
ALTERNATIVE SOURCE DEMONSTRATION REPORT

2025 1st SEMIANNUAL EVENT TEXAS STATE CCR RULE

**H.W. Pirkey Power Plant
Flue Gas Desulfurization Stackout Area
Registration No. CCR104
Hallsville, Texas**

Prepared for

American Electric Power
1 Riverside Plaza
Columbus, Ohio 43215-2372

Prepared by

Geosyntec Consultants, Inc.
500 West Wilson Bridge Road, Suite 250
Worthington, Ohio 43085

Project CHA1147I

December 2025

TABLE OF CONTENTS

1.	INTRODUCTION AND SUMMARY	1
1.1	CCR Rule Requirements	1
1.2	Demonstration of Alternative Sources	2
2.	SUMMARY OF SITE CONDITIONS.....	3
2.1	FGD Stackout Area Design and Construction	3
2.2	Regional Geology / Site Hydrogeology	3
2.3	Groundwater Monitoring System and Flow Conditions	3
3.	ALTERNATIVE SOURCE DEMONSTRATION	5
3.1	Proposed Alternative Source	5
3.1.1	Beryllium.....	5
3.1.2	Cobalt	6
3.1.3	Mercury	7
3.1.4	Lead	8
3.1.5	Conceptual Site Model	9
4.	CONCLUSIONS AND RECOMMENDATIONS	10
5.	REFERENCES	11

LIST OF TABLES

Table 1	X-Ray Diffraction Results
Table 2	Summary of Key Analytical Data
Table 3	Solid Phase Metals Data

LIST OF FIGURES

Figure 1	Potentiometric Contours – Uppermost Aquifer April 2025
Figure 2	Beryllium v. Groundwater Elevation
Figure 3	AD-22 Beryllium v. Calcium and Lithium
Figure 4	AD-22 Seasonal Water Table Geology
Figure 5	AD-22 Cobalt v. Groundwater Elevation
Figure 6	AD-22 Cobalt v. Calcium and Lithium
Figure 7	Cobalt and Calcium Concentration Distribution
Figure 8	Calcium Time Series Graph
Figure 9	AD-22 Eh-pH Diagram
Figure 10	AD-33 Boron Time Series
Figure 11	AD- 33 Mercury Time Series Graph

LIST OF ATTACHMENTS

Attachment A	Geologic Cross Sections
Attachment B	SP-B4 Boring Log
Attachment C	AD-22 Boring Log and Well Installation Diagram
Attachment D	FGD Sludge Materials Analytical Report
Attachment E	AD-33 Soil Samples Analytical Report
Attachment F	AD-33 Boring Log and Well Installation Diagram
Attachment G	Certification by a Qualified Professional Engineer

LIST OF ACRONYMS

Å	angstrom
AEP	American Electrical Power
ASD	alternative source demonstration
bgs	below ground surface
CCR	coal combustion residuals
EPRI	Electric Power Research Institute
FGD	flue gas desulfurization
GWPS	groundwater protection standard
LCL	lower confidence limit
mg/L	milligrams per liter
SPLP	Synthetic Precipitation Leaching Procedure
SSL	statistically significant level
SU	standard unit
TAC	Texas Administrative Code
TCEQ	Texas Commission on Environmental Quality
USEPA	United States Environmental Protection Agency
XRD	X-ray diffraction

1. INTRODUCTION AND SUMMARY

This alternative source demonstration (ASD) report has been prepared to address statistically significant levels (SSLs) of beryllium, cobalt, lead, and mercury in the groundwater monitoring network at the former Flue Gas Desulfurization (FGD) Stackout Area, located at the H.W. Pirkey Plant in Hallsville, Texas, following the first semiannual assessment monitoring event of 2025. The H.W. Pirkey Plant (Site) has four coal combustion residuals (CCR) storage units regulated by the Texas Commission on Environmental Quality (TCEQ) under Registration No. CCR104, including the FGD Stackout Area (**Figure 1**). Three of the units, including the former FGD Stackout Area, have been closed by removal, and one unit is still active.

In April 2025, a semiannual assessment monitoring event was conducted at the former FGD Stackout Area in accordance with Texas Administrative Code (TAC) Title 30 §352.951(a) [30 TAC §352.951(a)]. The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. Confidence intervals were recalculated for Appendix IV parameters at the compliance wells to assess whether these parameters were present at SSLs above the groundwater protection standards (GWPSs). Seasonal patterns were observed for beryllium, cadmium, cobalt, combined radium, fluoride, lithium, and selenium at AD-22 (Geosyntec Consultants, Inc. [Geosyntec] 2025a). To correctly account for seasonality, confidence intervals for these wells and constituents were constructed using deseasonalized values. An SSL was attributed to a parameter if its lower confidence limit (LCL) exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). The following SSLs were identified at the former Pirkey FGD Stackout Area (Geosyntec 2025a):

- The deseasonalized LCL for beryllium exceeded the GWPS of 0.00400 milligrams per liter (mg/L) at AD-22 (0.00542 mg/L).
- The deseasonalized LCL for cobalt exceeded the GWPS of 0.0600 mg/L at AD-22 (0.0779 mg/L).
- The LCL for lead exceeded the GWPS of 0.00200 mg/L at AD-33 (0.000230 mg/L).
- The LCL for mercury exceeded the GWPS of 0.00200 mg/L at AD-33 (0.00362 mg/L).

No other SSLs were identified.

1.1 CCR Rule Requirements

TCEQ regulations regarding assessment monitoring programs for CCR landfills and surface impoundments provide owners and operators with the option to make an ASD when an SSL is identified:

In making a demonstration under this subsection, the owner or operator must, within 90 days of detecting a statistically significant level above the groundwater protection standard of any constituent listed in Appendix IV adopted by reference in §352.1431 of this title, submit a report prepared and certified in accordance with §352.4 of this title (relating to Engineering and Geoscientific Information) to the executive director, and any local pollution agency with jurisdiction that has requested to be notified, demonstrating that a

source other than a CCR unit caused the exceedance or that the exceedance resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. (30 TAC §352.951(e))

Pursuant to 30 TAC §352.951(e), Geosyntec has prepared this ASD report to document that the SSLs identified for beryllium and cobalt at well AD-22 and for mercury and lead at well AD-33 are from a source other than the former FGD Stackout Area.

1.2 Demonstration of Alternative Sources

An evaluation was completed to assess possible alternative sources to which each identified SSL could be attributed. Alternative sources were categorized into the following five types, based on methodology provided by the Electric Power Research Institute (EPRI 2017):

- ASD Type I: Sampling Causes
- ASD Type II: Laboratory Causes
- ASD Type III: Statistical Evaluation Causes
- ASD Type IV: Natural Variation
- ASD Type V: Anthropogenic Sources

A demonstration was conducted to show that the SSLs identified for beryllium, cobalt, lead, and mercury were based on a Type IV cause and not by a release from the former Pirkey FGD Stackout Area.

2. SUMMARY OF SITE CONDITIONS

The Stackout Area design and construction, regional geology and Site hydrogeology, and groundwater monitoring system and flow conditions are described below.

2.1 FGD Stackout Area Design and Construction

The former Pirkey FGD Stackout Area was an approximately 5-acre FGD storage area located due west of the Pirkey Plant (**Figure 1**). It was designed for temporary stockpiling of stabilized FGD material placed on the native clay soil in the unit until it could be hauled to the on-Site landfill for disposal (Arcadis 2023). Prior to closure, the natural ground surface elevation in the Stackout Area ranged from approximately 360 to 365 feet above mean sea level. Based on lithological borings advanced in the vicinity, the former FGD Stackout Area is underlain by approximately 20 feet of clay (Arcadis 2023).

A Closure Plan for the FGD Stackout Area was developed in October 2016 and revised in May 2023 (American Electric Power [AEP] 2023a) and February 2025 (AEP 2025). This document detailed the closure activities which were to take place throughout the closure of the Stackout Area. AEP submitted a certified notification that the receipt of CCR materials had ceased as of September 1, 2023, and the closure activities had been initiated (AEP 2023b). Closure was conducted in accordance with the requirements of 40 CFR §257.102(c) (which were adopted by the State of Texas under 30 TAC §352.1221) and the certified Closure Plan at the time (AEP 2023a). The removal of the remaining CCR material and an additional 12 inches of underlying soil was completed in September 2023, and the removal was certified by Akron Consulting (2023) on November 12, 2023. On March 5, 2024, the Stackout Area was certified closed by removal in accordance with the 2023 Closure Plan and notification was placed in the Operating Record (AEP 2024).

2.2 Regional Geology / Site Hydrogeology

The former Stackout Area was positioned on an outcrop of the Eocene-age Recklaw Formation, which consists predominantly of clay and fine-grained sand (Arcadis 2023). The Recklaw Formation is underlain by the Carrizo Sand, which crops out in the topographically lower southern portion of the plant. The Carrizo Sand consists of fine- to medium-grained sand interbedded with silt and clay.

The very-fine- to fine-grained clayey and silty sand located about 10 to 20 feet below the former Stackout Area, with an average thickness of approximately 20 feet, is considered to be the uppermost aquifer below this CCR unit (Arcadis 2023).

2.3 Groundwater Monitoring System and Flow Conditions

The monitoring well network for the former Stackout Area monitors groundwater within the uppermost aquifer. Geologic cross sections B-B', E-E', and F-F' from Arcadis (2023), provided as **Attachment A**, show the subsurface structure of the uppermost aquifer (indicated on the figures as clayey silty sand, brown to gray in color) underlying the former Stackout Area. The geologic cross sections demonstrate lateral continuity of the uppermost aquifer at and around the former Stackout Area.

Groundwater flow direction at and near the former Stackout Area is west-northwesterly (**Figure 1**). Groundwater flow velocities in the uppermost aquifer in the vicinity of the former Stackout Area have been reported as approximately 5 to 35 feet per year. The groundwater monitoring network for the former Stackout Area consists of upgradient monitoring wells AD-12 and AD-13 and downgradient compliance wells AD-7R, AD-22, and AD-33, all of which are screened within the uppermost aquifer (Arcadis 2023). Downgradient well AD-7R was added to the network in December 2023 to replace well AD-7, which was plugged in September 2023 due to plant demolition activities in the area.

3. ALTERNATIVE SOURCE DEMONSTRATION

The ASD evaluation method and proposed alternative source of beryllium and cobalt in AD-22 and lead and mercury in AD-33 are described below.

3.1 Proposed Alternative Source

An initial review of site geochemistry, site historical data, and laboratory quality assurance and quality control data did not identify alternative sources for beryllium, cobalt, lead, and mercury due to Type I (sampling), Type II (laboratory), Type III (statistical evaluation), or Type V (anthropogenic) issues. Groundwater sampling, laboratory analysis, and statistical evaluations were generally completed in accordance with 30 TAC §352.931 and the draft TCEQ guidance for groundwater monitoring (TCEQ 2020). As described below, the SSLs for beryllium and cobalt have been attributed to natural variation associated with seasonal effects, which is a Type IV (natural variation) issue. The SSLs for mercury and lead have also been attributed to a Type IV issue, in this case natural variation associated with the lithology of the uppermost aquifer.

3.1.1 Beryllium

An SSL was identified for beryllium at AD-22 using deseasonalized statistics (Geosyntec 2025a). According to the *Unified Guidance*, “seasonal correction should be done both to minimize the chance of mistaking a seasonal effect for evidence of contaminated groundwater, and also to build more powerful background to compliance point tests. Problems can arise, for instance, from measurement variations associated with changing recharge rates during different seasons” (United States Environmental Protection Agency [USEPA] 2009a).

Previous ASDs for the former FGD Stackout Area showed that beryllium concentrations at AD-22 appear to correlate with groundwater elevations (Geosyntec 2025b)¹. This relationship generally still holds true (**Figure 2**). Beryllium concentrations at AD-22 are generally correlated with seasonal changes in other relatively mobile cationic constituents, including calcium and lithium (**Figure 3**). The correlation between beryllium and both monovalent (lithium) and divalent (calcium) cations suggests that the variability in observed beryllium concentrations is related to cation exchange behavior with clay minerals present in the native soil.

In March of 2020, the geology near AD-22 was relogged at soil boring SP-B4. Clay materials were present in the seasonally saturated zones above the permanent water table (**Figure 4**). The boring log for SP-B4 is provided in **Attachment B**, and the original boring log and well construction diagram for AD-22 is provided in **Attachment C**. At AD-22, the depth to water fluctuated between approximately 3 and 12 feet below ground surface (bgs). Clay was identified from approximately 0.7 feet bgs to 13.3 feet bgs, where it transitioned to a clayey silt (**Attachment B**). Analysis of solid samples by X-ray diffraction (XRD) confirmed the presence of clay minerals within the seasonal water table and sand within the screened intervals for AD-22, as summarized in **Table 1**. The clay fraction of the uppermost samples collected from within the seasonal water table was

¹ A citation is provided for the most recently completed ASD addressing beryllium correlations with groundwater elevation. Additional previous ASD reports have presented this discussion, and references to those reports are included within the referenced document.

further analyzed to identify the type of clays present. Smectite-type clays, which are 2:1-layer high-activity clays with characteristically high cation exchange capacity (compared to low-activity 1:1 clay minerals), make up the majority of the clay minerals present at those intervals.

Sorption and desorption of beryllium from smectite-type clays is well documented (You et al. 1989, Boschi and Willenbring 2016a). Desorption is influenced by pH, with 75% of beryllium desorbing from a smectite-type clay as pH decreased from 6.0 standard units (SU) to 3.0 SU (Boschi and Willenbring 2016b). The pH values recorded at AD-22 for samples collected under the detection monitoring program of 30 TAC §352.941 ranged from 3.5 to 5.1 SU, suggesting that conditions are favorable for beryllium desorption from smectite-type clays. The presence of these exchangeable clays provides further evidence that the exceedance of beryllium at AD-22 can be attributed to the effects on groundwater quality of seasonal groundwater elevation changes and the resulting cation exchange between groundwater and the exchangeable clay within the seasonal water table.

3.1.2 Cobalt

An SSL was identified for cobalt at AD-22 using deseasonalized statistics (Geosyntec 2025a). As shown in previous ASDs (Geosyntec 2025b)², cobalt groundwater concentrations at AD-22 also appear to correlate with seasonal changes in groundwater elevation (**Figure 5**). The cobalt concentrations are well correlated with changes in other cations, including calcium and lithium (**Figure 6**), which suggests that natural variability associated with groundwater-mineral interactions within the seasonally saturated zone is governing aqueous concentrations of multiple parameters, including cobalt.

A sample of the solid FGD sludge material accumulated on the FGD Stackout Area was collected in July 2019 and submitted for laboratory analyses. The solid-phase sample was leached using both Synthetic Precipitation Leaching Procedure (SPLP) analysis (SW-846 Test Method 1312 [USEPA 1994]) and Seven-Day Distilled Water Leachate Test Procedure (7-day leaching procedure) analysis (Appendix 4 of 30 TAC Chapter 335, Subchapter R) to evaluate the material as a potential source of cobalt. No changes to material handling or plant operations occurred prior to ceasing operations that would have altered the anticipated chemical composition since this sample was initially collected. Calcium-cobalt ratios for the leached sludge material and Site groundwater are displayed on **Figure 7**. The concentration ratio between calcium and cobalt is consistently on the order of 100:1 at both upgradient and downgradient locations (**Figure 7**). Calcium concentrations in groundwater are generally consistent between AD-22 and upgradient well AD-13 (**Figure 8**); however, leached calcium concentrations from the FGD sludge material are approximately two to three orders of magnitude greater than concentrations in site groundwater. The difference between the ratio of calcium to cobalt in the leached FGD sludge material (about 45,000:1) compared to the ratio for groundwater suggests that dissolved calcium concentrations at AD-22 would be significantly higher if the groundwater at this location were affected by leachate.

² A citation is provided for the most recently completed ASD addressing cobalt correlations with groundwater elevation. Additional previous ASD reports have presented this discussion, and references to those reports are included within the referenced document.

Siderite and pyrite, both reduced (ferrous; Fe^{2+}) iron-bearing minerals, were identified below the seasonal water table (within the saturated zone) at AD-22 (**Table 1**). Cobalt is known to undergo isomorphic substitution for iron in both siderite and pyrite (Gross 1965, Hitzman et al. 2017, Krupka and Serne 2002). This is due to the similarity of their ionic radii (approximately 1.56 angstrom [\AA] for iron and 1.52 \AA for cobalt [Clementi and Raimondi 1963]). The proposed substitution of cobalt for iron in the crystal lattice of pyrite has been documented in the most recent ASDs prepared for the Pirkey Plant's West Bottom Ash Pond (Geosyntec 2025c) and East Bottom Ash Pond (Geosyntec 2025d) as well as previous ASDs for these units.

Goethite (a ferric [Fe^{3+}] iron hydroxide mineral) was identified within the seasonally saturated zone and the screened interval at AD-22 (**Table 1**). Weathering of siderite and pyrite to goethite under oxidizing conditions is a well-understood phenomenon, including in formations in East Texas (Senkayi et al. 1986, Dixon et al. 1982) and is likely occurring within the seasonally saturated zone as evidenced by the presence of goethite. Eh-pH (Pourbaix) diagrams can be used to illustrate the thermodynamically favorable speciation of iron at equilibrium under particular groundwater conditions. An Eh-pH diagram generated using geochemical conditions at AD-22 are favorable for goethite stability (**Figure 9**). During weathering from reduced (pyrite and siderite) to oxidized (goethite) iron minerals, isomorphically substituted cobalt may be released from the mineral structure into groundwater as the mineral crystal structures alter to the product mineral. Mobilization of cobalt released during weathering of siderite or pyrite to goethite in the seasonally saturated zone accounts for the variability in aqueous cobalt concentrations and their correlation with the groundwater elevation as more or less aquifer solids are saturated with groundwater depending on groundwater elevation conditions.

