

ALTERNATIVE SOURCE DEMONSTRATION REPORT

2024 2nd SEMIANNUAL EVENT TEXAS STATE CCR RULE

H.W. Pirkey Power Plant
Flue Gas Desulfurization Stackout Area
Registration No. CCR104
Hallsville, Texas

Prepared for

American Electric Power

1 Riverside Plaza Columbus, Ohio 43215-2372

Prepared by

Geosyntec Consultants, Inc. 500 West Wilson Bridge Road, Suite 250 Worthington, Ohio 43085

Project CHA8495B

March 2025

TABLE OF CONTENTS

1.	INT	RODUG	CTION AND SUMMARY	1
	1.1	CCR I	Rule Requirements	1
	1.2	Demo	onstration of Alternative Sources	2
2.	SUN	/MARY	Y OF SITE CONDITIONS	3
۷٠	2.1	3		
	2.2		onal Geology / Site Hydrogeology	
	2.3	_	ndwater Monitoring System and Flow Conditions	
3.	ALTERNATIVE SOURCE DEMONSTRATION			
	3.1	5		
		3.1.1	Beryllium	5
		3.1.2	Cobalt	6
		3.1.3	Mercury	7
		3.1.4	Lead	8
		3.1.5	Conceptual Site Model	9
4.	CON	NCLUS	IONS AND RECOMMENDATIONS	10
5.	REF	ERENC	CES	11
			LIST OF TABLES	
Tab	le 1	Х	K-Ray Diffraction Results	
	ole 2		Summary of Key Analytical Data	
1 aU	10 2	S	outilitiary of ixey Aliarytical Data	

i

Table 3

Solid Phase Metals Data

LIST OF FIGURES

Figure 1	Potentiometric Contours – Uppermost Aquifer September 2024
Figure 2	Beryllium v. Groundwater Elevation
Figure 3	AD-22 Beryllium v. Calcium and Lithium
Figure 4	AD-22 Seasonal Water Table Geology
Figure 5	AD-22 Cobalt v. Groundwater Elevation
Figure 6	AD-22 Cobalt v. Calcium and Lithium
Figure 7	Cobalt and Calcium Concentration Distribution
Figure 8	Calcium Time Series Graph
Figure 9	AD-22 Eh-pH Diagram
Figure 10	AD-33 Boron Time Series
Figure 11	AD-33 Mercury Time Series Graph
Figure 12	AD-33 Eh-pH Diagram

LIST OF ATTACHMENTS

Attachment A Geologic Cross Sections

Attachment B SP-B4 Boring Log

Attachment C AD-22 Boring Log and Well Installation Diagram

Attachment D FGD Sludge Materials Analytical Report

Attachment E AD-33 Soil Samples Analytical Report

Attachment F AD-33 Boring Log and Well Installation Diagram

Attachment G Certification by a Qualified Professional Engineer

LIST OF ACRONYMS

Å angstrom

AEP American Electric Power

ASD alternative source demonstration

bgs below ground surface

CCR coal combustion residuals

EPRI Electric Power Research Institute

FGD flue gas desulfurization

GWPS groundwater protection standard

LCL lower confidence limit mg/L milligrams per liter

SPLP Synthetic Precipitation Leaching Procedure

SSL statistically significant level

SU standard unit

TAC Texas Administrative Code

TCEQ Texas Commission on Environmental Quality
USEPA United States Environmental Protection Agency

XRD X-ray diffraction

1. INTRODUCTION AND SUMMARY

This alternative source demonstration (ASD) report has been prepared to address statistically significant levels (SSLs) for beryllium, cobalt, lead, and mercury in the groundwater monitoring network at the former Flue Gas Desulfurization (FGD) Stackout Area, located at the H.W. Pirkey Plant in Hallsville, Texas, following the second semiannual assessment monitoring event of 2024. The H.W. Pirkey Plant has four coal combustion residuals (CCR) storage units regulated by the Texas Commission on Environmental Quality (TCEQ) under Registration No. CCR104, including the FGD Stackout Area (**Figure 1**). Three of the units, including the former FGD Stackout Area, have been closed by removal, and one unit is still active.

In September 2024, a semiannual assessment monitoring event was conducted at the former FGD Stackout Area in accordance with Texas Administrative Code (TAC) Title 30 §352.951(a) [30 TAC§352.951(a). The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. Confidence intervals were recalculated for Appendix IV parameters at the compliance wells to assess whether these parameters were present at SSLs above the groundwater protection standards (GWPSs). Seasonal patterns were observed for beryllium, cadmium, cobalt, combined radium, fluoride, lithium, and selenium at AD-22 (Geosyntec 2024a). To correctly account for seasonality, confidence intervals for these wells and constituents were constructed using deseasonalized values. An SSL was attributed to a parameter if its lower confidence limit (LCL) exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). The following SSLs were identified at the former Pirkey FGD Stackout Area (Geosyntec 2024a):

- The deseasonalized LCL for beryllium exceeded the GWPS of 0.00400 milligrams per liter (mg/L) at AD-22 (0.00531 mg/L).
- The deseasonalized LCL for cobalt exceeded the GWPS of 0.0600 mg/L at AD-22 (0.0771 mg/L).
- The LCL for lead exceeded the GWPS of 0.000200 mg/L at AD-33 (0.000208 mg/L).
- The LCL for mercury exceeded the GWPS of 0.00200 mg/L at AD-33 (0.00335 mg/L).

No other SSLs were identified.

1.1 CCR Rule Requirements

TCEQ regulations regarding assessment monitoring programs for CCR landfills and surface impoundments provide owners and operators with the option to make an ASD when an SSL is identified:

In making a demonstration under this subsection, the owner or operator must, within 90 days of detecting a statistically significant level above the groundwater protection standard of any constituent listed in Appendix IV adopted by reference in §352.1431 of this title, submit a report prepared and certified in accordance with §352.4 of this title (relating to Engineering and Geoscientific Information) to the executive director, and any local pollution agency with jurisdiction that has requested to be notified, demonstrating that a source other than a CCR unit caused the exceedance or that the exceedance resulted from

error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. (30 TAC §352.951(e))

Pursuant to 30 TAC §352.951(e), Geosyntec Consultants, Inc. (Geosyntec) has prepared this ASD report to document that the SSLs identified for beryllium and cobalt at AD-22 and for mercury and lead at AD-33 are from a source other than the former FGD Stackout Area.

1.2 Demonstration of Alternative Sources

An evaluation was completed to assess possible alternative sources to which each identified SSL could be attributed. Alternative sources were categorized into the following five types, based on methodology provided by the Electric Power Research Institute (EPRI 2017):

- ASD Type I: Sampling Causes
- ASD Type II: Laboratory Causes
- ASD Type III: Statistical Evaluation Causes
- ASD Type IV: Natural Variation
- ASD Type V: Alternative Sources (i.e., anthropogenic sources)

A demonstration was conducted to show that the SSLs identified for beryllium, cobalt, mercury, and lead were based on a Type IV cause and not by a release from the former Pirkey FGD Stackout Area.

2. SUMMARY OF SITE CONDITIONS

The Stackout Area design and construction, regional geology and site hydrogeology, and groundwater monitoring system and flow conditions are described below.

2.1 FGD Stackout Area Design and Construction

The former Pirkey FGD Stackout Area was an approximately 5-acre FGD storage area located due west of the Pirkey Plant (**Figure 1**). It was designed for temporary stockpiling of stabilized FGD material placed on the native clay soil in the unit until it could be hauled to the on-site landfill for disposal (Arcadis 2023). Prior to closure, the natural ground surface elevation in the Stackout Area ranged from approximately 360 to 365 feet above mean sea level. Based on lithological borings advanced in the vicinity, the former FGD Stackout Area is underlain by approximately 20 feet of clay (Arcadis 2023).

A Closure Plan for the FGD Stackout Area was developed in October 2016 and revised in May 2023 (American Electric Power [AEP] 2023a). This document detailed the closure activities which were to take place throughout the closure of the Stackout Area. AEP submitted a certified notification that the receipt of CCR materials had ceased as of September 1, 2023 and the closure activities had been initiated (AEP 2023b). The removal of the remaining CCR material and an additional 12 inches of underlying soil was completed in September 2023, and the removal was certified by Akron Consulting, LLC (Akron Consulting 2023) on November 12, 2023. On March 5, 2024, the Stackout Area was certified closed by removal in accordance with the most recent Closure Plan (AEP 2023a), and notification was placed in the Operating Record (AEP 2024).

2.2 Regional Geology / Site Hydrogeology

The former Stackout Area is positioned on an outcrop of the Eocene Recklaw Formation, which consists predominantly of clay and fine-grained sand (Arcadis 2023). The Recklaw Formation is underlain by the Carrizo Sand, which crops out in the topographically lower southern portion of the plant. The Carrizo Sand consists of fine- to medium-grained sand interbedded with silt and clay.

The very-fine- to fine-grained clayey and silty sand located about 10 to 20 feet below the former Stackout Area, with an average thickness of approximately 20 feet, is considered to be the uppermost aquifer below this CCR unit (Arcadis 2023).

2.3 Groundwater Monitoring System and Flow Conditions

The monitoring well network for the former Stackout Area monitors groundwater within the uppermost aquifer. Geologic cross sections B-B', E-E', and F-F' from Arcadis (2023) show the subsurface structure of the uppermost aquifer (indicated on the figures as clayey silty sand, brown to gray in color) underlying the former Stackout Area. These figures and a cross section location map are provided in **Attachment A**. The geologic cross sections demonstrate lateral continuity of the uppermost aquifer at and around the former Stackout Area.

Groundwater flow direction at and near the former Stackout Area is west-northwesterly (**Figure 1**). Groundwater flow velocities in the uppermost aquifer in the vicinity of the former Stackout Area have been reported as approximately 5 to 35 feet per year. The groundwater monitoring network for the former Stackout Area consists of upgradient monitoring wells AD-12 and AD-13

and downgradient compliance wells AD-7R, AD-22, and AD-33, all of which are screened within the uppermost aquifer (Arcadis 2023). Downgradient well AD-7R was added to the network in December 2023 to replace well AD-7, which was plugged in September 2023 due to plant demolition activities in the area.

3. ALTERNATIVE SOURCE DEMONSTRATION

The ASD evaluation method and proposed alternative source of beryllium and cobalt in AD-22, and mercury and lead in AD-33 are described below.

3.1 Proposed Alternative Source

An initial review of site geochemistry, site historical data, and laboratory quality assurance and quality control data did not identify alternative sources for beryllium, cobalt, and mercury due to Type I (sampling), Type II (laboratory), Type III (statistical evaluation), or Type V (anthropogenic sources) issues. Groundwater sampling, laboratory analysis, and statistical evaluations were generally completed in accordance with 30 TAC §352.931 and the draft TCEQ guidance for groundwater monitoring (TCEQ 2020). As described below, the SSLs for beryllium and cobalt have been attributed to natural variation associated with seasonal effects, which is a Type IV (natural variation) issue. The SSLs for lead and mercury at AD-33 have also been attributed to a Type IV issue, in this case natural variation associated with the lithology of the uppermost aquifer.

3.1.1 Beryllium

An SSL was identified for beryllium at AD-22 using deseasonalized statistics (Geosyntec 2024a). According to the *Unified Guidance*, "seasonal correction should be done both to minimize the chance of mistaking a seasonal effect for evidence of contaminated groundwater, and also to build more powerful background to compliance point tests. Problems can arise, for instance, from measurement variations associated with changing recharge rates during different seasons" (United States Environmental Protection Agency [USEPA] 2009a).

Previous ASDs for the former FGD Stackout Area showed that beryllium concentrations at AD-22 appear to correlate with groundwater elevations (Geosyntec 2019, Geosyntec 2020a, Geosyntec 2020b, Geosyntec 2021a, Geosyntec 2021b, Geosyntec 2022, Geosyntec 2023a, Geosyntec 2024b, Geosyntec 2024c, Geosyntec 2024d). This relationship generally still holds true (**Figure 2**). Beryllium concentrations at AD-22 are generally correlated with seasonal changes in other relatively mobile cationic constituents, including calcium and lithium (**Figure 3**). The correlation between beryllium and both monovalent (lithium) and divalent (calcium) cations suggests that the variability in observed beryllium concentrations is related to cation exchange behavior with clay minerals present in the native soil.

In March of 2020, the geology near AD-22 was relogged at soil boring SP-B4. Clay materials were present in the seasonally saturated zones above the permanent water table (**Figure 4**). The boring log for SP-B4 is provided in **Attachment B**, and the original boring log and well construction diagram for AD-22 is provided in **Attachment C**. At AD-22, the depth to water fluctuated between approximately 3 and 12 feet below ground surface (bgs). Clay was identified from approximately 0.7 feet bgs to 13.3 feet bgs, where it transitioned to a clayey silt (**Attachment B**). Analysis by X-ray diffraction (XRD) confirmed the presence of clay minerals within the seasonal water table and sand within the screened intervals for AD-22, as summarized in **Table 1**. The clay fraction of the uppermost samples collected from within the seasonal water table was further analyzed to identify the type of clays present. Smectite-type clays, which are 2:1-layer high-activity clays with characteristically high cation exchange capacity (compared to low-activity 1:1 clay minerals), make up the majority of the clay minerals present at those intervals.

Sorption and desorption of beryllium from smectite-type clays is well documented (You et al. 1989, Boschi and Willenbring 2016a). Desorption was found to be affected by pH, with 75% of beryllium desorbing from a smectite-type clay as pH decreased from 6.0 standard units (SU) to 3.0 SU (Boschi and Willenbring 2016b). The pH values recorded at AD-22 for samples collected under the detection monitoring program of the Texas CCR Water Management rule (30 TAC 352) ranged from 3.5 to 5.1 SU, suggesting that conditions are favorable for beryllium desorption from smectite-type clays. The presence of these exchangeable clays provides further evidence that the exceedance of beryllium at AD-22 can be attributed to the effects on groundwater quality of seasonal groundwater elevation changes and the resulting cation exchange between groundwater and the exchangeable clay within the seasonal water table.

