SSI) is concluded only if both samples in a series of two exceed the UPL (or are below the LPL for pH). In practice, if the initial result did not exceed the UPL, a second sample was not collected or analyzed.

Evaluation of Detection Monitoring Data – Amos LF October 16, 2024 Page 2

Detection monitoring results and the relevant background values are compared in Table 1 and noted exceedances are described in the list below.

- Calcium concentrations exceeded the intrawell UPL of 1.05 mg/L in both the initial (1.10 mg/L) and second (1.12 mg/L) samples collected at MW-1802. Therefore, an SSI over background is concluded for calcium at MW-1802.
- Chloride concentrations exceeded the intrawell UPL of 14.0 mg/L in both the initial (16.2 mg/L) and second (16.3 mg/L) samples collected at MW-1801. Therefore, an SSI over background is concluded for chloride at MW-1801.
- Sulfate concentrations exceeded the intrawell UPL of 24.2 mg/L in both the initial (36.2 mg/L) and second (24.9 mg/L) samples collected at MW-1802. Therefore, an SSI over background is concluded for sulfate at MW-1802.

In response to the exceedance noted above, the Amos LF CCR unit will either transition to assessment monitoring or an alternative source demonstration (ASD) for calcium, chloride, and sulfate will be conducted in accordance with 40 CFR 257.94(e)(2). If the ASD is successful, the Amos LF will remain in detection monitoring.

The statistical analysis was conducted within 90 days of completion of sampling and analysis in accordance with 40 CFR 257.93(h)(2). A certification of these statistics by a qualified professional engineer is provided in Attachment A.

Table 1. Detection Monitoring Data ComparisonDetection Summary MemorandumAmos Plant – Landfill

Analyte Unit		Description	MW-2	MW-4	MW-1801		MW-1802	
Analyte	Unit	Description	5/9/2024	5/9/2024	5/9/2024	7/16/2024	5/9/2024	7/17/2024
Boron	mg/L	Intrawell Background Value (UPL)	0.243	0.206	0.2	293	0.282	
DOIOII	mg/L	Analytical Result	0.185	0.151	0.225		0.226	
Calcium	mg/L	Intrawell Background Value (UPL)	3.50	0.904	1.	78	1.	05
Calcium	mg/L	Analytical Result	1.66	0.85	1.68		1.10	1.12
Chloride	mg/L	Intrawell Background Value (UPL)	5.32	25.1	14	4.0	13.4	
Chionde	mg/L	Analytical Result	4.25	23.7	16.2	16.3	12.6	
Fluoride	mg/L	Intrawell Background Value (UPL)	1.74	1.55	5.58		5.32	
Fluoride	mg/L	Analytical Result	1.39	1.34	5.28		5.33	5.13
		Intrawell Background Value (UPL)	8.9	9.8	9.3		9.4	
pН	SU	Intrawell Background Value (LPL)	8.2	8.6	8	.5	8	.7
		Analytical Result	8.6	9.1	8.7		9.0	
Sulfate	ma/I	Intrawell Background Value (UPL)	12.1	11.5	9.	05	24	4.2
Sullate	mg/L	Analytical Result	8.1	9.3	4.6		36.2	24.9
Total Dissolved	ma/I	Intrawell Background Value (UPL)	396	419	5	63	5	27
Solids	mg/L	Analytical Result	370	390	510		500	

Notes:

1. Bold values exceed the background value.

2. Background values are shaded gray.

--: not sampled

LPL: lower prediction limit

mg/L: milligrams per liter

SU: standard units

UPL: upper prediction limit

ATTACHMENT A Certification by a Qualified Professional Engineer

CERTIFICATION BY QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected statistical method, described above and in the August 26, 2022 *Statistical Analysis Summary* report, is appropriate for evaluating the groundwater monitoring data for the Amos LF CCR management area and that the requirements of 40 CFR 257.93(f) have been met.

David Anthony Miller

Printed Name of Licensed Professional Engineer

David Anthony Miller

Signature

22663

West Virginia

License Number

Licensing State

10.18.2024

Date

The alternative source demonstrations follow.

engineers | scientists | innovators

ALTERNATIVE SOURCE DEMONSTRATION REPORT – SECOND SEMIANNUAL DETECTION EVENT 2023

FEDERAL CCR RULE

Amos Power Plant Landfill Winfield, West Virginia

Prepared for

American Electric Power 1 Riverside Plaza Columbus, Ohio 43215-2372

Prepared by

Geosyntec Consultants, Inc. 500 West Wilson Bridge Road, Suite 250 Worthington, Ohio 43085

Project CHA8495

June 2024

TABLE OF CONTENTS

1.	INTI 1.1	RODUCTION AND SUMMARY CCR Rule Requirements	
	1.2	Demonstration of Alternative Sources	
2.	SITE	SUMMARY	.3
	2.1	Site Geology Summary	.3
	2.2	Site Hydrogeology Summary	.3
3.	ALT	ERNATIVE SOURCE DEMONSTRATION	.5
	3.1	Landfill Leachate Data Analysis	.5
	3.2	Examination of Natural Variability	.6
	3.3	Solid Phase Sample Analysis	.7
	3.4	Summary of Findings	.7
	3.5	Sampling Requirements	
4.	CON	ICLUSIONS AND RECOMMENDATIONS	.9
5.	REF	ERENCES	0

LIST OF TABLES

Table 1:	Detection Monitoring Data Comparison
Table 2:	Key Solid Sample Analytical Results

LIST OF FIGURES

Figure 1:	Site Layout
Figure 2:	Potentiometric Surface Map - Uppermost Aquifer October 2023

- Piper Diagrams: Leachate Comparison Figure 3:
- Figure 4: Boron Time Series Graph
- Figure 5: Calcium Comparison

- Figure 6: Sulfate Comparison
- Figure 7: Chloride Comparison

LIST OF ATTACHMENTS

Attachment A: MW-1801, and MW-1802 Boring Log and Well Construction Diagram

Attachment B: Stress-Relief Fracture Conceptual Site Model

Attachment C: Solid Samples Analytical Report

Attachment D: Certification by a Qualified Professional Engineer

ACRONYMS AND ABBREVIATIONS

ASD	alternative source demonstration
CCR	coal combustion residuals
CFR	Code of Federal Regulations
ft/yr	feet per year
LPL	lower prediction limit
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
SSI	statistically significant increase
UPL	upper prediction limit
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey

1. INTRODUCTION AND SUMMARY

This alternative source demonstration (ASD) report has been prepared to address the potential statistically significant increases (SSIs) for calcium, chloride, and sulfate at the John E. Amos Plant Landfill (Landfill) following the second semiannual detection monitoring event of 2023.

The previously calculated upper prediction limits (UPLs) for the Landfill were recalculated for each Appendix III parameter to represent background values (Geosyntec 2022) after four detection monitoring events were completed. A lower prediction limit (LPL) was also recalculated for pH. The revised prediction limits were calculated based on a one-of-two retesting procedure in accordance with the *Unified Guidance* (United States Environmental Protection Agency [USEPA] 2009a) and the statistical analysis plan developed for the site (Geosyntec 2020). With this procedure, an SSI is concluded only if both samples in a series of two are above the UPL or, in the case of pH, are below the LPL.

The second semiannual detection monitoring event of 2023 was performed in October 2023 (initial sampling event) and January 2024 (verification sampling event), and the results were compared to the recalculated prediction limits. During this detection monitoring event, potential SSIs were identified for chloride at MW-1801 and for calcium and sulfate at MW-1802 based on intrawell comparisons. A summary of the detection monitoring analytical results for all constituents listed in the Code of Federal Regulations (CFR) Title 40, Part 257, Appendix III, and the calculated prediction limits to which they were compared is provided in **Table 1**.

1.1 CCR Rule Requirements

In accordance with the USEPA regulations regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments, 40 CFR 257.94(e)(2) states the following:

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer . . . verifying the accuracy of the information in the report.

Pursuant to 40 CFR 257.94(e)(2), Geosyntec Consultants, Inc. (Geosyntec) has prepared this ASD report to identify whether the potential SSIs identified for calcium and sulfate at MW-1802 and for chloride at MW-1801 are from a source other than the Landfill.

1.2 Demonstration of Alternative Sources

An evaluation was completed to assess possible alternative sources to which identified SSIs could be attributed. Alternative sources are classified into the following five types:

- ASD Type I: Sampling Causes
- ASD Type II: Laboratory Causes
- ASD Type III: Statistical Evaluation Causes

- ASD Type IV: Natural Variation
- ASD Type V: Alternative Sources (i.e., anthropogenic impacts)

A demonstration was conducted to assess whether the increases in calcium and sulfate at monitoring well MW-1802 and chloride at monitoring well MW-1801 could be attributed to an alternative source and not a release from the Landfill.

2. SITE SUMMARY

A brief description of the site geology and hydrology are provided below.

2.1 Site Geology Summary

The Landfill site consists of a northern valley and a southern valley, both of which are surrounded on all sides by bedrock ridges (**Figure 1**). A topographic high point separates the two valleys (Arcadis 2020), as shown in **Figure 2**. MW-1802 is a downgradient well in the northern valley, and MW-1801 is a downgradient well in the southern valley. The groundwater flow patterns in the northern and southern valleys are hydrologically separated from each other.

Bedrock in the vicinity of MW-1801 and MW-1802 consists of a combination of gray siltstone, silty shale, and red claystone. The boring logs for MW-1801 and MW-1802 identified predominately shale interbedded with sandstone within the screened intervals (**Attachment A**). These lithologies make up part of the Pennsylvanian Monongahela and Conemaugh Formations, which were deposited by cyclic sequences of limestone, siltstone, sandstone, red and gray shale, and coal (United States Geological Survey [USGS] n.d.).

These formations contain a system of stress-relief fractures that are associated with a regional decline in stress and erosion (Arcadis 2020). Although not represented in boring logs associated with Landfill monitoring well network construction, the sedimentary deposits associated with the Monongahela and Conemaugh Formations contains occasional thin limestone and coal beds. The Pittsburgh Coal and Pittsburgh Limestone beds serve as marker beds indicating the contact between the Monongahela and Conemaugh formations. The Pittsburgh limestone bed has been observed in boring logs at the nearby fly ash pond (Arcadis 2020).

2.2 Site Hydrogeology Summary

Groundwater flows through the stress-relief fracture formations, as illustrated in a conceptual site model provided in the *Groundwater Monitoring Network Report* (Arcadis 2020) and included here as **Attachment B**. Bedrock groundwater flow generally follows surface topography, flowing downslope of ridges toward valley floors (Arcadis 2020).

The Landfill monitoring well network monitors groundwater flow within the Uppermost Aquifer, which was defined by Arcadis (2020) as the saturated portion of the stress-relief fracturing system. This Uppermost Aquifer unit is independent of any single lithologic unit; the stress-relief fracturing system occurs in both the Conemaugh and Monongahela Formations and spans multiple lithologies comprising these formations. According to the *Groundwater Monitoring Network Report*, the stress-relief fracture system "is hydraulically connected from ridges to valleys" (Arcadis 2020), as determined by a multiple-lines-of-evidence approach discussed in Section 3.2.3 of that report. These multiple lines of evidence include evaluation of boring logs, assessment of groundwater geochemistry, hydraulic testing consisting of borehole packer testing and pump-yield testing, and high-resolution water level monitoring using pressure transducers deployed in monitoring wells across the site.

Water level monitoring data from the October 2023 sampling event were used to calculate groundwater velocities for MW-1801 (0.2 feet per year [ft/yr]) and MW-1802 (0.5 ft/yr). Both high-resolution water level monitoring conducted by Arcadis and seasonal water level monitoring

have not identified seasonal flow-regime changes at or near the Landfill monitoring well network. The current Landfill monitoring well network consists of upgradient monitoring wells MW-6, MW-7R, MW-8, MW-9, and MW-10 and downgradient compliance wells MW-2, MW-4, MW-1801, and MW-1802. Previous Landfill monitoring network wells MW-1 and MW-5 were removed from the monitoring network after it was determined that groundwater from those locations was representative of shallow perched groundwater zones (Arcadis 2020) and not a part of the Uppermost Aquifer.

3. ALTERNATIVE SOURCE DEMONSTRATION

An initial review of site geochemistry, site historical data, and laboratory quality assurance and quality control data did not demonstrate alternative sources due to Type I (sampling) or Type II (laboratory) causes. A review of the statistical methods used did not identify any Type III (statistical) causes. A preliminary review of site geochemistry did not identify any Type V (anthropogenic) causes. Therefore, natural variation, which is a Type IV cause, was examined as a potential cause of the SSIs.

3.1 Landfill Leachate Data Analysis

The concentrations of boron and major cations and anions known to be indicative of CCR leachate were examined in Landfill leachate samples and compared to monitoring well network groundwater to evaluate whether Landfill leachate influenced downgradient groundwater chemistry. Piper diagrams, which represent the relative proportions of major cations and anions in aqueous samples, were created to visualize aqueous geochemistry for the Landfill leachate and at downgradient wells MW-1801 and MW-1802 (**Figure 3**). The data shown in these Piper diagrams capture the background and detection monitoring periods: 2018 through 2024 for MW-1801 and MW-1802, and 2020 through 2023 for leachate samples.

The groundwater geochemistry at downgradient wells MW-1801 and MW-1802 has remained nearly unchanged throughout the monitoring period, as illustrated by the tight clustering of sample results for each well on the Piper diagrams. Groundwater compositions are distinct from leachate, particularly for the relative anion percentages; leachate samples consist predominantly of sulfate, while groundwater anion compositions are dominated by carbonate alkalinity. These results illustrate stable geochemical composition of site groundwater and a lack of influence from leachate on the groundwater composition. Considering the distinct geochemical composition of the leachate samples, variation in relative percentages of major anions would be expected if downgradient monitoring wells were impacted by Landfill leachate. No such variation is observed in downgradient monitoring well groundwater samples (**Figure 3**).

Boron is typically considered a geochemically conservative parameter due to its minimal attenuation by chemical processes in groundwater flow. Boron therefore functions as an indicator for potential CCR unit releases due to its high relative concentration in CCR. Boron concentrations in Landfill leachate samples were 43.6 milligrams per liter (mg/L) and 113 mg/L for the samples collected from the northern valley and southern valley, respectively, in November 2023. Concentrations of boron at downgradient wells MW-1801 and MW-1802 are consistently less than 0.3 mg/L (**Figure 4**).

If Landfill leachate, which contains concentrations of boron several orders of magnitude higher than the wells of interest, were impacting groundwater quality at downgradient monitoring wells, an increase in boron concentrations at downgradient wells MW-1801 and MW-1802 would be expected. The recent boron concentrations at the downgradient monitoring wells of concern do not display increasing trends (**Figure 4**), which suggests that changes in calcium and sulfate in groundwater at MW-1802 and chloride in groundwater at MW-1801 are not due to a release from the Landfill.

3.2 Examination of Natural Variability

Calcium, chloride, and sulfate have been found to be common constituents in groundwater from the Pennsylvanian Group in West Virginia (Chambers, et al. 2012), which includes the Monongahela and Conemaugh formations in which MW-1801 and MW-1802 are screened. Longterm groundwater quality was monitored at 300 wells in West Virginia from 1999 to 2008 (Chambers et al. 2012). Samples grouped by geologic age of the aquifer unit indicated that the highest calcium concentration (286 mg/L) and four highest chloride concentrations (i.e., those greater than the secondary maximum contaminant level of 250 mg/L; USEPA 2009b) were measured in Pennsylvanian-aged aquifers. Pennsylvanian-aged aquifer formations were also observed to have the highest reported sulfate value (767 mg/L) as well as the largest degree of variation in sulfate concentrations across the aquifer groups.

Bar charts were prepared to compare maximum reported concentrations of calcium (**Figure 5**) and sulfate (**Figure 6**) in upgradient and downgradient wells in the North Valley to the median value of Pennsylvanian-aged aquifers in West Virginia. Calcium and sulfate concentrations at downgradient well MW-1802 were comparable to upgradient well MW-10 and less than upgradient wells MW-8 and MW-9. In Pennsylvanian-aged aquifers, the median calcium value observed was approximately 20 times greater than calcium concentrations in MW-1802, and the median sulfate value observed was comparable to sulfate concentrations in MW-1802. Sulfate concentrations measured in the North Valley were below the secondary maximum contaminant level of 250 mg/L.

A comparison of maximum reported chloride concentrations in groundwater at upgradient wells MW-6 and MW-7R and compliance well MW-1801 to the median value of Pennsylvanian-aged aquifers in West Virginia indicates that chloride concentrations at MW-1801 are similar to or less than chloride concentrations in groundwater measured in the Pennsylvanian aquifers (**Figure 7**).

MW-1801 and MW-1802 are screened within the Pennsylvanian Monongahela and Conemaugh Formations. These formations represent a cyclic depositional sequence which featured transgressive and regressive periods that caused the deposition of interbedded sequences of limestone, sandstone, shale, and coal (Martin 1998). In such depositional environments, fine grained siltstones and shales are deposited and cyclically exposed to marine waters which are often concentrated in major ions like calcium, chloride, and sulfate.

Transgression-regression cycling creates sequences in which saline marine waters saturate open pore spaces in freshly deposited sediment, which are then retained due to deposition of and burial by additional fine-grained sediment. This process results in trapping of marine water at the time of deposition. While the original water within the pore space is typically replaced by meteoric recharge soon after deposition, a component of the dissolved ions (e.g., calcium, chloride, sulfate) in the water are typically retained by membrane filtration as an effect of the clay mineralogy of the shale components in these sequences (Drever 1988). In addition to the retention of marine water within the pore space of fine-grained sedimentary rocks, deposited sediment in cyclic marine environments also may become impregnated with soluble evaporitic minerals like halite (crystalline sodium chloride, NaCl) and anhydrite/gypsum (crystalline calcium sulfate, CaSO₄), which contain chloride, calcium, and sulfate (Hem 1985). These evaporites are known to be highly soluble and subject to dissolution during pore fluid evolution. Dissolution of these minerals results

in further increases to the concentrations of aqueous major ions in pore fluid from rocks of coastal marine origin, regardless of whether these minerals are still present.

Formation water is expected to be diluted by meteoric recharge over time, but depositional and diagenetic processes discussed above would result in some component of major ions being retained in current groundwater at variable concentrations based on site topography, permeability of aquifer sediments, and pore fluid evolution.

The site-specific and regional-scale geochemical observations demonstrate that calcium, chloride, and sulfate concentrations at the downgradient locations are aligned with expected concentrations of these parameters in Pennsylvanian-aged strata within the region, and that observed concentrations at the wells of interest are not anomalous but rather are attributable to natural variations within groundwater as expected based on regional groundwater quality and the depositional environment associated with the screened lithologies of MW-1801 and MW-1802.

3.3 Solid Phase Sample Analysis

Aquifer solids samples were collected from geologic core recovered during the installation of monitoring wells MW-1801 and MW-1802 and were submitted for chemical analyses. Based on a review of the boring logs (Attachment A), two shale samples and one sandstone sample were collected from each core and analyzed for total chloride, fluoride, sulfate, and calcium. The laboratory analytical results are provided as Attachment C and summarized in Table 2. The sandstone sample collected from MW-1801 contained solid-phase chloride concentrations of 24.8 milligrams per kilogram (mg/kg). Calcium concentrations were identified in MW-1802 aquifer solids ranging from 1,120 mg/kg in a shale sample to 3,400 mg/kg in the sandstone sample. Sulfate was detected in all solid samples collected from MW-1802 at concentrations ranging from 8.45 to 17.9 mg/kg.

The reported presence of major ions such as calcium (1.14 - 1.16 mg/L), chloride (14.2 - 15.2 mg/L), and sulfate (29.4 - 32.8 mg/L) within MW-1801 and MW-1802 groundwater are both expected and unavoidable, as the depositional environment of these formations would trap a component of major ions within the formation water of these geologic units. The subsequent interaction of groundwater with aquifer solids containing these chemical components will result in some additional degree of mass transfer to the aqueous phase.

Calcium, chloride, and sulfate were detected in aquifer solids from MW-1801 and MW-1802, and greater aqueous concentrations of these parameters are commonly observed both at a regional scale and, in the cases of calcium and sulfate, within groundwater upgradient of the Landfill. These observations suggest that the SSIs in MW-1801 and MW-1802 groundwater are associated with natural variability (depositional environment and pore fluid evolution) and not due to a release from the Landfill.

3.4 Summary of Findings

A demonstration was conducted to assess whether the potential SSIs for chloride at MW-1801 and calcium and sulfate at MW-1802 were based on Type IV causes (natural variation) and not due to a release from the Amos Plant Landfill. The following is concluded:

• The SSIs could not be attributed to a Type I (sampling error), Type II (laboratory), Type III (statistical), or Type V (anthropogenic) cause.

- Groundwater chemistry at MW-1801 and MW-1802 is generally stable and does not show evidence of influence from Landfill leachate.
- Concentrations of boron, a primary indicator of CCR impacts to groundwater, at MW-1801 and MW-1802 do not show increasing trends. If impacts from Landfill leachate to downgradient locations were occurring, increasing boron groundwater concentrations would be expected.
- Pennsylvanian-aged aquifer data from USGS studies indicate that MW-1802 calcium and sulfate groundwater concentrations and MW-1801 chloride concentrations are lower than or comparable to typical values for wells screened within this geologic material across the state. Groundwater from monitoring wells upgradient of the Landfill contains greater concentrations of calcium and sulfate than MW-1802 groundwater, indicating the presence of these parameters in background groundwater at concentrations greater than those observed in compliance well groundwater.
- These parameters are expected to naturally exist in groundwater within these formations due to the depositional environment. Aquifer solids samples collected from MW-1801 and MW-1802 rock core contain detectable concentrations of calcium, chloride, and sulfate. The geologic material comprising the aquifer unit in which these wells are screened likely contributes additional mass to the aqueous phase at concentrations sufficient to result in SSIs.

3.5 Sampling Requirements

The conclusions of this ASD support the determination that the identified SSIs are from natural variation and not due to a release from the Landfill. Therefore, the unit will remain in the detection monitoring program. Groundwater at the unit will be sampled for Appendix III parameters on a semiannual basis.

4. CONCLUSIONS AND RECOMMENDATIONS

The preceding information serves as the ASD prepared in accordance with 40 CFR 257.94(e)(2) and supports the conclusion that the SSIs for calcium and sulfate at MW-1802 and chloride at MW-1801 are attributed to variation of natural groundwater quality (Type IV). Therefore, no further action is warranted, and the Amos Plant Landfill will remain in the detection monitoring program. Certification of this ASD by a qualified professional engineer is provided in **Attachment D**.

5. REFERENCES

- Arcadis. 2020. FGD Landfill CCR Revised Groundwater Monitoring Well Network Evaluation. John E. Amos Plant. Winfield, West Virginia May.
- Chambers, D. B., M. D. Kozar, J. S. White, and K. S. Paybins. 2012. Groundwater Quality in West Virginia, 1993–2008. United States Geological Survey Scientific Investigations Report 2012-5186.
- Drever, J. 1988. The geochemistry of natural waters. Englewood Cliffs, N.J., Prentice Hall.
- Geosyntec. 2020. Statistical Analysis Plan Revision 1. John E. Amos Plant Landfill. Winfield, West Virginia. Geosyntec Consultants, Inc. October.
- Geosyntec. 2022. Statistical Analysis Summary Background Update Calculations. John E. Amos Plant Landfill. Winfield, West Virginia. Geosyntec Consultants, Inc. August.
- Hem, J.D., 1985. Study and interpretation of the chemical characteristics of natural water. United States Geological Survey Water-Supply Paper 2254. Third edition.
- Martin, W.D. 1998. Geology of the Dunkard Group (Upper Pennsylvanian-Lower Permian) in Ohio, West Virginia, and Pennsylvania. Ohio Division of Geological Survey Bulletin 73.
- USGS. n.d. "Monongahela and Conemaugh Formations, undivided." Mineral Resources Online Spatial Data. United States Geological Survey. Accessed July 25, 2023. https://mrdata.usgs.gov/geology/state/sgmc-unit.php?unit=KYPAmc%3B0.
- USEPA. 2009a. *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance*. United States Environmental Protection Agency. EPA 530/R-09-007. March
- USEPA. 2009b. *National Primary Drinking Water Regulations*. United States Environmental Protection Agency. EPA 816-F-09-004. May.

TABLES

Table 1. Detection Monitoring Data Comparison Alternative Source Demonstration Report Amos Plant – Landfill

Analyte Unit		Description	MW-2	MW-4	MW-	1801	MW-1802	
		Description	10/17/2023	10/17/2023	10/17/2023	1/26/2024	10/17/2023	1/26/2024
Boron	ma/I	Intrawell Background Value (UPL)	0.243	0.206	0.2	.93	0.282	
DOIOII	mg/L	Analytical Result	0.217	0.165	0.239		0.247	
Calcium	mg/L	Intrawell Background Value (UPL)	3.50	0.904	1.	78	1.	05
Calcium	mg/L	Analytical Result	2.20	0.90	1.76		1.14	1.16
Chloride	mg/L	Intrawell Background Value (UPL)	5.32	25.1	14.0		13.4	
Chionae	mg/L	Analytical Result	3.39	23.3	15.2	14.2	12.9	
Fluoride	mg/L	Intrawell Background Value (UPL)	1.74	1.55	5.	58	5.	32
Tuonde	mg/L	Analytical Result	1.51	1.35	5.13		5.01	
		Intrawell Background Value (UPL)	8.9	9.8	9.3		9.4	
pН	SU	Intrawell Background Value (LPL)	8.2	8.6	8	.5	8	.7
		Analytical Result	8.5	9.4	8.7	8.8	9.2	9.0
Sulfate	mg/L	Intrawell Background Value (UPL)	12.1	11.5	9.	05	24	.2
Sullate	mg/L	Analytical Result	8.7	9.5	5.3		32.8	29.4
Total Dissolved	ma/I	Intrawell Background Value (UPL)	396	419	50	53	52	27
Solids	mg/L	Analytical Result	360	370	510		480	

Notes:

1. Bold values exceed the background value.

2. Background values are shaded gray.

LPL: Lower prediction limit

mg/L: milligrams per liter

SU: standard units

UPL: Upper prediction limit

Table 2. Key Solid Sample Analytical Results Alternative Source Demonstration Report Amos Plant – Landfill

Samula Location	I ithology	Depth	Parameter			
Sample Location	Lithology	(feet)	Calcium	Chloride	Sulfate	
	Shale	55.9-56.6	1010	<10.4	9.59 J	
MW-1801	Shale	58.0-58.8	2910	<10.5	16.6	
	Sandstone	59.8-60.5	25600	24.8	20.0	
	Shale	51.9-52.5	1120	<10.5	17.9	
MW-1802	Shale	55.3-55.8	1230	<10.4	14.6	
	Sandstone	56.3-56.9	3400	<9.87	8.45 J	

Notes:

1. All results are shown in units of milligrams per kilogram.

2. Non-detects are shown as less than (<) the reporting limit.

J: Result is less than the reporting limit but greater than or equal to the method detection limit and the concentrations is an approximate value.

FIGURES

Legend

- Upgradient Sampling Location
 Downgradient Sampling Location
- FGD Landfill Permitted Limits
 - Northern Valley

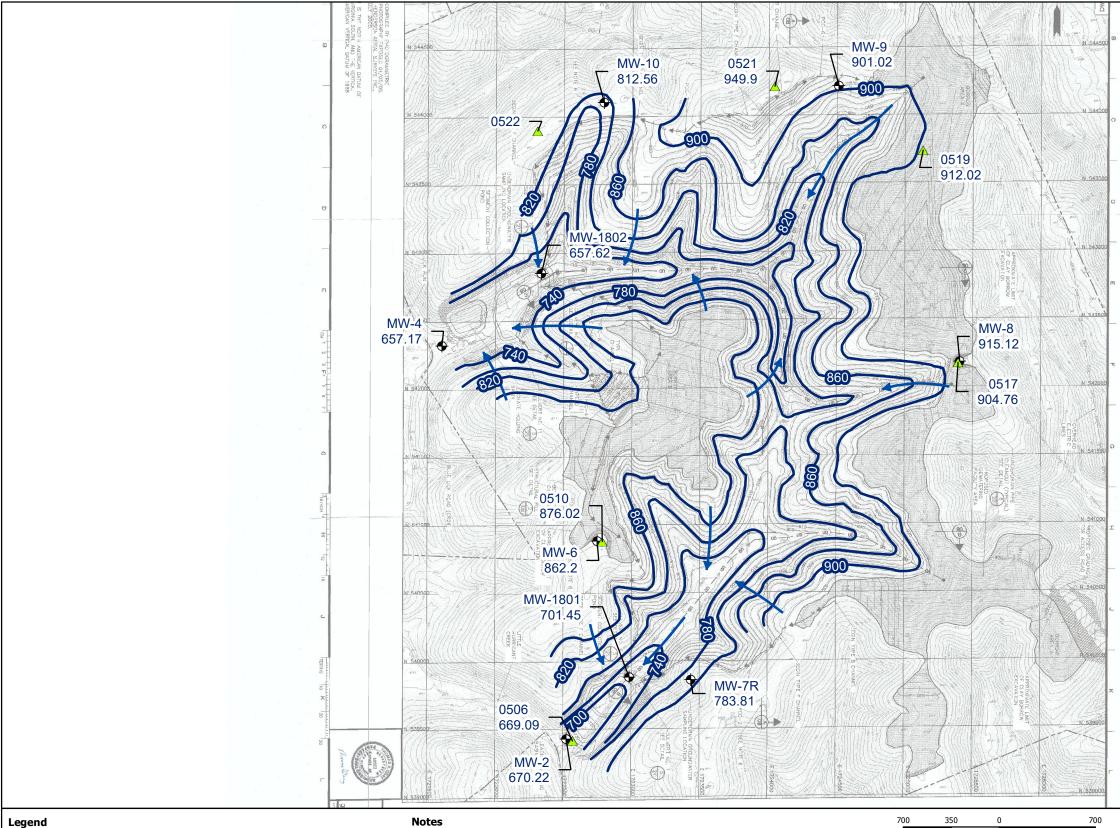
 - Southern Valley

Notes

- Monitoring well coordinates provided by AEP.
 Aerial imagery provided by ESRI and dated 12/07/2023.