3.1.3 Mercury

An SSL was identified for mercury at AD-33 (Geosyntec 2025a). As shown in previous ASDs (Geosyntec 2025b)³, if aqueous mercury detected at AD-33 was derived from CCR leachate from the FGD Stackout Area, we would anticipate similar trends for the concentrations of other CCR constituents, particularly those known to be more conservative. Boron, a geochemically conservative parameter commonly considered a CCR indicator, has high leachability from FGD material (USEPA 2009b). A release from the FGD Stackout Area would be anticipated to result in higher concentrations of boron and other conservative parameters such as sulfate. However, the observed boron and sulfate concentrations at AD-33 are not indicative of increasing trends based on a visual review of the data (**Figure 10**). Two samples of FGD sludge material from the Stackout Area were collected in 2019 for characterization to assess if the FGD material was a likely source of mercury to groundwater at AD-33. As summarized in **Table 2**, both the historical average and the most recent boron groundwater concentrations at AD-33 are two orders of magnitude lower than the boron concentrations in leachate from both Synthetic Precipitation Leaching Procedure (SPLP) analysis (SW-846 Test Method 1312 [USEPA 1994]) and Seven-Day Distilled Water Leachate Test Procedure (7-day leaching procedure) analysis (Appendix 4 of 30 TAC Chapter 335, Subchapter R) of FGD sludge (**Attachment D**). The lack of an apparent increasing boron

³A citation is provided for the most recently completed ASD addressing mercury correlations with other geochemically conservative parameters. Additional previous ASD reports have presented this discussion, and references to those reports are included within the referenced document.

trend in AD-33 groundwater despite the elevated boron concentrations in leached FGD sludge suggests that groundwater at AD-33 is not impacted by the unit.

The FGD sludge material contained detectable levels of total mercury at concentrations greater than those reported for two samples of aquifer solids collected from a soil boring advanced adjacent to AD-33 (**Table 3, Attachment E**). While the concentration of mercury in the aquifer solids is lower than the total mercury concentration in FGD sludge material, the low mobility of mercury from FGD as demonstrated in numerous laboratory studies suggests the FGD sludge is not a likely source of mercury in groundwater (USEPA 2009b, Hao et al. 2016). As shown in **Figure 11**, previous mercury groundwater concentrations at AD-33 were consistently equal to or greater than the mercury concentrations of leachate from SPLP analysis of FGD sludge material (**Table 2, Attachment D**). Mercury concentrations in leachate from 7-day leaching procedure analysis of FGD sludge material were below the laboratory detection limit of 0.005 mg/L. These results agree with previous studies that have documented that leached mercury concentrations are not correlated with total solid phase mercury in FGD samples (USEPA 2009b).

Detectable concentrations of mercury in aquifer solids at AD-33 present an alternative source of mercury in groundwater (**Table 3**). Mercury is naturally occurring in soils and known to undergo isomorphic substitution for iron in crystalline iron minerals such as pyrite (Manceau et al. 2018). Analysis by XRD of material from the AD-33 soil boring showed detectable levels of pyrite below the seasonal water table (**Table 1**).

Reported differences between the total and dissolved mercury groundwater concentrations provides evidence that mercury is associated with colloidal material native from the aquifer. Dissolved concentrations of mercury at AD-33 are consistently lower than the reported total values (**Figure 11**), with most dissolved concentrations detected below the MCL of 2 µg/L. The method for measuring dissolved mercury in groundwater (EPA Method 245.7 [USEPA 2005]) involves filtering the sample through a 0.45 µm filter prior to analysis, which would remove colloid-sized particles prior to preservation. The inclusion of suspended particles (including colloids) in totals samples is likely to result in an overestimation of metals due to the mobilization of metals from the colloidal or solid phases to aqueous phase following acid preservation during sample collection. Thus, the lower dissolved mercury concentrations compared to total aqueous mercury suggests that mercury is associated with colloidal material from the aquifer and the SSL of mercury at AD-33 is not due to a release from the former FGD Stackout Area.

3.1.4 Lead

An SSL for lead was identified at AD-33 (Geosyntec 2025a). As shown in the previous ASD (Geosyntec 2025b), lead groundwater concentrations at AD-33 do not appear to be associated with impacts from the FGD Stackout Area. As discussed in Section 3.1.3, aqueous boron concentrations detected in AD-33 groundwater do not indicate that groundwater is impacted by FGD sludge material. The historical average and the most recent boron groundwater concentrations at AD-33 are both two orders of magnitude lower than boron concentrations in leachate from both SPLP analysis and 7-day leaching procedure analysis of FGD sludge (**Table 2, Attachment D**). The lack of boron impacts to AD-33 groundwater as would be expected from interaction with leached FGD sludge suggests groundwater at AD-33 is not impacted by the unit.

Two sludge samples leached using SPLP analysis and 7-day leaching procedure analysis both did not contain lead concentrations above the method detection limit (**Table 2, Attachment D**),

indicating that FGD sludge leachate is not a likely source of elevated lead in downgradient groundwater due to the low concentrations of lead in the sludge material. These results agree with previous studies that have documented that leached lead concentrations are not correlated with total solid phase lead in FGD samples, with limited detections of lead in leachate at pH values between 4 and 12 SU (USEPA 2009b).

Lead was detected in two aquifer solids samples collected from a soil boring advanced adjacent to AD-33 (**Table 3, Attachment E**). Like cobalt and mercury, lead is also known to undergo isomorphic substitution for the iron in pyrite or siderite (Gross 1965, Hitzman et al. 2017, Krupka and Serne 2002, Abraitis et al. 2004). While solid-phase lead was detected in FGD sludge samples at concentrations greater than those detected in aquifer solids, analysis of FGD sludge leaching indicates that this lead is not readily mobilized to the aqueous phase (**Table 2, Attachment D**). Detectable concentrations of lead in aquifer soils at AD-33 present an alternative source of lead in groundwater.

3.1.5 Conceptual Site Model

The seasonal fluctuations in beryllium and cobalt concentrations at AD-22 can be attributed to variations in the surface area of aquifer solids that are in contact with groundwater as the water table elevation changes. When the water table is higher, more clay material is in contact with groundwater, allowing greater desorption of cations (including beryllium) from the cation exchange sites on the clay minerals. In the case of cobalt, cobalt-bearing minerals are in contact with groundwater as the water table rises, allowing for the release of cobalt from mineral phases where it has isomorphically substituted for iron during mineral weathering reactions. Thus, the observed SSLs were attributed to natural variation associated with seasonal fluctuation of beryllium and cobalt concentrations in groundwater as the surface area of saturated aquifer solids increases.

Seasonal variations in mercury and lead groundwater concentrations at AD-33 were not observed. The observed mercury concentrations in groundwater at AD-33 were attributed to interactions with mercury-bearing colloidal solids within the unfiltered samples. The observed lead concentrations at AD-33 were attributed to interactions of groundwater with lead-bearing aquifer solids.

4. CONCLUSIONS AND RECOMMENDATIONS

The preceding information serves as the ASD prepared in accordance with 30 TAC §352.951(e) and supports the position that the SSLs of beryllium and cobalt at AD-22 and lead and mercury at AD-33 identified during the semiannual assessment monitoring in April 2025 were not due to a release from the former FGD Stackout Area. The identified beryllium and cobalt SSLs were, instead, attributed to natural variation related to desorption of beryllium and seasonal weathering of cobalt-bearing minerals comprising the aquifer solids. The mercury SSL was attributed to natural variation associated with the colloidal solids in the groundwater. The lead SSL was attributed to natural variation associated with groundwater-aquifer solid interactions. Therefore, no further action is warranted. Certification of this ASD by a qualified professional engineer is provided in **Attachment G**.

5. REFERENCES

Abraitis, P.K., Pattrick, R.A.D., and Vaughan, D.J. 2004. Variations in the compositional, textural, and electrical properties of natural pyrite: a review. *International Journal of Mineral Processing*. v.74, Issues 1-4, p.41-59.

Akron Consulting, LLC. 2023. FGD Stackout Area CCR Removal Certification. November.

AEP. 2023a. Closure Plan. FGD Stackout Area. May.

AEP. 2023b. Notification of Intent to Close a CCR Unit. Pirkey Power Plant, FGD Stackout Area. September.

AEP. 2024. Closure Completion Notification for Closure by Removal. Henry W. Pirkey Plant, FGD Stackout Area. March.

AEP. 2025. Closure Plan. FGD Stackout Area. February.

Arcadis. 2023. Stack Out Area – CCR Groundwater Monitoring Well Network Evaluation (Updated December 2023) – H.W. Pirkey Power Plant. December.

Boschi, V. and J.K. Willenbring. 2016a. “The Effect of pH, Organic Ligand Chemistry, and Mineralogy on the Sorption of Beryllium over Time.” *Environmental Chemistry* 13(4): 711–722.

Boschi, V. and J.K. Willenbring. 2016b. “Beryllium Desorption from Minerals and Organic Ligands over Time.” *Chemical Geology* 439: 52–58.

Clementi, E. and D. L. Raimondi. 1963. “Atomic Screening Constants from SCF Functions.” *J. Chem. Phys.* 38(11): 2686–2689.

Dixon, J.B., L.R. Hossner, A.L. Senkayi, and K. Egashira. 1982. “Mineralogical Properties of Lignite Overburden as They Relate to Mine Spoil Reclamation.” In *Acid Sulfate Weathering*, edited by J.A. Kittrick, D.S. Fanning, and L.R. Hossner, 169–191. Soil Science Society of America Special Publications.

EPRI. 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites. 3002010920. Electric Power Research Institute. October.

Geosyntec. 2025a. Statistical Analysis Summary – 2025 1st Semiannual Event, Flue Gas Desulfurization (FGD) Stackout Area – H.W. Pirkey Plant. Hallsville, Texas. Geosyntec Consultants. September.

Geosyntec. 2025b. Alternative Source Demonstration Report – 2nd Semiannual Event 2024, Texas CCR Rule. H.W. Pirkey Plant. Flue Gas Desulfurization (FGD) Stackout Area. Hallsville, Texas. Geosyntec Consultants. March.

Geosyntec. 2025c. Alternative Source Demonstration Report – 2nd Semiannual Event 2024. Texas CCR Rule. H.W. Pirkey Plant. West Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. March.

Geosyntec. 2025d. Alternative Source Demonstration Report – 2nd Semiannual Event 2024. Texas CCR Rule. H.W. Pirkey Plant. East Bottom Ash Pond. Hallsville, Texas. Geosyntec Consultants. March.

Gross, G.A. 1965. Geology of Iron Deposits in Canada, Volume 1: General Geology and Evaluation of Iron Deposits. Economic Geology Report No. 22. Geological Survey of Canada.

Hao, Y., S. Wu, Y. Pan, Q. Li, J. Zhou, Y. Xu, and G. Qian. 2016. “Characterization and Leaching Toxicities of Mercury in Flue Gas Desulfurization Gypsum from Coal-Fired Power Plants in China.” *Fuel* 177: 157-163. August.

Hitzman, M.W., A.A. Bookstrom, J.F. Slack, and M.L. Zientek. 2017. Cobalt – Styles of Deposits and the Search for Primary Deposits. United States Geological Survey Open File Report 2017-1155.

Krupka, K.M. and R.J. Serne. 2002. Geochemical Factors Affecting the Behavior of Antimony, Cobalt, Europium, Technetium, and Uranium in Vadose Sediments. Pacific Northwest National Lab, PNNL-14126. December.

Manceau, A., M. Merkulova, M. Murdzek, V. Batanova, R. Baran, P. Glatzel, B.K. Saikia, D. Paktunc, and L. Lefticariu. 2018. “Chemical Forms of Mercury in Pyrite: Implications for Predicting Mercury Releases in Acid Mine Drainage Settings.” *Environmental Science & Technology* 52(18): 10286-10296.

Senkayi, A.L., J.B. Dixon, and L.R. Hossner. 1986. “Todorokite, Goethite, and Hematite: Alteration Products of Siderite in East Texas Lignite Overburden.” *Soil Science* 142(1): 36–43.

TCEQ. 2020. Coal Combustion Residuals Groundwater Monitoring and Corrective Action Draft Technical Guideline No. 32. Topic: Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action. Texas Commission on Environmental Quality, Waste Permits Division. May.

USEPA. 1994. Method 1312 – Synthetic Precipitation Leaching Procedure, Revision 0. Update to the Third Edition of the Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. United States Environmental Protection Agency. Publication SW-846. September.

USEPA. 2005. Method 245.7 – Mercury in Water by Cold Vapor Atomic Fluorescence Spectrometry, Revision 2.0. United States Environmental Protection Agency. EPA 821-R-05-001. February

USEPA. 2009a. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance. United States Environmental Protection Agency. USEPA 530/R-09/007. March.

USEPA. 2009b. Characterization of Coal Combustion Residues from Electric Utilities – Leaching and Characterization Data. United States Environmental Protection Agency. USEPA 600/R-09/151. December.

You, C.-F., T. Lee, and Y.-H. Li. 1989. “The Partition of Be between Soil and Water.” *Chemical Geology* 77(2): 105–118.

TABLES

Table 1. X-Ray Diffraction Results
Alternative Source Demonstration Report
FGD Stackout Area, H.W. Pirkey Plant

Boring Location	SP-B4		
Associated Well	AD-22		
Depth (ft bgs)	6-8	18-20	28-30
Sample Location	Within Seasonal Water Table	Below Seasonal Water Table	Within Screened Interval
Quartz	28	47.5	95
Plagioclase Feldspar	<0.5	<0.5	1
K-Feldspar	1	0.5	-
Goethite	1	-	2
Hematite	-	-	-
Chlorite	1	-	-
Siderite		10	-
Pyrite	-	2	-
Clays	*	40	2
Kaolinite	13		
Illite/Mica	2		
Smectite	43		
Mixed-Layered Illite/Smectite	11		

Notes:

1. Mineral constituents are reported in percentage.
2. Values shown as less than indicate the mineral constituent is present but below the quantification limit.

*: The clay fraction at SP-B4-6-8 was further analyzed to characterize the types of clays present, as listed below.

-: not detected

ft bgs: feet below ground surface

FGD: Flue gas desulfurization

Table 2. Summary of Key Analytical Data
Alternative Source Demonstration Report
FGD Stackout Area, H.W. Pirkey Plant

Sample	Type	Mercury (µg/L)	Lead (µg/L)	Boron (mg/L)
Pirkey Sludge FGD	SPLP	2.27	<5.0	22.3
	7-Day Leaching Procedure	<5.0	<5.0	8.44
Pirkey Sludge FGD 2	SPLP	<0.025	<5.0	26.7
	7-Day Leaching Procedure	<5.0	<5.0	16.4
AD-33	Historical Average	6.1	0.29	0.138
	Apr-25	6.3	0.3	0.211

Notes:

1. Average values were calculated using truncated mercury, lead, and boron data (March 2020 - April 2025).
2. Pirkey Sludge FGD samples were collected on July 17, 2019.
3. Non-detect values reported as less than (<) the detection limit.
4. AD-33 lead historical average was calculated assuming a value of 0 µg/L for all samples for which lead was not detected above the method detection limit.

CCR: coal combustion residuals

FGD: Flue Gas Desulfurization

mg/L: milligrams per liter

SPLP: Synthetic Precipitation Leaching Procedure

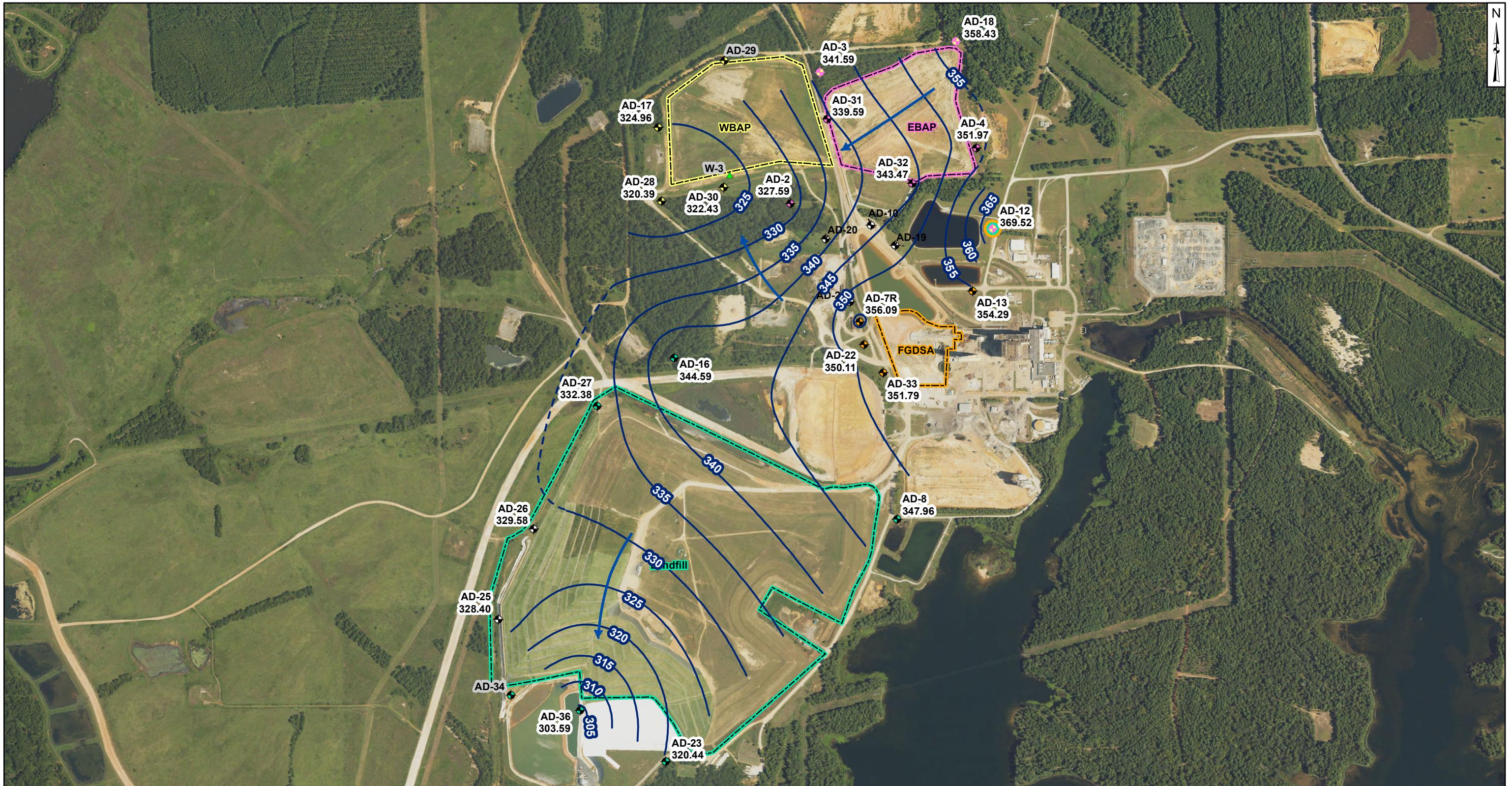
µg/L: micrograms per liter

Table 3. Solid Phase Metals Data
Alternative Source Demonstration Report
FGD Stackout Area, H.W. Pirkey Plant

Location ID	Date Sampled	Sample Depth (ft bgs)	Mercury (mg/kg)	Lead (mg/kg)
AD-33	4/30/2018	11	0.0026	3.20
		21	0.0038	1.50
Pirkey Sludge FGD	7/17/2019	N/A	0.653	5.31
Pirkey Sludge FGD 2	7/17/2019	N/A	0.606	5.78

Notes:

1. For AD-33 locations, samples were collected from additional boreholes advanced in the intermediate area of AD-33. Samples were not collected from the cuttings of the borings advanced for well .