3.1.2 Cobalt

An SSL was identified for cobalt at AD-22 using deseasonalized statistics (Geosyntec 2024a). As shown in previous ASDs (Geosyntec 2020a, Geosyntec 2020b, Geosyntec 2021a, Geosyntec 2021b, Geosyntec 2022, Geosyntec 2023a, Geosyntec 2024b, Geosyntec 2024c, Geosyntec 2024d), cobalt groundwater concentrations at AD-22 also appear to correlate with seasonal changes in groundwater elevation (**Figure 5**). The cobalt concentrations are well correlated with changes in other cations, including calcium and lithium (**Figure 6**), which suggests that natural variability associated with groundwater-mineral interactions within the seasonally saturated zone is governing aqueous concentrations of multiple parameters, including cobalt.

A sample of the solid FGD sludge material accumulated on the FGD Stackout Area was collected in July 2019 and submitted for laboratory analyses. The solid-phase sample was leached using both Synthetic Precipitation Leaching Procedure (SPLP) analysis (SW-846 Test Method 1312 [USEPA 1994]) and Seven-Day Distilled Water Leachate Test Procedure (7-day leaching procedure) analysis (Appendix 4 of 30 TAC Chapter 335, Subchapter R) to evaluate the material as a potential source of cobalt. No changes to material handling or plant operations occurred prior to ceasing operations that would have altered the anticipated chemical composition since this sample was initially collected. Calcium-cobalt ratios for the leached sludge material and site groundwater are displayed on Figure 7. The concentration ratio between calcium and cobalt is consistently on the order of 100:1 at both upgradient and downgradient locations (Figure 7). Calcium concentrations in groundwater are generally consistent between AD-22 and upgradient well AD-13 (Figure 8); however, leached calcium concentrations from the FGD sludge material are approximately two to three orders of magnitude greater than concentrations in site groundwater. The difference between the ratio of calcium to cobalt in the leached FGD sludge material (about 45,000:1) compared to the ratio for groundwater suggests that dissolved calcium concentrations at AD-22 would be significantly higher if the groundwater at this location were affected by leachate.

Siderite and pyrite, both reduced (ferrous; Fe²⁺) iron-bearing minerals, were identified below the seasonal water table (within the saturated zone) at AD-22 (**Table 1**). Cobalt is known to undergo isomorphic substitution for iron in both siderite and pyrite (Gross 1965, Hitzman et al. 2017, Krupka and Serne 2002). This is due to the similarity of their ionic radii (approximately 1.56 angstrom [Å] for iron and 1.52 Å for cobalt [Clementi and Raimondi 1963]). The proposed substitution of cobalt for iron in the crystal lattice of pyrite has been documented in the most recent ASDs prepared for the Pirkey Plant's East Bottom Ash Pond (Geosyntec 2024e) and West Bottom Ash Pond (Geosyntec 2024f) as well as early ASDs for these units.

Goethite (a ferric [Fe³⁺] iron hydroxide mineral) was identified within the seasonally saturated zone and the screened interval at AD-22 (**Table 1**). Weathering of siderite and pyrite to goethite under oxidizing conditions is a well-understood phenomenon, including in formations in East Texas (Senkayi et al. 1986, Dixon et al. 1982) and is likely occurring within the seasonally saturated zone as evidenced by the presence of goethite. Eh-pH (Pourbaix) diagrams can be used to illustrate the thermodynamically favorable speciation of iron at equilibrium under particular groundwater conditions. An Eh-pH diagram generated using geochemical conditions at AD-22 are favorable for goethite stability (**Figure 9**). During weathering from reduced (pyrite and siderite) to oxidized (goethite) iron minerals, isomorphically substituted cobalt may be released from the mineral structure into groundwater. The mobilization of cobalt, which was released during weathering of siderite or pyrite to goethite in the seasonally saturated zone, may explain the variability in aqueous cobalt concentrations and their correlation with the groundwater elevation as more or less aquifer solids are saturated with groundwater.

3.1.3 Mercury

An SSL was identified for mercury at AD-33 (Geosyntec 2024a). As shown in previous ASDs (Geosyntec 2023b, Geosyntec 2024b, Geosyntec 2024c, Geosyntec 2024d), if aqueous mercury detected at AD-33 was derived from CCR leachate from the FGD Stackout Area, we would anticipate similar trends for the concentrations of other CCR constituents, particularly those known to be more conservative. Boron, a geochemically conservative parameter, has high leachability from FGD material (USEPA 2009b). A release from the FGD Stackout Area would be anticipated to result in higher concentrations of boron and other conservative parameters, such as sulfate; however, the observed boron and sulfate concentrations at AD-33 do not display increasing trends (Figure 10). Two samples of FGD sludge material from the Stackout Area were collected in 2019 for characterization to assess if the FGD material was a likely source of mercury to groundwater at AD-33. As summarized in Table 2, both the historical average and the most recent boron groundwater concentrations at AD-33 are two orders of magnitude lower than the boron concentrations in leachate from both Synthetic Precipitation Leaching Procedure (SPLP) analysis (SW-846 Test Method 1312 [USEPA 1994]) and Seven-Day Distilled Water Leachate Test Procedure (7-day leaching procedure) analysis (Appendix 4 of 30 TAC Chapter 335, Subchapter R) of FGD sludge (Attachment D). The lack of increasing boron in AD-33 groundwater despite the elevated boron concentrations in leached FGD sludge suggests that groundwater at AD-33 is not impacted by the unit.

The FGD sludge material contained detectable levels of total mercury at concentrations greater than those reported for two samples of aquifer solids collected from a soil boring advanced adjacent to AD-33 (**Table 3**, **Attachment E**). While the concentration of mercury in the aquifer solids is lower than the total mercury concentration in FGD sludge material, the low mobility of mercury from FGD as demonstrated in numerous laboratory studies suggests the FGD sludge is not a likely source of mercury in groundwater (USEPA 2009b, Hao et al. 2016). As shown in **Figure 11**, previous mercury groundwater concentrations at AD-33 were consistently equal or greater than the mercury concentrations of leachate from SPLP analysis of FGD sludge material (**Table 2**, **Attachment D**). Mercury concentrations in leachate from 7-day leaching procedure analysis of FGD sludge material were below the laboratory detection limit of 0.005 mg/L. These results agree with previous studies that have documented that leached mercury concentrations are not correlated with total solid phase mercury in FGD samples (USEPA 2009b).

Detectable concentrations of mercury in aquifer solids at AD-33 present an alternative source of mercury in groundwater (**Table 3**). Mercury is naturally occurring in soils and known to undergo isomorphic substitution for iron in crystalline iron minerals such as pyrite (Manceau et. al 2018). Analysis by XRD of material from the AD-33 soil boring showed detectable levels of pyrite below the seasonal water table (**Table 1**).

Reported differences between the total and dissolved mercury groundwater concentrations provides evidence that mercury is associated with colloidal material native from the aquifer. Dissolved concentrations of mercury at AD-33 are consistently lower than the reported total values (**Figure 11**), with most dissolved concentrations detected below the MCL of 2 µg/L. The method for measuring dissolved mercury in groundwater (EPA Method 245.7 [USEPA 2005]) involves filtering the sample through a 0.45 µm filter prior to analysis, which would remove colloid-sized particles prior to preservation. The inclusion of suspended particles (including colloids) in totals samples is likely to result in an overestimation of metals due to the mobilization of metals from the colloidal or solid to aqueous phase following acid preservation during sample collection. Thus, the lower dissolved mercury concentrations compared to total aqueous mercury suggests that mercury is associated with colloidal material from the aquifer and the SSL of mercury at AD-33 is not due to a release from the former FGD Stackout Area.

3.1.4 Lead

An SSL for lead was identified at MW-33 (Geosyntec 2024a). Analysis of the 2019 FGD sludge samples (discussed in Section 3.1.3) suggests that the FGD unit is not the source of the lead in groundwater. As previously discussed in Section 3.1.3, aqueous boron concentrations do not indicate that AD-33 groundwater is impacted by FGD sludge material. The historical average and the most recent boron groundwater concentrations at AD-33 are both two orders of magnitude lower than boron concentrations in leachate from both SPLP analysis and 7-day leaching procedure analysis of FGD sludge (**Table 2, Attachment D**). The lack of boron impacts to AD-33 groundwater as would be expected from interaction with leached FGD sludge suggests groundwater at AD-33 is not impacted by the unit.

Two sludge samples leached using SPLP analysis and 7-day leaching procedure analysis both did not contain lead concentrations above the method detection limit (**Table 2**, **Attachment D**), indicating that FGD sludge leachate is not a likely source of elevated lead in downgradient groundwater due to the low mobility of lead from the sludge material. These results agree with previous studies that have documented that leached lead concentrations are not correlated with total solid phase lead in FGD samples, with limited detections of lead in leachate at pH values between 4 and 12 SU (USEPA 2009b).

Lead was detected in two aquifer solids collected from a soil boring advanced adjacent to AD-33 (**Table 3**, **Attachment E**). Like cobalt and mercury, lead is also known to undergo isomorphic substitution for the iron in pyrite or siderite (Gross 1965, Hitzman et al. 2017, Krupka and Serne 2002, Abraitis et al. 2004). While solid-phase lead was detected in FGD sludge samples at concentrations greater than those detected in aquifer solids, analysis of FGD sludge leaching indicates that this lead is not readily mobilized to the aqueous phase. Detectable concentrations of lead in aquifer soils at AD-33 present an alternative source of mercury in groundwater.

3.1.5 Conceptual Site Model

The seasonal fluctuations in beryllium and cobalt concentrations at AD-22 can be attributed to variations in the amount of the aquifer solids that are in contact with groundwater as the water table elevation changes. When the water table is higher, more clay material is in contact with groundwater, allowing greater desorption of cations (including beryllium) from the cation exchange sites on the clay. In the case of cobalt, cobalt-bearing minerals are in contact with groundwater as the water table rises, allowing for the release of cobalt from mineral phases where it has isomorphically substituted for iron. Thus, the observed SSLs were attributed to natural variation associated with seasonal fluctuation of beryllium and cobalt concentrations in groundwater as the amount of aquifer solids that are saturated increases.

Seasonal variations in mercury and lead groundwater concentrations were not observed. The observed mercury concentrations in groundwater at AD-33 were attributed to interactions with mercury-bearing colloidal solids within the unfiltered samples. The observed lead concentrations at AD-33 were attributed to interactions of groundwater with lead-bearing aquifer solids.

4. CONCLUSIONS AND RECOMMENDATIONS

The preceding information serves as the ASD prepared in accordance with 30 TAC §352.951(e) and supports the position that the SSLs of beryllium and cobalt at AD-22 and mercury and lead at AD-33 identified during the second semiannual assessment monitoring event of 2024 were not due to a release from the former FGD Stackout Area. The identified beryllium and cobalt SSLs were, instead, attributed to natural variation related to desorption of beryllium and seasonal dissolution of cobalt-bearing minerals comprising the aquifer solids. The mercury SSL was attributed to natural variation associated with the colloidal solids in the groundwater. The lead SSL was attributed to natural variation associated with groundwater-aquifer solid interactions. Therefore, no further action is warranted. Certification of this ASD by a qualified professional engineer is provided in **Attachment G.**

5. REFERENCES

- Abraitis, P.K., Pattrick, R.A.D., and Vaughan, D.J. 2004. Variations in the compositional, textural, and electrical properties of natural pyrite: a review. *International Journal of Mineral Processing*. v.74, Issues 1-4, p.41-59.
- Akron Consulting, LLC. 2023. FGD Stackout Area CCR Removal Certification. November.
- AEP. 2023a. Closure Plan. FGD Stackout Area. May.
- AEP. 2023b. Notification of Intent to Close a CCR Unit. Pirkey Power Plant, FGD Stackout Area. September.
- AEP. 2024. Closure Completion Notification for Closure by Removal. Henry W. Pirkey Plant, FGD Stackout Area. March.
- Arcadis. 2023. Stack Out Area CCR Groundwater Monitoring Well Network Evaluation (Updated December 2023) H.W. Pirkey Power Plant. December.
- Boschi, V. and J.K. Willenbring. 2016a. "The Effect of pH, Organic Ligand Chemistry, and Mineralogy on the Sorption of Beryllium over Time." *Environmental Chemistry* 13(4): 711–722.
- Boschi, V. and J.K. Willenbring. 2016b. "Beryllium Desorption from Minerals and Organic Ligands over Time." *Chemical Geology* 439: 52–58.
- Clementi, E. and D. L. Raimondi. 1963. "Atomic Screening Constants from SCF Functions." *J. Chem. Phys.* 38(11): 2686–2689.
- Dixon, J.B., L.R. Hossner, A.L. Senkayi, and K. Egashira. 1982. "Mineralogical Properties of Lignite Overburden as They Relate to Mine Spoil Reclamation." In *Acid Sulfate Weathering*, edited by J.A. Kittrick, D.S. Fanning, and L.R. Hossner, 169–191. Soil Science Society of America Special Publications.
- EPRI. 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites. 3002010920. Electric Power Research Institute. October.
- Geosyntec. 2019. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Power Plant. Flue Gas Desulfurization (FGD) Stackout Area. Hallsville, Texas. Geosyntec Consultants. October.
- Geosyntec. 2020a. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Power Plant. Flue Gas Desulfurization (FGD) Stackout Area. Hallsville, Texas. Geosyntec Consultants. April.
- Geosyntec. 2020b. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Power Plant. Flue Gas Desulfurization (FGD) Stackout Area. Hallsville, Texas. Geosyntec Consultants. December.
- Geosyntec. 2021a. Alternative Source Demonstration Report Federal CCR Rule. H.W. Pirkey Power Plant. Flue Gas Desulfurization (FGD) Stackout Area. Hallsville, Texas. Geosyntec Consultants. May.