eet

Site Layout Amos Landfill


AEP Amos Generating Plant Winfield, West Virginia

Geosyntec[▷] consultants June 2024

Fi	ig	u	re

1

Columbus, Ohio

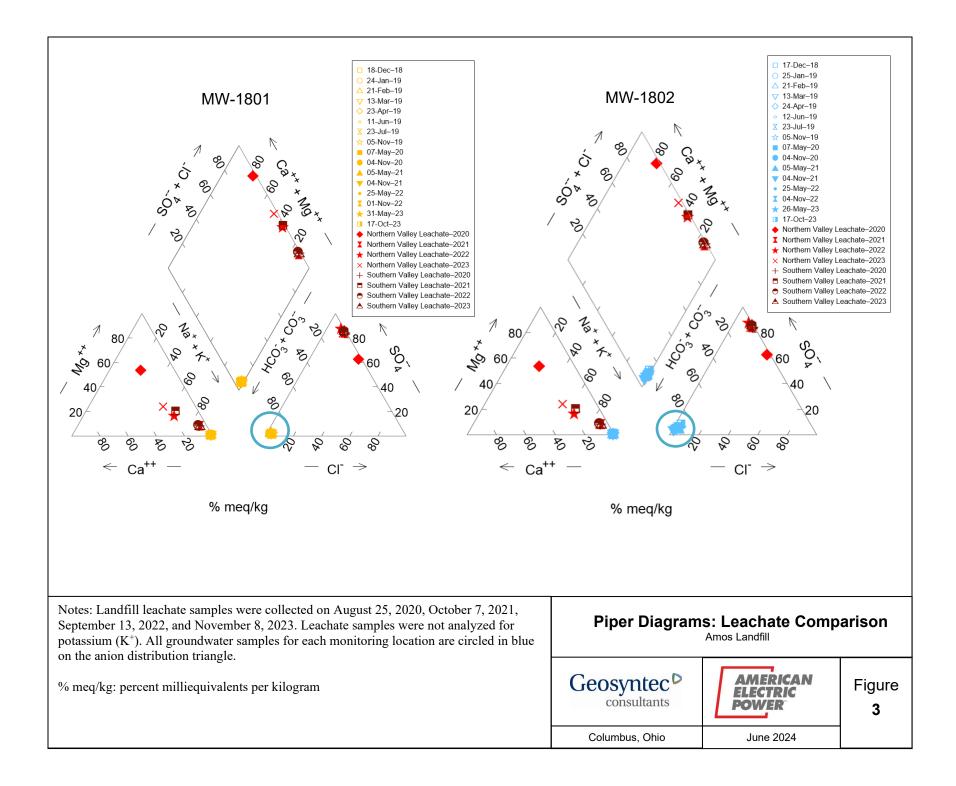
Legend

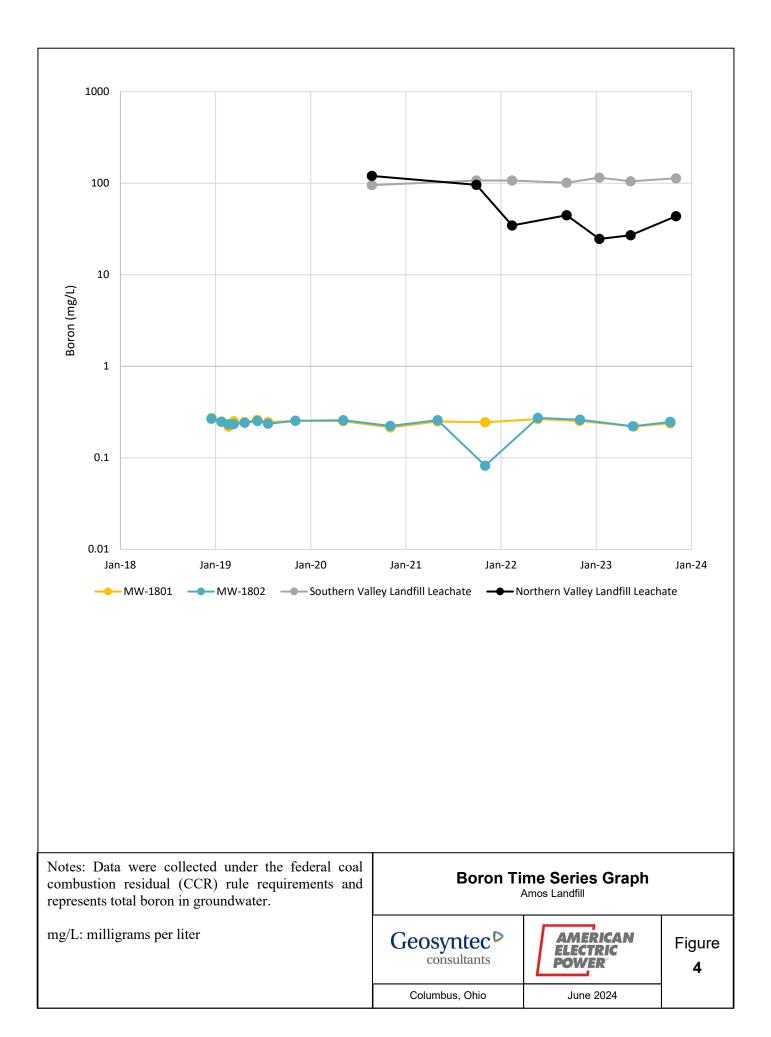
Groundwater Monitoring Well

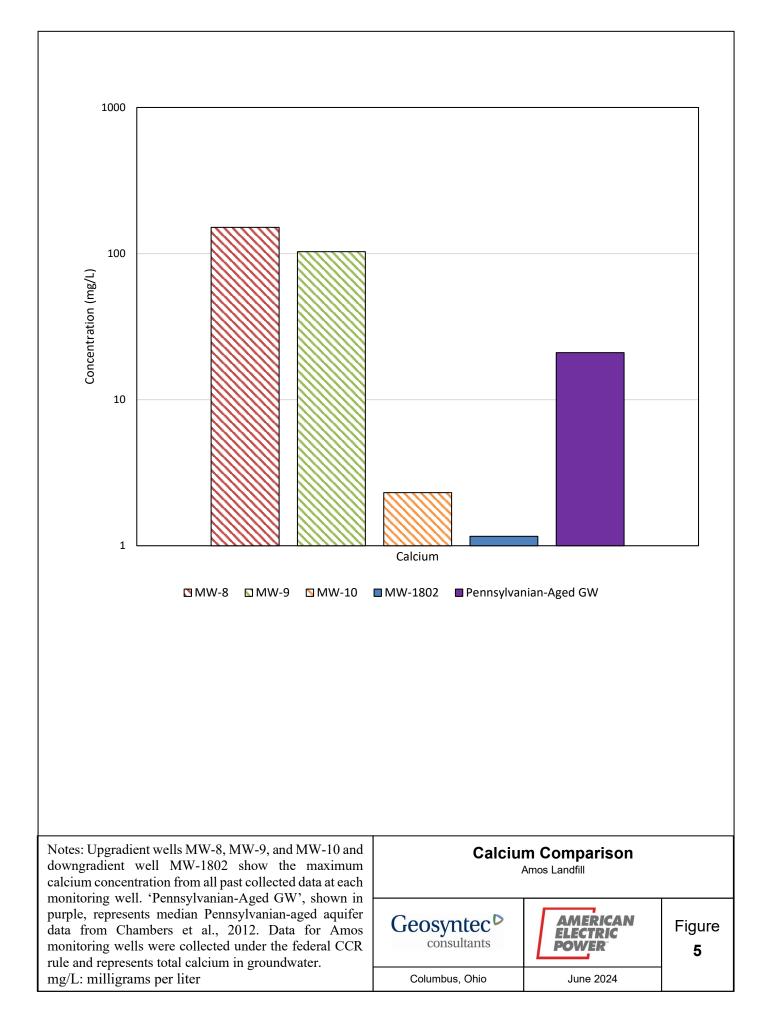
Groundwater Elevation Contour ----> Groundwater Flow Direction

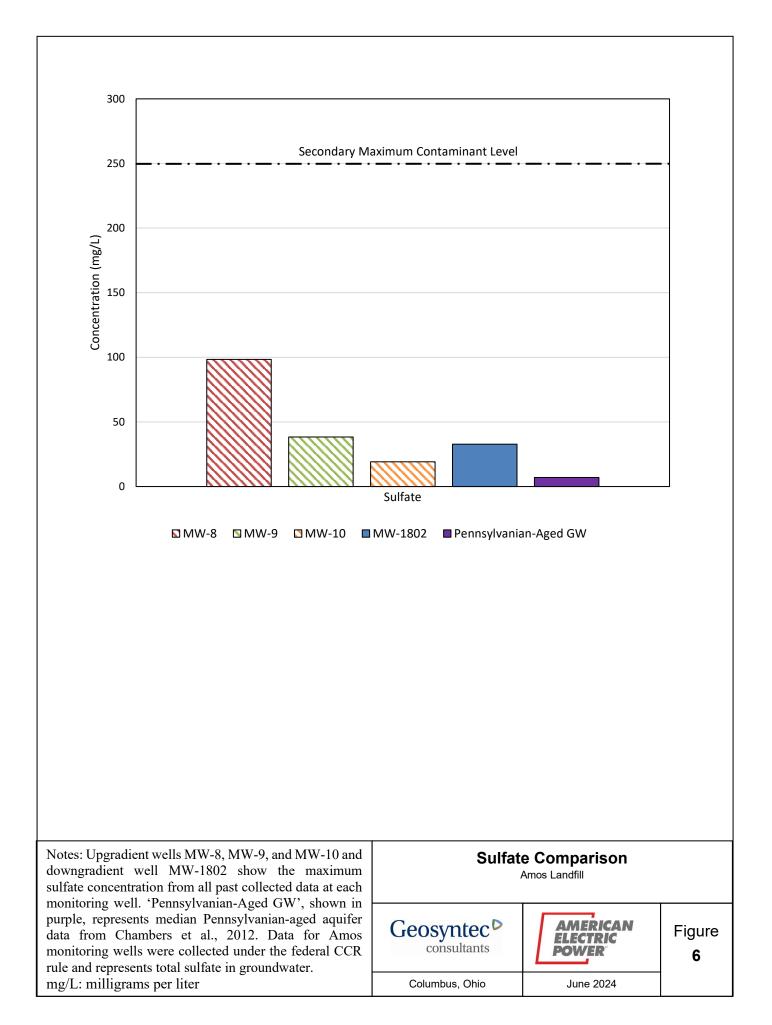
A Piezometer

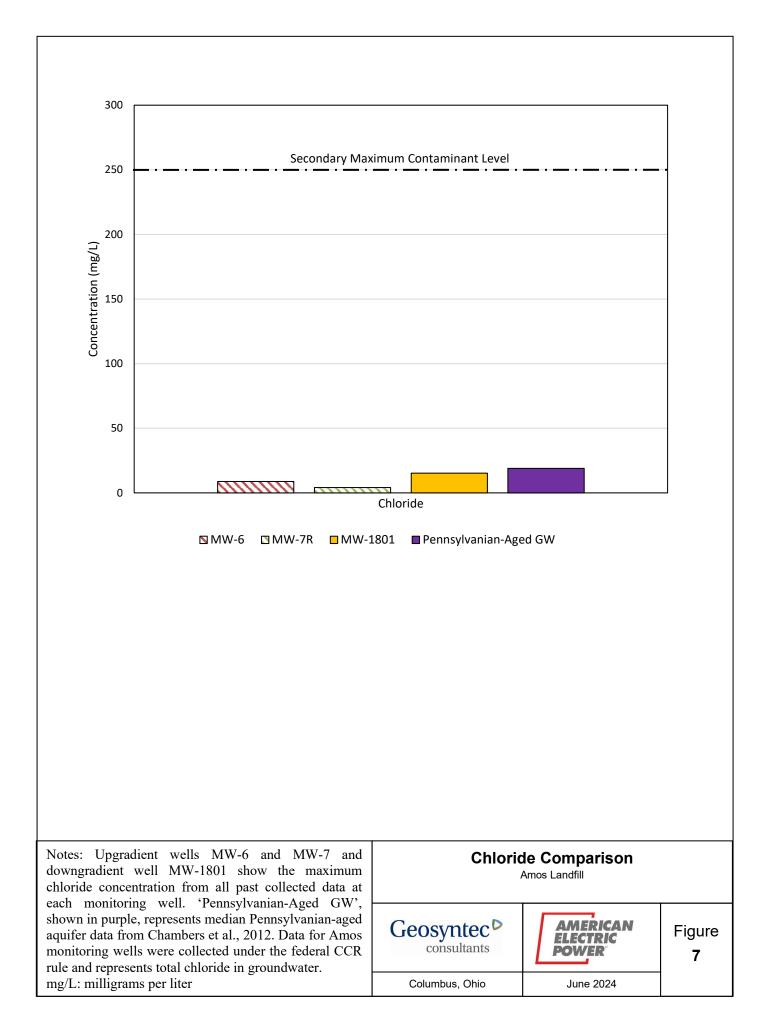
- PZ-0522 was dry during the October 2023 sampling event.
 Potentiometric surface contour interval is 40 feet.
 As of 2023, a portion of the liner in Cell 4 was replaced with a riprap drainage
- blanket; re-lining construction is ongoing.
- Topography and drainage system basemap from AEP Drawing No. 13-30500-05-A (topographic contour interval: 10 feet).


- Monitoring well coordinates and water level data (collected on October 16, 2023) provided by AEP.


- Groundwater elevation units are feet above mean sea level.


ΙN


Potentiometric Surface Map - Uppermost Aquifer October 2023					
AEP A Win					
Geosy	Figure				
con	2				
Columbus, Ohio	2				


Feet

ATTACHMENT A MW-1801 and MW-1802 Boring Logs and Well Construction Diagrams

JOB NUMBER	WV0159/6.0	005		
COMPANY An	nerican Electi	ric Power		BORING NO. MW-1
PROJECT Am	os - FGD Lan	dfill		BORING START
COORDINATES	N 38.5 E 81	1.6		PIEZOMETER TYPE
GROUND ELEVA	TION 735.6	SYSTEM N	AVD88	HGT. RISER ABOVE
Water Level, ft	⊻ 21.0	▼	$ar{oldsymbol{\Lambda}}$	DEPTH TO TOP OF
TIME				WELL DEVELOPME
DATE	8/15/2018			FIELD PARTY Za

MANO4 E070 000E

EET 1 OF 5	SHE	DATE 5/3/19	-1801	BORING NO. MW
8/8/18	G FINISH	BORI	8/7/18	BORING START
OW	LL TYPE	W	PE PVC	PIEZOMETER TYP
2"	DIA	2.8	E GROUNE	HGT. RISER ABOV
114.4	BOTTOM	REEN 50.4	F WELL SCI	DEPTH TO TOP O
Bentonite Grout	ACKFILL	rge/Purge	IENT <u>Su</u>	WELL DEVELOPM
Direct Circulation -	RIG	Racer (AEP)	achary R	FIELD PARTY Z
Wireline Core				

OW = OPEN TUBE SLOTTED SCREEN, GM = GEOMON

RECORDER A. Gillespie

SAMPLE STANDARD SAMPLE NUMBER RQD ΗĽ DEPTH SAMPLE **GRAPHIC** S DEPTH PENETRATION LENGTH RECOVER SOIL / ROCK WELL DRILLER'S LOG C IN S IN FEET RESISTANCE % **IDENTIFICATION** NOTES ⊃ FEET FROM BLOWS / 6" TO CL 0-5': SILTY CLAY; 2.5YR 5/6 (red); moist; backfill 0-49': Riser ML material. 5 5-6': SANDSTONE. 5.0 6.5 50/4 3.6 6-6.3': SHALE; GLEY1 5/N (gray); dry; thin <u>1111</u> CL bedded; hard. 6.5 8.0 48-23-15 3.6 ML 6.3-6.5': SILTY CLAY; red; moist; hard ML 6.5-8': SILT; 10YR 6/2 (tan); with sandstone and 8.0 9.5 11-3-5 7.2 MH \shale fragments; compacted fill material. 8-9.5': CLAYEY SILT; 5YR 4/2 (brown); firm; moist; fill material. 9.5-11': SILTY CLAY; 10YR 6/3 (brown) to brown 9.5 11.0 4-4-7 10.8 CL 10 ML clayey silt; dry; crumbly; fill material. 11-12.5': SILTY CLAY; 5YR 4/2 (brown); moist; 11.0 12.5 4-8-50/3 10.8 CL ML firm Note: Sandstone at 12-12.3'. 12.5 14.0 50/3 ML 12.5-14': SILT, compacted; 10YR 7/4 (tan); very hard; dry; fill material. 14.0 15.5 50/4 14-14.5': SILTY SHALE material, weathered; mottled tan and dark brown; dry; very hard. 15 14.9 19.9 51 14.5-14.9': SANDSTONE; strong field strength; 2.5Y 6/2; fine-grained texture; massive structure; slightly to moderately decomposed; moderately disintegrated with Fe staining; fracture at 14.3-14.5'. 14.9-19.9': SHALE; moderate field strength; GLEY1 5/GY; fine-grained texture; thinly bedded; moderately decomposed along bedding planes; moderately disintegrated along bedding planes and fracture; vertical fracture with Fe staining at 15.5-16.5'. **TYPE OF CASING USED** Continued Next Page NQ-2 ROCK CORE Х PIEZOMETER TYPE: PT = OPEN TUBE POROUS TIP, SS = OPEN TUBE NA 6" x 3.25 HSA SLOTTED SCREEN, G = GEONOR, P = PNEUMATIC

5/3/19 11:49 - S\KNOXVILLE-TNFOR NICOLE AEP LOG EDIT FILES\GINT LOGS OUTPUTAEP MOUNTAINEERVEP MOUNTAINEER. GP. AEP.GDT

NA NA

NA

NA

NA

AEP

9" x 6.25 HSA

NW CASING

SW CASING

AIR HAMMER

HW CASING ADVANCER

4"

3"

6"

8"

WELL TYPE:

JOB NUMBER **WV015976.0005**

COMPANY American Electric Power

PROJECT Amos - FGD Landfill

BORING NO. <u>MW-1801</u> DATE <u>5/3/19</u> SHEET <u>2</u> OF <u>5</u>

BORING START 8/7/18 BORING FINISH 8/8/18

SAMPLE NUMBER	SAMPLE	SAM DEF IN F FROM	PTH	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
		19.9	24.9	8-7-6	55					19.9-24.9': SHALE; moderate field strength; GLEY1 5/GY; fine-grained texture; thinly bedded; moderately decomposed along bedding planes; moderately disintegrated; moderately to intensely fractured.	¥	
							-			Transition to strong field strength, 2.5YR 4/4; fine-grained texture; massive structure to thinly bedded; slightly decomposed; slightly disintegrated; slightly to moderately fractured.		
UNTAINEER.GPJ		24.9	34.9	4-4-13	72		25 -	-		24.9-25.2': SHALE; strong field strength; fine-grained structure; massive structure to thinly bedded; slightly decomposed; slightly disintegrated; slightly to moderately fractured. 25.2-30.7': CLAYSTONE/MUDSTONE, highly weathered; very weak field strength; 10YR 5/3; very fine-grained texture with sandstone fragments; massive structure; highly decomposed; intensely disintegrated; unfractured.		
EDIT FILESIGINT LOGS OUTPUTAEP MOUNTAINEER/AEP MOUNTAINEER.GPJ							30 -			30.7-32.5': SHALE; moderate field strength; 2.5YR 4/4 (red); fine-grained texture; thinly bedded; moderately decomposed; slightly to moderately disintegrated; slightly to moderately fractured. 32.5-34.9': CLAYSTONE/MUDSTONE; moderate field strength; GLEY1 4/104; fine-grained texture; massive structure; moderately decomposed; moderately disintegrated; moderately to intensely		
		34.9	38.3	4-5-8	36		35 -			fractured. 34.9-38.3': CLAYSTONE/MUDSTONE; moderate to weak field strength; 2.5YR 4/4 (red) mottled with tan, black, and gray; fine-grained texture; massive structure; moderately to highly decomposed; intensely disintegrated, mottling tan and gray; moderately to intensely fractured.	-	
- AEP.GDT - 5/3/19 11:49 - S::KNOXVILLE-TNFOR NICOLE AEP LOG		38.3	44.9	5-7-13-9-6-6	70		40	-		38.3-44.9': CLAYSTONE/MUDSTONE; moderate to weak field strength; 2.5YR 4/4 (red) mottled with tan, black, and gray; fine-grained texture; massive structure; highly decomposed; intensely disintegrated; intensely fractured.		
EP.GDT - 5/3/19		44.9	50.0	4-4-7-8	50		45			44.9-50': CLAYSTONE/MUDSTONE; moderate to weak field strength; 2.5YR 4/4 (red) mottled with		
AEP - AE				1						Continued Next Page		1

JOB NUMBER **WV015976.0005**

COMPANY American Electric Power

BORING NO. <u>MW-1801</u> DATE <u>5/3/19</u> SHEET <u>3</u> OF <u>5</u>

PROJECT Amos - FGD Landfill BORING START 8/7/18 BORING FINISH 8/8/18

SAMPLE NUMBER	SAMPLE	SAM DEF IN F FROM	PTH	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION		DRILLER'S NOTES
		44.9	50.0	4-4-7-8	50		-	-		tan, black, and gray; fine-grained texture; massive structure; highly decomposed; intensely disintegrated; intensely fractured.		49-52': Bentonite
leer.gpJ		50.0	55.0	4-4-5-4	50		50 -	-		50-56.7': CLAYSTONE/MUDSTONE; moderate field strength; 2.5YR 4/4 (red) mottled with tan, black, and gray; fine-grained texture; massive structure; moderately to highly decomposed, becomes less weathered at 50.3'; highly disintegrated, highly mottled; moderately to intensely fractured.		Pellets 52-53': Secondary Filter Pack 53-75': Primary Filter Pack
EDIT FILESIGINT LOGS OUTPUTAEP MOUNTANEERAEP MOUNTAINEER GPJ		55.0	59.8	5-7-5-36	52		55 -			56.7-58': SANDSTONE, interbedded; strong field strength; GLEY1 6/N (gray-green); fine-grained texture; thinly bedded; slightly decomposed; slightly disintigrated along fracture; moderately fractured at 56.7' and 57.1-57.5'. 58-58.8': SHALE, interbedded; strong field		55-75': Screen
P LOG EDIT FILES/GINT LOGS OUTPUT		59.8	64.8	8-5-4-4-7-5-5-4	60		60 - - - -			strength; 2.5YR 4/4 (red); fine-grained texture; thinly bedded; slightly decomposed; slightly disintigrated along fracture. 58.8-59.2': SANDSTONE, interbedded; strong field strength; GLEY1 6/N (gray-green); fine-grained texture; thinly bedded; slightly decomposed; slightly disintigrated along fracture. 59.2-59.8': SHALE, interbedded; strong field strength; 2.5YR 4/4 (red); fine-grained texture; thinly bedded; slightly decomposed; slightly disintigrated along fracture.		
- AEP.GDT - 5/3/19 11:49 - S:\KNOXVILLE-TNIFOR NICOLE AEP LOG		64.8	74.8	4-5-4-6	76		65 - - - - - - - - - - - - - - - - - - -			 59.8-60.7': SANDSTONE; strong field strength; GLEY1 6/N; fine-grained texture; thinly bedded; slightly decomposed; slightly disintigrated; unfractured. 60.7-63.9': SHALE; moderate field strength; 2.5YR 4/4 (red); fine-grained texture; thinly bedded; moderately decomposed along bedding planes; moderately disintigrated with silt filled fractures; moderately fractured. 63.9-64.3': SANDSTONE; strong field strength; GLEY1 6/N (gray-green); fine-grained texture; thinly bedded; slightly decomposed; slightly disintigrated; unfractured. 64.3-64.8': SHALE; moderate field strength; 2.5YR 4/4 (red); fine grained texture; thinly 		
										104.3-04.8: SHALE; moderate field strength; 2.5YR 4/4 (red); fine-grained texture; thinly bedded; moderately decomposed; moderately Continued Next Page		

JOB NUMBER **WV015976.0005**

COMPANY American Electric Power

 PROJECT
 Amos - FGD Landfill
 BORING START
 8/7/18
 BORING FINISH
 8/8/18

BORING NO. <u>MW-1801</u> DATE <u>5/3/19</u> SHEET <u>4</u> OF <u>5</u>

SAMPLE NUMBER	SAMPLE	SAM DEF IN FI FROM	νTH	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	%	DEPTH IN FEET	GRAPHIC LOG	U S C S	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
		64.8	74.8	4-5-4-6	76		75 -			disintigrated; moderately fractured. 64.8-74.8': SHALE, highly weathered at base; moderate to weak field strength along some bedding planes; 2.5YR 3/3 (red); fine-grained texture; massive structure; moderately decomposed; moderately disintigrated, becomes more limestone fragments last 1 ft, 3-5 cm; moderately to intensely fractured. 74.8-85': SHALE, highly weathered; weak field strength; 2.5YR 4/4 (red) with tan and gray mottling; fine-grained texture; massive structure; highly decomposed; highly disintigrated, mottled; intensely fractured.		75-105': Bentonite
							80 -					
		85.0	95.0	5-4-4	120		85 -			85-92.7': SANDSTONE; strong field strength; fine-grained texture; thinly bedded; fresh; slightly disintigrated, calcite in light colored beds/thin; slightly fractured.		
							90 -			92.7-94.6': SHALE; moderate field strength; fine-grained texture; massive structure; slightly decomposed; slightly disintigrated, some mottling;		
		95.0	105.0	7-4-4	120		95 -			moderately fractured. 94.6-95': SANDSTONE; strong field strength; fine-grained texture; thinly bedded; fresh; slightly disintigrated, calcite in light colored beds/thin; slightly fractured at 94.6-95'. 95-100.1': SANDSTONE; strong field strength; fine-grained texture; thinly bedded; fresh; slightly disintigrated; slightly fractured at 95-95.2'.		

Continued Next Page

JOB NUMBER **WV015976.0005**

COMPANY American Electric Power

PROJECT Amos - FGD Landfill

BORING NO. <u>MW-1801</u> DATE <u>5/3/19</u> SHEET <u>5</u> OF <u>5</u> BORING START 8/7/18 BORING FINISH 8/8/18

SAMPLE NUMBER	SAMPLE	SAM DEF IN F FROM		STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
		95.0	105.0	7-4-4	120		100 -			100.1-101.5': SHALE and sandstone interbedded; moderate field strength; fine-grained texture; thinly bedded; slightly decomposed; slightly disintigrated; slightly fractured at 100.2-100.5'.		
2							105 -			101.5-105': SHALE; moderate to weak field strength; fine-grained texture; massive structure; highly decomposed; moderately to highly disintigrated mottling with silt filled fractures; highly fractured.		
raep mountaineervaep mountaineer. Gi							- - - - - -	-				
LE AEP LOG EDIT FILES/GINT LOGS OUTPU							- 115 -	-				
- 5/3/19 11:49 - S:\KNOXVILLE-TNFOR NICOL							- 120 – -	-				
AEP - AEP.GDT - 5/3/19 11:49 - S:/KNOX/ILLE-TN/FOR NICOLE AEP LOG EDIT FILES/GINT LOGS OUTPUTAEP MOUNTAINEER/AEP MOUNTAINEER.GPJ							120 -	-				

JOB NUMBER	WV015976.0	005		LOG OF
COMPANY Ar	nerican Electi	ric Power		BOR
PROJECT Am	ios - FGD Lan	dfill		BOR
COORDINATES	N 38.5 E 81	1.9		PIEZ
GROUND ELEVA	TION 709.8	SYSTEM	AVD88	HGT
Water Level, ft	⊻ 35.0	▼	Ā	DEP'
TIME				WEL
DATE	8/21/2019			FIEL

BORING NO. <u>MW-1802</u>	DATE 5/3/19	
BORING START 8/20	BORING F	FINISH 8/21/18
PIEZOMETER TYPE NA	WELL	TYPE OW
HGT. RISER ABOVE GROU	IND 2.91	DIA 2 "
DEPTH TO TOP OF WELL	SCREEN <u>50</u> BO	оттом 114.4
WELL DEVELOPMENT	Surge/Purge BAC	KFILL Bentonite Grout
FIELD PARTY Zachary	/ Racer (AEP)	RIG Direct Circulation -
		Wireline Core

Wireline Core

	-			I								Vireline Core
шα	: ш	SAM	IPLE	STANDARD	₋≿	RQD	DEPTH	<u>∪</u>	S			
SAMPLE	SAMPLE	DEF	PTH	PENETRATION	可近す			GRAPHIC LOG	ő	SOIL / ROCK	WELL	DRILLER'S
		IN F	EET	RESISTANCE	626	%	IN	RAPH	S	IDENTIFICATION	N N	NOTES
S ⊒	S I				TOTAL LENGTI RECOVE	/0	FEET	LD LD		IDENTIFICATION	-	NOILS
		FROM	TO	BLOWS / 6"	2							
									GW	0-3.5': GRAVEL backfill; large rip-rap and smaller		0-41': Bentonite Grout
								50		compacted gravels.		
												4
												2
											KK	1
												1
								• • •				1
								₹• 6'				4
									CL	3.5-4.5': SILTY CLAY; brown; moist; soft; backfill		}
								-\///		material.		4
												}
L L L		4.5	6.0	6-4-5	0		5 -			4.5-6': NO RECOVERY, due to gravel blocking	KK	1
ц.							5 -			cutting shoe.		}
Щ												}
	-	6.0	7.5	4-3-4	3.6			1///	CL	6-17': SILTY CLAY; 7.5YR 4/3 (brown); moist;	14 14	{
Ξ	1	0.0	1.5	4-0-4	5.0			X////				1
<u></u>	1									firm; compacted backfill material; becomes wet at	\aleph	1
										12.5'.		}
8'AE		7.5	9.0	3-4-5	7.2			<i>\///</i>			K	} I
Щ.								-////				}
Ž											KK	
					10			-\///				1
		9.0	10.5	4-4-6	18							1
Ž							10					{
							10 -	V////				
5		10.5	12.0	5-4-5	13.2							
IP		10.0	12.0	0 4 0	10.2			-\////				
00											KK	1
ა ე												1
2		12.0	13.5	3-4-6	15.6]
Z												4
S/G								<i>\////</i>				4
ü⊢		13.5	15.0	3-5-8	14.4							1
⊥ ⊢		15.5	15.0	0-0-0	14.4			-\////				
												}
<u>ღ</u>							15 -					
2		15.0	16.5	4-7-9	15.6		15					1
AE												\$
Щ								-\////				}
<u>8</u> —		16.5	18.0	6-25-8	16.8							{
z		10.5	10.0	0-20-0	10.0			<u> </u>				
Ë.										17-17.5': SANDSTONE, weathered; GLEY1 7/N	\mathbb{N}	1
ź								\$////	CL	\(gray); dry.		}
ц́		18.0	19.5	7-23-15	14.4					17.5-19.5': SILTY CLAY; GLEY1 6/N (gray)	K K	}
										mottled with brown, red, tan; moist; soft; crumbles		}
ŏ	1							-\////		easily.	KK	1
ž	+	10.5	01.0	00 > 50/4	10.0			\\\\	0	•	88]
vi	1	19.5	21.0	20->50/4	10.8	ļ		V////	CL			1
AEP-AEP.GDT-5/31911:49-S.KNOXVILLE-INFORINCOLE AEP.LOG EDITFILESIGINI LOGS OUTPUTAEP MOUNTAINEER.GFJ Z Z Z Z Z Z X		TYPE	OFC	ASING USED						Continued Next Page		
A N	X NQ-2 ROCK CORE								TVD			
	NA 6" x 3.25 HSA						PIEZOMETER TYPE: PT = OPEN TUBE POROUS TIP, SS = OPEN TUBE					
	NA 9" x 6.25 HSA					SLOTTED SCREEN, G = GEONOR, P = PNEUMATIC						
<u>ب</u> NA	NA 9 X0.23 HSA NA HW CASING ADVANCER 4"						WELL T		O_{1}	V = OPEN TUBE SLOTTED SCREEN, G	M = C	FOMON
		NW CAS			3"		VVELL I	IFC.		V - OF LIN TODE SLOTTED SOREEN, G	w - C	
		SW CAS			6"					RECORDER A. Gillespie		
		AIR HAN			8"							

JOB NUMBER **WV015976.0005**

COMPANY American Electric Power

PROJECT Amos - FGD Landfill

BORING NO. <u>MW-1802</u> DATE <u>5/3/19</u> SHEET <u>2</u> OF <u>5</u>

	SAMPLE NUMBER	SAMPLE	SAM DEF IN F FROM	PTH	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION → DRILLER'S NOTES
			19.5	21.0	20->50/4	10.8					19.5-22.5': SILTY CLAY; GLEY1 6/N (gray) mottled with brown, tan; dry; soft; crumbles easily.
			21.0	22.5	27-50/5	9.6		-			
			22.5	24.4	4	23		-	× × × × × × × × × × × × × × × × × × ×		22.5-24': SILTSTONE; moderate to weak field strength; GLEY1 6/N; fine-grained texture; massive structure; highly decomposed; moderately to highly disintegrated with tan/brown
AINEER.GPJ			24.4	29.4		22		25	*****		mottling; moderately to intensely fractured. 24-24.4': SILTSTONE; weak field strength; 10R 4/4 (red) mottled; fine-grained texture; massive structure; highly decomposed; moderately to intensely fractured. 24.4-29.4': SILTSTONE; weak field strength; 10R 4/4 (red) mottled with tan, gray, and black; fine-grained texture; massive structure; highly decomposed; highly disintegrated, highly mottled; moderately fractured.
MOUNTAINEERVAEP MOUNT 1			29.4	33.7	5-11-6	40		30			29.4-32.8': SHALE, weathered; moderate field strength; 10YR 4/4 (red) mottled; fine-grained texture; massive structure; moderately decomposed; moderately to intensely disintegrated; moderately fractured.
LE AEP LOG EDIT FILES\GINT LOGS OUTPUTAEP MOUNTAINEERAEP MOUNTAINEER.GPJ			33.7	39.4	5-4-4-7-5	59		- 35			5/4 (tan) mottled; fine-grained texture; massive structure; moderately to highly decomposed; moderately to intensely disintegrated; moderately to intensely fractured. 33.7-39.4': SHALE; moderate field strength; 10YR 4/4 (red) with gray, tan, and black mottling; fine-grained texture; massive structure; moderately to highly decomposed; moderately to intensely disintegrated; intensely fractured.
AEP - AEP.GDT - 5/3/19 11:49 - S:\KNOXVILLE-TNFOR NICOLE AEP LOG			39.4	44.4	4-6-4-4	57		40			39.4-44.4': SHALE; moderate field strength; 10YR 4/4 (red) with gray, tan, and black mottling; fine-grained texture; massive structure; moderately to highly decomposed; moderately to intensely disintegrated; intensely fractured. 41-44': Bentonite Pellets
EP.GDT - 5/3/15			44.4	54.4	7-8-7-5-5-24-5	120		45			44.4-47.8': SHALE, highly weathered; weak field strength; 10YR 4/4 (red) with gray, tan, and black mottling; fine-grained texture; massive structure; 45-71': Primary Filter Pack
AEP - A											Continued Next Page