FGD: Flue Gas Desulfurization

ft bgs: feet below ground surface

mg/kg: milligram per kilogram

N/A: not applicable

FIGURES

Legend

Groundwater Monitoring Wells

- Out of Network
- East Bottom Ash Pond (EBAP)
- West Bottom Ash Pond (WBAP)
- Landfill
- Flue Gas Desulfurization Stackout Area (FGDSA)
- EBAP and WBAP

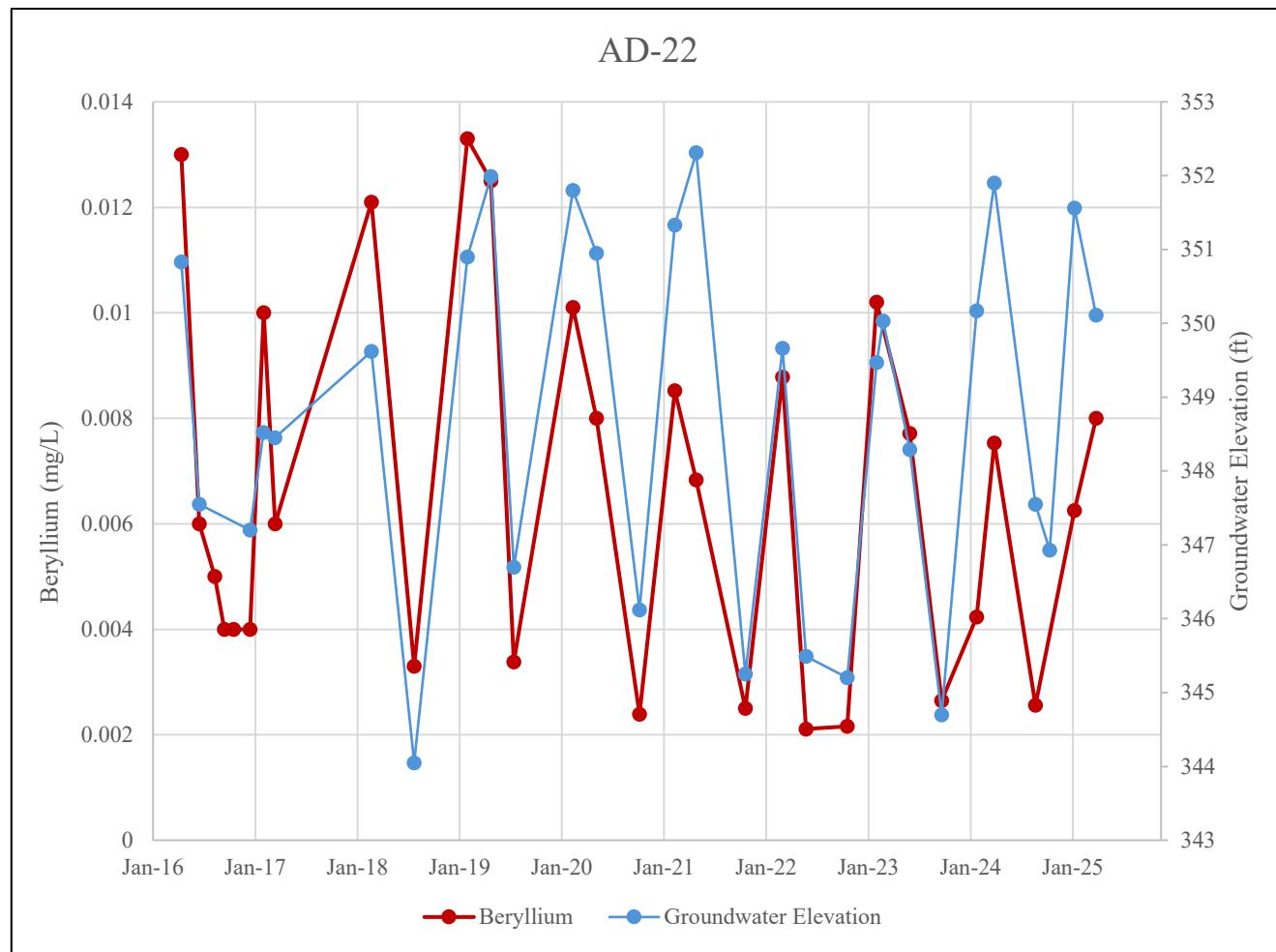
- All CCR Unit Networks
- Piezometer
- Groundwater Elevation Contour
- Groundwater Elevation Contour (Inferred)
- Approximate Groundwater Flow Direction

Notes

- Monitoring well coordinates and water levels (collected on April 21, 22, and 23, 2025) provided by AEP.
- Site features based on information available in coal combustion residuals (CCR) Groundwater Monitoring Well Network Evaluation Update (Arcadis 2022) provided by AEP.
- Groundwater elevation units are feet above mean sea level (ft ms).
- Wells AD-10, AD-19, AD-20, AD-21, AD-29, and W-3 were not gauged during the April 2025 event.
- AD-7R replaced AD-7, which was abandoned on September 12, 2023.
- Wells shaded in gray are within the network but not used for contouring.
- Well AD-34 had artesian characteristics during this event and was not used for contouring.
- AD-35 was abandoned on November 13, 2018 and is not shown on the map.
- Removal of CCR plus one foot of material for the WBAP was completed for on July 26, 2022.
- Removal of CCR plus one foot of material for the EBAP was completed on July 20, 2023.
- Removal of CCR plus one foot of material for the FGDSA was completed on September 18, 2023.
- Map is updated to incorporate Landfill survey data collected on May 1, 2024.
- Aerial imagery provided by the TxGIO DataHub (dated 2024).

1,000 500 0 1,000
Feet

Beth Ann Gross


December 23, 2025
Geosyntec Consultants, Inc.
Texas Firm Registration
No. 1182

Potentiometric Contours: Uppermost Aquifer April 2025

AEP Pirkey Power Plant
Hallsville, Texas

Geosyntec
consultants

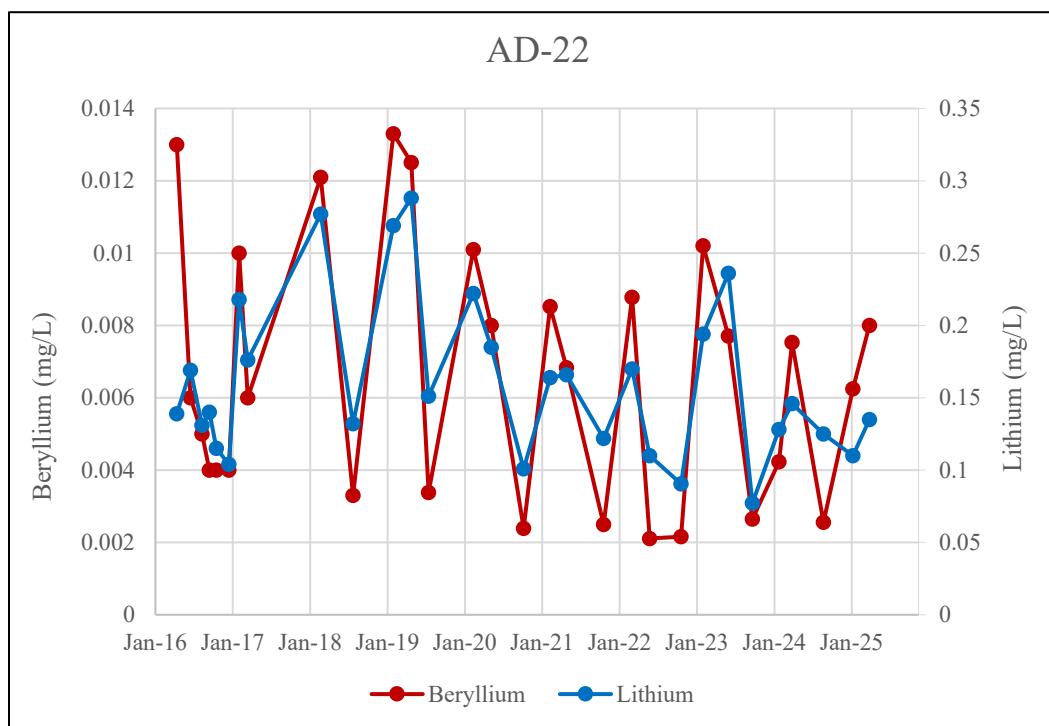
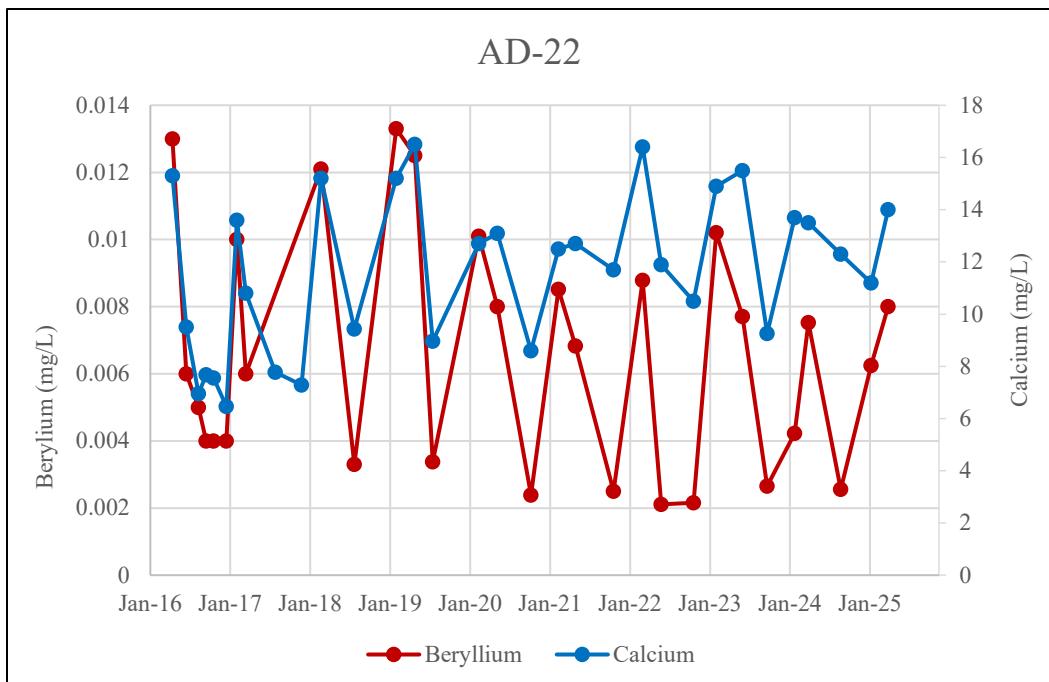
Figure
1

Notes:

1. Beryllium concentrations are shown in milligrams per liter (mg/L).
2. Water level is shown as groundwater elevation in feet above mean sea level (ft amsl).
3. The gap in beryllium data represents the time period in which detection monitoring took place and samples were not analyzed for beryllium.

FGD: Flue Gas Desulfurization

Beryllium v. Groundwater Elevation
Pirkey FGD Stackout Pad



Geosyntec consultants

AMERICAN ELECTRIC POWER

Figure
2

Columbus, Ohio

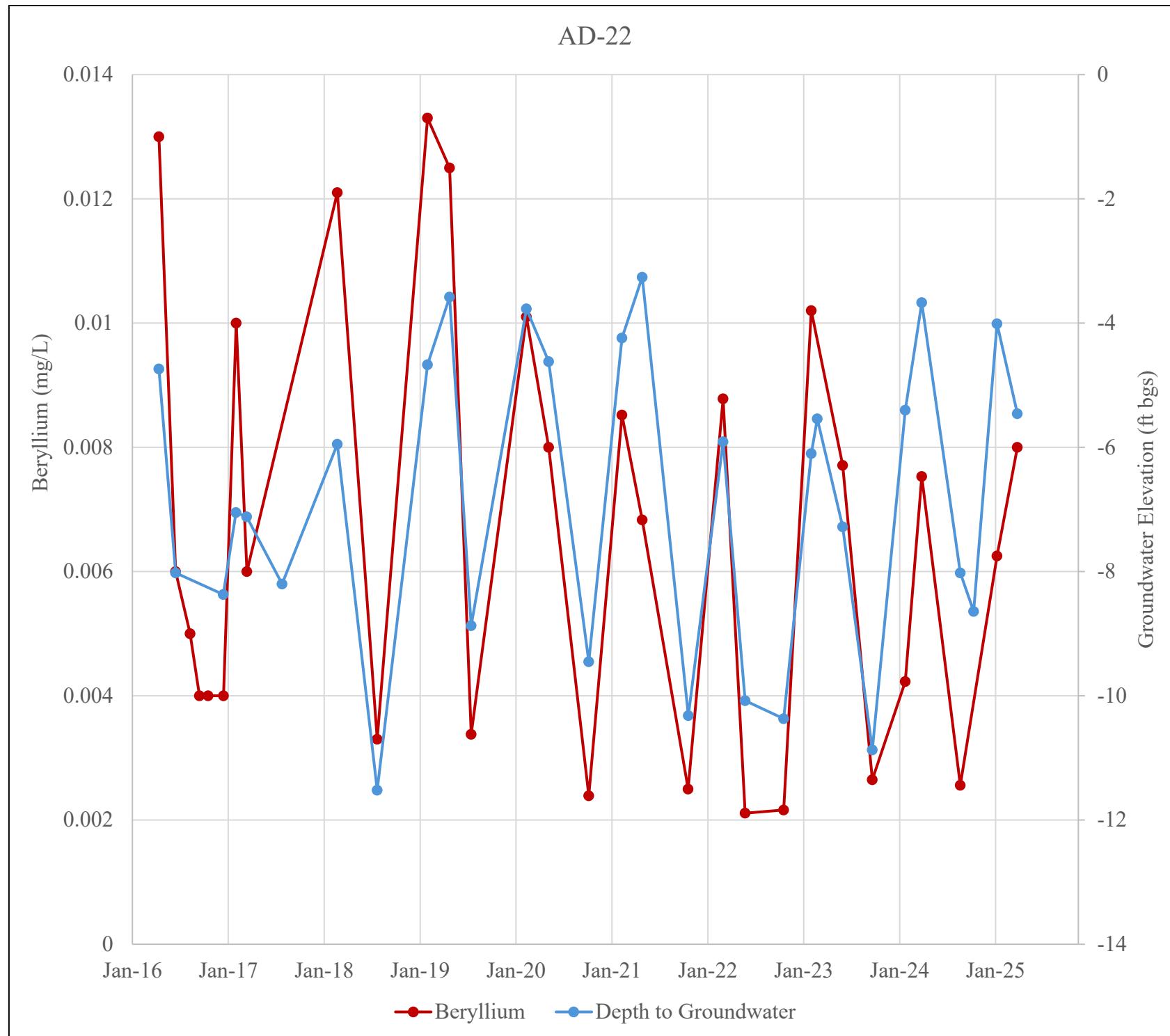
December 2025

Notes:

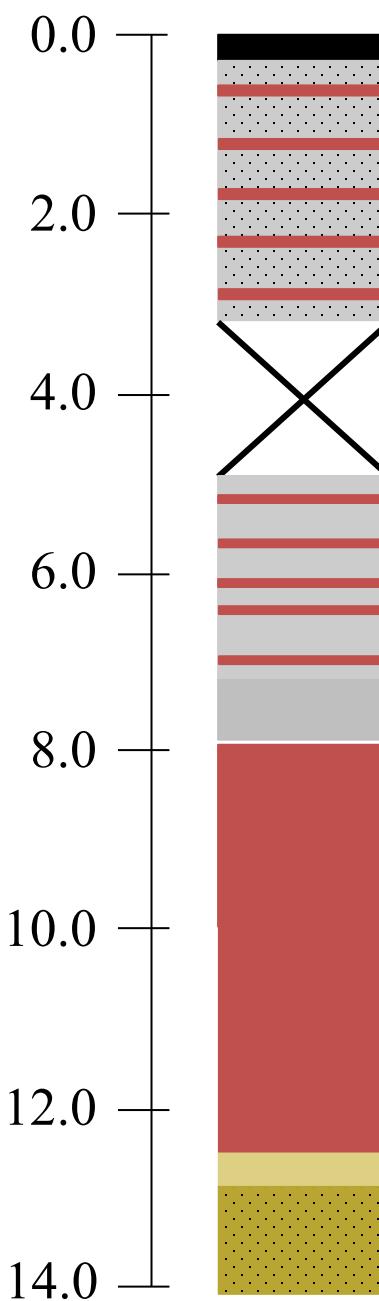
1. Beryllium, calcium, and lithium concentrations are shown in milligrams per liter (mg/L).