- Geosyntec. 2021b. Alternative Source Demonstration Report Texas State CCR Rule. H.W. Pirkey Plant, Stackout Area. Hallsville, Texas. Geosyntec Consultants. December.
- Geosyntec. 2022. Alternative Source Demonstration Report Texas CCR Rule. H.W. Pirkey Plant. Flue Gas Desulfurization (FGD) Stackout Area. Hallsville, Texas. Geosyntec Consultants. June.
- Geosyntec. 2023a. Alternative Source Demonstration Report Texas CCR Rule. H.W. Pirkey Plant. Flue Gas Desulfurization (FGD) Stackout Area. Hallsville, Texas. Geosyntec Consultants. January.
- Geosyntec 2023b. Alternative Source Demonstration Report Texas CCR Rule. H.W. Pirkey Plant. Flue Gas Desulfurization (FGD) Stackout Area. Hallsville, Texas. Geosyntec Consultants. June.
- Geosyntec. 2023c. Alternative Source Demonstration Report Texas CCR Rule. H.W. Pirkey Plant. East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. October.
- Geosyntec. 2024a. Statistical Analysis Summary 2024 2nd Semiannual Event, Flue Gas Desulfurization (FGD) Stackout Area –. H.W. Pirkey Plant. Hallsville, Texas. Geosyntec Consultants. December.
- Geosyntec. 2024b. Alternative Source Demonstration Report 1st Semiannual Event 2023, Texas CCR Rule. H.W. Pirkey Plant. Flue Gas Desulfurization (FGD) Stackout Area. Hallsville, Texas. Geosyntec Consultants. January.
- Geosyntec. 2024c. Alternative Source Demonstration Report 2nd Semiannual Event 2023, Texas CCR Rule. H.W. Pirkey Plant. Flue Gas Desulfurization (FGD) Stackout Area. Hallsville, Texas. Geosyntec Consultants. February.
- Geosyntec. 2024d. Alternative Source Demonstration Report 2024 1st Semiannual Event 2024, Texas CCR Rule. H.W. Pirkey Plant. Flue Gas Desulfurization (FGD) Stackout Area. Hallsville, Texas. Geosyntec Consultants. December.
- Geosyntec. 2024e. Alternative Source Demonstration Report Texas CCR Rule. H.W. Pirkey Plant. East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. December.
- Geosyntec. 2024f. Alternative Source Demonstration Report Texas CCR Rule. H.W. Pirkey Plant. West Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. December.
- Gross, G.A. 1965. Geology of Iron Deposits in Canada, Volume 1: General Geology and Evaluation of Iron Deposits. Economic Geology Report No. 22. Geological Survey of Canada.
- Hao, Y., S. Wu, Y. Pan, Q. Li, J. Zhou, Y. Xu, and G. Qian. 2016. "Characterization and Leaching Toxicities of Mercury in Flue Gas Desulfurization Gypsum from Coal-Fired Power Plants in China." Fuel 177: 157-163. August.
- Hitzman, M.W., A.A. Bookstrom, J.F. Slack, and M.L. Zientek. 2017. Cobalt Styles of Deposits and the Search for Primary Deposits. United States Geological Survey Open File Report 2017-1155.

- Krupka, K.M. and R.J. Serne. 2002. Geochemical Factors Affecting the Behavior of Antimony, Cobalt, Europium, Technetium, and Uranium in Vadose Sediments. Pacific Northwest National Lab, PNNL-14126. December.
- Manceau, A., M. Merkulova, M. Murdzek, V. Batanova, R. Baran, P. Glatzel, B.K. Saikia, D. Paktunc, and L. Lefticariu. 2018. "Chemical Forms of Mercury in Pyrite: Implications for Predicting Mercury Releases in Acid Mine Drainage Settings." *Environmental Science & Technology* 52(18): 10286-10296.
- Senkayi, A.L., J.B. Dixon, and L.R. Hossner. 1986. "Todorokite, Goethite, and Hematite: Alteration Products of Siderite in East Texas Lignite Overburden." *Soil Science* 142(1): 36–43.
- TCEQ. 2020. Coal Combustion Residuals Groundwater Monitoring and Corrective Action Draft Technical Guideline No. 32. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action. Texas Commission on Environmental Quality, Waste Permits Division. May.
- USEPA. 1994. Method 1312 Synthetic Precipitation Leaching Procedure, Revision 0. Update to the Third Edition of the Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. United States Environmental Protection Agency. Publication SW-846. September.
- USEPA. 2005. Method 245.7 Mercury in Water by Cold Vapor Atomic Fluorescence Spectrometry, Revision 2.0. United States Environmental Protection Agency. EPA 821-R-05-001. February
- USEPA. 2009a. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance. United States Environmental Protection Agency. USEPA 530/R-09/007. March.
- USEPA. 2009b. Characterization of Coal Combustion Residues from Electric Utilities Leaching and Characterization Data. United States Environmental Protection Agency. USEPA 600/R-09/151. December.
- You, C.-F., T. Lee, and Y.-H. Li. 1989. "The Partition of Be between Soil and Water." *Chemical Geology* 77(2): 105–118.

TABLES

Table 1. X-Ray Diffraction Results Alternative Source Demonstration Report FGD Stackout Area, H. W. Pirkey Plant

Boring Location	SP-B4 AD-22			
Associated Well				
Depth (ft bgs)	6-8	18-20	28-30	
Sample Location	Within Seasonal Water Table	Below Seasonal Water Table	Within Screened Interval	
Quartz	28	47.5	95	
Plagioclase Feldspar	< 0.5	< 0.5	1	
K-Feldspar	1	0.5	-	
Goethite	1	-	2	
Hematite	-	-	-	
Chlorite	1	-	-	
Siderite		10	-	
Pyrite	-	2	-	
Clays	*	40	2	
Kaolinite	13			
Illite/Mica	2			
Smectite	43			
Mixed-Layered Illite/Smectite	11			

- 1. Mineral constituents are reported in percentage.
- 2. Values shown as less than indicate the mineral constituent is present but below the quantification limit.
- *: The clay fraction at SP-B4-6-8 was further analyzed to characterize the types of clays present, as listed below.
- -: not detected

ft bgs: feet below ground surface FGD: Flue gas desulfurization

Table 2. Summary of Key Analytical Data Alternative Source Demonstration Report FGD Stackout Area, H.W. Pirkey Plant

Sample	Туре	Mercury (µg/L)	Lead (µg/L)	Boron (mg/L)
Pirkey Sludge FGD	SPLP	2.27	<5.0	22.3
Flikey Sludge FOD	7-Day Leaching Procedure	< 5.0	<5.0	8.44
Pirkey Sludge FGD 2	SPLP	< 0.025	<5.0	26.7
Firkey Studge FOD 2	7-Day Leaching Procedure	< 5.0	<5.0	16.4
AD-33	Historical Average	5.36	170	0.124
AD-33	Sep-24	6.5	280	0.122

- 1. Average values were calculated using truncated mercury, lead, and boron data (March 2020 September 2024).
- 2. Pirkey Sludge FGD samples were collected on July 17, 2019.
- 3. Non-detect values reported as less than (<) the detection limit.
- 4. AD-33 lead historical average was calculated assuming a value of 0 μ g/L for all samples for which lead was not detected above the method detection limit.

CCR: coal combustion residuals

FGD: Flue Gas Desulfurization

mg/L: milligrams per liter

SPLP: Synthetic Precipitation Leaching Procedure

μg/L: micrograms per liter

Table 3. Solid Phase Metals Data Alternative Source Demonstration Report FGD Stackout Area, H.W. Pirkey Plant

Location ID	Date Sampled	Sample Depth (ft bgs)	Mercury (mg/kg)	Lead (mg/kg)
AD-33	4/30/2018	11	0.0026	3.20
AD-33		21	0.0038	1.50
Pirkey Sludge FGD	7/17/2019	N/A	0.653	5.31
Pirkey Sludge FGD 2	7/17/2019	N/A	0.606	5.78

Notes:

1. For AD-33 locations, samples were collected from additional boreholes advanced in the intermediate area of AD-33. Samples were not collected from the cuttings of the borings advanced for well .

FGD: Flue Gas Desulfurization ft bgs: feet below ground surface mg/kg: milligram per kilogram

N/A: not applicable

FIGURES

Groundwater Monitoring Wells

- Out of Network
- East Bottom Ash Pond (EBAP)
- ♦ West Bottom Ash Pond (WBAP)
- EBAP and WBAP
- Landfill

- All CCR Unit Networks
- Piezometer

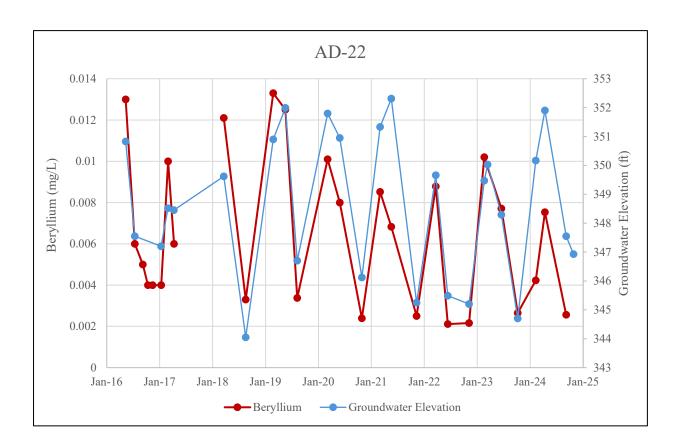
- Flue Gas Desulfurization Stackout Area (FGDSA)

 Approximate Groundwater Flow Direction
- 1. Monitoring well coordinates and water levels (collected on September 16, 17, and 18, 2024) provided by AEP.
 2. Site features based on information available in coal combustion residuals (CCR) Groundwater Monitoring Well Network Evaluation Update (Arcadis 2022) provided by AEP.
- 3. Groundwater elevation units are feet above mean sea level (ft msl).

- Groundwater Elevation Contour
 Groundwater Elevation Contour
 Groundwater Elevation Contour (Inferred)
 Approximate Groundwater Flow Direction
 Wells AD-29 and W-3 were not gauged during the September 2024 event.
 AD-7R replaced AD-7, which was abandoned on September 12, 2023.
 Wells shaded in gray were not used for contouring.
 Well AD-34 had artesian characteristics during this event and was not used for contouring.

 - 9. Removal of CCR plus one foot of material for the EBAP was completed on July 20, 2023, for the East Pond.

 10. Removal of CCR plus one foot of material for the EBAP was completed on July 20, 2023, for the East Pond.
 - 11. Removal of CCR plus one foot of material for the FGDSA was completed on September 18, 2023.
 - 12. Map is updated to incorporate Landfill survey data collected on May 1, 2024. 13. Aerial imagery provided by ESRI, dated September 19, 2023.


Beth am Geors January 10, 2025 Geosyntec Consultants, Inc. Texas Firm Registration No. 1182 SIONAL EN

Potentiometric Contours: Uppermost Aquifer September 2024

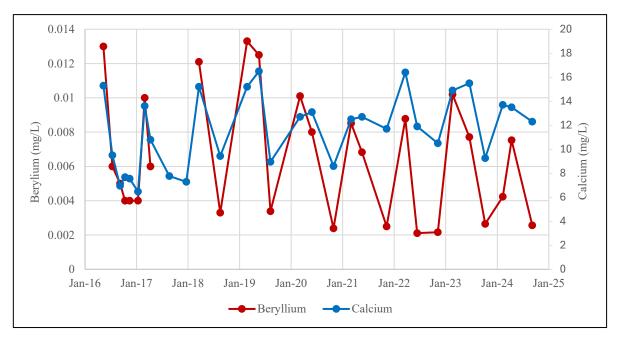
AEP Pirkey Power Plant Hallsville, Texas

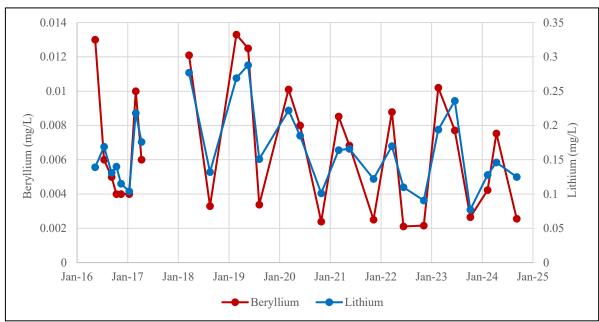
Geosyntec[▶] Figure consultants Columbus, Ohio 2024/12/24

1

- 1. Beryllium concentrations are shown in milligrams per liter (mg/L).
- 2. Water level is shown as groundwater elevation in feet above mean sea level (ft amsl).
- 3. The gap in beryllium data represents the time period in which detection monitoring took place and samples were not analyzed for beryllium.