JOB NUMBER **WV015976.0005**

COMPANY American Electric Power

PROJECT Amos - FGD Landfill

BORING NO. <u>MW-1802</u> DATE <u>5/3/19</u> SHEET <u>3</u> OF <u>5</u>

SAMPLE	DEF IN F FROM		STANDARD PENETRATION RESISTANCE BLOWS / 6"	LENGTH RECOVER	RQD %	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
	44.4	54.4	7-8-7-5-5-24-5	120					highly decomposed; intensely disintegrated; intensely fractured.		-
									47.8-49.9': SHALE, less weathered; moderate field strength; 10R 3/3 (red); fine-grained texture; massive structure; moderately decomposed; moderately disintegrated; moderately fractured.		
						50 -			49.9-50.8': SHALE, interbedded with sandstone; moderate field strength; GLEY1 4/N; fine-grained texture; thinly bedded; moderately decomposed; slightly disintegrated; moderately fractured.		50-70': Screen
									50.8-52.8': SHALE; moderate to strong field strength; 10R 4/3 (red); fine-grained texture; massive structure; slightly decomposed; moderately disintegrated; slightly fractured.		
	54.4	64.4	8-12-5-6-7-4-4-4	114		55 -			52.8-53.1': SHALE, interbedded with sandstone; strong field strength; GLEY1 4/5GY; fine-grained texture; thinly bedded; slightly decomposed; slightly disintegrated; unfractured.		
									53.1-54.4': SHALE; moderate field strength; 10R 4/3 (red); fine-grained texture; massive structure; moderately decomposed; moderately disintegrated; moderately fractured.		
									54.4-55.4': SANDSTONE, interbedded with shale; moderate field strength; 10R 4/3 (red); fine-grained texture; massive structure; moderately decomposed; moderately		
						60 -			disintegrated; slightly to moderately fractured. 55.4-57.1': SHALE, interbedded with sandstone; moderate field strength; GLEY1 4/3, 10R 4/3; fine-grained texture; thinly bedded; slightly decomposed; olightly disintegrated; moderately		
									decomposed; slightly disintegrated; moderately fractured. 57.1-64.4': SHALE, weathered; moderate to weak field strength; 10R 4/3 (red); fine-grained texture; magnine structure; mederately to highly.		
	64.4	74.4	4-6-8-6-4-5-4-4-5	117		65 -			massive structure; moderately to highly decomposed; moderately to intensely disintegrated with intense gray mottling; intensely fractured. 64.4-70.5': SHALE, highly weathered; moderate to		
									weak field strength; 10R 4/3 (red); fine-grained texture; massive structure; moderately to intensely disintegrated with gray mottling; intensely fractured.		
						70 -			70.5-74.4': SHALE, interbedded with sandstone;		- - - -
									vith GLEY1 4/N (gray-green); fine-grained	<u> ····</u>	

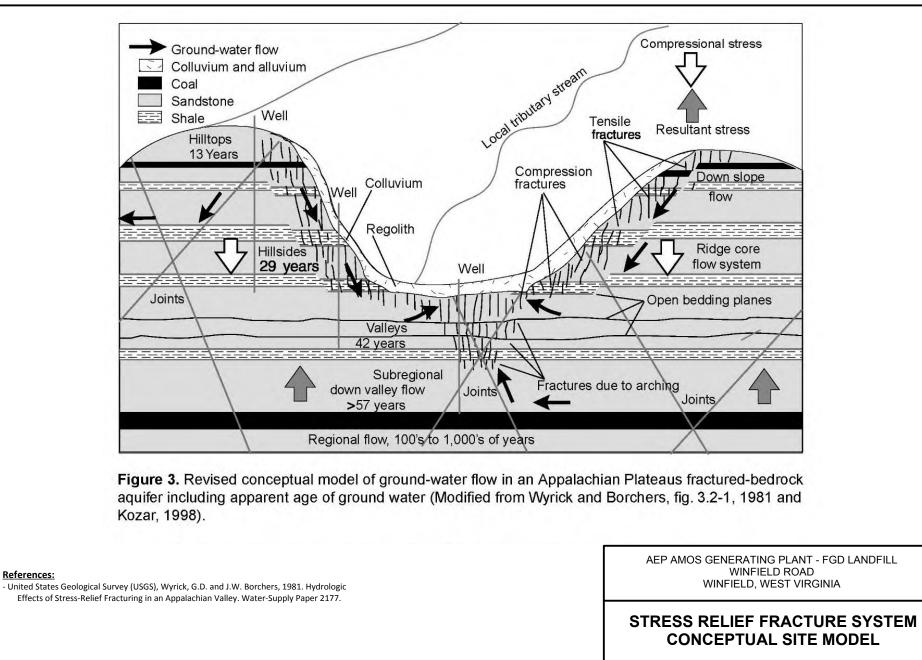
JOB NUMBER **WV015976.0005**

COMPANY American Electric Power

PROJECT Amos - FGD Landfill

BORING NO. <u>MW-1802</u> DATE <u>5/3/19</u> SHEET <u>4</u> OF <u>5</u>

SAMPLE NUMBER	SAMPLE	SAM DEF IN F	ΡTΗ	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
		64.4	74.4	4-6-8-6-4-5-4-4-5			-			texture; thinly bedded; slightly to moderately decomposed along some bedding planes; moderately disintegrated with silt filled fractures; moderately fractured.		
		74.4	84.4	8-7-5-5-14-8-7- 22-12	120		75 -			74.4-77.1': SHALE, with some interbedded sandstone lenses; moderate field strength; 10R 4/3 (red); fine-grained texture; thinly bedded; slightly to moderately decomposed at some bedding planes; slightly disintegrated; moderately fractured.		
P MOUNTAINEER.GPJ							- 80			77.1-82.7': SANDSTONE, with some red shale lenses; strong field strength; GLEY1 4/N; fine-grained texture; thinly bedded; fresh; moderately disintegrated, calcite reacts to HCl in light colored bands within 0.5' of surrounding contact lines, no HCl/calcite in fractures, no Fe staining; moderately fractured.		
S OUTPUTAEP MOUNTAINEERAE		84.4	94.4	10-11-6-7-7-8-9- 8-7-6-6-7-10	120		85 -			82.7-84.4': SHALE, with some interbedded sandstone lenses; moderate field strength; 10R 4/3 (red); fine-grained texture; thinly bedded; slightly decomposed; slightly disintegrated; moderately fractured. 84.4-86.7': SHALE, with sandstone lenses; moderate field strength; 10R 4/2 (red) with GLEY1 4/N lenses; fine-grained texture; thinly bedded; slightly decomposed; slightly disintegrated; moderately fractured.	-	
- AEP.GDT - 5/3/19 11:49 - S.\KNOXVILLE-TNFOR NICOLE AEP LOG EDIT FILES\GINT LOGS OUTPUTAEP MOUNTAINEER.AEP MOUNTAINEER.GPJ							90			86.7-89.2': SANDSTONE, with shale lenses; moderate field strength; GLEY1 4/N with 10R 4/2 lenses; fine-grained texture; thinly bedded; slightly decomposed; slightly disintegrated; moderately fractured. 89.2-94.4': SANDSTONE; strong field strength; GLEY1 6/N; fine-grained texture; thinly bedded, micaceous; fresh; slightly disintegrated, some calcite in light bands, no staining, no calcite in fractures; slightly to moderately fractured along bedding planes; fracture at 92.8'.		
P.GDT - 5/3/19 11:49 - S:\KNOXVIL		94.4	104.4	7-4-5-4-9-9-8-5- 11-5-6-10-19	120		95 -			94.4-104.4': SANDSTONE; strong field strength; GLEY1 6/N; fine-grained texture; thinly bedded, micaceous, cross-bedding at 94.4-94.8; fresh; slightly disintegrated, calcite in some light bedded planes, no calcite or Fe staining noted in fractures; slightly to moderately fractured along bedding planes.	-	
AEP - AEP										Continued Next Page		


JOB NUMBER WV015976.0005

COMPANY American Electric Power

BORING NO. <u>MW-1802</u> DATE <u>5/3/19</u> SHEET <u>5</u> OF <u>5</u> PROJECT Amos - FGD Landfill BORING START 8/20/18 BORING FINISH 8/21/18

		SAM	IPLE	STANDARD	_≿	RQD	DEPTH	O				
SAMPLE	SAMPLE	DEF	PTH	PENETRATION	GTH VER		DEPTH IN FEET	UHU HU	C S	SOIL / ROCK	WELL	DRILLER'S
SAN	SAN	IN F		RESISTANCE	TOTAL LENGTH RECOVEF	%	FEET	GRA	N S	IDENTIFICATION	WE	NOTES
		FROM	TO					ļ				
		94.4	104.4	7-4-5-4-9-9-8-5- 11-5-6-10-19	120		- 100 – -					
NTAINEER.GPJ		104.4	114.4	15-6-21-6-4-4-8- 8-6-4-13-5-7	120		105			104.4-108': SANDSTONE; strong field strength; GLEY1 6/N; fine to medium-grained texture; thinly bedded, micaceous, shale fragments; fresh; moderately disintegrated, calcite along entire sandstone void and shale fragments at base, calcite in void; slightly fractured.	-	
AEP.GDT - 5/3/19 11:49 - S.\KNOXVILLE-TNFOR NICOLE AEP LOG EDIT FILES\GINT LOGS OUTPUTAEP MOUNTAINEER.AEP MOUNTAINEER.GPJ							- 110 -			108-108.9': SHALE, with interbedded sandstone; moderate field strength; GLEY1 4/N, 10R 4/3 bands; thinly bedded; moderately decomposed between bedding planes; moderately disintegrated along bedding planes; moderately fractured. 108.9-114.4': SHALE; moderate field strength; 10R 4/3 (red) with GLEY1 4/N mottling; fine-grained texture; massive structure; moderately decomposed; moderately to intensely disintegrated, mottling; moderately fractured.		
-TNFOR NICOLE AEP LOG EDIT FILES(115	-				
AEP.GDT - 5/3/19 11:49 - S.\KNOXVILLE-							120 -	-				

ATTACHMENT B Stress-Relief Fracture Conceptual Site Model

References:

FIGURE 4

Design & Consultancy for natural and built assets

ARCADIS

ATTACHMENT C Solid Samples Analytical Report

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Allison Kreinberg Geosyntec Consultants Inc 500 West Wilson Bridge Road Suite 250 Worthington, Ohio 43085 Generated 5/1/2024 4:51:58 PM

JOB DESCRIPTION

AEP Amos Power Plant - ASD

JOB NUMBER

240-202469-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Roxanne Cisneros Generated 5/1/2024 4: 5/1/2024 4:51:58 PM

Authorized for release by Roxanne Cisneros, Senior Project Manager roxanne.cisneros@et.eurofinsus.com (615)301-5761 1

5

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
QC Sample Results	15
QC Association Summary	17
Lab Chronicle	19
Certification Summary	22
Chain of Custody	23
Receipt Checklists	27

Client: Geosyntec Consultants Inc Project/Site: AEP Amos Power Plant - ASD

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

3

Qualifiers

RL

RPD

TEF TEQ

TNTC

Metals	Quelifier Description
Qualifier 4	Qualifier Description
	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are no applicable.
General Che	mistry
Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
OD	Limit of Detection (DoD/DOE)
_OQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
/IDA	Minimum Detectable Activity (Radiochemistry)
NDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ИL	Minimum Level (Dioxin)
MPN	Most Probable Number
ЛQL	Method Quantitation Limit
1C	Not Calculated
1D	Not Detected at the reporting limit (or MDL or EDL if shown)
IEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
C	Quality Control
RER	Relative Error Ratio (Radiochemistry)
.	

Job ID: 240-202469-1

Eurofins Cleveland

Job Narrative 240-202469-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 4/8/2024 12:30 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 24.3°C.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Organic Prep

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cleveland

Method Summary

Client: Geosyntec Consultants Inc Project/Site: AEP Amos Power Plant - ASD

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET CLE
9056A	Anions, Ion Chromatography	SW846	EET CLE
9081	Cation Exchange Capacity (CEC)	SW846	EET HOU
Moisture	Percent Moisture	EPA	EET CLE
Part Size Red	Particle Size Reduction Preparation	None	EET CLE
3050B	Preparation, Metals	SW846	EET CLE
9081	Cation Exchange Capacity (CEC)	SW846	EET HOU
DI Leach	Deionized Water Leaching Procedure	ASTM	EET CLE

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

None = None

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Sample Summary

Client: Geosyntec Consultants Inc Project/Site: AEP Amos Power Plant - ASD

Lab Sample ID 240-202469-1 240-202469-2 240-202469-3	Client Sample ID MW-1801-SS-59.8-60.5-20240403 MW-1802-SS-56.3-56.9-20240403 MW-1801-SH-55.9-56.6-20240403	Matrix Solid Solid Solid Solid	Collected 04/03/24 11:00 04/03/24 11:05 04/03/24 11:10	
240-202469-4	MW-1801-SH-58.0-58.8-20240403	Solid	04/03/24 11:15	04/08/24 12:30
240-202469-5	MW-1802-SH-51.9-52.5-20240403	Solid	04/03/24 11:20	04/08/24 12:30
240-202469-6	MW-1802-SH-55.3-55.8-20240403	Solid	04/03/24 11:25	04/08/24 12:30

Detection Summary

Client Sample ID: MW-1801-SS-59.8-60.5-20240403

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	25600		422	30.8	mg/Kg	1	₽	6010D	Total/NA
Cation Exchange Capacity	2.46		0.502	0.502	meq/100gm	1	¢	9081	Total/NA
Chloride	24.8		10.2	2.04	mg/Kg	1	¢	9056A	Soluble
Fluoride	0.793		0.512	0.342	mg/Kg	1	₽	9056A	Soluble
Sulfate	20.0		10.2	3.98	mg/Kg	1	¢	9056A	Soluble
PSR sample generated	DONE				NONE	1		Part Size Red	Total/NA

Client Sample ID: MW-1802-SS-56.3-56.9-20240403

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	3400		480	35.0	mg/Kg	1	¢	6010D	Total/NA
Cation Exchange Capacity	4.25		0.504	0.504	meq/100gm	1	₽	9081	Total/NA
Fluoride	0.790		0.494	0.330	mg/Kg	1	₽	9056A	Soluble
Sulfate	8.45	J	9.87	3.84	mg/Kg	1	₽	9056A	Soluble
PSR sample generated	DONE				NONE	1		Part Size Red	Total/NA

Client Sample ID: MW-1801-SH-55.9-56.6-20240403

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	1010		423	30.8	mg/Kg	1	₽	6010D	Total/NA
Cation Exchange Capacity	18.0		0.512	0.512	meq/100gm	1	₽	9081	Total/NA
Fluoride	3.28		0.521	0.348	mg/Kg	1	₽	9056A	Soluble
Sulfate	9.59	J	10.4	4.05	mg/Kg	1	₽	9056A	Soluble
PSR sample generated	DONE				NONE	1		Part Size Red	Total/NA

Client Sample ID: MW-1801-SH-58.0-58.8-20240403

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	2910		470	34.3	mg/Kg	1	¢	6010D	Total/NA
Cation Exchange Capacity	18.8		0.512	0.512	meq/100gm	1	¢	9081	Total/NA
Fluoride	3.43		0.523	0.349	mg/Kg	1	¢	9056A	Soluble
Sulfate	16.6		10.5	4.07	mg/Kg	1	¢	9056A	Soluble
PSR sample generated	DONE				NONE	1		Part Size Red	Total/NA

Client Sample ID: MW-1802-SH-51.9-52.5-20240403

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
Calcium	1120		408	29.7	mg/Kg	1	₽	6010D	Total/NA
Cation Exchange Capacity	35.7		0.514	0.514	meq/100gm	1	₽	9081	Total/NA
Fluoride	4.61		0.524	0.350	mg/Kg	1	₽	9056A	Soluble
Sulfate	17.9		10.5	4.08	mg/Kg	1	₽	9056A	Soluble
PSR sample generated	DONE				NONE	1		Part Size Red	Total/NA

Client Sample ID: MW-1802-SH-55.3-55.8-20240403

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	1230	357	26.0	mg/Kg	1	☆	6010D	Total/NA
Cation Exchange Capacity	14.5	0.511	0.511	meq/100gm	1	₽	9081	Total/NA
Fluoride	3.55	0.518	0.346	mg/Kg	1	₽	9056A	Soluble
Sulfate	14.6	10.4	4.03	mg/Kg	1	₽	9056A	Soluble
PSR sample generated	DONE			NONE	1		Part Size Red	Total/NA

Page 8 of 27

This Detection Summary does not include radiochemical test results.

Eurofins Cleveland

Job ID: 240-202469-1 Lab Sample ID: 240-202469-1

7

Lab Sample ID: 240-202469-4

Lab Sample ID: 240-202469-5

Lab Sample ID: 240-202469-6

Lab Sample ID: 240-202469-2

Lab Sample ID: 240-202469-3

Client Sample ID: MW-1801-SS-59.8-60.5-20240403 Date Collected: 04/03/24 11:00 Date Received: 04/08/24 12:30

Lab Sample ID: 240-202469-1 Matrix: Solid

5

8 9

Percent Solids: 99.5

Job ID: 240-202469-1

Method: SW846 6010D - Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	25600		422	30.8	mg/Kg	₽	04/09/24 15:00	04/10/24 15:12	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cation Exchange Capacity (SW846 9081)	2.46		0.502	0.502	meq/100gm	¢	04/28/24 12:55	05/01/24 09:35	1
Percent Solids (EPA Moisture)	99.5		0.1	0.1	%			04/10/24 17:00	1
Percent Moisture (EPA Moisture)	0.5		0.1	0.1	%			04/10/24 17:00	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	24.8		10.2	2.04	mg/Kg	₽		04/17/24 08:29	1
Fluoride (SW846 9056A)	0.793		0.512	0.342	mg/Kg	₽		04/17/24 08:29	1
_Sulfate (SW846 9056A)	20.0		10.2	3.98	mg/Kg	¢		04/17/24 08:29	1
Method: Part Size Red - Particle	Size Red	uction Prep	paration						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PSR sample generated	DONE				NONE			04/09/24 12:36	1

Eurofins Cleveland

Client Sample ID: MW-1802-SS-56.3-56.9-20240403 Date Collected: 04/03/24 11:05 Date Received: 04/08/24 12:30

240403	Lab Sample ID: 240-20
	Mat
	Percent So

	_
02469-	2

5

8

Matrix: Solid Percent Solids: 99.3

Job ID: 240-202469-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	3400		480	35.0	mg/Kg	₽	04/09/24 15:00	04/10/24 15:42	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cation Exchange Capacity (SW846 9081)	4.25		0.504	0.504	meq/100gm	¢	04/28/24 12:55	05/01/24 09:35	1
Percent Solids (EPA Moisture)	99.3		0.1	0.1	%			04/10/24 17:00	1
Percent Moisture (EPA Moisture)	0.7		0.1	0.1	%			04/10/24 17:00	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	ND		9.87	1.97	mg/Kg	₽		04/17/24 09:34	1
Fluoride (SW846 9056A)	0.790		0.494	0.330	mg/Kg	¢		04/17/24 09:34	1
Sulfate (SW846 9056A)	8.45	J	9.87	3.84	mg/Kg	¢		04/17/24 09:34	1
Method: Part Size Red - Particle	Size Red	uction Prep	paration						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PSR sample generated	DONE				NONE	_		04/09/24 12:36	1

Eurofins Cleveland

Client Sample ID: MW-1801-SH-55.9-56.6-20240403 Date Collected: 04/03/24 11:10 Date Received: 04/08/24 12

Date Received: 04/08/24 12:30											
Method: SW846 6010D	- Metals (ICP)										
Analyte	Result Qualifier	RL	MDL Unit	D							

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	1010		423	30.8	mg/Kg	☆	04/09/24 15:00	04/10/24 15:46	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cation Exchange Capacity (SW846 9081)	18.0		0.512	0.512	meq/100gm	¢	04/28/24 12:55	05/01/24 09:35	1
Percent Solids (EPA Moisture)	97.7		0.1	0.1	%			04/10/24 17:00	1
Percent Moisture (EPA Moisture)	2.3		0.1	0.1	%			04/10/24 17:00	1
 General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	ND		10.4	2.08	mg/Kg	₿		04/17/24 09:56	1
Fluoride (SW846 9056A)	3.28		0.521	0.348	mg/Kg	₿		04/17/24 09:56	1
Sulfate (SW846 9056A)	9.59	J	10.4	4.05	mg/Kg	☆		04/17/24 09:56	1
_ Method: Part Size Red - Particle	Size Red	uction Prep	paration						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PSR sample generated	DONE				NONE			04/09/24 12:36	1

Job ID: 240-202469-1

Percent Solids: 97.7

Matrix: Solid

Lab Sample ID: 240-202469-3

8

Client Sample ID: MW-1801-SH-58.0-58.8-20240403 Date Collected: 04/03/24 11:15 Date Received: 04/08/24 12:30

Eurofins Cleveland

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	2910		470	34.3	mg/Kg	¢	04/09/24 15:00	04/10/24 15:51	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cation Exchange Capacity (SW846 9081)	18.8		0.512	0.512	meq/100gm	¢	04/28/24 12:55	05/01/24 09:35	1
Percent Solids (EPA Moisture)	97.6		0.1	0.1	%			04/10/24 17:00	1
Percent Moisture (EPA Moisture)	2.4		0.1	0.1	%			04/10/24 17:00	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	ND		10.5	2.09	mg/Kg	¢		04/17/24 10:18	1
Fluoride (SW846 9056A)	3.43		0.523	0.349	mg/Kg	¢		04/17/24 10:18	1
Sulfate (SW846 9056A)	16.6		10.5	4.07	mg/Kg	¢		04/17/24 10:18	1
Method: Part Size Red - Particle	Size Red	uction Prep	aration						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PSR sample generated	DONE				NONE			04/09/24 12:36	1

Lab Sample ID: 240-202469-4 Matrix: Solid Percent Solids: 97.6 5 **8** 9

Client Sample ID: MW-1802-SH-51.9-52.5-20240403 Date Collected: 04/03/24 11:20 Date Received: 04/08/24 12:30

Lab Sample ID: 240-202469-5 Matrix: Solid

Percent Solids: 97.3

5

8 9

Method: SW846 6010D - Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	1120		408	29.7	mg/Kg	₽	04/09/24 15:00	04/10/24 15:55	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cation Exchange Capacity (SW846 9081)	35.7		0.514	0.514	meq/100gm	¢	04/28/24 12:55	05/01/24 09:35	1
Percent Solids (EPA Moisture)	97.3		0.1	0.1	%			04/10/24 17:00	1
Percent Moisture (EPA Moisture)	2.7		0.1	0.1	%			04/10/24 17:00	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	ND		10.5	2.09	mg/Kg	☆		04/17/24 12:33	1
Fluoride (SW846 9056A)	4.61		0.524	0.350	mg/Kg	¢		04/17/24 12:33	1
Sulfate (SW846 9056A)	17.9		10.5	4.08	mg/Kg	₽		04/17/24 12:33	1
Method: Part Size Red - Particle	Size Red	uction Prep	paration						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PSR sample generated	DONE				NONE			04/09/24 12:36	1

Client Sample ID: MW-1802-SH-55.3-55.8-20240403 Date Collected: 04/03/24 11:25 Date R

5/1/2024	

Date Collected: 04/03/24 11:25								Matrix	c: Solid	
Date Received: 04/08/24 12:30								Percent Solid	ls: 97.9	
Method: SW846 6010D - Metals	(ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Calcium	1230		357	26.0	mg/Kg	☆	04/09/24 15:00	04/10/24 16:00	1	
General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Cation Exchange Capacity (SW84€ 9081)	14.5		0.511	0.511	meq/100gm	\$	04/28/24 12:55	05/01/24 09:35	1	
Percent Solids (EPA Moisture)	97.9		0.1	0.1	%			04/10/24 17:00	1	
Percent Moisture (EPA Moisture)	2.1		0.1	0.1	%			04/10/24 17:00	1	
General Chemistry - Soluble										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride (SW846 9056A)	ND		10.4	2.06	mg/Kg	₽		04/17/24 12:54	1	
Fluoride (SW846 9056A)	3.55		0.518	0.346	mg/Kg	₽		04/17/24 12:54	1	
Sulfate (SW846 9056A)	14.6		10.4	4.03	mg/Kg	☆		04/17/24 12:54	1	

Method: Part Size Red - Particle Size Reduction Preparation											
4	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
F	PSR sample generated	DONE				NONE			04/09/24 12:36	1	

Lab Sample ID: 240-202469-6 Matrix: Solid

Job ID: 240-202469-1

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 240-6089	971/1-A									Clie	nt Samp	ole ID: Me	ethod	Blan
Matrix: Solid												Prep Typ	be: Tot	tal/N/
Analysis Batch: 609193												Prep Ba	tch: 60	0897
		MB MB												
Analyte	Re	sult Qualifier		RL	I	MDL U	Jnit		D	Pr	epared	Analyz	ed	Dil Fa
Calcium		ND		500		36.5 r	ng/Kg	9		04/09	9/24 15:00	04/10/24 1	15:03	
Lab Sample ID: LCS 240-608	8971/2-A							Cli	ent	San	nple ID:	Lab Con	trol Sa	ampl
Matrix: Solid												Prep Typ	be: Tot	tal/N
Analysis Batch: 609193												Prep Ba	tch: 60	0897
			Spike	_	-	LCS	~			_	~ -	%Rec		
Analyte			Added	R		Quali	tier	Unit		D	<u>%Rec</u>	Limits		
Calcium			5000		4663			mg/Kg			93	80 - 120		
Sodium			5000		4870			mg/Kg			97	80 - 120		
Lab Sample ID: 240-202469-	1 MS					Clien	t Sa	mple I	D: I	ww-	1801-SS	6-59.8-60.	5-2024	4040
Matrix: Solid												Prep Typ	be: Tot	tal/N
Analysis Batch: 609193												Prep Ba	tch: 60	0897
	Sample	Sample	Spike		MS	MS						%Rec		
Analyte		Qualifier	Added			Quali	fier	Unit		D	%Rec	Limits		
Calcium	25600		4330	2	29520	4		mg/Kg		¢	89	75 - 125		
Sodium	ND		4330		3941			mg/Kg		¢	91	75 - 125		
Lab Sample ID: 240-202469-	1 MSD					Clien	t Sa	mple I	D: I	ww-	1801-SS	6-59.8-60 .		
Matrix: Solid												Prep Typ	be: Tot	tal/N
Analysis Batch: 609193												Prep Ba	tch: 60	0897
	Sample	Sample	Spike		MSD	MSD						%Rec		RP
Analyte		Qualifier	Added			Quali	fier	Unit		D	%Rec	Limits	RPD	Lim
Calcium	25600		4330	3	30400	4		mg/Kg		¢	110	75 - 125	3	2
Sodium	ND		4330		3943			mg/Kg		¢	91	75 - 125	0	2
lethod: 9056A - Anions,	lon Ch	romatogra	phy											
Lab Sample ID: MB 240-6090	589/1 - Δ									Clie	nt Samr	ole ID: Me	thod	Blan
Las Sampie ID. MiD 240-0030										2116	ni Uaille			

Matrix: Solid Analysis Batch: 609809

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		9.95	1.98	mg/Kg			04/17/24 07:46	1
Fluoride	ND		0.498	0.332	mg/Kg			04/17/24 07:46	1
Sulfate	ND		9.95	3.87	mg/Kg			04/17/24 07:46	1

Lab Sample ID: LCS 240-609689/2-A **Matrix: Solid** Analysis Batch: 609809

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	500	504.8		mg/Kg		101	90 - 110	
Fluoride	25.0	26.00		mg/Kg		104	90 - 110	
Sulfate	500	519.2		mg/Kg		104	90 - 110	

Eurofins Cleveland

Client Sample ID: Lab Control Sample Prep Type: Soluble

Cation Exchange Capacity

04/28/24 12:54 05/01/24 09:35

7 8 9

1

Method: 9056A - Anions, Ion Chromatography (Continued)

ND

Lab Sample ID: 240-202469 Matrix: Solid Analysis Batch: 609809	-1 MS				Client Sa	ample ID): MW	-1801-S	S-59.8-60 Prep Ty		
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	24.8		512	576.6		mg/Kg	¢	108	80 - 120		
Fluoride	0.793		25.6	29.82		mg/Kg	¢	113	80 - 120		
Sulfate	20.0		512	580.7		mg/Kg	☆	110	80 - 120		
Lab Sample ID: 240-202469 Matrix: Solid Analysis Batch: 609809	-1 MSD				Client Sa	ample ID): MW	-1801-S	S-59.8-60 Prep Ty		
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	24.8		512	580.0		mg/Kg	☆	109	80 - 120	1	15
Fluoride	0.793		25.6	30.05		mg/Kg	¢	114	80 - 120	1	15
Sulfate	20.0		512	583.9		mg/Kg	¢	110	80 - 120	1	15
Nethod: 9081 - Cation E	xchange	e Capacity	(CEC)								
Lab Sample ID: MB 860-157	7253/1-A						Clie	ent Sam	ple ID: M	ethod	Blank
Matrix: Solid									Prep Ty	pe: Tot	tal/NA
Analysis Batch: 157810									Prep Ba	tch: 1	57253
-		MB MB									
Analyte	_	sult Qualifier		RL I	MDL Unit		D P	repared	Analyz		Dil Fac

0.500

0.500 meq/100gm

Prep Type

Total/NA

Matrix

Solid

Client Sample ID

Method Blank

Lab Control Sample

MW-1801-SS-59.8-60.5-20240403

MW-1802-SS-56.3-56.9-20240403

MW-1801-SH-55.9-56.6-20240403

MW-1801-SH-58.0-58.8-20240403

MW-1802-SH-51.9-52.5-20240403

MW-1802-SH-55.3-55.8-20240403

MW-1801-SS-59.8-60.5-20240403

MW-1801-SS-59.8-60.5-20240403

Metals

Prep Batch: 608971

Lab Sample ID

240-202469-1

240-202469-2

240-202469-3

240-202469-4

240-202469-5

240-202469-6

MB 240-608971/1-A

LCS 240-608971/2-A

240-202469-1 MS

240-202469-1 MSD

Prep Batch

Method

3050B

Analysis Batch: 609	193				1	
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	U
240-202469-1	MW-1801-SS-59.8-60.5-20240403	Total/NA	Solid	6010D	608971	4
240-202469-2	MW-1802-SS-56.3-56.9-20240403	Total/NA	Solid	6010D	608971	
240-202469-3	MW-1801-SH-55.9-56.6-20240403	Total/NA	Solid	6010D	608971	2
240-202469-4	MW-1801-SH-58.0-58.8-20240403	Total/NA	Solid	6010D	608971	4
240-202469-5	MW-1802-SH-51.9-52.5-20240403	Total/NA	Solid	6010D	608971	2
240-202469-6	MW-1802-SH-55.3-55.8-20240403	Total/NA	Solid	6010D	608971	5
MB 240-608971/1-A	Method Blank	Total/NA	Solid	6010D	608971	
LCS 240-608971/2-A	Lab Control Sample	Total/NA	Solid	6010D	608971	4
240-202469-1 MS	MW-1801-SS-59.8-60.5-20240403	Total/NA	Solid	6010D	608971	
240-202469-1 MSD	MW-1801-SS-59.8-60.5-20240403	Total/NA	Solid	6010D	608971	