FGD: flue gas desulfurization

AD-22 Beryllium v. Calcium and Lithium
Pirkey FGD Stackout Pad


Geosyntec
consultants

Columbus, Ohio


**AMERICAN
ELECTRIC
POWER**

December 2025

Figure
3

Depth (ft bgs)

Top soil

Silty clay

1.5' Alternating maroon and light gray silty clay

No recovery

Clay

5.0' Alternating maroon and light gray clay

Clay

7.0' Light gray clay

Clay

8.0' Maroon clay

Clay

12.6' Tan clay

Clayey silt

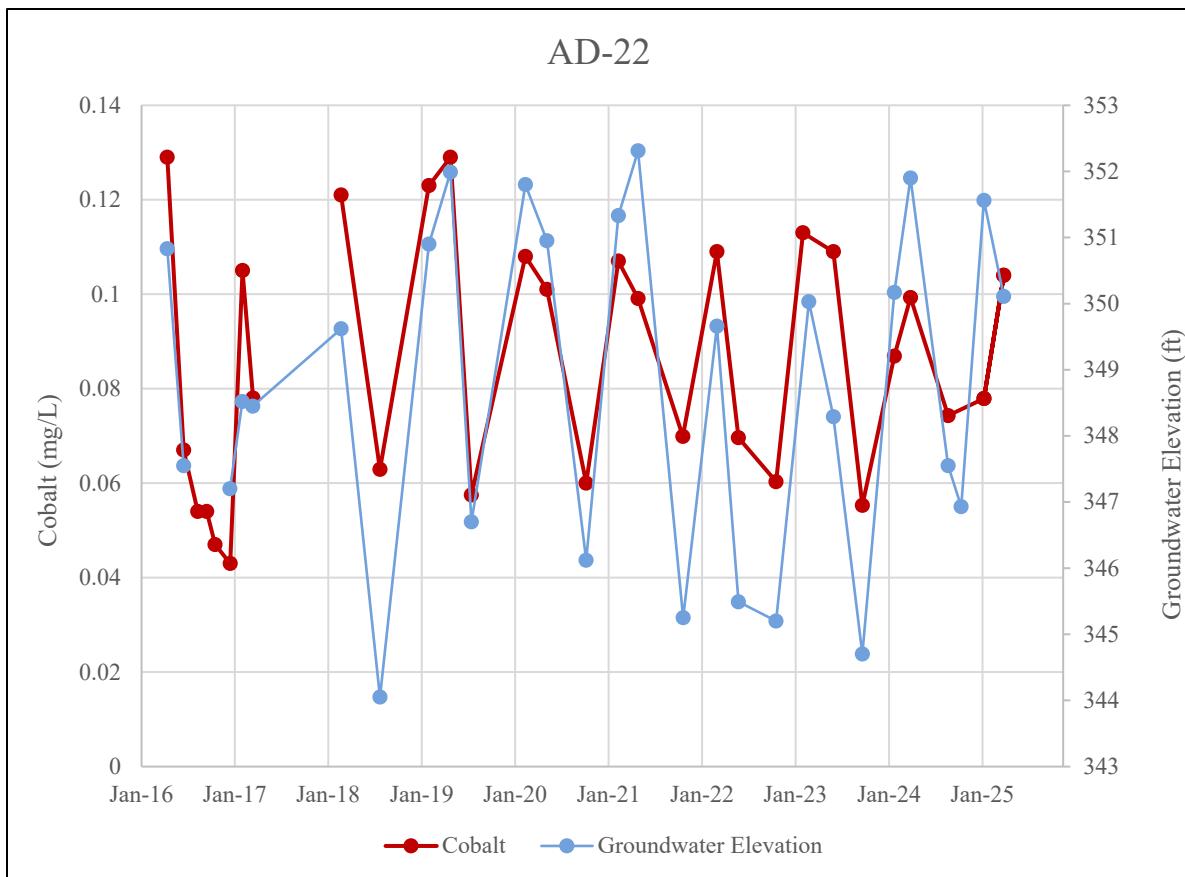
13.3' Tannish brown clayey silt

Notes:

1. A sample was collected for analysis of mineralogy from 6–8 ft bgs.
2. This illustration represents the log for boring SP-B4. The full boring log is available in Attachment B.
3. AD-22 is screened at the interval of 10–30 ft bgs.

FGD: Flue Gas Desulfurization

ft bgs: feet below ground surface


mg/L: milligrams per liter

AD-22 Seasonal Water Table Geology

H. W. Pirkey Plant – FGD Stackout Pad

Geosyntec
consultants

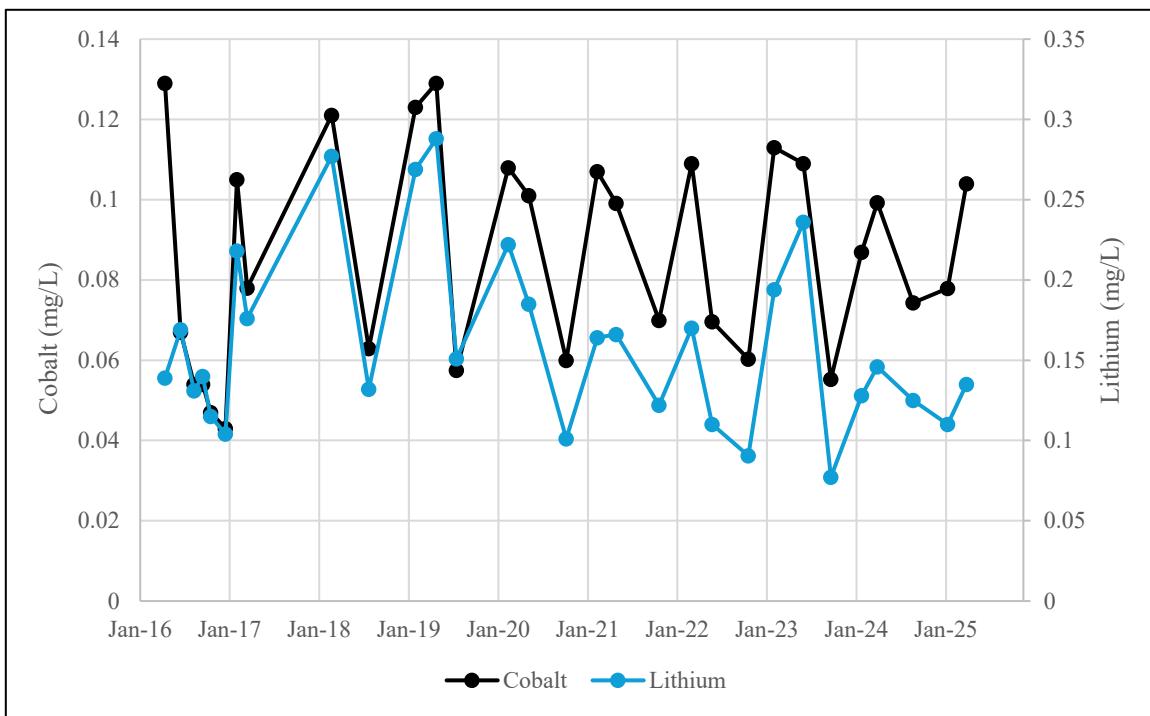
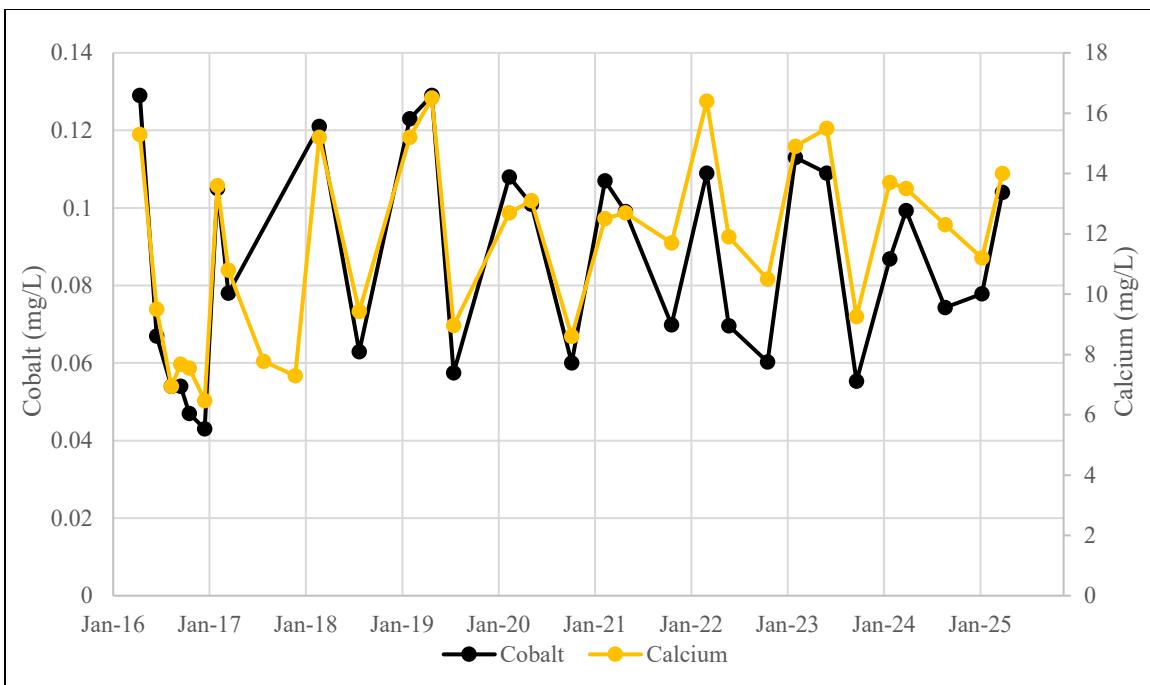
Figure
4

Notes:

1. Cobalt concentrations are shown in milligrams per liter (mg/L).
2. Water level is shown as groundwater elevation in feet above mean sea level (ft amsl).
3. The gap in cobalt data represents the time period in which detection monitoring took place and samples were not analyzed for cobalt.

FGD: Flue Gas Desulfurization

AD-22 Cobalt v. Groundwater Elevation
Pirkey FGD Stackout Pad



Geosyntec
consultants

Columbus, Ohio

AMERICAN
ELECTRIC
POWER

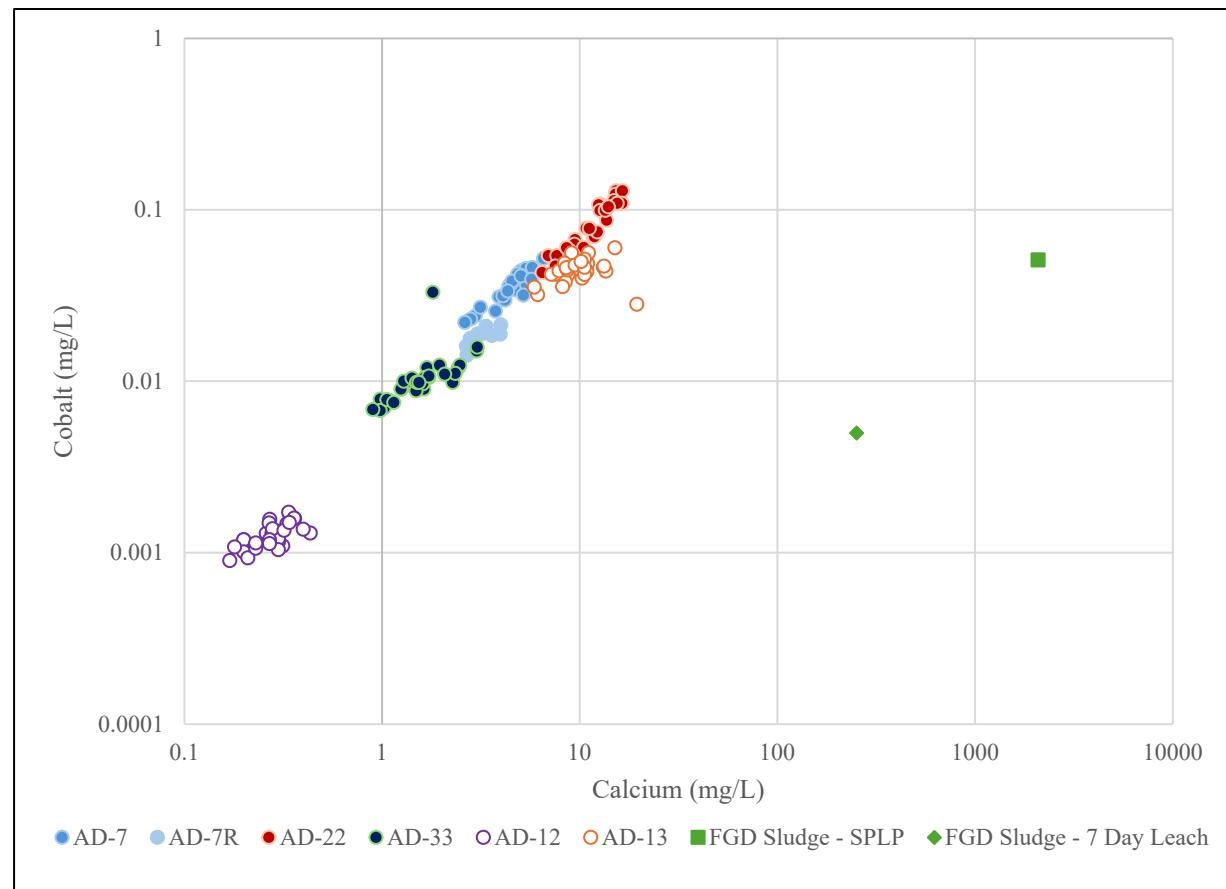
December 2025

Figure
5

Notes:

1. Cobalt, calcium, and lithium concentrations are shown in milligrams per liter (mg/L).
- FGD: Flue Gas Desulfurization

AD-22 Cobalt v. Calcium and Lithium


Pirkey FGD Stackout Pad

Geosyntec
consultants

AMERICAN
ELECTRIC
POWER

Figure
6

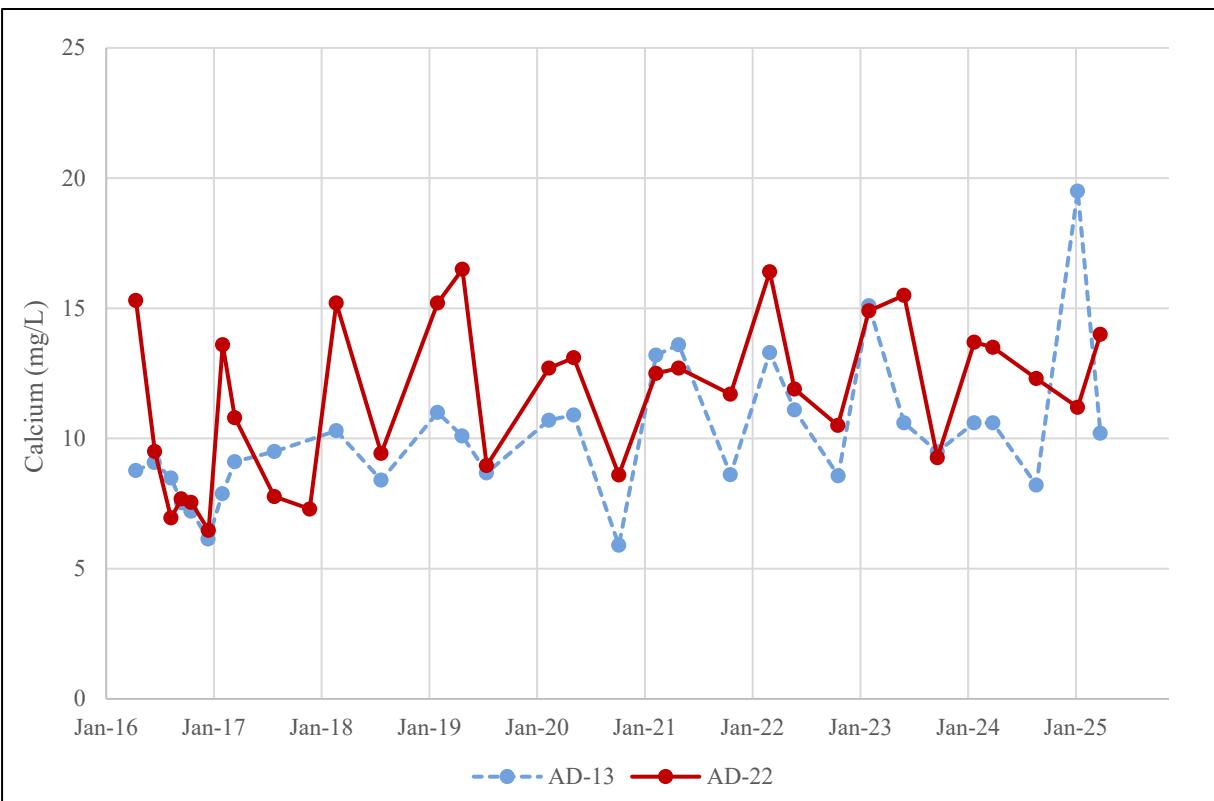
Columbus, Ohio December 2025

Notes:

1. Cobalt and calcium concentrations are shown in milligrams per liter (mg/L).
2. Upgradient wells are shown with hollow circles.
3. 'FGD Sludge-SPLP' and 'FGD Sludge 7 Day Leach' present the leached concentrations of cobalt and calcium using the Synthetic Precipitation Leaching Procedure (SPLP) (SW-846 Test Method 1312) and the 7-Day Distilled Water Leachate Test Procedure (30 Texas Administration Code 335.521 Appendix 4), respectively.