FGD: Flue Gas Desulfurization


Beryllium v. Groundwater Elevation Pirkey FGD Stackout Pad

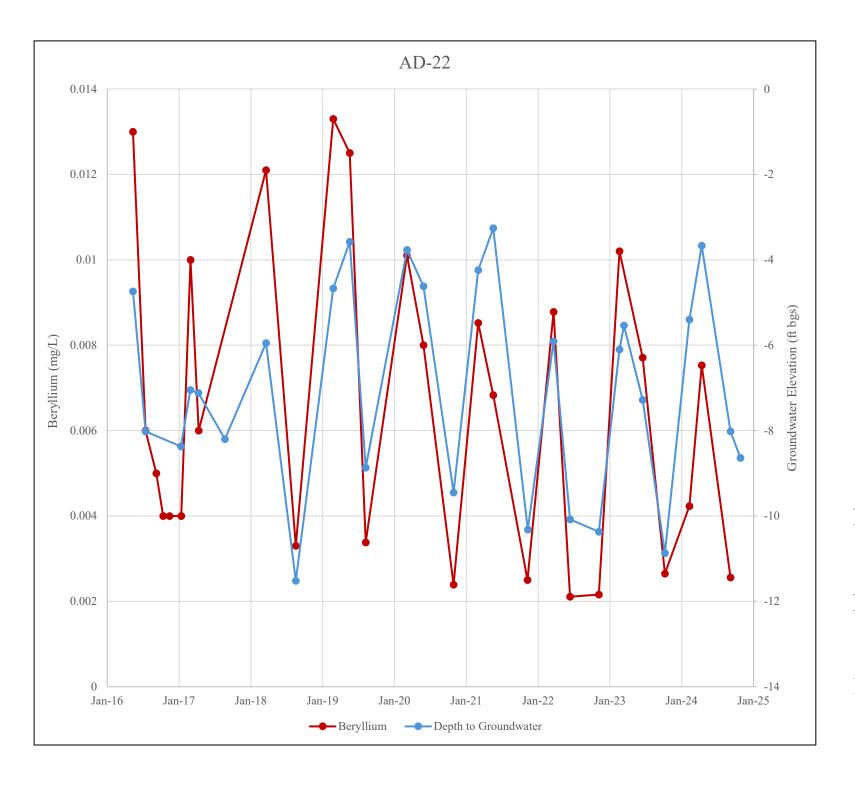

Geosyntec consultants AMERICAN ELECTRIC POWER

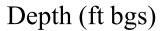
Figure

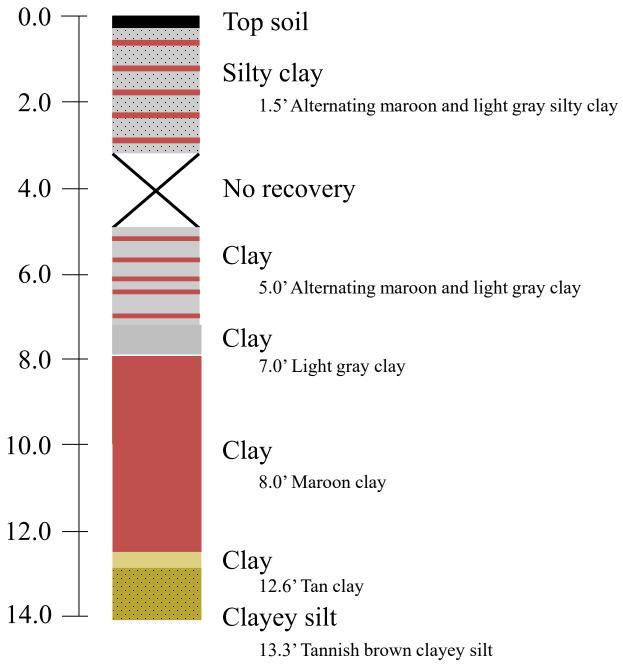
2

Columbus, Ohio March 2025

- 1. Beryllium, calcium, and lithium concentrations are shown in milligrams per liter (mg/L).
- 2. The gaps in beryllium and lithium data represent the time period in which detection monitoring took place and samples were not analyzed for beryllium and lithium.


FGD: flue gas desulfurization


AD-22 Beryllium v. Calcium and Lithium Pirkey FGD Stackout Pad


Geosyntec consultants Columbus, Ohio March 2025

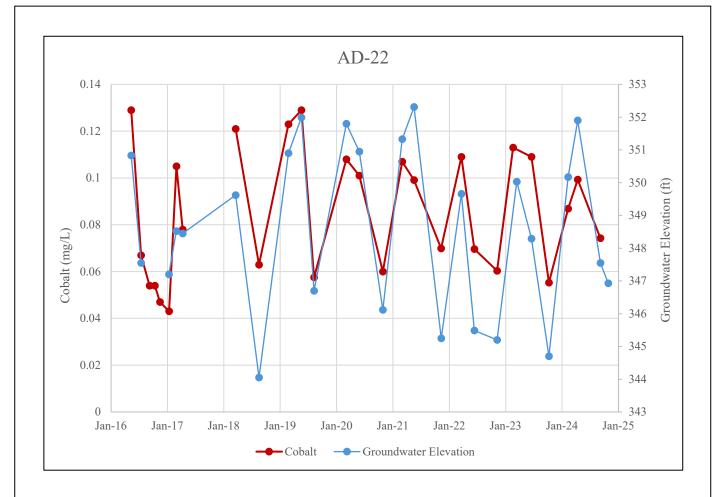
Figure

3

- 1. A sample was collected for analysis of mineralogy from 6–8 ft bgs.
- 2. This illustration represents the log for boring SP-B4. The full boring log is available in Attachment B.
- 3. AD-22 is screened at the interval of 10–30 ft bgs.
- FGD: Flue Gas Desulfurization

ft bgs: feet below ground surface mg/L: milligrams per liter

AD-22 Seasonal Water Table Geology


H. W. Pirkey Plant - FGD Stackout Pad

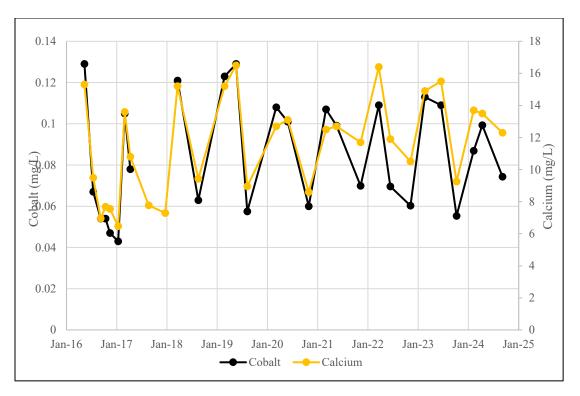
Figure

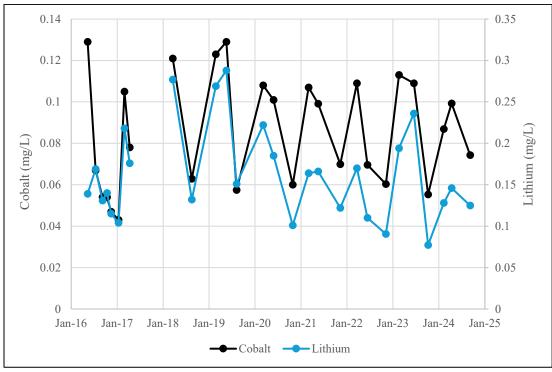
Columbus, OH

March 2025

- 1. Cobalt concentrations are shown in milligrams per liter (mg/L).
- 2. Water level is shown as groundwater elevation in feet above mean sea level (ft amsl).
- 3. The gap in cobalt data represents the time period in which detection monitoring took place and samples were not analyzed for cobalt.

FGD: Flue Gas Desulfurization

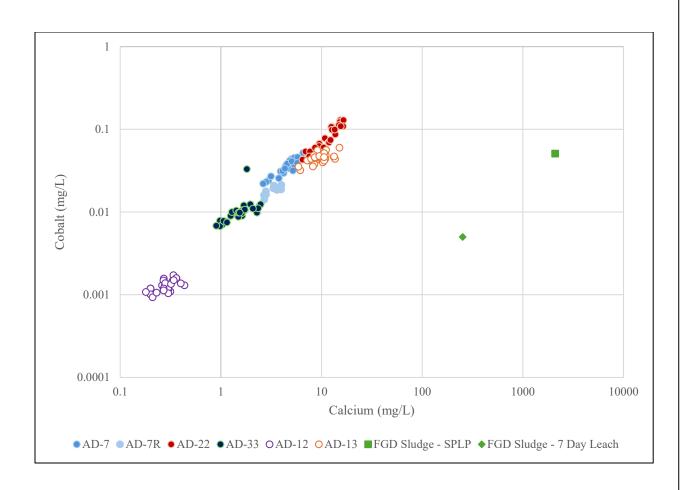

AD-22 Cobalt v. Groundwater Elevation Pirkey FGD Stackout Pad


Geosyntec consultants AMERICAN ELECTRIC POWER

Figure

5

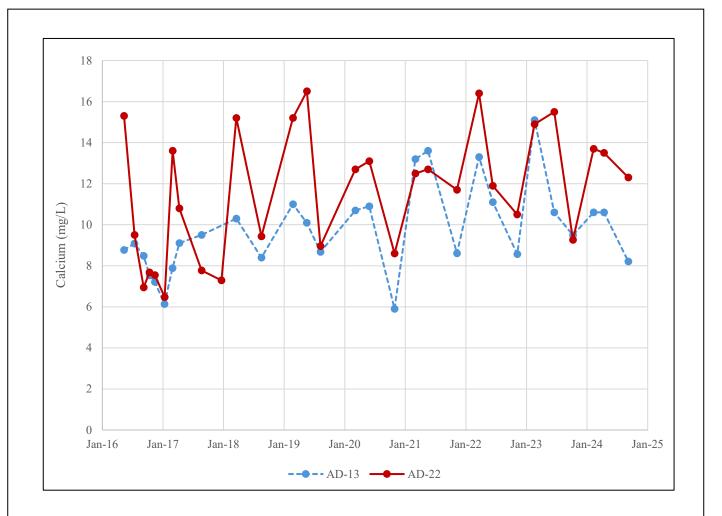
Columbus, Ohio March 2025


- 1. Cobalt, calcium, and lithium concentrations are shown in milligrams per liter (mg/L).
- 2. The gaps in cobalt and lithium data represent the time period during which detection monitoring took place and samples were not analyzed for cobalt and lithium.

FGD: Flue Gas Desulfurization

AD-22 Cobalt v. Calcium and Lithium

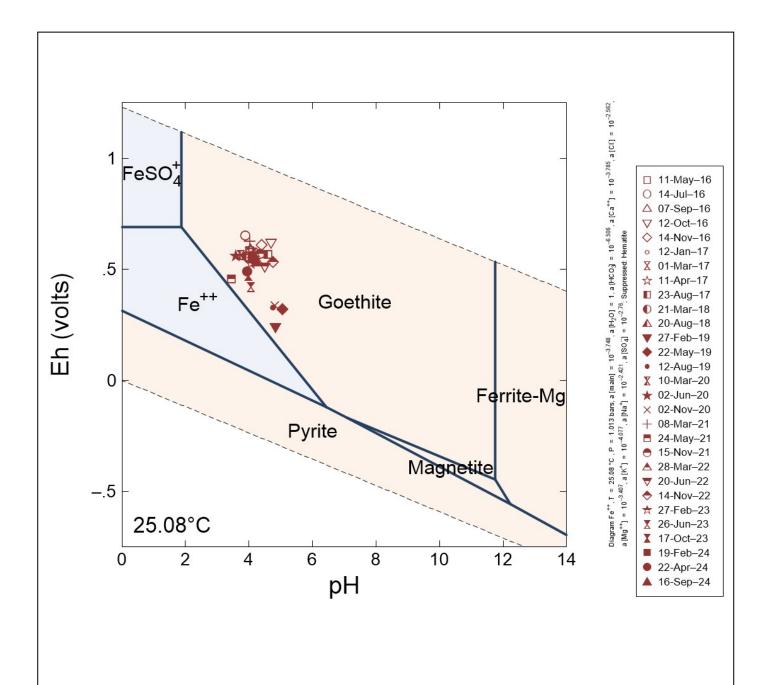
Pirkey FGD Stackout Pad



- 1. Cobalt and calcium concentrations are shown in milligrams per liter (mg/L).
- 2. Upgradient wells are shown with hollow circles.
- 3. 'FGD Sludge-SPLP' and 'FGD Sludge 7 Day Leach' present the leached concentrations of cobalt and calcium using the Synthetic Precipitation Leaching Procedure (SPLP) (SW-846 Test Method 1312) and the 7-Day Distilled Water Leachate Test Procedure (30 Texas Administration Code 335.521 Appendix 4), respectively. FGD: Flue Gas Desulfurization

Cobalt and Calcium Concentration Distribution Pirkey FGD Stackout Pad

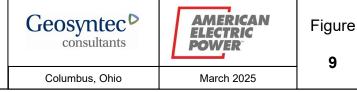
Geosyntec consultants	AMERICAN ELECTRIC POWER	Figure 7
Columbus, Ohio	March 2025	

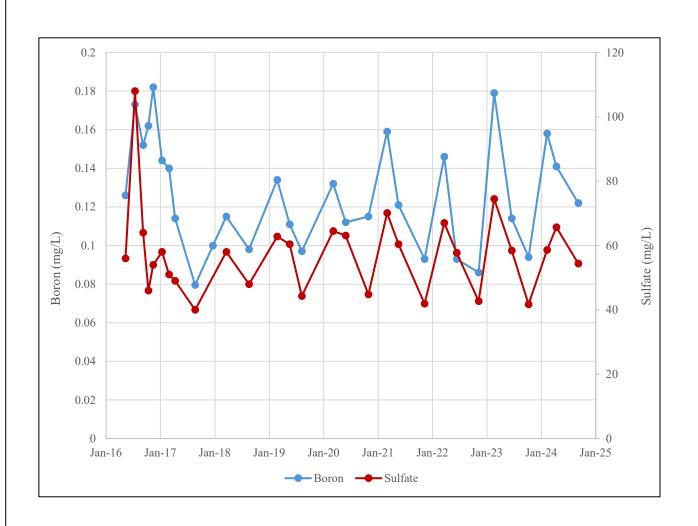

- 1. Calcium concentrations are shown in milligrams per liter (mg/L).
- 2. Upgradient monitoring well AD-13 is shown with a dashed line.

FGD: Flue Gas Desulfurization

Calcium Time Series Graph Pirkey FGD Stackout Pad

8

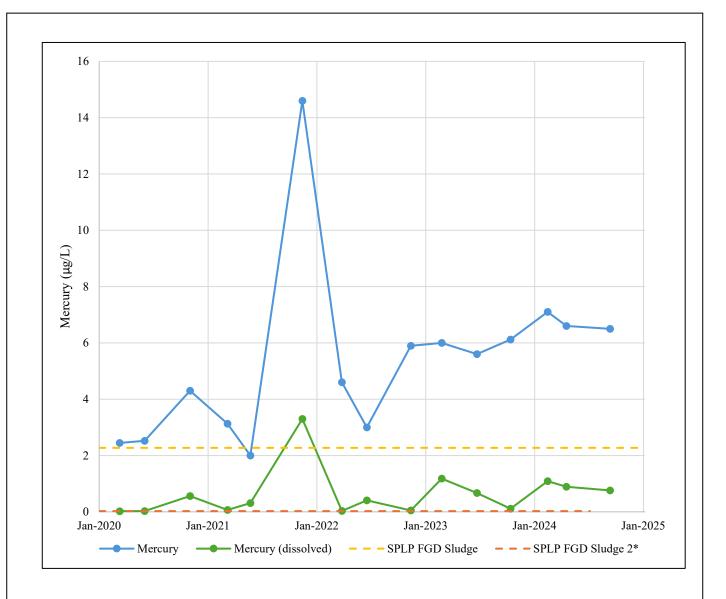




Notes: Groundwater concentrations of major cations and anions at AD-22 from the September 2024 sampling event were used to establish baseline conditions for the diagram. Eh and pH values for sampling dates at AD-22 are shown on the diagram.