General Chemistry

Prep Batch: 157253

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-202469-1	MW-1801-SS-59.8-60.5-20240403	Total/NA	Solid	9081	
240-202469-2	MW-1802-SS-56.3-56.9-20240403	Total/NA	Solid	9081	
240-202469-3	MW-1801-SH-55.9-56.6-20240403	Total/NA	Solid	9081	
240-202469-4	MW-1801-SH-58.0-58.8-20240403	Total/NA	Solid	9081	
240-202469-5	MW-1802-SH-51.9-52.5-20240403	Total/NA	Solid	9081	
240-202469-6	MW-1802-SH-55.3-55.8-20240403	Total/NA	Solid	9081	
MB 860-157253/1-A	Method Blank	Total/NA	Solid	9081	

Analysis Batch: 157810

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-202469-1	MW-1801-SS-59.8-60.5-20240403	Total/NA	Solid	9081	157253
240-202469-2	MW-1802-SS-56.3-56.9-20240403	Total/NA	Solid	9081	157253
240-202469-3	MW-1801-SH-55.9-56.6-20240403	Total/NA	Solid	9081	157253
240-202469-4	MW-1801-SH-58.0-58.8-20240403	Total/NA	Solid	9081	157253
240-202469-5	MW-1802-SH-51.9-52.5-20240403	Total/NA	Solid	9081	157253
240-202469-6	MW-1802-SH-55.3-55.8-20240403	Total/NA	Solid	9081	157253
MB 860-157253/1-A	Method Blank	Total/NA	Solid	9081	157253

Analysis Batch: 609179

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-202469-1	MW-1801-SS-59.8-60.5-20240403	Total/NA	Solid	Moisture	
240-202469-2	MW-1802-SS-56.3-56.9-20240403	Total/NA	Solid	Moisture	
240-202469-3	MW-1801-SH-55.9-56.6-20240403	Total/NA	Solid	Moisture	

Eurofins Cleveland

QC Association Summary

Client: Geosyntec Consultants Inc Project/Site: AEP Amos Power Plant - ASD

General Chemistry (Continued)

Analysis Batch: 609179 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-202469-4	MW-1801-SH-58.0-58.8-20240403	Total/NA	Solid	Moisture	
240-202469-5	MW-1802-SH-51.9-52.5-20240403	Total/NA	Solid	Moisture	
240-202469-6	MW-1802-SH-55.3-55.8-20240403	Total/NA	Solid	Moisture	

Leach Batch: 609689

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-202469-1	MW-1801-SS-59.8-60.5-20240403	Soluble	Solid	DI Leach	
240-202469-2	MW-1802-SS-56.3-56.9-20240403	Soluble	Solid	DI Leach	
240-202469-3	MW-1801-SH-55.9-56.6-20240403	Soluble	Solid	DI Leach	
240-202469-4	MW-1801-SH-58.0-58.8-20240403	Soluble	Solid	DI Leach	
240-202469-5	MW-1802-SH-51.9-52.5-20240403	Soluble	Solid	DI Leach	
240-202469-6	MW-1802-SH-55.3-55.8-20240403	Soluble	Solid	DI Leach	
MB 240-609689/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 240-609689/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
240-202469-1 MS	MW-1801-SS-59.8-60.5-20240403	Soluble	Solid	DI Leach	
240-202469-1 MSD	MW-1801-SS-59.8-60.5-20240403	Soluble	Solid	DI Leach	

Analysis Batch: 609809

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-202469-1	MW-1801-SS-59.8-60.5-20240403	Soluble	Solid	9056A	609689
240-202469-2	MW-1802-SS-56.3-56.9-20240403	Soluble	Solid	9056A	609689
240-202469-3	MW-1801-SH-55.9-56.6-20240403	Soluble	Solid	9056A	609689
240-202469-4	MW-1801-SH-58.0-58.8-20240403	Soluble	Solid	9056A	609689
240-202469-5	MW-1802-SH-51.9-52.5-20240403	Soluble	Solid	9056A	609689
240-202469-6	MW-1802-SH-55.3-55.8-20240403	Soluble	Solid	9056A	609689
MB 240-609689/1-A	Method Blank	Soluble	Solid	9056A	609689
LCS 240-609689/2-A	Lab Control Sample	Soluble	Solid	9056A	609689
240-202469-1 MS	MW-1801-SS-59.8-60.5-20240403	Soluble	Solid	9056A	609689
240-202469-1 MSD	MW-1801-SS-59.8-60.5-20240403	Soluble	Solid	9056A	609689

Organic Prep

Analysis Batch: 608940

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-202469-1	MW-1801-SS-59.8-60.5-20240403	Total/NA	Solid	Part Size Red	
240-202469-2	MW-1802-SS-56.3-56.9-20240403	Total/NA	Solid	Part Size Red	
240-202469-3	MW-1801-SH-55.9-56.6-20240403	Total/NA	Solid	Part Size Red	
240-202469-4	MW-1801-SH-58.0-58.8-20240403	Total/NA	Solid	Part Size Red	
240-202469-5	MW-1802-SH-51.9-52.5-20240403	Total/NA	Solid	Part Size Red	
240-202469-6	MW-1802-SH-55.3-55.8-20240403	Total/NA	Solid	Part Size Red	

Client Sample ID: MW-1801-SS-59.8-60.5-20240403 Date Collected: 04/03/24 11:00 Date Received: 04/08/24 12:30

Γ	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	Moisture			609179	QUY8	EET CLE	04/10/24 17:00
Total/NA	Analysis	Part Size Red		1	608940	POP	EET CLE	04/09/24 12:36

Client Sample ID: MW-1801-SS-59.8-60.5-20240403 Date Collected: 04/03/24 11:00 Date Received: 04/08/24 12:30

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3050B			608971	DEE	EET CLE	04/09/24 15:00
Total/NA	Analysis	6010D		1	609193	KLC	EET CLE	04/10/24 15:12
Soluble	Leach	DI Leach			609689	JWW	EET CLE	04/15/24 16:00
Soluble	Analysis	9056A		1	609809	JWW	EET CLE	04/17/24 08:29
Total/NA	Prep	9081			157253	РВ	EET HOU	04/28/24 12:55
Total/NA	Analysis	9081		1	157810	JDM	EET HOU	05/01/24 09:35

Client Sample ID: MW-1802-SS-56.3-56.9-20240403 Date Collected: 04/03/24 11:05 Date Received: 04/08/24 12:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	Moisture		1	609179	QUY8	EET CLE	04/10/24 17:00
Total/NA	Analysis	Part Size Red		1	608940	POP	EET CLE	04/09/24 12:36

Client Sample ID: MW-1802-SS-56.3-56.9-20240403 Date Collected: 04/03/24 11:05 Date Received: 04/08/24 12:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3050B			608971	DEE	EET CLE	04/09/24 15:00
Total/NA	Analysis	6010D		1	609193	KLC	EET CLE	04/10/24 15:42
Soluble	Leach	DI Leach			609689	JWW	EET CLE	04/15/24 16:00
Soluble	Analysis	9056A		1	609809	JWW	EET CLE	04/17/24 09:34
Total/NA	Prep	9081			157253	РВ	EET HOU	04/28/24 12:55
Total/NA	Analysis	9081		1	157810	JDM	EET HOU	05/01/24 09:35

Client Sample ID: MW-1801-SH-55.9-56.6-20240403 Date Collected: 04/03/24 11:10 Date Received: 04/08/24 12:30

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	Moisture		1	609179	QUY8	EET CLE	04/10/24 17:00
Total/NA	Analysis	Part Size Red		1	608940	POP	EET CLE	04/09/24 12:36

Eurofins Cleveland

Lab Sample ID: 240-202469-1

Lab Sample ID: 240-202469-1

Matrix: Solid

Matrix: Solid

Percent Solids: 99.5

Lab Sample ID: 240-202469-2

Lab Sample ID: 240-202469-2

Lab Sample ID: 240-202469-3

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 99.3

Dilution

Factor

1

1

1

Run

Batch

Number Analyst

608971 DEE

609193 KLC

609689 JWW

609809 JWW

157253 PB

157810 JDM

Lab

EET CLE

EET CLE

EET CLE

EET CLE

EET HOU

EET HOU

Batch

Type

Prep

Analysis

Analysis

Analysis

Leach

Prep

Client Sample ID: MW-1801-SH-55.9-56.6-20240403 Date Collected: 04/03/24 11:10

Batch

3050B

6010D

9056A

9081

9081

Client Sample ID: MW-1801-SH-58.0-58.8-20240403

DI Leach

Method

Prep Type

Total/NA

Total/NA

Soluble

Soluble

Total/NA

Total/NA

Percent Solids: 97.7

Matrix: Solid

Lab Sample ID: 240-202469-4

Lab Sample ID: 240-202469-4

Lab Sample ID: 240-202469-5

Lab Sample ID: 240-202469-5

Lab Sample ID: 240-202469-3

Prepared

or Analyzed

04/09/24 15:00

04/10/24 15:46

04/15/24 16:00

04/17/24 09:56

04/28/24 12:55

05/01/24 09:35

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 97.3

Percent Solids: 97.6

Date Collected: 04/03/24 11:15 Date Received: 04/08/24 12:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type Total/NA	Analysis	Method Moisture	Run	Factor 1	Number 609179		Lab EET CLE	or Analyzed 04/10/24 17:00
Total/NA	Analysis	Part Size Red		1	608940	POP	EET CLE	04/09/24 12:36

Client Sample ID: MW-1801-SH-58.0-58.8-20240403 Date Collected: 04/03/24 11:15 Date Received: 04/08/24 12:30

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3050B			608971	DEE	EET CLE	04/09/24 15:00
Total/NA	Analysis	6010D		1	609193	KLC	EET CLE	04/10/24 15:51
Soluble	Leach	DI Leach			609689	JWW	EET CLE	04/15/24 16:00
Soluble	Analysis	9056A		1	609809	JWW	EET CLE	04/17/24 10:18
Total/NA	Prep	9081			157253	РВ	EET HOU	04/28/24 12:55
Total/NA	Analysis	9081		1	157810	JDM	EET HOU	05/01/24 09:35

Client Sample ID: MW-1802-SH-51.9-52.5-20240403

Date Collected: 04/03/24 11:20 Date Received: 04/08/24 12:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	Moisture		1	609179	QUY8	EET CLE	04/10/24 17:00
Total/NA	Analysis	Part Size Red		1	608940	POP	EET CLE	04/09/24 12:36

Client Sample ID: MW-1802-SH-51.9-52.5-20240403 Date Collected: 04/03/24 11:20 Date Received: 04/08/24 12:30

Γ	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3050B			608971	DEE	EET CLE	04/09/24 15:00
Total/NA	Analysis	6010D		1	609193	KLC	EET CLE	04/10/24 15:55
Soluble	Leach	DI Leach			609689	JWW	EET CLE	04/15/24 16:00
Soluble	Analysis	9056A		1	609809	JWW	EET CLE	04/17/24 12:33

Eurofins Cleveland

Client Sample ID: MW-1802-SH-51.9-52.5-20240403 Date Collected: 04/03/24 11:20 Date Received: 04/08/24 12:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	9081			157253	PB	EET HOU	04/28/24 12:55
Total/NA	Analysis	9081		1	157810	JDM	EET HOU	05/01/24 09:35

Client Sample ID: MW-1802-SH-55.3-55.8-20240403 Date Collected: 04/03/24 11:25 Date Received: 04/08/24 12:30

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	Moisture		1	609179	QUY8	EET CLE	04/10/24 17:00
Total/NA	Analysis	Part Size Red		1	608940	POP	EET CLE	04/09/24 12:36

Client Sample ID: MW-1802-SH-55.3-55.8-20240403 Date Collected: 04/03/24 11:25 Date Received: 04/08/24 12:30

Batch Batch Dilution Batch Prepared Prep Type Туре Method Factor Number Analyst or Analyzed Run Lab 04/09/24 15:00 Total/NA Prep 3050B 608971 DEE EET CLE Total/NA 6010D 04/10/24 16:00 Analysis 1 609193 KLC EET CLE Soluble Leach **DI Leach** 609689 JWW EET CLE 04/15/24 16:00 Soluble Analysis 9056A 1 609809 JWW EET CLE 04/17/24 12:54 Total/NA Prep 9081 157253 PB EET HOU 04/28/24 12:55 Total/NA 9081 EET HOU 05/01/24 09:35 Analysis 1 157810 JDM

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396 EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

11 12 13

5/1/2024

Job ID: 240-202469-1

Percent Solids: 97.3

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 97.9

Lab Sample ID: 240-202469-5

Lab Sample ID: 240-202469-6

Lab Sample ID: 240-202469-6

Client: Geosyntec Consultants Inc Project/Site: AEP Amos Power Plant - ASD

Laboratory: Eurofins Cleveland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
California	State	2927	02-28-25	
Georgia	State	4062	02-27-25	
Illinois	NELAP	200004	07-31-24	
lowa	State	421	06-01-25	
Kentucky (WW)	State	KY98016	12-30-24	
Minnesota	NELAP	039-999-348	12-31-24	
New Jersey	NELAP	OH001	06-30-24	
New York	NELAP	10975	04-02-25	
Ohio VAP	State	ORELAP 4062	02-27-25	
Oregon	NELAP	4062	02-27-25	
Pennsylvania	NELAP	68-00340	08-31-24	
Texas	NELAP	T104704517-22-19	08-31-24	
USDA	US Federal Programs	P330-18-00281	01-05-27	
Virginia	NELAP	460175	09-14-24	
West Virginia DEP	State	210	12-31-24	

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	88-00759	08-03-24
Florida	NELAP	E871002	06-30-24
Louisiana (All)	NELAP	03054	06-30-24
Oklahoma	NELAP	1306	08-31-24
Oklahoma	State	2023-139	08-31-24
Texas	NELAP	T104704215	06-30-24
Texas	TCEQ Water Supply	T104704215	12-28-25
USDA	US Federal Programs	525-23-79-79507	03-20-26

Eurofins Canton 180 S. Van Buren Ave				Cł	nain				1		ecor							eu		Environm America	ent Testir	ıg
Barberton, OH 44203-3543 phone 330.497.9396 fax 330.497.0772	Regu	latory Pro	ogram: [DW	NPDES	-			Othe		-1								Eurofins Enviro		ting Ameri	ca
	Project N	lanager: 🏻	+ Micon	Kirein	6-00										-			_	COC No:			
Client Contact		renser			ma	Site							ate:						of	CO	Cs	4
Your Company Name here Geosyntec Consultants		21654				Lab	Cont	act:					arrier:				T		TALS Project #:			
Address 500 W Wilson Bridge Rd Ste 250 City/State/Zip Worth ington, 07, 43025		Analysis T DAR DAYS		RKING DAY	/S	41													Sampler: For Lab Use O	niv:		-1
(xxx) xxx-xxxx Phone		T if different f				1 2													Walk-in Client:	Γ		-1
(xxx) xxx-xxxx FAX	X		2 weeks			2 Z													Lab Sampling:			
Project Name: ATASS LANAFII ASD		1	week			≿lg		1	اد													-1 -
Site: AMOS PO#			2 days			Pidu V		0										ŀ	Job / SDG No.:			-
F 0 #		T 1	Sample	-	T	San	A		1													-1 -
	Sample	Sample	Туре		# of Cont.	ered	90561	6610B	2													8
Sample Identification	Date	Time	(C=Comp, G=Grab)	Matrix	Cont.	Per	40	26	۲.										Sample	Specific N	lotes:	
MW-1801-55-59.8-60.5-20240403	4/3/24	1100	G	Solid	i		X	* >	~													
MW-1802-55-56.3-56.9-20240403		1105	G	Solid	1		×	×>	4													_ 1
MW-1801-SH-55.9-56.6-20240403		1110	G	Solid	1		¥	× ?	×													
MW-1201-5H-58-0-58-8-20240403		1115	4	Solid	1		×	× >	4													
MW-1802-SH-51.9-52.5-20240403		1120	9	Solid	ì	Ш	X	XY	(_ 1
MW-1802-5H-55-3-55-8-20240403	¥	(125	6	Solid	1		۴	X	۶ 		_			240	0-2024	469 C	hain	of C	ustody			1
															++-			, ,				4
						₩.															_	_
						ļļ			_					_		_						_
																						_
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Plea: Comments Section if the lab is to dispose of the sample.			e Codes for	r the sam	nple in t		ampl	le Dis	posa	al (A f	ee may	y be a	ssesse	ed if s	ample	es are	e reta	ined	l longer than 1	month)		
Mon-Hazard Flammable Skin Irritant Special Instructions/QC Requirements & Comments:	Poison	В	🗌 Unkn	own		_1	R	eturn to	Clier	<u>-</u>		Dispo:	<u>sal by La</u>	b	1	Arch	nive for	r	Months			
Custody Seals Intact: 🗌 Yes 🔲 No	Custody S	Seal No.:		_				IC	oole	r Tem	p. (°C):	Obs'd	:		Corrio	:			Therm ID No.:			1
Relinguished by: Okienute Commander	Company	•		Date/.T 4/5/2	ime: 4 14.	CU R	ecèiv	ved by			ha	n Di		Compa	TY N	JC	,		Date/Time:	1	123	đ
Relinquished by:	Company			Date/T				/ed by						Compa		-			Date/Time:	<u>.</u>		1
Relinquished by:	Company	•		Date/T	ime:	R	eceiv	ved in	Labo	orator	y by:		C	Compa	iny:				Date/Time:			1

Barberton Facility			
clientheosuptee	Site Name		
Conter Received on 4 8 24	L Anened on	\triangleright	~

5

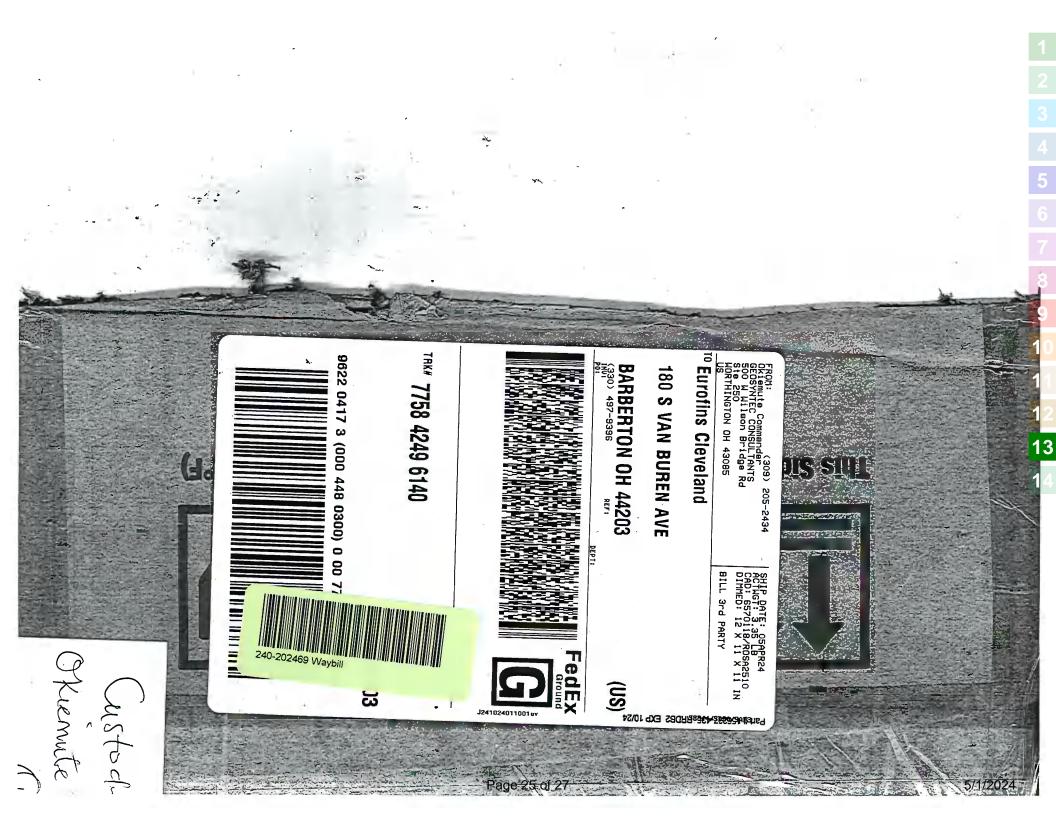
9

18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES additional next page Samples processed by	12
	Q
Contacted PM Date by via Verbal Voice Mail Other	Ŋ
6 Was a VOA trup blank present in the cooler(s)? Trip Blank Lot # Yes (No) 7 Was a LL Hg or Me Hg trup blank present? Yes (No)	16 17
Were air bubbles >6 mm in any VOA vials? Larger than this Yes	15
	13 14
Are these work share samples and all listed on the COC? If ves. Ouestions 13-17 have been checked at the originating laboratory	12
11 Sufficient quantity received to perform indicated analyses?	11
For each sample, does the COC specify preservatives((Y)N), # of containers (Y)N), and Were correct hottle(s) used for the test(s) indicated?	9
Did all bottles arrive in good condition (Unbroken)?	8 7
Were the custody papers relinquished & signed in the appropriate place?	6 V
Did custody papers accompany the sample(s)?	י אברי ר
-Were tamper/custody seals intact and uncompromised?	
-Were the seals on the outside of the cooler(s) signed & dated? (Yes) No NA checked for pH by -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? Yes NO Receiving:	<u></u>
Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity \sqrt{Yes} No	2.
IR GUN # 20 (CF + 23 °C) Observed Cooler	
Cooler temperature upon receipt \Box See Multinle Cooler Form	<u> </u>
wetto Block Foam Plastic Bag	
ox Chent Cooler Box	मु
Receipt After-hours Drop-off Date/Time Storage Location	R
J 4 8 J4 Opened on A 8 J4	5 5
Chenk NEOSUNTEC Site Name Cooler unpacked by,	C
Eurofins – Cleveland Sample Receipt Form/Narrative Barberton Facility	B

were received after the recommended holding time had expired were received in a broken container

were received with bubble >6 mm in diameter (Notify PM)

Sample(s) Time preserved


20 SAMPLE PRESERVATION

VOA Sample Preservation

Date/Time VOAs Frozen

Preservative(s) added/Lot number(s)

were further preserved in the laboratory

Eurofins Cleveland	ł	ı		ł				F.				:		
180 S van Buren Avenue Barberton OH 44203 Phone: 330-497-9396 Fax: 330-497-0772		Chain of Custody Record	of Cust	tody R	ecord			1352				🐼 eurotins		Environment Testing
Client Information (Sub Contract Lab)	Sampler			Lab PM: Cisneros,	M: Bros, Roxanne	Πe		<u></u>	Carrier Tracking No(s):	g No(s):		COC No: 240-182880.1		
	Phone:	, ,		E-Mai Toxar	E-Mai roxanne.cisneros@et.eurofins	s@et.eurot	insus.com		State of Origin: Ohio			Page: Page 1 of 1		
Company: Eurofins Environment Testing South Centr					Accreditations Required (See note):	; Required (S	ee note):					Job #: 240-202469-1		
Address: 4145 Greenbriar Dr	Due Date Requested: 4/22/2024	ë					Analysis	s Requested	ested			Preservation Codes.	des. M Hexane	ă I
City: Stafford	TAT Requested (days):	iys):								_		oω>		02
State, Zp: TX, 77477	_,d.				物理論							mo	P Na204S Q Na2S03 R Na2S203	20245
Phone: 281-240-4200(Tel)	PO #													H2SO4 TSP Dodecahydrate
ßmail:	WO #				(o)						s juli		V MCAA	n - 50
Project Name: AEP Amos Power Plant ASD	Project # 24033054				SOL				-		tainer	L EDA	Y Trizma Z other (s	Trizma other (specify)
Sile:	SSOW#				ទ្ទ័D (្រុ						ofcor	Other		
			Sample Type	Matrix (Wewater,	Filtered rm MS/N EC/29B ity(CEC)						Number			
Sample Identification Client ID (Lab ID)	Sample Date	Sample Time	(C≃comp, G≕grab) ⊧		Perfe 29B_0						Total	Special Instructions/Note:	nstruction	ıs/Note:
		/傘	Rreservation Code	on Code								「「「「」		「「「「「「「」」
MW-1802-SS-56 3-56 9-20240403 (240-202409-1)	4/3/24	Eastern 11:05			< ×			+	+-		E			
MW-1801-SH-55,9-56,6-20240403 (240-202469-3)	4/3/24			Solid			_	╡	-+	+			2 2	r r
MW-1801-SH-58.0-58.8-20240403 (240-202469-4)	4/3/24	11 15 Eastern		Solid	×		\downarrow		4	_			5	
MW-1802-SH-51.9-52.5-20240403 (240-202469-5)	4/3/24	11.20 Eastern		Solid	×		 						Ņ	Q
MW-1802-SH-55.3-55.8-20240403 (240-202469-6)	4/3/24	11:25 Eastern		Solid	×					_				
					$\left \right $	-		F		-		v v viš jt		
					-			F			瀫			
Note: Since laboratory accreditations are subject to change. Eurofins Environment Testing North Central, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tasts/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing North Central, LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Environment Testing North Central, LLC attention immediately. If all requested accreditations are current to dale, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing North Central, LLC.	it Testing North Centra love for analysis/tests/ htral, LLC attention imi	II, LLC places the matrix being an mediately. If all	he ownership o alyzed, the sar requested acc	f method, analy hpies must be r reditations are	rte & accredita shipped back current to dal	ition complian to the Eurofina a, return the s	ice upon our : s Environmer igned Chain o	subcontract It Testing No of Custody a	aboralories. rth Central, ttesting to sa	This samp LLC laboral Iid complian	le shipment ory or other ice to Eurofi	is forwarded under ch instructions will be pro ns Environment Testin	hain-of-cust ovided. Any ng North Ce	ody. If the / changes to ntral, LLC.
Possible Hazard Identification Unconfirmed					Sample	Sample Disposal (A	T 78	Disc ad V	assessed if san Disposal By Lab	amples a ab	Ire retain Arct	may be assessed if samples are retained longer than 1 month)	month) Months	Ś
Deliverable Requested: I II III, IV Other (specify)	Primary Deliverable Rank: 2	tble Rank: 2			Special	Special Instructions/Q		C Requirements:						
Empty Kit Relinquished by		Date:			Time:				Method o	Method of Shipment				
ł	1014	B	A		Rece	Received by:				Date/Time;			Company	
	Date/ (me:			Company *	Rece	Received by	Mumur	5	1 Ter	Date/Time:	Į . "	4/10/2024 9 52	Company	× ۲
	Date/Time:	}		Company	Rece	Received by	1			Date/Time	1		Сотралу	
Δ Yes Δ No					Cool	Cooler l'emperature(s)	්	and Other Remarks:	j,				Ver- 06/08/2021	08/2021
													V C1 00/	1707100

5

Ģ

13

Login Sample Receipt Checklist

Client: Geosyntec Consultants Inc

Login Number: 202469 List Number: 2 Creator: Baker, Jeremiah

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

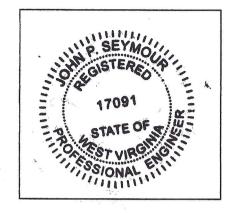
Job Number: 240-202469-1

List Source: Eurofins Houston

List Creation: 04/10/24 11:38 AM

<6mm (1/4").

ATTACHMENT D


Certification by a Qualified Professional Engineer

CERTIFICATION BY A QUALIFIED PROFESSIONAL ENGINEER

I certify that the above described alternative source demonstration is appropriate for evaluating the groundwater monitoring data for the Amos Plant Landfill CCR management area and that the requirements of 40 CFR 257.94(e)(2) have been met.

John Seymour Printed Name of Licensed Professional Engineer

or mou Signature

017091 License Number

West Virginia Licensing State

_June 20, 2024____ Date

engineers | scientists | innovators

ALTERNATIVE SOURCE DEMONSTRATION REPORT

2024 FIRST SEMIANNUAL EVENT FEDERAL CCR RULE

Amos Power Plant Landfill Winfield, West Virginia

Prepared for

American Electric Power 1 Riverside Plaza Columbus, Ohio 43215-2372

Prepared by

Geosyntec Consultants, Inc. 500 West Wilson Bridge Road, Suite 250 Worthington, Ohio 43085

Project CHA8495

January 2025

TABLE OF CONTENTS

1.	INTI 1.1	RODUCTION AND SUMMARY CCR Rule Requirements	
	1.1	Demonstration of Alternative Sources	
2.	SITE	SUMMARY	.3
	2.1	Site Geology Summary	.3
	2.2	Site Hydrogeology Summary	
3.	ALT	ERNATIVE SOURCE DEMONSTRATION	.5
	3.1	Landfill Leachate Data Analysis	.5
	3.2	Examination of Natural Variability	.6
	3.3	Solid Phase Sample Analysis	
	3.4	Summary of Findings	.8
	3.5	Sampling Requirements	
4.	CON	ICLUSIONS AND RECOMMENDATIONS	.9
5.	REF	ERENCES	10

LIST OF TABLES

Table 1:	Detection Monitoring Data Comparison
Table 2:	Key Solid Sample Analytical Results

LIST OF FIGURES

e	
Figure 2:	Potentiometric Surface Map - Uppermost Aquifer July 2024

- Figure 3: Piper Diagrams: Leachate Comparison
- Figure 4: Boron Time Series Graph

Site Layout

Figure 5: Calcium Comparison

Figure 1:

- Figure 6: Sulfate Comparison
- Figure 7: Chloride Comparison

LIST OF ATTACHMENTS

Attachment A: MW-1801 and MW-1802 Boring Log and Well Construction Diagrams

Attachment B: Stress-Relief Fracture Conceptual Site Model

Attachment C: Solid Samples Analytical Report

Attachment D: Certification by a Qualified Professional Engineer

ACRONYMS AND ABBREVIATIONS

ASD	alternative source demonstration
CCR	coal combustion residuals
CFR	Code of Federal Regulations
ft/yr	feet per year
LPL	lower prediction limit
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
SMCL	secondary maximum contaminant level
SSI	statistically significant increase
UPL	upper prediction limit
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey

1. INTRODUCTION AND SUMMARY

This alternative source demonstration (ASD) report has been prepared to address the statistically significant increases (SSIs) for calcium, chloride, and sulfate at the John E. Amos Plant Landfill (Landfill) following the first semiannual detection monitoring event of 2024.

The previously calculated upper prediction limits (UPLs) for the Landfill were recalculated for each Appendix III parameter to represent background values after four detection monitoring events were completed (Geosyntec 2022). A lower prediction limit (LPL) was also recalculated for pH. The revised prediction limits were calculated based on a one-of-two retesting procedure in accordance with the *Unified Guidance* (United States Environmental Protection Agency [USEPA] 2009a) and the statistical analysis plan developed for the site (Geosyntec 2020). With this procedure, an SSI is concluded only if both samples in a series of two are above the UPL or, in the case of pH, are below the LPL.

The first semiannual detection monitoring event of 2024 was performed in May 2024 (initial sampling event) and July 2024 (verification sampling event), and the results were compared to the prediction limits. During this detection monitoring event, SSIs were identified for chloride at MW-1801 and for calcium and sulfate at MW-1802 based on intrawell comparisons. A summary of the detection monitoring analytical results for all constituents listed in the Code of Federal Regulations (CFR) Title 40, Part 257, Appendix III, and the calculated prediction limits to which they were compared is provided in **Table 1**.