FGD: Flue Gas Desulfurization

Cobalt and Calcium Concentration Distribution
Pirkey FGD Stackout Pad


Geosyntec
consultants

**AMERICAN
ELECTRIC
POWER**

Figure
7

Columbus, Ohio

December 2025

Notes:

1. Calcium concentrations are shown in milligrams per liter (mg/L).

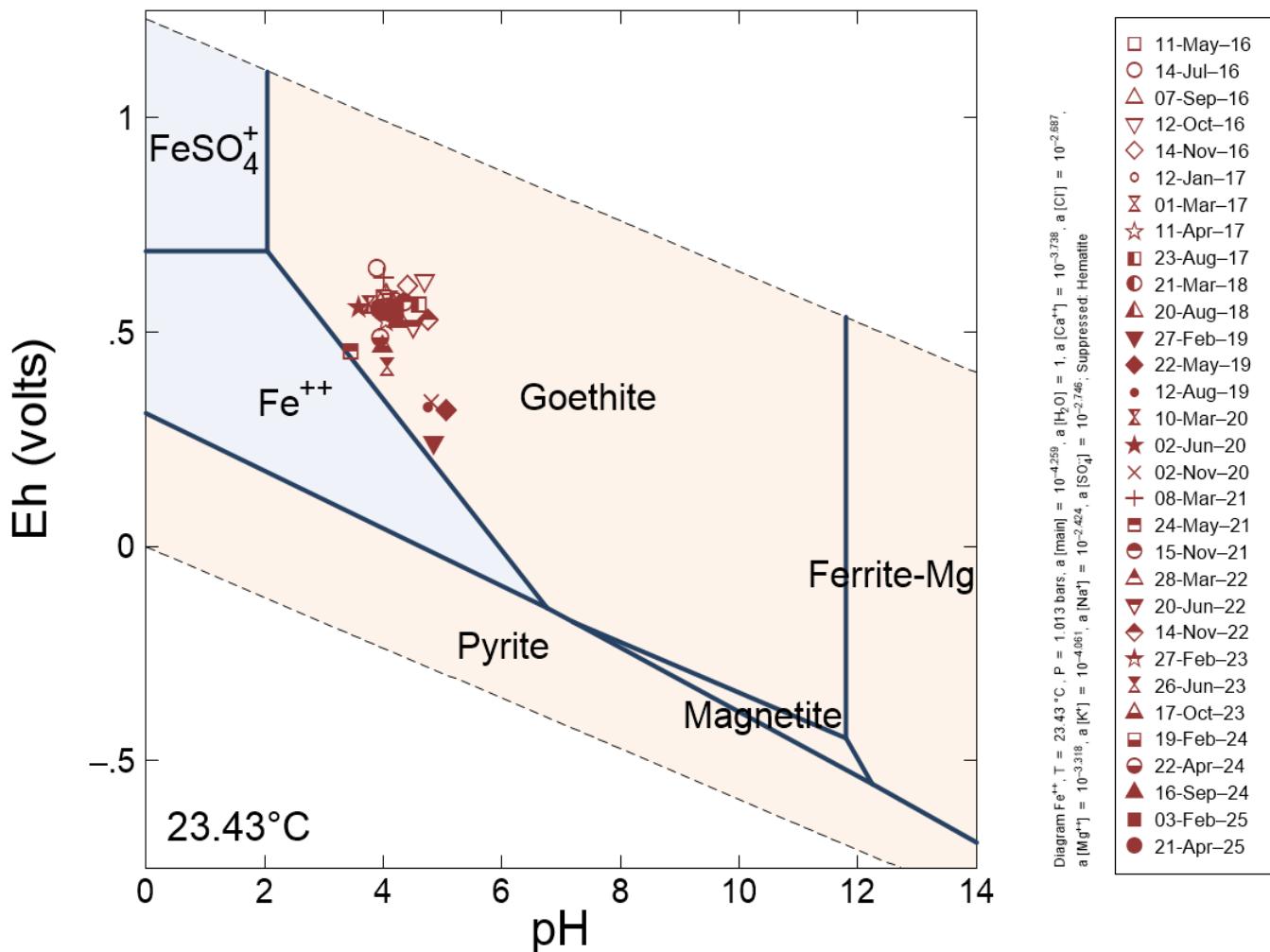
2. Upgradient monitoring well AD-13 is shown with a dashed line.

FGD: Flue Gas Desulfurization

Calcium Time Series Graph

Pirkey FGD Stackout Pad

Geosyntec
consultants


AMERICAN
ELECTRIC
POWER

Figure

8

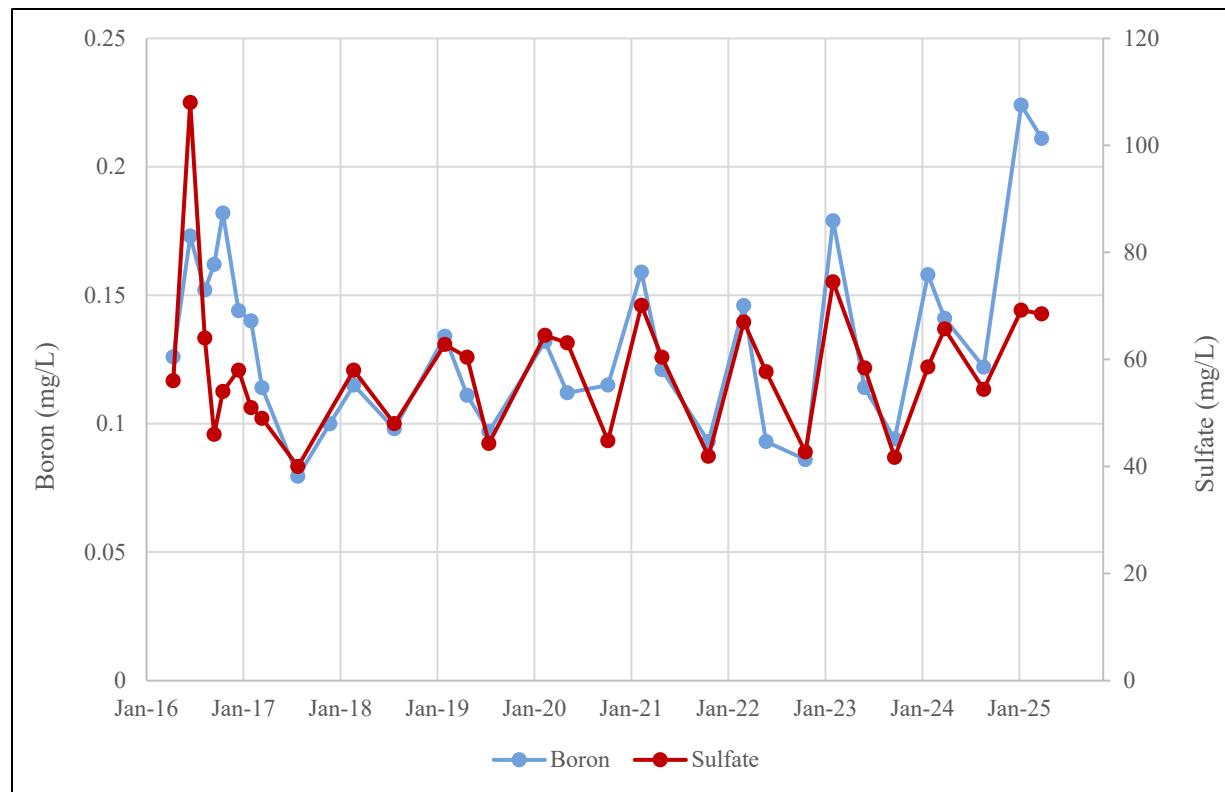
Columbus, Ohio

December 2025

Notes: Groundwater concentrations of major cations and anions at AD-22 from the April 2025 sampling event were used to establish baseline conditions for the diagram. Eh and pH values for sampling dates at AD-22 are shown on the diagram.

AD-22 Eh-pH Diagram

Pirkey FGD Stackout Pad


Geosyntec consultants

AMERICAN
ELECTRIC
POWER

Columbus, Ohio

December 2025

Figure
9

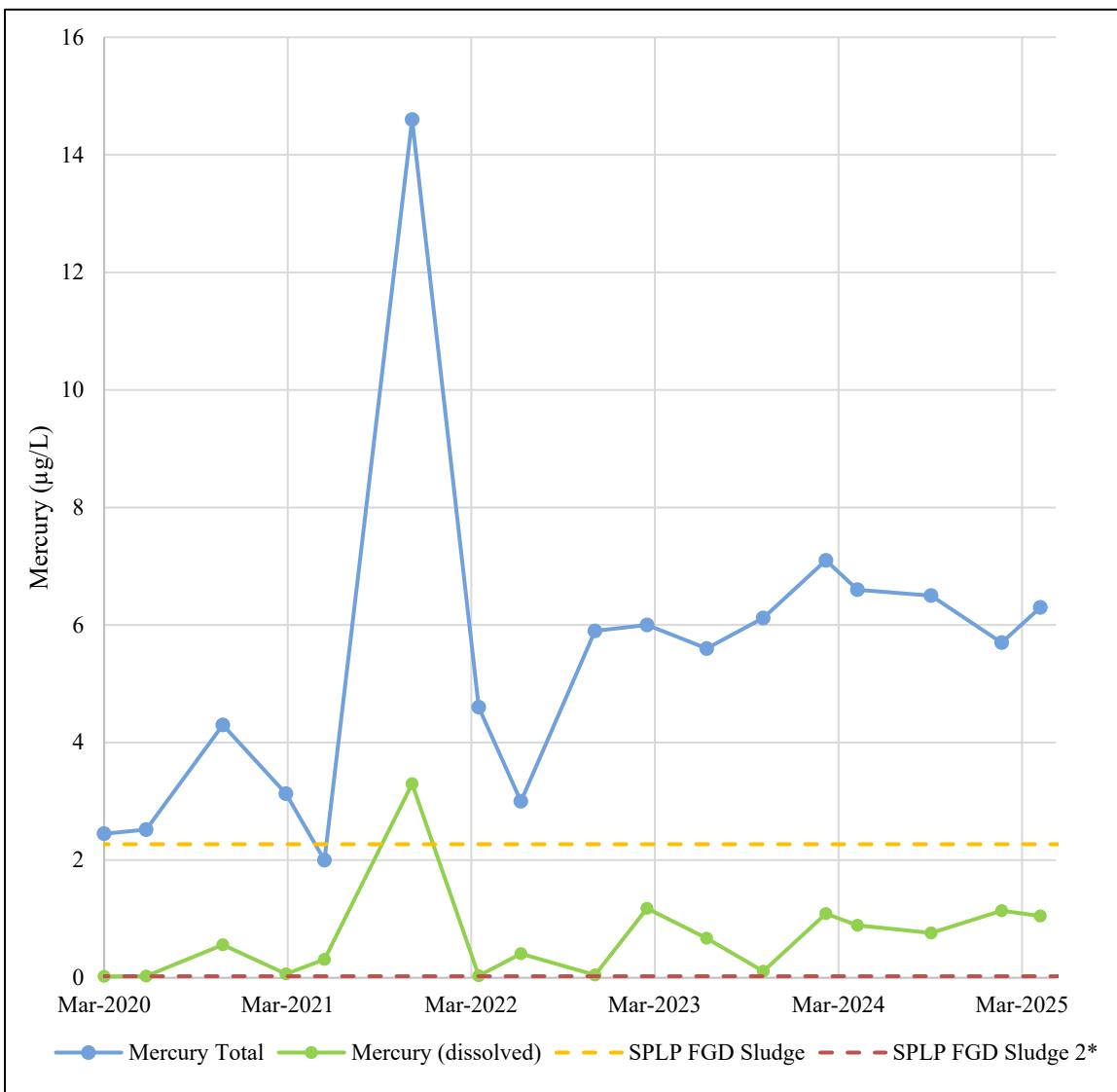
Notes:

1. Boron and sulfate concentrations are shown in milligrams per liter (mg/L).

FGD: Flue Gas Desulfurization

AD-33 Boron and Sulfate Time Series Graph

Pirkey FGD Stackout Pad


Geosyntec
consultants

AMERICAN
ELECTRIC
POWER

Columbus, Ohio

October 2025

Figure
10

Notes:

1. Mercury concentrations are shown in micrograms per liter ($\mu\text{g/L}$).

2. FGD sludge samples collected on 7/17/2019.

3. 7-day leaching procedure results were not shown due to non-detects.

*: Non-detect presented as the reporting limit

FGD: Flue Gas Desulfurization

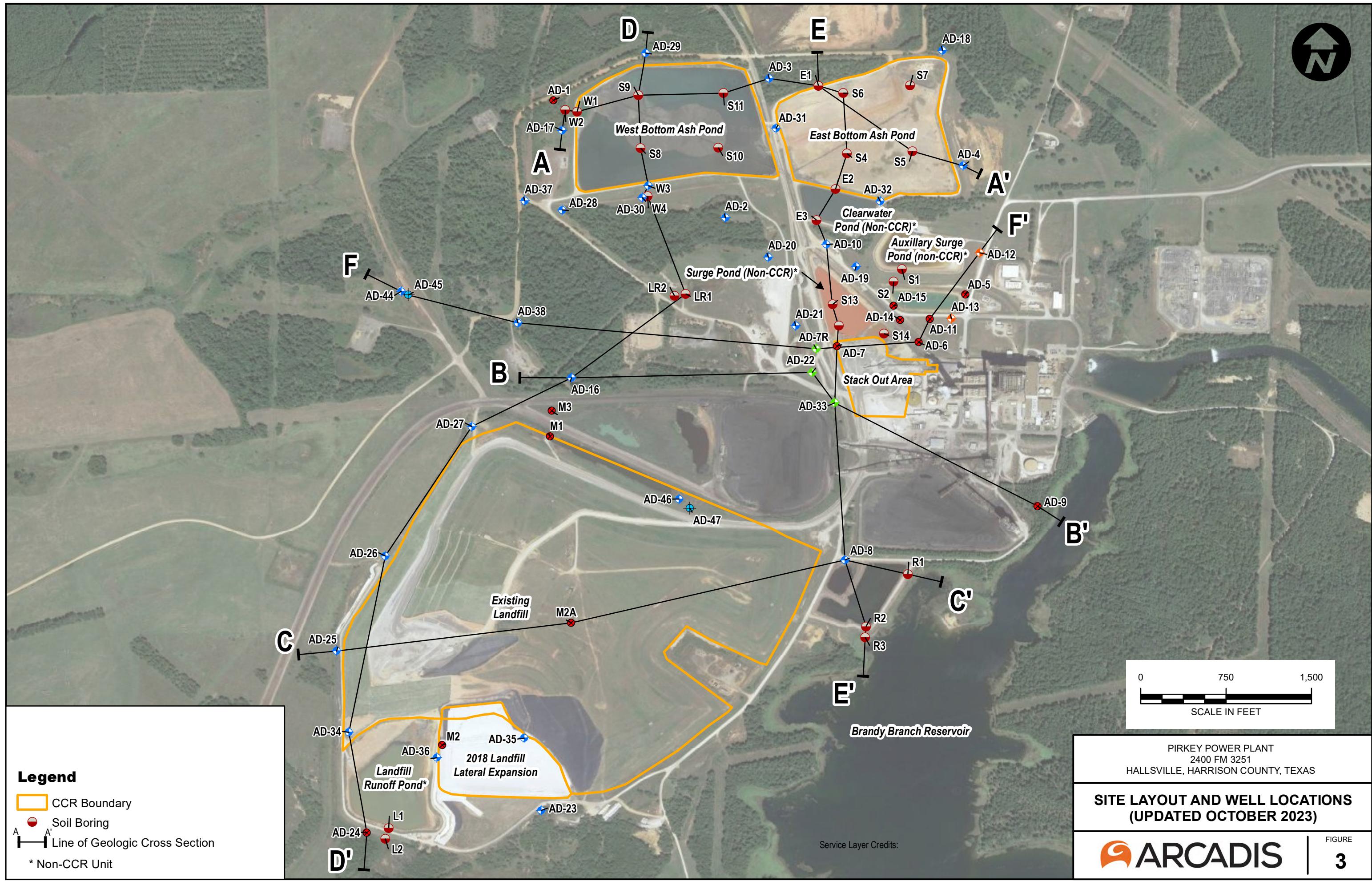
SPLP: Synthetic Precipitation Leaching Procedure