AD-22 Eh-pH Diagram

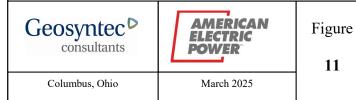
Pirkey FGD Stackout Pad

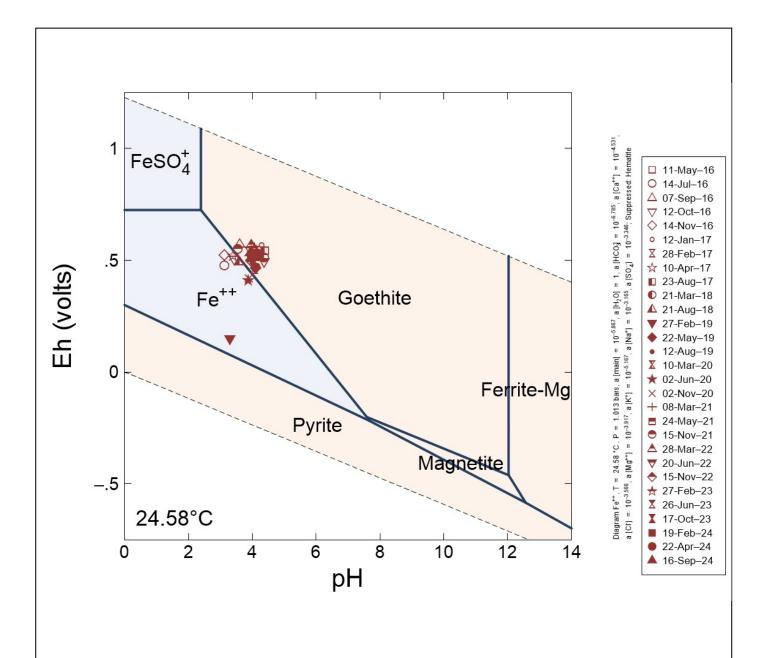


1. Boron and sulfate concentrations are shown in milligrams per liter (mg/L).

FGD: Flue Gas Desulfurization

AD-33 Boron and Sulfate Time Series Graph Pirkey FGD Stackout Pad


Geosyntec consultants	AMERICAN ELECTRIC POWER	Figure
Columbus, Ohio	March 2025	



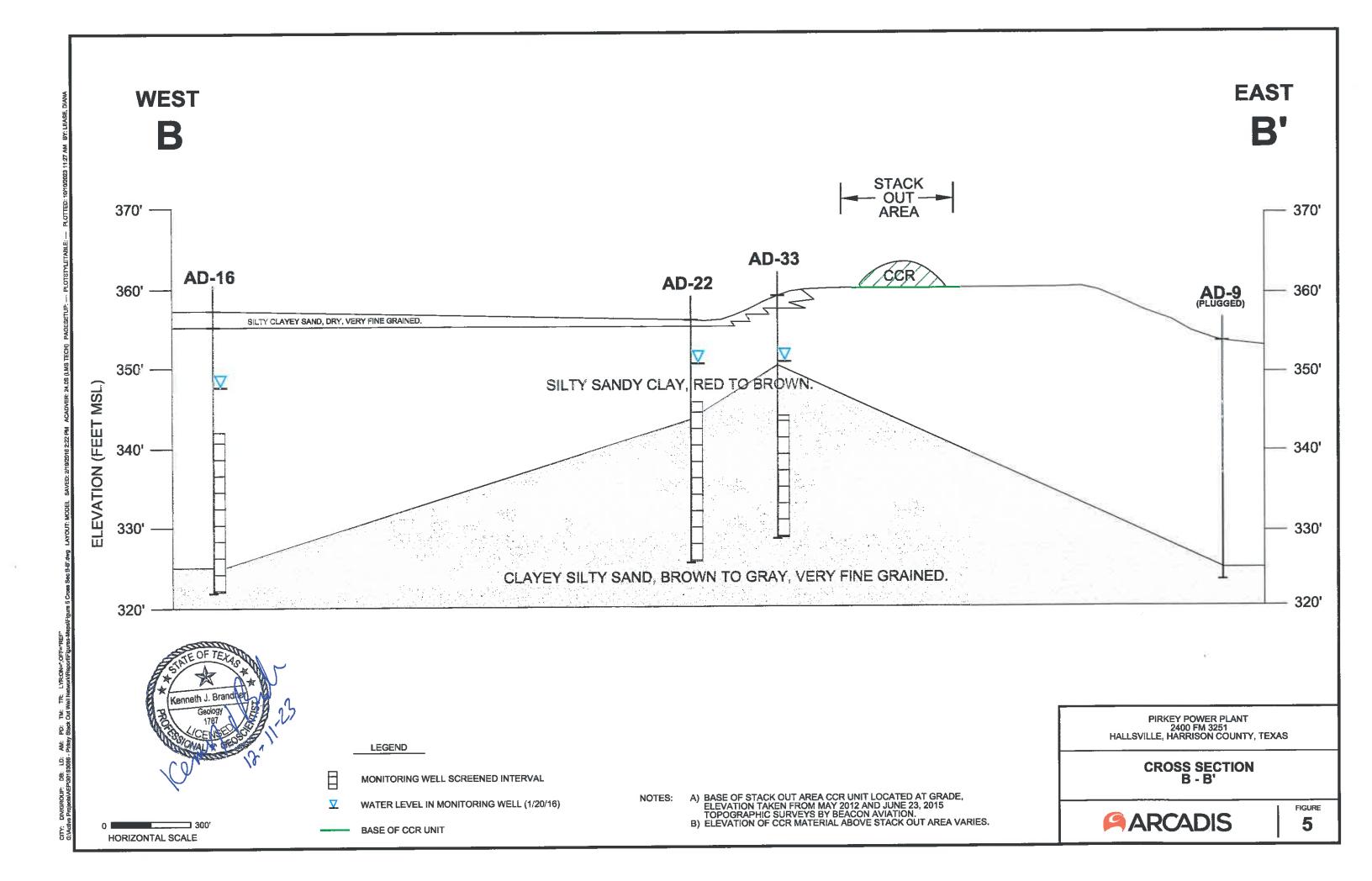
- 1. Mercury concentrations are shown in micrograms per liter ($\mu g/L$).
- 2. FGD sludge samples collected on 7/17/2019.
- 3. 7-day leaching procedure results were not shown due to non-detects.
- *: Non-detect presented as the reporting limit FGD: Flue Gas Desulfurization
- SPLP: Synthetic Precipitation Leaching Procedure

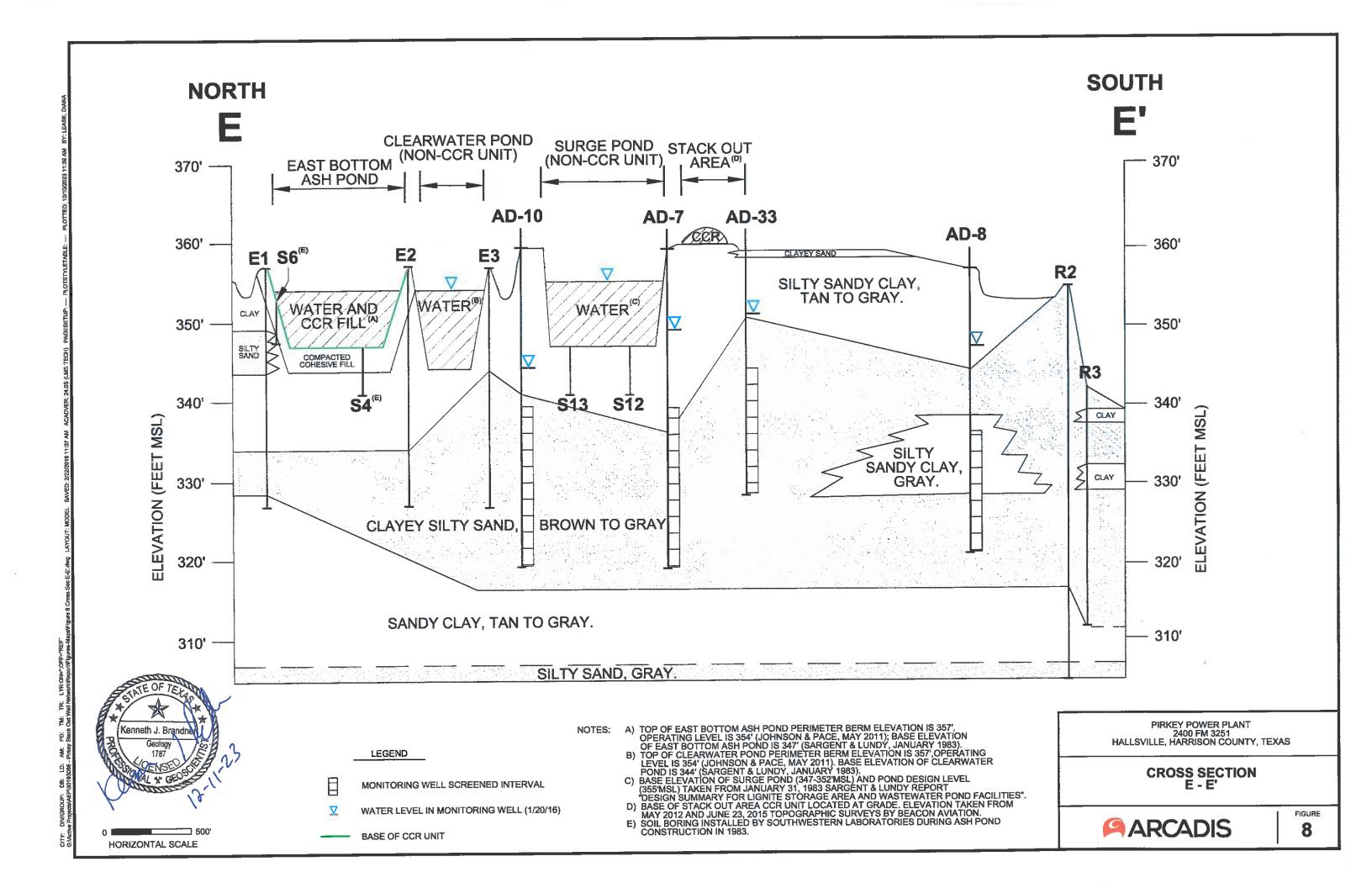
AD-33 Mercury Time Series Graph

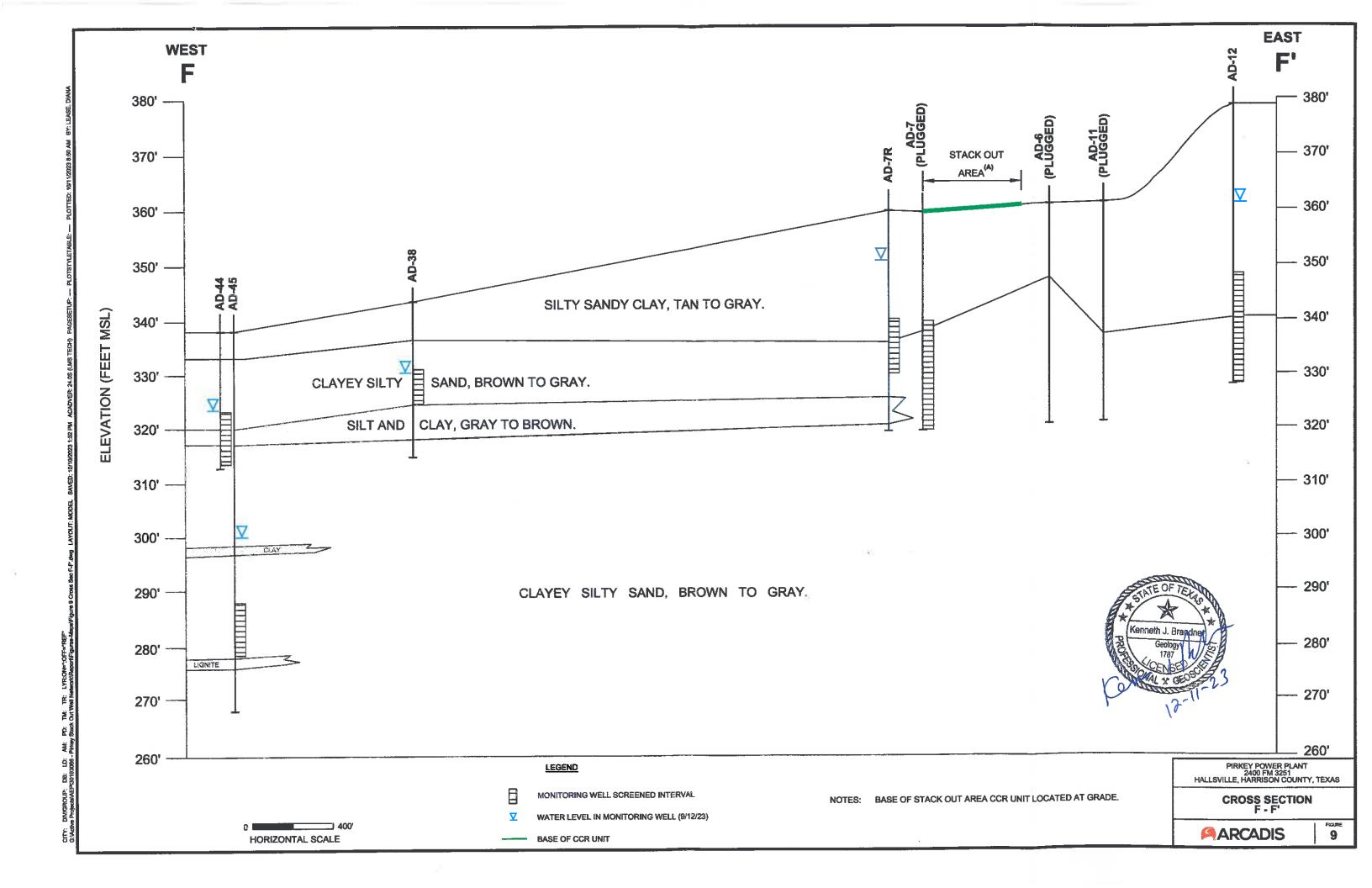
Pirkey FGD Stackout Pad

Notes: Groundwater concentrations of major cations and anions at AD-33 from the September 2024 sampling event were used to establish baseline conditions for the diagram. Eh and pH values for sampling dates at AD-33 are shown on the diagram.