1.1 CCR Rule Requirements

In accordance with the USEPA regulations regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments, 40 CFR 257.94(e)(2) states the following:

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer . . . verifying the accuracy of the information in the report.

Pursuant to 40 CFR 257.94(e)(2), Geosyntec Consultants, Inc. (Geosyntec) has prepared this ASD report to identify whether the SSIs identified for calcium and sulfate at MW-1802 and for chloride at MW-1801 are from a source other than the Landfill.

1.2 Demonstration of Alternative Sources

An evaluation was completed to assess possible alternative sources to which identified SSIs could be attributed. Alternative sources are classified into the following five types:

- ASD Type I: Sampling Causes
- ASD Type II: Laboratory Causes
- ASD Type III: Statistical Evaluation Causes

- ASD Type IV: Natural Variation
- ASD Type V: Anthropogenic Sources

A demonstration was conducted to assess whether the increases in chloride at monitoring well MW-1801 and calcium and sulfate at monitoring well MW-1802 were based on an alternative source and not a release from the Landfill.

2. SITE SUMMARY

A brief description of the site geology and hydrology are provided below.

2.1 Site Geology Summary

The Landfill site consists of a northern valley and a southern valley, both of which are surrounded on all sides by bedrock ridges (**Figure 1**). A topographic high point separates the two valleys (Arcadis 2020), as shown in **Figure 2**. MW-1802 is a downgradient well in the northern valley, and MW-1801 is a downgradient well in the southern valley. The groundwater flow patterns in the northern and southern valleys are hydrologically separated from each other (**Figure 2**).

Bedrock in the vicinity of MW-1801 and MW-1802 consists of a combination of gray siltstone, silty shale, and red claystone. The boring logs for MW-1801 and MW-1802 identified predominately shale interbedded with sandstone within the screened intervals of both wells (**Attachment A**). These lithologies make up part of the Pennsylvanian Monongahela and Conemaugh Formations, which were deposited by cyclic sequences of limestone, siltstone, sandstone, red and gray shale, and coal (United States Geological Survey [USGS] n.d.).

These formations contain a system of stress-relief fractures that are associated with a regional decline in stress and erosion (Arcadis 2020). Although not represented in boring logs associated with Landfill monitoring well network construction, the sedimentary deposits associated with the Monongahela and Conemaugh Formations contains occasional thin limestone and coal beds. The Pittsburgh Coal and Pittsburgh Limestone beds serve as marker beds indicating the contact between the Monongahela and Conemaugh formations. The Pittsburgh limestone bed has been observed in boring logs at the nearby fly ash pond (Arcadis 2020).

2.2 Site Hydrogeology Summary

Groundwater flows through the stress-relief fracture formations, as illustrated in a conceptual site model provided in the *Groundwater Monitoring Network Report* (Arcadis 2020) and included here as **Attachment B**. Bedrock groundwater flow generally follows surface topography, flowing downslope of ridges toward valley floors (Arcadis 2020).

The Landfill monitoring well network, designed and certified by Arcadis (2020), monitors groundwater flow within the Uppermost Aquifer, which was defined by Arcadis (2020) as the saturated portion of the stress-relief fracturing system. This Uppermost Aquifer unit is independent of any single lithologic unit; the stress-relief fracturing system occurs in both the Conemaugh and Monongahela Formations and spans multiple lithologies comprising these formations. According to the *Groundwater Monitoring Network Report*, the stress-relief fracture system "is hydraulically connected from ridges to valleys" (Arcadis 2020), based on a multiple-lines-of-evidence approach discussed in Section 3.2.3 of that report. These multiple lines of evidence include evaluation of boring logs, assessment of groundwater geochemistry, hydraulic testing consisting of borehole packer testing and pump-yield testing, and high-resolution water level monitoring using pressure transducers deployed in monitoring wells across the site.

Water level monitoring data from the May 2024 sampling event were used to calculate groundwater velocities for MW-1801 (2.5 feet per year [ft/yr]) and MW-1802 (3.0 ft/yr). Both high-resolution water level monitoring conducted by Arcadis and seasonal water level monitoring

have not identified seasonal flow-regime changes at or near the Landfill monitoring well network. The current Landfill monitoring well network consists of upgradient monitoring wells MW-6, MW-7R, MW-8, MW-9, and MW-10 and downgradient compliance wells MW-2, MW-4, MW-1801, and MW-1802. Well locations are shown in **Figure 1**. Previous Landfill monitoring network wells MW-1 and MW-5 were removed from the monitoring network after it was determined that groundwater from those locations was representative of shallow perched groundwater zones (Arcadis 2020) and not a part of the Uppermost Aquifer.

3. ALTERNATIVE SOURCE DEMONSTRATION

A review of site geochemistry, site historical data, and laboratory quality assurance and quality control data did not demonstrate alternative sources due to Type I (sampling) or Type II (laboratory) causes. A review of the statistical methods used did not identify any Type III (statistical) causes. A review of site geochemistry did not identify any Type V (anthropogenic) causes. As described below, the SSIs for chloride, calcium, and sulfate have been attributed to natural variation, which is a Type IV cause.

3.1 Landfill Leachate Data Analysis

The concentrations of boron and major cations and anions known to be indicative of CCR leachate were examined in Landfill leachate samples and compared to monitoring well network groundwater to evaluate whether Landfill leachate influenced downgradient groundwater chemistry. Piper diagrams, which represent the relative proportions of major cations and anions in aqueous samples, were created to visualize aqueous geochemistry for the Landfill leachate and at downgradient wells MW-1801 and MW-1802 (**Figure 3**). The data shown in these Piper diagrams capture the background and detection monitoring periods: 2018 through 2024 for MW-1801 and MW-1802, and 2020 through 2024 for leachate samples.

Groundwater major ion geochemistry at downgradient wells MW-1801 and MW-1802 has remained nearly unchanged throughout the monitoring period, as illustrated by the tight clustering of sample results for each well on the Piper diagrams. Groundwater compositions for both wells are distinct from leachate, particularly for the relative anion percentages circled in blue on the anion distribution triangle in **Figure 3**; leachate samples consist predominantly of sulfate, while groundwater anion compositions are dominated by carbonate alkalinity. These results illustrate stable geochemical composition of site groundwater and a lack of influence from leachate on the groundwater composition. Considering the distinct geochemical composition of the leachate samples, variation in relative percentages of major anions would be expected if downgradient monitoring wells were impacted by Landfill leachate. No such variation is observed in downgradient monitoring well groundwater samples (**Figure 3**).

Boron is typically considered a geochemically conservative parameter due to its minimal attenuation by chemical processes in groundwater flow. Boron therefore functions as an indicator for potential CCR unit releases due to its high relative concentration in CCR materials. Boron concentrations in Landfill leachate samples were 55.2 milligrams per liter (mg/L) and 114 mg/L for the samples collected from the northern valley and southern valley, respectively, in July 2024. Concentrations of boron at downgradient wells MW-1801 and MW-1802, including in May 2024, have consistently been less than 0.3 mg/L (**Figure 4**).

If Landfill leachate, which contains concentrations of boron several orders of magnitude higher than the wells of interest, were impacting groundwater quality at downgradient monitoring wells, an increase in boron concentrations at downgradient wells MW-1801 and MW-1802 would be expected. The recent boron concentrations at the downgradient monitoring wells MW-1801 and MW-1802 do not display increasing trends (**Figure 4**), which indicates that changes in calcium and sulfate in groundwater at MW-1802 and chloride in groundwater at MW-1801 are not due to a release from the Landfill.

3.2 Examination of Natural Variability

Calcium, chloride, and sulfate have been found to be common constituents in groundwater from the Pennsylvanian Group in West Virginia (Chambers, et al. 2012), which includes the Monongahela and Conemaugh formations in which MW-1801 and MW-1802 are screened. Long-term groundwater quality, including in the Pennsylvanian Group, was monitored at 300 wells in West Virginia from 1999 to 2008 (Chambers et al. 2012). Samples grouped by geologic age of the aquifer unit indicated that the highest calcium concentration (286 mg/L) and four highest chloride concentrations (i.e., those greater than the secondary maximum contaminant level [SMCL] of 250 mg/L; USEPA 2009b) were measured in Pennsylvanian-aged aquifers. Pennsylvanian-aged aquifer formations were also observed to have the highest reported sulfate value (767 mg/L) as well as the largest degree of variation in sulfate concentrations across the West Virginia aquifer groups.

Bar charts were prepared to compare maximum reported concentrations of calcium (Figure 5) and sulfate (Figure 6) in upgradient and downgradient wells in the North Valley to the median value of Pennsylvanian-aged aquifers in West Virginia. Calcium and sulfate concentrations at downgradient well MW-1802 were comparable to upgradient well MW-10 and less than upgradient wells MW-8 and MW-9. In Pennsylvanian-aged aquifers across West Virginia, the median calcium value (21 mg/L) observed was nearly 20 times greater than the maximum calcium concentrations in MW-1802 (1.16 mg/L). Although the median sulfate value (7.0 mg/L) in Pennsylvanian-aged aquifers across West Virginia was less than the maximum sulfate concentration observed at MW-1802 (36.2 mg/L; Figure 6), Pennsylvanian-aged aquifers in West Virginia were found to contain highly variable sulfate concentrations, with the maximum reported value of 767 mg/L sulfate far exceeding the maximum at MW-1802. Further, sulfate concentrations measured in all North Valley monitoring wells were consistently below the secondary maximum contaminant level of 250 mg/L.

A comparison of maximum reported chloride concentrations in groundwater at upgradient wells MW-6 (9.3 mg/L) and MW-7R (4.15 mg/L) and compliance well MW-1801 (16.3 mg/L) to the median value of Pennsylvanian-aged aquifers in West Virginia (19 mg/L) indicates that chloride concentrations at MW-1801 are similar to or less than chloride concentrations in groundwater measured in the Pennsylvanian aquifers (**Figure 7**). The chloride concentration distribution across Amos LF monitoring wells aligns with regional groundwater trends, as chloride concentrations both upgradient and downgradient of the LF are lower than the median regional value.

MW-1801 and MW-1802 are screened within the Pennsylvanian Monongahela and Conemaugh Formations. These formations represent a cyclic depositional sequence which featured transgressive and regressive periods that caused the deposition of interbedded sequences of limestone, sandstone, shale, and coal (Martin 1998). In such depositional environments, fine grained siltstones and shales are deposited and cyclically exposed to marine waters which are often concentrated in major ions like calcium, chloride, and sulfate.

Transgression-regression cycling creates sequences in which saline marine waters saturate open pore spaces in freshly deposited sediment, which are then retained due to deposition of and burial by additional fine-grained sediment. This process results in trapping of marine water at the time of deposition. While the original water within the pore space is typically replaced by meteoric recharge soon after deposition, a component of the dissolved ions (e.g., calcium, chloride, sulfate)

in the water are typically retained by membrane filtration as an effect of the clay mineralogy of the shale components in these sequences (Drever 1988). In addition to the retention of marine water within the pore space of fine-grained sedimentary rocks, deposited sediment in cyclic marine environments also may become impregnated with soluble evaporitic minerals like halite (crystalline sodium chloride, NaCl) and anhydrite/gypsum (crystalline calcium sulfate, CaSO₄), which contain chloride, calcium, and sulfate (Hem 1985). These evaporites are known to be highly soluble and subject to dissolution during pore fluid evolution. Dissolution of these minerals results in further increases to the concentrations of aqueous major ions in pore fluid from rocks of coastal marine origin, regardless of whether these minerals are still present.

Formation water is expected to be diluted by meteoric recharge over time, but depositional and diagenetic processes discussed above would result in some component of major ions being retained in current groundwater at variable concentrations based on site topography, permeability of aquifer sediments, and pore fluid evolution.

The site-specific and regional-scale geochemical observations demonstrate that calcium, chloride, and sulfate concentrations at the downgradient locations are aligned with expected concentrations of these parameters in Pennsylvanian-aged strata within the region, and that observed concentrations at the wells of interest are not anomalous but rather are attributable to natural variations within groundwater as expected based on regional groundwater quality and the depositional environment associated with the screened lithologies of MW-1801 and MW-1802 (Attachment A).

3.3 Solid Phase Sample Analysis

Aquifer solids samples were collected from geologic core recovered during the installation of monitoring wells MW-1801 and MW-1802 and were submitted for chemical analyses. Based on a review of the boring logs (Attachment A), two shale samples and one sandstone sample were collected from each core and analyzed for total chloride, sulfate, and calcium. The laboratory analytical results are provided as Attachment C and summarized in Table 2. The sandstone sample collected from MW-1801 contained solid-phase chloride concentrations of 24.8 milligrams per kilogram (mg/kg). Calcium concentrations were identified in MW-1802 aquifer solids ranging from 1,120 mg/kg in a shale sample to 3,400 mg/kg in the sandstone sample. Sulfate was detected in all solid samples collected from MW-1802 at concentrations ranging from 8.45 to 17.9 mg/kg.

The depositional environment of these formations would trap a component of major ions within the formation water of these units. The subsequent interaction of groundwater with aquifer solids containing these chemical components will result in additional increases to aqueous concentrations from dissolution and/or ion exchange. Therefore, the presence of some component of major ions (including calcium, chloride, and sulfate) within MW-1801 and MW-1802 groundwater is both expected and unavoidable

Calcium, chloride, and sulfate were detected in aquifer solids from MW-1801 and MW-1802. These laboratory analytical results suggest that the SSIs in MW-1801 and MW-1802 groundwater are associated with natural variability (depositional environment and pore fluid evolution) and not due to a release from the Landfill.

3.4 Summary of Findings

A demonstration was conducted to assess whether the SSIs for chloride at MW-1801 and calcium and sulfate at MW-1802 were based on Type IV causes (natural variation) and not due to a release from the Amos Plant Landfill. The following is concluded:

- The SSIs could not be attributed to a Type I (sampling error), Type II (laboratory), Type III (statistical), or Type V (anthropogenic) cause.
- Groundwater chemistry at MW-1801 and MW-1802 is generally stable and does not show evidence of influence from Landfill leachate.
- Concentrations of boron, a primary indicator of CCR impacts to groundwater, at MW-1801 and MW-1802 are very low and do not show increasing trends. If impacts from Landfill leachate, which has elevated levels of boron, to downgradient locations were occurring, increasing boron groundwater concentrations would be expected at MW-1801 and MW-1802.
- Pennsylvanian-aged aquifer data from USGS studies indicate that MW-1802 calcium and sulfate groundwater concentrations and MW-1801 chloride concentrations are lower than or comparable to typical values for wells screened within the same geologic formation across the state. Groundwater from monitoring wells upgradient of the Landfill contains greater concentrations of calcium and sulfate than MW-1802 groundwater, indicating the presence of these parameters in background groundwater at concentrations greater than those observed in compliance well groundwater.
- These parameters are expected to naturally exist in groundwater within these formations due to the depositional environment. Aquifer solid samples collected from MW-1801 and MW-1802 rock cores contain detectable concentrations of calcium, chloride, and sulfate. The geologic material comprising the aquifer unit in which these wells are screened likely contributes to aqueous concentrations via dissolution or ion exchange.

3.5 Sampling Requirements

The conclusions of this ASD support the determination that the identified SSIs are from natural variation and not due to a release from the Landfill. Therefore, the unit will remain in the detection monitoring program. Groundwater at the unit will be sampled for Appendix III parameters on a semiannual basis.

4. CONCLUSIONS AND RECOMMENDATIONS

The preceding information serves as the ASD prepared in accordance with 40 CFR 257.94(e)(2) and supports the conclusion that the SSIs for calcium and sulfate at MW-1802 and chloride at MW-1801 are attributed to variation of natural groundwater quality (Type IV). Therefore, no further action is warranted, and the Amos Plant Landfill will remain in the detection monitoring program. Certification of this ASD by a qualified professional engineer is provided in **Attachment D**.

5. REFERENCES

- Arcadis. 2020. FGD Landfill CCR Revised Groundwater Monitoring Well Network Evaluation. John E. Amos Plant. Winfield, West Virginia May.
- Chambers, D. B., M. D. Kozar, J. S. White, and K. S. Paybins. 2012. Groundwater Quality in West Virginia, 1993–2008. United States Geological Survey Scientific Investigations Report 2012-5186.
- Drever, J. 1988. The geochemistry of natural waters. Englewood Cliffs, N.J., Prentice Hall.
- Geosyntec. 2020. Statistical Analysis Plan Revision 1. John E. Amos Plant Landfill. Winfield, West Virginia. Geosyntec Consultants, Inc. October.
- Geosyntec. 2022. Statistical Analysis Summary Background Update Calculations. John E. Amos Plant Landfill. Winfield, West Virginia. Geosyntec Consultants, Inc. August.
- Hem, J.D., 1985. Study and interpretation of the chemical characteristics of natural water. United States Geological Survey Water-Supply Paper 2254. Third edition.
- Martin, W.D. 1998. Geology of the Dunkard Group (Upper Pennsylvanian-Lower Permian) in Ohio, West Virginia, and Pennsylvania. Ohio Division of Geological Survey Bulletin 73.
- USGS. n.d. "Monongahela and Conemaugh Formations, undivided." Mineral Resources Online Spatial Data. United States Geological Survey. Accessed December 24, 2024. https://mrdata.usgs.gov/geology/state/sgmc-unit.php?unit=KYPAmc%3B0.
- USEPA. 2009a. *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance*. United States Environmental Protection Agency. EPA 530/R-09-007. March
- USEPA. 2009b. *National Primary Drinking Water Regulations*. United States Environmental Protection Agency. EPA 816-F-09-004. May.

TABLES

Table 1. Detection Monitoring Data ComparisonAlternative Source Demonstration ReportAmos Plant – Landfill

Amolyta	Unit	Description	MW-2	MW-4	MW	-1801	MW	-1802
Analyte	Unit	Description	5/9/2024	5/9/2024	5/9/2024	7/16/2024	5/9/2024	7/17/2024
Boron	mg/L	Intrawell Background Value (UPL)	0.243	0.206	0.2	293	0.2	282
DOIOII	IIIg/L	Analytical Result	0.185	0.151	0.225		0.226	
Calcium	mg/L	Intrawell Background Value (UPL)	3.50	0.904	1.	78	1.	05
Calcium	mg/L	Analytical Result	1.66	0.85	1.68		1.10	1.12
Chloride	mg/L	Intrawell Background Value (UPL)	5.32	25.1	14	4.0	13	3.4
Chionde	mg/L	Analytical Result	4.25	23.7	16.2	16.3	12.6	
Fluoride	mg/L	Intrawell Background Value (UPL)	1.74	1.55	5.	58	5.	32
Fluoride	mg/L	Analytical Result	1.39	1.34	5.28		5.33	5.13
		Intrawell Background Value (UPL)	8.9	9.8	9	.3	9	.4
pН	SU	Intrawell Background Value (LPL)	8.2	8.6	8	.5	8	.7
		Analytical Result	8.6	9.1	8.7		9.0	
Sulfate	ma/I	Intrawell Background Value (UPL)	12.1	11.5	9.	05	24	4.2
Sulfate mg/L		Analytical Result	8.1	9.3	4.6		36.2	24.9
Total Dissolved	ma/I	Intrawell Background Value (UPL)	396	419	50	63	52	27
Solids	mg/L	Analytical Result	370	390	510		500	

Notes:

1. Bold values exceed the background value.

2. Background values are shaded gray.

--: not sampled

LPL: lower prediction limit

mg/L: milligrams per liter

SU: standard units

UPL: upper prediction limit

Table 2. Key Solid Sample Analytical Results Alternative Source Demonstration Report Amos Plant – Landfill

Samula Location	Identified SSI	Lithology	Depth	Parameter			
Sample Location	Identified 551	Lithology	(feet)	Calcium	Chloride	Sulfate	
		Shale	55.9-56.6	1010	<10.4	9.59 J	
MW-1801	Chloride	Shale	58.0-58.8	2910	<10.5	16.6	
		Sandstone	59.8-60.5	25600	24.8	20.0	
		Shale	51.9-52.5	1120	<10.5	17.9	
MW-1802	Calcium, Sulfate	Shale	55.3-55.8	1230	<10.4	14.6	
		Sandstone	56.3-56.9	3400	<9.87	8.45 J	

Notes:

1. All results are shown in units of milligrams per kilogram.

2. Non-detects are shown as less than (<) the reporting limit.

SSI: Statistically significant increase(s)

J: Result is less than the reporting limit but greater than or equal to the method detection limit and the concentrations is an approximate value.

FIGURES

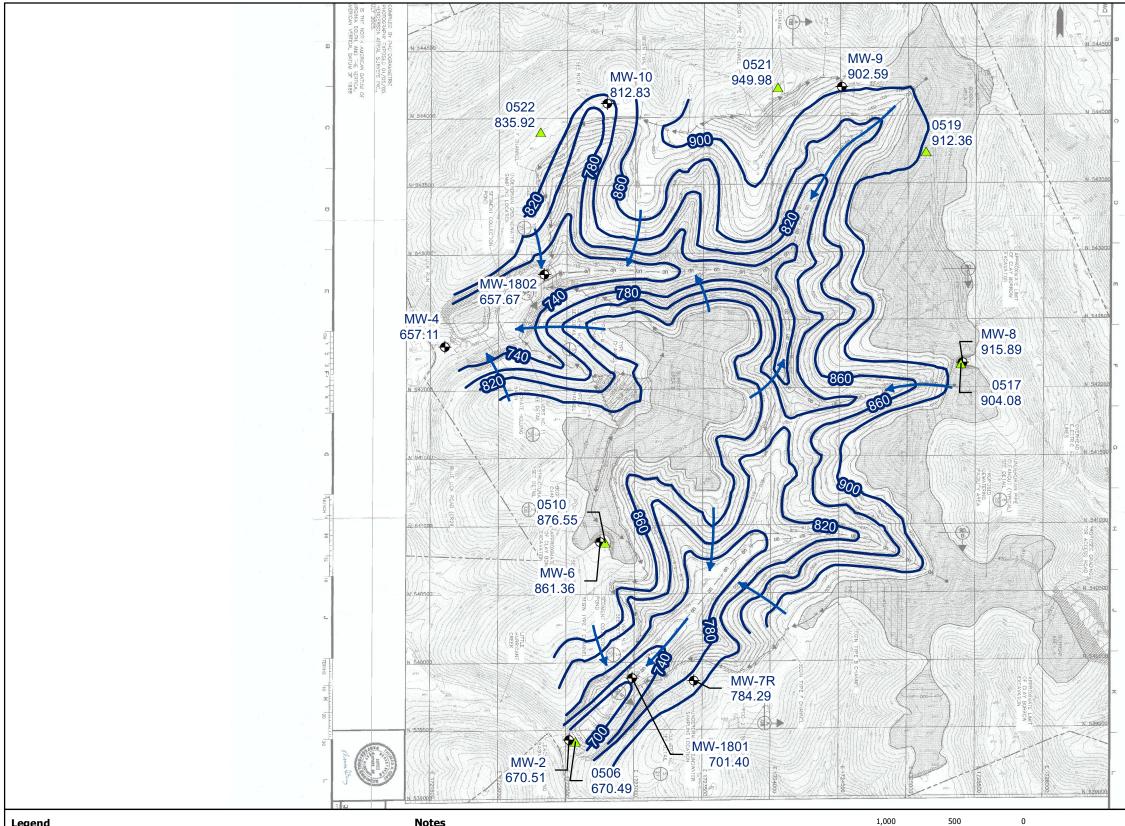
- Upgradient Sampling Location
 Downgradient Sampling Location
- FGD Landfill Permitted Limits
 - Northern Valley

 - Southern Valley

- Monitoring well coordinates provided by AEP.
 Aerial imagery provided by ESRI and dated 12/07/2023.

Feet

Site Layout FGD Landfill


AEP Amos Generating Plant Winfield, West Virginia

Geosyntec⊳								
consultants								
us, Ohio	January 2025							

Figure

1

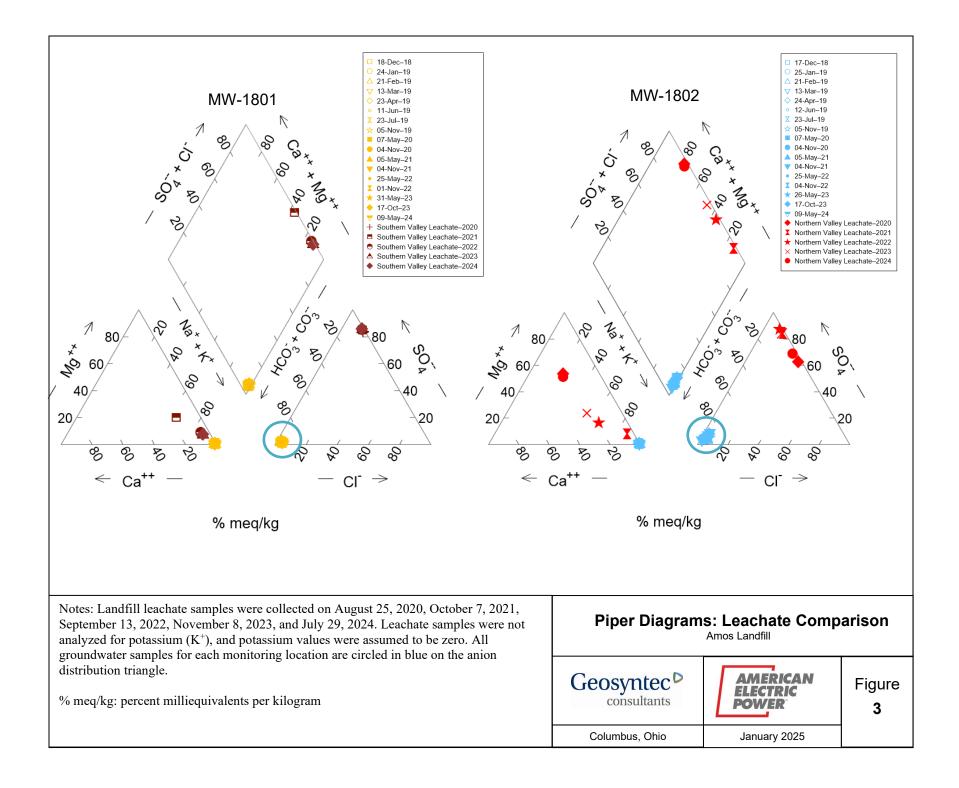
Columbus, Ohio

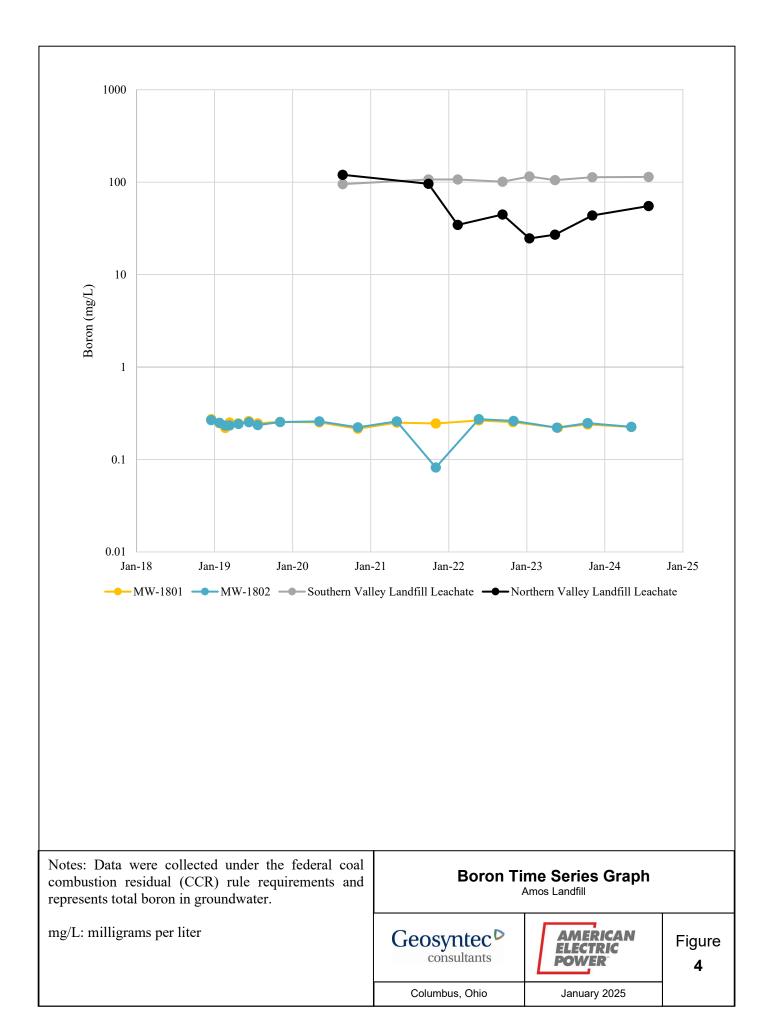
Legend

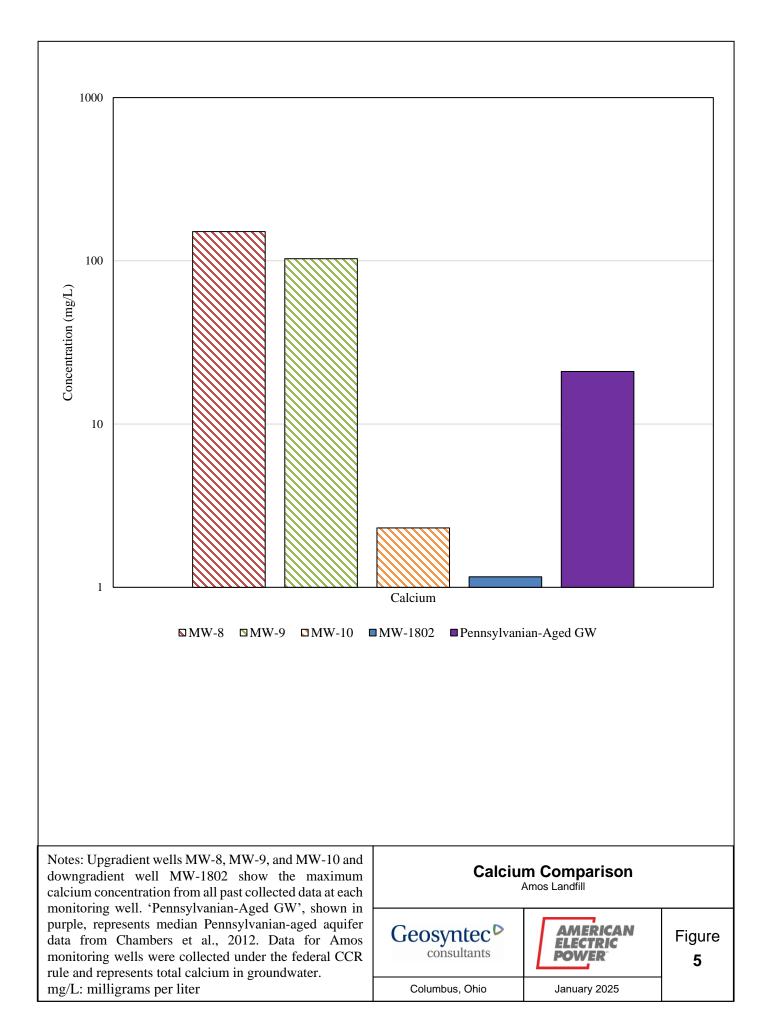
- Groundwater Monitoring Well
- A Piezometer
- Groundwater Elevation Contour
- ----> Groundwater Flow Direction

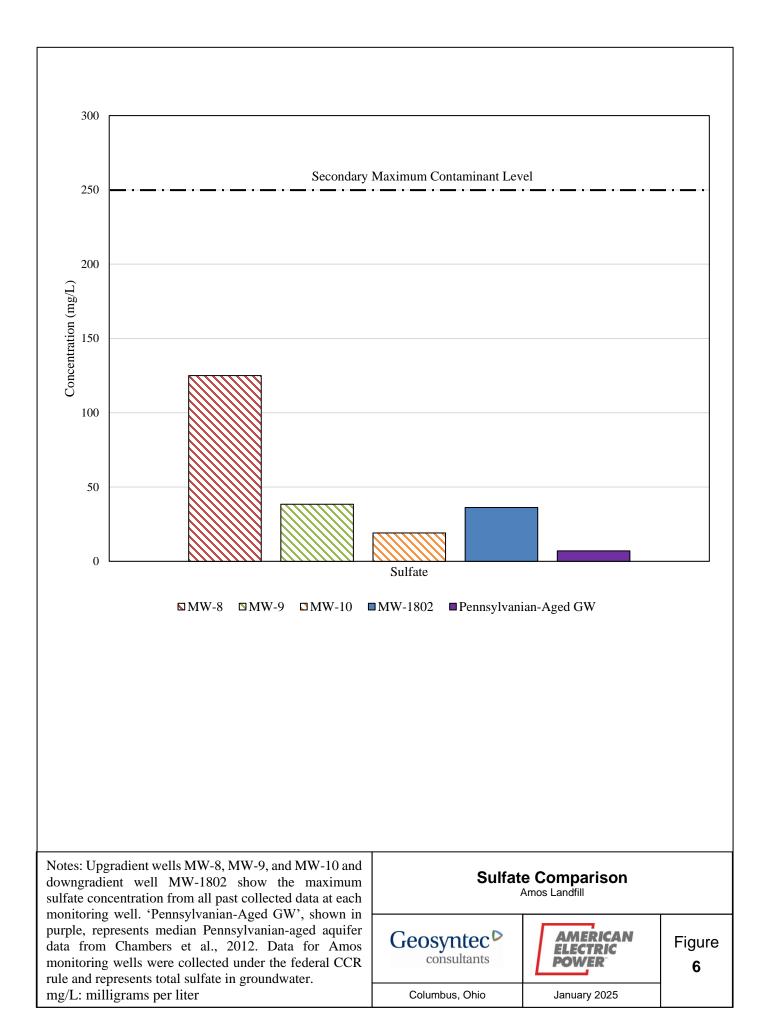
Notes

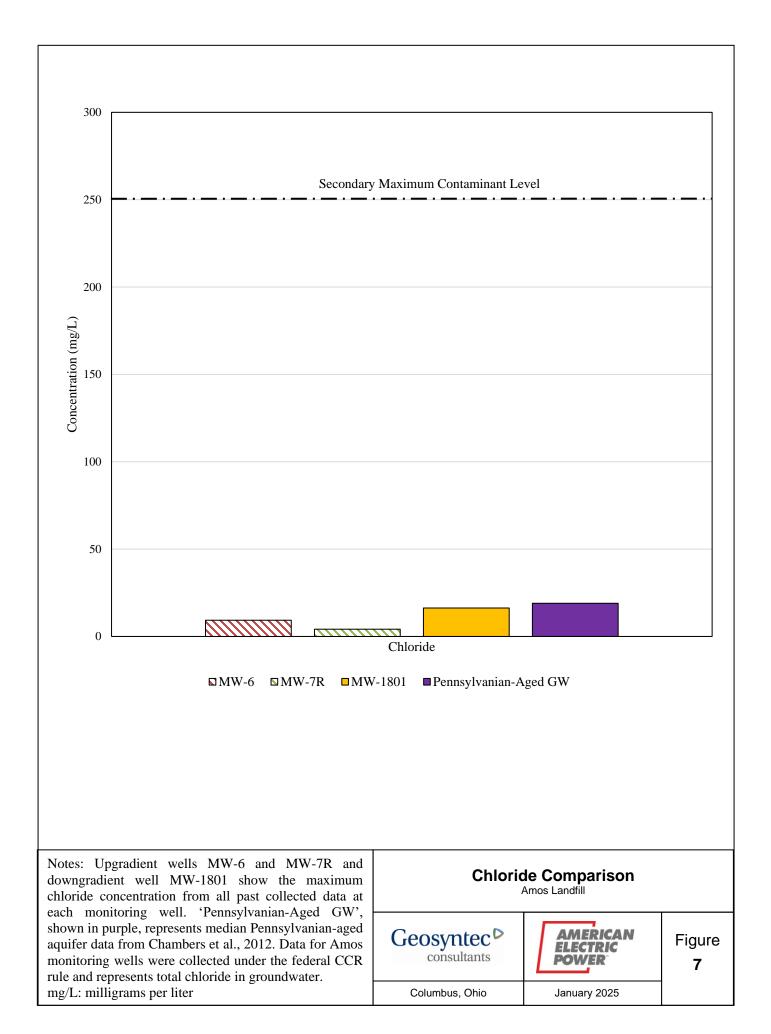
1. Monitoring well coordinates and water level data (collected on July 16, 2024) provided by AEP.