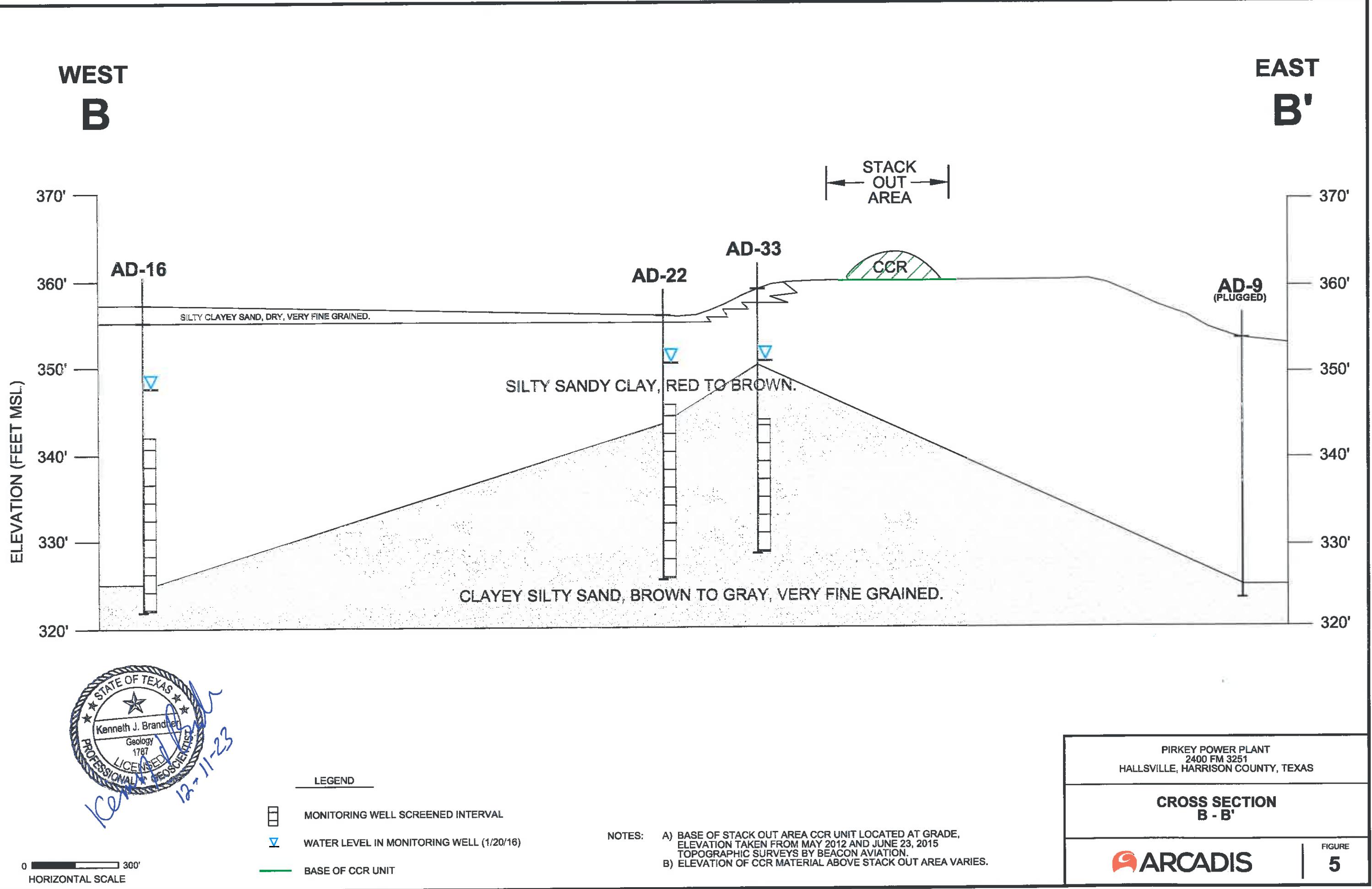
AD-33 Mercury Time Series Graph
Pirkey FGD Stackout Pad

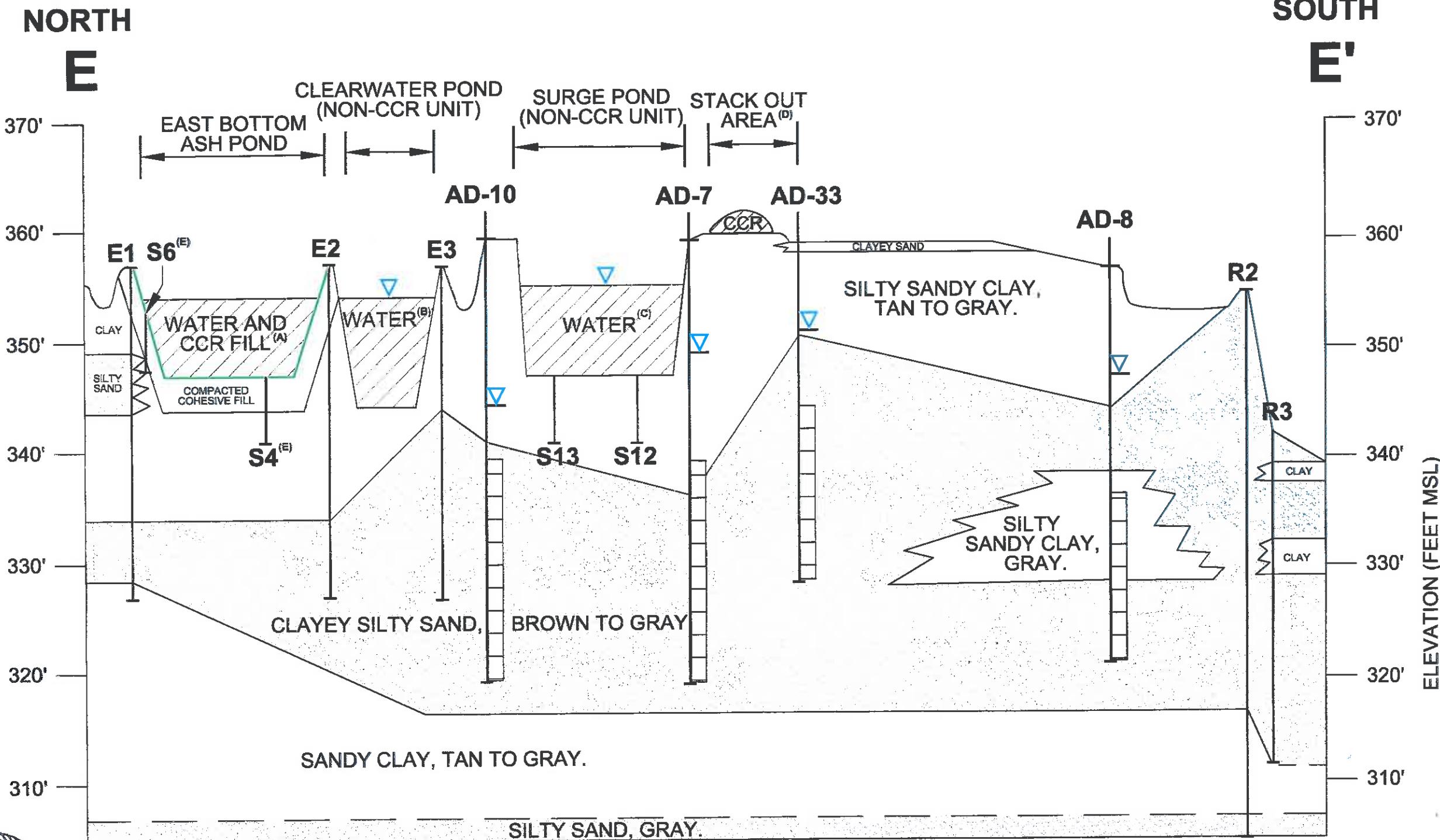
Geosyntec
consultants

**AMERICAN
ELECTRIC
POWER**

Figure

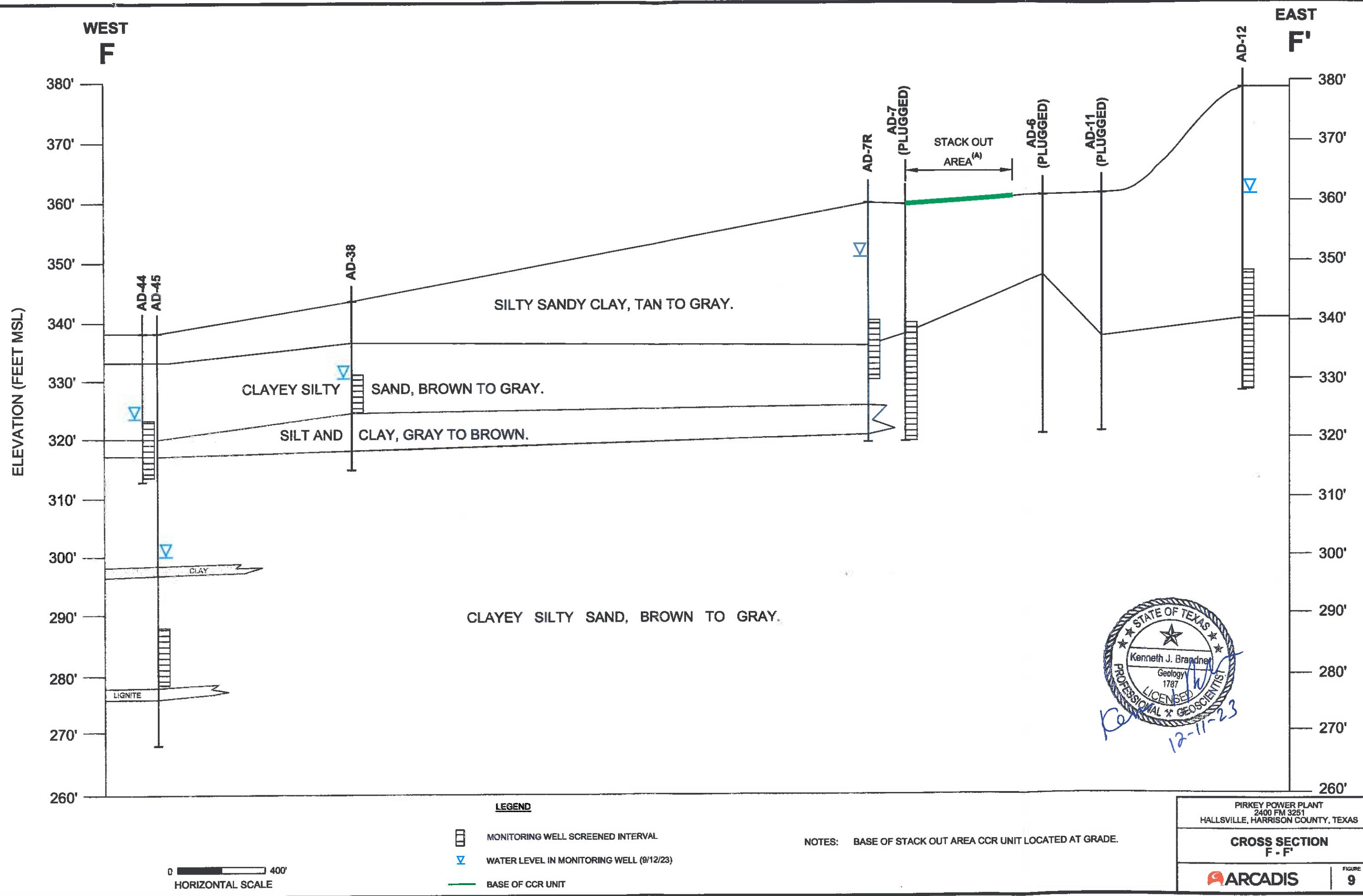

11


Columbus, Ohio


October 2025

ATTACHMENT A

Geologic Cross Sections



0 500' HORIZONTAL SCALE

PIKEY POWER PLANT
 2400 FM 3251
 HALLSVILLE, HARRISON COUNTY, TEXAS

CROSS SECTION
E - E'

ATTACHMENT B

SP-B4 Boring Log

Soil Boring Log

Project: AEP Pirkey

Boring/Well Name: SP-B4

Project Location: Hallsville, TX

Boring Date: 3/3/2020

Depth Scale Feet	Water Table	Soil Profile		PID*
		Description		
0		pp= pocket penetrometer		
		0.0'-0.4': Top soil, black silt, vegetation		
		0.4'-0.7': Brown clayey silt, good cohesion		
		0.7'-1.5': Red and light gray silty clay, moderate stiffness (pp. 2.5), high plasticity		
		1.5'-3.7': Maroon and light gray clay, high stiffness (pp. 4.5-5.0), low plasticity; iron ore present 3.1'-3.7'		
		3.7'-5.0': NO RECOVERY		
5		5.0'-7.0': Maroon and light gray clay, high stiffness (pp. 4.5-5.0), low plasticity; iron ore present throughout		
		7.0'-8.0': Light gray clay with iron ore, moderate stiffness (pp. 2.5-3.0), moderate plasticity		
		8.0'-10.0': Maroon clay, moderate stiffness (pp. 3.5), moderate plasticity; iron ore present; moist at 9'		
10		10.0'-12.6': Maroon clay, moderate stiffness (pp. 3.5), moderate plasticity; iron ore present; wet at 12'		
		12.6'-13.3': Tan clay, low stiffness (pp. 1.5), high plasticity; wet		
		13.3'-18.5': Tan and brown clayey silt, moderate cohesion; iron ore present; wet		
15				
		18.5'-20.3': Maroon silty clay, low stiffness (pp. 1.0), moderate plasticity; iron ore; wet		
20		20.3'-21.1': Dark gray/black clay, trace silt, low stiffness (pp. 1.5), high plasticity; wet		
		21.1'-21.3': Dark gray silt, good cohesion; wet		
		21.3'-21.9': Dark gray silty clay, low stiffness (pp. 1.5), high plasticity; wet		
		21.9'-22.3': Dark gray silt, moderate cohesion; wet		
		22.3'-22.7': light brown silt; low cohesion; wet		
		22.7'-24.4': Dark gray and dark green silty clay, moderate/high stiffness (pp. 3.5), moderate plasticity; wet, glauconite present		
		24.4'-27.8': Dark green/gray fine grained sand, well sorted; wet; glauconite present		
25		27.8'-30.0': Red and orange fine grained sand, well sorted, with iron ore; wet		
30				
		Samples collected at 6-8'; 18-20'; 28-30'		
		TD at 30' bgs; refusal		
		*PID readings not collected		
35				

Drill Rig Geoprobe 3230 DT

Drilling Contractor: C&S

Driller: DJ Diduch

Geosyntec Consultants

ATTACHMENT C

AD-22 Boring Log and Well Installation Diagram

APEX PROJECT NO.: <u>110-089</u>			<input type="checkbox"/> BORING	<input checked="" type="checkbox"/> MONITOR WELL	MONITOR WELL NUMBER: <u>AD-22</u>					
FACILITY NAME: <u>AEP- Pirkey Power Plant</u>			FACILITY ID NO.: <u>N/A</u>							
FACILITY ADDRESS: <u>Hallsville, Texas</u>										
DRILLING COMPANY/METHOD/RIG: <u>Apex Geoscience Inc. / Hollow-stem Augers/ CME-55 Track Rig</u>										
DRILLER: <u>Ed Wilson, Apex Geoscience Inc.</u>			COMPLETION DATE: <u>12/16/2010</u>							
PREPARED BY: <u>David Bedford</u>			LOGGED BY: <u>David Bedford</u>							
LATITUDE: <u>N 32°27'03.3"</u> LONGITUDE: <u>W94°29'41.3"</u>			Datum: <u>WGS-84</u> WELL LOCATION: <u>Triangle- South side Quansit Hut</u>							
DEPTH (FEET)	PID (PPM)	SAMPLE INTERVAL	WELL LOG AND COMPLETION DETAILS		USCS CODE	SOIL DESCRIPTION AND COMMENTS		Odor	Moisture	
1			0-0.5		SC	Clayey sand, light brown, very fine grained		None	Moist	
2			0.5-12		CL	Lean clay, light brown mottled with light gray Few iron ore (small) pebbles in clayey sandy streaks		None	Slightly Moist	
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
13			12-20		SC	Clayey sand, grayish brown with orangish brown streaks, very fine grained Slightly wet @ 12.5' from seepage Large amount of iron ore 15-17'		None	Slightly Wet	
14										
15										
16										
17										
18										
19										
20										
21			20-25		SC	(Dense crystalline rock 21-21.1'), light brown clayey sand, greenish black, mica, black clay streaks, very fine grained, wet @ 20'		None	Wet	
22										
23										
24										
25										
26			25-30		SM	Sand, greenish brown (1') grading to orangish brown, silty, very fine grained		None	Wet	
27										
28										
29										
30										
31						Boring Terminated at 30'				
32										
33										
34										
35										
36										
37										
38										
39										
40										
			Cement		Bentonite		Filter Sand		Water Level	
Apex geoscience inc.			Total Depth: <u>30 feet</u>				Riser Interval: <u>+3 (ags)-10'</u>			
			Filter Sand (Size/Interval): <u>8-30'</u>				Screen Interval: <u>10-30'</u>			
			Grout (Type/Interval): <u>Grout from 0-2'; Bentonite from 2-8'</u>				Water level: <u>12.5'</u>			
			Surface Completion <input type="checkbox"/> Flush <input checked="" type="checkbox"/> Above Ground						<u>3'</u>	

Note: This log is not to be used separate from this report.

ATTACHMENT D

FGD Sludge Materials Analytical Report

AEP ANALYTICAL CHEMISTRY SERVICES
Analysis Report

02004

502 North Allen Ave.
Shreveport, LA 71101
Phone: (318) 673-3802
Fax: (318) 673-3960

Report ID : 40143	Company: SEP - Flint Creek (TW)			Address: 502 North Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960				
Date Received: 07/18/2019	Contact: Terry Wehling Phone: (318) 673-2721							
AEP Sample ID : 227040	Collected Date: 07/17/2019			By: RF Matrix: Solid				
Cust Sample ID: Dirt/Sludge	Location: H.W. Pirkey Power Plant							
Metals (227040)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Aluminum	20500	mg/Kg	12.5	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB
Antimony	0.993	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Arsenic	28.3	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Barium	142	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB
Beryllium	2.12	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Boron	845	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:18	M4	JDB
Cadmium	1.68	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Calcium	77500	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB
Chromium	30.6	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Cobalt	24.8	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Copper	30.2	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Dry Weight, Percent	94.7	%	0.001	1		07/22/2019 15:30	T5	JDB
Iron	36300	mg/Kg	12.5	1:2500	EPA 6010B 1996	07/26/2019 0:18	M4	JDB
Lead	5.31	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Lithium	11.5	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47	T5	JDB
Magnesium	7150	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB
Manganese	498	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB
Mercury	0.653	mg/Kg	0.000025	1	EPA 7471B 1998	07/24/2019 14:37		LNM
Molybdenum	8.45	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Nickel	28.8	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Potassium	1370	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB
Selenium	36.4	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Silver	0.208	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB
Sodium	1230	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB
Strontium	382	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:18		JDB
Thallium	0.503	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 0:47		JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEP Analytical Chemistry Services.