AD-33 Eh-pH Diagram


Pirkey FGD Stackout Pad


Figure


12

ATTACHMENT A Geologic Cross Sections

ATTACHMENT B SP-B4 Boring Log

		Soil Bo	ring Log	
Projec	ct: AEP Pirkey		Boring/Well Name:SP-B4	
Projec	ct Location:	Hallsville, TX	Boring Date: 3/3/2020	
	Soil Profile			
Depth Scale Feet Water Table		Des	cription	PID*
	pp= pocket per	netrometer		
0	0.0'-0.4':	Top soil, black silt, vegetation		
	0.4'-0.7':	Brown clayey silt, good cohesion		
	0.7'-1.5':	Red and light gray silty clay, moderate stiffnes	s (pp. 2.5), high plasticity	
	1.5'-3.7':	Maroon and light gray clay, high stiffness (pp.	4.5-5.0), low plasticity; iron ore present 3.1'-3.7'	
	3.7'-5.0':	NO RECOVERY		
5	5.0'-7.0':		4.5-5.0), low plasticity; iron ore present throughout	
	0.0 7.0.	marcon and light gray day, high culmoss (pp.	no olo), ton placetory, non ore precent uneagricut	
	7.0'-8.0':	Light gray clay with iron ore, moderate stiffnes	s (nn 2 5-3 0) moderate plasticity	
	8.0'-10.0':	Maroon clay, moderate stiffness (pp. 3.5), moderate	**	
	0.0 - 10.0 .	maroon day, moderate stimess (pp. 5.5), mod	derate plasticity, from one present, moist at 9	
10	10.0'-12.6':	Maroon clay, moderate stiffness (pp. 3.5), moderate	derate placticity; iron ore precent; wat at 12'	
	10.0-12.0.	maroon day, moderate stillless (pp. 5.5), mod	derate plasticity, from one present, wet at 12	
	10 6! 10 0!	Top clay low stiffness (on 1.5) high plasticity	wet	
	12.6'-13.3':	Tan clay, low stiffness (pp.1.5), high plasticity;		
	13.3'-18.5':	Tan and brown clayey silt, moderate cohesion	; iron ore present; wet	
	18.5'-20.3':	Maroon silty clay, low stiffness (pp. 1.0), mode	erate plasticity; iron ore; wet	
20	20.3'-21.1':	Dork growhlook dow troop oilt low stiffnood (n		
	21.1'-21.3':	Dark gray/black clay, trace silt, low stiffness (p Dark gray silt, good cohesion; wet	p. 1.5), high plasticity, wet	
			h mlasticity, wat	
	21.3'-21.9':	Dark gray silty clay, low stiffness (pp. 1.5), hig	n plasticity; wet	
	21.9'-22.3':	Dark gray silt, moderate cohesion; wet		
	22.3'-22.7':	light brown silt; low cohesion; wet	(high stiffness (nn 2 E) madarata plasticity; wat	
	22.7'-24.4':	glauconite present	/high stiffness (pp.3.5), moderate plasticity; wet,	
	24.4'-27.8':	Dark green/gray fine grained sand, well sorted	l; wet; glauconite present	
25	27.8'-30.0':	Red and orange fine grained sand, well sorted		
30				
		Samples collected at 6-8'; 18-20'; 28-30'		
		TD at 30' bgs; refusal		
		*PID readings not collected		
35				
Drill Ri	ig Geoprobe 3230 D	Т		
	g Contractor:_		Geosyntec Consultants	
-	 DJ Diduch		,	

APEX I	PROJE	CT NO.: _	110-089		BORI	BORING NG NUMBER:	MONITOR WILL NO		AD-22	
FACIL	ITY NA	.ME:	AEP- Pirkey Po	wer Plant			FACILITY ID NO.: N/A	4		.
FACIL	ITY AD	DRESS: 1	Hallsville, Texa	s						.
DRILL	ING CO	OMPANY/	METHOD/RI	G: Ape	x Geoscien	e Inc. / Hollow-st	em Augers/ CME-55 Track Rig			.
DRILL	ER:	Ed Wilson	, Apex Geoscie	nce Inc.		co	MPLETION DATE: 12/16/2010			.
PREPA	RED B	Y: David E	Bedford				LOGGED BY: David Bedford			
LATTI	TUDE:	N 32°27'0	3.3"	Datı	ım: WGS-8	4	WELL LOCATION: Triangle- South	side Quansit Hut		
		W94°29'4								
DEPTH (FEET)	PID (PPM)	SAMPLE	WELL LO		LS COL		SOIL DESCRIPTION AND COMME	NTS	Odor	Moisture
1					0.5 SC	Clayey sand,	light brown, very fine grained		None	Moist
2 3 4 5 6 7 8				0.5	-12 CI		ht brown mottled with light gray (small) pebbles in clayey sandy streaks		None	Slightly Moist
9 10 11 12 13 14				12	-20 S	Clayey sand, very fine gra	grayish brown with orangish brown stre	aks,	None	Slightly Wet
15 16 17 18 19 20							@ 12.5' from seepage t of iron ore 15-17'			
21 22 23 24 25				20)-25 S		alline rock 21-21.1'), light brown clayey k, mica, black clay streaks, very fine gra		None	Wet
26 27 28 29 30				25	5-30 SI	M Sand, greeni very fine gra	sh brown (1') grading to orangish brown ined	, silty,	None	Wet
31 32 33 34 35 36 37 38 39 40						Boring Term	inated at 30'			
		******	Cement		7///		Filter Sand	▼ Water Level		
geo	∆Ap oscien	ex ce inc.	Fi	lter Sand Grout (Size/Inter	val): Grout from	0-2'; Bentonite from 2-8'	iser Interval: creen Interval: Vater level: bove Ground	+3 (ags)-10' 10-30' 12.5' 3'	- - -

ATTACHMENT D FGD Sludge Materials Analytical Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Flint Creek (TW) Report ID : 40143 Address: 502 North Allen Avenue **Date Received:** 07/18/2019

Contact: Terry Wehling Shreveport, LA 71101

Phone: (318) 673-2721 Fax: (318) 673-3960

Collected Date: 07/17/2019 By: RF AEP Sample ID: 227040 Cust Sample ID: Dirt/Sludge Location: H.W. Pirkey Power Plant Matrix: Solid

Sample Desc.: Pirkey Sludge FGD Total

Metals (227040)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Aluminum	20500	mg/Kg	12.5	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB
Antimony	0.993	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Arsenic	28.3	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Barium	142	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB
Beryllium	2.12	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Boron	845	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:18	M4	JDB
Cadmium	1.68	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Calcium	77500	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB
Chromium	30.6	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Cobalt	24.8	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Copper	30.2	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Dry Weight, Percent	94.7	%	0.001	1		07/22/2019 15:30	T5	JDB
Iron	36300	mg/Kg	12.5	1:2500	EPA 6010B 1996	07/26/2019 0:18	M4	JDB
Lead	5.31	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Lithium	11.5	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47	T5	JDB
Magnesium	7150	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB
Manganese	498	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB
Mercury	0.653	mg/Kg	0.000025	1	EPA 7471B 1998	07/24/2019 14:37		LNM
Molybdenum	8.45	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Nickel	28.8	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Potassium	1370	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB
Selenium	36.4	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Silver	0.208	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Sodium	1230	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB
Strontium	382	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB
Thallium	0.503	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Report ID : 40143 Date Received: 07/18/2019	C	ontact: Te	P - Flint Creel rry Wehling 18) 673-2721	k (TW)		502 North Allen Avenue Shreveport, LA 71101 (318) 673-3960		
Tin	1.28	mg/Kg	0.2	1:50	EPA 6010B 1996	07/26/2019 0:47	T5	JDB
Titanium	1360	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:18	M4	JDB
Vanadium	77.5	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Zinc	26	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Waste Characterization (227040)			•	•				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
pH, Soil	8.44	рН		1	EPA 9045D 2002	07/25/2019 12:30		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID: 40143Company:SEP - Flint Creek (TW)Address:502 North Allen AvenueDate Received:07/18/2019Contact:Terry WehlingShreveport, LA 71101

AEP Sample ID: 227041 Collected Date: 07/17/2019 By: RF
Cust Sample ID: Dirt/Sludge Location: H.W. Pirkey Power Plant Matrix: Solid

Sample Desc.: Pirkey Sludge FGD SPLP

SPLP (227041)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes Tech
Aluminum	14.2	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB
Antimony	0.018	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB
Arsenic	0.015	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB
Barium	3.46	mg/L	0.05	1:50	EPA 1312/6010B 1996	07/25/2019 20:58	JDB
Beryllium	0.012	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB
Boron	22.3	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 20:58	JDB
Cadmium	0.002	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB
Calcium	2090	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 20:58	JDB
Chromium	0.005	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB
Cobalt	0.051	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB
Copper	0.009	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB
Iron	52.4	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 20:58	JDB
Lead	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB
Lithium	0.146	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB
Magnesium	62.3	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 20:58	JDB
Manganese	2.83	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB
Mercury	0.002272	mg/L	0.000025	1	EPA 7470A 1994	07/24/2019 14:05	LNM
Molybdenum	0.229	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB
Nickel	0.054	mg/L	0.025	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB
Potassium	9.61	mg/L	0.01	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB
Selenium	0.93	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB
Silver	< 0.001	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB
Sodium	35.6	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 20:58	JDB
Strontium	12.7	mg/L	0.05	1:50	EPA 1312/6010B 1996	07/25/2019 20:58	JDB
Thallium	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB
Tin	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Report ID : 40143 Date Received : 07/18/2019	Company: SEP Contact: Terr Phone: (318	y Wehling	(TW)		502 North Allen Avenue Shreveport, LA 71101 (318) 673-3960	
Titanium	0.041 mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB
Vanadium	0.269 mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB
Zinc	0.299 mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09	JDB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 40143 Company: SEP - Flint Creek (TW) Address: 502 North Allen Avenue Date Received: 07/18/2019 Contact: Terry Wehling Shreveport, LA 71101

AEP Sample ID: 227042 Collected Date: 07/17/2019 By: RF
Cust Sample ID: Dirt/Sludge Location: H.W. Pirkey Power Plant Matrix: Solid

Sample Desc.: Pirkey Sludge FGD 7 Day Leachate

7-Day Leachate (227042)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes Tech
Aluminum	0.563	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Antimony	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Arsenic	0.011	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Barium	0.134	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Beryllium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Boron	8.44	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:43	JDB
Cadmium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Calcium	252	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:43	JDB
Chromium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Cobalt	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Copper	0.002	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Iron	0.211	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Lead	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Lithium	0.069	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Magnesium	6.73	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Manganese	0.008	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Mercury	< 0.005	mg/L	0.005	1:200	EPA 7470A 1994	07/30/2019 10:19	LNM
Molybdenum	0.18	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Nickel	< 0.025	mg/L	0.025	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Potassium	4.82	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Selenium	0.208	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Silver	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Sodium	19.8	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:43	JDB
Strontium	1.6	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Thallium	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Tin	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Report ID : 40143 Date Received: 07/18/2019		mpany: SEP Contact: Terr Phone: (318	y Wehling	(TW)	;	502 North Allen Avenue Shreveport, LA 71101 318) 673-3960	
Titanium	0.015	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Vanadium	0.03	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35	JDB
Zinc	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35	JDB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 40143 Company: SEP - Flint Creek (TW) Address: 502 North Allen Avenue Date Received: 07/18/2019 Contact: Terry Wehling Shreveport, LA 71101

Phone: (318) 673-2721 Fax: (318) 673-3960

AEP Sample ID:227043Collected Date:07/17/2019By:RFCust Sample ID:Dirt/Sludge 2Location:H.W. Pirkey Power PlantMatrix:Solid

Sample Desc.: Pirkey Sludge FGD 2 Total

Metals (227043)

Metals (227043)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Aluminum	19600	mg/Kg	12.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB
Antimony	0.919	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB
Arsenic	22.8	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB
Barium	121	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB
Beryllium	1.66	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB
Boron	891	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:25	T5	JDB
Cadmium	1.37	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB
Calcium	84500	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB
Chromium	28.5	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB
Cobalt	20.3	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB
Copper	26.9	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB
Dry Weight, Percent	97.2	%	0.001	1		07/22/2019 15:30	T5	JDB
Iron	28800	mg/Kg	12.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB
Lead	5.78	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB
Lithium	12	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26	T5	JDB
Magnesium	7070	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB
Manganese	388	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB
Mercury	0.606	mg/Kg	0.000025	1	EPA 7471B 1998	07/24/2019 14:27		LNM
Molybdenum	11	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB
Nickel	25.7	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB
Potassium	1460	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB
Selenium	30.4	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB
Silver	0.19	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB
Sodium	1780	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB
Strontium	451	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB
Thallium	0.562	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB
						•		

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Report ID : 40143 Date Received: 07/18/2019	С	ontact: Te	P - Flint Creel rry Wehling 8) 673-2721	k (TW)	Address: 502 North Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960			
Tin	1.06	mg/Kg	0.2	1:50	EPA 6010B 1996	07/26/2019 1:26	T5	JDB
Titanium	1280	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB
Vanadium	68.3	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB
Zinc	33.8	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB
Waste Characterization (227043)							•	
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
pH, Soil	8.71	рН		1	EPA 9045D 2002	07/25/2019 12:30		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Flint Creek (TW) Report ID : 40143 Address: 502 North Allen Avenue **Date Received: 07/18/2019**