As of 2023, a portion of the liner in Cell 4 was replaced with a riprap drainage blanket; re-lining construction is ongoing.
 Topography and drainage system basemap from AEP Drawing No. 13-30500-05-A


(topographic contour interval: 10 feet).


4. Groundwater elevation units are feet above mean sea level (ft amsl).


Ν
Å
Ŧ


1,000 Feet	Potentiometric Surface Map - Uppermost Aquifer July 2024							
	AEP Amos Generating Plant Winfield, West Virginia							
	Geosy	Figure						
	consultants							
	Columbus, Ohio	January 2025	2					

ATTACHMENT A MW-1801 and MW-1802 Boring Logs and Well Construction Diagrams

AMERICAN ELECTRIC POWER SERVICE CORPORATION AEP CIVIL ENGINEERING LABORATORY LOG OF BORING

JOB NUMBER	WV0159/6.00	105		
COMPANY An	nerican Electr	ic Power		BORING NO. MW-18
PROJECT Am	os - FGD Lan	dfill		BORING START
COORDINATES	N 38.5 E 81	.6		PIEZOMETER TYPE
GROUND ELEVA	TION 735.6	SYSTEM N	AVD88	HGT. RISER ABOVE
Water Level, ft	⊻ 21.0	Ţ	$ar{oldsymbol{ I}}$	DEPTH TO TOP OF
TIME				WELL DEVELOPMEN
DATE	8/15/2018			FIELD PARTY Za

MAN 104 E070 000E

BORING NO. <u>MW-1801</u>	DATE 5/3/19	SHEE	T_ 1 _OF_ 5
BORING START 8/7/18	BORING	FINISH _	8/8/18
PIEZOMETER TYPE PVC	; WELI		OW
HGT. RISER ABOVE GROUN	ID 2.8	DIA	2"
DEPTH TO TOP OF WELL SO	CREEN <u>50.4</u> BC		114.4
WELL DEVELOPMENT	urge/Purge BAG	CKFILL	Bentonite Grout
FIELD PARTY Zachary	Racer (AEP)	RIG	Direct Circulation -
			Wireline Core

SAMPLE STANDARD SAMPLE NUMBER RQD ΗË DEPTH SAMPLE **GRAPHIC** S DEPTH PENETRATION LENGTH RECOVER SOIL / ROCK WELL DRILLER'S LOG C IN S IN FEET RESISTANCE % **IDENTIFICATION** NOTES ⊃ FEET FROM BLOWS / 6" TO CL 0-5': SILTY CLAY; 2.5YR 5/6 (red); moist; backfill 0-49': Riser ML material. 5/3/19 11:49 - S\KNOXVILLE-TNFOR NICOLE AEP LOG EDIT FILES\GINT LOGS OUTPUTAEP MOUNTAINEERVEP MOUNTAINEER. GP. 5 5-6': SANDSTONE. 5.0 6.5 50/4 3.6 6-6.3': SHALE; GLEY1 5/N (gray); dry; thin <u>1111</u> CL bedded; hard. 6.5 8.0 48-23-15 3.6 ML 6.3-6.5': SILTY CLAY; red; moist; hard ML 6.5-8': SILT; 10YR 6/2 (tan); with sandstone and shale fragments; compacted fill material. 8.0 9.5 11-3-5 7.2 MH 8-9.5': CLAYEY SILT; 5YR 4/2 (brown); firm; moist; fill material. 10.8 9.5-11': SILTY CLAY; 10YR 6/3 (brown) to brown 9.5 11.0 4-4-7 CL 10 ML clayey silt; dry; crumbly; fill material. 11-12.5': SILTY CLAY; 5YR 4/2 (brown); moist; 11.0 12.5 4-8-50/3 10.8 CL ML firm Note: Sandstone at 12-12.3'. 12.5 14.0 50/3 ML 12.5-14': SILT, compacted; 10YR 7/4 (tan); very hard; dry; fill material. 14.0 15.5 50/4 14-14.5': SILTY SHALE material, weathered; mottled tan and dark brown; dry; very hard. 15 14.9 19.9 51 14.5-14.9': SANDSTONE; strong field strength; 2.5Y 6/2; fine-grained texture; massive structure; slightly to moderately decomposed; moderately disintegrated with Fe staining; fracture at 14.3-14.5'. 14.9-19.9': SHALE; moderate field strength; GLEY1 5/GY; fine-grained texture; thinly bedded; moderately decomposed along bedding planes; moderately disintegrated along bedding planes and fracture; vertical fracture with Fe staining at 15.5-16.5'. **TYPE OF CASING USED** Continued Next Page NQ-2 ROCK CORE Х PT = OPEN TUBE POROUS TIP, SS = OPEN TUBE PIEZOMETER TYPE: NA 6" x 3.25 HSA SLOTTED SCREEN, G = GEONOR, P = PNEUMATIC AEP.GDT 9" x 6.25 HSA NA NA HW CASING ADVANCER 4" OW = OPEN TUBE SLOTTED SCREEN, GM = GEOMON WELL TYPE: NA NW CASING 3" NA SW CASING 6" RECORDER A. Gillespie AEP NA AIR HAMMER 8"

AMERICAN ELECTRIC POWER SERVICE CORPORATION AEP CIVIL ENGINEERING LABORATORY LOG OF BORING

JOB NUMBER **WV015976.00**05

COMPANY American Electric Power

PROJECT Amos - FGD Landfill

BORING NO. <u>MW-1801</u> DATE <u>5/3/19</u> SHEET <u>2</u> OF <u>5</u> BORING START **8/7/18**

		····
BORING	FINISH	8/8/18
BORING	FINISH	0/0/10

SAMPLE NUMBER	SAMPLE	SAM DEF IN F FROM	IPLE PTH EET TO	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
		19.9	24.9	8-7-6	55					19.9-24.9': SHALE; moderate field strength; GLEY1 5/GY; fine-grained texture; thinly bedded; moderately decomposed along bedding planes; moderately disintegrated; moderately to intensely fractured. Transition to strong field strength, 2.5YR 4/4; fine-grained texture; massive structure to thinly	Ā	
		01.0	04.0		70		25 -			bedded; slightly decomposed; slightly disintegrated; slightly to moderately fractured.		
vountaineer.gpJ		24.9	34.9	4-4-13	72		30 -	-		24.9-25.2': SHALE; strong field strength; fine-grained structure; massive structure to thinly bedded; slightly decomposed; slightly disintegrated; slightly to moderately fractured. 25.2-30.7': CLAYSTONE/MUDSTONE, highly weathered; very weak field strength; 10YR 5/3; very fine-grained texture with sandstone fragments; massive structure; highly decomposed; intensely disintegrated; unfractured.		
EDIT FILES/GINT LOGS OUTPUTAEP MOUNTAINEER/AEP MOUNTAINEER. GPJ							35 -			30.7-32.5': SHALE; moderate field strength; 2.5YR 4/4 (red); fine-grained texture; thinly bedded; moderately decomposed; slightly to moderately disintegrated; slightly to moderately fractured. 32.5-34.9': CLAYSTONE/MUDSTONE; moderate field strength; GLEY1 4/104; fine-grained texture; massive structure; moderately decomposed; moderately disintegrated; moderately to intensely		
OG EDIT FILES\GINT LOG		34.9	38.3	4-5-8	36			_		fractured. 34.9-38.3': CLAYSTONE/MUDSTONE; moderate to weak field strength; 2.5YR 4/4 (red) mottled with tan, black, and gray; fine-grained texture; massive structure; moderately to highly decomposed; intensely disintegrated, mottling tan and gray; moderately to intensely fractured.		
- AEP.GDT - 5/3/19 11:49 - S.\KNOXVILLE-TNIFOR NICOLE AEP LOG		38.3	44.9	5-7-13-9-6-6	70		40 -	-		38.3-44.9': CLAYSTONE/MUDSTONE; moderate to weak field strength; 2.5YR 4/4 (red) mottled with tan, black, and gray; fine-grained texture; massive structure; highly decomposed; intensely disintegrated; intensely fractured.		
EP.GDT - 5/3/		44.9	50.0	4-4-7-8	50		45 -			44.9-50': CLAYSTONE/MUDSTONE; moderate to weak field strength; 2.5YR 4/4 (red) mottled with		
AEP - A										Continued Next Page		

JOB NUMBER **WV015976.0005**

COMPANY American Electric Power

PROJECT Amos - FGD Landfill

BORING NO. <u>MW-1801</u> DATE <u>5/3/19</u> SHEET <u>3</u> OF <u>5</u>

BORING START 8/7/18 BORING FINISH 8/8/18

		SAM	PLE	STANDARD	≻	RQD	DEPTH	O					
SAMPLE NUMBER	SAMPLE	DEF		PENETRATION	TOTAL LENGTH RECOVERY			GRAPHIC LOG	сs	SOIL / ROCK	WFLI	ł	DRILLER'S
NM	AM	IN F	EET	RESISTANCE	<u> Ežő</u>	%	IN	LC R	S N	IDENTIFICATION		2	NOTES
νz	S	FROM	то	BLOWS / 6"	L T Ŭ		FEET	G					
		44.9	50.0	4-4-7-8	50			-		tan, black, and gray; fine-grained texture; massive structure; highly decomposed; intensely disintegrated; intensely fractured.			40 F21 Destasite
		50.0	55.0	4454	50		50 -						49-52': Bentonite Pellets
		50.0	55.0	4-4-5-4	50			-		50-56.7': CLAYSTONE/MUDSTONE; moderate field strength; 2.5YR 4/4 (red) mottled with tan, black, and gray; fine-grained texture; massive structure; moderately to highly decomposed, becomes less weathered at 50.3'; highly		÷.	52-53': Secondary
								_		disintegrated, highly mottled; moderately to intensely fractured.			Filter Pack 53-75': Primary Filter Pack
		55.0	59.8	5-7-5-36	52		55 -						55-75': Screen
		00.0	00.0										
							-			56.7-58': SANDSTONE, interbedded; strong field strength; GLEY1 6/N (gray-green); fine-grained texture; thinly bedded; slightly decomposed;			
										slightly disintigrated along fracture; moderately fractured at 56.7' and 57.1-57.5'. 58-58.8': SHALE, interbedded; strong field			
		59.8	64.8	8-5-4-4-7-5-5-4	60		60 -			strength; 2.5YR 4/4 (red); fine-grained texture; thinly bedded; slightly decomposed; slightly disintigrated along fracture.			
										58.8-59.2': SANDSTONE, interbedded; strong field strength; GLEY1 6/N (gray-green); fine-grained texture; thinly bedded; slightly decomposed; slightly disintigrated along fracture.			
										59.2-59.8': SHALE, interbedded; strong field strength; 2.5YR 4/4 (red); fine-grained texture; thinly bedded; slightly decomposed; slightly			
		64.8	74.8	4-5-4-6	76		65 -			disintigrated along fracture. 59.8-60.7': SANDSTONE; strong field strength; GLEY1 6/N; fine-grained texture; thinly bedded;			
>										slightly decomposed; slightly disintigrated; unfractured. 60.7-63.9': SHALE; moderate field strength;			
										2.5YR 4/4 (red); fine-grained texture; thinly bedded; moderately decomposed along bedding planes; moderately disintigrated with silt filled fractures; moderately fractured.			
							70 -			63.9-64.3': SANDSTONE; strong field strength; GLEY1 6/N (gray-green); fine-grained texture; thinly bedded; slightly decomposed; slightly			
										disintigrated; unfractured. 64.3-64.8': SHALE; moderate field strength; 2.5YR 4/4 (red); fine-grained texture; thinly			
2										bedded; moderately decomposed; moderately Continued Next Page	Ë	<u>.</u> .	

Continued Next Page

JOB NUMBER **WV015976.0005**

COMPANY American Electric Power

PROJECT Amos - FGD Landfill

BORING NO. <u>MW-1801</u> DATE <u>5/3/19</u> SHEET <u>4</u> OF <u>5</u>

BORING START 8/7/18 BORING FINISH 8/8/18

SAMPLE NUMBER	SAMPLE	SAM DEF IN F FROM		STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
ERAEP MOUNTAINEER.GPJ		64.8	74.8	4-5-4-6	76		- 75 - - - - - - - - - - - - - - - - - -			disintigrated; moderately fractured. 64.8-74.8': SHALE, highly weathered at base; moderate to weak field strength along some bedding planes; 2.5YR 3/3 (red); fine-grained texture; massive structure; moderately decomposed; moderately disintigrated, becomes more limestone fragments last 1 ft, 3-5 cm; moderately to intensely fractured. 74.8-85': SHALE, highly weathered; weak field strength; 2.5YR 4/4 (red) with tan and gray mottling; fine-grained texture; massive structure; highly decomposed; highly disintigrated, mottled; intensely fractured.		75-105': Bentonite
DR NICOLE AEP LOG EDIT FILES/GINT LOGS OUTPUTAEP MOUNTAINEER/AEP MOUNTAINEER.GPJ		85.0	95.0	5-4-4	120		85 - - - 90 -			85-92.7': SANDSTONE; strong field strength; fine-grained texture; thinly bedded; fresh; slightly disintigrated, calcite in light colored beds/thin; slightly fractured.		
AEP - AEP.GDT - 5/3/19 11:49 - S:XKNOXVILLE-TNFOR NICOLE AEP LOG		95.0	105.0	7-4-4	120		- 95 -			92.7-94.6': SHALE; moderate field strength; fine-grained texture; massive structure; slightly decomposed; slightly disintigrated, some mottling; moderately fractured. 94.6-95': SANDSTONE; strong field strength; fine-grained texture; thinly bedded; fresh; slightly disintigrated, calcite in light colored beds/thin; slightly fractured at 94.6-95'. 95-100.1': SANDSTONE; strong field strength; fine-grained texture; thinly bedded; fresh; slightly disintigrated; slightly fractured at 95-95.2'.		

JOB NUMBER **WV015976.0005**

COMPANY American Electric Power

PROJECT Amos - FGD Landfill

BORING NO. <u>MW-1801</u> DATE <u>5/3/19</u> SHEET <u>5</u> OF <u>5</u>

BORING START 8/7/18 BORING FINISH 8/8/18

SAMPLE	DEF	ΡTΗ	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPHIC LOG	U S C S	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
	95.0	105.0	7-4-4	120		100 -			100.1-101.5': SHALE and sandstone interbedded; moderate field strength; fine-grained texture; thinly bedded; slightly decomposed; slightly disintigrated; slightly fractured at 100.2-100.5'.		
						105 -			101.5-105: SHALE; moderate to weak field strength; fine-grained texture; massive structure; highly decomposed; moderately to highly disintigrated mottling with silt filled fractures; highly fractured.		
						- 110	-				
						- 115 - -	-				
						- 120 – -	-				
	SAMPLE	DEF DEF IN F S FROM	FROM TO	SAMPLE STANDARD DEPTH NFEET FROM TO BLOWS / 6" 95.0 105.0 7-4-4	SAMPLE STANDARD DEPTH IN FEET FROM TO BLOWS / 6" 95.0 105.0 7-4-4 120 120 120 120 120 120 120 120		95.0 105.0 7-4-4 120 100 - 100 100 100 - 100 - 100 - 100 100 - 100 - 100 - 100 - 100 100 - 100 - 100 - 100 - 100 100 - 100 - 100 - 100 - 100 100 - 100 - 100 - 100 - 100 100 - 100 - 100 - 100 - 100 100 - 100 - 100 - 100 - 100 100 - 100 - 100 - 100 - 100 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 - 110 -	95.0 105.0 7-4-4 120 100 100 105 105 105 105 105 10		95.0 105.0 7.4.4 120 100 100.1-101.5': SHALE and sandstone interbedded; moderate field strength: fine-grained texture; thinly bedded: slightly decomposed; slightly disinigrated; slightly fracture; massive structure; highly fractured. 100 101.1-01.5': SHALE and sandstone interbedded; moderate field strength: fine-grained texture; thinly bedded: slightly decomposed; moderately to highly disinigrated motiling with sit filled fractures; highly fractured. 105 105 110 110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110	95.0 105.0 7.4.4 120 100 - 100.1-101.5: SHALE and sandstone interbedded; moderate field strength; fine-grained texture; thinly bedded; sightly decomposed; sightly disinitgrated; slightly fractured at texture: massive structure; hightly decomposed; moderately to highly disinitgrated mottling with silt filled fractures; hightly factured at texture: massive structure; hightly factured at the structure; hightly factured at the structure; hightly facture at the structure; hightly fa

JOB NUMBER	WV015976.0	005		LOG OF
	nerican Electr	ric Power		BOR
PROJECT Am	os - FGD Lan	dfill		BOR
COORDINATES	N 38.5 E 81	.9		PIEZ
GROUND ELEVA	TION 709.8	SYSTEM	AVD88	HGT.
Water Level, ft	⊻ 35.0	Ţ	Ţ	DEP
TIME				WEL
DATE	8/21/2019			FIEL

BORING NO. <u>MW-1802</u>	DATE 5/3/19	SHEET	1	OF <u>5</u>
BORING START 8/20/	BORING	FINISH 8	21/18	
PIEZOMETER TYPE NA	WEI		W	
HGT. RISER ABOVE GROU	ND 2.91	DIA	•	
DEPTH TO TOP OF WELL S	SCREEN <u>50</u> E	BOTTOM 1	14.4	
	Surge/Purge BA	ACKFILL B	enton	ite Grout
FIELD PARTY Zachary	/ Racer (AEP)	RIG D	irect (Circulation -
		W	/irelin	e Core

											•	vireline Core
ш е	{ щ	SAM		STANDARD	L T X	RQD	DEPTH	<u></u>	S		Ι.	
	힌臣	DEF		PENETRATION	A PA		IN	문양	υ	SOIL / ROCK	WELL	DRILLER'S
SAMPLE	SAMPLE	IN F	EET	RESISTANCE	028	%		RA	S	IDENTIFICATION	Ň	NOTES
0 2		FROM	то	BLOWS / 6"	TOTA LENGT RECOVE		DEPTH IN FEET	Q				
								_	GW	0-3.5': GRAVEL backfill; large rip-rap and smaller	3 13	0-41': Bentonite Grout
									0	compacted gravels.		
								-0.0		compactod gravolo.	KK	1
								•••				
								_!• ••1			ĸ	
											\boxtimes	1
											ØØ]
								``			N N	{
									CL	3.5-4.5': SILTY CLAY; brown; moist; soft; backfill	$\forall \forall$	1
								-1///		material.	18 B	
2		4.5	6.0	6-4-5	0			<i>¥7774</i>		4.5-6': NO RECOVERY, due to gravel blocking	\forall	
Ъ.		7.5	0.0	0-4-0	Ŭ		5 -	-		cutting shoe.	K K	{
Ë												
AIN		0.0	7 5	4.0.4	0.0				0		88	
INT		6.0	7.5	4-3-4	3.6			VIIA	CL	6-17': SILTY CLAY; 7.5YR 4/3 (brown); moist;		}
101										firm; compacted backfill material; becomes wet at	88	4
Ē.										12.5'.		
RA		7.5	9.0	3-4-5	7.2						88	1
Щ											\boxtimes	}
LAIN												
N		9.0	10.5	4-4-6	18			<i>\///</i>			\boxtimes	}
M											KK	}
Ē							10 -	-\///				2
5		10.5	12.0	5-4-5	13.2							}
E								-\///				2
00											KK	}
ő		12.0	13.5	3-4-6	15.6			-{////				}
		12.0	10.0	5-4-0	15.0							
GII								-\///				}
		13.5	15.0	3-5-8	14.4							
Ξ		15.5	15.0	5-5-6	14.4			-\///				
Ē												
8		1-0	10 -	. = .	1-0		15 -	-////				
Ц.		15.0	16.5	4-7-9	15.6							
AI AI								¥///				}
Ĩ		16.5	18.0	6-25-8	16.8							}
NOR NOR										17-17.5': SANDSTONE, weathered; GLEY1 7/N	K K	
								<u>X</u> ///	CL	\(gray); dry		}
μ̈́		18.0	19.5	7-23-15	14.4			VIIA		17.5-19.5': SILTY CLAY; GLEY1 6/N (gray)	K K	↓
XVII								VIIA		mottled with brown, red, tan; moist; soft; crumbles		}
ÔN								V///		easily.	18 K	↓
S:KNOXVILLE-TN/FOR NICOLE AEP LOG EDIT FILES\GINT LOGS OUTPUTAEP MOUNTAINEER/AEP MOUNTAINEER.GPJ		19.5	21.0	20->50/4	10.8				CL		\bowtie	}
11:49 -		TYPE	OF C	ASING USED						Continued Next Page		
191												
AEP.GDT - 5/3/19		NQ-2 R0 6" x 3.25					PIEZOM					'EN TUBE
		9" x 6.25					SL(JUE	DS	CREEN, $G = GEONOR$, $P = PNEUMATIC$,	
0. N/		HW CAS	SING AD	VANCER	4"		WELL T	YPF∙	٥٧	V = OPEN TUBE SLOTTED SCREEN, GI	V = C	EOMON
₩ N /		NW CAS			3"	 						
AEP - /		SW CAS			<u>6"</u>					RECORDER A. Gillespie		
₩ N /		AIR HAN			8"							

JOB NUMBER **WV015976.0005**

COMPANY American Electric Power

PROJECT Amos - FGD Landfill

BORING NO. <u>MW-1802</u> DATE <u>5/3/19</u> SHEET <u>2</u> OF <u>5</u>

SAMPLE	NUMBER	SAMPLE	SAM DEF IN F FROM	PTΗ	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
			19.5	21.0	20->50/4	10.8					19.5-22.5': SILTY CLAY; GLEY1 6/N (gray) mottled with brown, tan; dry; soft; crumbles easily.	X	
			21.0	22.5	27-50/5	9.6		-					
			22.5	24.4	4	23		-			22.5-24': SILTSTONE; moderate to weak field strength; GLEY1 6/N; fine-grained texture; massive structure; highly decomposed; noderately to highly disintegrated with tan/brown		
TAINEER.GPJ			24.4	29.4		22		25 - -	*****		 mottling; moderately to intensely fractured. 24-24.4': SILTSTONE; weak field strength; 10R 4/4 (red) mottled; fine-grained texture; massive structure; highly decomposed; moderately to intensely fractured. 24.4-29.4': SILTSTONE; weak field strength; 10R 4/4 (red) mottled with tan, gray, and black; fine-grained texture; massive structure; highly decomposed; highly disintegrated, highly mottled; moderately fractured. 	IN I	
MOUNTAINEERVAEP MOUNT			29.4	33.7	5-11-6	40		30			29.4-32.8': SHALE, weathered; moderate field strength; 10YR 4/4 (red) mottled; fine-grained texture; massive structure; moderately decomposed; moderately to intensely disintegrated; moderately fractured. 32.8-33.7': SHALE; moderate field strength; 5YR	URANKANKANK	
LE AEP LOG EDIT FILES/GINT LOGS OUTPUTAEP MOUNTAINEER/AEP MOUNTAINEER.GPJ			33.7	39.4	5-4-4-7-5	59		- 35 - - -			5/4 (tan) mottled; fine-grained texture; massive structure; moderately to highly decomposed; moderately to intensely disintegrated; moderately to intensely fractured. 33.7-39.4': SHALE; moderate field strength; 10YR 4/4 (red) with gray, tan, and black mottling; fine-grained texture; massive structure; moderately to highly decomposed; moderately to intensely disintegrated; intensely fractured.		
- AEP.GDT - 5/3/19 11:49 - S.)KNOXVILLE-TN/FOR NICOLE AEP LOG			39.4	44.4	4-6-4-4	57		40 - -			39.4-44.4': SHALE; moderate field strength; 10YR 4/4 (red) with gray, tan, and black mottling; fine-grained texture; massive structure; moderately to highly decomposed; moderately to intensely disintegrated; intensely fractured.		41-44': Bentonite Pellets
EP.GDT - 5/3/1:			44.4	54.4	7-8-7-5-5-24-5	120		45			44.4-47.8': SHALE, highly weathered; weak field strength; 10YR 4/4 (red) with gray, tan, and black mottling; fine-grained texture; massive structure;		44-45': Secondary Filter Pack 45-71': Primary Filter Pack
AEP - A											Continued Next Page		

JOB NUMBER **WV015976.0005**

COMPANY American Electric Power

PROJECT Amos - FGD Landfill

BORING NO. <u>MW-1802</u> DATE <u>5/3/19</u> SHEET <u>3</u> OF <u>5</u>

шК	щ	SAM		STANDARD	.⊤≿	RQD	DEPTH	<u>ں</u>	S			
SAMPLE NUMBER	SAMPLE	DEF		PENETRATION	TOTAL ENGTH ECOVERY		IN	GRAPHIC LOG	C	SOIL / ROCK	WELL	DRILLER'S
SAN	SAN	IN F		RESISTANCE		%	FEET	L R	Ν	IDENTIFICATION	≥	NOTES
		FROM	TO	BLOWS / 6"								•
		44.4	54.4	7-8-7-5-5-24-5	120					highly decomposed; intensely disintegrated; intensely fractured.		· ·
										47.8-49.9': SHALE, less weathered; moderate		· .
										field strength; 10R 3/3 (red); fine-grained texture; massive structure; moderately decomposed;		•
										moderately disintegrated; moderately fractured.		
							50 -			49.9-50.8': SHALE, interbedded with sandstone;	:. _ :	
										moderate field strength; GLEY1 4/N; fine-grained	÷≣:	50-70': Screen
										texture; thinly bedded; moderately decomposed;	÷₿	
										slightly disintegrated; moderately fractured.	目	
										50.8-52.8': SHALE; moderate to strong field	.∃	•
										strength; 10R 4/3 (red); fine-grained texture; ¬ massive structure; slightly decomposed;	:目	•
										moderately disintegrated; slightly fractured.	:目	
2										52.8-53.1': SHALE, interbedded with sandstone;	:目:	
		54.4	64.4	8-12-5-6-7-4-4-4	114			::::		strong field strength; GLEY1 4/5GY; fine-grained	:目:	:
AINE		-					55 -			l texture; thinly bedded; slightly decomposed; slightly disintegrated; unfractured.		•
										53.1-54.4': SHALE; moderate field strength; 10R	·日	· ·
S ≥										4/3 (red); fine-grained texture; massive structure;	:目:	
										moderately decomposed; moderately	:目	
										disintegrated; moderately fractured. 54.4-55.4': SANDSTONE, interbedded with shale;	÷₿:	.]
										moderate field strength; 10R 4/3 (red);		•
										fine-grained texture; massive structure;	:目	•
≥ ב										moderately decomposed; moderately	:目:	
										disintegrated; slightly to moderately fractured.	:目	·.
							60 -			55.4-57.1': SHALE, interbedded with sandstone; moderate field strength; GLEY1 4/3, 10R 4/3;	÷₿	· ·
2 2										fine-grained texture; thinly bedded; slightly	:目	
										decomposed; slightly disintegrated; moderately	::E:	
										fractured.	:目:	
										57.1-64.4': SHALE, weathered; moderate to weak field strength; 10R 4/3 (red); fine-grained texture;	:目:	·
-							· ·			massive structure; moderately to highly	:目:	:
										decomposed; moderately to intensely	:肖·	.
<u> </u>			-							disintegrated with intense gray mottling; intensely		·
AEL		64.4	74.4	4-6-8-6-4-5-4-4-5	117		65 -			64.4-70.5': SHALE, highly weathered; moderate to	.目	•
J.										weak field strength; 10R 4/3 (red); fine-grained	:目:	
										texture; massive structure; moderately to intensely	目	:
										disintegrated with gray mottling; intensely	÷₿	·
							· ·			fractured.	:目	:
											: []:	•
											言	
0.0							.				:目:	•
, D											:目:	· ·
2							70 -				÷⊟	•
1010										70.5-74.4': SHALE, interbedded with sandstone;	••••	
P.GDT - 5/3/19 11.49 - S.XNUOXVILLE-I NIFOR NICULE AEP										strong field strength; 10R 4/3 (red) interbedded	· · · ·	
5 2										with GLEY1 4/N (gray-green); fine-grained		
<u>ح</u>				•		-		-				-