AEP ANALYTICAL CHEMISTRY SERVICES

Analysis Report

502 North Allen Ave.
Shreveport, LA 71101
Phone: (318) 673-3802
Fax: (318) 673-3960

Report ID	: 40143			Company:	SEP - Flint Creek (TW)			Address:	502 North Allen Avenue		
Date Received:	07/18/2019			Contact:	Terry Wehling				Shreveport, LA 71101		
				Phone:	(318) 673-2721			Fax:	(318) 673-3960		
Tin	1.28	mg/Kg	0.2	1:50	EPA 6010B	1996		07/26/2019 0:47	T5	JDB	
Titanium	1360	mg/Kg	2.5	1:2500	EPA 6010B	1996		07/26/2019 0:18	M4	JDB	
Vanadium	77.5	mg/Kg	0.05	1:50	EPA 6010B	1996		07/26/2019 0:47		JDB	
Zinc	26	mg/Kg	0.25	1:50	EPA 6010B	1996		07/26/2019 0:47		JDB	
Waste Characterization (227040)											
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method		Analysis Date/Time	Codes	Tech		
pH, Soil	8.44	pH		1	EPA 9045D 2002		07/25/2019 12:30			GB	

AEP ANALYTICAL CHEMISTRY SERVICES
Analysis Report

02004

502 North Allen Ave.
Shreveport, LA 71101
Phone: (318) 673-3802
Fax: (318) 673-3960

Report ID : 40143	Company: SEP - Flint Creek (TW)			Address: 502 North Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960				
Date Received: 07/18/2019	Contact: Terry Wehling Phone: (318) 673-2721							
AEP Sample ID : 227041	Collected Date: 07/17/2019			By: RF Matrix: Solid				
Cust Sample ID: Dirt/Sludge	Location: H.W. Pirkey Power Plant							
SPLP (227041)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Aluminum	14.2	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB
Antimony	0.018	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB
Arsenic	0.015	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB
Barium	3.46	mg/L	0.05	1:50	EPA 1312/6010B 1996	07/25/2019 20:58		JDB
Beryllium	0.012	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB
Boron	22.3	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 20:58		JDB
Cadmium	0.002	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB
Calcium	2090	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 20:58		JDB
Chromium	0.005	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB
Cobalt	0.051	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB
Copper	0.009	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB
Iron	52.4	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 20:58		JDB
Lead	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB
Lithium	0.146	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB
Magnesium	62.3	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 20:58		JDB
Manganese	2.83	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB
Mercury	0.002272	mg/L	0.000025	1	EPA 7470A 1994	07/24/2019 14:05		LNM
Molybdenum	0.229	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB
Nickel	0.054	mg/L	0.025	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB
Potassium	9.61	mg/L	0.01	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB
Selenium	0.93	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB
Silver	< 0.001	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB
Sodium	35.6	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 20:58		JDB
Strontium	12.7	mg/L	0.05	1:50	EPA 1312/6010B 1996	07/25/2019 20:58		JDB
Thallium	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB
Tin	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEP Analytical Chemistry Services.

AEP ANALYTICAL CHEMISTRY SERVICES

Analysis Report

02004

502 North Allen Ave.
Shreveport, LA 71101
Phone: (318) 673-3802
Fax: (318) 673-3960

Report ID : 40143	Company: SEP - Flint Creek (TW)			Address: 502 North Allen Avenue Shreveport, LA 71101				
Date Received: 07/18/2019	Contact: Terry Wehling				Fax: (318) 673-3960			
	Phone: (318) 673-2721							
Titanium	0.041	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB
Vanadium	0.269	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB
Zinc	0.299	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:09		JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEP Analytical Chemistry Services.

Page 4 of 15

AEP ANALYTICAL CHEMISTRY SERVICES
Analysis Report

02004

502 North Allen Ave.
Shreveport, LA 71101
Phone: (318) 673-3802
Fax: (318) 673-3960

Report ID : 40143	Company: SEP - Flint Creek (TW)	Address: 502 North Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960						
Date Received: 07/18/2019	Contact: Terry Wehling							
	Phone: (318) 673-2721							
AEP Sample ID : 227042								
Cust Sample ID: Dirt/Sludge		Collected Date: 07/17/2019	By: RF					
Sample Desc.: Pirkey Sludge FGD 7 Day Leachate		Location: H.W. Pirkey Power Plant	Matrix: Solid					
7-Day Leachate (227042)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Aluminum	0.563	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Antimony	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Arsenic	0.011	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Barium	0.134	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Beryllium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Boron	8.44	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:43		JDB
Cadmium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Calcium	252	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:43		JDB
Chromium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Cobalt	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Copper	0.002	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Iron	0.211	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Lead	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Lithium	0.069	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Magnesium	6.73	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Manganese	0.008	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Mercury	< 0.005	mg/L	0.005	1:200	EPA 7470A 1994	07/30/2019 10:19		LNM
Molybdenum	0.18	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Nickel	< 0.025	mg/L	0.025	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Potassium	4.82	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Selenium	0.208	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Silver	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Sodium	19.8	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:43		JDB
Strontium	1.6	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Thallium	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Tin	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35		JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEP Analytical Chemistry Services.

AEP ANALYTICAL CHEMISTRY SERVICES

Analysis Report

02004

502 North Allen Ave.
Shreveport, LA 71101
Phone: (318) 673-3802
Fax: (318) 673-3960

Report ID : 40143	Company: SEP - Flint Creek (TW)			Address: 502 North Allen Avenue Shreveport, LA 71101				
Date Received: 07/18/2019	Contact: Terry Wehling				Fax: (318) 673-3960			
	Phone: (318) 673-2721							
Titanium	0.015	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Vanadium	0.03	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:35		JDB
Zinc	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:35		JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEP Analytical Chemistry Services.

Page 6 of 15

AEP ANALYTICAL CHEMISTRY SERVICES
Analysis Report

02004

502 North Allen Ave.
Shreveport, LA 71101
Phone: (318) 673-3802
Fax: (318) 673-3960

Report ID : 40143	Company: SEP - Flint Creek (TW)			Address: 502 North Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960					
Date Received: 07/18/2019	Contact: Terry Wehling Phone: (318) 673-2721								
AEP Sample ID : 227043	Collected Date: 07/17/2019			By: RF Matrix: Solid					
Cust Sample ID: Dirt/Sludge 2 Sample Desc.: Pirkey Sludge FGD 2 Total									
Metals (227043)	Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Aluminum	19600	mg/Kg	12.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB	
Antimony	0.919	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Arsenic	22.8	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Barium	121	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB	
Beryllium	1.66	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Boron	891	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:25	T5	JDB	
Cadmium	1.37	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Calcium	84500	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB	
Chromium	28.5	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Cobalt	20.3	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Copper	26.9	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Dry Weight, Percent	97.2	%	0.001	1		07/22/2019 15:30	T5	JDB	
Iron	28800	mg/Kg	12.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB	
Lead	5.78	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Lithium	12	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26	T5	JDB	
Magnesium	7070	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB	
Manganese	388	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB	
Mercury	0.606	mg/Kg	0.000025	1	EPA 7471B 1998	07/24/2019 14:27		LNM	
Molybdenum	11	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Nickel	25.7	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Potassium	1460	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB	
Selenium	30.4	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Silver	0.19	mg/Kg	0.05	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	
Sodium	1780	mg/Kg	25	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB	
Strontium	451	mg/Kg	2.5	1:2500	EPA 6010B 1996	07/26/2019 0:25		JDB	
Thallium	0.562	mg/Kg	0.25	1:50	EPA 6010B 1996	07/26/2019 1:26		JDB	

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEP Analytical Chemistry Services.

AEP ANALYTICAL CHEMISTRY SERVICES

Analysis Report

502 North Allen Ave.
Shreveport, LA 71101
Phone: (318) 673-3802
Fax: (318) 673-3960

Report ID	: 40143			Company:	SEP - Flint Creek (TW)			Address:	502 North Allen Avenue		
Date Received:	07/18/2019			Contact:	Terry Wehling				Shreveport, LA 71101		
				Phone:	(318) 673-2721			Fax:	(318) 673-3960		
Tin	1.06	mg/Kg	0.2	1:50	EPA 6010B	1996		07/26/2019 1:26	T5	JDB	
Titanium	1280	mg/Kg	2.5	1:2500	EPA 6010B	1996		07/26/2019 0:25		JDB	
Vanadium	68.3	mg/Kg	0.05	1:50	EPA 6010B	1996		07/26/2019 1:26		JDB	
Zinc	33.8	mg/Kg	0.25	1:50	EPA 6010B	1996		07/26/2019 1:26		JDB	
Waste Characterization (227043)											
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method		Analysis Date/Time	Codes	Tech		
pH, Soil	8.71	pH		1	EPA 9045D 2002		07/25/2019 12:30			GB	

AEP ANALYTICAL CHEMISTRY SERVICES
Analysis Report

02004

502 North Allen Ave.
Shreveport, LA 71101
Phone: (318) 673-3802
Fax: (318) 673-3960

Report ID : 40143	Company: SEP - Flint Creek (TW)			Address: 502 North Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960				
Date Received: 07/18/2019	Contact: Terry Wehling Phone: (318) 673-2721							
AEP Sample ID : 227044	Collected Date: 07/17/2019			By: RF Matrix: Solid				
Cust Sample ID: Dirt/Sludge 2 Sample Desc.: Pirkey Sludge FGD 2 SPLP								
SPLP (227044)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Aluminum	10.5	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Antimony	0.017	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Arsenic	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Barium	2.57	mg/L	0.05	1:50	EPA 1312/6010B 1996	07/25/2019 21:06		JDB
Beryllium	0.009	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Boron	26.7	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 21:06		JDB
Cadmium	0.002	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Calcium	1960	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 21:06		JDB
Chromium	0.004	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Cobalt	0.051	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Copper	0.003	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Iron	47.7	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 21:06		JDB
Lead	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Lithium	0.136	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Magnesium	70.2	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 21:06		JDB
Manganese	2.87	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Mercury	< 0.000025	mg/L	0.000025	1	EPA 7470A 1994	07/24/2019 14:21		LNM
Molybdenum	0.288	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Nickel	0.071	mg/L	0.025	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Potassium	11.4	mg/L	0.01	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Selenium	0.775	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Silver	< 0.001	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Sodium	56.7	mg/L	0.5	1:50	EPA 1312/6010B 1996	07/25/2019 21:06		JDB
Strontium	13.2	mg/L	0.05	1:50	EPA 1312/6010B 1996	07/25/2019 21:06		JDB
Thallium	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Tin	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEP Analytical Chemistry Services.

AEP ANALYTICAL CHEMISTRY SERVICES

Analysis Report

02004

502 North Allen Ave.
Shreveport, LA 71101
Phone: (318) 673-3802
Fax: (318) 673-3960

Report ID : 40143	Company: SEP - Flint Creek (TW)			Address: 502 North Allen Avenue Shreveport, LA 71101				
Date Received: 07/18/2019	Contact: Terry Wehling				Fax: (318) 673-3960			
	Phone: (318) 673-2721							
Titanium	0.037	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Vanadium	0.194	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB
Zinc	0.338	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 23:55		JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEP Analytical Chemistry Services.

Page 10 of 15

AEP ANALYTICAL CHEMISTRY SERVICES
Analysis Report

02004

502 North Allen Ave.
Shreveport, LA 71101
Phone: (318) 673-3802
Fax: (318) 673-3960

Report ID : 40143	Company: SEP - Flint Creek (TW)			Address: 502 North Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960					
Date Received: 07/18/2019	Contact: Terry Wehling Phone: (318) 673-2721								
AEP Sample ID : 227045	Collected Date: 07/17/2019			By: RF Matrix: Solid					
Cust Sample ID: Dirt/Sludge 2 Sample Desc.: Pirkey Sludge FGD 2 7 Day Leachate									
7-Day Leachate (227045)	Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Aluminum	0.994	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45		JDB	
Antimony	0.006	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45		JDB	
Arsenic	0.031	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45		JDB	
Barium	0.121	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45		JDB	
Beryllium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45		JDB	
Boron	16.4	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:53		JDB	
Cadmium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45		JDB	
Calcium	633	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:53		JDB	
Chromium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45		JDB	
Cobalt	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45		JDB	
Copper	0.003	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45		JDB	
Iron	0.225	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:45		JDB	
Lead	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45		JDB	
Lithium	0.1	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45		JDB	
Magnesium	9.54	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:45		JDB	
Manganese	0.015	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45		JDB	
Mercury	< 0.005	mg/L	0.005	1:200	EPA 7470A 1994	07/30/2019 10:36		LNM	
Molybdenum	0.448	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45		JDB	
Nickel	< 0.025	mg/L	0.025	1	EPA 6010B 1996	08/04/2019 19:45		JDB	
Potassium	9.02	mg/L	0.01	1	EPA 6010B 1996	08/04/2019 19:45		JDB	
Selenium	0.201	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45		JDB	
Silver	< 0.001	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45		JDB	
Sodium	48.3	mg/L	0.5	1:50	EPA 6010B 1996	08/04/2019 17:53		JDB	
Strontium	3.79	mg/L	0.05	1:50	EPA 6010B 1996	08/04/2019 17:53		JDB	
Thallium	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45		JDB	
Tin	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45		JDB	

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEP Analytical Chemistry Services.

AEP ANALYTICAL CHEMISTRY SERVICES

Analysis Report

02004

502 North Allen Ave.
Shreveport, LA 71101
Phone: (318) 673-3802
Fax: (318) 673-3960

Report ID : 40143	Company: SEP - Flint Creek (TW)			Address: 502 North Allen Avenue				
Date Received: 07/18/2019	Contact: Terry Wehling			Shreveport, LA 71101				
	Phone: (318) 673-2721			Fax: (318) 673-3960				
Titanium	0.02	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45		JDB
Vanadium	0.087	mg/L	0.001	1	EPA 6010B 1996	08/04/2019 19:45		JDB
Zinc	< 0.005	mg/L	0.005	1	EPA 6010B 1996	08/04/2019 19:45		JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEP Analytical Chemistry Services.

Page 12 of 15

AEP ANALYTICAL CHEMISTRY SERVICES
Analysis Report

02004

502 North Allen Ave.
Shreveport, LA 71101
Phone: (318) 673-3802
Fax: (318) 673-3960

Report ID : 40143 Date Received: 07/18/2019	Company: SEP - Flint Creek (TW) Contact: Terry Wehling Phone: (318) 673-2721	Address: 502 North Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960
--	---	--

Quality Control Data

* Quality control units are the same as reported analytical results

Date	Parameter	Sample ID	Blank Value *	Standard			Spike			Surrogate % Recovery	Duplicate % Difference	Tech
				Value *	Recovery*	%	Value *	Recovery*	%			
7/25/2019	Aluminum	226939.1	<0.005	2	2.0229733	101.1	2	2.071639	103.6		0.4	JDB
7/25/2019	Aluminum	227041.1	<0.005	2	2.0229733	101.1	2	2.2242	111.2		0.0	JDB
7/26/2019	Aluminum	227040.1	<12.5	2	2.0358232	101.8	100	132.38333	132.4		1.2	JDB
7/25/2019	Antimony	226939.1	<0.005	0.8	0.8092462	101.2	0.8	0.8159776	102.0		0.2	JDB
7/25/2019	Antimony	227041.1	<0.005	0.8	0.8092462	101.2	0.8	0.7671843	95.9		0.5	JDB
7/26/2019	Antimony	227040.1	<0.25	0.8	0.8071122	100.9	40	32.643192	81.6		1.8	JDB
7/25/2019	Arsenic	227041.1	<0.005	0.8	0.8086795	101.1	0.8	0.7758421	97.0		0.0	JDB
7/25/2019	Arsenic	226939.1	<0.005	0.8	0.8086795	101.1	0.8	0.8086275	101.1		0.1	JDB
7/26/2019	Arsenic	226915.1	<0.25	0.8	0.7906797	98.8	40	40.306278	100.8		0.8	JDB
7/26/2019	Arsenic	227040.1	<0.25	0.8	0.7940238	99.3	40	34.433917	86.1		2.3	JDB
7/25/2019	Barium	226939.1	<0.001	0.2	0.2080557	104.0	0.2	0.209543	104.8		0.1	JDB
7/25/2019	Barium	227041.1	<0.05	0.2	0.2080557	104.0	0.2	0.1829767	91.5		0.4	JDB
7/26/2019	Barium	227040.1	<2.5	0.2	0.2112650	105.6	500	543.5715	108.7		7.2	JDB
7/25/2019	Beryllium	226939.1	<0.001	0.2	0.2122779	106.1	0.2	0.2142832	107.1		0.3	JDB
7/25/2019	Beryllium	227041.1	<0.001	0.2	0.2122779	106.1	0.2	0.1992329	99.6		0.4	JDB
7/26/2019	Beryllium	227040.1	<0.05	0.2	0.2131235	106.6	10	9.40679	94.1		0.2	JDB
7/25/2019	Boron	226939.1	<0.01	0.3	0.2995651	99.9	0.3	0.2984183	99.5		0.7	JDB
7/25/2019	Boron	227041.1	<0.5	0.3	0.2995651	99.9	0.3	0.2855333	95.2		0.5	JDB
7/25/2019	Cadmium	227041.1	<0.001	0.2	0.2069934	103.5	0.2	0.1836838	91.8		0.6	JDB
7/25/2019	Cadmium	226939.1	<0.001	0.2	0.2069934	103.5	0.2	0.2061243	103.1		0.5	JDB
7/26/2019	Cadmium	226915.1	<0.05	0.2	0.1973571	98.7	10	10.058007	100.6		1.8	JDB
7/26/2019	Cadmium	227040.1	<0.05	0.2	0.2013293	100.7	10	8.0453767	80.5		1.6	JDB
7/25/2019	Calcium	226939.1	<0.01	1	1.0087505	100.9	1	1.0243667	102.4		0.9	JDB
7/26/2019	Calcium	227040.1	<25	1	0.8616568	86.2	50	113.63333	227.3		0.8	JDB
7/25/2019	Chromium	226939.1	<0.001	0.4	0.4116387	102.9	0.4	0.4125529	103.1		0.4	JDB
7/25/2019	Chromium	227041.1	<0.001	0.4	0.4116387	102.9	0.4	0.3867339	96.7		0.3	JDB
7/26/2019	Chromium	227040.1	<0.05	0.4	0.40798	102.0	20	17.692233	88.5		1.6	JDB
7/26/2019	Chromium	226915.1	<0.05	0.4	0.4059509	101.5	20	20.758823	103.8		0.8	JDB
7/25/2019	Cobalt	227041.1	<0.005	0.2	0.2043482	102.2	0.2	0.1839347	92.0		0.4	JDB
7/25/2019	Cobalt	226939.1	<0.005	0.2	0.2043482	102.2	0.2	0.2054714	102.7		0.4	JDB
7/26/2019	Cobalt	227040.1	<0.05	0.2	0.2032547	101.6	10	7.7614833	77.6		1.8	JDB
7/25/2019	Copper	227041.1	<0.001	0.3	0.3066399	102.2	0.3	0.2963301	98.8		0.1	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEP Analytical Chemistry Services.