Contact: Terry Wehling Shreveport, LA 71101

Phone: (318) 673-2721 Fax: (318) 673-3960

AEP Sample ID: 227044 Collected Date: 07/17/2019 By: RF

Cust Sample ID: Dirt/Sludge 2 Location: H.W. Pirkey Power Plant Matrix: Solid Sample Desc.: Pirkey Sludge FGD 2 SPLP

SPLP (227044)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Aluminum	10.5	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Antimony	0.017	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Arsenic	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Barium	2.57	mg/L	0.05	1:50	EPA 1312/6010B 1996	07/25/2019 21:06		JDB
Beryllium	0.009	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Boron	26.7	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 21:06		JDB
Cadmium	0.002	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Calcium	1960	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 21:06		JDB
Chromium	0.004	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Cobalt	0.051	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Copper	0.003	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Iron	47.7	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 21:06		JDB
Lead	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Lithium	0.136	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Magnesium	70.2	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 21:06		JDB
Manganese	2.87	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Mercury	< 0.000025	mg/L	0.000025	1	EPA 7470A 1994	07/24/2019 14:21		LNM
Molybdenum	0.288	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Nickel	0.071	mg/L	0.025	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Potassium	11.4	mg/L	0.01	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Selenium	0.775	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Silver	< 0.001	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Sodium	56.7	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 21:06		JDB
Strontium	13.2	mg/L	0.05	1:50	EPA 1312/6010B 1996	07/25/2019 21:06		JDB
Thallium	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Tin	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Report ID : 40143 Date Received: 07/18/2019				(TW)	Address: 502 North Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960			
Titanium	0.037	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB	
Vanadium	0.194	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB	
Zinc	0.338	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55	JDB	

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID: 40143Company:SEP - Flint Creek (TW)Address:502 North Allen AvenueDate Received:07/18/2019Contact:Terry WehlingShreveport, LA 71101

AEP Sample ID: 227045 Collected Date: 07/17/2019 By: RF
Cust Sample ID: Dirt/Sludge 2 Location: H.W. Pirkey Power Plant Matrix: Solid

Sample Desc.: Pirkey Sludge FGD 2 7 Day Leachate

7-Day Leachate (227045)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes Tech
Aluminum	0.994	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB
Antimony	0.006	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB
Arsenic	0.031	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB
Barium	0.121	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45	JDB
Beryllium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45	JDB
Boron	16.4	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:53	JDB
Cadmium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45	JDB
Calcium	633	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:53	JDB
Chromium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45	JDB
Cobalt	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB
Copper	0.003	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45	JDB
Iron	0.225	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:45	JDB
Lead	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB
Lithium	0.1	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45	JDB
Magnesium	9.54	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:45	JDB
Manganese	0.015	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45	JDB
Mercury	< 0.005	mg/L	0.005	1:200	EPA 7470A 1994	07/30/2019 10:36	LNM
Molybdenum	0.448	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB
Nickel	< 0.025	mg/L	0.025	1	EPA 6010B 1996	08/04/2019 19:45	JDB
Potassium	9.02	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:45	JDB
Selenium	0.201	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB
Silver	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45	JDB
Sodium	48.3	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:53	JDB
Strontium	3.79	mg/L	0.05	1:50	EPA 6010B 1996	08/04/2019 17:53	JDB
Thallium	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB
Tin	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Report ID : 40143 Date Received: 07/18/2019	Contact: 7	SEP - Flint Creel erry Wehling 318) 673-2721	(TW)	Address: 502 North Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960						
Titanium	0.02 mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB				
Vanadium	0.087 mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45	JDB				
Zinc	< 0.005 mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45	JDB				

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 40143 **Date Received**: 07/18/2019

Company: SEP - Flint Creek (TW)

Contact: Terry Wehling

Shreveport, LA 71101

Address: 502 North Allen Avenue

Quality Control Data

* Quality control units are the same as reported analytical results

			Blank		Standard			Spike		Surrogate [Ouplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
7/25/2019	Aluminum	226939.1	<0.005	2	2.0229733	101.1	2	2.071639	103.6		0.4	JDB
7/25/2019	Aluminum	227041.1	<0.005	2	2.0229733	101.1	2	2.2242	111.2		0.0	JDB
7/26/2019	Aluminum	227040.1	<12.5	2	2.0358232	101.8	100	132.38333	132.4		1.2	JDB
7/25/2019	Antimony	226939.1	<0.005	0.8	0.8092462	101.2	0.8	0.8159776	102.0		0.2	JDB
7/25/2019	Antimony	227041.1	<0.005	0.8	0.8092462	101.2	0.8	0.7671843	95.9		0.5	JDB
7/26/2019	Antimony	227040.1	<0.25	0.8	0.8071122	100.9	40	32.643192	81.6		1.8	JDB
7/25/2019	Arsenic	227041.1	<0.005	0.8	0.8086795	101.1	0.8	0.7758421	97.0		0.0	JDB
7/25/2019	Arsenic	226939.1	<0.005	0.8	0.8086795	101.1	0.8	0.8086275	101.1		0.1	JDB
7/26/2019	Arsenic	226915.1	<0.25	0.8	0.7906797	98.8	40	40.306278	100.8		0.8	JDB
7/26/2019	Arsenic	227040.1	<0.25	0.8	0.7940238	99.3	40	34.433917	86.1		2.3	JDB
7/25/2019	Barium	226939.1	<0.001	0.2	0.2080557	104.0	0.2	0.209543	104.8		0.1	JDB
7/25/2019	Barium	227041.1	<0.05	0.2	0.2080557	104.0	0.2	0.1829767	91.5		0.4	JDB
7/26/2019	Barium	227040.1	<2.5	0.2	0.2112650	105.6	500	543.5715	108.7		7.2	JDB
7/25/2019	Beryllium	226939.1	<0.001	0.2	0.2122779	106.1	0.2	0.2142832	107.1		0.3	JDB
7/25/2019	Beryllium	227041.1	<0.001	0.2	0.2122779	106.1	0.2	0.1992329	99.6		0.4	JDB
7/26/2019	Beryllium	227040.1	<0.05	0.2	0.2131235	106.6	10	9.40679	94.1		0.2	JDB
7/25/2019	Boron	226939.1	<0.01	0.3	0.2995651	99.9	0.3	0.2984183	99.5		0.7	JDB
7/25/2019	Boron	227041.1	<0.5	0.3	0.2995651	99.9	0.3	0.2855333	95.2		0.5	JDB
7/25/2019	Cadmium	227041.1	<0.001	0.2	0.2069934	103.5	0.2	0.1836838	91.8		0.6	JDB
7/25/2019	Cadmium	226939.1	<0.001	0.2	0.2069934	103.5	0.2	0.2061243	103.1		0.5	JDB
7/26/2019	Cadmium	226915.1	<0.05	0.2	0.1973571	98.7	10	10.058007	100.6		1.8	JDB
7/26/2019	Cadmium	227040.1	<0.05	0.2	0.2013293	100.7	10	8.0453767	80.5		1.6	JDB
7/25/2019	Calcium	226939.1	<0.01	1	1.0087505	100.9	1	1.0243667	102.4		0.9	JDB
7/26/2019	Calcium	227040.1	<25	1	0.8616568	86.2	50	113.63333	227.3		8.0	JDB
7/25/2019	Chromium	226939.1	<0.001	0.4	0.4116387	102.9	0.4	0.4125529	103.1		0.4	JDB
7/25/2019	Chromium	227041.1	<0.001	0.4	0.4116387	102.9	0.4	0.3867339	96.7		0.3	JDB
7/26/2019	Chromium	227040.1	<0.05	0.4	0.40798	102.0	20	17.692233	88.5		1.6	JDB
7/26/2019	Chromium	226915.1	<0.05	0.4	0.4059509	101.5	20	20.758823	103.8		8.0	JDB
7/25/2019	Cobalt	227041.1	<0.005	0.2	0.2043482	102.2	0.2	0.1839347	92.0		0.4	JDB
7/25/2019	Cobalt	226939.1	<0.005	0.2	0.2043482	102.2	0.2	0.2054714	102.7		0.4	JDB
7/26/2019	Cobalt	227040.1	<0.05	0.2	0.2032547	101.6	10	7.7614833	77.6		1.8	JDB
7/25/2019	Copper	227041.1	<0.001	0.3	0.3066399	102.2	0.3	0.2963301	98.8		0.1	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 13 of 15

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 40143 Company: SEP - Flint Creek (TW) Address: 502 North Allen Avenue

Contact: Terry Wehling Shreveport I A 71101

Date Re	eceived: 07/18/2019		: rerry vv	_				Sh	reveport,	LA 71101		
		Phone	: (318) 67	73-2721				Fax: (3 ²	18) 673-39	960		
7/25/2019	Copper	226939.1	<0.001	0.3	0.3066399	102.2	0.3	0.3109092	103.6		0.1	JDB
7/26/2019	Copper	227040.1	<0.05	0.3	0.3124104	104.1	15	15.003017	100.0		1.9	JDB
7/25/2019	Iron	226939.1	<0.01	3	3.1158893	103.9	3	3.1231158	104.1		1.0	JDB
7/25/2019	Iron	227041.1	<0.5	3	3.1158893	103.9	150	159.28837	106.2		0.8	JDB
7/26/2019	Iron	227040.1	<12.5	3	3.0861005	102.9					3.1	JDB
7/25/2019	Lead	227041.1	<0.005	1	1.0430644	104.3	1	0.9320653	93.2		0.6	JDB
7/25/2019	Lead	226939.1	<0.005	1	1.0430644	104.3	1	1.0416574	104.2		0.4	JDB
7/26/2019	Lead	226915.1	<0.25	1	1.0147827	101.5	50	51.881956	103.8		1.4	JDB
7/26/2019	Lead	227040.1	<0.25	1	1.0194305	101.9	50	41.227533	82.5		1.1	JDB
7/25/2019	Lithium	227041.1	<0.001	0.2	0.2119096	106.0	0.2	0.2353987	117.7		0.1	JDB
7/25/2019	Lithium	226939.1	<0.001	0.2	0.2119096	106.0	0.2	0.2163799	108.2		0.4	JDB
7/26/2019	Lithium	227040.1	<0.05	0.2	0.211291	105.6	10	11.698417	117.0		2.8	JDB
7/25/2019	Magnesium	226939.1	<0.01	2	2.0868175	104.3	2	2.0877567	104.4		0.2	JDB
7/25/2019	Magnesium	227041.1	<0.5	2	2.0868175	104.3	2	1.9791333	99.0		0.6	JDB
7/26/2019	Magnesium	227040.1	<25	2	2.0570549	102.9	100	76.916667	76.9		1.4	JDB
7/25/2019	Manganese	226939.1	<0.001	0.2	0.2072869	103.6	0.2	0.2077536	103.9		0.2	JDB
7/25/2019	Manganese	227041.1	<0.001	0.2	0.2072869	103.6	0.2	0.16684	83.4		0.7	JDB
7/26/2019	Manganese	227040.1	<2.5	0.2	0.2066368	103.3	500	572.398	114.5		1.1	JDB
7/24/2019	Mercury	227041.1	<0.00002	0.001	0.00097	97.0	0.2	0.16373	81.9		7.0	LNM
7/24/2019	Mercury	227040.1	<0.00002	0.001	0.00097	97.0	0.04	0.0496	124.0		4.4	LNM
7/30/2019	Mercury	227042.1	<0.005	0.001	0.0009	90.0	0.2	0.156162	78.1		4.0	LNM
7/25/2019	Molybdenum	227041.1	<0.005	0.2	0.2067657	103.4	0.2	0.197727	98.9		0.5	JDB
7/25/2019	Molybdenum	226939.1	<0.005	0.2	0.2067657	103.4	0.2	0.2076129	103.8		0.4	JDB
7/26/2019	Molybdenum	227040.1	<0.05	0.2	0.2073308	103.7	10	9.2486833	92.5		0.4	JDB
7/25/2019	Nickel	227041.1	<0.025	0.5	0.5192594	103.9	0.5	0.46183	92.4		0.6	JDB
7/25/2019	Nickel	226939.1	<0.025	0.5	0.5192594	103.9	0.5	0.5209379	104.2		0.6	JDB
7/26/2019	Nickel	227040.1	<0.05	0.5	0.5228273	104.6	25	19.992767	80.0		1.9	JDB
7/25/2019	Potassium	227041.1	<0.01	10	9.3692109	93.7	10	11.11754	111.2		0.3	JDB
7/25/2019	Potassium	226939.1	<0.01	10	9.3692109	93.7	10	9.4631223	94.6		0.2	JDB
7/26/2019	Potassium	227040.1	<25	10	9.1397018	91.4	500	428.035	85.6		2.9	JDB
7/25/2019	Selenium	226939.1	<0.005	2	1.9998495	100.0	2	1.9816300	99.1		8.0	JDB
7/25/2019	Selenium	227041.1	<0.005	2	1.9998495	100.0	2	1.991203	99.6		0.7	JDB
7/26/2019	Selenium	227040.1	<0.25	2	1.9551138	97.8	100	89.733067	89.7		3.0	JDB
7/25/2019	Silver	227041.1	<0.001	0.075	0.0712930	95.1	0.075	0.0708639	94.5		0.2	JDB
7/25/2019	Silver	226939.1	<0.001	0.075	0.0712930	95.1	0.075	0.0714285	95.2		0.1	JDB
7/26/2019	Silver	227040.1	< 0.05	0.075	0.0712215	95.0	3.75	3.6188628	96.5		0.5	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Flint Creek (TW) : 40143 Address: 502 North Allen Avenue Report ID Contact: Terry Wehling **Date Received:** 07/18/2019 Shreveport, LA 71101 Phone: (318) 673-2721 Fax: (318) 673-3960 7/25/2019 Sodium 227041.1 < 0.5 3.1384831 104.6 3 2.3746333 79.2 0.0 JDB 82.3 JDB 7/25/2019 Sodium 226939.1 < 0.01 3 3.1384831 104.6 3 2.4693667 0.1 7/26/2019 Sodium 227040.1 <25 3 3.1256605 104.2 150 120.525 80.4 1.9 JDB JDB 7/25/2019 226939.1 < 0.001 0.2 0.2059899 103.0 0.2 0.2081687 104.1 0.4 Strontium <2.5 103.9 577.76733 115.6 17.9 JDB 7/26/2019 Strontium 227040.1 0.2 0.2078256 500 7/25/2019 Thallium 227041.1 < 0.005 0.4 0.4152040 103.8 0.4 0.3682771 92.1 1.2 JDB 103.8 0.4171124 104.3 0.0 JDB 7/25/2019 Thallium 226939.1 < 0.005 0.4 0.4152040 0.4 7/26/2019 227040.1 < 0.25 0.4155052 103.9 20 15.947380 79.7 1.2 JDB Thallium 0.4 99.9 0.6930628 99.0 0.2 JDB 7/25/2019 Tin 226939.1 < 0.005 0.7 0.6995446 0.7 7/25/2019 227041.1 < 0.005 0.7 0.6995446 99.9 0.7 0.644164 92.0 0.2 JDB Tin 7/26/2019 Tin 227040.1 < 0.2 0.7 0.6896072 98.5 35 28.438362 81.3 8.0 JDB 7/25/2019 < 0.005 0.2109341 105.5 0.2 0.2098874 104.9 0.2 JDB 227041.1 0.2 Titanium 7/25/2019 < 0.005 105.5 0.2 0.1 JDB Titanium 226939.1 0.2 0.2109341 0.2124567 106.2 <2.5 0.2 106.1 1.6 JDB 7/26/2019 Titanium 227040.1 0.2121079 7/25/2019 Vanadium 226939.1 < 0.001 0.3 0.3076519 102.6 0.3 0.3104754 103.5 0.4 JDB 7/25/2019 Vanadium 227041.1 < 0.001 0.3 0.3076519 102.6 0.3 0.2997157 99.9 0.6 JDB 227040.1 7/26/2019 Vanadium < 0.05 0.3 0.30789 102.6 15 15.291667 101.9 0.0 JDB 226939.1 104.6 0.2081374 104.1 JDB 7/25/2019 Zinc < 0.005 0.2 0.2091679 0.2 0.3 7/25/2019 Zinc < 0.005 0.2 0.2091679 104.6 0.2 0.1851907 92.6 0.1 JDB 227041.1 7/26/2019 Zinc 227040.1 < 0.25 0.2 0.2074233 103.7 10 8.4881167 84.9 0.5 JDB