AEP - AEP.GDT - 5/3/19 11:49 - S./KNOXVILLE-TNFOR NICOLE AEP LOG EDIT FILES/GINT LOGS OUTPUTAEP MOUNTAINEER/AEP MOUNTAINEER/GPJ

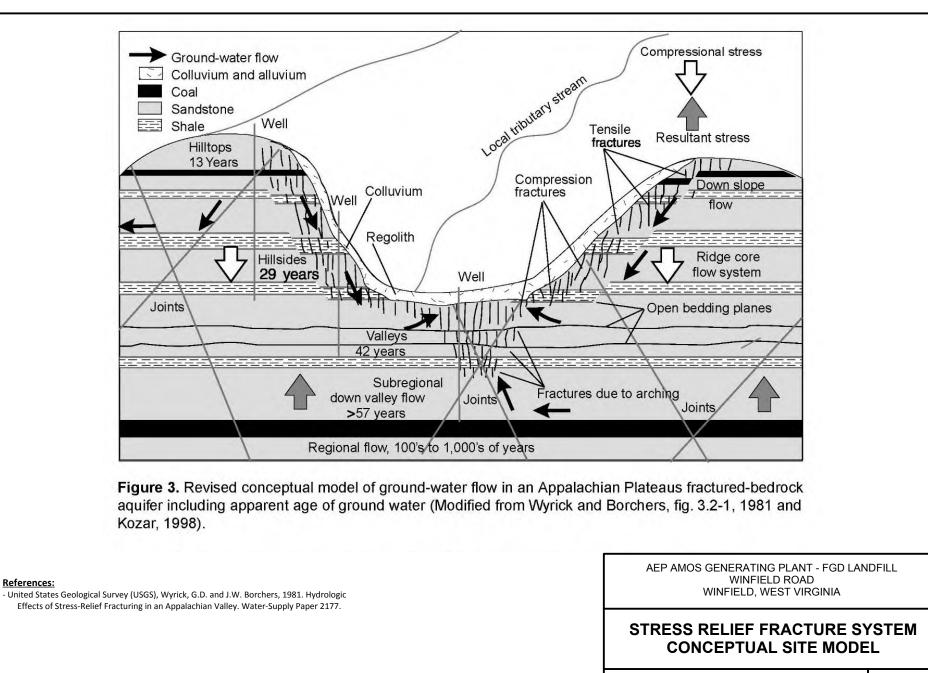
JOB NUMBER **WV015976.0005**

COMPANY American Electric Power

PROJECT Amos - FGD Landfill

BORING NO. <u>MW-1802</u> DATE <u>5/3/19</u> SHEET <u>4</u> OF <u>5</u>

DEF IN F	EET	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
64.4	74.4							texture; thinly bedded; slightly to moderately decomposed along some bedding planes; moderately disintegrated with silt filled fractures; moderately fractured.		
74.4	84.4	8-7-5-5-14-8-7- 22-12	120		75 -			74.4-77.1': SHALE, with some interbedded sandstone lenses; moderate field strength; 10R 4/3 (red); fine-grained texture; thinly bedded; slightly to moderately decomposed at some bedding planes; slightly disintegrated; moderately fractured.		
					80 -			77.1-82.7': SANDSTONE, with some red shale lenses; strong field strength; GLEY1 4/N; fine-grained texture; thinly bedded; fresh; moderately disintegrated, calcite reacts to HCl in light colored bands within 0.5' of surrounding contact lines, no HCl/calcite in fractures, no Fe staining; moderately fractured.	-	
84.4	94.4	10-11-6-7-7-8-9- 8-7-6-6-7-10	120		85 -			82.7-84.4': SHALE, with some interbedded sandstone lenses; moderate field strength; 10R 4/3 (red); fine-grained texture; thinly bedded; slightly decomposed; slightly disintegrated; moderately fractured. 84.4-86.7': SHALE, with sandstone lenses; moderate field strength; 10R 4/2 (red) with GLEY1 4/N lenses; fine-grained texture; thinly bedded; slightly decomposed; slightly	-	
					90 -			Addisintegrated; moderately fractured. 86.7-89.2': SANDSTONE, with shale lenses; moderate field strength; GLEY1 4/N with 10R 4/2 lenses; fine-grained texture; thinly bedded; slightly decomposed; slightly disintegrated; moderately fractured. 89.2-94.4': SANDSTONE; strong field strength; GLEY1 6/N; fine-grained texture; thinly bedded, micaceous; fresh; slightly disintegrated, some calcite in light bands, no staining, no calcite in fractures; slightly to moderately fractured along bedding planes; fracture at 92.8'.	-	
94.4	104.4	7-4-5-4-9-9-8-5- 11-5-6-10-19	120		95 -			94.4-104.4': SANDSTONE; strong field strength; GLEY1 6/N; fine-grained texture; thinly bedded, micaceous, cross-bedding at 94.4-94.8; fresh; slightly disintegrated, calcite in some light bedded planes, no calcite or Fe staining noted in fractures; slightly to moderately fractured along bedding planes.	-	
	IN F FROM 64.4 74.4 84.4	64.4 74.4 74.4 84.4 84.4 94.4	FROM TO BLOWS / 6" 64.4 74.4 4-6-8-6-4-5-4-4-5 74.4 84.4 8-7-5-5-14-8-7- 22-12 74.4 84.4 8-7-5-5-14-8-7- 22-12 84.4 94.4 10-11-6-7-7-8-9- 8-7-6-6-7-10 84.4 94.4 10-11-6-7-7-8-9- 8-7-6-6-7-10 94.4 104.4 7-4-5-4-9-9-8-5-	FROM TO BLOWS / 6" Tex 64.4 74.4 4-6-8-6-4-5-4-4-5 117 74.4 84.4 8-7-5-5-14-8-7- 22-12 120 74.4 84.4 8-7-5-5-14-8-7- 22-12 120 84.4 94.4 10-11-6-7-7-8-9- 8-7-6-6-7-10 120 84.4 94.4 10-11-6-7-7-8-9- 8-7-6-6-7-10 120 94.4 104.4 7-4-5-4-9-9-8-5- 120	FROM TO BLOWS / 6" To 64.4 74.4 4-6-8-6-4-5-4-4-5 117 74.4 84.4 8-7-5-5-14-8-7- 22-12 120 74.4 84.4 8-7-5-5-14-8-7- 22-12 120 84.4 94.4 10-11-6-7-7-8-9- 8-7-6-6-7-10 120 84.4 94.4 10-11-6-7-7-8-9- 8-7-6-6-7-10 120 94.4 104.4 7-4-5-4-9-9-8-5- 120	FROM TO BLOWS / 6" -zz 1 LL1 64.4 74.4 4-6-8-6-4-5-4-4-5 117 7 74.4 84.4 8-7-5-5-14-8-7- 22-12 120 75 - 74.4 84.4 8-7-5-5-14-8-7- 22-12 120 80 - 84.4 94.4 10-11-6-7-7-8-9- 8-7-6-6-7-10 120 85 - 94.4 104.4 7-4-5-4-9-9-8-5- 120 90 -	FROM TO BLOWS / 6"	FROM TO BLOWS / 6"	FROM TO BLOWS / 6* Tex FLEL Intervention 64.4 74.4 4-6-8-6-4-5-4-4-5 117 Intervention Example of the standard st	FROM TO BLOWS / 6* 2 FLE1 64.4 74.4 4-6-8-6-4-5-4-4-5 117 testure; thinly bedded; slightly to moderately decomposed along some bedding planes; moderately fractured. 74.4 84.4 8-7-5-5-14-8-7- 120 75 74.4-77.1: SHALE, with some interbedded sandstone lenses; moderately decomposed at some bedding planes; moderately decomposed at some bedding planes; moderately decomposed at some bedding planes; slightly disintegrated, role standing regime texture; thinly bedded; slightly to moderately decomposed at some bedding planes; slightly disintegrated, calcier reacts to HCI in light colored learns; which wedded; slightly domoterately decomposed; store of surrounding contact lines, no HCI calcie in fractures, no Fe staining; moderately disintegrated, calcier reacts to HCI in light colored learns; which wedded; slightly decomposed; slightly disintegrated, moderately fractured. 84.4 94.4 10-11-6-7-7-8-0- 8-7-6-6-7-10 120 85 84.4 94.4 10-11-6-7-7-8-0- 8-7-6-6-7-10 120 85 85


JOB NUMBER WV015976.0005

 COMPANY
 American Electric Power
 BORING NO.
 MW-1802
 DATE
 5/3/19
 SHEET
 5
 0F
 5

 PROJECT
 Amos - FGD Landfill
 BORING START
 8/20/18
 BORING FINISH
 8/21/18
 BORING NO. <u>MW-1802</u> DATE <u>5/3/19</u> SHEET <u>5</u> OF <u>5</u>

SAMPLE	SAMPLE	SAN DEF IN F FROM	PTH	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD	DEPTH IN FEET	GRAPHIC LOG	USCS	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
		94.4	104.4	7-4-5-4-9-9-8-5- 11-5-6-10-19	120		100					
NTAINEER.GPJ		104.4	114.4	15-6-21-6-4-4-8- 8-6-4-13-5-7	120		- 105 -			104.4-108': SANDSTONE; strong field strength; GLEY1 6/N; fine to medium-grained texture; thinly bedded, micaceous, shale fragments; fresh; moderately disintegrated, calcite along entire sandstone void and shale fragments at base, calcite in void; slightly fractured.		
FILES/GINT LOGS OUTPUTAEP MOUNTAINEER/AEP MOUNTAINEER.GPJ							- - - - - -			108-108.9': SHALE, with interbedded sandstone; moderate field strength; GLEY1 4/N, 10R 4/3 bands; thinly bedded; moderately decomposed between bedding planes; moderately disintegrated along bedding planes; moderately fractured. 108.9-114.4': SHALE; moderate field strength; 10R 4/3 (red) with GLEY1 4/N mottling; fine-grained texture; massive structure; moderately decomposed; moderately to intensely disintegrated, mottling; moderately fractured.		
TN/FOR NICOLE AEP LOG EDIT FILES/G							- 115 - -					
AEP.GDT - 5/3/19 11:49 - S.;KNOXVILLE-TNFOR NICOLE AEP LOG EDIT							- 120 - - -	-				

ATTACHMENT B Stress-Relief Fracture Conceptual Site Model

References:

FIGURE 4

Design & Consultancy for natural and built assets

ARCADIS

ATTACHMENT C Solid Samples Analytical Report

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Allison Kreinberg Geosyntec Consultants Inc 500 West Wilson Bridge Road Suite 250 Worthington, Ohio 43085 Generated 5/1/2024 4:51:58 PM

JOB DESCRIPTION

AEP Amos Power Plant - ASD

JOB NUMBER

240-202469-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Roxanne Cisneros Generated 5/1/2024 4: 5/1/2024 4:51:58 PM

Authorized for release by Roxanne Cisneros, Senior Project Manager roxanne.cisneros@et.eurofinsus.com (615)301-5761 1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
QC Sample Results	15
QC Association Summary	17
Lab Chronicle	19
Certification Summary	22
Chain of Custody	23
Receipt Checklists	27

Client: Geosyntec Consultants Inc Project/Site: AEP Amos Power Plant - ASD

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

3

Qualifiers

RL

RPD

TEF TEQ

TNTC

Metals	Quelifier Description
Qualifier 4	Qualifier Description
	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are no applicable.
General Che	mistry
Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
OD	Limit of Detection (DoD/DOE)
_OQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
/IDA	Minimum Detectable Activity (Radiochemistry)
NDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ИL	Minimum Level (Dioxin)
MPN	Most Probable Number
ЛQL	Method Quantitation Limit
1C	Not Calculated
1D	Not Detected at the reporting limit (or MDL or EDL if shown)
IEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
C	Quality Control
RER	Relative Error Ratio (Radiochemistry)
.	

Job ID: 240-202469-1

Eurofins Cleveland

Job Narrative 240-202469-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 4/8/2024 12:30 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 24.3°C.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Organic Prep

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cleveland

Method Summary

Client: Geosyntec Consultants Inc Project/Site: AEP Amos Power Plant - ASD

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET CLE
9056A	Anions, Ion Chromatography	SW846	EET CLE
9081	Cation Exchange Capacity (CEC)	SW846	EET HOU
Moisture	Percent Moisture	EPA	EET CLE
Part Size Red	Particle Size Reduction Preparation	None	EET CLE
3050B	Preparation, Metals	SW846	EET CLE
9081	Cation Exchange Capacity (CEC)	SW846	EET HOU
DI Leach	Deionized Water Leaching Procedure	ASTM	EET CLE

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

None = None

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Sample Summary

Client: Geosyntec Consultants Inc Project/Site: AEP Amos Power Plant - ASD

Job ID: 240-202469-1

Lab Sample ID 240-202469-1 240-202469-2 240-202469-3	Client Sample ID MW-1801-SS-59.8-60.5-20240403 MW-1802-SS-56.3-56.9-20240403 MW-1801-SH-55.9-56.6-20240403	Matrix Solid Solid Solid Solid	Collected 04/03/24 11:00 04/03/24 11:05 04/03/24 11:10	
240-202469-4	MW-1801-SH-58.0-58.8-20240403	Solid	04/03/24 11:15	04/08/24 12:30
240-202469-5	MW-1802-SH-51.9-52.5-20240403	Solid	04/03/24 11:20	04/08/24 12:30
240-202469-6	MW-1802-SH-55.3-55.8-20240403	Solid	04/03/24 11:25	04/08/24 12:30

Detection Summary

Client Sample ID: MW-1801-SS-59.8-60.5-20240403

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	25600		422	30.8	mg/Kg	1	₽	6010D	Total/NA
Cation Exchange Capacity	2.46		0.502	0.502	meq/100gm	1	₽	9081	Total/NA
Chloride	24.8		10.2	2.04	mg/Kg	1	₽	9056A	Soluble
Fluoride	0.793		0.512	0.342	mg/Kg	1	₽	9056A	Soluble
Sulfate	20.0		10.2	3.98	mg/Kg	1	¢	9056A	Soluble
PSR sample generated	DONE				NONE	1		Part Size Red	Total/NA

Client Sample ID: MW-1802-SS-56.3-56.9-20240403

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	3400		480	35.0	mg/Kg	1	¢	6010D	Total/NA
Cation Exchange Capacity	4.25		0.504	0.504	meq/100gm	1	₽	9081	Total/NA
Fluoride	0.790		0.494	0.330	mg/Kg	1	₽	9056A	Soluble
Sulfate	8.45	J	9.87	3.84	mg/Kg	1	₽	9056A	Soluble
PSR sample generated	DONE				NONE	1		Part Size Red	Total/NA

Client Sample ID: MW-1801-SH-55.9-56.6-20240403

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	1010		423	30.8	mg/Kg	1	₽	6010D	Total/NA
Cation Exchange Capacity	18.0		0.512	0.512	meq/100gm	1	₽	9081	Total/NA
Fluoride	3.28		0.521	0.348	mg/Kg	1	₽	9056A	Soluble
Sulfate	9.59	J	10.4	4.05	mg/Kg	1	₽	9056A	Soluble
PSR sample generated	DONE				NONE	1		Part Size Red	Total/NA

Client Sample ID: MW-1801-SH-58.0-58.8-20240403

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	2910		470	34.3	mg/Kg	1	¢	6010D	Total/NA
Cation Exchange Capacity	18.8		0.512	0.512	meq/100gm	1	¢	9081	Total/NA
Fluoride	3.43		0.523	0.349	mg/Kg	1	¢	9056A	Soluble
Sulfate	16.6		10.5	4.07	mg/Kg	1	¢	9056A	Soluble
PSR sample generated	DONE				NONE	1		Part Size Red	Total/NA

Client Sample ID: MW-1802-SH-51.9-52.5-20240403

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	1120		408	29.7	mg/Kg	1	¢	6010D	Total/NA
Cation Exchange Capacity	35.7		0.514	0.514	meq/100gm	1	¢	9081	Total/NA
Fluoride	4.61		0.524	0.350	mg/Kg	1	¢	9056A	Soluble
Sulfate	17.9		10.5	4.08	mg/Kg	1	₽	9056A	Soluble
PSR sample generated	DONE				NONE	1		Part Size Red	Total/NA

Client Sample ID: MW-1802-SH-55.3-55.8-20240403

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	1230	357	26.0	mg/Kg	1	₽	6010D	Total/NA
Cation Exchange Capacity	14.5	0.511	0.511	meq/100gm	1	₽	9081	Total/NA
Fluoride	3.55	0.518	0.346	mg/Kg	1	₽	9056A	Soluble
Sulfate	14.6	10.4	4.03	mg/Kg	1	₽	9056A	Soluble
PSR sample generated	DONE			NONE	1		Part Size Red	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Cleveland

Job ID: 240-202469-1

Lab Sample ID: 240-202469-1

Lab Sample ID: 240-202469-2

Lab Sample ID: 240-202469-3

7

Lab Sample ID: 240-202469-5

Lab Sample ID: 240-202469-6

Lab Sample ID: 240-202469-	-4
----------------------------	----

L

Client Sample ID: MW-1801-SS-59.8-60.5-20240403 Date Collected: 04/03/24 11:00 Date Received: 04/08/24 12:30

Lab	Sample	ID: 240-2	202469-1

Matrix: Solid Percent Solids: 99.5

Job ID: 240-202469-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	25600		422	30.8	mg/Kg	¢	04/09/24 15:00	04/10/24 15:12	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cation Exchange Capacity (SW846 9081)	2.46		0.502	0.502	meq/100gm	¢	04/28/24 12:55	05/01/24 09:35	1
Percent Solids (EPA Moisture)	99.5		0.1	0.1	%			04/10/24 17:00	1
Percent Moisture (EPA Moisture)	0.5		0.1	0.1	%			04/10/24 17:00	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	24.8		10.2	2.04	mg/Kg	¢		04/17/24 08:29	1
Fluoride (SW846 9056A)	0.793		0.512	0.342	mg/Kg	¢		04/17/24 08:29	1
Sulfate (SW846 9056A)	20.0		10.2	3.98	mg/Kg	¢		04/17/24 08:29	1
Method: Part Size Red - Particle	Size Red	uction Prep	aration						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PSR sample generated	DONE				NONE	_		04/09/24 12:36	1

Lab Sample

Client Sample ID: MW-1802-SS-56.3-56.9-20240403 Date Collected: 04/03/24 11:05 Date Received: 04/08/24 12:30

240403	Lab Sample ID: 240-202469-2
	Matrix: Solid
	Percent Solids: 99.3

Method: SW846 6010D - Metals (ICP)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	3400		480	35.0	mg/Kg	☆	04/09/24 15:00	04/10/24 15:42	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cation Exchange Capacity (SW846 9081)	4.25		0.504	0.504	meq/100gm	\$	04/28/24 12:55	05/01/24 09:35	1
Percent Solids (EPA Moisture)	99.3		0.1	0.1	%			04/10/24 17:00	1
Percent Moisture (EPA Moisture)	0.7		0.1	0.1	%			04/10/24 17:00	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	ND		9.87	1.97	mg/Kg	₿		04/17/24 09:34	1
Fluoride (SW846 9056A)	0.790		0.494	0.330	mg/Kg	₽		04/17/24 09:34	1
Sulfate (SW846 9056A)	8.45	J	9.87	3.84	mg/Kg	☆		04/17/24 09:34	1
Method: Part Size Red - Particle	Size Red	uction Pre	paration						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PSR sample generated	DONE				NONE			04/09/24 12:36	1

5/1/2024

Job ID: 240-202469-1

Client Sample ID: MW-1801-SH-55.9-56.6-20240403 Date Collected: 04/03/24 11:10 Date Received: 04/08/24 12:30

Eurofins Cleveland	

5/1/2024	

Method: SW846 6010D - Metals (Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	1010		423	30.8	mg/Kg	₽	04/09/24 15:00	04/10/24 15:46	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cation Exchange Capacity (SW846 9081)	18.0		0.512	0.512	meq/100gm	¢	04/28/24 12:55	05/01/24 09:35	1
Percent Solids (EPA Moisture)	97.7		0.1	0.1	%			04/10/24 17:00	1
Percent Moisture (EPA Moisture)	2.3		0.1	0.1	%			04/10/24 17:00	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	ND		10.4	2.08	mg/Kg	\$		04/17/24 09:56	1
Fluoride (SW846 9056A)	3.28		0.521	0.348	mg/Kg	₽		04/17/24 09:56	1
Sulfate (SW846 9056A)	9.59	J	10.4	4.05	mg/Kg	¢		04/17/24 09:56	1
Method: Part Size Red - Particle	Size Red	uction Prep	aration						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PSR sample generated	DONE				NONE	-		04/09/24 12:36	1

Job ID: 240-202469-1

Matrix: Solid

Percent Solids: 97.7

Lab Sample ID: 240-202469-3

Method: SW846 6010D - Metals (ICP)

Analyte

Analyte

9081)

Analyte

Client Sample ID: MW-1801-SH-58.0-58.8-20240403 Date Collected: 04/03/24 11:15 Date Received: 04/08/24 12:30

Job ID: 240-202469-1

Lab Sample ID: 240-202469-4 Matrix: Solid Percent Solids: 97.6 Dil Fac 1

Dil Fac

Dil Fac

1

1

1

1

1

1

	5
	8
	9

Result Qualifier RL MDL Unit D Analyzed Prepared Calcium 470 34.3 mg/Kg <u></u> 04/09/24 15:00 04/10/24 15:51 2910 **General Chemistry** Result Qualifier RL MDL Unit D Prepared Analyzed Cation Exchange Capacity (SW846 0.512 ₽ 04/28/24 12:55 05/01/24 09:35 18.8 0.512 meq/100gm Percent Solids (EPA Moisture) 97.6 0.1 0.1 % 04/10/24 17:00 Percent Moisture (EPA Moisture) 2.4 0.1 0.1 % 04/10/24 17:00 **General Chemistry - Soluble** MDL Unit **Result Qualifier** RL D Prepared Analyzed ☆ Chloride (SW846 9056A) ND 10.5 2.09 mg/Kg 04/17/24 10:18 0.523 Fluoride (SW846 9056A) 3.43 0.349 mg/Kg ☆ 04/17/24 10:18 10.5 4.07 mg/Kg 04/17/24 10:18 Sulfate (SW846 9056A) 16.6 ₽

Method: Part Size Red - Particle Size Reduction Preparation

Analyte	Result Qualifier	RL	MDL Uni	t D	Prepared	Analyzed	Dil Fac
PSR sample generated	DONE		NO			04/09/24 12:36	1

Client Sample ID: MW-1802-SH-51.9-52.5-20240403 Date Collected: 04/03/24 11:20 Date Received: 04/08/24 12:30

Lab Sample ID: 240-202469-5 Matrix: Solid

Percent Solids: 97.3

5

8 9

Job ID: 240-202469-1

Method: SW846 6010D - Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	1120		408	29.7	mg/Kg	☆	04/09/24 15:00	04/10/24 15:55	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cation Exchange Capacity (SW846 9081)	35.7		0.514	0.514	meq/100gm	¢	04/28/24 12:55	05/01/24 09:35	1
Percent Solids (EPA Moisture)	97.3		0.1	0.1	%			04/10/24 17:00	1
Percent Moisture (EPA Moisture)	2.7		0.1	0.1	%			04/10/24 17:00	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride (SW846 9056A)	ND		10.5	2.09	mg/Kg	¢		04/17/24 12:33	1
Fluoride (SW846 9056A)	4.61		0.524	0.350	mg/Kg	₿		04/17/24 12:33	1
Sulfate (SW846 9056A)	17.9		10.5	4.08	mg/Kg	☆		04/17/24 12:33	1
	Size Red	uction Prep	paration						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PSR sample generated	DONE				NONE			04/09/24 12:36	1

RL

357

RL

0.1

0.1

RL

10.4

0.518

10.4

RL

0.511

MDL Unit

MDL Unit

0.1 %

0.1 %

MDL Unit

0.346 mg/Kg

4.03 mg/Kg

Unit

NONE

mg/Kg

2.06

MDL

mg/Kg

meq/100gm

26.0

0.511

D

☆

D

₽

D

₽

☆

₽

D

Prepared

Prepared

Prepared

Prepared

Method: SW846 6010D - Metals (ICP)

Analyte

Calcium

Analyte

9081)

Analyte

Analyte

General Chemistry

Chloride (SW846 9056A)

Fluoride (SW846 9056A)

Sulfate (SW846 9056A)

PSR sample generated

Cation Exchange Capacity (SW846

Percent Solids (EPA Moisture)

Percent Moisture (EPA Moisture)

General Chemistry - Soluble

Client Sample ID: MW-1802-SH-55.3-55.8-20240403 Date Collected: 04/03/24 11:25 Date Received: 04/08/24 12:30

Result Qualifier

Result Qualifier

Result Qualifier

Result Qualifier

1230

14.5

97.9

2.1

ND

3.55

14.6

DONE

Method: Part Size Red - Particle Size Reduction Preparation

5
8
9

Job ID: 240-202469-1

Analyzed

04/10/24 17:00

04/10/24 17:00

Analyzed

04/17/24 12:54

04/17/24 12:54

04/17/24 12:54

Analyzed

04/09/24 12:36

04/28/24 12:55 05/01/24 09:35

Lab Sample ID: 240-202469-6 Matrix: Solid Percent Solids: 97.9 Analyzed Dil Fac 04/09/24 15:00 04/10/24 16:00 1

Dil Fac

Dil Fac

Dil Fac

1

1

1

1

1

1

Job ID: 240-202469-1

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 240-60	8971/1-A						C	lie	nt Samp	ole ID: M	ethod	Blank
Matrix: Solid										Prep Ty	pe: Tot	tal/N/
Analysis Batch: 609193										Prep Ba	itch: 6	0897 <i>°</i>
		MB MB										
Analyte	Re	sult Qualifier			MDL U	-	D	Pr	epared	Analyz	ed	Dil Fa
Calcium		ND		500	36.5 m	g/Kg	0	4/09	9/24 15:00	04/10/24	15:03	
Lab Sample ID: LCS 240-60	08971/2-A					Cli	ent S	San	nple ID:	Lab Con	trol Sa	ample
Matrix: Solid										Prep Ty	pe: Tot	tal/N
Analysis Batch: 609193										Prep Ba	tch: 6	0897
			Spike	LCS	LCS					%Rec		
Analyte			Added	Result	Qualifi	er Unit		D	%Rec	Limits		
Calcium			5000	4663		mg/Kg			93	80 - 120		
Sodium			5000	4870		mg/Kg			97	80 - 120		
Lab Sample ID: 240-202469	9-1 MS				Client	Sample I	D: M	w-	1801-SS	6-59.8-60	.5-2024	4040
Matrix: Solid										Prep Ty	pe: Tot	
Matrix: Solid										Prep Ty Prep Ba		tal/N
Matrix: Solid	Sample	Sample	Spike		MS					Prep Tyj Prep Ba %Rec		tal/N
Matrix: Solid Analysis Batch: 609193	•	Sample Qualifier	Spike Added	MS		·		D	%Rec	Prep Ba		tal/N
Matrix: Solid Analysis Batch: 609193 ^{Analyte}	•	•	•	MS	MS Qualifi	·		D ☆	%Rec	Prep Ba %Rec		tal/N
-	Result	•	Added	MS Result	MS Qualifi	er <u>Unit</u>				Prep Ba %Rec Limits		tal/N/
Matrix: Solid Analysis Batch: 609193 Analyte Calcium Sodium	Result 25600 ND	•	Added 4330	MS Result 29520 3941	MS Qualifi 4	er Unit mg/Kg mg/Kg		☆ ¢	89 91	Prep Ba %Rec Limits 75 - 125 75 - 125	itch: 60	tal/N/ 0897
Matrix: Solid Analysis Batch: 609193 Analyte Calcium	Result 25600 ND	•	Added 4330	MS Result 29520 3941	MS Qualifi 4	er Unit mg/Kg		☆ ¢	89 91	Prep Ba %Rec Limits 75 - 125 75 - 125 5-59.8-60	1tch: 60	tal/N/ 0897
Matrix: Solid Analysis Batch: 609193 Analyte Calcium Sodium Lab Sample ID: 240-202469 Matrix: Solid	Result 25600 ND	•	Added 4330	MS Result 29520 3941	MS Qualifi 4	er Unit mg/Kg mg/Kg		☆ ¢	89 91	Prep Ba %Rec Limits 75 - 125 75 - 125 6-59.8-60 Prep Ty	.5-2024 pe: Tot	tal/N/ 0897 4040 tal/N/
Matrix: Solid Analysis Batch: 609193 Analyte Calcium Sodium Lab Sample ID: 240-202469	Result 25600 ND 9-1 MSD	•	Added 4330	MS Result 29520 3941	MS Qualifi 4	er Unit mg/Kg mg/Kg		☆ ¢	89 91	Prep Ba %Rec Limits 75 - 125 75 - 125 5-59.8-60	.5-2024 pe: Tot	tal/N/ 0897 4040 tal/N/
Matrix: Solid Analysis Batch: 609193 Analyte Calcium Sodium Lab Sample ID: 240-202469 Matrix: Solid Analysis Batch: 609193	Result 25600 ND 9-1 MSD Sample	Qualifier	Added 4330 4330	MS Result 29520 3941 MSD	MS Qualifi 4 Client	er <u>Unit</u> mg/Kg mg/Kg Sample I	D: M	_☆ ☆ ₩-	89 91	Prep Ba %Rec Limits 75 - 125 75 - 125 6-59.8-60 Prep Typ Prep Ba	.5-2024 pe: Tot	4040 1/N/ 4040 tal/N/
Matrix: Solid Analysis Batch: 609193 Analyte Calcium Sodium Lab Sample ID: 240-202469 Matrix: Solid Analysis Batch: 609193 Analyte	Result 25600 ND 9-1 MSD Sample	Qualifier	Added 4330 4330 Spike	MS Result 29520 3941 MSD	MS Qualifi 4 Client MSD Qualifi	er <u>Unit</u> mg/Kg mg/Kg Sample I	D: M	☆ ☆ ₩-	89 91 1801-SS	Prep Ba %Rec Limits 75 - 125 75 - 125 6-59.8-60 Prep Tyj Prep Ba %Rec	.5-2024 pe: Tot stch: 60	4040 4040 tal/N. 0897 RP Lim
Matrix: Solid Analysis Batch: 609193 Analyte Calcium Sodium Lab Sample ID: 240-202469 Matrix: Solid	Result 25600 ND 9-1 MSD Sample Result	Qualifier	Added 4330 4330 Spike Added	MS Result 29520 3941 MSD Result	MS Qualifi 4 Client MSD Qualifi 4	er Unit mg/Kg mg/Kg Sample I er Unit	D: M	_☆ ☆ ₩-	89 91 1801-SS	Prep Ba %Rec Limits 75 - 125 75 - 125 5-59.8-60 Prep Tyl Prep Ba %Rec Limits	.5-2024 pe: Tot ttch: 60 	4040 40897 4040 tal/N/ 0897 RP

Lab Sample ID: MB 240-609689/1-A **Client Sample ID: Method Blank Prep Type: Soluble**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		9.95	1.98	mg/Kg			04/17/24 07:46	1
Fluoride	ND		0.498	0.332	mg/Kg			04/17/24 07:46	1
Sulfate	ND		9.95	3.87	mg/Kg			04/17/24 07:46	1

Lab Sample ID: LCS 240-609689/2-A Matrix: Solid Analysis Batch: 609809

Matrix: Solid

Analysis Batch: 609809

Analysis Batom second									
	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	500	504.8		mg/Kg		101	90 - 110		
Fluoride	25.0	26.00		mg/Kg		104	90 - 110		
Sulfate	500	519.2		mg/Kg		104	90 - 110		