AEP ANALYTICAL CHEMISTRY SERVICES
Analysis Report

02004

502 North Allen Ave.
Shreveport, LA 71101
Phone: (318) 673-3802
Fax: (318) 673-3960

Report ID	: 40143											
Date Received:	07/18/2019											
		Company: SEP - Flint Creek (TW)						Address: 502 North Allen Avenue				
		Contact: Terry Wehling						Shreveport, LA 71101				
		Phone: (318) 673-2721						Fax: (318) 673-3960				
7/25/2019	Copper	226939.1	<0.001	0.3	0.3066399	102.2	0.3	0.3109092	103.6		0.1	JDB
7/26/2019	Copper	227040.1	<0.05	0.3	0.3124104	104.1	15	15.003017	100.0		1.9	JDB
7/25/2019	Iron	226939.1	<0.01	3	3.1158893	103.9	3	3.1231158	104.1		1.0	JDB
7/25/2019	Iron	227041.1	<0.5	3	3.1158893	103.9	150	159.28837	106.2		0.8	JDB
7/26/2019	Iron	227040.1	<12.5	3	3.0861005	102.9					3.1	JDB
7/25/2019	Lead	227041.1	<0.005	1	1.0430644	104.3	1	0.9320653	93.2		0.6	JDB
7/25/2019	Lead	226939.1	<0.005	1	1.0430644	104.3	1	1.0416574	104.2		0.4	JDB
7/26/2019	Lead	226915.1	<0.25	1	1.0147827	101.5	50	51.881956	103.8		1.4	JDB
7/26/2019	Lead	227040.1	<0.25	1	1.0194305	101.9	50	41.227533	82.5		1.1	JDB
7/25/2019	Lithium	227041.1	<0.001	0.2	0.2119096	106.0	0.2	0.2353987	117.7		0.1	JDB
7/25/2019	Lithium	226939.1	<0.001	0.2	0.2119096	106.0	0.2	0.2163799	108.2		0.4	JDB
7/26/2019	Lithium	227040.1	<0.05	0.2	0.211291	105.6	10	11.698417	117.0		2.8	JDB
7/25/2019	Magnesium	226939.1	<0.01	2	2.0868175	104.3	2	2.0877567	104.4		0.2	JDB
7/25/2019	Magnesium	227041.1	<0.5	2	2.0868175	104.3	2	1.9791333	99.0		0.6	JDB
7/26/2019	Magnesium	227040.1	<25	2	2.0570549	102.9	100	76.916667	76.9		1.4	JDB
7/25/2019	Manganese	226939.1	<0.001	0.2	0.2072869	103.6	0.2	0.2077536	103.9		0.2	JDB
7/25/2019	Manganese	227041.1	<0.001	0.2	0.2072869	103.6	0.2	0.16684	83.4		0.7	JDB
7/26/2019	Manganese	227040.1	<2.5	0.2	0.2066368	103.3	500	572.398	114.5		1.1	JDB
7/24/2019	Mercury	227041.1	<0.000002	0.001	0.00097	97.0	0.2	0.16373	81.9		7.0	LNM
7/24/2019	Mercury	227040.1	<0.000002	0.001	0.00097	97.0	0.04	0.0496	124.0		4.4	LNM
7/30/2019	Mercury	227042.1	<0.005	0.001	0.0009	90.0	0.2	0.156162	78.1		4.0	LNM
7/25/2019	Molybdenum	227041.1	<0.005	0.2	0.2067657	103.4	0.2	0.197727	98.9		0.5	JDB
7/25/2019	Molybdenum	226939.1	<0.005	0.2	0.2067657	103.4	0.2	0.2076129	103.8		0.4	JDB
7/26/2019	Molybdenum	227040.1	<0.05	0.2	0.2073308	103.7	10	9.2486833	92.5		0.4	JDB
7/25/2019	Nickel	227041.1	<0.025	0.5	0.5192594	103.9	0.5	0.46183	92.4		0.6	JDB
7/25/2019	Nickel	226939.1	<0.025	0.5	0.5192594	103.9	0.5	0.5209379	104.2		0.6	JDB
7/26/2019	Nickel	227040.1	<0.05	0.5	0.5228273	104.6	25	19.992767	80.0		1.9	JDB
7/25/2019	Potassium	227041.1	<0.01	10	9.3692109	93.7	10	11.11754	111.2		0.3	JDB
7/25/2019	Potassium	226939.1	<0.01	10	9.3692109	93.7	10	9.4631223	94.6		0.2	JDB
7/26/2019	Potassium	227040.1	<25	10	9.1397018	91.4	500	428.035	85.6		2.9	JDB
7/25/2019	Selenium	226939.1	<0.005	2	1.9998495	100.0	2	1.9816300	99.1		0.8	JDB
7/25/2019	Selenium	227041.1	<0.005	2	1.9998495	100.0	2	1.991203	99.6		0.7	JDB
7/26/2019	Selenium	227040.1	<0.25	2	1.9551138	97.8	100	89.733067	89.7		3.0	JDB
7/25/2019	Silver	227041.1	<0.001	0.075	0.0712930	95.1	0.075	0.0708639	94.5		0.2	JDB
7/25/2019	Silver	226939.1	<0.001	0.075	0.0712930	95.1	0.075	0.0714285	95.2		0.1	JDB
7/26/2019	Silver	227040.1	<0.05	0.075	0.0712215	95.0	3.75	3.6188628	96.5		0.5	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEP Analytical Chemistry Services.

AEP ANALYTICAL CHEMISTRY SERVICES
Analysis Report

02004

502 North Allen Ave.
Shreveport, LA 71101
Phone: (318) 673-3802
Fax: (318) 673-3960

Report ID	: 40143	Company: SEP - Flint Creek (TW)			Address: 502 North Allen Avenue Shreveport, LA 71101							
Date Received:	07/18/2019	Contact: Terry Wehling			Fax: (318) 673-3960							
7/25/2019	Sodium	227041.1	<0.5	3	3.1384831	104.6	3	2.3746333	79.2		0.0	JDB
7/25/2019	Sodium	226939.1	<0.01	3	3.1384831	104.6	3	2.4693667	82.3		0.1	JDB
7/26/2019	Sodium	227040.1	<25	3	3.1256605	104.2	150	120.525	80.4		1.9	JDB
7/25/2019	Strontium	226939.1	<0.001	0.2	0.2059899	103.0	0.2	0.2081687	104.1		0.4	JDB
7/26/2019	Strontium	227040.1	<2.5	0.2	0.2078256	103.9	500	577.76733	115.6		17.9	JDB
7/25/2019	Thallium	227041.1	<0.005	0.4	0.4152040	103.8	0.4	0.3682771	92.1		1.2	JDB
7/25/2019	Thallium	226939.1	<0.005	0.4	0.4152040	103.8	0.4	0.4171124	104.3		0.0	JDB
7/26/2019	Thallium	227040.1	<0.25	0.4	0.4155052	103.9	20	15.947380	79.7		1.2	JDB
7/25/2019	Tin	226939.1	<0.005	0.7	0.6995446	99.9	0.7	0.6930628	99.0		0.2	JDB
7/25/2019	Tin	227041.1	<0.005	0.7	0.6995446	99.9	0.7	0.644164	92.0		0.2	JDB
7/26/2019	Tin	227040.1	<0.2	0.7	0.6896072	98.5	35	28.438362	81.3		0.8	JDB
7/25/2019	Titanium	227041.1	<0.005	0.2	0.2109341	105.5	0.2	0.2098874	104.9		0.2	JDB
7/25/2019	Titanium	226939.1	<0.005	0.2	0.2109341	105.5	0.2	0.2124567	106.2		0.1	JDB
7/26/2019	Titanium	227040.1	<2.5	0.2	0.2121079	106.1					1.6	JDB
7/25/2019	Vanadium	226939.1	<0.001	0.3	0.3076519	102.6	0.3	0.3104754	103.5		0.4	JDB
7/25/2019	Vanadium	227041.1	<0.001	0.3	0.3076519	102.6	0.3	0.2997157	99.9		0.6	JDB
7/26/2019	Vanadium	227040.1	<0.05	0.3	0.30789	102.6	15	15.291667	101.9		0.0	JDB
7/25/2019	Zinc	226939.1	<0.005	0.2	0.2091679	104.6	0.2	0.2081374	104.1		0.3	JDB
7/25/2019	Zinc	227041.1	<0.005	0.2	0.2091679	104.6	0.2	0.1851907	92.6		0.1	JDB
7/26/2019	Zinc	227040.1	<0.25	0.2	0.2074233	103.7	10	8.4881167	84.9		0.5	JDB

Code **Code Description**

M4 The analysis of the spiked sample required a dilution such that the spike recovery calculation does not provide useful information. The associated blank spike recovery was acceptable.

T5 This parameter is not included in the Laboratory's LELAP Laboratory Scope of Accreditation.

Quality Assurance Officer

05-Aug-19
Report Date

JOB 7-18-19

Figure 1 – Chain of Custody

CHAIN OF CUSTODY										COC 40143	
OPCO/PROJECT NAME			FAX NO.		ANALYSIS REQUESTED					REMARKS	
Power Plant			(903) 927-5840		Total Metals (Total SLP, Deionized water leach)					Metals to analyze for each (Total SLP, Deionized) B, Ca, Si, Al, Ba, Be, Cd, Cr Co, Pb, Li, Hg, Ni, Sc, Te and any other metals in calibration.	
CONTACT PERSON (Please Print)			PHONE NO.		(903) 927-5889						
Ron Franklin, Randy Rountree, Ben House			SAMPLE FRS (SIGNATURE)								
DATE	TIME	SAMPLE SOURCE & DESCRIPTION	SAMPLE ID	C G OR P B	MA OR CONTAINERS	NUMBER	Lab Number				
7-17-19	1800	Pirkey Sludge FGD	Dirt Sludge	✓	✓	✓	227040-42	Terry Welling			
1. " "	1800	" "	Dirt Sludge	✓	✓	✓	227043-45				
RELINQUISHED BY (SIGN)			DATE/TIME	RECEIVED BY	RELINQUISHED BY (SIGN)	DATE/TIME	RECEIVED BY				
RELINQUISHED BY (SIGN)			DATE/TIME	RECEIVED BY	RELINQUISHED BY (SIGN)	DATE/TIME	RECEIVED BY				
RECEIVED FOR LABORATORY					COMMENTS						
<p><i>Jonathan Barnhill 7-18-19 1036</i></p>											

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave.
Shreveport, LA 71101
Phone 318-673-3802
FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type				Delivery Type			
Ice Chest	Bag	Action Pak	PCB Mailer	Bottle	UPS	FEDEX	US Mail
Other _____				Other _____			
Tracking # _____							

Client Terry Wehling Sample Matrix
Received By JDB DGA PCB Oil Water Oil Soil
Received Date 7-18-19
Open Date 7-18-19 Solid Liquid Other _____

Container Temp Read NA Project I.D. _____
Correction Factor _____
Corrected Temp _____
Were samples received on ice? YES NO

Did container arrive in good condition? YES NO

Was sample documentation received? YES NO

Was documentation filled out properly? YES NO

Were samples labeled properly? YES NO

Were correct containers used? YES NO

Were the pH's of samples appropriately checked? YES NO

Total number of sample containers 2

Was any corrective action taken? NO Person Contacted _____
Date & Time _____

Comments _____

ATTACHMENT E

AD-33 Soil Samples Analytical Report

Client: Burns & McDonnell **Date:** 08-Jun-18
Project: 106665 PIRKEY **Work Order:** 1805081
Sample ID: AD-33 (11') **Lab ID:** 1805081-15
Legal Location: **Matrix:** SOIL
Collection Date: 4/30/2018 16:05 **Percent Moisture:** 18.1

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Gamma Spectroscopy Results						
Ra-226	1.29 (+/- 0.3)	G	0.47	pCi/g	NA	6/7/2018 08:54
Ra-228	1.36 (+/- 0.47)	G,TI	0.7	pCi/g	NA	6/7/2018 08:54
ICPMS Metals						
ARSENIC	4.9		0.23	MG/KG	10	5/17/2018 01:02
BARIUM	20		0.57	MG/KG	10	5/17/2018 01:02
BERYLLIUM	0.15		0.057	MG/KG	10	5/17/2018 01:02
CADMIUM	ND		0.23	MG/KG	10	5/17/2018 01:02
COBALT	0.61		0.57	MG/KG	10	5/17/2018 01:02
CHROMIUM	9.5		1.1	MG/KG	10	5/17/2018 01:02
LITHIUM	0.25	J	2.3	MG/KG	10	5/17/2018 01:02
MOLYBDENUM	0.18	J	0.23	MG/KG	10	5/17/2018 01:02
LEAD	3.2		0.23	MG/KG	10	5/17/2018 01:02
ANTIMONY	0.086	J	0.11	MG/KG	10	5/17/2018 01:02
SELENIUM	0.81	J	1.1	MG/KG	10	5/17/2018 01:02
THALLIUM	0.044		0.011	MG/KG	10	5/17/2018 01:02
Ion Chromatography						
FLUORIDE	ND		EPA300.0		Prep Date: 5/10/2018	PrepBy: HMA
				1	MG/KG	5/11/2018 21:43
Mercury						
MERCURY	0.0026	J	SW7471		Prep Date: 5/11/2018	PrepBy: AJL2
				0.039	MG/KG	5/11/2018 16:07

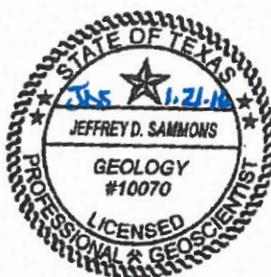
Client: Burns & McDonnell **Date:** 08-Jun-18
Project: 106665 PIRKEY **Work Order:** 1805081
Sample ID: AD-33 (21') **Lab ID:** 1805081-16
Legal Location: **Matrix:** SOIL
Collection Date: 4/30/2018 16:05 **Percent Moisture:** 20.0

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Gamma Spectroscopy Results						
Ra-226	0.7 (+/- 0.22)	LT	0.37	pCi/g	NA	6/7/2018 08:16
Ra-228	0.72 (+/- 0.5)	NQ	0.67	pCi/g	NA	6/7/2018 08:16
ICPMS Metals						
ARSENIC	12		0.25	MG/KG	10	5/17/2018 01:05
BARIUM	9.1		0.62	MG/KG	10	5/17/2018 01:05
BERYLLIUM	0.09		0.062	MG/KG	10	5/17/2018 01:05
CADMIUM	ND		0.25	MG/KG	10	5/17/2018 01:05
COBALT	0.64		0.62	MG/KG	10	5/17/2018 01:05
CHROMIUM	4.6		1.2	MG/KG	10	5/17/2018 01:05
LITHIUM	0.24	J	2.5	MG/KG	10	5/17/2018 01:05
MOLYBDENUM	0.061	J	0.25	MG/KG	10	5/17/2018 01:05
LEAD	1.5		0.25	MG/KG	10	5/17/2018 01:05
ANTIMONY	0.19		0.12	MG/KG	10	5/17/2018 01:05
SELENIUM	0.42	J	1.2	MG/KG	10	5/17/2018 01:05
THALLIUM	0.03		0.012	MG/KG	10	5/17/2018 01:05
Ion Chromatography						
FLUORIDE	ND		EPA300.0		Prep Date: 5/10/2018	PrepBy: HMA
				1	MG/KG	5/11/2018 22:29
Mercury						
MERCURY	0.0038	J	SW7471		Prep Date: 5/11/2018	PrepBy: AJL2
				0.04	MG/KG	5/11/2018 16:09

ATTACHMENT F

AD-33 Boring Log and Well Installation Diagram

Monitor Well


Monitor Well No.: AD-33

PROJECT INFORMATION

PROJECT: Pirkay Power Plant
 PROJECT NO.: I-04-1021
 LOGGED BY: Jeffrey D. Sammons, P.G.
 SUPERVISING PG: Jeffrey D. Sammons, P.G.
 COMPLETION: 12/11/2016
 DEVELOPMENT: 12/16/2016
 SITE LOCATION: 2400 FM 3251, Halleville, Texas
 WELL OWNER: AEP

DRILLING INFORMATION

DRILLER: Buford Collier
 DRILLER'S LICENSE NO.: 60098
 RIG TYPE: Geoprobe 3230DT
 METHOD OF DRILLING: Hollow Stem Auger
 SAMPLING METHODS: Split Core
 SURFACE ELEVATION: 382.37 (Top of Casing)
 HOLE DIAMETER: 8.25"
 LATITUDE 32° 27' 38.70" LONGITUDE 94° 28' 15.82"

TBPG No. 50027

Water Level Upon Installation

Water Level at Time of Drilling

Geotechnical Lab Sample

TBPG No. 50027

ATTACHMENT G

Certification by a Qualified Professional Engineer

CERTIFICATION BY A QUALIFIED PROFESSIONAL ENGINEER

I certify that the above described alternative source demonstration is appropriate for evaluating the groundwater monitoring data for the CCR management area at the former Pirkey FGD Stackout Area and that the requirements of 30 TAC §352.951(e) have been met.

Beth Ann Gross

Printed Name of Licensed Professional Engineer

Beth Ann Gross

Signature

Geosyntec Consultants
2039 Centre Pointe Blvd, Suite 103
Tallahassee, Florida 32308

Texas Registered Engineering Firm
No. F-1182

79864
License Number

Texas
Licensing State

December 23, 2025
Date