Code Code Description

M4 The analysis of the spiked sample required a dilution such that the spike recovery calculation does not provide useful information. The associated blank spike recovery was acceptable.

This parameter is not included in the Laboratory's LELAP Laboratory Scope of Accreditation.

05-Aug-19

Quality Assurance Officer

Report Date

Figure 1 – Chain of Custody

American Electric Power Analytical Chemistry Services

CHAIN OF CUSTODY

COC 40143

HECEIVED FOR LABORATORY	HELINQUISHED BY (SIGN)	HELINQUISHED BY (SIGN)			1. 11 11	7-17-19 1800	DATE	SAMPLEHISIGNATURE)	Ron Franklin, Randy Rountree, Ben House	CONTACT PEHSON(Please Print		Power Plant	OPCO/PROJECT NAME H.W Pirkey
ABOHAIC	Y (SIGN)	Y (SIGN)			1800	1800	TIME		n, Ran en Ho	N(Please		i	AMF H.
onathan Bambill 7-18-19 1036	DATE/TIME	DATETIME				Pirken Sladge	SAMPLE SOURCE & DESCRIPTION	tranklin	ndy ouse	Print		•	WPirkey
1-18-1	HECEIVED BY	несегуер в			-	FGD	CRIPTION		(903) 927-5889	PHONE NO.	(903) 92		FAX NO.
9 1036	ВҮ	ВУ		(Dit Sale	Di-TSId	SAMPLE ID MA	O G	7-5889		7-5840		
COMMENTS	HELINGUI	HELINCOI			2	7	유						
IENIS	HELINGOISHED BY (SIGN)	HELINGUISHED BY (SIGN)			7 5 5 5 5	7 ? ? ?	Dei	NI M	etak Ivate	Cro n	Te for	ら	ANALYSIS REQUESTED
	DATE/TIME	DATE/TIME			<u>ک</u>	20	Pt	<u>t</u>					QUESTED
				-	270	17040							
	HECEIVED BY	HECEIVED BY			227043-45	927040-4a	Lab	601161	andar	(0, Pb, L	B, Ca, Si	Lapars >	Listals t
						Jorg Wenling	REMARKS		and any other metals in	-, Hg, No, Sc, Te	7, Mr, Ba, Be, Cd, Cr	TODAS SPLP, DOIONITED)	Hotals to another for each

the way I will be a like the way.

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type		Delivery Type
Ice Chest Bag Action Pak PCB Mailer Bottle	UPS	FEDEX US Mail Walk in Shuttle
Other	Othe	er
	Tracking #	-03
Client Terry Wehling	_	Sample Matrix
Received By Job	DGA	PCB Oil Water Oil Soil
Received Date 7-18-19	-	41. %4
Open Date 7-18-19	Solid	Liquid Other
Container Temp Read The Transport #F04103	_	Project I.D.
Correction Factor	Were sa	amples received on ice? YES NO
Corrected Temp	_	The second of th
Did container arrive in good condition?	YES	NO
		·
Was sample documentation received?	YES	NO
Was documentation filled out properly?	YES	NO

Were samples labeled properly?	YES	NO
	5	
Were correct containers used?	YES	NO
Trois sonot symanors assu.		NO.
Were the pH's of samples appropriately checked?	YES	NO
were the prison samples appropriately checked?	YES \	NO
Total number of sample containers	_	
Was any corrective action taken?	NO	Person Contacted
		Date & Time
Comments		1900 State
- All Grantson Like		

		Preservative Added / Lot #
		/
		· 1 Jahr 1 105
	()	ga E
-		
	- F	
	E-14	
C.L.		
		/

ATTACHMENT E AD-33 Soil Samples Analytical Report

ALS -- Fort Collins

SAMPLE SUMMARY REPORT

 Client:
 Burns & McDonnell
 Date:
 08-Jun-18

 Project:
 106665 PIRKEY
 Work Order:
 1805081

 Sample ID:
 AD-33 (11')
 Lab ID:
 1805081-15

 Legal Location:
 Matrix:
 SOIL

Collection Date: 4/30/2018 16:05 Percent Moisture: 18.1

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Gamma Spectroscopy Results		SOF	SOP 713		Date: 5/17/2018	PrepBy: MRL
Ra-226	1.29 (+/- 0.3)	G	0.47	pCi/g	NA	6/7/2018 08:54
Ra-228	1.36 (+/- 0.47)	G,TI	0.7	pCi/g	NA	6/7/2018 08:54
ICPMS Metals		SW	6020	Prep	Date: 5/14/2018	PrepBy: JML
ARSENIC	4.9		0.23	MG/KG	10	5/17/2018 01:02
BARIUM	20		0.57	MG/KG	10	5/17/2018 01:02
BERYLLIUM	0.15		0.057	MG/KG	10	5/17/2018 01:02
CADMIUM	ND		0.23	MG/KG	10	5/17/2018 01:02
COBALT	0.61		0.57	MG/KG	10	5/17/2018 01:02
CHROMIUM	9.5		1.1	MG/KG	10	5/17/2018 01:02
LITHIUM	0.25	J	2.3	MG/KG	10	5/17/2018 01:02
MOLYBDENUM	0.18	J	0.23	MG/KG	10	5/17/2018 01:02
LEAD	3.2		0.23	MG/KG	10	5/17/2018 01:02
ANTIMONY	0.086	J	0.11	MG/KG	10	5/17/2018 01:02
SELENIUM	0.81	J	1.1	MG/KG	10	5/17/2018 01:02
THALLIUM	0.044		0.011	MG/KG	10	5/17/2018 01:02
Ion Chromatography		EPA	300.0	Prep	Date: 5/10/2018	PrepBy: HMA
FLUORIDE	ND		1	MG/KG	1	5/11/2018 21:43
Mercury		SW	7471	Prep	Date: 5/11/2018	PrepBy: AJL2
MERCURY	0.0026	J	0.039	MG/KG	1	5/11/2018 16:07

ALS -- Fort Collins

SAMPLE SUMMARY REPORT

 Client:
 Burns & McDonnell
 Date:
 08-Jun-18

 Project:
 106665 PIRKEY
 Work Order:
 1805081

 Sample ID:
 AD-33 (21')
 Lab ID:
 1805081-16

Legal Location:Matrix:SOILCollection Date:4/30/2018 16:05Percent Moisture:20.0

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Gamma Spectroscopy Results		SOF	SOP 713		Date: 5/17/2018	PrepBy: MRL
Ra-226	0.7 (+/- 0.22)	LT	0.37	pCi/g	NA	6/7/2018 08:16
Ra-228	0.72 (+/- 0.5)	NQ	0.67	pCi/g	NA	6/7/2018 08:16
ICPMS Metals		SWe	6020	Prep	Date: 5/14/2018	PrepBy: JML
ARSENIC	12		0.25	MG/KG	10	5/17/2018 01:05
BARIUM	9.1		0.62	MG/KG	10	5/17/2018 01:05
BERYLLIUM	0.09		0.062	MG/KG	10	5/17/2018 01:05
CADMIUM	ND		0.25	MG/KG	10	5/17/2018 01:05
COBALT	0.64		0.62	MG/KG	10	5/17/2018 01:05
CHROMIUM	4.6		1.2	MG/KG	10	5/17/2018 01:05
LITHIUM	0.24	J	2.5	MG/KG	10	5/17/2018 01:05
MOLYBDENUM	0.061	J	0.25	MG/KG	10	5/17/2018 01:05
LEAD	1.5		0.25	MG/KG	10	5/17/2018 01:05
ANTIMONY	0.19		0.12	MG/KG	10	5/17/2018 01:05
SELENIUM	0.42	J	1.2	MG/KG	10	5/17/2018 01:05
THALLIUM	0.03		0.012	MG/KG	10	5/17/2018 01:05
Ion Chromatography		EPA	300.0	Prep	Date: 5/10/2018	PrepBy: HMA
FLUORIDE	ND		1	MG/KG	1	5/11/2018 22:29
Mercury MERCURY	0.0038	SW7	7471 0.04		Date: 5/11/2018	PrepBy: AJL2 5/11/2018 16:09
menoun i	0.000	•	0.04	0/100	•	0/11/2010 10.00

Monitor Well

Monitor Well No.: AD-33

PROJECT INFORMATION

PROJECT: PROJECT NO .:

Ptrkey Power Plant

1-04-1021

LOGGED BY: Jeffrey D. Sammons, P.G. SUPERVISING PG: Jaffrey D. Sammons, P.G.

COMPLETION:

12/11/2016 DEVELOPMENT: 12/16/2015

SITE LOCATION: 2400 FM 3251, Hallsville, Texas

WELL OWNER: AEP

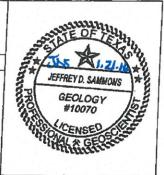
DRILLING INFORMATION

DRILLER:

Buford Collier

DRILLER'S LICENSE NO.: 80089

RIG TYPE:


Geoprobe 3230DT METHOD OF DRILLING: Hollow Stem Auger

SAMPLING METHODS: Split Core HOLE DIAMETER:

SURFACE ELEVATION: 382.37 (Top of Casing)

8.25"

LATITUDE 32 27' 38.70" LONGITUDE 94 28' 15.82"

Water Level Upon Installation	Water Lev	el at Tir	ne of D	rilling			Ge	otechr	nical L	ab Sa	mple	TBPG No. 50027
DESCRIPTION	USCS	SOIL	ОЕРТН	WATER	SAMPLE	% MOISTURE	% FINES	ם	E.	ā		WELL CONSTRUCTION
CLAYEY SAND: very fine to fine sand, some slit, dark brownish black and brown, very moist FAT CLAY: trace sand and slit, reddish brown and light gray - some iron ore gravel at 2.0' - some slit and ironstone in thin seams at 2.5', light gray, yellowish brown, and reddish brown,	SC		-4 -3 -2 -1 -0 -1 -2 -3 -4 -5 -6			29	93	74	32	42		Bentonite 2" Sch. 40 PVC
CLAYEY SAND: interbedded clays and fine to very fine sand and slif, some iron one gravel, light reddish brown and light gray some clay and trace of iron one gravel at 11', light gray and reddish brown, moist trace clay at 13', thin saturated ironstone and rawel seams at 13' to 16', reddish brown, light eddish brown, and light gray dark reddish brown at 15' clay lense at 15.5' to 16.5', light reddish brown and ght gray	SC		-8 1 - 10 - 11 - 12 - 13 S - 14 - 15 - 18	2	21	1 3	5 3	35 2	23 1	12		Riser
SiLTY CLAYEY SAND: very fine to fine sand, eddish brown, very moist to saturated some clay lenses and iron ore gravel at 20' clayey at 20.5' to 21' race clay at 21', fight gray, saturated ome iron ore gravel at 28', reddish brown, very					23	10	27	18	9			20/40 Silica Sand 0.010° Slotted Sch. 40 PVC Well Screen
AVEV CAND	ic /	2		2	3	30	25	18	7			PVC Bottom Cap

CERTIFICATION BY A QUALIFIED PROFESSIONAL ENGINEER

I certify that the above described alternative source demonstration is appropriate for evaluating the groundwater monitoring data for the Pirkey FGD Stackout Area CCR management area and that the requirements of 30 TAC §352.951(e) have been met.

Beth Ann Gross Printed Name of Licen	sed Professional Engineer	BETH ANN GROSS
Beth arm &	Tiors	79864 CENSE GN SSIONAL ENGINEER
Signature		Geosyntec Consultants 2039 Centre Pointe Blvd, Suite 103 Tallahassee, Florida 32308
		Texas Registered Engineering Firm No. F-1182
79864 License Number	Texas	March 21, 2025
License Mulliber	Licensing State	Date