Eurofins Cleveland

Prep Type: Soluble

Client Sample ID: Lab Control Sample

Cation Exchange Capacity

04/28/24 12:54 05/01/24 09:35

7 8 9

1

Method: 9056A - Anions, Ion Chromatography (Continued)

ND

Lab Sample ID: 240-202469 Matrix: Solid Analysis Batch: 609809	-1 MS				Client Sa	ample IC): MW	-1801-S	S-59.8-60 Prep Ty		
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	24.8		512	576.6		mg/Kg	☆	108	80 - 120		
Fluoride	0.793		25.6	29.82		mg/Kg	₽	113	80 - 120		
Sulfate	20.0		512	580.7		mg/Kg	¢	110	80 - 120		
Lab Sample ID: 240-202469 Matrix: Solid Analysis Batch: 609809	-1 MSD				Client Sa	ample ID): MW	-1801-S	S-59.8-60 Prep Ty		
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	24.8		512	580.0		mg/Kg	— <u></u>	109	80 - 120	1	15
Fluoride	0.793		25.6	30.05		mg/Kg	¢	114	80 - 120	1	15
Sulfate	20.0		512	583.9		mg/Kg	¢	110	80 - 120	1	15
lethod: 9081 - Cation E	Exchange	e Capacity	(CEC)								
Lab Sample ID: MB 860-157	7253/1-A						Clie	ent Sam	ple ID: M	ethod	Blank
Matrix: Solid									Prep Ty	pe: Tot	al/NA
Analysis Batch: 157810									Prep Ba	atch: 1	57253
-		MB MB									
Analyte	Re	sult Qualifier		RL	MDL Unit		D P	repared	Analyz	bot	Dil Fac

0.500

0.500 meq/100gm

7 8 9 10 11 12 13

_		
Prep	Batch:	608971

Metals

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-202469-1	MW-1801-SS-59.8-60.5-20240403	Total/NA	Solid	3050B	
240-202469-2	MW-1802-SS-56.3-56.9-20240403	Total/NA	Solid	3050B	
240-202469-3	MW-1801-SH-55.9-56.6-20240403	Total/NA	Solid	3050B	
240-202469-4	MW-1801-SH-58.0-58.8-20240403	Total/NA	Solid	3050B	
240-202469-5	MW-1802-SH-51.9-52.5-20240403	Total/NA	Solid	3050B	
240-202469-6	MW-1802-SH-55.3-55.8-20240403	Total/NA	Solid	3050B	
VB 240-608971/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 240-608971/2-A	Lab Control Sample	Total/NA	Solid	3050B	
240-202469-1 MS	MW-1801-SS-59.8-60.5-20240403	Total/NA	Solid	3050B	
240-202469-1 MSD	MW-1801-SS-59.8-60.5-20240403	Total/NA	Solid	3050B	

Analysis Batch: 609193

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-202469-1	MW-1801-SS-59.8-60.5-20240403	Total/NA	Solid	6010D	608971
240-202469-2	MW-1802-SS-56.3-56.9-20240403	Total/NA	Solid	6010D	608971
240-202469-3	MW-1801-SH-55.9-56.6-20240403	Total/NA	Solid	6010D	608971
240-202469-4	MW-1801-SH-58.0-58.8-20240403	Total/NA	Solid	6010D	608971
240-202469-5	MW-1802-SH-51.9-52.5-20240403	Total/NA	Solid	6010D	608971
240-202469-6	MW-1802-SH-55.3-55.8-20240403	Total/NA	Solid	6010D	608971
MB 240-608971/1-A	Method Blank	Total/NA	Solid	6010D	608971
LCS 240-608971/2-A	Lab Control Sample	Total/NA	Solid	6010D	608971
240-202469-1 MS	MW-1801-SS-59.8-60.5-20240403	Total/NA	Solid	6010D	608971
240-202469-1 MSD	MW-1801-SS-59.8-60.5-20240403	Total/NA	Solid	6010D	608971

General Chemistry

Prep Batch: 157253

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-202469-1	MW-1801-SS-59.8-60.5-20240403	Total/NA	Solid	9081	
240-202469-2	MW-1802-SS-56.3-56.9-20240403	Total/NA	Solid	9081	
240-202469-3	MW-1801-SH-55.9-56.6-20240403	Total/NA	Solid	9081	
240-202469-4	MW-1801-SH-58.0-58.8-20240403	Total/NA	Solid	9081	
240-202469-5	MW-1802-SH-51.9-52.5-20240403	Total/NA	Solid	9081	
240-202469-6	MW-1802-SH-55.3-55.8-20240403	Total/NA	Solid	9081	
MB 860-157253/1-A	Method Blank	Total/NA	Solid	9081	

Analysis Batch: 157810

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-202469-1	MW-1801-SS-59.8-60.5-20240403	Total/NA	Solid	9081	157253
240-202469-2	MW-1802-SS-56.3-56.9-20240403	Total/NA	Solid	9081	157253
240-202469-3	MW-1801-SH-55.9-56.6-20240403	Total/NA	Solid	9081	157253
240-202469-4	MW-1801-SH-58.0-58.8-20240403	Total/NA	Solid	9081	157253
240-202469-5	MW-1802-SH-51.9-52.5-20240403	Total/NA	Solid	9081	157253
240-202469-6	MW-1802-SH-55.3-55.8-20240403	Total/NA	Solid	9081	157253
MB 860-157253/1-A	Method Blank	Total/NA	Solid	9081	157253

Analysis Batch: 609179

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-202469-1	MW-1801-SS-59.8-60.5-20240403	Total/NA	Solid	Moisture	
240-202469-2	MW-1802-SS-56.3-56.9-20240403	Total/NA	Solid	Moisture	
240-202469-3	MW-1801-SH-55.9-56.6-20240403	Total/NA	Solid	Moisture	

Eurofins Cleveland

QC Association Summary

Client: Geosyntec Consultants Inc Project/Site: AEP Amos Power Plant - ASD

General Chemistry (Continued)

Analysis Batch: 609179 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-202469-4	MW-1801-SH-58.0-58.8-20240403	Total/NA	Solid	Moisture	
240-202469-5	MW-1802-SH-51.9-52.5-20240403	Total/NA	Solid	Moisture	
240-202469-6	MW-1802-SH-55.3-55.8-20240403	Total/NA	Solid	Moisture	

Leach Batch: 609689

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-202469-1	MW-1801-SS-59.8-60.5-20240403	Soluble	Solid	DI Leach	
240-202469-2	MW-1802-SS-56.3-56.9-20240403	Soluble	Solid	DI Leach	
240-202469-3	MW-1801-SH-55.9-56.6-20240403	Soluble	Solid	DI Leach	
240-202469-4	MW-1801-SH-58.0-58.8-20240403	Soluble	Solid	DI Leach	
240-202469-5	MW-1802-SH-51.9-52.5-20240403	Soluble	Solid	DI Leach	
240-202469-6	MW-1802-SH-55.3-55.8-20240403	Soluble	Solid	DI Leach	
MB 240-609689/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 240-609689/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
240-202469-1 MS	MW-1801-SS-59.8-60.5-20240403	Soluble	Solid	DI Leach	
240-202469-1 MSD	MW-1801-SS-59.8-60.5-20240403	Soluble	Solid	DI Leach	

Analysis Batch: 609809

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-202469-1	MW-1801-SS-59.8-60.5-20240403	Soluble	Solid	9056A	609689
240-202469-2	MW-1802-SS-56.3-56.9-20240403	Soluble	Solid	9056A	609689
240-202469-3	MW-1801-SH-55.9-56.6-20240403	Soluble	Solid	9056A	609689
240-202469-4	MW-1801-SH-58.0-58.8-20240403	Soluble	Solid	9056A	609689
240-202469-5	MW-1802-SH-51.9-52.5-20240403	Soluble	Solid	9056A	609689
240-202469-6	MW-1802-SH-55.3-55.8-20240403	Soluble	Solid	9056A	609689
MB 240-609689/1-A	Method Blank	Soluble	Solid	9056A	609689
LCS 240-609689/2-A	Lab Control Sample	Soluble	Solid	9056A	609689
240-202469-1 MS	MW-1801-SS-59.8-60.5-20240403	Soluble	Solid	9056A	609689
240-202469-1 MSD	MW-1801-SS-59.8-60.5-20240403	Soluble	Solid	9056A	609689

Organic Prep

Analysis Batch: 608940

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-202469-1	MW-1801-SS-59.8-60.5-20240403	Total/NA	Solid	Part Size Red	
240-202469-2	MW-1802-SS-56.3-56.9-20240403	Total/NA	Solid	Part Size Red	
240-202469-3	MW-1801-SH-55.9-56.6-20240403	Total/NA	Solid	Part Size Red	
240-202469-4	MW-1801-SH-58.0-58.8-20240403	Total/NA	Solid	Part Size Red	
240-202469-5	MW-1802-SH-51.9-52.5-20240403	Total/NA	Solid	Part Size Red	
240-202469-6	MW-1802-SH-55.3-55.8-20240403	Total/NA	Solid	Part Size Red	

Client Sample ID: MW-1801-SS-59.8-60.5-20240403 Date Collected: 04/03/24 11:00 Date Received: 04/08/24 12:30

_	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	Moisture		1	609179	QUY8	EET CLE	04/10/24 17:00
Total/NA	Analysis	Part Size Red		1	608940	POP	EET CLE	04/09/24 12:36

Client Sample ID: MW-1801-SS-59.8-60.5-20240403 Date Collected: 04/03/24 11:00 Date Received: 04/08/24 12:30

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3050B			608971	DEE	EET CLE	04/09/24 15:00
Total/NA	Analysis	6010D		1	609193	KLC	EET CLE	04/10/24 15:12
Soluble	Leach	DI Leach			609689	JWW	EET CLE	04/15/24 16:00
Soluble	Analysis	9056A		1	609809	JWW	EET CLE	04/17/24 08:29
Total/NA	Prep	9081			157253	РВ	EET HOU	04/28/24 12:55
Total/NA	Analysis	9081		1	157810	JDM	EET HOU	05/01/24 09:35

Client Sample ID: MW-1802-SS-56.3-56.9-20240403 Date Collected: 04/03/24 11:05 Date Received: 04/08/24 12:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	Moisture		1	609179	QUY8	EET CLE	04/10/24 17:00
Total/NA	Analysis	Part Size Red		1	608940	POP	EET CLE	04/09/24 12:36

Client Sample ID: MW-1802-SS-56.3-56.9-20240403 Date Collected: 04/03/24 11:05 Date Received: 04/08/24 12:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3050B			608971	DEE	EET CLE	04/09/24 15:00
Total/NA	Analysis	6010D		1	609193	KLC	EET CLE	04/10/24 15:42
Soluble	Leach	DI Leach			609689	JWW	EET CLE	04/15/24 16:00
Soluble	Analysis	9056A		1	609809	JWW	EET CLE	04/17/24 09:34
Total/NA	Prep	9081			157253	РВ	EET HOU	04/28/24 12:55
Total/NA	Analysis	9081		1	157810	JDM	EET HOU	05/01/24 09:35

Client Sample ID: MW-1801-SH-55.9-56.6-20240403 Date Collected: 04/03/24 11:10 Date Received: 04/08/24 12:30

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	Moisture		1	609179	QUY8	EET CLE	04/10/24 17:00
Total/NA	Analysis	Part Size Red		1	608940	POP	EET CLE	04/09/24 12:36

Eurofins Cleveland

Lab Sample ID: 240-202469-2 Matrix: Solid

Lab Sample ID: 240-202469-2

Lab Sample ID: 240-202469-3

Matrix: Solid

Matrix: Solid

Percent Solids: 99.3

5/1/2024

Dilution

Factor

1

1

1

Run

Batch

Number Analyst

608971 DEE

609193 KLC

609689 JWW

609809 JWW

157253 PB

157810 JDM

Lab

EET CLE

EET CLE

EET CLE

EET CLE

EET HOU

EET HOU

Batch

Type

Prep

Analysis

Analysis

Analysis

Leach

Prep

Client Sample ID: MW-1801-SH-55.9-56.6-20240403 Date Collected: 04/03/24 11:10

Batch

3050B

6010D

9056A

9081

9081

Client Sample ID: MW-1801-SH-58.0-58.8-20240403

DI Leach

Method

Prep Type

Total/NA

Total/NA

Soluble

Soluble

Total/NA

Total/NA

Percent Solids: 97.7

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 97.3

Percent Solids: 97.6

Lab Sample ID: 240-202469-3

Prepared

or Analyzed

04/09/24 15:00

04/10/24 15:46

04/15/24 16:00

04/17/24 09:56

04/28/24 12:55

05/01/24 09:35

2 3 4 5 6 7 8 9 10

Lab Sample ID: 240-202469-4 Matrix: Solid

Lab Sample ID: 240-202469-4

Lab Sample ID: 240-202469-5

Lab Sample ID: 240-202469-5

Date Collected: 04/03/24 11:15 Date Received: 04/08/24 12:30

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type Total/NA	Type Analysis	Method Moisture	Run	Factor 1	Number 609179		Lab EET CLE	or Analyzed 04/10/24 17:00
Total/NA	Analysis	Part Size Red		1	608940	POP	EET CLE	04/09/24 12:36

Client Sample ID: MW-1801-SH-58.0-58.8-20240403 Date Collected: 04/03/24 11:15 Date Received: 04/08/24 12:30

—	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3050B			608971	DEE	EET CLE	04/09/24 15:00
Total/NA	Analysis	6010D		1	609193	KLC	EET CLE	04/10/24 15:51
Soluble	Leach	DI Leach			609689	JWW	EET CLE	04/15/24 16:00
Soluble	Analysis	9056A		1	609809	JWW	EET CLE	04/17/24 10:18
Total/NA	Prep	9081			157253	РВ	EET HOU	04/28/24 12:55
Total/NA	Analysis	9081		1	157810	JDM	EET HOU	05/01/24 09:35

Client Sample ID: MW-1802-SH-51.9-52.5-20240403

Date Collected: 04/03/24 11:20 Date Received: 04/08/24 12:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	Moisture		1	609179	QUY8	EET CLE	04/10/24 17:00
Total/NA	Analysis	Part Size Red		1	608940	POP	EET CLE	04/09/24 12:36

Client Sample ID: MW-1802-SH-51.9-52.5-20240403 Date Collected: 04/03/24 11:20 Date Received: 04/08/24 12:30

_	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3050B			608971	DEE	EET CLE	04/09/24 15:00
Total/NA	Analysis	6010D		1	609193	KLC	EET CLE	04/10/24 15:55
Soluble	Leach	DI Leach			609689	JWW	EET CLE	04/15/24 16:00
Soluble	Analysis	9056A		1	609809	JWW	EET CLE	04/17/24 12:33

Client Sample ID: MW-1802-SH-51.9-52.5-20240403 Date Collected: 04/03/24 11:20 Date Received: 04/08/24 12:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	9081			157253	PB	EET HOU	04/28/24 12:55
Total/NA	Analysis	9081		1	157810	JDM	EET HOU	05/01/24 09:35

Client Sample ID: MW-1802-SH-55.3-55.8-20240403 Date Collected: 04/03/24 11:25 Date Received: 04/08/24 12:30

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	Moisture		1	609179	QUY8	EET CLE	04/10/24 17:00
Total/NA	Analysis	Part Size Red		1	608940	POP	EET CLE	04/09/24 12:36

Client Sample ID: MW-1802-SH-55.3-55.8-20240403 Date Collected: 04/03/24 11:25 Date Received: 04/08/24 12:30

Batch Batch Dilution Batch Prepared Prep Type Туре Method Factor Number Analyst or Analyzed Run Lab 04/09/24 15:00 Total/NA Prep 3050B 608971 DEE EET CLE Total/NA 6010D 04/10/24 16:00 Analysis 1 609193 KLC EET CLE Soluble Leach **DI Leach** 609689 JWW EET CLE 04/15/24 16:00 Soluble Analysis 9056A 1 609809 JWW EET CLE 04/17/24 12:54 Total/NA Prep 9081 157253 PB EET HOU 04/28/24 12:55 Total/NA 9081 EET HOU 05/01/24 09:35 Analysis 1 157810 JDM

Laboratory References:

EET CLE = Eurofins Cleveland, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396 EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Job ID: 240-202469-1

Percent Solids: 97.3

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 97.9

Lab Sample ID: 240-202469-5

Lab Sample ID: 240-202469-6

Lab Sample ID: 240-202469-6

Client: Geosyntec Consultants Inc Project/Site: AEP Amos Power Plant - ASD

Laboratory: Eurofins Cleveland

•	State State	2927	02-28-25
Georgia	State		
mession and a second	Oldio	4062	02-27-25
Illinois	NELAP	200004	07-31-24
Iowa	State	421	06-01-25
Kentucky (WW)	State	KY98016	12-30-24
Minnesota	NELAP	039-999-348	12-31-24
New Jersey	NELAP	OH001	06-30-24
New York	NELAP	10975	04-02-25
Ohio VAP	State	ORELAP 4062	02-27-25
Oregon	NELAP	4062	02-27-25
Pennsylvania	NELAP	68-00340	08-31-24
Texas	NELAP	T104704517-22-19	08-31-24
USDA	US Federal Programs	P330-18-00281	01-05-27
Virginia	NELAP	460175	09-14-24
West Virginia DEP	State	210	12-31-24

Laboratory: Eurofins Houston

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	88-00759	08-03-24
Florida	NELAP	E871002	06-30-24
Louisiana (All)	NELAP	03054	06-30-24
Oklahoma	NELAP	1306	08-31-24
Oklahoma	State	2023-139	08-31-24
Texas	NELAP	T104704215	06-30-24
Texas	TCEQ Water Supply	T104704215	12-28-25
USDA	US Federal Programs	525-23-79-79507	03-20-26

Eurofins Canton 180 S. Van Buren Ave				Cł	nain				1		ecor							eu		Invironm	ent Testing	3
Barberton, OH 44203-3543 phone 330.497.9396 fax 330.497.0772	Regu	latory Pro	ogram: [DW	NPDES	-			Othe		-1								Eurofins Enviro		ting Americ	:a 1
	Project N	lanager: 🏻	Allicon	Kirein	6-00						_							_[COC No:		_]]
Client Contact	Email: AV	renser			ma	Site							ate:						of	CO	Cs	_ 4
Your Company Name here Geosyntec Consultants		21654				Lab	Cont	act:					arrier:						TALS Project #:			
Address 500 W Wilson Bridge Rd Ste 250 City/State/Zip Worth ington, 07 43025		Analysis T DAR DAYS		RKING DAY	/S	41													Sampler: For Lab Use O	niv:		- 3
(xxx) xxx-xxxx Phone		T if different f				1 2													Walk-in Client:	Ē		1
(xxx) xxx-xxxx FAX			2 weeks			2 Z													Lab Sampling:			
Project Name: ATNOS LANAFII ASD		1	l week			≿lg		1	اد													-
Site: AMOS PO#			2 days			Pidu V		0										ŀ	Job / SDG No.:			-
F 0 #		T 1	L day Sample	-	T	San	A		1													-
	Sample	Sample	Туре		#	ered	56	6610B	2													8
Sample Identification	Date	Time	(C=Comp, G=Grab)	Matrix	# of Cont.	Per	90561	26	۲										Sample	Specific N	lotes:	
MW-1801-55-59.8-60.5-20240403	4/3/24	1100	61	Solid	l	Π	X		~													
MW-1802-55-56.3-56.9-20240403	1	1105	G	Solid	1		X	\times	4													1
MW-1801-SH-55-9-56-6-20240403		1110	G	Solid	1		¥	× ?	×												1	
MW-1201-SH-58-0-58-8-20240403		1115	9	Solid	1		×	XX	L													1
MW-1802-54-51-9-52-5-20240403		1120	G	Solid	1	Π	X	XY	c													1
MW-1802-5H-55-3-55-8-20240+03		1125	<u> </u>	Solid	1				F													1
									1					240	0-2024	169 C	hain	of C	ustody			
	-					┝┼┥╴			+	+	_		+	1	++							1 -
									+				+			-						
						T																
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3;	5=NaOH;	6= Other _	1		L																	
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Plea: Comments Section if the lab is to dispose of the sample.	se List any	EPA Waste	e Codes for	r the sam	nple in t		ampl	e Dis	posa	al (A 1	ee may	y be as	ssesse	ed if si	ample	es are	e reta	ined	longer than 1	month)		
Non-Hazard Flammable Skin Irritant	Poisor	В	🗌 Unkn	own			R	eturn to	Clien	nt	\square		sal by La	b	l	Arch	nive fo	r	Months			
Special Instructions/QC Requirements & Comments:										v												
Custody Seals Intact: 🗌 Yes 🗌 No	Custody S	Seal No.:									ę. (°C):	Obs d			Corro	:			Therm ID No.:			_
Relinguished by: Okienute Commander	Company	inter		Date/T 4/5/2	ime: 4 14.		ecèiv	ved by	00	20	2ha	n Di.	$O_{\mathcal{F}}$	Compa	TY-N	16)		Date/Time:	1	123	5
Relinquished by:	Company			Date/T				/ed by			<u>`µı</u>	<u>rig</u> e		Compa		~ ~			Date/Time:	1	1.~~>	
Relinquished by:	Company	•		Date/T	ime:	R	eceiv	ved in	Labo	orator	v by:		C	Compa	iny:				Date/Time:			

Barberton Facility			
clienteosuratec	Site Name		
Conter Received on 4 8 24	L Anened on	\triangleright	~

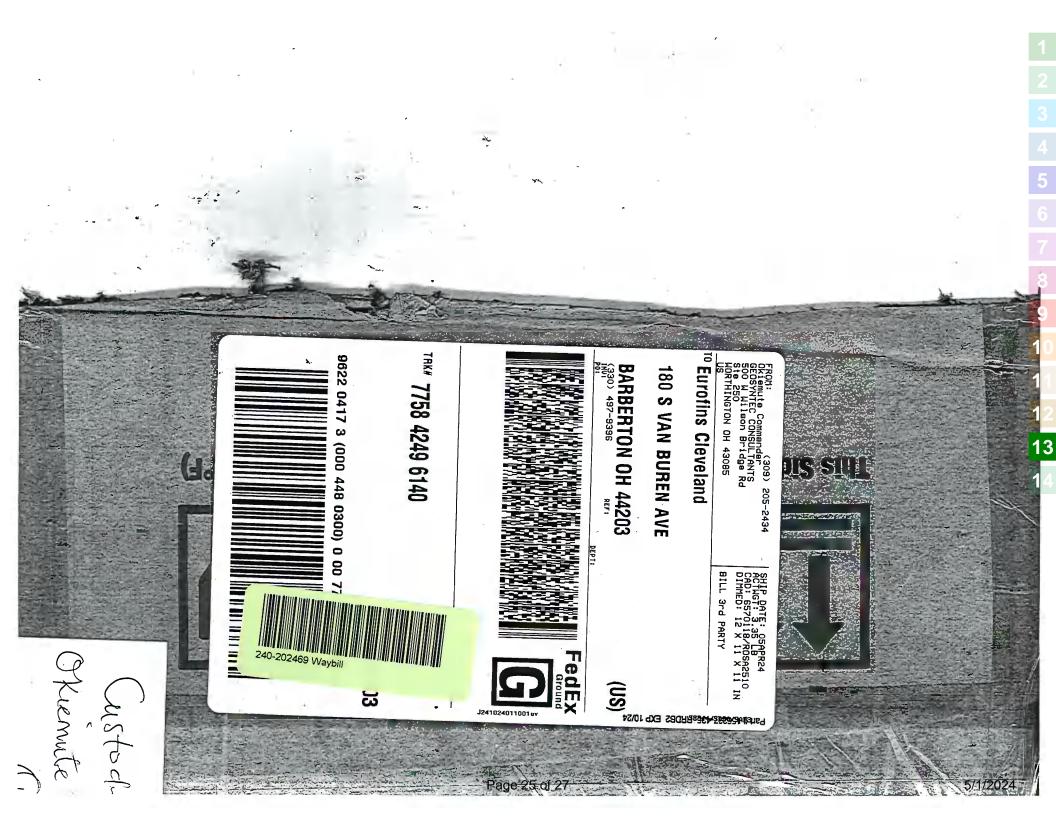
9

18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES additional next page Samples processed by	
	Ω
Contacted PM Date by via Verbal Voice Mail Other	0
16 Was a VOA trup blank present in the cooler(s)? Trip Blank Lot # Yes (No 17 Was a LL Hg or Me Hg trup blank present? Yes (No	يبر بم
Were air bubbles >6 mm in any VOA vials? Larger than this Yes	
13 Were all preserved sample(s) at the correct pH upon receipt? Yes No NA pH Strip Lot# HC329089 14 Were VOAs on the COC?	
ng lahoratory	<u> </u>
11 Sufficient quantity received to perform indicated analyses?	د است. ا
For each sample, does the COC specify preservatives((Y)N), # of containers (Y)N), and Were correct hottle(s) used for the test(s) indicated?	- 0
Did all bottles arrive in good condition (Unbroken)?	× 7
Were the custody papers relinquished & signed in the appropriate place? Yes No Was/were the person(s) who collected the samples clearly identified on the COC? Yes No	6 U
Did custody papers accompany the sample(s)?	1 - A - 1
-Were tamper/custody seals intact and uncompromised?	<u>ب</u>
-Were the seals on the outside of the cooler(s) signed & dated? Yes No NA checked for pH by -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? Yes NO Receiving:	
Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity \sqrt{Yes} No	2.
IR GUN # 20 (CF + 23 °C) Observed Cooler	
Cooler temperature up	Ļ
Foam Plastic Bag	
lox Chent Cooler Box	н
Drop-off]	
1100 FAS Warmont Clear Dron Off Burger Comment	ч Х
Site Name	Q
Eurofins – Cleveland Sample Receipt Form/Narrative Barberton Facility	ter ter

were received after the recommended holding time had expired were received in a broken container

were received with bubble >6 mm in diameter (Notify PM)

Sample(s) Time preserved


20 SAMPLE PRESERVATION

VOA Sample Preservation

Date/Time VOAs Frozen

Preservative(s) added/Lot number(s)

were further preserved in the laboratory

Eurofins Cleveland		•	1					F.	ЦЩ.			;	מ			
180 S van Buren Avenue Barberton OH 44203 Phone: 330-497-9396 Fax: 330-497-0772		Chain of Custody Record	of Cus	tody R	ecord			183				in ea	🐼 eurotins		Environment Testing	sting
Client Information (Sub Contract Lab)	Sampler			Lab PM: Cisnen	Lab PM: Cisneros, Roxanne	nne			Carrier Tracking No(s):	ng No(s):		COC No: 240-18	COC No: 240-182880.1	ļ		
	Phone:	, ,		E-Mai Toxal	E-Mai roxanne.cisneros@et.eurofins	s@et.euro	finsus.com		State of Origin: Ohio			Page: Page 1 of 1	of 1			
Company: Eurofins Environment Testing South Centr					Accreditations Required (See note):	s Required (S	iee nole):					Job #: 240-20	леь #: 240-202469-1			
Address: 4145 Greenbriar Dr	Due Date Requested: 4/22/2024	ë					Analysis		Requested			Presen	Preservation Codes.	ies. M Hexane	20	
City: Stafford	TAT Requested (days):	iys):								_		oω>	i H Jetale		D 1	
State, Zp: TX, 77477					物理論							1 11 0 0	Nitric Acid NaHSO4	P Na204S Q Na2S03 R Na2S203	ន្ល័ន្ល័ ស្ត្	
Phone: 281-240-4200(Tel)	PO #											τωτ	MeOH Amchlar Ascorbic Acid		H2SO4 TSP Dodecahydrate	ite
ßmail:	WO #				(o)				<u> </u>				afer	V MCAA	~ ~ 7	
Project Name: AEP Amos Power Plant ASD	Project # 24033054				SOL						i kanga	K EDTA	>	Y Trizma Z other (s	Trizma other (specify)	
Sile:	SSOW#				ទ្ទ័D (្រុ						14-15 Mai	Other				
			Sample Type	Matrix (Wewster,	Filtered rm MS/N EC/29B ity(CEC)						Number					_
Sample Identification Client ID (Lab ID)	Sample Date	Sample Time	(C≈comp, G≕grab)		Perfe 29B_0						Total		Special Instructions/Note:	Istructio	ns/Note:	
		/傘	# Preservat	Rreservation Code						捕		「「「「」			日本語をある	条 巻
MW-1802-SS-56 3-56 9-20240403 (240-202409-1)	413124	Eastern 11-05							1-	+		3 145				
MW-1801-SH-55,9-56,6-20240403 (240-202469-3)	4/3/24			Solid							24		#		5 C	
MW-1801-SH-58.0-58.8-20240403 (240-202469-4)	4/3/24	11 15 Eastern		Solid	×		\downarrow		=	\downarrow		<u>.</u>	ļ	5		
MW-1802-SH-51.9-52.5-20240403 (240-202469-5)	4/3/24	11.20 Eastern		Solid	×		 							Ņ	C	
MW-1802-SH-55.3-55.8-20240403 (240-202469-6)	4/3/24	11:25 Eastern		Solid	×			! 								
					$\left \right $	\mathbb{F}		-		<u> </u>		: <u>367.09</u> 9				
								╉	<u> </u>							
					F			-	<u> </u>		撤					
Note: Since laboratory accreditations are subject to change. Eurofins Environment Testing North Central, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tasts/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing North Central, LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Environment Testing North Central, LLC attention immediately. If all requested accreditations are current to dale, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing North Central, LLC.	it Testing North Centra love for analysis/tests/ htral, LLC attention imi	II, LLC places the matrix being an mediately. If all	he ownership c lalyzed, the sai requested acc	rf method, analy hpies must be reditations are	yte & accredit shipped back current to dal	ation complia to the Eurofir e, return the :	nce upon our is Environme signed Chain	subcontract Int Testing N of Custody (t laboralorie borth Central attesting to a	s. This sam , LLC labon said complia	ple shipmei alory or othe ance to Euro	nt is forward er instruction rfins Enviror	ed under ch 15 will be pro 17 ment Testin	nain-of-cust ovided. An ng North Ce	ody. If the y changes to intral, LLC.	
Possible Hazard Identification Unconfirmed						Sample Disposal (A	T 78	may be assessed if samples are retained longer than 1 month)	assessed if san Disposal By Lab	samples Lab	are retai	tained long Archive For	er than 1	month) Months	รร	
Deliverable Requested: I II III, IV Other (specify)	Primary Deliverable Rank: 2	tble Rank: 2			Special	Special Instructions/Q		C Requirements:								
Empty Kit Relinquished by		Date:			Time:				Method	Method of Shipment						
ł	1014	B	A		L Rec	Received by:				Date/Time;				Company		
	Date/ (me:			Company .	Rec	Received by	Jum	much			Į . "	4/10/2024 9	9 52	Company		
	Date/Time:	}		Сотрапу	Rec	Received by	1			Date/Time				Сотралу		
Δ Yes Δ No					Coo	Cooler l'emperature(s)	්	and Other Remarks:	rks:					Ver- 06	Ver- 06/08/2021	
															1707/00.	

Ģ

Login Sample Receipt Checklist

Client: Geosyntec Consultants Inc

Login Number: 202469 List Number: 2 Creator: Baker, Jeremiah

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is $c_{6mm} (1/4^{n})$	True	

Job Number: 240-202469-1

List Source: Eurofins Houston

List Creation: 04/10/24 11:38 AM

<6mm (1/4").

ATTACHMENT D

Certification by a Qualified Professional Engineer

CERTIFICATION BY A QUALIFIED PROFESSIONAL ENGINEER

I certify that the above described alternative source demonstration is appropriate for evaluating the groundwater monitoring data for the Amos Plant Landfill CCR management area and that the requirements of 40 CFR 257.94(e)(2) have been met.

Ben Amos Printed Name of Licensed Professional Engineer

<u>Bey Amos</u> Signature

022223

License Number

West Virginia Licensing State

1/14/2025

Date

APPENDIX 4

Not applicable.

APPENDIX 5

Not applicable.